1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/Analysis.h" 30 #include "llvm/CodeGen/FunctionLoweringInfo.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetFrameLowering.h" 42 #include "llvm/CodeGen/TargetLowering.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/ValueTypes.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/ManagedStatic.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/Mutex.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Transforms/Utils/SizeOpts.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <cstdlib> 74 #include <limits> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 /// makeVTList - Return an instance of the SDVTList struct initialized with the 83 /// specified members. 84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 85 SDVTList Res = {VTs, NumVTs}; 86 return Res; 87 } 88 89 // Default null implementations of the callbacks. 90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 93 94 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 95 96 #define DEBUG_TYPE "selectiondag" 97 98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 99 cl::Hidden, cl::init(true), 100 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 101 102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 103 cl::desc("Number limit for gluing ld/st of memcpy."), 104 cl::Hidden, cl::init(0)); 105 106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 108 } 109 110 //===----------------------------------------------------------------------===// 111 // ConstantFPSDNode Class 112 //===----------------------------------------------------------------------===// 113 114 /// isExactlyValue - We don't rely on operator== working on double values, as 115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 116 /// As such, this method can be used to do an exact bit-for-bit comparison of 117 /// two floating point values. 118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 119 return getValueAPF().bitwiseIsEqual(V); 120 } 121 122 bool ConstantFPSDNode::isValueValidForType(EVT VT, 123 const APFloat& Val) { 124 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 125 126 // convert modifies in place, so make a copy. 127 APFloat Val2 = APFloat(Val); 128 bool losesInfo; 129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 130 APFloat::rmNearestTiesToEven, 131 &losesInfo); 132 return !losesInfo; 133 } 134 135 //===----------------------------------------------------------------------===// 136 // ISD Namespace 137 //===----------------------------------------------------------------------===// 138 139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 140 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 141 unsigned EltSize = 142 N->getValueType(0).getVectorElementType().getSizeInBits(); 143 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 144 SplatVal = Op0->getAPIntValue().trunc(EltSize); 145 return true; 146 } 147 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 148 SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize); 149 return true; 150 } 151 } 152 153 auto *BV = dyn_cast<BuildVectorSDNode>(N); 154 if (!BV) 155 return false; 156 157 APInt SplatUndef; 158 unsigned SplatBitSize; 159 bool HasUndefs; 160 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 161 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 162 EltSize) && 163 EltSize == SplatBitSize; 164 } 165 166 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 167 // specializations of the more general isConstantSplatVector()? 168 169 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 170 // Look through a bit convert. 171 while (N->getOpcode() == ISD::BITCAST) 172 N = N->getOperand(0).getNode(); 173 174 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 175 APInt SplatVal; 176 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 177 } 178 179 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 180 181 unsigned i = 0, e = N->getNumOperands(); 182 183 // Skip over all of the undef values. 184 while (i != e && N->getOperand(i).isUndef()) 185 ++i; 186 187 // Do not accept an all-undef vector. 188 if (i == e) return false; 189 190 // Do not accept build_vectors that aren't all constants or which have non-~0 191 // elements. We have to be a bit careful here, as the type of the constant 192 // may not be the same as the type of the vector elements due to type 193 // legalization (the elements are promoted to a legal type for the target and 194 // a vector of a type may be legal when the base element type is not). 195 // We only want to check enough bits to cover the vector elements, because 196 // we care if the resultant vector is all ones, not whether the individual 197 // constants are. 198 SDValue NotZero = N->getOperand(i); 199 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 200 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 201 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 202 return false; 203 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 204 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 205 return false; 206 } else 207 return false; 208 209 // Okay, we have at least one ~0 value, check to see if the rest match or are 210 // undefs. Even with the above element type twiddling, this should be OK, as 211 // the same type legalization should have applied to all the elements. 212 for (++i; i != e; ++i) 213 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 214 return false; 215 return true; 216 } 217 218 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 219 // Look through a bit convert. 220 while (N->getOpcode() == ISD::BITCAST) 221 N = N->getOperand(0).getNode(); 222 223 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 224 APInt SplatVal; 225 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 226 } 227 228 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 229 230 bool IsAllUndef = true; 231 for (const SDValue &Op : N->op_values()) { 232 if (Op.isUndef()) 233 continue; 234 IsAllUndef = false; 235 // Do not accept build_vectors that aren't all constants or which have non-0 236 // elements. We have to be a bit careful here, as the type of the constant 237 // may not be the same as the type of the vector elements due to type 238 // legalization (the elements are promoted to a legal type for the target 239 // and a vector of a type may be legal when the base element type is not). 240 // We only want to check enough bits to cover the vector elements, because 241 // we care if the resultant vector is all zeros, not whether the individual 242 // constants are. 243 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 244 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 245 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 246 return false; 247 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 248 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 249 return false; 250 } else 251 return false; 252 } 253 254 // Do not accept an all-undef vector. 255 if (IsAllUndef) 256 return false; 257 return true; 258 } 259 260 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 261 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 262 } 263 264 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 265 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 266 } 267 268 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 269 if (N->getOpcode() != ISD::BUILD_VECTOR) 270 return false; 271 272 for (const SDValue &Op : N->op_values()) { 273 if (Op.isUndef()) 274 continue; 275 if (!isa<ConstantSDNode>(Op)) 276 return false; 277 } 278 return true; 279 } 280 281 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 282 if (N->getOpcode() != ISD::BUILD_VECTOR) 283 return false; 284 285 for (const SDValue &Op : N->op_values()) { 286 if (Op.isUndef()) 287 continue; 288 if (!isa<ConstantFPSDNode>(Op)) 289 return false; 290 } 291 return true; 292 } 293 294 bool ISD::allOperandsUndef(const SDNode *N) { 295 // Return false if the node has no operands. 296 // This is "logically inconsistent" with the definition of "all" but 297 // is probably the desired behavior. 298 if (N->getNumOperands() == 0) 299 return false; 300 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 301 } 302 303 bool ISD::matchUnaryPredicate(SDValue Op, 304 std::function<bool(ConstantSDNode *)> Match, 305 bool AllowUndefs) { 306 // FIXME: Add support for scalar UNDEF cases? 307 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 308 return Match(Cst); 309 310 // FIXME: Add support for vector UNDEF cases? 311 if (ISD::BUILD_VECTOR != Op.getOpcode() && 312 ISD::SPLAT_VECTOR != Op.getOpcode()) 313 return false; 314 315 EVT SVT = Op.getValueType().getScalarType(); 316 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 317 if (AllowUndefs && Op.getOperand(i).isUndef()) { 318 if (!Match(nullptr)) 319 return false; 320 continue; 321 } 322 323 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 324 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 325 return false; 326 } 327 return true; 328 } 329 330 bool ISD::matchBinaryPredicate( 331 SDValue LHS, SDValue RHS, 332 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 333 bool AllowUndefs, bool AllowTypeMismatch) { 334 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 335 return false; 336 337 // TODO: Add support for scalar UNDEF cases? 338 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 339 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 340 return Match(LHSCst, RHSCst); 341 342 // TODO: Add support for vector UNDEF cases? 343 if (LHS.getOpcode() != RHS.getOpcode() || 344 (LHS.getOpcode() != ISD::BUILD_VECTOR && 345 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 346 return false; 347 348 EVT SVT = LHS.getValueType().getScalarType(); 349 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 350 SDValue LHSOp = LHS.getOperand(i); 351 SDValue RHSOp = RHS.getOperand(i); 352 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 353 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 354 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 355 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 356 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 357 return false; 358 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 359 LHSOp.getValueType() != RHSOp.getValueType())) 360 return false; 361 if (!Match(LHSCst, RHSCst)) 362 return false; 363 } 364 return true; 365 } 366 367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 368 switch (VecReduceOpcode) { 369 default: 370 llvm_unreachable("Expected VECREDUCE opcode"); 371 case ISD::VECREDUCE_FADD: 372 case ISD::VECREDUCE_SEQ_FADD: 373 case ISD::VP_REDUCE_FADD: 374 case ISD::VP_REDUCE_SEQ_FADD: 375 return ISD::FADD; 376 case ISD::VECREDUCE_FMUL: 377 case ISD::VECREDUCE_SEQ_FMUL: 378 case ISD::VP_REDUCE_FMUL: 379 case ISD::VP_REDUCE_SEQ_FMUL: 380 return ISD::FMUL; 381 case ISD::VECREDUCE_ADD: 382 case ISD::VP_REDUCE_ADD: 383 return ISD::ADD; 384 case ISD::VECREDUCE_MUL: 385 case ISD::VP_REDUCE_MUL: 386 return ISD::MUL; 387 case ISD::VECREDUCE_AND: 388 case ISD::VP_REDUCE_AND: 389 return ISD::AND; 390 case ISD::VECREDUCE_OR: 391 case ISD::VP_REDUCE_OR: 392 return ISD::OR; 393 case ISD::VECREDUCE_XOR: 394 case ISD::VP_REDUCE_XOR: 395 return ISD::XOR; 396 case ISD::VECREDUCE_SMAX: 397 case ISD::VP_REDUCE_SMAX: 398 return ISD::SMAX; 399 case ISD::VECREDUCE_SMIN: 400 case ISD::VP_REDUCE_SMIN: 401 return ISD::SMIN; 402 case ISD::VECREDUCE_UMAX: 403 case ISD::VP_REDUCE_UMAX: 404 return ISD::UMAX; 405 case ISD::VECREDUCE_UMIN: 406 case ISD::VP_REDUCE_UMIN: 407 return ISD::UMIN; 408 case ISD::VECREDUCE_FMAX: 409 case ISD::VP_REDUCE_FMAX: 410 return ISD::FMAXNUM; 411 case ISD::VECREDUCE_FMIN: 412 case ISD::VP_REDUCE_FMIN: 413 return ISD::FMINNUM; 414 } 415 } 416 417 bool ISD::isVPOpcode(unsigned Opcode) { 418 switch (Opcode) { 419 default: 420 return false; 421 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 422 case ISD::VPSD: \ 423 return true; 424 #include "llvm/IR/VPIntrinsics.def" 425 } 426 } 427 428 bool ISD::isVPBinaryOp(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 break; 432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 433 #define VP_PROPERTY_BINARYOP return true; 434 #define END_REGISTER_VP_SDNODE(VPSD) break; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 return false; 438 } 439 440 bool ISD::isVPReduction(unsigned Opcode) { 441 switch (Opcode) { 442 default: 443 break; 444 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 445 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 446 #define END_REGISTER_VP_SDNODE(VPSD) break; 447 #include "llvm/IR/VPIntrinsics.def" 448 } 449 return false; 450 } 451 452 /// The operand position of the vector mask. 453 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 454 switch (Opcode) { 455 default: 456 return None; 457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 458 case ISD::VPSD: \ 459 return MASKPOS; 460 #include "llvm/IR/VPIntrinsics.def" 461 } 462 } 463 464 /// The operand position of the explicit vector length parameter. 465 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 466 switch (Opcode) { 467 default: 468 return None; 469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 470 case ISD::VPSD: \ 471 return EVLPOS; 472 #include "llvm/IR/VPIntrinsics.def" 473 } 474 } 475 476 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 477 switch (ExtType) { 478 case ISD::EXTLOAD: 479 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 480 case ISD::SEXTLOAD: 481 return ISD::SIGN_EXTEND; 482 case ISD::ZEXTLOAD: 483 return ISD::ZERO_EXTEND; 484 default: 485 break; 486 } 487 488 llvm_unreachable("Invalid LoadExtType"); 489 } 490 491 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 492 // To perform this operation, we just need to swap the L and G bits of the 493 // operation. 494 unsigned OldL = (Operation >> 2) & 1; 495 unsigned OldG = (Operation >> 1) & 1; 496 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 497 (OldL << 1) | // New G bit 498 (OldG << 2)); // New L bit. 499 } 500 501 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 502 unsigned Operation = Op; 503 if (isIntegerLike) 504 Operation ^= 7; // Flip L, G, E bits, but not U. 505 else 506 Operation ^= 15; // Flip all of the condition bits. 507 508 if (Operation > ISD::SETTRUE2) 509 Operation &= ~8; // Don't let N and U bits get set. 510 511 return ISD::CondCode(Operation); 512 } 513 514 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 515 return getSetCCInverseImpl(Op, Type.isInteger()); 516 } 517 518 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 519 bool isIntegerLike) { 520 return getSetCCInverseImpl(Op, isIntegerLike); 521 } 522 523 /// For an integer comparison, return 1 if the comparison is a signed operation 524 /// and 2 if the result is an unsigned comparison. Return zero if the operation 525 /// does not depend on the sign of the input (setne and seteq). 526 static int isSignedOp(ISD::CondCode Opcode) { 527 switch (Opcode) { 528 default: llvm_unreachable("Illegal integer setcc operation!"); 529 case ISD::SETEQ: 530 case ISD::SETNE: return 0; 531 case ISD::SETLT: 532 case ISD::SETLE: 533 case ISD::SETGT: 534 case ISD::SETGE: return 1; 535 case ISD::SETULT: 536 case ISD::SETULE: 537 case ISD::SETUGT: 538 case ISD::SETUGE: return 2; 539 } 540 } 541 542 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 543 EVT Type) { 544 bool IsInteger = Type.isInteger(); 545 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 546 // Cannot fold a signed integer setcc with an unsigned integer setcc. 547 return ISD::SETCC_INVALID; 548 549 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 550 551 // If the N and U bits get set, then the resultant comparison DOES suddenly 552 // care about orderedness, and it is true when ordered. 553 if (Op > ISD::SETTRUE2) 554 Op &= ~16; // Clear the U bit if the N bit is set. 555 556 // Canonicalize illegal integer setcc's. 557 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 558 Op = ISD::SETNE; 559 560 return ISD::CondCode(Op); 561 } 562 563 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 564 EVT Type) { 565 bool IsInteger = Type.isInteger(); 566 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 567 // Cannot fold a signed setcc with an unsigned setcc. 568 return ISD::SETCC_INVALID; 569 570 // Combine all of the condition bits. 571 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 572 573 // Canonicalize illegal integer setcc's. 574 if (IsInteger) { 575 switch (Result) { 576 default: break; 577 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 578 case ISD::SETOEQ: // SETEQ & SETU[LG]E 579 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 580 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 581 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 582 } 583 } 584 585 return Result; 586 } 587 588 //===----------------------------------------------------------------------===// 589 // SDNode Profile Support 590 //===----------------------------------------------------------------------===// 591 592 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 593 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 594 ID.AddInteger(OpC); 595 } 596 597 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 598 /// solely with their pointer. 599 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 600 ID.AddPointer(VTList.VTs); 601 } 602 603 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 604 static void AddNodeIDOperands(FoldingSetNodeID &ID, 605 ArrayRef<SDValue> Ops) { 606 for (auto& Op : Ops) { 607 ID.AddPointer(Op.getNode()); 608 ID.AddInteger(Op.getResNo()); 609 } 610 } 611 612 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 613 static void AddNodeIDOperands(FoldingSetNodeID &ID, 614 ArrayRef<SDUse> Ops) { 615 for (auto& Op : Ops) { 616 ID.AddPointer(Op.getNode()); 617 ID.AddInteger(Op.getResNo()); 618 } 619 } 620 621 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 622 SDVTList VTList, ArrayRef<SDValue> OpList) { 623 AddNodeIDOpcode(ID, OpC); 624 AddNodeIDValueTypes(ID, VTList); 625 AddNodeIDOperands(ID, OpList); 626 } 627 628 /// If this is an SDNode with special info, add this info to the NodeID data. 629 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 630 switch (N->getOpcode()) { 631 case ISD::TargetExternalSymbol: 632 case ISD::ExternalSymbol: 633 case ISD::MCSymbol: 634 llvm_unreachable("Should only be used on nodes with operands"); 635 default: break; // Normal nodes don't need extra info. 636 case ISD::TargetConstant: 637 case ISD::Constant: { 638 const ConstantSDNode *C = cast<ConstantSDNode>(N); 639 ID.AddPointer(C->getConstantIntValue()); 640 ID.AddBoolean(C->isOpaque()); 641 break; 642 } 643 case ISD::TargetConstantFP: 644 case ISD::ConstantFP: 645 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 646 break; 647 case ISD::TargetGlobalAddress: 648 case ISD::GlobalAddress: 649 case ISD::TargetGlobalTLSAddress: 650 case ISD::GlobalTLSAddress: { 651 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 652 ID.AddPointer(GA->getGlobal()); 653 ID.AddInteger(GA->getOffset()); 654 ID.AddInteger(GA->getTargetFlags()); 655 break; 656 } 657 case ISD::BasicBlock: 658 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 659 break; 660 case ISD::Register: 661 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 662 break; 663 case ISD::RegisterMask: 664 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 665 break; 666 case ISD::SRCVALUE: 667 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 668 break; 669 case ISD::FrameIndex: 670 case ISD::TargetFrameIndex: 671 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 672 break; 673 case ISD::LIFETIME_START: 674 case ISD::LIFETIME_END: 675 if (cast<LifetimeSDNode>(N)->hasOffset()) { 676 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 677 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 678 } 679 break; 680 case ISD::PSEUDO_PROBE: 681 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 682 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 683 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 684 break; 685 case ISD::JumpTable: 686 case ISD::TargetJumpTable: 687 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 688 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 689 break; 690 case ISD::ConstantPool: 691 case ISD::TargetConstantPool: { 692 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 693 ID.AddInteger(CP->getAlign().value()); 694 ID.AddInteger(CP->getOffset()); 695 if (CP->isMachineConstantPoolEntry()) 696 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 697 else 698 ID.AddPointer(CP->getConstVal()); 699 ID.AddInteger(CP->getTargetFlags()); 700 break; 701 } 702 case ISD::TargetIndex: { 703 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 704 ID.AddInteger(TI->getIndex()); 705 ID.AddInteger(TI->getOffset()); 706 ID.AddInteger(TI->getTargetFlags()); 707 break; 708 } 709 case ISD::LOAD: { 710 const LoadSDNode *LD = cast<LoadSDNode>(N); 711 ID.AddInteger(LD->getMemoryVT().getRawBits()); 712 ID.AddInteger(LD->getRawSubclassData()); 713 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 714 ID.AddInteger(LD->getMemOperand()->getFlags()); 715 break; 716 } 717 case ISD::STORE: { 718 const StoreSDNode *ST = cast<StoreSDNode>(N); 719 ID.AddInteger(ST->getMemoryVT().getRawBits()); 720 ID.AddInteger(ST->getRawSubclassData()); 721 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 722 ID.AddInteger(ST->getMemOperand()->getFlags()); 723 break; 724 } 725 case ISD::VP_LOAD: { 726 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 727 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 728 ID.AddInteger(ELD->getRawSubclassData()); 729 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 730 ID.AddInteger(ELD->getMemOperand()->getFlags()); 731 break; 732 } 733 case ISD::VP_STORE: { 734 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 735 ID.AddInteger(EST->getMemoryVT().getRawBits()); 736 ID.AddInteger(EST->getRawSubclassData()); 737 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 738 ID.AddInteger(EST->getMemOperand()->getFlags()); 739 break; 740 } 741 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: { 742 const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N); 743 ID.AddInteger(SLD->getMemoryVT().getRawBits()); 744 ID.AddInteger(SLD->getRawSubclassData()); 745 ID.AddInteger(SLD->getPointerInfo().getAddrSpace()); 746 break; 747 } 748 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: { 749 const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N); 750 ID.AddInteger(SST->getMemoryVT().getRawBits()); 751 ID.AddInteger(SST->getRawSubclassData()); 752 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 753 break; 754 } 755 case ISD::VP_GATHER: { 756 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 757 ID.AddInteger(EG->getMemoryVT().getRawBits()); 758 ID.AddInteger(EG->getRawSubclassData()); 759 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 760 ID.AddInteger(EG->getMemOperand()->getFlags()); 761 break; 762 } 763 case ISD::VP_SCATTER: { 764 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 765 ID.AddInteger(ES->getMemoryVT().getRawBits()); 766 ID.AddInteger(ES->getRawSubclassData()); 767 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 768 ID.AddInteger(ES->getMemOperand()->getFlags()); 769 break; 770 } 771 case ISD::MLOAD: { 772 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 773 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 774 ID.AddInteger(MLD->getRawSubclassData()); 775 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 776 ID.AddInteger(MLD->getMemOperand()->getFlags()); 777 break; 778 } 779 case ISD::MSTORE: { 780 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 781 ID.AddInteger(MST->getMemoryVT().getRawBits()); 782 ID.AddInteger(MST->getRawSubclassData()); 783 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 784 ID.AddInteger(MST->getMemOperand()->getFlags()); 785 break; 786 } 787 case ISD::MGATHER: { 788 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 789 ID.AddInteger(MG->getMemoryVT().getRawBits()); 790 ID.AddInteger(MG->getRawSubclassData()); 791 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 792 ID.AddInteger(MG->getMemOperand()->getFlags()); 793 break; 794 } 795 case ISD::MSCATTER: { 796 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 797 ID.AddInteger(MS->getMemoryVT().getRawBits()); 798 ID.AddInteger(MS->getRawSubclassData()); 799 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 800 ID.AddInteger(MS->getMemOperand()->getFlags()); 801 break; 802 } 803 case ISD::ATOMIC_CMP_SWAP: 804 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 805 case ISD::ATOMIC_SWAP: 806 case ISD::ATOMIC_LOAD_ADD: 807 case ISD::ATOMIC_LOAD_SUB: 808 case ISD::ATOMIC_LOAD_AND: 809 case ISD::ATOMIC_LOAD_CLR: 810 case ISD::ATOMIC_LOAD_OR: 811 case ISD::ATOMIC_LOAD_XOR: 812 case ISD::ATOMIC_LOAD_NAND: 813 case ISD::ATOMIC_LOAD_MIN: 814 case ISD::ATOMIC_LOAD_MAX: 815 case ISD::ATOMIC_LOAD_UMIN: 816 case ISD::ATOMIC_LOAD_UMAX: 817 case ISD::ATOMIC_LOAD: 818 case ISD::ATOMIC_STORE: { 819 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 820 ID.AddInteger(AT->getMemoryVT().getRawBits()); 821 ID.AddInteger(AT->getRawSubclassData()); 822 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 823 ID.AddInteger(AT->getMemOperand()->getFlags()); 824 break; 825 } 826 case ISD::PREFETCH: { 827 const MemSDNode *PF = cast<MemSDNode>(N); 828 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 829 ID.AddInteger(PF->getMemOperand()->getFlags()); 830 break; 831 } 832 case ISD::VECTOR_SHUFFLE: { 833 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 834 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 835 i != e; ++i) 836 ID.AddInteger(SVN->getMaskElt(i)); 837 break; 838 } 839 case ISD::TargetBlockAddress: 840 case ISD::BlockAddress: { 841 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 842 ID.AddPointer(BA->getBlockAddress()); 843 ID.AddInteger(BA->getOffset()); 844 ID.AddInteger(BA->getTargetFlags()); 845 break; 846 } 847 case ISD::AssertAlign: 848 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value()); 849 break; 850 } // end switch (N->getOpcode()) 851 852 // Target specific memory nodes could also have address spaces and flags 853 // to check. 854 if (N->isTargetMemoryOpcode()) { 855 const MemSDNode *MN = cast<MemSDNode>(N); 856 ID.AddInteger(MN->getPointerInfo().getAddrSpace()); 857 ID.AddInteger(MN->getMemOperand()->getFlags()); 858 } 859 } 860 861 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 862 /// data. 863 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 864 AddNodeIDOpcode(ID, N->getOpcode()); 865 // Add the return value info. 866 AddNodeIDValueTypes(ID, N->getVTList()); 867 // Add the operand info. 868 AddNodeIDOperands(ID, N->ops()); 869 870 // Handle SDNode leafs with special info. 871 AddNodeIDCustom(ID, N); 872 } 873 874 //===----------------------------------------------------------------------===// 875 // SelectionDAG Class 876 //===----------------------------------------------------------------------===// 877 878 /// doNotCSE - Return true if CSE should not be performed for this node. 879 static bool doNotCSE(SDNode *N) { 880 if (N->getValueType(0) == MVT::Glue) 881 return true; // Never CSE anything that produces a flag. 882 883 switch (N->getOpcode()) { 884 default: break; 885 case ISD::HANDLENODE: 886 case ISD::EH_LABEL: 887 return true; // Never CSE these nodes. 888 } 889 890 // Check that remaining values produced are not flags. 891 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 892 if (N->getValueType(i) == MVT::Glue) 893 return true; // Never CSE anything that produces a flag. 894 895 return false; 896 } 897 898 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 899 /// SelectionDAG. 900 void SelectionDAG::RemoveDeadNodes() { 901 // Create a dummy node (which is not added to allnodes), that adds a reference 902 // to the root node, preventing it from being deleted. 903 HandleSDNode Dummy(getRoot()); 904 905 SmallVector<SDNode*, 128> DeadNodes; 906 907 // Add all obviously-dead nodes to the DeadNodes worklist. 908 for (SDNode &Node : allnodes()) 909 if (Node.use_empty()) 910 DeadNodes.push_back(&Node); 911 912 RemoveDeadNodes(DeadNodes); 913 914 // If the root changed (e.g. it was a dead load, update the root). 915 setRoot(Dummy.getValue()); 916 } 917 918 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 919 /// given list, and any nodes that become unreachable as a result. 920 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 921 922 // Process the worklist, deleting the nodes and adding their uses to the 923 // worklist. 924 while (!DeadNodes.empty()) { 925 SDNode *N = DeadNodes.pop_back_val(); 926 // Skip to next node if we've already managed to delete the node. This could 927 // happen if replacing a node causes a node previously added to the node to 928 // be deleted. 929 if (N->getOpcode() == ISD::DELETED_NODE) 930 continue; 931 932 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 933 DUL->NodeDeleted(N, nullptr); 934 935 // Take the node out of the appropriate CSE map. 936 RemoveNodeFromCSEMaps(N); 937 938 // Next, brutally remove the operand list. This is safe to do, as there are 939 // no cycles in the graph. 940 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 941 SDUse &Use = *I++; 942 SDNode *Operand = Use.getNode(); 943 Use.set(SDValue()); 944 945 // Now that we removed this operand, see if there are no uses of it left. 946 if (Operand->use_empty()) 947 DeadNodes.push_back(Operand); 948 } 949 950 DeallocateNode(N); 951 } 952 } 953 954 void SelectionDAG::RemoveDeadNode(SDNode *N){ 955 SmallVector<SDNode*, 16> DeadNodes(1, N); 956 957 // Create a dummy node that adds a reference to the root node, preventing 958 // it from being deleted. (This matters if the root is an operand of the 959 // dead node.) 960 HandleSDNode Dummy(getRoot()); 961 962 RemoveDeadNodes(DeadNodes); 963 } 964 965 void SelectionDAG::DeleteNode(SDNode *N) { 966 // First take this out of the appropriate CSE map. 967 RemoveNodeFromCSEMaps(N); 968 969 // Finally, remove uses due to operands of this node, remove from the 970 // AllNodes list, and delete the node. 971 DeleteNodeNotInCSEMaps(N); 972 } 973 974 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 975 assert(N->getIterator() != AllNodes.begin() && 976 "Cannot delete the entry node!"); 977 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 978 979 // Drop all of the operands and decrement used node's use counts. 980 N->DropOperands(); 981 982 DeallocateNode(N); 983 } 984 985 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 986 assert(!(V->isVariadic() && isParameter)); 987 if (isParameter) 988 ByvalParmDbgValues.push_back(V); 989 else 990 DbgValues.push_back(V); 991 for (const SDNode *Node : V->getSDNodes()) 992 if (Node) 993 DbgValMap[Node].push_back(V); 994 } 995 996 void SDDbgInfo::erase(const SDNode *Node) { 997 DbgValMapType::iterator I = DbgValMap.find(Node); 998 if (I == DbgValMap.end()) 999 return; 1000 for (auto &Val: I->second) 1001 Val->setIsInvalidated(); 1002 DbgValMap.erase(I); 1003 } 1004 1005 void SelectionDAG::DeallocateNode(SDNode *N) { 1006 // If we have operands, deallocate them. 1007 removeOperands(N); 1008 1009 NodeAllocator.Deallocate(AllNodes.remove(N)); 1010 1011 // Set the opcode to DELETED_NODE to help catch bugs when node 1012 // memory is reallocated. 1013 // FIXME: There are places in SDag that have grown a dependency on the opcode 1014 // value in the released node. 1015 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 1016 N->NodeType = ISD::DELETED_NODE; 1017 1018 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 1019 // them and forget about that node. 1020 DbgInfo->erase(N); 1021 } 1022 1023 #ifndef NDEBUG 1024 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 1025 static void VerifySDNode(SDNode *N) { 1026 switch (N->getOpcode()) { 1027 default: 1028 break; 1029 case ISD::BUILD_PAIR: { 1030 EVT VT = N->getValueType(0); 1031 assert(N->getNumValues() == 1 && "Too many results!"); 1032 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1033 "Wrong return type!"); 1034 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1035 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1036 "Mismatched operand types!"); 1037 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1038 "Wrong operand type!"); 1039 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1040 "Wrong return type size"); 1041 break; 1042 } 1043 case ISD::BUILD_VECTOR: { 1044 assert(N->getNumValues() == 1 && "Too many results!"); 1045 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1046 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1047 "Wrong number of operands!"); 1048 EVT EltVT = N->getValueType(0).getVectorElementType(); 1049 for (const SDUse &Op : N->ops()) { 1050 assert((Op.getValueType() == EltVT || 1051 (EltVT.isInteger() && Op.getValueType().isInteger() && 1052 EltVT.bitsLE(Op.getValueType()))) && 1053 "Wrong operand type!"); 1054 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1055 "Operands must all have the same type"); 1056 } 1057 break; 1058 } 1059 } 1060 } 1061 #endif // NDEBUG 1062 1063 /// Insert a newly allocated node into the DAG. 1064 /// 1065 /// Handles insertion into the all nodes list and CSE map, as well as 1066 /// verification and other common operations when a new node is allocated. 1067 void SelectionDAG::InsertNode(SDNode *N) { 1068 AllNodes.push_back(N); 1069 #ifndef NDEBUG 1070 N->PersistentId = NextPersistentId++; 1071 VerifySDNode(N); 1072 #endif 1073 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1074 DUL->NodeInserted(N); 1075 } 1076 1077 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1078 /// correspond to it. This is useful when we're about to delete or repurpose 1079 /// the node. We don't want future request for structurally identical nodes 1080 /// to return N anymore. 1081 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1082 bool Erased = false; 1083 switch (N->getOpcode()) { 1084 case ISD::HANDLENODE: return false; // noop. 1085 case ISD::CONDCODE: 1086 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1087 "Cond code doesn't exist!"); 1088 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1089 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1090 break; 1091 case ISD::ExternalSymbol: 1092 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1093 break; 1094 case ISD::TargetExternalSymbol: { 1095 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1096 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1097 ESN->getSymbol(), ESN->getTargetFlags())); 1098 break; 1099 } 1100 case ISD::MCSymbol: { 1101 auto *MCSN = cast<MCSymbolSDNode>(N); 1102 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1103 break; 1104 } 1105 case ISD::VALUETYPE: { 1106 EVT VT = cast<VTSDNode>(N)->getVT(); 1107 if (VT.isExtended()) { 1108 Erased = ExtendedValueTypeNodes.erase(VT); 1109 } else { 1110 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1111 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1112 } 1113 break; 1114 } 1115 default: 1116 // Remove it from the CSE Map. 1117 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1118 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1119 Erased = CSEMap.RemoveNode(N); 1120 break; 1121 } 1122 #ifndef NDEBUG 1123 // Verify that the node was actually in one of the CSE maps, unless it has a 1124 // flag result (which cannot be CSE'd) or is one of the special cases that are 1125 // not subject to CSE. 1126 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1127 !N->isMachineOpcode() && !doNotCSE(N)) { 1128 N->dump(this); 1129 dbgs() << "\n"; 1130 llvm_unreachable("Node is not in map!"); 1131 } 1132 #endif 1133 return Erased; 1134 } 1135 1136 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1137 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1138 /// node already exists, in which case transfer all its users to the existing 1139 /// node. This transfer can potentially trigger recursive merging. 1140 void 1141 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1142 // For node types that aren't CSE'd, just act as if no identical node 1143 // already exists. 1144 if (!doNotCSE(N)) { 1145 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1146 if (Existing != N) { 1147 // If there was already an existing matching node, use ReplaceAllUsesWith 1148 // to replace the dead one with the existing one. This can cause 1149 // recursive merging of other unrelated nodes down the line. 1150 ReplaceAllUsesWith(N, Existing); 1151 1152 // N is now dead. Inform the listeners and delete it. 1153 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1154 DUL->NodeDeleted(N, Existing); 1155 DeleteNodeNotInCSEMaps(N); 1156 return; 1157 } 1158 } 1159 1160 // If the node doesn't already exist, we updated it. Inform listeners. 1161 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1162 DUL->NodeUpdated(N); 1163 } 1164 1165 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1166 /// were replaced with those specified. If this node is never memoized, 1167 /// return null, otherwise return a pointer to the slot it would take. If a 1168 /// node already exists with these operands, the slot will be non-null. 1169 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1170 void *&InsertPos) { 1171 if (doNotCSE(N)) 1172 return nullptr; 1173 1174 SDValue Ops[] = { Op }; 1175 FoldingSetNodeID ID; 1176 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1177 AddNodeIDCustom(ID, N); 1178 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1179 if (Node) 1180 Node->intersectFlagsWith(N->getFlags()); 1181 return Node; 1182 } 1183 1184 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1185 /// were replaced with those specified. If this node is never memoized, 1186 /// return null, otherwise return a pointer to the slot it would take. If a 1187 /// node already exists with these operands, the slot will be non-null. 1188 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1189 SDValue Op1, SDValue Op2, 1190 void *&InsertPos) { 1191 if (doNotCSE(N)) 1192 return nullptr; 1193 1194 SDValue Ops[] = { Op1, Op2 }; 1195 FoldingSetNodeID ID; 1196 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1197 AddNodeIDCustom(ID, N); 1198 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1199 if (Node) 1200 Node->intersectFlagsWith(N->getFlags()); 1201 return Node; 1202 } 1203 1204 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1205 /// were replaced with those specified. If this node is never memoized, 1206 /// return null, otherwise return a pointer to the slot it would take. If a 1207 /// node already exists with these operands, the slot will be non-null. 1208 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1209 void *&InsertPos) { 1210 if (doNotCSE(N)) 1211 return nullptr; 1212 1213 FoldingSetNodeID ID; 1214 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1215 AddNodeIDCustom(ID, N); 1216 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1217 if (Node) 1218 Node->intersectFlagsWith(N->getFlags()); 1219 return Node; 1220 } 1221 1222 Align SelectionDAG::getEVTAlign(EVT VT) const { 1223 Type *Ty = VT == MVT::iPTR ? 1224 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1225 VT.getTypeForEVT(*getContext()); 1226 1227 return getDataLayout().getABITypeAlign(Ty); 1228 } 1229 1230 // EntryNode could meaningfully have debug info if we can find it... 1231 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1232 : TM(tm), OptLevel(OL), 1233 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1234 Root(getEntryNode()) { 1235 InsertNode(&EntryNode); 1236 DbgInfo = new SDDbgInfo(); 1237 } 1238 1239 void SelectionDAG::init(MachineFunction &NewMF, 1240 OptimizationRemarkEmitter &NewORE, 1241 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1242 LegacyDivergenceAnalysis * Divergence, 1243 ProfileSummaryInfo *PSIin, 1244 BlockFrequencyInfo *BFIin) { 1245 MF = &NewMF; 1246 SDAGISelPass = PassPtr; 1247 ORE = &NewORE; 1248 TLI = getSubtarget().getTargetLowering(); 1249 TSI = getSubtarget().getSelectionDAGInfo(); 1250 LibInfo = LibraryInfo; 1251 Context = &MF->getFunction().getContext(); 1252 DA = Divergence; 1253 PSI = PSIin; 1254 BFI = BFIin; 1255 } 1256 1257 SelectionDAG::~SelectionDAG() { 1258 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1259 allnodes_clear(); 1260 OperandRecycler.clear(OperandAllocator); 1261 delete DbgInfo; 1262 } 1263 1264 bool SelectionDAG::shouldOptForSize() const { 1265 return MF->getFunction().hasOptSize() || 1266 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1267 } 1268 1269 void SelectionDAG::allnodes_clear() { 1270 assert(&*AllNodes.begin() == &EntryNode); 1271 AllNodes.remove(AllNodes.begin()); 1272 while (!AllNodes.empty()) 1273 DeallocateNode(&AllNodes.front()); 1274 #ifndef NDEBUG 1275 NextPersistentId = 0; 1276 #endif 1277 } 1278 1279 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1280 void *&InsertPos) { 1281 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1282 if (N) { 1283 switch (N->getOpcode()) { 1284 default: break; 1285 case ISD::Constant: 1286 case ISD::ConstantFP: 1287 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1288 "debug location. Use another overload."); 1289 } 1290 } 1291 return N; 1292 } 1293 1294 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1295 const SDLoc &DL, void *&InsertPos) { 1296 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1297 if (N) { 1298 switch (N->getOpcode()) { 1299 case ISD::Constant: 1300 case ISD::ConstantFP: 1301 // Erase debug location from the node if the node is used at several 1302 // different places. Do not propagate one location to all uses as it 1303 // will cause a worse single stepping debugging experience. 1304 if (N->getDebugLoc() != DL.getDebugLoc()) 1305 N->setDebugLoc(DebugLoc()); 1306 break; 1307 default: 1308 // When the node's point of use is located earlier in the instruction 1309 // sequence than its prior point of use, update its debug info to the 1310 // earlier location. 1311 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1312 N->setDebugLoc(DL.getDebugLoc()); 1313 break; 1314 } 1315 } 1316 return N; 1317 } 1318 1319 void SelectionDAG::clear() { 1320 allnodes_clear(); 1321 OperandRecycler.clear(OperandAllocator); 1322 OperandAllocator.Reset(); 1323 CSEMap.clear(); 1324 1325 ExtendedValueTypeNodes.clear(); 1326 ExternalSymbols.clear(); 1327 TargetExternalSymbols.clear(); 1328 MCSymbols.clear(); 1329 SDCallSiteDbgInfo.clear(); 1330 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1331 static_cast<CondCodeSDNode*>(nullptr)); 1332 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1333 static_cast<SDNode*>(nullptr)); 1334 1335 EntryNode.UseList = nullptr; 1336 InsertNode(&EntryNode); 1337 Root = getEntryNode(); 1338 DbgInfo->clear(); 1339 } 1340 1341 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1342 return VT.bitsGT(Op.getValueType()) 1343 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1344 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1345 } 1346 1347 std::pair<SDValue, SDValue> 1348 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1349 const SDLoc &DL, EVT VT) { 1350 assert(!VT.bitsEq(Op.getValueType()) && 1351 "Strict no-op FP extend/round not allowed."); 1352 SDValue Res = 1353 VT.bitsGT(Op.getValueType()) 1354 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1355 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1356 {Chain, Op, getIntPtrConstant(0, DL)}); 1357 1358 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1359 } 1360 1361 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1362 return VT.bitsGT(Op.getValueType()) ? 1363 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1364 getNode(ISD::TRUNCATE, DL, VT, Op); 1365 } 1366 1367 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1368 return VT.bitsGT(Op.getValueType()) ? 1369 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1370 getNode(ISD::TRUNCATE, DL, VT, Op); 1371 } 1372 1373 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1374 return VT.bitsGT(Op.getValueType()) ? 1375 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1376 getNode(ISD::TRUNCATE, DL, VT, Op); 1377 } 1378 1379 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1380 EVT OpVT) { 1381 if (VT.bitsLE(Op.getValueType())) 1382 return getNode(ISD::TRUNCATE, SL, VT, Op); 1383 1384 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1385 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1386 } 1387 1388 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1389 EVT OpVT = Op.getValueType(); 1390 assert(VT.isInteger() && OpVT.isInteger() && 1391 "Cannot getZeroExtendInReg FP types"); 1392 assert(VT.isVector() == OpVT.isVector() && 1393 "getZeroExtendInReg type should be vector iff the operand " 1394 "type is vector!"); 1395 assert((!VT.isVector() || 1396 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1397 "Vector element counts must match in getZeroExtendInReg"); 1398 assert(VT.bitsLE(OpVT) && "Not extending!"); 1399 if (OpVT == VT) 1400 return Op; 1401 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1402 VT.getScalarSizeInBits()); 1403 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1404 } 1405 1406 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1407 // Only unsigned pointer semantics are supported right now. In the future this 1408 // might delegate to TLI to check pointer signedness. 1409 return getZExtOrTrunc(Op, DL, VT); 1410 } 1411 1412 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1413 // Only unsigned pointer semantics are supported right now. In the future this 1414 // might delegate to TLI to check pointer signedness. 1415 return getZeroExtendInReg(Op, DL, VT); 1416 } 1417 1418 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1419 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1420 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1421 } 1422 1423 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1424 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1425 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1426 } 1427 1428 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val, 1429 SDValue Mask, SDValue EVL, EVT VT) { 1430 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1431 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL); 1432 } 1433 1434 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1435 EVT OpVT) { 1436 if (!V) 1437 return getConstant(0, DL, VT); 1438 1439 switch (TLI->getBooleanContents(OpVT)) { 1440 case TargetLowering::ZeroOrOneBooleanContent: 1441 case TargetLowering::UndefinedBooleanContent: 1442 return getConstant(1, DL, VT); 1443 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1444 return getAllOnesConstant(DL, VT); 1445 } 1446 llvm_unreachable("Unexpected boolean content enum!"); 1447 } 1448 1449 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1450 bool isT, bool isO) { 1451 EVT EltVT = VT.getScalarType(); 1452 assert((EltVT.getSizeInBits() >= 64 || 1453 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1454 "getConstant with a uint64_t value that doesn't fit in the type!"); 1455 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1456 } 1457 1458 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1459 bool isT, bool isO) { 1460 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1461 } 1462 1463 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1464 EVT VT, bool isT, bool isO) { 1465 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1466 1467 EVT EltVT = VT.getScalarType(); 1468 const ConstantInt *Elt = &Val; 1469 1470 // In some cases the vector type is legal but the element type is illegal and 1471 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1472 // inserted value (the type does not need to match the vector element type). 1473 // Any extra bits introduced will be truncated away. 1474 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1475 TargetLowering::TypePromoteInteger) { 1476 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1477 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1478 Elt = ConstantInt::get(*getContext(), NewVal); 1479 } 1480 // In other cases the element type is illegal and needs to be expanded, for 1481 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1482 // the value into n parts and use a vector type with n-times the elements. 1483 // Then bitcast to the type requested. 1484 // Legalizing constants too early makes the DAGCombiner's job harder so we 1485 // only legalize if the DAG tells us we must produce legal types. 1486 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1487 TLI->getTypeAction(*getContext(), EltVT) == 1488 TargetLowering::TypeExpandInteger) { 1489 const APInt &NewVal = Elt->getValue(); 1490 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1491 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1492 1493 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1494 if (VT.isScalableVector()) { 1495 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1496 "Can only handle an even split!"); 1497 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1498 1499 SmallVector<SDValue, 2> ScalarParts; 1500 for (unsigned i = 0; i != Parts; ++i) 1501 ScalarParts.push_back(getConstant( 1502 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1503 ViaEltVT, isT, isO)); 1504 1505 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1506 } 1507 1508 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1509 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1510 1511 // Check the temporary vector is the correct size. If this fails then 1512 // getTypeToTransformTo() probably returned a type whose size (in bits) 1513 // isn't a power-of-2 factor of the requested type size. 1514 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1515 1516 SmallVector<SDValue, 2> EltParts; 1517 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1518 EltParts.push_back(getConstant( 1519 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1520 ViaEltVT, isT, isO)); 1521 1522 // EltParts is currently in little endian order. If we actually want 1523 // big-endian order then reverse it now. 1524 if (getDataLayout().isBigEndian()) 1525 std::reverse(EltParts.begin(), EltParts.end()); 1526 1527 // The elements must be reversed when the element order is different 1528 // to the endianness of the elements (because the BITCAST is itself a 1529 // vector shuffle in this situation). However, we do not need any code to 1530 // perform this reversal because getConstant() is producing a vector 1531 // splat. 1532 // This situation occurs in MIPS MSA. 1533 1534 SmallVector<SDValue, 8> Ops; 1535 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1536 llvm::append_range(Ops, EltParts); 1537 1538 SDValue V = 1539 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1540 return V; 1541 } 1542 1543 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1544 "APInt size does not match type size!"); 1545 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1546 FoldingSetNodeID ID; 1547 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1548 ID.AddPointer(Elt); 1549 ID.AddBoolean(isO); 1550 void *IP = nullptr; 1551 SDNode *N = nullptr; 1552 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1553 if (!VT.isVector()) 1554 return SDValue(N, 0); 1555 1556 if (!N) { 1557 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1558 CSEMap.InsertNode(N, IP); 1559 InsertNode(N); 1560 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1561 } 1562 1563 SDValue Result(N, 0); 1564 if (VT.isScalableVector()) 1565 Result = getSplatVector(VT, DL, Result); 1566 else if (VT.isVector()) 1567 Result = getSplatBuildVector(VT, DL, Result); 1568 1569 return Result; 1570 } 1571 1572 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1573 bool isTarget) { 1574 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1575 } 1576 1577 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1578 const SDLoc &DL, bool LegalTypes) { 1579 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1580 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1581 return getConstant(Val, DL, ShiftVT); 1582 } 1583 1584 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1585 bool isTarget) { 1586 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1587 } 1588 1589 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1590 bool isTarget) { 1591 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1592 } 1593 1594 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1595 EVT VT, bool isTarget) { 1596 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1597 1598 EVT EltVT = VT.getScalarType(); 1599 1600 // Do the map lookup using the actual bit pattern for the floating point 1601 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1602 // we don't have issues with SNANs. 1603 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1604 FoldingSetNodeID ID; 1605 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1606 ID.AddPointer(&V); 1607 void *IP = nullptr; 1608 SDNode *N = nullptr; 1609 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1610 if (!VT.isVector()) 1611 return SDValue(N, 0); 1612 1613 if (!N) { 1614 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1615 CSEMap.InsertNode(N, IP); 1616 InsertNode(N); 1617 } 1618 1619 SDValue Result(N, 0); 1620 if (VT.isScalableVector()) 1621 Result = getSplatVector(VT, DL, Result); 1622 else if (VT.isVector()) 1623 Result = getSplatBuildVector(VT, DL, Result); 1624 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1625 return Result; 1626 } 1627 1628 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1629 bool isTarget) { 1630 EVT EltVT = VT.getScalarType(); 1631 if (EltVT == MVT::f32) 1632 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1633 if (EltVT == MVT::f64) 1634 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1635 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1636 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1637 bool Ignored; 1638 APFloat APF = APFloat(Val); 1639 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1640 &Ignored); 1641 return getConstantFP(APF, DL, VT, isTarget); 1642 } 1643 llvm_unreachable("Unsupported type in getConstantFP"); 1644 } 1645 1646 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1647 EVT VT, int64_t Offset, bool isTargetGA, 1648 unsigned TargetFlags) { 1649 assert((TargetFlags == 0 || isTargetGA) && 1650 "Cannot set target flags on target-independent globals"); 1651 1652 // Truncate (with sign-extension) the offset value to the pointer size. 1653 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1654 if (BitWidth < 64) 1655 Offset = SignExtend64(Offset, BitWidth); 1656 1657 unsigned Opc; 1658 if (GV->isThreadLocal()) 1659 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1660 else 1661 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1662 1663 FoldingSetNodeID ID; 1664 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1665 ID.AddPointer(GV); 1666 ID.AddInteger(Offset); 1667 ID.AddInteger(TargetFlags); 1668 void *IP = nullptr; 1669 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1670 return SDValue(E, 0); 1671 1672 auto *N = newSDNode<GlobalAddressSDNode>( 1673 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1674 CSEMap.InsertNode(N, IP); 1675 InsertNode(N); 1676 return SDValue(N, 0); 1677 } 1678 1679 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1680 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1681 FoldingSetNodeID ID; 1682 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1683 ID.AddInteger(FI); 1684 void *IP = nullptr; 1685 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1686 return SDValue(E, 0); 1687 1688 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1689 CSEMap.InsertNode(N, IP); 1690 InsertNode(N); 1691 return SDValue(N, 0); 1692 } 1693 1694 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1695 unsigned TargetFlags) { 1696 assert((TargetFlags == 0 || isTarget) && 1697 "Cannot set target flags on target-independent jump tables"); 1698 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1699 FoldingSetNodeID ID; 1700 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1701 ID.AddInteger(JTI); 1702 ID.AddInteger(TargetFlags); 1703 void *IP = nullptr; 1704 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1705 return SDValue(E, 0); 1706 1707 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1708 CSEMap.InsertNode(N, IP); 1709 InsertNode(N); 1710 return SDValue(N, 0); 1711 } 1712 1713 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1714 MaybeAlign Alignment, int Offset, 1715 bool isTarget, unsigned TargetFlags) { 1716 assert((TargetFlags == 0 || isTarget) && 1717 "Cannot set target flags on target-independent globals"); 1718 if (!Alignment) 1719 Alignment = shouldOptForSize() 1720 ? getDataLayout().getABITypeAlign(C->getType()) 1721 : getDataLayout().getPrefTypeAlign(C->getType()); 1722 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1723 FoldingSetNodeID ID; 1724 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1725 ID.AddInteger(Alignment->value()); 1726 ID.AddInteger(Offset); 1727 ID.AddPointer(C); 1728 ID.AddInteger(TargetFlags); 1729 void *IP = nullptr; 1730 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1731 return SDValue(E, 0); 1732 1733 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1734 TargetFlags); 1735 CSEMap.InsertNode(N, IP); 1736 InsertNode(N); 1737 SDValue V = SDValue(N, 0); 1738 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1739 return V; 1740 } 1741 1742 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1743 MaybeAlign Alignment, int Offset, 1744 bool isTarget, unsigned TargetFlags) { 1745 assert((TargetFlags == 0 || isTarget) && 1746 "Cannot set target flags on target-independent globals"); 1747 if (!Alignment) 1748 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1749 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1750 FoldingSetNodeID ID; 1751 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1752 ID.AddInteger(Alignment->value()); 1753 ID.AddInteger(Offset); 1754 C->addSelectionDAGCSEId(ID); 1755 ID.AddInteger(TargetFlags); 1756 void *IP = nullptr; 1757 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1758 return SDValue(E, 0); 1759 1760 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1761 TargetFlags); 1762 CSEMap.InsertNode(N, IP); 1763 InsertNode(N); 1764 return SDValue(N, 0); 1765 } 1766 1767 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1768 unsigned TargetFlags) { 1769 FoldingSetNodeID ID; 1770 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1771 ID.AddInteger(Index); 1772 ID.AddInteger(Offset); 1773 ID.AddInteger(TargetFlags); 1774 void *IP = nullptr; 1775 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1776 return SDValue(E, 0); 1777 1778 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1779 CSEMap.InsertNode(N, IP); 1780 InsertNode(N); 1781 return SDValue(N, 0); 1782 } 1783 1784 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1785 FoldingSetNodeID ID; 1786 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1787 ID.AddPointer(MBB); 1788 void *IP = nullptr; 1789 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1790 return SDValue(E, 0); 1791 1792 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1793 CSEMap.InsertNode(N, IP); 1794 InsertNode(N); 1795 return SDValue(N, 0); 1796 } 1797 1798 SDValue SelectionDAG::getValueType(EVT VT) { 1799 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1800 ValueTypeNodes.size()) 1801 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1802 1803 SDNode *&N = VT.isExtended() ? 1804 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1805 1806 if (N) return SDValue(N, 0); 1807 N = newSDNode<VTSDNode>(VT); 1808 InsertNode(N); 1809 return SDValue(N, 0); 1810 } 1811 1812 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1813 SDNode *&N = ExternalSymbols[Sym]; 1814 if (N) return SDValue(N, 0); 1815 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1816 InsertNode(N); 1817 return SDValue(N, 0); 1818 } 1819 1820 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1821 SDNode *&N = MCSymbols[Sym]; 1822 if (N) 1823 return SDValue(N, 0); 1824 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1825 InsertNode(N); 1826 return SDValue(N, 0); 1827 } 1828 1829 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1830 unsigned TargetFlags) { 1831 SDNode *&N = 1832 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1833 if (N) return SDValue(N, 0); 1834 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1835 InsertNode(N); 1836 return SDValue(N, 0); 1837 } 1838 1839 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1840 if ((unsigned)Cond >= CondCodeNodes.size()) 1841 CondCodeNodes.resize(Cond+1); 1842 1843 if (!CondCodeNodes[Cond]) { 1844 auto *N = newSDNode<CondCodeSDNode>(Cond); 1845 CondCodeNodes[Cond] = N; 1846 InsertNode(N); 1847 } 1848 1849 return SDValue(CondCodeNodes[Cond], 0); 1850 } 1851 1852 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1853 APInt One(ResVT.getScalarSizeInBits(), 1); 1854 return getStepVector(DL, ResVT, One); 1855 } 1856 1857 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1858 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1859 if (ResVT.isScalableVector()) 1860 return getNode( 1861 ISD::STEP_VECTOR, DL, ResVT, 1862 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1863 1864 SmallVector<SDValue, 16> OpsStepConstants; 1865 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1866 OpsStepConstants.push_back( 1867 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1868 return getBuildVector(ResVT, DL, OpsStepConstants); 1869 } 1870 1871 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1872 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1873 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1874 std::swap(N1, N2); 1875 ShuffleVectorSDNode::commuteMask(M); 1876 } 1877 1878 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1879 SDValue N2, ArrayRef<int> Mask) { 1880 assert(VT.getVectorNumElements() == Mask.size() && 1881 "Must have the same number of vector elements as mask elements!"); 1882 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1883 "Invalid VECTOR_SHUFFLE"); 1884 1885 // Canonicalize shuffle undef, undef -> undef 1886 if (N1.isUndef() && N2.isUndef()) 1887 return getUNDEF(VT); 1888 1889 // Validate that all indices in Mask are within the range of the elements 1890 // input to the shuffle. 1891 int NElts = Mask.size(); 1892 assert(llvm::all_of(Mask, 1893 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1894 "Index out of range"); 1895 1896 // Copy the mask so we can do any needed cleanup. 1897 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1898 1899 // Canonicalize shuffle v, v -> v, undef 1900 if (N1 == N2) { 1901 N2 = getUNDEF(VT); 1902 for (int i = 0; i != NElts; ++i) 1903 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1904 } 1905 1906 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1907 if (N1.isUndef()) 1908 commuteShuffle(N1, N2, MaskVec); 1909 1910 if (TLI->hasVectorBlend()) { 1911 // If shuffling a splat, try to blend the splat instead. We do this here so 1912 // that even when this arises during lowering we don't have to re-handle it. 1913 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1914 BitVector UndefElements; 1915 SDValue Splat = BV->getSplatValue(&UndefElements); 1916 if (!Splat) 1917 return; 1918 1919 for (int i = 0; i < NElts; ++i) { 1920 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1921 continue; 1922 1923 // If this input comes from undef, mark it as such. 1924 if (UndefElements[MaskVec[i] - Offset]) { 1925 MaskVec[i] = -1; 1926 continue; 1927 } 1928 1929 // If we can blend a non-undef lane, use that instead. 1930 if (!UndefElements[i]) 1931 MaskVec[i] = i + Offset; 1932 } 1933 }; 1934 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1935 BlendSplat(N1BV, 0); 1936 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1937 BlendSplat(N2BV, NElts); 1938 } 1939 1940 // Canonicalize all index into lhs, -> shuffle lhs, undef 1941 // Canonicalize all index into rhs, -> shuffle rhs, undef 1942 bool AllLHS = true, AllRHS = true; 1943 bool N2Undef = N2.isUndef(); 1944 for (int i = 0; i != NElts; ++i) { 1945 if (MaskVec[i] >= NElts) { 1946 if (N2Undef) 1947 MaskVec[i] = -1; 1948 else 1949 AllLHS = false; 1950 } else if (MaskVec[i] >= 0) { 1951 AllRHS = false; 1952 } 1953 } 1954 if (AllLHS && AllRHS) 1955 return getUNDEF(VT); 1956 if (AllLHS && !N2Undef) 1957 N2 = getUNDEF(VT); 1958 if (AllRHS) { 1959 N1 = getUNDEF(VT); 1960 commuteShuffle(N1, N2, MaskVec); 1961 } 1962 // Reset our undef status after accounting for the mask. 1963 N2Undef = N2.isUndef(); 1964 // Re-check whether both sides ended up undef. 1965 if (N1.isUndef() && N2Undef) 1966 return getUNDEF(VT); 1967 1968 // If Identity shuffle return that node. 1969 bool Identity = true, AllSame = true; 1970 for (int i = 0; i != NElts; ++i) { 1971 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1972 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1973 } 1974 if (Identity && NElts) 1975 return N1; 1976 1977 // Shuffling a constant splat doesn't change the result. 1978 if (N2Undef) { 1979 SDValue V = N1; 1980 1981 // Look through any bitcasts. We check that these don't change the number 1982 // (and size) of elements and just changes their types. 1983 while (V.getOpcode() == ISD::BITCAST) 1984 V = V->getOperand(0); 1985 1986 // A splat should always show up as a build vector node. 1987 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1988 BitVector UndefElements; 1989 SDValue Splat = BV->getSplatValue(&UndefElements); 1990 // If this is a splat of an undef, shuffling it is also undef. 1991 if (Splat && Splat.isUndef()) 1992 return getUNDEF(VT); 1993 1994 bool SameNumElts = 1995 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1996 1997 // We only have a splat which can skip shuffles if there is a splatted 1998 // value and no undef lanes rearranged by the shuffle. 1999 if (Splat && UndefElements.none()) { 2000 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 2001 // number of elements match or the value splatted is a zero constant. 2002 if (SameNumElts) 2003 return N1; 2004 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 2005 if (C->isZero()) 2006 return N1; 2007 } 2008 2009 // If the shuffle itself creates a splat, build the vector directly. 2010 if (AllSame && SameNumElts) { 2011 EVT BuildVT = BV->getValueType(0); 2012 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 2013 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 2014 2015 // We may have jumped through bitcasts, so the type of the 2016 // BUILD_VECTOR may not match the type of the shuffle. 2017 if (BuildVT != VT) 2018 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 2019 return NewBV; 2020 } 2021 } 2022 } 2023 2024 FoldingSetNodeID ID; 2025 SDValue Ops[2] = { N1, N2 }; 2026 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 2027 for (int i = 0; i != NElts; ++i) 2028 ID.AddInteger(MaskVec[i]); 2029 2030 void* IP = nullptr; 2031 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2032 return SDValue(E, 0); 2033 2034 // Allocate the mask array for the node out of the BumpPtrAllocator, since 2035 // SDNode doesn't have access to it. This memory will be "leaked" when 2036 // the node is deallocated, but recovered when the NodeAllocator is released. 2037 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2038 llvm::copy(MaskVec, MaskAlloc); 2039 2040 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2041 dl.getDebugLoc(), MaskAlloc); 2042 createOperands(N, Ops); 2043 2044 CSEMap.InsertNode(N, IP); 2045 InsertNode(N); 2046 SDValue V = SDValue(N, 0); 2047 NewSDValueDbgMsg(V, "Creating new node: ", this); 2048 return V; 2049 } 2050 2051 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2052 EVT VT = SV.getValueType(0); 2053 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2054 ShuffleVectorSDNode::commuteMask(MaskVec); 2055 2056 SDValue Op0 = SV.getOperand(0); 2057 SDValue Op1 = SV.getOperand(1); 2058 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2059 } 2060 2061 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2062 FoldingSetNodeID ID; 2063 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2064 ID.AddInteger(RegNo); 2065 void *IP = nullptr; 2066 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2067 return SDValue(E, 0); 2068 2069 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2070 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2071 CSEMap.InsertNode(N, IP); 2072 InsertNode(N); 2073 return SDValue(N, 0); 2074 } 2075 2076 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2077 FoldingSetNodeID ID; 2078 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2079 ID.AddPointer(RegMask); 2080 void *IP = nullptr; 2081 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2082 return SDValue(E, 0); 2083 2084 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2085 CSEMap.InsertNode(N, IP); 2086 InsertNode(N); 2087 return SDValue(N, 0); 2088 } 2089 2090 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2091 MCSymbol *Label) { 2092 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2093 } 2094 2095 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2096 SDValue Root, MCSymbol *Label) { 2097 FoldingSetNodeID ID; 2098 SDValue Ops[] = { Root }; 2099 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2100 ID.AddPointer(Label); 2101 void *IP = nullptr; 2102 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2103 return SDValue(E, 0); 2104 2105 auto *N = 2106 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2107 createOperands(N, Ops); 2108 2109 CSEMap.InsertNode(N, IP); 2110 InsertNode(N); 2111 return SDValue(N, 0); 2112 } 2113 2114 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2115 int64_t Offset, bool isTarget, 2116 unsigned TargetFlags) { 2117 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2118 2119 FoldingSetNodeID ID; 2120 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2121 ID.AddPointer(BA); 2122 ID.AddInteger(Offset); 2123 ID.AddInteger(TargetFlags); 2124 void *IP = nullptr; 2125 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2126 return SDValue(E, 0); 2127 2128 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2129 CSEMap.InsertNode(N, IP); 2130 InsertNode(N); 2131 return SDValue(N, 0); 2132 } 2133 2134 SDValue SelectionDAG::getSrcValue(const Value *V) { 2135 FoldingSetNodeID ID; 2136 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2137 ID.AddPointer(V); 2138 2139 void *IP = nullptr; 2140 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2141 return SDValue(E, 0); 2142 2143 auto *N = newSDNode<SrcValueSDNode>(V); 2144 CSEMap.InsertNode(N, IP); 2145 InsertNode(N); 2146 return SDValue(N, 0); 2147 } 2148 2149 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2150 FoldingSetNodeID ID; 2151 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2152 ID.AddPointer(MD); 2153 2154 void *IP = nullptr; 2155 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2156 return SDValue(E, 0); 2157 2158 auto *N = newSDNode<MDNodeSDNode>(MD); 2159 CSEMap.InsertNode(N, IP); 2160 InsertNode(N); 2161 return SDValue(N, 0); 2162 } 2163 2164 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2165 if (VT == V.getValueType()) 2166 return V; 2167 2168 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2169 } 2170 2171 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2172 unsigned SrcAS, unsigned DestAS) { 2173 SDValue Ops[] = {Ptr}; 2174 FoldingSetNodeID ID; 2175 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2176 ID.AddInteger(SrcAS); 2177 ID.AddInteger(DestAS); 2178 2179 void *IP = nullptr; 2180 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2181 return SDValue(E, 0); 2182 2183 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2184 VT, SrcAS, DestAS); 2185 createOperands(N, Ops); 2186 2187 CSEMap.InsertNode(N, IP); 2188 InsertNode(N); 2189 return SDValue(N, 0); 2190 } 2191 2192 SDValue SelectionDAG::getFreeze(SDValue V) { 2193 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2194 } 2195 2196 /// getShiftAmountOperand - Return the specified value casted to 2197 /// the target's desired shift amount type. 2198 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2199 EVT OpTy = Op.getValueType(); 2200 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2201 if (OpTy == ShTy || OpTy.isVector()) return Op; 2202 2203 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2204 } 2205 2206 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2207 SDLoc dl(Node); 2208 const TargetLowering &TLI = getTargetLoweringInfo(); 2209 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2210 EVT VT = Node->getValueType(0); 2211 SDValue Tmp1 = Node->getOperand(0); 2212 SDValue Tmp2 = Node->getOperand(1); 2213 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2214 2215 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2216 Tmp2, MachinePointerInfo(V)); 2217 SDValue VAList = VAListLoad; 2218 2219 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2220 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2221 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2222 2223 VAList = 2224 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2225 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2226 } 2227 2228 // Increment the pointer, VAList, to the next vaarg 2229 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2230 getConstant(getDataLayout().getTypeAllocSize( 2231 VT.getTypeForEVT(*getContext())), 2232 dl, VAList.getValueType())); 2233 // Store the incremented VAList to the legalized pointer 2234 Tmp1 = 2235 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2236 // Load the actual argument out of the pointer VAList 2237 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2238 } 2239 2240 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2241 SDLoc dl(Node); 2242 const TargetLowering &TLI = getTargetLoweringInfo(); 2243 // This defaults to loading a pointer from the input and storing it to the 2244 // output, returning the chain. 2245 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2246 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2247 SDValue Tmp1 = 2248 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2249 Node->getOperand(2), MachinePointerInfo(VS)); 2250 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2251 MachinePointerInfo(VD)); 2252 } 2253 2254 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2255 const DataLayout &DL = getDataLayout(); 2256 Type *Ty = VT.getTypeForEVT(*getContext()); 2257 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2258 2259 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2260 return RedAlign; 2261 2262 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2263 const Align StackAlign = TFI->getStackAlign(); 2264 2265 // See if we can choose a smaller ABI alignment in cases where it's an 2266 // illegal vector type that will get broken down. 2267 if (RedAlign > StackAlign) { 2268 EVT IntermediateVT; 2269 MVT RegisterVT; 2270 unsigned NumIntermediates; 2271 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2272 NumIntermediates, RegisterVT); 2273 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2274 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2275 if (RedAlign2 < RedAlign) 2276 RedAlign = RedAlign2; 2277 } 2278 2279 return RedAlign; 2280 } 2281 2282 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2283 MachineFrameInfo &MFI = MF->getFrameInfo(); 2284 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2285 int StackID = 0; 2286 if (Bytes.isScalable()) 2287 StackID = TFI->getStackIDForScalableVectors(); 2288 // The stack id gives an indication of whether the object is scalable or 2289 // not, so it's safe to pass in the minimum size here. 2290 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2291 false, nullptr, StackID); 2292 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2293 } 2294 2295 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2296 Type *Ty = VT.getTypeForEVT(*getContext()); 2297 Align StackAlign = 2298 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2299 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2300 } 2301 2302 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2303 TypeSize VT1Size = VT1.getStoreSize(); 2304 TypeSize VT2Size = VT2.getStoreSize(); 2305 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2306 "Don't know how to choose the maximum size when creating a stack " 2307 "temporary"); 2308 TypeSize Bytes = 2309 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2310 2311 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2312 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2313 const DataLayout &DL = getDataLayout(); 2314 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2315 return CreateStackTemporary(Bytes, Align); 2316 } 2317 2318 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2319 ISD::CondCode Cond, const SDLoc &dl) { 2320 EVT OpVT = N1.getValueType(); 2321 2322 // These setcc operations always fold. 2323 switch (Cond) { 2324 default: break; 2325 case ISD::SETFALSE: 2326 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2327 case ISD::SETTRUE: 2328 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2329 2330 case ISD::SETOEQ: 2331 case ISD::SETOGT: 2332 case ISD::SETOGE: 2333 case ISD::SETOLT: 2334 case ISD::SETOLE: 2335 case ISD::SETONE: 2336 case ISD::SETO: 2337 case ISD::SETUO: 2338 case ISD::SETUEQ: 2339 case ISD::SETUNE: 2340 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2341 break; 2342 } 2343 2344 if (OpVT.isInteger()) { 2345 // For EQ and NE, we can always pick a value for the undef to make the 2346 // predicate pass or fail, so we can return undef. 2347 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2348 // icmp eq/ne X, undef -> undef. 2349 if ((N1.isUndef() || N2.isUndef()) && 2350 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2351 return getUNDEF(VT); 2352 2353 // If both operands are undef, we can return undef for int comparison. 2354 // icmp undef, undef -> undef. 2355 if (N1.isUndef() && N2.isUndef()) 2356 return getUNDEF(VT); 2357 2358 // icmp X, X -> true/false 2359 // icmp X, undef -> true/false because undef could be X. 2360 if (N1 == N2) 2361 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2362 } 2363 2364 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2365 const APInt &C2 = N2C->getAPIntValue(); 2366 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2367 const APInt &C1 = N1C->getAPIntValue(); 2368 2369 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2370 dl, VT, OpVT); 2371 } 2372 } 2373 2374 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2375 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2376 2377 if (N1CFP && N2CFP) { 2378 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2379 switch (Cond) { 2380 default: break; 2381 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2382 return getUNDEF(VT); 2383 LLVM_FALLTHROUGH; 2384 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2385 OpVT); 2386 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2387 return getUNDEF(VT); 2388 LLVM_FALLTHROUGH; 2389 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2390 R==APFloat::cmpLessThan, dl, VT, 2391 OpVT); 2392 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2393 return getUNDEF(VT); 2394 LLVM_FALLTHROUGH; 2395 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2396 OpVT); 2397 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2398 return getUNDEF(VT); 2399 LLVM_FALLTHROUGH; 2400 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2401 VT, OpVT); 2402 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2403 return getUNDEF(VT); 2404 LLVM_FALLTHROUGH; 2405 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2406 R==APFloat::cmpEqual, dl, VT, 2407 OpVT); 2408 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2409 return getUNDEF(VT); 2410 LLVM_FALLTHROUGH; 2411 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2412 R==APFloat::cmpEqual, dl, VT, OpVT); 2413 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2414 OpVT); 2415 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2416 OpVT); 2417 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2418 R==APFloat::cmpEqual, dl, VT, 2419 OpVT); 2420 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2421 OpVT); 2422 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2423 R==APFloat::cmpLessThan, dl, VT, 2424 OpVT); 2425 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2426 R==APFloat::cmpUnordered, dl, VT, 2427 OpVT); 2428 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2429 VT, OpVT); 2430 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2431 OpVT); 2432 } 2433 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2434 // Ensure that the constant occurs on the RHS. 2435 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2436 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2437 return SDValue(); 2438 return getSetCC(dl, VT, N2, N1, SwappedCond); 2439 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2440 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2441 // If an operand is known to be a nan (or undef that could be a nan), we can 2442 // fold it. 2443 // Choosing NaN for the undef will always make unordered comparison succeed 2444 // and ordered comparison fails. 2445 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2446 switch (ISD::getUnorderedFlavor(Cond)) { 2447 default: 2448 llvm_unreachable("Unknown flavor!"); 2449 case 0: // Known false. 2450 return getBoolConstant(false, dl, VT, OpVT); 2451 case 1: // Known true. 2452 return getBoolConstant(true, dl, VT, OpVT); 2453 case 2: // Undefined. 2454 return getUNDEF(VT); 2455 } 2456 } 2457 2458 // Could not fold it. 2459 return SDValue(); 2460 } 2461 2462 /// See if the specified operand can be simplified with the knowledge that only 2463 /// the bits specified by DemandedBits are used. 2464 /// TODO: really we should be making this into the DAG equivalent of 2465 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2466 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2467 EVT VT = V.getValueType(); 2468 2469 if (VT.isScalableVector()) 2470 return SDValue(); 2471 2472 switch (V.getOpcode()) { 2473 default: 2474 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, *this); 2475 case ISD::Constant: { 2476 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2477 APInt NewVal = CVal & DemandedBits; 2478 if (NewVal != CVal) 2479 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2480 break; 2481 } 2482 case ISD::SRL: 2483 // Only look at single-use SRLs. 2484 if (!V.getNode()->hasOneUse()) 2485 break; 2486 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2487 // See if we can recursively simplify the LHS. 2488 unsigned Amt = RHSC->getZExtValue(); 2489 2490 // Watch out for shift count overflow though. 2491 if (Amt >= DemandedBits.getBitWidth()) 2492 break; 2493 APInt SrcDemandedBits = DemandedBits << Amt; 2494 if (SDValue SimplifyLHS = TLI->SimplifyMultipleUseDemandedBits( 2495 V.getOperand(0), SrcDemandedBits, *this)) 2496 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2497 V.getOperand(1)); 2498 } 2499 break; 2500 } 2501 return SDValue(); 2502 } 2503 2504 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2505 /// use this predicate to simplify operations downstream. 2506 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2507 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2508 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2509 } 2510 2511 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2512 /// this predicate to simplify operations downstream. Mask is known to be zero 2513 /// for bits that V cannot have. 2514 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2515 unsigned Depth) const { 2516 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2517 } 2518 2519 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2520 /// DemandedElts. We use this predicate to simplify operations downstream. 2521 /// Mask is known to be zero for bits that V cannot have. 2522 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2523 const APInt &DemandedElts, 2524 unsigned Depth) const { 2525 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2526 } 2527 2528 /// MaskedVectorIsZero - Return true if 'Op' is known to be zero in 2529 /// DemandedElts. We use this predicate to simplify operations downstream. 2530 bool SelectionDAG::MaskedVectorIsZero(SDValue V, const APInt &DemandedElts, 2531 unsigned Depth /* = 0 */) const { 2532 APInt Mask = APInt::getAllOnes(V.getScalarValueSizeInBits()); 2533 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2534 } 2535 2536 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2537 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2538 unsigned Depth) const { 2539 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2540 } 2541 2542 /// isSplatValue - Return true if the vector V has the same value 2543 /// across all DemandedElts. For scalable vectors it does not make 2544 /// sense to specify which elements are demanded or undefined, therefore 2545 /// they are simply ignored. 2546 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2547 APInt &UndefElts, unsigned Depth) const { 2548 unsigned Opcode = V.getOpcode(); 2549 EVT VT = V.getValueType(); 2550 assert(VT.isVector() && "Vector type expected"); 2551 2552 if (!VT.isScalableVector() && !DemandedElts) 2553 return false; // No demanded elts, better to assume we don't know anything. 2554 2555 if (Depth >= MaxRecursionDepth) 2556 return false; // Limit search depth. 2557 2558 // Deal with some common cases here that work for both fixed and scalable 2559 // vector types. 2560 switch (Opcode) { 2561 case ISD::SPLAT_VECTOR: 2562 UndefElts = V.getOperand(0).isUndef() 2563 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2564 : APInt(DemandedElts.getBitWidth(), 0); 2565 return true; 2566 case ISD::ADD: 2567 case ISD::SUB: 2568 case ISD::AND: 2569 case ISD::XOR: 2570 case ISD::OR: { 2571 APInt UndefLHS, UndefRHS; 2572 SDValue LHS = V.getOperand(0); 2573 SDValue RHS = V.getOperand(1); 2574 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2575 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2576 UndefElts = UndefLHS | UndefRHS; 2577 return true; 2578 } 2579 return false; 2580 } 2581 case ISD::ABS: 2582 case ISD::TRUNCATE: 2583 case ISD::SIGN_EXTEND: 2584 case ISD::ZERO_EXTEND: 2585 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2586 default: 2587 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2588 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2589 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2590 break; 2591 } 2592 2593 // We don't support other cases than those above for scalable vectors at 2594 // the moment. 2595 if (VT.isScalableVector()) 2596 return false; 2597 2598 unsigned NumElts = VT.getVectorNumElements(); 2599 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2600 UndefElts = APInt::getZero(NumElts); 2601 2602 switch (Opcode) { 2603 case ISD::BUILD_VECTOR: { 2604 SDValue Scl; 2605 for (unsigned i = 0; i != NumElts; ++i) { 2606 SDValue Op = V.getOperand(i); 2607 if (Op.isUndef()) { 2608 UndefElts.setBit(i); 2609 continue; 2610 } 2611 if (!DemandedElts[i]) 2612 continue; 2613 if (Scl && Scl != Op) 2614 return false; 2615 Scl = Op; 2616 } 2617 return true; 2618 } 2619 case ISD::VECTOR_SHUFFLE: { 2620 // Check if this is a shuffle node doing a splat or a shuffle of a splat. 2621 APInt DemandedLHS = APInt::getNullValue(NumElts); 2622 APInt DemandedRHS = APInt::getNullValue(NumElts); 2623 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2624 for (int i = 0; i != (int)NumElts; ++i) { 2625 int M = Mask[i]; 2626 if (M < 0) { 2627 UndefElts.setBit(i); 2628 continue; 2629 } 2630 if (!DemandedElts[i]) 2631 continue; 2632 if (M < (int)NumElts) 2633 DemandedLHS.setBit(M); 2634 else 2635 DemandedRHS.setBit(M - NumElts); 2636 } 2637 2638 // If we aren't demanding either op, assume there's no splat. 2639 // If we are demanding both ops, assume there's no splat. 2640 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) || 2641 (!DemandedLHS.isZero() && !DemandedRHS.isZero())) 2642 return false; 2643 2644 // See if the demanded elts of the source op is a splat or we only demand 2645 // one element, which should always be a splat. 2646 // TODO: Handle source ops splats with undefs. 2647 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) { 2648 APInt SrcUndefs; 2649 return (SrcElts.countPopulation() == 1) || 2650 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) && 2651 (SrcElts & SrcUndefs).isZero()); 2652 }; 2653 if (!DemandedLHS.isZero()) 2654 return CheckSplatSrc(V.getOperand(0), DemandedLHS); 2655 return CheckSplatSrc(V.getOperand(1), DemandedRHS); 2656 } 2657 case ISD::EXTRACT_SUBVECTOR: { 2658 // Offset the demanded elts by the subvector index. 2659 SDValue Src = V.getOperand(0); 2660 // We don't support scalable vectors at the moment. 2661 if (Src.getValueType().isScalableVector()) 2662 return false; 2663 uint64_t Idx = V.getConstantOperandVal(1); 2664 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2665 APInt UndefSrcElts; 2666 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 2667 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2668 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2669 return true; 2670 } 2671 break; 2672 } 2673 case ISD::ANY_EXTEND_VECTOR_INREG: 2674 case ISD::SIGN_EXTEND_VECTOR_INREG: 2675 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2676 // Widen the demanded elts by the src element count. 2677 SDValue Src = V.getOperand(0); 2678 // We don't support scalable vectors at the moment. 2679 if (Src.getValueType().isScalableVector()) 2680 return false; 2681 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2682 APInt UndefSrcElts; 2683 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 2684 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2685 UndefElts = UndefSrcElts.trunc(NumElts); 2686 return true; 2687 } 2688 break; 2689 } 2690 case ISD::BITCAST: { 2691 SDValue Src = V.getOperand(0); 2692 EVT SrcVT = Src.getValueType(); 2693 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits(); 2694 unsigned BitWidth = VT.getScalarSizeInBits(); 2695 2696 // Ignore bitcasts from unsupported types. 2697 // TODO: Add fp support? 2698 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger()) 2699 break; 2700 2701 // Bitcast 'small element' vector to 'large element' vector. 2702 if ((BitWidth % SrcBitWidth) == 0) { 2703 // See if each sub element is a splat. 2704 unsigned Scale = BitWidth / SrcBitWidth; 2705 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2706 APInt ScaledDemandedElts = 2707 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2708 for (unsigned I = 0; I != Scale; ++I) { 2709 APInt SubUndefElts; 2710 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I); 2711 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt); 2712 SubDemandedElts &= ScaledDemandedElts; 2713 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1)) 2714 return false; 2715 UndefElts |= APIntOps::ScaleBitMask(SubUndefElts, NumElts); 2716 } 2717 return true; 2718 } 2719 break; 2720 } 2721 } 2722 2723 return false; 2724 } 2725 2726 /// Helper wrapper to main isSplatValue function. 2727 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2728 EVT VT = V.getValueType(); 2729 assert(VT.isVector() && "Vector type expected"); 2730 2731 APInt UndefElts; 2732 APInt DemandedElts; 2733 2734 // For now we don't support this with scalable vectors. 2735 if (!VT.isScalableVector()) 2736 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2737 return isSplatValue(V, DemandedElts, UndefElts) && 2738 (AllowUndefs || !UndefElts); 2739 } 2740 2741 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2742 V = peekThroughExtractSubvectors(V); 2743 2744 EVT VT = V.getValueType(); 2745 unsigned Opcode = V.getOpcode(); 2746 switch (Opcode) { 2747 default: { 2748 APInt UndefElts; 2749 APInt DemandedElts; 2750 2751 if (!VT.isScalableVector()) 2752 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2753 2754 if (isSplatValue(V, DemandedElts, UndefElts)) { 2755 if (VT.isScalableVector()) { 2756 // DemandedElts and UndefElts are ignored for scalable vectors, since 2757 // the only supported cases are SPLAT_VECTOR nodes. 2758 SplatIdx = 0; 2759 } else { 2760 // Handle case where all demanded elements are UNDEF. 2761 if (DemandedElts.isSubsetOf(UndefElts)) { 2762 SplatIdx = 0; 2763 return getUNDEF(VT); 2764 } 2765 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2766 } 2767 return V; 2768 } 2769 break; 2770 } 2771 case ISD::SPLAT_VECTOR: 2772 SplatIdx = 0; 2773 return V; 2774 case ISD::VECTOR_SHUFFLE: { 2775 if (VT.isScalableVector()) 2776 return SDValue(); 2777 2778 // Check if this is a shuffle node doing a splat. 2779 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2780 // getTargetVShiftNode currently struggles without the splat source. 2781 auto *SVN = cast<ShuffleVectorSDNode>(V); 2782 if (!SVN->isSplat()) 2783 break; 2784 int Idx = SVN->getSplatIndex(); 2785 int NumElts = V.getValueType().getVectorNumElements(); 2786 SplatIdx = Idx % NumElts; 2787 return V.getOperand(Idx / NumElts); 2788 } 2789 } 2790 2791 return SDValue(); 2792 } 2793 2794 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2795 int SplatIdx; 2796 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2797 EVT SVT = SrcVector.getValueType().getScalarType(); 2798 EVT LegalSVT = SVT; 2799 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2800 if (!SVT.isInteger()) 2801 return SDValue(); 2802 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2803 if (LegalSVT.bitsLT(SVT)) 2804 return SDValue(); 2805 } 2806 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2807 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2808 } 2809 return SDValue(); 2810 } 2811 2812 const APInt * 2813 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2814 const APInt &DemandedElts) const { 2815 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2816 V.getOpcode() == ISD::SRA) && 2817 "Unknown shift node"); 2818 unsigned BitWidth = V.getScalarValueSizeInBits(); 2819 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2820 // Shifting more than the bitwidth is not valid. 2821 const APInt &ShAmt = SA->getAPIntValue(); 2822 if (ShAmt.ult(BitWidth)) 2823 return &ShAmt; 2824 } 2825 return nullptr; 2826 } 2827 2828 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2829 SDValue V, const APInt &DemandedElts) const { 2830 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2831 V.getOpcode() == ISD::SRA) && 2832 "Unknown shift node"); 2833 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2834 return ValidAmt; 2835 unsigned BitWidth = V.getScalarValueSizeInBits(); 2836 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2837 if (!BV) 2838 return nullptr; 2839 const APInt *MinShAmt = nullptr; 2840 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2841 if (!DemandedElts[i]) 2842 continue; 2843 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2844 if (!SA) 2845 return nullptr; 2846 // Shifting more than the bitwidth is not valid. 2847 const APInt &ShAmt = SA->getAPIntValue(); 2848 if (ShAmt.uge(BitWidth)) 2849 return nullptr; 2850 if (MinShAmt && MinShAmt->ule(ShAmt)) 2851 continue; 2852 MinShAmt = &ShAmt; 2853 } 2854 return MinShAmt; 2855 } 2856 2857 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2858 SDValue V, const APInt &DemandedElts) const { 2859 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2860 V.getOpcode() == ISD::SRA) && 2861 "Unknown shift node"); 2862 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2863 return ValidAmt; 2864 unsigned BitWidth = V.getScalarValueSizeInBits(); 2865 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2866 if (!BV) 2867 return nullptr; 2868 const APInt *MaxShAmt = nullptr; 2869 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2870 if (!DemandedElts[i]) 2871 continue; 2872 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2873 if (!SA) 2874 return nullptr; 2875 // Shifting more than the bitwidth is not valid. 2876 const APInt &ShAmt = SA->getAPIntValue(); 2877 if (ShAmt.uge(BitWidth)) 2878 return nullptr; 2879 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2880 continue; 2881 MaxShAmt = &ShAmt; 2882 } 2883 return MaxShAmt; 2884 } 2885 2886 /// Determine which bits of Op are known to be either zero or one and return 2887 /// them in Known. For vectors, the known bits are those that are shared by 2888 /// every vector element. 2889 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2890 EVT VT = Op.getValueType(); 2891 2892 // TOOD: Until we have a plan for how to represent demanded elements for 2893 // scalable vectors, we can just bail out for now. 2894 if (Op.getValueType().isScalableVector()) { 2895 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2896 return KnownBits(BitWidth); 2897 } 2898 2899 APInt DemandedElts = VT.isVector() 2900 ? APInt::getAllOnes(VT.getVectorNumElements()) 2901 : APInt(1, 1); 2902 return computeKnownBits(Op, DemandedElts, Depth); 2903 } 2904 2905 /// Determine which bits of Op are known to be either zero or one and return 2906 /// them in Known. The DemandedElts argument allows us to only collect the known 2907 /// bits that are shared by the requested vector elements. 2908 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2909 unsigned Depth) const { 2910 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2911 2912 KnownBits Known(BitWidth); // Don't know anything. 2913 2914 // TOOD: Until we have a plan for how to represent demanded elements for 2915 // scalable vectors, we can just bail out for now. 2916 if (Op.getValueType().isScalableVector()) 2917 return Known; 2918 2919 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2920 // We know all of the bits for a constant! 2921 return KnownBits::makeConstant(C->getAPIntValue()); 2922 } 2923 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2924 // We know all of the bits for a constant fp! 2925 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2926 } 2927 2928 if (Depth >= MaxRecursionDepth) 2929 return Known; // Limit search depth. 2930 2931 KnownBits Known2; 2932 unsigned NumElts = DemandedElts.getBitWidth(); 2933 assert((!Op.getValueType().isVector() || 2934 NumElts == Op.getValueType().getVectorNumElements()) && 2935 "Unexpected vector size"); 2936 2937 if (!DemandedElts) 2938 return Known; // No demanded elts, better to assume we don't know anything. 2939 2940 unsigned Opcode = Op.getOpcode(); 2941 switch (Opcode) { 2942 case ISD::BUILD_VECTOR: 2943 // Collect the known bits that are shared by every demanded vector element. 2944 Known.Zero.setAllBits(); Known.One.setAllBits(); 2945 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2946 if (!DemandedElts[i]) 2947 continue; 2948 2949 SDValue SrcOp = Op.getOperand(i); 2950 Known2 = computeKnownBits(SrcOp, Depth + 1); 2951 2952 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2953 if (SrcOp.getValueSizeInBits() != BitWidth) { 2954 assert(SrcOp.getValueSizeInBits() > BitWidth && 2955 "Expected BUILD_VECTOR implicit truncation"); 2956 Known2 = Known2.trunc(BitWidth); 2957 } 2958 2959 // Known bits are the values that are shared by every demanded element. 2960 Known = KnownBits::commonBits(Known, Known2); 2961 2962 // If we don't know any bits, early out. 2963 if (Known.isUnknown()) 2964 break; 2965 } 2966 break; 2967 case ISD::VECTOR_SHUFFLE: { 2968 // Collect the known bits that are shared by every vector element referenced 2969 // by the shuffle. 2970 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2971 Known.Zero.setAllBits(); Known.One.setAllBits(); 2972 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2973 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2974 for (unsigned i = 0; i != NumElts; ++i) { 2975 if (!DemandedElts[i]) 2976 continue; 2977 2978 int M = SVN->getMaskElt(i); 2979 if (M < 0) { 2980 // For UNDEF elements, we don't know anything about the common state of 2981 // the shuffle result. 2982 Known.resetAll(); 2983 DemandedLHS.clearAllBits(); 2984 DemandedRHS.clearAllBits(); 2985 break; 2986 } 2987 2988 if ((unsigned)M < NumElts) 2989 DemandedLHS.setBit((unsigned)M % NumElts); 2990 else 2991 DemandedRHS.setBit((unsigned)M % NumElts); 2992 } 2993 // Known bits are the values that are shared by every demanded element. 2994 if (!!DemandedLHS) { 2995 SDValue LHS = Op.getOperand(0); 2996 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2997 Known = KnownBits::commonBits(Known, Known2); 2998 } 2999 // If we don't know any bits, early out. 3000 if (Known.isUnknown()) 3001 break; 3002 if (!!DemandedRHS) { 3003 SDValue RHS = Op.getOperand(1); 3004 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 3005 Known = KnownBits::commonBits(Known, Known2); 3006 } 3007 break; 3008 } 3009 case ISD::CONCAT_VECTORS: { 3010 // Split DemandedElts and test each of the demanded subvectors. 3011 Known.Zero.setAllBits(); Known.One.setAllBits(); 3012 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3013 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3014 unsigned NumSubVectors = Op.getNumOperands(); 3015 for (unsigned i = 0; i != NumSubVectors; ++i) { 3016 APInt DemandedSub = 3017 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 3018 if (!!DemandedSub) { 3019 SDValue Sub = Op.getOperand(i); 3020 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 3021 Known = KnownBits::commonBits(Known, Known2); 3022 } 3023 // If we don't know any bits, early out. 3024 if (Known.isUnknown()) 3025 break; 3026 } 3027 break; 3028 } 3029 case ISD::INSERT_SUBVECTOR: { 3030 // Demand any elements from the subvector and the remainder from the src its 3031 // inserted into. 3032 SDValue Src = Op.getOperand(0); 3033 SDValue Sub = Op.getOperand(1); 3034 uint64_t Idx = Op.getConstantOperandVal(2); 3035 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3036 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3037 APInt DemandedSrcElts = DemandedElts; 3038 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3039 3040 Known.One.setAllBits(); 3041 Known.Zero.setAllBits(); 3042 if (!!DemandedSubElts) { 3043 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 3044 if (Known.isUnknown()) 3045 break; // early-out. 3046 } 3047 if (!!DemandedSrcElts) { 3048 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3049 Known = KnownBits::commonBits(Known, Known2); 3050 } 3051 break; 3052 } 3053 case ISD::EXTRACT_SUBVECTOR: { 3054 // Offset the demanded elts by the subvector index. 3055 SDValue Src = Op.getOperand(0); 3056 // Bail until we can represent demanded elements for scalable vectors. 3057 if (Src.getValueType().isScalableVector()) 3058 break; 3059 uint64_t Idx = Op.getConstantOperandVal(1); 3060 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3061 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3062 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3063 break; 3064 } 3065 case ISD::SCALAR_TO_VECTOR: { 3066 // We know about scalar_to_vector as much as we know about it source, 3067 // which becomes the first element of otherwise unknown vector. 3068 if (DemandedElts != 1) 3069 break; 3070 3071 SDValue N0 = Op.getOperand(0); 3072 Known = computeKnownBits(N0, Depth + 1); 3073 if (N0.getValueSizeInBits() != BitWidth) 3074 Known = Known.trunc(BitWidth); 3075 3076 break; 3077 } 3078 case ISD::BITCAST: { 3079 SDValue N0 = Op.getOperand(0); 3080 EVT SubVT = N0.getValueType(); 3081 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3082 3083 // Ignore bitcasts from unsupported types. 3084 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3085 break; 3086 3087 // Fast handling of 'identity' bitcasts. 3088 if (BitWidth == SubBitWidth) { 3089 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3090 break; 3091 } 3092 3093 bool IsLE = getDataLayout().isLittleEndian(); 3094 3095 // Bitcast 'small element' vector to 'large element' scalar/vector. 3096 if ((BitWidth % SubBitWidth) == 0) { 3097 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3098 3099 // Collect known bits for the (larger) output by collecting the known 3100 // bits from each set of sub elements and shift these into place. 3101 // We need to separately call computeKnownBits for each set of 3102 // sub elements as the knownbits for each is likely to be different. 3103 unsigned SubScale = BitWidth / SubBitWidth; 3104 APInt SubDemandedElts(NumElts * SubScale, 0); 3105 for (unsigned i = 0; i != NumElts; ++i) 3106 if (DemandedElts[i]) 3107 SubDemandedElts.setBit(i * SubScale); 3108 3109 for (unsigned i = 0; i != SubScale; ++i) { 3110 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3111 Depth + 1); 3112 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3113 Known.insertBits(Known2, SubBitWidth * Shifts); 3114 } 3115 } 3116 3117 // Bitcast 'large element' scalar/vector to 'small element' vector. 3118 if ((SubBitWidth % BitWidth) == 0) { 3119 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3120 3121 // Collect known bits for the (smaller) output by collecting the known 3122 // bits from the overlapping larger input elements and extracting the 3123 // sub sections we actually care about. 3124 unsigned SubScale = SubBitWidth / BitWidth; 3125 APInt SubDemandedElts = 3126 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3127 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3128 3129 Known.Zero.setAllBits(); Known.One.setAllBits(); 3130 for (unsigned i = 0; i != NumElts; ++i) 3131 if (DemandedElts[i]) { 3132 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3133 unsigned Offset = (Shifts % SubScale) * BitWidth; 3134 Known = KnownBits::commonBits(Known, 3135 Known2.extractBits(BitWidth, Offset)); 3136 // If we don't know any bits, early out. 3137 if (Known.isUnknown()) 3138 break; 3139 } 3140 } 3141 break; 3142 } 3143 case ISD::AND: 3144 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3145 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3146 3147 Known &= Known2; 3148 break; 3149 case ISD::OR: 3150 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3151 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3152 3153 Known |= Known2; 3154 break; 3155 case ISD::XOR: 3156 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3157 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3158 3159 Known ^= Known2; 3160 break; 3161 case ISD::MUL: { 3162 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3163 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3164 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3165 // TODO: SelfMultiply can be poison, but not undef. 3166 if (SelfMultiply) 3167 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison( 3168 Op.getOperand(0), DemandedElts, false, Depth + 1); 3169 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3170 3171 // If the multiplication is known not to overflow, the product of a number 3172 // with itself is non-negative. Only do this if we didn't already computed 3173 // the opposite value for the sign bit. 3174 if (Op->getFlags().hasNoSignedWrap() && 3175 Op.getOperand(0) == Op.getOperand(1) && 3176 !Known.isNegative()) 3177 Known.makeNonNegative(); 3178 break; 3179 } 3180 case ISD::MULHU: { 3181 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3182 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3183 Known = KnownBits::mulhu(Known, Known2); 3184 break; 3185 } 3186 case ISD::MULHS: { 3187 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3188 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3189 Known = KnownBits::mulhs(Known, Known2); 3190 break; 3191 } 3192 case ISD::UMUL_LOHI: { 3193 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3194 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3195 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3196 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3197 if (Op.getResNo() == 0) 3198 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3199 else 3200 Known = KnownBits::mulhu(Known, Known2); 3201 break; 3202 } 3203 case ISD::SMUL_LOHI: { 3204 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3205 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3206 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3207 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3208 if (Op.getResNo() == 0) 3209 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3210 else 3211 Known = KnownBits::mulhs(Known, Known2); 3212 break; 3213 } 3214 case ISD::UDIV: { 3215 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3216 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3217 Known = KnownBits::udiv(Known, Known2); 3218 break; 3219 } 3220 case ISD::AVGCEILU: { 3221 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3222 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3223 Known = Known.zext(BitWidth + 1); 3224 Known2 = Known2.zext(BitWidth + 1); 3225 KnownBits One = KnownBits::makeConstant(APInt(1, 1)); 3226 Known = KnownBits::computeForAddCarry(Known, Known2, One); 3227 Known = Known.extractBits(BitWidth, 1); 3228 break; 3229 } 3230 case ISD::SELECT: 3231 case ISD::VSELECT: 3232 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3233 // If we don't know any bits, early out. 3234 if (Known.isUnknown()) 3235 break; 3236 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3237 3238 // Only known if known in both the LHS and RHS. 3239 Known = KnownBits::commonBits(Known, Known2); 3240 break; 3241 case ISD::SELECT_CC: 3242 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3243 // If we don't know any bits, early out. 3244 if (Known.isUnknown()) 3245 break; 3246 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3247 3248 // Only known if known in both the LHS and RHS. 3249 Known = KnownBits::commonBits(Known, Known2); 3250 break; 3251 case ISD::SMULO: 3252 case ISD::UMULO: 3253 if (Op.getResNo() != 1) 3254 break; 3255 // The boolean result conforms to getBooleanContents. 3256 // If we know the result of a setcc has the top bits zero, use this info. 3257 // We know that we have an integer-based boolean since these operations 3258 // are only available for integer. 3259 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3260 TargetLowering::ZeroOrOneBooleanContent && 3261 BitWidth > 1) 3262 Known.Zero.setBitsFrom(1); 3263 break; 3264 case ISD::SETCC: 3265 case ISD::STRICT_FSETCC: 3266 case ISD::STRICT_FSETCCS: { 3267 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3268 // If we know the result of a setcc has the top bits zero, use this info. 3269 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3270 TargetLowering::ZeroOrOneBooleanContent && 3271 BitWidth > 1) 3272 Known.Zero.setBitsFrom(1); 3273 break; 3274 } 3275 case ISD::SHL: 3276 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3277 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3278 Known = KnownBits::shl(Known, Known2); 3279 3280 // Minimum shift low bits are known zero. 3281 if (const APInt *ShMinAmt = 3282 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3283 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3284 break; 3285 case ISD::SRL: 3286 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3287 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3288 Known = KnownBits::lshr(Known, Known2); 3289 3290 // Minimum shift high bits are known zero. 3291 if (const APInt *ShMinAmt = 3292 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3293 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3294 break; 3295 case ISD::SRA: 3296 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3297 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3298 Known = KnownBits::ashr(Known, Known2); 3299 // TODO: Add minimum shift high known sign bits. 3300 break; 3301 case ISD::FSHL: 3302 case ISD::FSHR: 3303 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3304 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3305 3306 // For fshl, 0-shift returns the 1st arg. 3307 // For fshr, 0-shift returns the 2nd arg. 3308 if (Amt == 0) { 3309 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3310 DemandedElts, Depth + 1); 3311 break; 3312 } 3313 3314 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3315 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3316 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3317 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3318 if (Opcode == ISD::FSHL) { 3319 Known.One <<= Amt; 3320 Known.Zero <<= Amt; 3321 Known2.One.lshrInPlace(BitWidth - Amt); 3322 Known2.Zero.lshrInPlace(BitWidth - Amt); 3323 } else { 3324 Known.One <<= BitWidth - Amt; 3325 Known.Zero <<= BitWidth - Amt; 3326 Known2.One.lshrInPlace(Amt); 3327 Known2.Zero.lshrInPlace(Amt); 3328 } 3329 Known.One |= Known2.One; 3330 Known.Zero |= Known2.Zero; 3331 } 3332 break; 3333 case ISD::SIGN_EXTEND_INREG: { 3334 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3335 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3336 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3337 break; 3338 } 3339 case ISD::CTTZ: 3340 case ISD::CTTZ_ZERO_UNDEF: { 3341 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3342 // If we have a known 1, its position is our upper bound. 3343 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3344 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3345 Known.Zero.setBitsFrom(LowBits); 3346 break; 3347 } 3348 case ISD::CTLZ: 3349 case ISD::CTLZ_ZERO_UNDEF: { 3350 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3351 // If we have a known 1, its position is our upper bound. 3352 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3353 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3354 Known.Zero.setBitsFrom(LowBits); 3355 break; 3356 } 3357 case ISD::CTPOP: { 3358 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3359 // If we know some of the bits are zero, they can't be one. 3360 unsigned PossibleOnes = Known2.countMaxPopulation(); 3361 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3362 break; 3363 } 3364 case ISD::PARITY: { 3365 // Parity returns 0 everywhere but the LSB. 3366 Known.Zero.setBitsFrom(1); 3367 break; 3368 } 3369 case ISD::LOAD: { 3370 LoadSDNode *LD = cast<LoadSDNode>(Op); 3371 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3372 if (ISD::isNON_EXTLoad(LD) && Cst) { 3373 // Determine any common known bits from the loaded constant pool value. 3374 Type *CstTy = Cst->getType(); 3375 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3376 // If its a vector splat, then we can (quickly) reuse the scalar path. 3377 // NOTE: We assume all elements match and none are UNDEF. 3378 if (CstTy->isVectorTy()) { 3379 if (const Constant *Splat = Cst->getSplatValue()) { 3380 Cst = Splat; 3381 CstTy = Cst->getType(); 3382 } 3383 } 3384 // TODO - do we need to handle different bitwidths? 3385 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3386 // Iterate across all vector elements finding common known bits. 3387 Known.One.setAllBits(); 3388 Known.Zero.setAllBits(); 3389 for (unsigned i = 0; i != NumElts; ++i) { 3390 if (!DemandedElts[i]) 3391 continue; 3392 if (Constant *Elt = Cst->getAggregateElement(i)) { 3393 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3394 const APInt &Value = CInt->getValue(); 3395 Known.One &= Value; 3396 Known.Zero &= ~Value; 3397 continue; 3398 } 3399 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3400 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3401 Known.One &= Value; 3402 Known.Zero &= ~Value; 3403 continue; 3404 } 3405 } 3406 Known.One.clearAllBits(); 3407 Known.Zero.clearAllBits(); 3408 break; 3409 } 3410 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3411 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3412 Known = KnownBits::makeConstant(CInt->getValue()); 3413 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3414 Known = 3415 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3416 } 3417 } 3418 } 3419 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3420 // If this is a ZEXTLoad and we are looking at the loaded value. 3421 EVT VT = LD->getMemoryVT(); 3422 unsigned MemBits = VT.getScalarSizeInBits(); 3423 Known.Zero.setBitsFrom(MemBits); 3424 } else if (const MDNode *Ranges = LD->getRanges()) { 3425 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3426 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3427 } 3428 break; 3429 } 3430 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3431 EVT InVT = Op.getOperand(0).getValueType(); 3432 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3433 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3434 Known = Known.zext(BitWidth); 3435 break; 3436 } 3437 case ISD::ZERO_EXTEND: { 3438 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3439 Known = Known.zext(BitWidth); 3440 break; 3441 } 3442 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3443 EVT InVT = Op.getOperand(0).getValueType(); 3444 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3445 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3446 // If the sign bit is known to be zero or one, then sext will extend 3447 // it to the top bits, else it will just zext. 3448 Known = Known.sext(BitWidth); 3449 break; 3450 } 3451 case ISD::SIGN_EXTEND: { 3452 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3453 // If the sign bit is known to be zero or one, then sext will extend 3454 // it to the top bits, else it will just zext. 3455 Known = Known.sext(BitWidth); 3456 break; 3457 } 3458 case ISD::ANY_EXTEND_VECTOR_INREG: { 3459 EVT InVT = Op.getOperand(0).getValueType(); 3460 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3461 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3462 Known = Known.anyext(BitWidth); 3463 break; 3464 } 3465 case ISD::ANY_EXTEND: { 3466 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3467 Known = Known.anyext(BitWidth); 3468 break; 3469 } 3470 case ISD::TRUNCATE: { 3471 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3472 Known = Known.trunc(BitWidth); 3473 break; 3474 } 3475 case ISD::AssertZext: { 3476 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3477 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3478 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3479 Known.Zero |= (~InMask); 3480 Known.One &= (~Known.Zero); 3481 break; 3482 } 3483 case ISD::AssertAlign: { 3484 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3485 assert(LogOfAlign != 0); 3486 3487 // TODO: Should use maximum with source 3488 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3489 // well as clearing one bits. 3490 Known.Zero.setLowBits(LogOfAlign); 3491 Known.One.clearLowBits(LogOfAlign); 3492 break; 3493 } 3494 case ISD::FGETSIGN: 3495 // All bits are zero except the low bit. 3496 Known.Zero.setBitsFrom(1); 3497 break; 3498 case ISD::USUBO: 3499 case ISD::SSUBO: 3500 if (Op.getResNo() == 1) { 3501 // If we know the result of a setcc has the top bits zero, use this info. 3502 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3503 TargetLowering::ZeroOrOneBooleanContent && 3504 BitWidth > 1) 3505 Known.Zero.setBitsFrom(1); 3506 break; 3507 } 3508 LLVM_FALLTHROUGH; 3509 case ISD::SUB: 3510 case ISD::SUBC: { 3511 assert(Op.getResNo() == 0 && 3512 "We only compute knownbits for the difference here."); 3513 3514 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3515 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3516 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3517 Known, Known2); 3518 break; 3519 } 3520 case ISD::UADDO: 3521 case ISD::SADDO: 3522 case ISD::ADDCARRY: 3523 if (Op.getResNo() == 1) { 3524 // If we know the result of a setcc has the top bits zero, use this info. 3525 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3526 TargetLowering::ZeroOrOneBooleanContent && 3527 BitWidth > 1) 3528 Known.Zero.setBitsFrom(1); 3529 break; 3530 } 3531 LLVM_FALLTHROUGH; 3532 case ISD::ADD: 3533 case ISD::ADDC: 3534 case ISD::ADDE: { 3535 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3536 3537 // With ADDE and ADDCARRY, a carry bit may be added in. 3538 KnownBits Carry(1); 3539 if (Opcode == ISD::ADDE) 3540 // Can't track carry from glue, set carry to unknown. 3541 Carry.resetAll(); 3542 else if (Opcode == ISD::ADDCARRY) 3543 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3544 // the trouble (how often will we find a known carry bit). And I haven't 3545 // tested this very much yet, but something like this might work: 3546 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3547 // Carry = Carry.zextOrTrunc(1, false); 3548 Carry.resetAll(); 3549 else 3550 Carry.setAllZero(); 3551 3552 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3553 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3554 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3555 break; 3556 } 3557 case ISD::SREM: { 3558 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3559 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3560 Known = KnownBits::srem(Known, Known2); 3561 break; 3562 } 3563 case ISD::UREM: { 3564 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3565 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3566 Known = KnownBits::urem(Known, Known2); 3567 break; 3568 } 3569 case ISD::EXTRACT_ELEMENT: { 3570 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3571 const unsigned Index = Op.getConstantOperandVal(1); 3572 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3573 3574 // Remove low part of known bits mask 3575 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3576 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3577 3578 // Remove high part of known bit mask 3579 Known = Known.trunc(EltBitWidth); 3580 break; 3581 } 3582 case ISD::EXTRACT_VECTOR_ELT: { 3583 SDValue InVec = Op.getOperand(0); 3584 SDValue EltNo = Op.getOperand(1); 3585 EVT VecVT = InVec.getValueType(); 3586 // computeKnownBits not yet implemented for scalable vectors. 3587 if (VecVT.isScalableVector()) 3588 break; 3589 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3590 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3591 3592 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3593 // anything about the extended bits. 3594 if (BitWidth > EltBitWidth) 3595 Known = Known.trunc(EltBitWidth); 3596 3597 // If we know the element index, just demand that vector element, else for 3598 // an unknown element index, ignore DemandedElts and demand them all. 3599 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3600 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3601 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3602 DemandedSrcElts = 3603 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3604 3605 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3606 if (BitWidth > EltBitWidth) 3607 Known = Known.anyext(BitWidth); 3608 break; 3609 } 3610 case ISD::INSERT_VECTOR_ELT: { 3611 // If we know the element index, split the demand between the 3612 // source vector and the inserted element, otherwise assume we need 3613 // the original demanded vector elements and the value. 3614 SDValue InVec = Op.getOperand(0); 3615 SDValue InVal = Op.getOperand(1); 3616 SDValue EltNo = Op.getOperand(2); 3617 bool DemandedVal = true; 3618 APInt DemandedVecElts = DemandedElts; 3619 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3620 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3621 unsigned EltIdx = CEltNo->getZExtValue(); 3622 DemandedVal = !!DemandedElts[EltIdx]; 3623 DemandedVecElts.clearBit(EltIdx); 3624 } 3625 Known.One.setAllBits(); 3626 Known.Zero.setAllBits(); 3627 if (DemandedVal) { 3628 Known2 = computeKnownBits(InVal, Depth + 1); 3629 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3630 } 3631 if (!!DemandedVecElts) { 3632 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3633 Known = KnownBits::commonBits(Known, Known2); 3634 } 3635 break; 3636 } 3637 case ISD::BITREVERSE: { 3638 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3639 Known = Known2.reverseBits(); 3640 break; 3641 } 3642 case ISD::BSWAP: { 3643 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3644 Known = Known2.byteSwap(); 3645 break; 3646 } 3647 case ISD::ABS: { 3648 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3649 Known = Known2.abs(); 3650 break; 3651 } 3652 case ISD::USUBSAT: { 3653 // The result of usubsat will never be larger than the LHS. 3654 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3655 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3656 break; 3657 } 3658 case ISD::UMIN: { 3659 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3660 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3661 Known = KnownBits::umin(Known, Known2); 3662 break; 3663 } 3664 case ISD::UMAX: { 3665 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3666 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3667 Known = KnownBits::umax(Known, Known2); 3668 break; 3669 } 3670 case ISD::SMIN: 3671 case ISD::SMAX: { 3672 // If we have a clamp pattern, we know that the number of sign bits will be 3673 // the minimum of the clamp min/max range. 3674 bool IsMax = (Opcode == ISD::SMAX); 3675 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3676 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3677 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3678 CstHigh = 3679 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3680 if (CstLow && CstHigh) { 3681 if (!IsMax) 3682 std::swap(CstLow, CstHigh); 3683 3684 const APInt &ValueLow = CstLow->getAPIntValue(); 3685 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3686 if (ValueLow.sle(ValueHigh)) { 3687 unsigned LowSignBits = ValueLow.getNumSignBits(); 3688 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3689 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3690 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3691 Known.One.setHighBits(MinSignBits); 3692 break; 3693 } 3694 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3695 Known.Zero.setHighBits(MinSignBits); 3696 break; 3697 } 3698 } 3699 } 3700 3701 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3702 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3703 if (IsMax) 3704 Known = KnownBits::smax(Known, Known2); 3705 else 3706 Known = KnownBits::smin(Known, Known2); 3707 3708 // For SMAX, if CstLow is non-negative we know the result will be 3709 // non-negative and thus all sign bits are 0. 3710 // TODO: There's an equivalent of this for smin with negative constant for 3711 // known ones. 3712 if (IsMax && CstLow) { 3713 const APInt &ValueLow = CstLow->getAPIntValue(); 3714 if (ValueLow.isNonNegative()) { 3715 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3716 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits())); 3717 } 3718 } 3719 3720 break; 3721 } 3722 case ISD::FP_TO_UINT_SAT: { 3723 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3724 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3725 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3726 break; 3727 } 3728 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3729 if (Op.getResNo() == 1) { 3730 // The boolean result conforms to getBooleanContents. 3731 // If we know the result of a setcc has the top bits zero, use this info. 3732 // We know that we have an integer-based boolean since these operations 3733 // are only available for integer. 3734 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3735 TargetLowering::ZeroOrOneBooleanContent && 3736 BitWidth > 1) 3737 Known.Zero.setBitsFrom(1); 3738 break; 3739 } 3740 LLVM_FALLTHROUGH; 3741 case ISD::ATOMIC_CMP_SWAP: 3742 case ISD::ATOMIC_SWAP: 3743 case ISD::ATOMIC_LOAD_ADD: 3744 case ISD::ATOMIC_LOAD_SUB: 3745 case ISD::ATOMIC_LOAD_AND: 3746 case ISD::ATOMIC_LOAD_CLR: 3747 case ISD::ATOMIC_LOAD_OR: 3748 case ISD::ATOMIC_LOAD_XOR: 3749 case ISD::ATOMIC_LOAD_NAND: 3750 case ISD::ATOMIC_LOAD_MIN: 3751 case ISD::ATOMIC_LOAD_MAX: 3752 case ISD::ATOMIC_LOAD_UMIN: 3753 case ISD::ATOMIC_LOAD_UMAX: 3754 case ISD::ATOMIC_LOAD: { 3755 unsigned MemBits = 3756 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3757 // If we are looking at the loaded value. 3758 if (Op.getResNo() == 0) { 3759 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3760 Known.Zero.setBitsFrom(MemBits); 3761 } 3762 break; 3763 } 3764 case ISD::FrameIndex: 3765 case ISD::TargetFrameIndex: 3766 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3767 Known, getMachineFunction()); 3768 break; 3769 3770 default: 3771 if (Opcode < ISD::BUILTIN_OP_END) 3772 break; 3773 LLVM_FALLTHROUGH; 3774 case ISD::INTRINSIC_WO_CHAIN: 3775 case ISD::INTRINSIC_W_CHAIN: 3776 case ISD::INTRINSIC_VOID: 3777 // Allow the target to implement this method for its nodes. 3778 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3779 break; 3780 } 3781 3782 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3783 return Known; 3784 } 3785 3786 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3787 SDValue N1) const { 3788 // X + 0 never overflow 3789 if (isNullConstant(N1)) 3790 return OFK_Never; 3791 3792 KnownBits N1Known = computeKnownBits(N1); 3793 if (N1Known.Zero.getBoolValue()) { 3794 KnownBits N0Known = computeKnownBits(N0); 3795 3796 bool overflow; 3797 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3798 if (!overflow) 3799 return OFK_Never; 3800 } 3801 3802 // mulhi + 1 never overflow 3803 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3804 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3805 return OFK_Never; 3806 3807 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3808 KnownBits N0Known = computeKnownBits(N0); 3809 3810 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3811 return OFK_Never; 3812 } 3813 3814 return OFK_Sometime; 3815 } 3816 3817 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3818 EVT OpVT = Val.getValueType(); 3819 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3820 3821 // Is the constant a known power of 2? 3822 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3823 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3824 3825 // A left-shift of a constant one will have exactly one bit set because 3826 // shifting the bit off the end is undefined. 3827 if (Val.getOpcode() == ISD::SHL) { 3828 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3829 if (C && C->getAPIntValue() == 1) 3830 return true; 3831 } 3832 3833 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3834 // one bit set. 3835 if (Val.getOpcode() == ISD::SRL) { 3836 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3837 if (C && C->getAPIntValue().isSignMask()) 3838 return true; 3839 } 3840 3841 // Are all operands of a build vector constant powers of two? 3842 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3843 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3844 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3845 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3846 return false; 3847 })) 3848 return true; 3849 3850 // Is the operand of a splat vector a constant power of two? 3851 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3852 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3853 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3854 return true; 3855 3856 // More could be done here, though the above checks are enough 3857 // to handle some common cases. 3858 3859 // Fall back to computeKnownBits to catch other known cases. 3860 KnownBits Known = computeKnownBits(Val); 3861 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3862 } 3863 3864 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3865 EVT VT = Op.getValueType(); 3866 3867 // TODO: Assume we don't know anything for now. 3868 if (VT.isScalableVector()) 3869 return 1; 3870 3871 APInt DemandedElts = VT.isVector() 3872 ? APInt::getAllOnes(VT.getVectorNumElements()) 3873 : APInt(1, 1); 3874 return ComputeNumSignBits(Op, DemandedElts, Depth); 3875 } 3876 3877 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3878 unsigned Depth) const { 3879 EVT VT = Op.getValueType(); 3880 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3881 unsigned VTBits = VT.getScalarSizeInBits(); 3882 unsigned NumElts = DemandedElts.getBitWidth(); 3883 unsigned Tmp, Tmp2; 3884 unsigned FirstAnswer = 1; 3885 3886 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3887 const APInt &Val = C->getAPIntValue(); 3888 return Val.getNumSignBits(); 3889 } 3890 3891 if (Depth >= MaxRecursionDepth) 3892 return 1; // Limit search depth. 3893 3894 if (!DemandedElts || VT.isScalableVector()) 3895 return 1; // No demanded elts, better to assume we don't know anything. 3896 3897 unsigned Opcode = Op.getOpcode(); 3898 switch (Opcode) { 3899 default: break; 3900 case ISD::AssertSext: 3901 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3902 return VTBits-Tmp+1; 3903 case ISD::AssertZext: 3904 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3905 return VTBits-Tmp; 3906 3907 case ISD::BUILD_VECTOR: 3908 Tmp = VTBits; 3909 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3910 if (!DemandedElts[i]) 3911 continue; 3912 3913 SDValue SrcOp = Op.getOperand(i); 3914 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3915 3916 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3917 if (SrcOp.getValueSizeInBits() != VTBits) { 3918 assert(SrcOp.getValueSizeInBits() > VTBits && 3919 "Expected BUILD_VECTOR implicit truncation"); 3920 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3921 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3922 } 3923 Tmp = std::min(Tmp, Tmp2); 3924 } 3925 return Tmp; 3926 3927 case ISD::VECTOR_SHUFFLE: { 3928 // Collect the minimum number of sign bits that are shared by every vector 3929 // element referenced by the shuffle. 3930 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3931 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3932 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3933 for (unsigned i = 0; i != NumElts; ++i) { 3934 int M = SVN->getMaskElt(i); 3935 if (!DemandedElts[i]) 3936 continue; 3937 // For UNDEF elements, we don't know anything about the common state of 3938 // the shuffle result. 3939 if (M < 0) 3940 return 1; 3941 if ((unsigned)M < NumElts) 3942 DemandedLHS.setBit((unsigned)M % NumElts); 3943 else 3944 DemandedRHS.setBit((unsigned)M % NumElts); 3945 } 3946 Tmp = std::numeric_limits<unsigned>::max(); 3947 if (!!DemandedLHS) 3948 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3949 if (!!DemandedRHS) { 3950 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3951 Tmp = std::min(Tmp, Tmp2); 3952 } 3953 // If we don't know anything, early out and try computeKnownBits fall-back. 3954 if (Tmp == 1) 3955 break; 3956 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3957 return Tmp; 3958 } 3959 3960 case ISD::BITCAST: { 3961 SDValue N0 = Op.getOperand(0); 3962 EVT SrcVT = N0.getValueType(); 3963 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3964 3965 // Ignore bitcasts from unsupported types.. 3966 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3967 break; 3968 3969 // Fast handling of 'identity' bitcasts. 3970 if (VTBits == SrcBits) 3971 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3972 3973 bool IsLE = getDataLayout().isLittleEndian(); 3974 3975 // Bitcast 'large element' scalar/vector to 'small element' vector. 3976 if ((SrcBits % VTBits) == 0) { 3977 assert(VT.isVector() && "Expected bitcast to vector"); 3978 3979 unsigned Scale = SrcBits / VTBits; 3980 APInt SrcDemandedElts = 3981 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3982 3983 // Fast case - sign splat can be simply split across the small elements. 3984 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3985 if (Tmp == SrcBits) 3986 return VTBits; 3987 3988 // Slow case - determine how far the sign extends into each sub-element. 3989 Tmp2 = VTBits; 3990 for (unsigned i = 0; i != NumElts; ++i) 3991 if (DemandedElts[i]) { 3992 unsigned SubOffset = i % Scale; 3993 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3994 SubOffset = SubOffset * VTBits; 3995 if (Tmp <= SubOffset) 3996 return 1; 3997 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3998 } 3999 return Tmp2; 4000 } 4001 break; 4002 } 4003 4004 case ISD::FP_TO_SINT_SAT: 4005 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 4006 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4007 return VTBits - Tmp + 1; 4008 case ISD::SIGN_EXTEND: 4009 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 4010 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 4011 case ISD::SIGN_EXTEND_INREG: 4012 // Max of the input and what this extends. 4013 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4014 Tmp = VTBits-Tmp+1; 4015 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4016 return std::max(Tmp, Tmp2); 4017 case ISD::SIGN_EXTEND_VECTOR_INREG: { 4018 SDValue Src = Op.getOperand(0); 4019 EVT SrcVT = Src.getValueType(); 4020 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); 4021 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 4022 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 4023 } 4024 case ISD::SRA: 4025 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4026 // SRA X, C -> adds C sign bits. 4027 if (const APInt *ShAmt = 4028 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 4029 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 4030 return Tmp; 4031 case ISD::SHL: 4032 if (const APInt *ShAmt = 4033 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 4034 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 4035 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4036 if (ShAmt->ult(Tmp)) 4037 return Tmp - ShAmt->getZExtValue(); 4038 } 4039 break; 4040 case ISD::AND: 4041 case ISD::OR: 4042 case ISD::XOR: // NOT is handled here. 4043 // Logical binary ops preserve the number of sign bits at the worst. 4044 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4045 if (Tmp != 1) { 4046 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4047 FirstAnswer = std::min(Tmp, Tmp2); 4048 // We computed what we know about the sign bits as our first 4049 // answer. Now proceed to the generic code that uses 4050 // computeKnownBits, and pick whichever answer is better. 4051 } 4052 break; 4053 4054 case ISD::SELECT: 4055 case ISD::VSELECT: 4056 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4057 if (Tmp == 1) return 1; // Early out. 4058 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4059 return std::min(Tmp, Tmp2); 4060 case ISD::SELECT_CC: 4061 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4062 if (Tmp == 1) return 1; // Early out. 4063 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 4064 return std::min(Tmp, Tmp2); 4065 4066 case ISD::SMIN: 4067 case ISD::SMAX: { 4068 // If we have a clamp pattern, we know that the number of sign bits will be 4069 // the minimum of the clamp min/max range. 4070 bool IsMax = (Opcode == ISD::SMAX); 4071 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 4072 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 4073 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 4074 CstHigh = 4075 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 4076 if (CstLow && CstHigh) { 4077 if (!IsMax) 4078 std::swap(CstLow, CstHigh); 4079 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 4080 Tmp = CstLow->getAPIntValue().getNumSignBits(); 4081 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 4082 return std::min(Tmp, Tmp2); 4083 } 4084 } 4085 4086 // Fallback - just get the minimum number of sign bits of the operands. 4087 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4088 if (Tmp == 1) 4089 return 1; // Early out. 4090 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4091 return std::min(Tmp, Tmp2); 4092 } 4093 case ISD::UMIN: 4094 case ISD::UMAX: 4095 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4096 if (Tmp == 1) 4097 return 1; // Early out. 4098 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4099 return std::min(Tmp, Tmp2); 4100 case ISD::SADDO: 4101 case ISD::UADDO: 4102 case ISD::SSUBO: 4103 case ISD::USUBO: 4104 case ISD::SMULO: 4105 case ISD::UMULO: 4106 if (Op.getResNo() != 1) 4107 break; 4108 // The boolean result conforms to getBooleanContents. Fall through. 4109 // If setcc returns 0/-1, all bits are sign bits. 4110 // We know that we have an integer-based boolean since these operations 4111 // are only available for integer. 4112 if (TLI->getBooleanContents(VT.isVector(), false) == 4113 TargetLowering::ZeroOrNegativeOneBooleanContent) 4114 return VTBits; 4115 break; 4116 case ISD::SETCC: 4117 case ISD::STRICT_FSETCC: 4118 case ISD::STRICT_FSETCCS: { 4119 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4120 // If setcc returns 0/-1, all bits are sign bits. 4121 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4122 TargetLowering::ZeroOrNegativeOneBooleanContent) 4123 return VTBits; 4124 break; 4125 } 4126 case ISD::ROTL: 4127 case ISD::ROTR: 4128 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4129 4130 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4131 if (Tmp == VTBits) 4132 return VTBits; 4133 4134 if (ConstantSDNode *C = 4135 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4136 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4137 4138 // Handle rotate right by N like a rotate left by 32-N. 4139 if (Opcode == ISD::ROTR) 4140 RotAmt = (VTBits - RotAmt) % VTBits; 4141 4142 // If we aren't rotating out all of the known-in sign bits, return the 4143 // number that are left. This handles rotl(sext(x), 1) for example. 4144 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4145 } 4146 break; 4147 case ISD::ADD: 4148 case ISD::ADDC: 4149 // Add can have at most one carry bit. Thus we know that the output 4150 // is, at worst, one more bit than the inputs. 4151 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4152 if (Tmp == 1) return 1; // Early out. 4153 4154 // Special case decrementing a value (ADD X, -1): 4155 if (ConstantSDNode *CRHS = 4156 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4157 if (CRHS->isAllOnes()) { 4158 KnownBits Known = 4159 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4160 4161 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4162 // sign bits set. 4163 if ((Known.Zero | 1).isAllOnes()) 4164 return VTBits; 4165 4166 // If we are subtracting one from a positive number, there is no carry 4167 // out of the result. 4168 if (Known.isNonNegative()) 4169 return Tmp; 4170 } 4171 4172 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4173 if (Tmp2 == 1) return 1; // Early out. 4174 return std::min(Tmp, Tmp2) - 1; 4175 case ISD::SUB: 4176 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4177 if (Tmp2 == 1) return 1; // Early out. 4178 4179 // Handle NEG. 4180 if (ConstantSDNode *CLHS = 4181 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4182 if (CLHS->isZero()) { 4183 KnownBits Known = 4184 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4185 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4186 // sign bits set. 4187 if ((Known.Zero | 1).isAllOnes()) 4188 return VTBits; 4189 4190 // If the input is known to be positive (the sign bit is known clear), 4191 // the output of the NEG has the same number of sign bits as the input. 4192 if (Known.isNonNegative()) 4193 return Tmp2; 4194 4195 // Otherwise, we treat this like a SUB. 4196 } 4197 4198 // Sub can have at most one carry bit. Thus we know that the output 4199 // is, at worst, one more bit than the inputs. 4200 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4201 if (Tmp == 1) return 1; // Early out. 4202 return std::min(Tmp, Tmp2) - 1; 4203 case ISD::MUL: { 4204 // The output of the Mul can be at most twice the valid bits in the inputs. 4205 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4206 if (SignBitsOp0 == 1) 4207 break; 4208 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4209 if (SignBitsOp1 == 1) 4210 break; 4211 unsigned OutValidBits = 4212 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4213 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4214 } 4215 case ISD::SREM: 4216 // The sign bit is the LHS's sign bit, except when the result of the 4217 // remainder is zero. The magnitude of the result should be less than or 4218 // equal to the magnitude of the LHS. Therefore, the result should have 4219 // at least as many sign bits as the left hand side. 4220 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4221 case ISD::TRUNCATE: { 4222 // Check if the sign bits of source go down as far as the truncated value. 4223 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4224 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4225 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4226 return NumSrcSignBits - (NumSrcBits - VTBits); 4227 break; 4228 } 4229 case ISD::EXTRACT_ELEMENT: { 4230 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4231 const int BitWidth = Op.getValueSizeInBits(); 4232 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4233 4234 // Get reverse index (starting from 1), Op1 value indexes elements from 4235 // little end. Sign starts at big end. 4236 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4237 4238 // If the sign portion ends in our element the subtraction gives correct 4239 // result. Otherwise it gives either negative or > bitwidth result 4240 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4241 } 4242 case ISD::INSERT_VECTOR_ELT: { 4243 // If we know the element index, split the demand between the 4244 // source vector and the inserted element, otherwise assume we need 4245 // the original demanded vector elements and the value. 4246 SDValue InVec = Op.getOperand(0); 4247 SDValue InVal = Op.getOperand(1); 4248 SDValue EltNo = Op.getOperand(2); 4249 bool DemandedVal = true; 4250 APInt DemandedVecElts = DemandedElts; 4251 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4252 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4253 unsigned EltIdx = CEltNo->getZExtValue(); 4254 DemandedVal = !!DemandedElts[EltIdx]; 4255 DemandedVecElts.clearBit(EltIdx); 4256 } 4257 Tmp = std::numeric_limits<unsigned>::max(); 4258 if (DemandedVal) { 4259 // TODO - handle implicit truncation of inserted elements. 4260 if (InVal.getScalarValueSizeInBits() != VTBits) 4261 break; 4262 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4263 Tmp = std::min(Tmp, Tmp2); 4264 } 4265 if (!!DemandedVecElts) { 4266 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4267 Tmp = std::min(Tmp, Tmp2); 4268 } 4269 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4270 return Tmp; 4271 } 4272 case ISD::EXTRACT_VECTOR_ELT: { 4273 SDValue InVec = Op.getOperand(0); 4274 SDValue EltNo = Op.getOperand(1); 4275 EVT VecVT = InVec.getValueType(); 4276 // ComputeNumSignBits not yet implemented for scalable vectors. 4277 if (VecVT.isScalableVector()) 4278 break; 4279 const unsigned BitWidth = Op.getValueSizeInBits(); 4280 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4281 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4282 4283 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4284 // anything about sign bits. But if the sizes match we can derive knowledge 4285 // about sign bits from the vector operand. 4286 if (BitWidth != EltBitWidth) 4287 break; 4288 4289 // If we know the element index, just demand that vector element, else for 4290 // an unknown element index, ignore DemandedElts and demand them all. 4291 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4292 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4293 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4294 DemandedSrcElts = 4295 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4296 4297 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4298 } 4299 case ISD::EXTRACT_SUBVECTOR: { 4300 // Offset the demanded elts by the subvector index. 4301 SDValue Src = Op.getOperand(0); 4302 // Bail until we can represent demanded elements for scalable vectors. 4303 if (Src.getValueType().isScalableVector()) 4304 break; 4305 uint64_t Idx = Op.getConstantOperandVal(1); 4306 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4307 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 4308 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4309 } 4310 case ISD::CONCAT_VECTORS: { 4311 // Determine the minimum number of sign bits across all demanded 4312 // elts of the input vectors. Early out if the result is already 1. 4313 Tmp = std::numeric_limits<unsigned>::max(); 4314 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4315 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4316 unsigned NumSubVectors = Op.getNumOperands(); 4317 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4318 APInt DemandedSub = 4319 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4320 if (!DemandedSub) 4321 continue; 4322 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4323 Tmp = std::min(Tmp, Tmp2); 4324 } 4325 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4326 return Tmp; 4327 } 4328 case ISD::INSERT_SUBVECTOR: { 4329 // Demand any elements from the subvector and the remainder from the src its 4330 // inserted into. 4331 SDValue Src = Op.getOperand(0); 4332 SDValue Sub = Op.getOperand(1); 4333 uint64_t Idx = Op.getConstantOperandVal(2); 4334 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4335 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4336 APInt DemandedSrcElts = DemandedElts; 4337 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4338 4339 Tmp = std::numeric_limits<unsigned>::max(); 4340 if (!!DemandedSubElts) { 4341 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4342 if (Tmp == 1) 4343 return 1; // early-out 4344 } 4345 if (!!DemandedSrcElts) { 4346 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4347 Tmp = std::min(Tmp, Tmp2); 4348 } 4349 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4350 return Tmp; 4351 } 4352 case ISD::ATOMIC_CMP_SWAP: 4353 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4354 case ISD::ATOMIC_SWAP: 4355 case ISD::ATOMIC_LOAD_ADD: 4356 case ISD::ATOMIC_LOAD_SUB: 4357 case ISD::ATOMIC_LOAD_AND: 4358 case ISD::ATOMIC_LOAD_CLR: 4359 case ISD::ATOMIC_LOAD_OR: 4360 case ISD::ATOMIC_LOAD_XOR: 4361 case ISD::ATOMIC_LOAD_NAND: 4362 case ISD::ATOMIC_LOAD_MIN: 4363 case ISD::ATOMIC_LOAD_MAX: 4364 case ISD::ATOMIC_LOAD_UMIN: 4365 case ISD::ATOMIC_LOAD_UMAX: 4366 case ISD::ATOMIC_LOAD: { 4367 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4368 // If we are looking at the loaded value. 4369 if (Op.getResNo() == 0) { 4370 if (Tmp == VTBits) 4371 return 1; // early-out 4372 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4373 return VTBits - Tmp + 1; 4374 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4375 return VTBits - Tmp; 4376 } 4377 break; 4378 } 4379 } 4380 4381 // If we are looking at the loaded value of the SDNode. 4382 if (Op.getResNo() == 0) { 4383 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4384 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4385 unsigned ExtType = LD->getExtensionType(); 4386 switch (ExtType) { 4387 default: break; 4388 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4389 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4390 return VTBits - Tmp + 1; 4391 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4392 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4393 return VTBits - Tmp; 4394 case ISD::NON_EXTLOAD: 4395 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4396 // We only need to handle vectors - computeKnownBits should handle 4397 // scalar cases. 4398 Type *CstTy = Cst->getType(); 4399 if (CstTy->isVectorTy() && 4400 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() && 4401 VTBits == CstTy->getScalarSizeInBits()) { 4402 Tmp = VTBits; 4403 for (unsigned i = 0; i != NumElts; ++i) { 4404 if (!DemandedElts[i]) 4405 continue; 4406 if (Constant *Elt = Cst->getAggregateElement(i)) { 4407 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4408 const APInt &Value = CInt->getValue(); 4409 Tmp = std::min(Tmp, Value.getNumSignBits()); 4410 continue; 4411 } 4412 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4413 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4414 Tmp = std::min(Tmp, Value.getNumSignBits()); 4415 continue; 4416 } 4417 } 4418 // Unknown type. Conservatively assume no bits match sign bit. 4419 return 1; 4420 } 4421 return Tmp; 4422 } 4423 } 4424 break; 4425 } 4426 } 4427 } 4428 4429 // Allow the target to implement this method for its nodes. 4430 if (Opcode >= ISD::BUILTIN_OP_END || 4431 Opcode == ISD::INTRINSIC_WO_CHAIN || 4432 Opcode == ISD::INTRINSIC_W_CHAIN || 4433 Opcode == ISD::INTRINSIC_VOID) { 4434 unsigned NumBits = 4435 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4436 if (NumBits > 1) 4437 FirstAnswer = std::max(FirstAnswer, NumBits); 4438 } 4439 4440 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4441 // use this information. 4442 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4443 return std::max(FirstAnswer, Known.countMinSignBits()); 4444 } 4445 4446 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4447 unsigned Depth) const { 4448 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4449 return Op.getScalarValueSizeInBits() - SignBits + 1; 4450 } 4451 4452 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4453 const APInt &DemandedElts, 4454 unsigned Depth) const { 4455 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4456 return Op.getScalarValueSizeInBits() - SignBits + 1; 4457 } 4458 4459 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4460 unsigned Depth) const { 4461 // Early out for FREEZE. 4462 if (Op.getOpcode() == ISD::FREEZE) 4463 return true; 4464 4465 // TODO: Assume we don't know anything for now. 4466 EVT VT = Op.getValueType(); 4467 if (VT.isScalableVector()) 4468 return false; 4469 4470 APInt DemandedElts = VT.isVector() 4471 ? APInt::getAllOnes(VT.getVectorNumElements()) 4472 : APInt(1, 1); 4473 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4474 } 4475 4476 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4477 const APInt &DemandedElts, 4478 bool PoisonOnly, 4479 unsigned Depth) const { 4480 unsigned Opcode = Op.getOpcode(); 4481 4482 // Early out for FREEZE. 4483 if (Opcode == ISD::FREEZE) 4484 return true; 4485 4486 if (Depth >= MaxRecursionDepth) 4487 return false; // Limit search depth. 4488 4489 if (isIntOrFPConstant(Op)) 4490 return true; 4491 4492 switch (Opcode) { 4493 case ISD::UNDEF: 4494 return PoisonOnly; 4495 4496 case ISD::BUILD_VECTOR: 4497 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4498 // this shouldn't affect the result. 4499 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4500 if (!DemandedElts[i]) 4501 continue; 4502 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4503 Depth + 1)) 4504 return false; 4505 } 4506 return true; 4507 4508 // TODO: Search for noundef attributes from library functions. 4509 4510 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4511 4512 default: 4513 // Allow the target to implement this method for its nodes. 4514 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4515 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4516 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4517 Op, DemandedElts, *this, PoisonOnly, Depth); 4518 break; 4519 } 4520 4521 return false; 4522 } 4523 4524 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4525 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4526 !isa<ConstantSDNode>(Op.getOperand(1))) 4527 return false; 4528 4529 if (Op.getOpcode() == ISD::OR && 4530 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4531 return false; 4532 4533 return true; 4534 } 4535 4536 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4537 // If we're told that NaNs won't happen, assume they won't. 4538 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4539 return true; 4540 4541 if (Depth >= MaxRecursionDepth) 4542 return false; // Limit search depth. 4543 4544 // TODO: Handle vectors. 4545 // If the value is a constant, we can obviously see if it is a NaN or not. 4546 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4547 return !C->getValueAPF().isNaN() || 4548 (SNaN && !C->getValueAPF().isSignaling()); 4549 } 4550 4551 unsigned Opcode = Op.getOpcode(); 4552 switch (Opcode) { 4553 case ISD::FADD: 4554 case ISD::FSUB: 4555 case ISD::FMUL: 4556 case ISD::FDIV: 4557 case ISD::FREM: 4558 case ISD::FSIN: 4559 case ISD::FCOS: { 4560 if (SNaN) 4561 return true; 4562 // TODO: Need isKnownNeverInfinity 4563 return false; 4564 } 4565 case ISD::FCANONICALIZE: 4566 case ISD::FEXP: 4567 case ISD::FEXP2: 4568 case ISD::FTRUNC: 4569 case ISD::FFLOOR: 4570 case ISD::FCEIL: 4571 case ISD::FROUND: 4572 case ISD::FROUNDEVEN: 4573 case ISD::FRINT: 4574 case ISD::FNEARBYINT: { 4575 if (SNaN) 4576 return true; 4577 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4578 } 4579 case ISD::FABS: 4580 case ISD::FNEG: 4581 case ISD::FCOPYSIGN: { 4582 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4583 } 4584 case ISD::SELECT: 4585 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4586 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4587 case ISD::FP_EXTEND: 4588 case ISD::FP_ROUND: { 4589 if (SNaN) 4590 return true; 4591 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4592 } 4593 case ISD::SINT_TO_FP: 4594 case ISD::UINT_TO_FP: 4595 return true; 4596 case ISD::FMA: 4597 case ISD::FMAD: { 4598 if (SNaN) 4599 return true; 4600 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4601 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4602 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4603 } 4604 case ISD::FSQRT: // Need is known positive 4605 case ISD::FLOG: 4606 case ISD::FLOG2: 4607 case ISD::FLOG10: 4608 case ISD::FPOWI: 4609 case ISD::FPOW: { 4610 if (SNaN) 4611 return true; 4612 // TODO: Refine on operand 4613 return false; 4614 } 4615 case ISD::FMINNUM: 4616 case ISD::FMAXNUM: { 4617 // Only one needs to be known not-nan, since it will be returned if the 4618 // other ends up being one. 4619 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4620 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4621 } 4622 case ISD::FMINNUM_IEEE: 4623 case ISD::FMAXNUM_IEEE: { 4624 if (SNaN) 4625 return true; 4626 // This can return a NaN if either operand is an sNaN, or if both operands 4627 // are NaN. 4628 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4629 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4630 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4631 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4632 } 4633 case ISD::FMINIMUM: 4634 case ISD::FMAXIMUM: { 4635 // TODO: Does this quiet or return the origina NaN as-is? 4636 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4637 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4638 } 4639 case ISD::EXTRACT_VECTOR_ELT: { 4640 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4641 } 4642 default: 4643 if (Opcode >= ISD::BUILTIN_OP_END || 4644 Opcode == ISD::INTRINSIC_WO_CHAIN || 4645 Opcode == ISD::INTRINSIC_W_CHAIN || 4646 Opcode == ISD::INTRINSIC_VOID) { 4647 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4648 } 4649 4650 return false; 4651 } 4652 } 4653 4654 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4655 assert(Op.getValueType().isFloatingPoint() && 4656 "Floating point type expected"); 4657 4658 // If the value is a constant, we can obviously see if it is a zero or not. 4659 // TODO: Add BuildVector support. 4660 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4661 return !C->isZero(); 4662 return false; 4663 } 4664 4665 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4666 assert(!Op.getValueType().isFloatingPoint() && 4667 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4668 4669 // If the value is a constant, we can obviously see if it is a zero or not. 4670 if (ISD::matchUnaryPredicate(Op, 4671 [](ConstantSDNode *C) { return !C->isZero(); })) 4672 return true; 4673 4674 // TODO: Recognize more cases here. 4675 switch (Op.getOpcode()) { 4676 default: break; 4677 case ISD::OR: 4678 if (isKnownNeverZero(Op.getOperand(1)) || 4679 isKnownNeverZero(Op.getOperand(0))) 4680 return true; 4681 break; 4682 } 4683 4684 return false; 4685 } 4686 4687 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4688 // Check the obvious case. 4689 if (A == B) return true; 4690 4691 // For for negative and positive zero. 4692 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4693 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4694 if (CA->isZero() && CB->isZero()) return true; 4695 4696 // Otherwise they may not be equal. 4697 return false; 4698 } 4699 4700 // Only bits set in Mask must be negated, other bits may be arbitrary. 4701 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) { 4702 if (isBitwiseNot(V, AllowUndefs)) 4703 return V.getOperand(0); 4704 4705 // Handle any_extend (not (truncate X)) pattern, where Mask only sets 4706 // bits in the non-extended part. 4707 ConstantSDNode *MaskC = isConstOrConstSplat(Mask); 4708 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND) 4709 return SDValue(); 4710 SDValue ExtArg = V.getOperand(0); 4711 if (ExtArg.getScalarValueSizeInBits() >= 4712 MaskC->getAPIntValue().getActiveBits() && 4713 isBitwiseNot(ExtArg, AllowUndefs) && 4714 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE && 4715 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType()) 4716 return ExtArg.getOperand(0).getOperand(0); 4717 return SDValue(); 4718 } 4719 4720 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) { 4721 // Match masked merge pattern (X & ~M) op (Y & M) 4722 // Including degenerate case (X & ~M) op M 4723 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask, 4724 SDValue Other) { 4725 if (SDValue NotOperand = 4726 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) { 4727 if (Other == NotOperand) 4728 return true; 4729 if (Other->getOpcode() == ISD::AND) 4730 return NotOperand == Other->getOperand(0) || 4731 NotOperand == Other->getOperand(1); 4732 } 4733 return false; 4734 }; 4735 if (A->getOpcode() == ISD::AND) 4736 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) || 4737 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B); 4738 return false; 4739 } 4740 4741 // FIXME: unify with llvm::haveNoCommonBitsSet. 4742 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4743 assert(A.getValueType() == B.getValueType() && 4744 "Values must have the same type"); 4745 if (haveNoCommonBitsSetCommutative(A, B) || 4746 haveNoCommonBitsSetCommutative(B, A)) 4747 return true; 4748 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4749 computeKnownBits(B)); 4750 } 4751 4752 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4753 SelectionDAG &DAG) { 4754 if (cast<ConstantSDNode>(Step)->isZero()) 4755 return DAG.getConstant(0, DL, VT); 4756 4757 return SDValue(); 4758 } 4759 4760 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4761 ArrayRef<SDValue> Ops, 4762 SelectionDAG &DAG) { 4763 int NumOps = Ops.size(); 4764 assert(NumOps != 0 && "Can't build an empty vector!"); 4765 assert(!VT.isScalableVector() && 4766 "BUILD_VECTOR cannot be used with scalable types"); 4767 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4768 "Incorrect element count in BUILD_VECTOR!"); 4769 4770 // BUILD_VECTOR of UNDEFs is UNDEF. 4771 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4772 return DAG.getUNDEF(VT); 4773 4774 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4775 SDValue IdentitySrc; 4776 bool IsIdentity = true; 4777 for (int i = 0; i != NumOps; ++i) { 4778 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4779 Ops[i].getOperand(0).getValueType() != VT || 4780 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4781 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4782 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4783 IsIdentity = false; 4784 break; 4785 } 4786 IdentitySrc = Ops[i].getOperand(0); 4787 } 4788 if (IsIdentity) 4789 return IdentitySrc; 4790 4791 return SDValue(); 4792 } 4793 4794 /// Try to simplify vector concatenation to an input value, undef, or build 4795 /// vector. 4796 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4797 ArrayRef<SDValue> Ops, 4798 SelectionDAG &DAG) { 4799 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4800 assert(llvm::all_of(Ops, 4801 [Ops](SDValue Op) { 4802 return Ops[0].getValueType() == Op.getValueType(); 4803 }) && 4804 "Concatenation of vectors with inconsistent value types!"); 4805 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4806 VT.getVectorElementCount() && 4807 "Incorrect element count in vector concatenation!"); 4808 4809 if (Ops.size() == 1) 4810 return Ops[0]; 4811 4812 // Concat of UNDEFs is UNDEF. 4813 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4814 return DAG.getUNDEF(VT); 4815 4816 // Scan the operands and look for extract operations from a single source 4817 // that correspond to insertion at the same location via this concatenation: 4818 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4819 SDValue IdentitySrc; 4820 bool IsIdentity = true; 4821 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4822 SDValue Op = Ops[i]; 4823 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4824 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4825 Op.getOperand(0).getValueType() != VT || 4826 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4827 Op.getConstantOperandVal(1) != IdentityIndex) { 4828 IsIdentity = false; 4829 break; 4830 } 4831 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4832 "Unexpected identity source vector for concat of extracts"); 4833 IdentitySrc = Op.getOperand(0); 4834 } 4835 if (IsIdentity) { 4836 assert(IdentitySrc && "Failed to set source vector of extracts"); 4837 return IdentitySrc; 4838 } 4839 4840 // The code below this point is only designed to work for fixed width 4841 // vectors, so we bail out for now. 4842 if (VT.isScalableVector()) 4843 return SDValue(); 4844 4845 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4846 // simplified to one big BUILD_VECTOR. 4847 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4848 EVT SVT = VT.getScalarType(); 4849 SmallVector<SDValue, 16> Elts; 4850 for (SDValue Op : Ops) { 4851 EVT OpVT = Op.getValueType(); 4852 if (Op.isUndef()) 4853 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4854 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4855 Elts.append(Op->op_begin(), Op->op_end()); 4856 else 4857 return SDValue(); 4858 } 4859 4860 // BUILD_VECTOR requires all inputs to be of the same type, find the 4861 // maximum type and extend them all. 4862 for (SDValue Op : Elts) 4863 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4864 4865 if (SVT.bitsGT(VT.getScalarType())) { 4866 for (SDValue &Op : Elts) { 4867 if (Op.isUndef()) 4868 Op = DAG.getUNDEF(SVT); 4869 else 4870 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4871 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4872 : DAG.getSExtOrTrunc(Op, DL, SVT); 4873 } 4874 } 4875 4876 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4877 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4878 return V; 4879 } 4880 4881 /// Gets or creates the specified node. 4882 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4883 FoldingSetNodeID ID; 4884 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4885 void *IP = nullptr; 4886 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4887 return SDValue(E, 0); 4888 4889 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4890 getVTList(VT)); 4891 CSEMap.InsertNode(N, IP); 4892 4893 InsertNode(N); 4894 SDValue V = SDValue(N, 0); 4895 NewSDValueDbgMsg(V, "Creating new node: ", this); 4896 return V; 4897 } 4898 4899 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4900 SDValue Operand) { 4901 SDNodeFlags Flags; 4902 if (Inserter) 4903 Flags = Inserter->getFlags(); 4904 return getNode(Opcode, DL, VT, Operand, Flags); 4905 } 4906 4907 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4908 SDValue Operand, const SDNodeFlags Flags) { 4909 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4910 "Operand is DELETED_NODE!"); 4911 // Constant fold unary operations with an integer constant operand. Even 4912 // opaque constant will be folded, because the folding of unary operations 4913 // doesn't create new constants with different values. Nevertheless, the 4914 // opaque flag is preserved during folding to prevent future folding with 4915 // other constants. 4916 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4917 const APInt &Val = C->getAPIntValue(); 4918 switch (Opcode) { 4919 default: break; 4920 case ISD::SIGN_EXTEND: 4921 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4922 C->isTargetOpcode(), C->isOpaque()); 4923 case ISD::TRUNCATE: 4924 if (C->isOpaque()) 4925 break; 4926 LLVM_FALLTHROUGH; 4927 case ISD::ZERO_EXTEND: 4928 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4929 C->isTargetOpcode(), C->isOpaque()); 4930 case ISD::ANY_EXTEND: 4931 // Some targets like RISCV prefer to sign extend some types. 4932 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4933 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4934 C->isTargetOpcode(), C->isOpaque()); 4935 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4936 C->isTargetOpcode(), C->isOpaque()); 4937 case ISD::UINT_TO_FP: 4938 case ISD::SINT_TO_FP: { 4939 APFloat apf(EVTToAPFloatSemantics(VT), 4940 APInt::getZero(VT.getSizeInBits())); 4941 (void)apf.convertFromAPInt(Val, 4942 Opcode==ISD::SINT_TO_FP, 4943 APFloat::rmNearestTiesToEven); 4944 return getConstantFP(apf, DL, VT); 4945 } 4946 case ISD::BITCAST: 4947 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4948 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4949 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4950 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4951 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4952 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4953 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4954 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4955 break; 4956 case ISD::ABS: 4957 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4958 C->isOpaque()); 4959 case ISD::BITREVERSE: 4960 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4961 C->isOpaque()); 4962 case ISD::BSWAP: 4963 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4964 C->isOpaque()); 4965 case ISD::CTPOP: 4966 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4967 C->isOpaque()); 4968 case ISD::CTLZ: 4969 case ISD::CTLZ_ZERO_UNDEF: 4970 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4971 C->isOpaque()); 4972 case ISD::CTTZ: 4973 case ISD::CTTZ_ZERO_UNDEF: 4974 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4975 C->isOpaque()); 4976 case ISD::FP16_TO_FP: 4977 case ISD::BF16_TO_FP: { 4978 bool Ignored; 4979 APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf() 4980 : APFloat::BFloat(), 4981 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4982 4983 // This can return overflow, underflow, or inexact; we don't care. 4984 // FIXME need to be more flexible about rounding mode. 4985 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4986 APFloat::rmNearestTiesToEven, &Ignored); 4987 return getConstantFP(FPV, DL, VT); 4988 } 4989 case ISD::STEP_VECTOR: { 4990 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4991 return V; 4992 break; 4993 } 4994 } 4995 } 4996 4997 // Constant fold unary operations with a floating point constant operand. 4998 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4999 APFloat V = C->getValueAPF(); // make copy 5000 switch (Opcode) { 5001 case ISD::FNEG: 5002 V.changeSign(); 5003 return getConstantFP(V, DL, VT); 5004 case ISD::FABS: 5005 V.clearSign(); 5006 return getConstantFP(V, DL, VT); 5007 case ISD::FCEIL: { 5008 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 5009 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5010 return getConstantFP(V, DL, VT); 5011 break; 5012 } 5013 case ISD::FTRUNC: { 5014 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 5015 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5016 return getConstantFP(V, DL, VT); 5017 break; 5018 } 5019 case ISD::FFLOOR: { 5020 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 5021 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5022 return getConstantFP(V, DL, VT); 5023 break; 5024 } 5025 case ISD::FP_EXTEND: { 5026 bool ignored; 5027 // This can return overflow, underflow, or inexact; we don't care. 5028 // FIXME need to be more flexible about rounding mode. 5029 (void)V.convert(EVTToAPFloatSemantics(VT), 5030 APFloat::rmNearestTiesToEven, &ignored); 5031 return getConstantFP(V, DL, VT); 5032 } 5033 case ISD::FP_TO_SINT: 5034 case ISD::FP_TO_UINT: { 5035 bool ignored; 5036 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 5037 // FIXME need to be more flexible about rounding mode. 5038 APFloat::opStatus s = 5039 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 5040 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 5041 break; 5042 return getConstant(IntVal, DL, VT); 5043 } 5044 case ISD::BITCAST: 5045 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 5046 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5047 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 5048 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5049 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 5050 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5051 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 5052 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5053 break; 5054 case ISD::FP_TO_FP16: 5055 case ISD::FP_TO_BF16: { 5056 bool Ignored; 5057 // This can return overflow, underflow, or inexact; we don't care. 5058 // FIXME need to be more flexible about rounding mode. 5059 (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf() 5060 : APFloat::BFloat(), 5061 APFloat::rmNearestTiesToEven, &Ignored); 5062 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5063 } 5064 } 5065 } 5066 5067 // Constant fold unary operations with a vector integer or float operand. 5068 switch (Opcode) { 5069 default: 5070 // FIXME: Entirely reasonable to perform folding of other unary 5071 // operations here as the need arises. 5072 break; 5073 case ISD::FNEG: 5074 case ISD::FABS: 5075 case ISD::FCEIL: 5076 case ISD::FTRUNC: 5077 case ISD::FFLOOR: 5078 case ISD::FP_EXTEND: 5079 case ISD::FP_TO_SINT: 5080 case ISD::FP_TO_UINT: 5081 case ISD::TRUNCATE: 5082 case ISD::ANY_EXTEND: 5083 case ISD::ZERO_EXTEND: 5084 case ISD::SIGN_EXTEND: 5085 case ISD::UINT_TO_FP: 5086 case ISD::SINT_TO_FP: 5087 case ISD::ABS: 5088 case ISD::BITREVERSE: 5089 case ISD::BSWAP: 5090 case ISD::CTLZ: 5091 case ISD::CTLZ_ZERO_UNDEF: 5092 case ISD::CTTZ: 5093 case ISD::CTTZ_ZERO_UNDEF: 5094 case ISD::CTPOP: { 5095 SDValue Ops = {Operand}; 5096 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 5097 return Fold; 5098 } 5099 } 5100 5101 unsigned OpOpcode = Operand.getNode()->getOpcode(); 5102 switch (Opcode) { 5103 case ISD::STEP_VECTOR: 5104 assert(VT.isScalableVector() && 5105 "STEP_VECTOR can only be used with scalable types"); 5106 assert(OpOpcode == ISD::TargetConstant && 5107 VT.getVectorElementType() == Operand.getValueType() && 5108 "Unexpected step operand"); 5109 break; 5110 case ISD::FREEZE: 5111 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5112 if (isGuaranteedNotToBeUndefOrPoison(Operand)) 5113 return Operand; 5114 break; 5115 case ISD::TokenFactor: 5116 case ISD::MERGE_VALUES: 5117 case ISD::CONCAT_VECTORS: 5118 return Operand; // Factor, merge or concat of one node? No need. 5119 case ISD::BUILD_VECTOR: { 5120 // Attempt to simplify BUILD_VECTOR. 5121 SDValue Ops[] = {Operand}; 5122 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5123 return V; 5124 break; 5125 } 5126 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 5127 case ISD::FP_EXTEND: 5128 assert(VT.isFloatingPoint() && 5129 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 5130 if (Operand.getValueType() == VT) return Operand; // noop conversion. 5131 assert((!VT.isVector() || 5132 VT.getVectorElementCount() == 5133 Operand.getValueType().getVectorElementCount()) && 5134 "Vector element count mismatch!"); 5135 assert(Operand.getValueType().bitsLT(VT) && 5136 "Invalid fpext node, dst < src!"); 5137 if (Operand.isUndef()) 5138 return getUNDEF(VT); 5139 break; 5140 case ISD::FP_TO_SINT: 5141 case ISD::FP_TO_UINT: 5142 if (Operand.isUndef()) 5143 return getUNDEF(VT); 5144 break; 5145 case ISD::SINT_TO_FP: 5146 case ISD::UINT_TO_FP: 5147 // [us]itofp(undef) = 0, because the result value is bounded. 5148 if (Operand.isUndef()) 5149 return getConstantFP(0.0, DL, VT); 5150 break; 5151 case ISD::SIGN_EXTEND: 5152 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5153 "Invalid SIGN_EXTEND!"); 5154 assert(VT.isVector() == Operand.getValueType().isVector() && 5155 "SIGN_EXTEND result type type should be vector iff the operand " 5156 "type is vector!"); 5157 if (Operand.getValueType() == VT) return Operand; // noop extension 5158 assert((!VT.isVector() || 5159 VT.getVectorElementCount() == 5160 Operand.getValueType().getVectorElementCount()) && 5161 "Vector element count mismatch!"); 5162 assert(Operand.getValueType().bitsLT(VT) && 5163 "Invalid sext node, dst < src!"); 5164 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5165 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5166 if (OpOpcode == ISD::UNDEF) 5167 // sext(undef) = 0, because the top bits will all be the same. 5168 return getConstant(0, DL, VT); 5169 break; 5170 case ISD::ZERO_EXTEND: 5171 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5172 "Invalid ZERO_EXTEND!"); 5173 assert(VT.isVector() == Operand.getValueType().isVector() && 5174 "ZERO_EXTEND result type type should be vector iff the operand " 5175 "type is vector!"); 5176 if (Operand.getValueType() == VT) return Operand; // noop extension 5177 assert((!VT.isVector() || 5178 VT.getVectorElementCount() == 5179 Operand.getValueType().getVectorElementCount()) && 5180 "Vector element count mismatch!"); 5181 assert(Operand.getValueType().bitsLT(VT) && 5182 "Invalid zext node, dst < src!"); 5183 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5184 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5185 if (OpOpcode == ISD::UNDEF) 5186 // zext(undef) = 0, because the top bits will be zero. 5187 return getConstant(0, DL, VT); 5188 break; 5189 case ISD::ANY_EXTEND: 5190 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5191 "Invalid ANY_EXTEND!"); 5192 assert(VT.isVector() == Operand.getValueType().isVector() && 5193 "ANY_EXTEND result type type should be vector iff the operand " 5194 "type is vector!"); 5195 if (Operand.getValueType() == VT) return Operand; // noop extension 5196 assert((!VT.isVector() || 5197 VT.getVectorElementCount() == 5198 Operand.getValueType().getVectorElementCount()) && 5199 "Vector element count mismatch!"); 5200 assert(Operand.getValueType().bitsLT(VT) && 5201 "Invalid anyext node, dst < src!"); 5202 5203 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5204 OpOpcode == ISD::ANY_EXTEND) 5205 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5206 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5207 if (OpOpcode == ISD::UNDEF) 5208 return getUNDEF(VT); 5209 5210 // (ext (trunc x)) -> x 5211 if (OpOpcode == ISD::TRUNCATE) { 5212 SDValue OpOp = Operand.getOperand(0); 5213 if (OpOp.getValueType() == VT) { 5214 transferDbgValues(Operand, OpOp); 5215 return OpOp; 5216 } 5217 } 5218 break; 5219 case ISD::TRUNCATE: 5220 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5221 "Invalid TRUNCATE!"); 5222 assert(VT.isVector() == Operand.getValueType().isVector() && 5223 "TRUNCATE result type type should be vector iff the operand " 5224 "type is vector!"); 5225 if (Operand.getValueType() == VT) return Operand; // noop truncate 5226 assert((!VT.isVector() || 5227 VT.getVectorElementCount() == 5228 Operand.getValueType().getVectorElementCount()) && 5229 "Vector element count mismatch!"); 5230 assert(Operand.getValueType().bitsGT(VT) && 5231 "Invalid truncate node, src < dst!"); 5232 if (OpOpcode == ISD::TRUNCATE) 5233 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5234 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5235 OpOpcode == ISD::ANY_EXTEND) { 5236 // If the source is smaller than the dest, we still need an extend. 5237 if (Operand.getOperand(0).getValueType().getScalarType() 5238 .bitsLT(VT.getScalarType())) 5239 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5240 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5241 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5242 return Operand.getOperand(0); 5243 } 5244 if (OpOpcode == ISD::UNDEF) 5245 return getUNDEF(VT); 5246 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5247 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5248 break; 5249 case ISD::ANY_EXTEND_VECTOR_INREG: 5250 case ISD::ZERO_EXTEND_VECTOR_INREG: 5251 case ISD::SIGN_EXTEND_VECTOR_INREG: 5252 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5253 assert(Operand.getValueType().bitsLE(VT) && 5254 "The input must be the same size or smaller than the result."); 5255 assert(VT.getVectorMinNumElements() < 5256 Operand.getValueType().getVectorMinNumElements() && 5257 "The destination vector type must have fewer lanes than the input."); 5258 break; 5259 case ISD::ABS: 5260 assert(VT.isInteger() && VT == Operand.getValueType() && 5261 "Invalid ABS!"); 5262 if (OpOpcode == ISD::UNDEF) 5263 return getConstant(0, DL, VT); 5264 break; 5265 case ISD::BSWAP: 5266 assert(VT.isInteger() && VT == Operand.getValueType() && 5267 "Invalid BSWAP!"); 5268 assert((VT.getScalarSizeInBits() % 16 == 0) && 5269 "BSWAP types must be a multiple of 16 bits!"); 5270 if (OpOpcode == ISD::UNDEF) 5271 return getUNDEF(VT); 5272 // bswap(bswap(X)) -> X. 5273 if (OpOpcode == ISD::BSWAP) 5274 return Operand.getOperand(0); 5275 break; 5276 case ISD::BITREVERSE: 5277 assert(VT.isInteger() && VT == Operand.getValueType() && 5278 "Invalid BITREVERSE!"); 5279 if (OpOpcode == ISD::UNDEF) 5280 return getUNDEF(VT); 5281 break; 5282 case ISD::BITCAST: 5283 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5284 "Cannot BITCAST between types of different sizes!"); 5285 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5286 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5287 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5288 if (OpOpcode == ISD::UNDEF) 5289 return getUNDEF(VT); 5290 break; 5291 case ISD::SCALAR_TO_VECTOR: 5292 assert(VT.isVector() && !Operand.getValueType().isVector() && 5293 (VT.getVectorElementType() == Operand.getValueType() || 5294 (VT.getVectorElementType().isInteger() && 5295 Operand.getValueType().isInteger() && 5296 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5297 "Illegal SCALAR_TO_VECTOR node!"); 5298 if (OpOpcode == ISD::UNDEF) 5299 return getUNDEF(VT); 5300 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5301 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5302 isa<ConstantSDNode>(Operand.getOperand(1)) && 5303 Operand.getConstantOperandVal(1) == 0 && 5304 Operand.getOperand(0).getValueType() == VT) 5305 return Operand.getOperand(0); 5306 break; 5307 case ISD::FNEG: 5308 // Negation of an unknown bag of bits is still completely undefined. 5309 if (OpOpcode == ISD::UNDEF) 5310 return getUNDEF(VT); 5311 5312 if (OpOpcode == ISD::FNEG) // --X -> X 5313 return Operand.getOperand(0); 5314 break; 5315 case ISD::FABS: 5316 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5317 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5318 break; 5319 case ISD::VSCALE: 5320 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5321 break; 5322 case ISD::CTPOP: 5323 if (Operand.getValueType().getScalarType() == MVT::i1) 5324 return Operand; 5325 break; 5326 case ISD::CTLZ: 5327 case ISD::CTTZ: 5328 if (Operand.getValueType().getScalarType() == MVT::i1) 5329 return getNOT(DL, Operand, Operand.getValueType()); 5330 break; 5331 case ISD::VECREDUCE_ADD: 5332 if (Operand.getValueType().getScalarType() == MVT::i1) 5333 return getNode(ISD::VECREDUCE_XOR, DL, VT, Operand); 5334 break; 5335 case ISD::VECREDUCE_SMIN: 5336 case ISD::VECREDUCE_UMAX: 5337 if (Operand.getValueType().getScalarType() == MVT::i1) 5338 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5339 break; 5340 case ISD::VECREDUCE_SMAX: 5341 case ISD::VECREDUCE_UMIN: 5342 if (Operand.getValueType().getScalarType() == MVT::i1) 5343 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5344 break; 5345 } 5346 5347 SDNode *N; 5348 SDVTList VTs = getVTList(VT); 5349 SDValue Ops[] = {Operand}; 5350 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5351 FoldingSetNodeID ID; 5352 AddNodeIDNode(ID, Opcode, VTs, Ops); 5353 void *IP = nullptr; 5354 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5355 E->intersectFlagsWith(Flags); 5356 return SDValue(E, 0); 5357 } 5358 5359 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5360 N->setFlags(Flags); 5361 createOperands(N, Ops); 5362 CSEMap.InsertNode(N, IP); 5363 } else { 5364 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5365 createOperands(N, Ops); 5366 } 5367 5368 InsertNode(N); 5369 SDValue V = SDValue(N, 0); 5370 NewSDValueDbgMsg(V, "Creating new node: ", this); 5371 return V; 5372 } 5373 5374 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5375 const APInt &C2) { 5376 switch (Opcode) { 5377 case ISD::ADD: return C1 + C2; 5378 case ISD::SUB: return C1 - C2; 5379 case ISD::MUL: return C1 * C2; 5380 case ISD::AND: return C1 & C2; 5381 case ISD::OR: return C1 | C2; 5382 case ISD::XOR: return C1 ^ C2; 5383 case ISD::SHL: return C1 << C2; 5384 case ISD::SRL: return C1.lshr(C2); 5385 case ISD::SRA: return C1.ashr(C2); 5386 case ISD::ROTL: return C1.rotl(C2); 5387 case ISD::ROTR: return C1.rotr(C2); 5388 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5389 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5390 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5391 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5392 case ISD::SADDSAT: return C1.sadd_sat(C2); 5393 case ISD::UADDSAT: return C1.uadd_sat(C2); 5394 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5395 case ISD::USUBSAT: return C1.usub_sat(C2); 5396 case ISD::SSHLSAT: return C1.sshl_sat(C2); 5397 case ISD::USHLSAT: return C1.ushl_sat(C2); 5398 case ISD::UDIV: 5399 if (!C2.getBoolValue()) 5400 break; 5401 return C1.udiv(C2); 5402 case ISD::UREM: 5403 if (!C2.getBoolValue()) 5404 break; 5405 return C1.urem(C2); 5406 case ISD::SDIV: 5407 if (!C2.getBoolValue()) 5408 break; 5409 return C1.sdiv(C2); 5410 case ISD::SREM: 5411 if (!C2.getBoolValue()) 5412 break; 5413 return C1.srem(C2); 5414 case ISD::MULHS: { 5415 unsigned FullWidth = C1.getBitWidth() * 2; 5416 APInt C1Ext = C1.sext(FullWidth); 5417 APInt C2Ext = C2.sext(FullWidth); 5418 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5419 } 5420 case ISD::MULHU: { 5421 unsigned FullWidth = C1.getBitWidth() * 2; 5422 APInt C1Ext = C1.zext(FullWidth); 5423 APInt C2Ext = C2.zext(FullWidth); 5424 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5425 } 5426 case ISD::AVGFLOORS: { 5427 unsigned FullWidth = C1.getBitWidth() + 1; 5428 APInt C1Ext = C1.sext(FullWidth); 5429 APInt C2Ext = C2.sext(FullWidth); 5430 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5431 } 5432 case ISD::AVGFLOORU: { 5433 unsigned FullWidth = C1.getBitWidth() + 1; 5434 APInt C1Ext = C1.zext(FullWidth); 5435 APInt C2Ext = C2.zext(FullWidth); 5436 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5437 } 5438 case ISD::AVGCEILS: { 5439 unsigned FullWidth = C1.getBitWidth() + 1; 5440 APInt C1Ext = C1.sext(FullWidth); 5441 APInt C2Ext = C2.sext(FullWidth); 5442 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5443 } 5444 case ISD::AVGCEILU: { 5445 unsigned FullWidth = C1.getBitWidth() + 1; 5446 APInt C1Ext = C1.zext(FullWidth); 5447 APInt C2Ext = C2.zext(FullWidth); 5448 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5449 } 5450 } 5451 return llvm::None; 5452 } 5453 5454 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5455 const GlobalAddressSDNode *GA, 5456 const SDNode *N2) { 5457 if (GA->getOpcode() != ISD::GlobalAddress) 5458 return SDValue(); 5459 if (!TLI->isOffsetFoldingLegal(GA)) 5460 return SDValue(); 5461 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5462 if (!C2) 5463 return SDValue(); 5464 int64_t Offset = C2->getSExtValue(); 5465 switch (Opcode) { 5466 case ISD::ADD: break; 5467 case ISD::SUB: Offset = -uint64_t(Offset); break; 5468 default: return SDValue(); 5469 } 5470 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5471 GA->getOffset() + uint64_t(Offset)); 5472 } 5473 5474 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5475 switch (Opcode) { 5476 case ISD::SDIV: 5477 case ISD::UDIV: 5478 case ISD::SREM: 5479 case ISD::UREM: { 5480 // If a divisor is zero/undef or any element of a divisor vector is 5481 // zero/undef, the whole op is undef. 5482 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5483 SDValue Divisor = Ops[1]; 5484 if (Divisor.isUndef() || isNullConstant(Divisor)) 5485 return true; 5486 5487 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5488 llvm::any_of(Divisor->op_values(), 5489 [](SDValue V) { return V.isUndef() || 5490 isNullConstant(V); }); 5491 // TODO: Handle signed overflow. 5492 } 5493 // TODO: Handle oversized shifts. 5494 default: 5495 return false; 5496 } 5497 } 5498 5499 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5500 EVT VT, ArrayRef<SDValue> Ops) { 5501 // If the opcode is a target-specific ISD node, there's nothing we can 5502 // do here and the operand rules may not line up with the below, so 5503 // bail early. 5504 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5505 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5506 // foldCONCAT_VECTORS in getNode before this is called. 5507 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5508 return SDValue(); 5509 5510 unsigned NumOps = Ops.size(); 5511 if (NumOps == 0) 5512 return SDValue(); 5513 5514 if (isUndef(Opcode, Ops)) 5515 return getUNDEF(VT); 5516 5517 // Handle binops special cases. 5518 if (NumOps == 2) { 5519 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5520 return CFP; 5521 5522 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5523 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5524 if (C1->isOpaque() || C2->isOpaque()) 5525 return SDValue(); 5526 5527 Optional<APInt> FoldAttempt = 5528 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5529 if (!FoldAttempt) 5530 return SDValue(); 5531 5532 SDValue Folded = getConstant(*FoldAttempt, DL, VT); 5533 assert((!Folded || !VT.isVector()) && 5534 "Can't fold vectors ops with scalar operands"); 5535 return Folded; 5536 } 5537 } 5538 5539 // fold (add Sym, c) -> Sym+c 5540 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5541 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5542 if (TLI->isCommutativeBinOp(Opcode)) 5543 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5544 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5545 } 5546 5547 // This is for vector folding only from here on. 5548 if (!VT.isVector()) 5549 return SDValue(); 5550 5551 ElementCount NumElts = VT.getVectorElementCount(); 5552 5553 // See if we can fold through bitcasted integer ops. 5554 // TODO: Can we handle undef elements? 5555 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5556 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5557 Ops[0].getOpcode() == ISD::BITCAST && 5558 Ops[1].getOpcode() == ISD::BITCAST) { 5559 SDValue N1 = peekThroughBitcasts(Ops[0]); 5560 SDValue N2 = peekThroughBitcasts(Ops[1]); 5561 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5562 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5563 EVT BVVT = N1.getValueType(); 5564 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5565 bool IsLE = getDataLayout().isLittleEndian(); 5566 unsigned EltBits = VT.getScalarSizeInBits(); 5567 SmallVector<APInt> RawBits1, RawBits2; 5568 BitVector UndefElts1, UndefElts2; 5569 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5570 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5571 UndefElts1.none() && UndefElts2.none()) { 5572 SmallVector<APInt> RawBits; 5573 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5574 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5575 if (!Fold) 5576 break; 5577 RawBits.push_back(*Fold); 5578 } 5579 if (RawBits.size() == NumElts.getFixedValue()) { 5580 // We have constant folded, but we need to cast this again back to 5581 // the original (possibly legalized) type. 5582 SmallVector<APInt> DstBits; 5583 BitVector DstUndefs; 5584 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5585 DstBits, RawBits, DstUndefs, 5586 BitVector(RawBits.size(), false)); 5587 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5588 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5589 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5590 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5591 if (DstUndefs[I]) 5592 continue; 5593 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT); 5594 } 5595 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5596 } 5597 } 5598 } 5599 } 5600 5601 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 5602 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1)) 5603 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) && 5604 Ops[0].getOpcode() == ISD::STEP_VECTOR) { 5605 APInt RHSVal; 5606 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) { 5607 APInt NewStep = Opcode == ISD::MUL 5608 ? Ops[0].getConstantOperandAPInt(0) * RHSVal 5609 : Ops[0].getConstantOperandAPInt(0) << RHSVal; 5610 return getStepVector(DL, VT, NewStep); 5611 } 5612 } 5613 5614 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5615 return !Op.getValueType().isVector() || 5616 Op.getValueType().getVectorElementCount() == NumElts; 5617 }; 5618 5619 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5620 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5621 Op.getOpcode() == ISD::BUILD_VECTOR || 5622 Op.getOpcode() == ISD::SPLAT_VECTOR; 5623 }; 5624 5625 // All operands must be vector types with the same number of elements as 5626 // the result type and must be either UNDEF or a build/splat vector 5627 // or UNDEF scalars. 5628 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5629 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5630 return SDValue(); 5631 5632 // If we are comparing vectors, then the result needs to be a i1 boolean that 5633 // is then extended back to the legal result type depending on how booleans 5634 // are represented. 5635 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5636 ISD::NodeType ExtendCode = 5637 (Opcode == ISD::SETCC && SVT != VT.getScalarType()) 5638 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT)) 5639 : ISD::SIGN_EXTEND; 5640 5641 // Find legal integer scalar type for constant promotion and 5642 // ensure that its scalar size is at least as large as source. 5643 EVT LegalSVT = VT.getScalarType(); 5644 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5645 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5646 if (LegalSVT.bitsLT(VT.getScalarType())) 5647 return SDValue(); 5648 } 5649 5650 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5651 // only have one operand to check. For fixed-length vector types we may have 5652 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5653 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5654 5655 // Constant fold each scalar lane separately. 5656 SmallVector<SDValue, 4> ScalarResults; 5657 for (unsigned I = 0; I != NumVectorElts; I++) { 5658 SmallVector<SDValue, 4> ScalarOps; 5659 for (SDValue Op : Ops) { 5660 EVT InSVT = Op.getValueType().getScalarType(); 5661 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5662 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5663 if (Op.isUndef()) 5664 ScalarOps.push_back(getUNDEF(InSVT)); 5665 else 5666 ScalarOps.push_back(Op); 5667 continue; 5668 } 5669 5670 SDValue ScalarOp = 5671 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5672 EVT ScalarVT = ScalarOp.getValueType(); 5673 5674 // Build vector (integer) scalar operands may need implicit 5675 // truncation - do this before constant folding. 5676 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) { 5677 // Don't create illegally-typed nodes unless they're constants or undef 5678 // - if we fail to constant fold we can't guarantee the (dead) nodes 5679 // we're creating will be cleaned up before being visited for 5680 // legalization. 5681 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() && 5682 !isa<ConstantSDNode>(ScalarOp) && 5683 TLI->getTypeAction(*getContext(), InSVT) != 5684 TargetLowering::TypeLegal) 5685 return SDValue(); 5686 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5687 } 5688 5689 ScalarOps.push_back(ScalarOp); 5690 } 5691 5692 // Constant fold the scalar operands. 5693 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5694 5695 // Legalize the (integer) scalar constant if necessary. 5696 if (LegalSVT != SVT) 5697 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult); 5698 5699 // Scalar folding only succeeded if the result is a constant or UNDEF. 5700 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5701 ScalarResult.getOpcode() != ISD::ConstantFP) 5702 return SDValue(); 5703 ScalarResults.push_back(ScalarResult); 5704 } 5705 5706 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5707 : getBuildVector(VT, DL, ScalarResults); 5708 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5709 return V; 5710 } 5711 5712 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5713 EVT VT, SDValue N1, SDValue N2) { 5714 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5715 // should. That will require dealing with a potentially non-default 5716 // rounding mode, checking the "opStatus" return value from the APFloat 5717 // math calculations, and possibly other variations. 5718 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5719 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5720 if (N1CFP && N2CFP) { 5721 APFloat C1 = N1CFP->getValueAPF(); // make copy 5722 const APFloat &C2 = N2CFP->getValueAPF(); 5723 switch (Opcode) { 5724 case ISD::FADD: 5725 C1.add(C2, APFloat::rmNearestTiesToEven); 5726 return getConstantFP(C1, DL, VT); 5727 case ISD::FSUB: 5728 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5729 return getConstantFP(C1, DL, VT); 5730 case ISD::FMUL: 5731 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5732 return getConstantFP(C1, DL, VT); 5733 case ISD::FDIV: 5734 C1.divide(C2, APFloat::rmNearestTiesToEven); 5735 return getConstantFP(C1, DL, VT); 5736 case ISD::FREM: 5737 C1.mod(C2); 5738 return getConstantFP(C1, DL, VT); 5739 case ISD::FCOPYSIGN: 5740 C1.copySign(C2); 5741 return getConstantFP(C1, DL, VT); 5742 case ISD::FMINNUM: 5743 return getConstantFP(minnum(C1, C2), DL, VT); 5744 case ISD::FMAXNUM: 5745 return getConstantFP(maxnum(C1, C2), DL, VT); 5746 case ISD::FMINIMUM: 5747 return getConstantFP(minimum(C1, C2), DL, VT); 5748 case ISD::FMAXIMUM: 5749 return getConstantFP(maximum(C1, C2), DL, VT); 5750 default: break; 5751 } 5752 } 5753 if (N1CFP && Opcode == ISD::FP_ROUND) { 5754 APFloat C1 = N1CFP->getValueAPF(); // make copy 5755 bool Unused; 5756 // This can return overflow, underflow, or inexact; we don't care. 5757 // FIXME need to be more flexible about rounding mode. 5758 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5759 &Unused); 5760 return getConstantFP(C1, DL, VT); 5761 } 5762 5763 switch (Opcode) { 5764 case ISD::FSUB: 5765 // -0.0 - undef --> undef (consistent with "fneg undef") 5766 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5767 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5768 return getUNDEF(VT); 5769 LLVM_FALLTHROUGH; 5770 5771 case ISD::FADD: 5772 case ISD::FMUL: 5773 case ISD::FDIV: 5774 case ISD::FREM: 5775 // If both operands are undef, the result is undef. If 1 operand is undef, 5776 // the result is NaN. This should match the behavior of the IR optimizer. 5777 if (N1.isUndef() && N2.isUndef()) 5778 return getUNDEF(VT); 5779 if (N1.isUndef() || N2.isUndef()) 5780 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5781 } 5782 return SDValue(); 5783 } 5784 5785 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5786 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5787 5788 // There's no need to assert on a byte-aligned pointer. All pointers are at 5789 // least byte aligned. 5790 if (A == Align(1)) 5791 return Val; 5792 5793 FoldingSetNodeID ID; 5794 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5795 ID.AddInteger(A.value()); 5796 5797 void *IP = nullptr; 5798 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5799 return SDValue(E, 0); 5800 5801 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5802 Val.getValueType(), A); 5803 createOperands(N, {Val}); 5804 5805 CSEMap.InsertNode(N, IP); 5806 InsertNode(N); 5807 5808 SDValue V(N, 0); 5809 NewSDValueDbgMsg(V, "Creating new node: ", this); 5810 return V; 5811 } 5812 5813 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5814 SDValue N1, SDValue N2) { 5815 SDNodeFlags Flags; 5816 if (Inserter) 5817 Flags = Inserter->getFlags(); 5818 return getNode(Opcode, DL, VT, N1, N2, Flags); 5819 } 5820 5821 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, 5822 SDValue &N2) const { 5823 if (!TLI->isCommutativeBinOp(Opcode)) 5824 return; 5825 5826 // Canonicalize: 5827 // binop(const, nonconst) -> binop(nonconst, const) 5828 bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1); 5829 bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2); 5830 bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1); 5831 bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2); 5832 if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP)) 5833 std::swap(N1, N2); 5834 5835 // Canonicalize: 5836 // binop(splat(x), step_vector) -> binop(step_vector, splat(x)) 5837 else if (N1.getOpcode() == ISD::SPLAT_VECTOR && 5838 N2.getOpcode() == ISD::STEP_VECTOR) 5839 std::swap(N1, N2); 5840 } 5841 5842 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5843 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5844 assert(N1.getOpcode() != ISD::DELETED_NODE && 5845 N2.getOpcode() != ISD::DELETED_NODE && 5846 "Operand is DELETED_NODE!"); 5847 5848 canonicalizeCommutativeBinop(Opcode, N1, N2); 5849 5850 auto *N1C = dyn_cast<ConstantSDNode>(N1); 5851 auto *N2C = dyn_cast<ConstantSDNode>(N2); 5852 5853 // Don't allow undefs in vector splats - we might be returning N2 when folding 5854 // to zero etc. 5855 ConstantSDNode *N2CV = 5856 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true); 5857 5858 switch (Opcode) { 5859 default: break; 5860 case ISD::TokenFactor: 5861 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5862 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5863 // Fold trivial token factors. 5864 if (N1.getOpcode() == ISD::EntryToken) return N2; 5865 if (N2.getOpcode() == ISD::EntryToken) return N1; 5866 if (N1 == N2) return N1; 5867 break; 5868 case ISD::BUILD_VECTOR: { 5869 // Attempt to simplify BUILD_VECTOR. 5870 SDValue Ops[] = {N1, N2}; 5871 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5872 return V; 5873 break; 5874 } 5875 case ISD::CONCAT_VECTORS: { 5876 SDValue Ops[] = {N1, N2}; 5877 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5878 return V; 5879 break; 5880 } 5881 case ISD::AND: 5882 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5883 assert(N1.getValueType() == N2.getValueType() && 5884 N1.getValueType() == VT && "Binary operator types must match!"); 5885 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5886 // worth handling here. 5887 if (N2CV && N2CV->isZero()) 5888 return N2; 5889 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X 5890 return N1; 5891 break; 5892 case ISD::OR: 5893 case ISD::XOR: 5894 case ISD::ADD: 5895 case ISD::SUB: 5896 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5897 assert(N1.getValueType() == N2.getValueType() && 5898 N1.getValueType() == VT && "Binary operator types must match!"); 5899 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5900 // it's worth handling here. 5901 if (N2CV && N2CV->isZero()) 5902 return N1; 5903 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5904 VT.getVectorElementType() == MVT::i1) 5905 return getNode(ISD::XOR, DL, VT, N1, N2); 5906 break; 5907 case ISD::MUL: 5908 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5909 assert(N1.getValueType() == N2.getValueType() && 5910 N1.getValueType() == VT && "Binary operator types must match!"); 5911 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5912 return getNode(ISD::AND, DL, VT, N1, N2); 5913 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5914 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5915 const APInt &N2CImm = N2C->getAPIntValue(); 5916 return getVScale(DL, VT, MulImm * N2CImm); 5917 } 5918 break; 5919 case ISD::UDIV: 5920 case ISD::UREM: 5921 case ISD::MULHU: 5922 case ISD::MULHS: 5923 case ISD::SDIV: 5924 case ISD::SREM: 5925 case ISD::SADDSAT: 5926 case ISD::SSUBSAT: 5927 case ISD::UADDSAT: 5928 case ISD::USUBSAT: 5929 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5930 assert(N1.getValueType() == N2.getValueType() && 5931 N1.getValueType() == VT && "Binary operator types must match!"); 5932 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5933 // fold (add_sat x, y) -> (or x, y) for bool types. 5934 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5935 return getNode(ISD::OR, DL, VT, N1, N2); 5936 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5937 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5938 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5939 } 5940 break; 5941 case ISD::SMIN: 5942 case ISD::UMAX: 5943 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5944 assert(N1.getValueType() == N2.getValueType() && 5945 N1.getValueType() == VT && "Binary operator types must match!"); 5946 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5947 return getNode(ISD::OR, DL, VT, N1, N2); 5948 break; 5949 case ISD::SMAX: 5950 case ISD::UMIN: 5951 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5952 assert(N1.getValueType() == N2.getValueType() && 5953 N1.getValueType() == VT && "Binary operator types must match!"); 5954 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5955 return getNode(ISD::AND, DL, VT, N1, N2); 5956 break; 5957 case ISD::FADD: 5958 case ISD::FSUB: 5959 case ISD::FMUL: 5960 case ISD::FDIV: 5961 case ISD::FREM: 5962 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5963 assert(N1.getValueType() == N2.getValueType() && 5964 N1.getValueType() == VT && "Binary operator types must match!"); 5965 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5966 return V; 5967 break; 5968 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5969 assert(N1.getValueType() == VT && 5970 N1.getValueType().isFloatingPoint() && 5971 N2.getValueType().isFloatingPoint() && 5972 "Invalid FCOPYSIGN!"); 5973 break; 5974 case ISD::SHL: 5975 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5976 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5977 const APInt &ShiftImm = N2C->getAPIntValue(); 5978 return getVScale(DL, VT, MulImm << ShiftImm); 5979 } 5980 LLVM_FALLTHROUGH; 5981 case ISD::SRA: 5982 case ISD::SRL: 5983 if (SDValue V = simplifyShift(N1, N2)) 5984 return V; 5985 LLVM_FALLTHROUGH; 5986 case ISD::ROTL: 5987 case ISD::ROTR: 5988 assert(VT == N1.getValueType() && 5989 "Shift operators return type must be the same as their first arg"); 5990 assert(VT.isInteger() && N2.getValueType().isInteger() && 5991 "Shifts only work on integers"); 5992 assert((!VT.isVector() || VT == N2.getValueType()) && 5993 "Vector shift amounts must be in the same as their first arg"); 5994 // Verify that the shift amount VT is big enough to hold valid shift 5995 // amounts. This catches things like trying to shift an i1024 value by an 5996 // i8, which is easy to fall into in generic code that uses 5997 // TLI.getShiftAmount(). 5998 assert(N2.getValueType().getScalarSizeInBits() >= 5999 Log2_32_Ceil(VT.getScalarSizeInBits()) && 6000 "Invalid use of small shift amount with oversized value!"); 6001 6002 // Always fold shifts of i1 values so the code generator doesn't need to 6003 // handle them. Since we know the size of the shift has to be less than the 6004 // size of the value, the shift/rotate count is guaranteed to be zero. 6005 if (VT == MVT::i1) 6006 return N1; 6007 if (N2CV && N2CV->isZero()) 6008 return N1; 6009 break; 6010 case ISD::FP_ROUND: 6011 assert(VT.isFloatingPoint() && 6012 N1.getValueType().isFloatingPoint() && 6013 VT.bitsLE(N1.getValueType()) && 6014 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 6015 "Invalid FP_ROUND!"); 6016 if (N1.getValueType() == VT) return N1; // noop conversion. 6017 break; 6018 case ISD::AssertSext: 6019 case ISD::AssertZext: { 6020 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6021 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6022 assert(VT.isInteger() && EVT.isInteger() && 6023 "Cannot *_EXTEND_INREG FP types"); 6024 assert(!EVT.isVector() && 6025 "AssertSExt/AssertZExt type should be the vector element type " 6026 "rather than the vector type!"); 6027 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 6028 if (VT.getScalarType() == EVT) return N1; // noop assertion. 6029 break; 6030 } 6031 case ISD::SIGN_EXTEND_INREG: { 6032 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6033 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6034 assert(VT.isInteger() && EVT.isInteger() && 6035 "Cannot *_EXTEND_INREG FP types"); 6036 assert(EVT.isVector() == VT.isVector() && 6037 "SIGN_EXTEND_INREG type should be vector iff the operand " 6038 "type is vector!"); 6039 assert((!EVT.isVector() || 6040 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 6041 "Vector element counts must match in SIGN_EXTEND_INREG"); 6042 assert(EVT.bitsLE(VT) && "Not extending!"); 6043 if (EVT == VT) return N1; // Not actually extending 6044 6045 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 6046 unsigned FromBits = EVT.getScalarSizeInBits(); 6047 Val <<= Val.getBitWidth() - FromBits; 6048 Val.ashrInPlace(Val.getBitWidth() - FromBits); 6049 return getConstant(Val, DL, ConstantVT); 6050 }; 6051 6052 if (N1C) { 6053 const APInt &Val = N1C->getAPIntValue(); 6054 return SignExtendInReg(Val, VT); 6055 } 6056 6057 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 6058 SmallVector<SDValue, 8> Ops; 6059 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 6060 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 6061 SDValue Op = N1.getOperand(i); 6062 if (Op.isUndef()) { 6063 Ops.push_back(getUNDEF(OpVT)); 6064 continue; 6065 } 6066 ConstantSDNode *C = cast<ConstantSDNode>(Op); 6067 APInt Val = C->getAPIntValue(); 6068 Ops.push_back(SignExtendInReg(Val, OpVT)); 6069 } 6070 return getBuildVector(VT, DL, Ops); 6071 } 6072 break; 6073 } 6074 case ISD::FP_TO_SINT_SAT: 6075 case ISD::FP_TO_UINT_SAT: { 6076 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 6077 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 6078 assert(N1.getValueType().isVector() == VT.isVector() && 6079 "FP_TO_*INT_SAT type should be vector iff the operand type is " 6080 "vector!"); 6081 assert((!VT.isVector() || VT.getVectorNumElements() == 6082 N1.getValueType().getVectorNumElements()) && 6083 "Vector element counts must match in FP_TO_*INT_SAT"); 6084 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 6085 "Type to saturate to must be a scalar."); 6086 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 6087 "Not extending!"); 6088 break; 6089 } 6090 case ISD::EXTRACT_VECTOR_ELT: 6091 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 6092 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 6093 element type of the vector."); 6094 6095 // Extract from an undefined value or using an undefined index is undefined. 6096 if (N1.isUndef() || N2.isUndef()) 6097 return getUNDEF(VT); 6098 6099 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 6100 // vectors. For scalable vectors we will provide appropriate support for 6101 // dealing with arbitrary indices. 6102 if (N2C && N1.getValueType().isFixedLengthVector() && 6103 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 6104 return getUNDEF(VT); 6105 6106 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 6107 // expanding copies of large vectors from registers. This only works for 6108 // fixed length vectors, since we need to know the exact number of 6109 // elements. 6110 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 6111 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 6112 unsigned Factor = 6113 N1.getOperand(0).getValueType().getVectorNumElements(); 6114 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 6115 N1.getOperand(N2C->getZExtValue() / Factor), 6116 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 6117 } 6118 6119 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 6120 // lowering is expanding large vector constants. 6121 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 6122 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 6123 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 6124 N1.getValueType().isFixedLengthVector()) && 6125 "BUILD_VECTOR used for scalable vectors"); 6126 unsigned Index = 6127 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 6128 SDValue Elt = N1.getOperand(Index); 6129 6130 if (VT != Elt.getValueType()) 6131 // If the vector element type is not legal, the BUILD_VECTOR operands 6132 // are promoted and implicitly truncated, and the result implicitly 6133 // extended. Make that explicit here. 6134 Elt = getAnyExtOrTrunc(Elt, DL, VT); 6135 6136 return Elt; 6137 } 6138 6139 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 6140 // operations are lowered to scalars. 6141 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 6142 // If the indices are the same, return the inserted element else 6143 // if the indices are known different, extract the element from 6144 // the original vector. 6145 SDValue N1Op2 = N1.getOperand(2); 6146 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 6147 6148 if (N1Op2C && N2C) { 6149 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 6150 if (VT == N1.getOperand(1).getValueType()) 6151 return N1.getOperand(1); 6152 if (VT.isFloatingPoint()) { 6153 assert(VT.getSizeInBits() > N1.getOperand(1).getValueType().getSizeInBits()); 6154 return getFPExtendOrRound(N1.getOperand(1), DL, VT); 6155 } 6156 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 6157 } 6158 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 6159 } 6160 } 6161 6162 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 6163 // when vector types are scalarized and v1iX is legal. 6164 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 6165 // Here we are completely ignoring the extract element index (N2), 6166 // which is fine for fixed width vectors, since any index other than 0 6167 // is undefined anyway. However, this cannot be ignored for scalable 6168 // vectors - in theory we could support this, but we don't want to do this 6169 // without a profitability check. 6170 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6171 N1.getValueType().isFixedLengthVector() && 6172 N1.getValueType().getVectorNumElements() == 1) { 6173 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 6174 N1.getOperand(1)); 6175 } 6176 break; 6177 case ISD::EXTRACT_ELEMENT: 6178 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 6179 assert(!N1.getValueType().isVector() && !VT.isVector() && 6180 (N1.getValueType().isInteger() == VT.isInteger()) && 6181 N1.getValueType() != VT && 6182 "Wrong types for EXTRACT_ELEMENT!"); 6183 6184 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 6185 // 64-bit integers into 32-bit parts. Instead of building the extract of 6186 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 6187 if (N1.getOpcode() == ISD::BUILD_PAIR) 6188 return N1.getOperand(N2C->getZExtValue()); 6189 6190 // EXTRACT_ELEMENT of a constant int is also very common. 6191 if (N1C) { 6192 unsigned ElementSize = VT.getSizeInBits(); 6193 unsigned Shift = ElementSize * N2C->getZExtValue(); 6194 const APInt &Val = N1C->getAPIntValue(); 6195 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 6196 } 6197 break; 6198 case ISD::EXTRACT_SUBVECTOR: { 6199 EVT N1VT = N1.getValueType(); 6200 assert(VT.isVector() && N1VT.isVector() && 6201 "Extract subvector VTs must be vectors!"); 6202 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 6203 "Extract subvector VTs must have the same element type!"); 6204 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 6205 "Cannot extract a scalable vector from a fixed length vector!"); 6206 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6207 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 6208 "Extract subvector must be from larger vector to smaller vector!"); 6209 assert(N2C && "Extract subvector index must be a constant"); 6210 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6211 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 6212 N1VT.getVectorMinNumElements()) && 6213 "Extract subvector overflow!"); 6214 assert(N2C->getAPIntValue().getBitWidth() == 6215 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6216 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 6217 6218 // Trivial extraction. 6219 if (VT == N1VT) 6220 return N1; 6221 6222 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 6223 if (N1.isUndef()) 6224 return getUNDEF(VT); 6225 6226 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 6227 // the concat have the same type as the extract. 6228 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 6229 VT == N1.getOperand(0).getValueType()) { 6230 unsigned Factor = VT.getVectorMinNumElements(); 6231 return N1.getOperand(N2C->getZExtValue() / Factor); 6232 } 6233 6234 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6235 // during shuffle legalization. 6236 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6237 VT == N1.getOperand(1).getValueType()) 6238 return N1.getOperand(1); 6239 break; 6240 } 6241 } 6242 6243 // Perform trivial constant folding. 6244 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6245 return SV; 6246 6247 // Canonicalize an UNDEF to the RHS, even over a constant. 6248 if (N1.isUndef()) { 6249 if (TLI->isCommutativeBinOp(Opcode)) { 6250 std::swap(N1, N2); 6251 } else { 6252 switch (Opcode) { 6253 case ISD::SUB: 6254 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6255 case ISD::SIGN_EXTEND_INREG: 6256 case ISD::UDIV: 6257 case ISD::SDIV: 6258 case ISD::UREM: 6259 case ISD::SREM: 6260 case ISD::SSUBSAT: 6261 case ISD::USUBSAT: 6262 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6263 } 6264 } 6265 } 6266 6267 // Fold a bunch of operators when the RHS is undef. 6268 if (N2.isUndef()) { 6269 switch (Opcode) { 6270 case ISD::XOR: 6271 if (N1.isUndef()) 6272 // Handle undef ^ undef -> 0 special case. This is a common 6273 // idiom (misuse). 6274 return getConstant(0, DL, VT); 6275 LLVM_FALLTHROUGH; 6276 case ISD::ADD: 6277 case ISD::SUB: 6278 case ISD::UDIV: 6279 case ISD::SDIV: 6280 case ISD::UREM: 6281 case ISD::SREM: 6282 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6283 case ISD::MUL: 6284 case ISD::AND: 6285 case ISD::SSUBSAT: 6286 case ISD::USUBSAT: 6287 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6288 case ISD::OR: 6289 case ISD::SADDSAT: 6290 case ISD::UADDSAT: 6291 return getAllOnesConstant(DL, VT); 6292 } 6293 } 6294 6295 // Memoize this node if possible. 6296 SDNode *N; 6297 SDVTList VTs = getVTList(VT); 6298 SDValue Ops[] = {N1, N2}; 6299 if (VT != MVT::Glue) { 6300 FoldingSetNodeID ID; 6301 AddNodeIDNode(ID, Opcode, VTs, Ops); 6302 void *IP = nullptr; 6303 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6304 E->intersectFlagsWith(Flags); 6305 return SDValue(E, 0); 6306 } 6307 6308 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6309 N->setFlags(Flags); 6310 createOperands(N, Ops); 6311 CSEMap.InsertNode(N, IP); 6312 } else { 6313 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6314 createOperands(N, Ops); 6315 } 6316 6317 InsertNode(N); 6318 SDValue V = SDValue(N, 0); 6319 NewSDValueDbgMsg(V, "Creating new node: ", this); 6320 return V; 6321 } 6322 6323 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6324 SDValue N1, SDValue N2, SDValue N3) { 6325 SDNodeFlags Flags; 6326 if (Inserter) 6327 Flags = Inserter->getFlags(); 6328 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6329 } 6330 6331 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6332 SDValue N1, SDValue N2, SDValue N3, 6333 const SDNodeFlags Flags) { 6334 assert(N1.getOpcode() != ISD::DELETED_NODE && 6335 N2.getOpcode() != ISD::DELETED_NODE && 6336 N3.getOpcode() != ISD::DELETED_NODE && 6337 "Operand is DELETED_NODE!"); 6338 // Perform various simplifications. 6339 switch (Opcode) { 6340 case ISD::FMA: { 6341 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6342 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6343 N3.getValueType() == VT && "FMA types must match!"); 6344 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6345 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6346 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6347 if (N1CFP && N2CFP && N3CFP) { 6348 APFloat V1 = N1CFP->getValueAPF(); 6349 const APFloat &V2 = N2CFP->getValueAPF(); 6350 const APFloat &V3 = N3CFP->getValueAPF(); 6351 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6352 return getConstantFP(V1, DL, VT); 6353 } 6354 break; 6355 } 6356 case ISD::BUILD_VECTOR: { 6357 // Attempt to simplify BUILD_VECTOR. 6358 SDValue Ops[] = {N1, N2, N3}; 6359 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6360 return V; 6361 break; 6362 } 6363 case ISD::CONCAT_VECTORS: { 6364 SDValue Ops[] = {N1, N2, N3}; 6365 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6366 return V; 6367 break; 6368 } 6369 case ISD::SETCC: { 6370 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6371 assert(N1.getValueType() == N2.getValueType() && 6372 "SETCC operands must have the same type!"); 6373 assert(VT.isVector() == N1.getValueType().isVector() && 6374 "SETCC type should be vector iff the operand type is vector!"); 6375 assert((!VT.isVector() || VT.getVectorElementCount() == 6376 N1.getValueType().getVectorElementCount()) && 6377 "SETCC vector element counts must match!"); 6378 // Use FoldSetCC to simplify SETCC's. 6379 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6380 return V; 6381 // Vector constant folding. 6382 SDValue Ops[] = {N1, N2, N3}; 6383 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6384 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6385 return V; 6386 } 6387 break; 6388 } 6389 case ISD::SELECT: 6390 case ISD::VSELECT: 6391 if (SDValue V = simplifySelect(N1, N2, N3)) 6392 return V; 6393 break; 6394 case ISD::VECTOR_SHUFFLE: 6395 llvm_unreachable("should use getVectorShuffle constructor!"); 6396 case ISD::VECTOR_SPLICE: { 6397 if (cast<ConstantSDNode>(N3)->isNullValue()) 6398 return N1; 6399 break; 6400 } 6401 case ISD::INSERT_VECTOR_ELT: { 6402 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6403 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6404 // for scalable vectors where we will generate appropriate code to 6405 // deal with out-of-bounds cases correctly. 6406 if (N3C && N1.getValueType().isFixedLengthVector() && 6407 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6408 return getUNDEF(VT); 6409 6410 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6411 if (N3.isUndef()) 6412 return getUNDEF(VT); 6413 6414 // If the inserted element is an UNDEF, just use the input vector. 6415 if (N2.isUndef()) 6416 return N1; 6417 6418 break; 6419 } 6420 case ISD::INSERT_SUBVECTOR: { 6421 // Inserting undef into undef is still undef. 6422 if (N1.isUndef() && N2.isUndef()) 6423 return getUNDEF(VT); 6424 6425 EVT N2VT = N2.getValueType(); 6426 assert(VT == N1.getValueType() && 6427 "Dest and insert subvector source types must match!"); 6428 assert(VT.isVector() && N2VT.isVector() && 6429 "Insert subvector VTs must be vectors!"); 6430 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6431 "Cannot insert a scalable vector into a fixed length vector!"); 6432 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6433 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6434 "Insert subvector must be from smaller vector to larger vector!"); 6435 assert(isa<ConstantSDNode>(N3) && 6436 "Insert subvector index must be constant"); 6437 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6438 (N2VT.getVectorMinNumElements() + 6439 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6440 VT.getVectorMinNumElements()) && 6441 "Insert subvector overflow!"); 6442 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6443 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6444 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6445 6446 // Trivial insertion. 6447 if (VT == N2VT) 6448 return N2; 6449 6450 // If this is an insert of an extracted vector into an undef vector, we 6451 // can just use the input to the extract. 6452 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6453 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6454 return N2.getOperand(0); 6455 break; 6456 } 6457 case ISD::BITCAST: 6458 // Fold bit_convert nodes from a type to themselves. 6459 if (N1.getValueType() == VT) 6460 return N1; 6461 break; 6462 } 6463 6464 // Memoize node if it doesn't produce a flag. 6465 SDNode *N; 6466 SDVTList VTs = getVTList(VT); 6467 SDValue Ops[] = {N1, N2, N3}; 6468 if (VT != MVT::Glue) { 6469 FoldingSetNodeID ID; 6470 AddNodeIDNode(ID, Opcode, VTs, Ops); 6471 void *IP = nullptr; 6472 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6473 E->intersectFlagsWith(Flags); 6474 return SDValue(E, 0); 6475 } 6476 6477 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6478 N->setFlags(Flags); 6479 createOperands(N, Ops); 6480 CSEMap.InsertNode(N, IP); 6481 } else { 6482 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6483 createOperands(N, Ops); 6484 } 6485 6486 InsertNode(N); 6487 SDValue V = SDValue(N, 0); 6488 NewSDValueDbgMsg(V, "Creating new node: ", this); 6489 return V; 6490 } 6491 6492 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6493 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6494 SDValue Ops[] = { N1, N2, N3, N4 }; 6495 return getNode(Opcode, DL, VT, Ops); 6496 } 6497 6498 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6499 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6500 SDValue N5) { 6501 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6502 return getNode(Opcode, DL, VT, Ops); 6503 } 6504 6505 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6506 /// the incoming stack arguments to be loaded from the stack. 6507 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6508 SmallVector<SDValue, 8> ArgChains; 6509 6510 // Include the original chain at the beginning of the list. When this is 6511 // used by target LowerCall hooks, this helps legalize find the 6512 // CALLSEQ_BEGIN node. 6513 ArgChains.push_back(Chain); 6514 6515 // Add a chain value for each stack argument. 6516 for (SDNode *U : getEntryNode().getNode()->uses()) 6517 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6518 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6519 if (FI->getIndex() < 0) 6520 ArgChains.push_back(SDValue(L, 1)); 6521 6522 // Build a tokenfactor for all the chains. 6523 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6524 } 6525 6526 /// getMemsetValue - Vectorized representation of the memset value 6527 /// operand. 6528 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6529 const SDLoc &dl) { 6530 assert(!Value.isUndef()); 6531 6532 unsigned NumBits = VT.getScalarSizeInBits(); 6533 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6534 assert(C->getAPIntValue().getBitWidth() == 8); 6535 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6536 if (VT.isInteger()) { 6537 bool IsOpaque = VT.getSizeInBits() > 64 || 6538 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6539 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6540 } 6541 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6542 VT); 6543 } 6544 6545 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6546 EVT IntVT = VT.getScalarType(); 6547 if (!IntVT.isInteger()) 6548 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6549 6550 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6551 if (NumBits > 8) { 6552 // Use a multiplication with 0x010101... to extend the input to the 6553 // required length. 6554 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6555 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6556 DAG.getConstant(Magic, dl, IntVT)); 6557 } 6558 6559 if (VT != Value.getValueType() && !VT.isInteger()) 6560 Value = DAG.getBitcast(VT.getScalarType(), Value); 6561 if (VT != Value.getValueType()) 6562 Value = DAG.getSplatBuildVector(VT, dl, Value); 6563 6564 return Value; 6565 } 6566 6567 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6568 /// used when a memcpy is turned into a memset when the source is a constant 6569 /// string ptr. 6570 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6571 const TargetLowering &TLI, 6572 const ConstantDataArraySlice &Slice) { 6573 // Handle vector with all elements zero. 6574 if (Slice.Array == nullptr) { 6575 if (VT.isInteger()) 6576 return DAG.getConstant(0, dl, VT); 6577 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6578 return DAG.getConstantFP(0.0, dl, VT); 6579 if (VT.isVector()) { 6580 unsigned NumElts = VT.getVectorNumElements(); 6581 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6582 return DAG.getNode(ISD::BITCAST, dl, VT, 6583 DAG.getConstant(0, dl, 6584 EVT::getVectorVT(*DAG.getContext(), 6585 EltVT, NumElts))); 6586 } 6587 llvm_unreachable("Expected type!"); 6588 } 6589 6590 assert(!VT.isVector() && "Can't handle vector type here!"); 6591 unsigned NumVTBits = VT.getSizeInBits(); 6592 unsigned NumVTBytes = NumVTBits / 8; 6593 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6594 6595 APInt Val(NumVTBits, 0); 6596 if (DAG.getDataLayout().isLittleEndian()) { 6597 for (unsigned i = 0; i != NumBytes; ++i) 6598 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6599 } else { 6600 for (unsigned i = 0; i != NumBytes; ++i) 6601 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6602 } 6603 6604 // If the "cost" of materializing the integer immediate is less than the cost 6605 // of a load, then it is cost effective to turn the load into the immediate. 6606 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6607 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6608 return DAG.getConstant(Val, dl, VT); 6609 return SDValue(); 6610 } 6611 6612 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6613 const SDLoc &DL, 6614 const SDNodeFlags Flags) { 6615 EVT VT = Base.getValueType(); 6616 SDValue Index; 6617 6618 if (Offset.isScalable()) 6619 Index = getVScale(DL, Base.getValueType(), 6620 APInt(Base.getValueSizeInBits().getFixedSize(), 6621 Offset.getKnownMinSize())); 6622 else 6623 Index = getConstant(Offset.getFixedSize(), DL, VT); 6624 6625 return getMemBasePlusOffset(Base, Index, DL, Flags); 6626 } 6627 6628 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6629 const SDLoc &DL, 6630 const SDNodeFlags Flags) { 6631 assert(Offset.getValueType().isInteger()); 6632 EVT BasePtrVT = Ptr.getValueType(); 6633 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6634 } 6635 6636 /// Returns true if memcpy source is constant data. 6637 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6638 uint64_t SrcDelta = 0; 6639 GlobalAddressSDNode *G = nullptr; 6640 if (Src.getOpcode() == ISD::GlobalAddress) 6641 G = cast<GlobalAddressSDNode>(Src); 6642 else if (Src.getOpcode() == ISD::ADD && 6643 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6644 Src.getOperand(1).getOpcode() == ISD::Constant) { 6645 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6646 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6647 } 6648 if (!G) 6649 return false; 6650 6651 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6652 SrcDelta + G->getOffset()); 6653 } 6654 6655 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6656 SelectionDAG &DAG) { 6657 // On Darwin, -Os means optimize for size without hurting performance, so 6658 // only really optimize for size when -Oz (MinSize) is used. 6659 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6660 return MF.getFunction().hasMinSize(); 6661 return DAG.shouldOptForSize(); 6662 } 6663 6664 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6665 SmallVector<SDValue, 32> &OutChains, unsigned From, 6666 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6667 SmallVector<SDValue, 16> &OutStoreChains) { 6668 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6669 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6670 SmallVector<SDValue, 16> GluedLoadChains; 6671 for (unsigned i = From; i < To; ++i) { 6672 OutChains.push_back(OutLoadChains[i]); 6673 GluedLoadChains.push_back(OutLoadChains[i]); 6674 } 6675 6676 // Chain for all loads. 6677 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6678 GluedLoadChains); 6679 6680 for (unsigned i = From; i < To; ++i) { 6681 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6682 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6683 ST->getBasePtr(), ST->getMemoryVT(), 6684 ST->getMemOperand()); 6685 OutChains.push_back(NewStore); 6686 } 6687 } 6688 6689 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6690 SDValue Chain, SDValue Dst, SDValue Src, 6691 uint64_t Size, Align Alignment, 6692 bool isVol, bool AlwaysInline, 6693 MachinePointerInfo DstPtrInfo, 6694 MachinePointerInfo SrcPtrInfo, 6695 const AAMDNodes &AAInfo) { 6696 // Turn a memcpy of undef to nop. 6697 // FIXME: We need to honor volatile even is Src is undef. 6698 if (Src.isUndef()) 6699 return Chain; 6700 6701 // Expand memcpy to a series of load and store ops if the size operand falls 6702 // below a certain threshold. 6703 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6704 // rather than maybe a humongous number of loads and stores. 6705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6706 const DataLayout &DL = DAG.getDataLayout(); 6707 LLVMContext &C = *DAG.getContext(); 6708 std::vector<EVT> MemOps; 6709 bool DstAlignCanChange = false; 6710 MachineFunction &MF = DAG.getMachineFunction(); 6711 MachineFrameInfo &MFI = MF.getFrameInfo(); 6712 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6713 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6714 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6715 DstAlignCanChange = true; 6716 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6717 if (!SrcAlign || Alignment > *SrcAlign) 6718 SrcAlign = Alignment; 6719 assert(SrcAlign && "SrcAlign must be set"); 6720 ConstantDataArraySlice Slice; 6721 // If marked as volatile, perform a copy even when marked as constant. 6722 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6723 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6724 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6725 const MemOp Op = isZeroConstant 6726 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6727 /*IsZeroMemset*/ true, isVol) 6728 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6729 *SrcAlign, isVol, CopyFromConstant); 6730 if (!TLI.findOptimalMemOpLowering( 6731 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6732 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6733 return SDValue(); 6734 6735 if (DstAlignCanChange) { 6736 Type *Ty = MemOps[0].getTypeForEVT(C); 6737 Align NewAlign = DL.getABITypeAlign(Ty); 6738 6739 // Don't promote to an alignment that would require dynamic stack 6740 // realignment. 6741 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6742 if (!TRI->hasStackRealignment(MF)) 6743 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6744 NewAlign = NewAlign.previous(); 6745 6746 if (NewAlign > Alignment) { 6747 // Give the stack frame object a larger alignment if needed. 6748 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6749 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6750 Alignment = NewAlign; 6751 } 6752 } 6753 6754 // Prepare AAInfo for loads/stores after lowering this memcpy. 6755 AAMDNodes NewAAInfo = AAInfo; 6756 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6757 6758 MachineMemOperand::Flags MMOFlags = 6759 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6760 SmallVector<SDValue, 16> OutLoadChains; 6761 SmallVector<SDValue, 16> OutStoreChains; 6762 SmallVector<SDValue, 32> OutChains; 6763 unsigned NumMemOps = MemOps.size(); 6764 uint64_t SrcOff = 0, DstOff = 0; 6765 for (unsigned i = 0; i != NumMemOps; ++i) { 6766 EVT VT = MemOps[i]; 6767 unsigned VTSize = VT.getSizeInBits() / 8; 6768 SDValue Value, Store; 6769 6770 if (VTSize > Size) { 6771 // Issuing an unaligned load / store pair that overlaps with the previous 6772 // pair. Adjust the offset accordingly. 6773 assert(i == NumMemOps-1 && i != 0); 6774 SrcOff -= VTSize - Size; 6775 DstOff -= VTSize - Size; 6776 } 6777 6778 if (CopyFromConstant && 6779 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6780 // It's unlikely a store of a vector immediate can be done in a single 6781 // instruction. It would require a load from a constantpool first. 6782 // We only handle zero vectors here. 6783 // FIXME: Handle other cases where store of vector immediate is done in 6784 // a single instruction. 6785 ConstantDataArraySlice SubSlice; 6786 if (SrcOff < Slice.Length) { 6787 SubSlice = Slice; 6788 SubSlice.move(SrcOff); 6789 } else { 6790 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6791 SubSlice.Array = nullptr; 6792 SubSlice.Offset = 0; 6793 SubSlice.Length = VTSize; 6794 } 6795 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6796 if (Value.getNode()) { 6797 Store = DAG.getStore( 6798 Chain, dl, Value, 6799 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6800 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6801 OutChains.push_back(Store); 6802 } 6803 } 6804 6805 if (!Store.getNode()) { 6806 // The type might not be legal for the target. This should only happen 6807 // if the type is smaller than a legal type, as on PPC, so the right 6808 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6809 // to Load/Store if NVT==VT. 6810 // FIXME does the case above also need this? 6811 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6812 assert(NVT.bitsGE(VT)); 6813 6814 bool isDereferenceable = 6815 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6816 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6817 if (isDereferenceable) 6818 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6819 6820 Value = DAG.getExtLoad( 6821 ISD::EXTLOAD, dl, NVT, Chain, 6822 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6823 SrcPtrInfo.getWithOffset(SrcOff), VT, 6824 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6825 OutLoadChains.push_back(Value.getValue(1)); 6826 6827 Store = DAG.getTruncStore( 6828 Chain, dl, Value, 6829 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6830 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6831 OutStoreChains.push_back(Store); 6832 } 6833 SrcOff += VTSize; 6834 DstOff += VTSize; 6835 Size -= VTSize; 6836 } 6837 6838 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6839 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6840 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6841 6842 if (NumLdStInMemcpy) { 6843 // It may be that memcpy might be converted to memset if it's memcpy 6844 // of constants. In such a case, we won't have loads and stores, but 6845 // just stores. In the absence of loads, there is nothing to gang up. 6846 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6847 // If target does not care, just leave as it. 6848 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6849 OutChains.push_back(OutLoadChains[i]); 6850 OutChains.push_back(OutStoreChains[i]); 6851 } 6852 } else { 6853 // Ld/St less than/equal limit set by target. 6854 if (NumLdStInMemcpy <= GluedLdStLimit) { 6855 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6856 NumLdStInMemcpy, OutLoadChains, 6857 OutStoreChains); 6858 } else { 6859 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6860 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6861 unsigned GlueIter = 0; 6862 6863 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6864 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6865 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6866 6867 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6868 OutLoadChains, OutStoreChains); 6869 GlueIter += GluedLdStLimit; 6870 } 6871 6872 // Residual ld/st. 6873 if (RemainingLdStInMemcpy) { 6874 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6875 RemainingLdStInMemcpy, OutLoadChains, 6876 OutStoreChains); 6877 } 6878 } 6879 } 6880 } 6881 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6882 } 6883 6884 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6885 SDValue Chain, SDValue Dst, SDValue Src, 6886 uint64_t Size, Align Alignment, 6887 bool isVol, bool AlwaysInline, 6888 MachinePointerInfo DstPtrInfo, 6889 MachinePointerInfo SrcPtrInfo, 6890 const AAMDNodes &AAInfo) { 6891 // Turn a memmove of undef to nop. 6892 // FIXME: We need to honor volatile even is Src is undef. 6893 if (Src.isUndef()) 6894 return Chain; 6895 6896 // Expand memmove to a series of load and store ops if the size operand falls 6897 // below a certain threshold. 6898 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6899 const DataLayout &DL = DAG.getDataLayout(); 6900 LLVMContext &C = *DAG.getContext(); 6901 std::vector<EVT> MemOps; 6902 bool DstAlignCanChange = false; 6903 MachineFunction &MF = DAG.getMachineFunction(); 6904 MachineFrameInfo &MFI = MF.getFrameInfo(); 6905 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6906 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6907 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6908 DstAlignCanChange = true; 6909 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6910 if (!SrcAlign || Alignment > *SrcAlign) 6911 SrcAlign = Alignment; 6912 assert(SrcAlign && "SrcAlign must be set"); 6913 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6914 if (!TLI.findOptimalMemOpLowering( 6915 MemOps, Limit, 6916 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6917 /*IsVolatile*/ true), 6918 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6919 MF.getFunction().getAttributes())) 6920 return SDValue(); 6921 6922 if (DstAlignCanChange) { 6923 Type *Ty = MemOps[0].getTypeForEVT(C); 6924 Align NewAlign = DL.getABITypeAlign(Ty); 6925 if (NewAlign > Alignment) { 6926 // Give the stack frame object a larger alignment if needed. 6927 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6928 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6929 Alignment = NewAlign; 6930 } 6931 } 6932 6933 // Prepare AAInfo for loads/stores after lowering this memmove. 6934 AAMDNodes NewAAInfo = AAInfo; 6935 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6936 6937 MachineMemOperand::Flags MMOFlags = 6938 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6939 uint64_t SrcOff = 0, DstOff = 0; 6940 SmallVector<SDValue, 8> LoadValues; 6941 SmallVector<SDValue, 8> LoadChains; 6942 SmallVector<SDValue, 8> OutChains; 6943 unsigned NumMemOps = MemOps.size(); 6944 for (unsigned i = 0; i < NumMemOps; i++) { 6945 EVT VT = MemOps[i]; 6946 unsigned VTSize = VT.getSizeInBits() / 8; 6947 SDValue Value; 6948 6949 bool isDereferenceable = 6950 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6951 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6952 if (isDereferenceable) 6953 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6954 6955 Value = DAG.getLoad( 6956 VT, dl, Chain, 6957 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6958 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6959 LoadValues.push_back(Value); 6960 LoadChains.push_back(Value.getValue(1)); 6961 SrcOff += VTSize; 6962 } 6963 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6964 OutChains.clear(); 6965 for (unsigned i = 0; i < NumMemOps; i++) { 6966 EVT VT = MemOps[i]; 6967 unsigned VTSize = VT.getSizeInBits() / 8; 6968 SDValue Store; 6969 6970 Store = DAG.getStore( 6971 Chain, dl, LoadValues[i], 6972 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6973 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6974 OutChains.push_back(Store); 6975 DstOff += VTSize; 6976 } 6977 6978 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6979 } 6980 6981 /// Lower the call to 'memset' intrinsic function into a series of store 6982 /// operations. 6983 /// 6984 /// \param DAG Selection DAG where lowered code is placed. 6985 /// \param dl Link to corresponding IR location. 6986 /// \param Chain Control flow dependency. 6987 /// \param Dst Pointer to destination memory location. 6988 /// \param Src Value of byte to write into the memory. 6989 /// \param Size Number of bytes to write. 6990 /// \param Alignment Alignment of the destination in bytes. 6991 /// \param isVol True if destination is volatile. 6992 /// \param AlwaysInline Makes sure no function call is generated. 6993 /// \param DstPtrInfo IR information on the memory pointer. 6994 /// \returns New head in the control flow, if lowering was successful, empty 6995 /// SDValue otherwise. 6996 /// 6997 /// The function tries to replace 'llvm.memset' intrinsic with several store 6998 /// operations and value calculation code. This is usually profitable for small 6999 /// memory size or when the semantic requires inlining. 7000 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 7001 SDValue Chain, SDValue Dst, SDValue Src, 7002 uint64_t Size, Align Alignment, bool isVol, 7003 bool AlwaysInline, MachinePointerInfo DstPtrInfo, 7004 const AAMDNodes &AAInfo) { 7005 // Turn a memset of undef to nop. 7006 // FIXME: We need to honor volatile even is Src is undef. 7007 if (Src.isUndef()) 7008 return Chain; 7009 7010 // Expand memset to a series of load/store ops if the size operand 7011 // falls below a certain threshold. 7012 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7013 std::vector<EVT> MemOps; 7014 bool DstAlignCanChange = false; 7015 MachineFunction &MF = DAG.getMachineFunction(); 7016 MachineFrameInfo &MFI = MF.getFrameInfo(); 7017 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 7018 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 7019 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 7020 DstAlignCanChange = true; 7021 bool IsZeroVal = 7022 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 7023 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize); 7024 7025 if (!TLI.findOptimalMemOpLowering( 7026 MemOps, Limit, 7027 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 7028 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 7029 return SDValue(); 7030 7031 if (DstAlignCanChange) { 7032 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 7033 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 7034 if (NewAlign > Alignment) { 7035 // Give the stack frame object a larger alignment if needed. 7036 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 7037 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 7038 Alignment = NewAlign; 7039 } 7040 } 7041 7042 SmallVector<SDValue, 8> OutChains; 7043 uint64_t DstOff = 0; 7044 unsigned NumMemOps = MemOps.size(); 7045 7046 // Find the largest store and generate the bit pattern for it. 7047 EVT LargestVT = MemOps[0]; 7048 for (unsigned i = 1; i < NumMemOps; i++) 7049 if (MemOps[i].bitsGT(LargestVT)) 7050 LargestVT = MemOps[i]; 7051 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 7052 7053 // Prepare AAInfo for loads/stores after lowering this memset. 7054 AAMDNodes NewAAInfo = AAInfo; 7055 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 7056 7057 for (unsigned i = 0; i < NumMemOps; i++) { 7058 EVT VT = MemOps[i]; 7059 unsigned VTSize = VT.getSizeInBits() / 8; 7060 if (VTSize > Size) { 7061 // Issuing an unaligned load / store pair that overlaps with the previous 7062 // pair. Adjust the offset accordingly. 7063 assert(i == NumMemOps-1 && i != 0); 7064 DstOff -= VTSize - Size; 7065 } 7066 7067 // If this store is smaller than the largest store see whether we can get 7068 // the smaller value for free with a truncate. 7069 SDValue Value = MemSetValue; 7070 if (VT.bitsLT(LargestVT)) { 7071 if (!LargestVT.isVector() && !VT.isVector() && 7072 TLI.isTruncateFree(LargestVT, VT)) 7073 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 7074 else 7075 Value = getMemsetValue(Src, VT, DAG, dl); 7076 } 7077 assert(Value.getValueType() == VT && "Value with wrong type."); 7078 SDValue Store = DAG.getStore( 7079 Chain, dl, Value, 7080 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 7081 DstPtrInfo.getWithOffset(DstOff), Alignment, 7082 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 7083 NewAAInfo); 7084 OutChains.push_back(Store); 7085 DstOff += VT.getSizeInBits() / 8; 7086 Size -= VTSize; 7087 } 7088 7089 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7090 } 7091 7092 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 7093 unsigned AS) { 7094 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 7095 // pointer operands can be losslessly bitcasted to pointers of address space 0 7096 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 7097 report_fatal_error("cannot lower memory intrinsic in address space " + 7098 Twine(AS)); 7099 } 7100 } 7101 7102 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 7103 SDValue Src, SDValue Size, Align Alignment, 7104 bool isVol, bool AlwaysInline, bool isTailCall, 7105 MachinePointerInfo DstPtrInfo, 7106 MachinePointerInfo SrcPtrInfo, 7107 const AAMDNodes &AAInfo) { 7108 // Check to see if we should lower the memcpy to loads and stores first. 7109 // For cases within the target-specified limits, this is the best choice. 7110 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7111 if (ConstantSize) { 7112 // Memcpy with size zero? Just return the original chain. 7113 if (ConstantSize->isZero()) 7114 return Chain; 7115 7116 SDValue Result = getMemcpyLoadsAndStores( 7117 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7118 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7119 if (Result.getNode()) 7120 return Result; 7121 } 7122 7123 // Then check to see if we should lower the memcpy with target-specific 7124 // code. If the target chooses to do this, this is the next best. 7125 if (TSI) { 7126 SDValue Result = TSI->EmitTargetCodeForMemcpy( 7127 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 7128 DstPtrInfo, SrcPtrInfo); 7129 if (Result.getNode()) 7130 return Result; 7131 } 7132 7133 // If we really need inline code and the target declined to provide it, 7134 // use a (potentially long) sequence of loads and stores. 7135 if (AlwaysInline) { 7136 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7137 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 7138 ConstantSize->getZExtValue(), Alignment, 7139 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 7140 } 7141 7142 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7143 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7144 7145 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 7146 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 7147 // respect volatile, so they may do things like read or write memory 7148 // beyond the given memory regions. But fixing this isn't easy, and most 7149 // people don't care. 7150 7151 // Emit a library call. 7152 TargetLowering::ArgListTy Args; 7153 TargetLowering::ArgListEntry Entry; 7154 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7155 Entry.Node = Dst; Args.push_back(Entry); 7156 Entry.Node = Src; Args.push_back(Entry); 7157 7158 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7159 Entry.Node = Size; Args.push_back(Entry); 7160 // FIXME: pass in SDLoc 7161 TargetLowering::CallLoweringInfo CLI(*this); 7162 CLI.setDebugLoc(dl) 7163 .setChain(Chain) 7164 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 7165 Dst.getValueType().getTypeForEVT(*getContext()), 7166 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 7167 TLI->getPointerTy(getDataLayout())), 7168 std::move(Args)) 7169 .setDiscardResult() 7170 .setTailCall(isTailCall); 7171 7172 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7173 return CallResult.second; 7174 } 7175 7176 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 7177 SDValue Dst, SDValue Src, SDValue Size, 7178 Type *SizeTy, unsigned ElemSz, 7179 bool isTailCall, 7180 MachinePointerInfo DstPtrInfo, 7181 MachinePointerInfo SrcPtrInfo) { 7182 // Emit a library call. 7183 TargetLowering::ArgListTy Args; 7184 TargetLowering::ArgListEntry Entry; 7185 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7186 Entry.Node = Dst; 7187 Args.push_back(Entry); 7188 7189 Entry.Node = Src; 7190 Args.push_back(Entry); 7191 7192 Entry.Ty = SizeTy; 7193 Entry.Node = Size; 7194 Args.push_back(Entry); 7195 7196 RTLIB::Libcall LibraryCall = 7197 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7198 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7199 report_fatal_error("Unsupported element size"); 7200 7201 TargetLowering::CallLoweringInfo CLI(*this); 7202 CLI.setDebugLoc(dl) 7203 .setChain(Chain) 7204 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7205 Type::getVoidTy(*getContext()), 7206 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7207 TLI->getPointerTy(getDataLayout())), 7208 std::move(Args)) 7209 .setDiscardResult() 7210 .setTailCall(isTailCall); 7211 7212 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7213 return CallResult.second; 7214 } 7215 7216 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 7217 SDValue Src, SDValue Size, Align Alignment, 7218 bool isVol, bool isTailCall, 7219 MachinePointerInfo DstPtrInfo, 7220 MachinePointerInfo SrcPtrInfo, 7221 const AAMDNodes &AAInfo) { 7222 // Check to see if we should lower the memmove to loads and stores first. 7223 // For cases within the target-specified limits, this is the best choice. 7224 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7225 if (ConstantSize) { 7226 // Memmove with size zero? Just return the original chain. 7227 if (ConstantSize->isZero()) 7228 return Chain; 7229 7230 SDValue Result = getMemmoveLoadsAndStores( 7231 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7232 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7233 if (Result.getNode()) 7234 return Result; 7235 } 7236 7237 // Then check to see if we should lower the memmove with target-specific 7238 // code. If the target chooses to do this, this is the next best. 7239 if (TSI) { 7240 SDValue Result = 7241 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7242 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7243 if (Result.getNode()) 7244 return Result; 7245 } 7246 7247 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7248 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7249 7250 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7251 // not be safe. See memcpy above for more details. 7252 7253 // Emit a library call. 7254 TargetLowering::ArgListTy Args; 7255 TargetLowering::ArgListEntry Entry; 7256 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7257 Entry.Node = Dst; Args.push_back(Entry); 7258 Entry.Node = Src; Args.push_back(Entry); 7259 7260 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7261 Entry.Node = Size; Args.push_back(Entry); 7262 // FIXME: pass in SDLoc 7263 TargetLowering::CallLoweringInfo CLI(*this); 7264 CLI.setDebugLoc(dl) 7265 .setChain(Chain) 7266 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7267 Dst.getValueType().getTypeForEVT(*getContext()), 7268 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7269 TLI->getPointerTy(getDataLayout())), 7270 std::move(Args)) 7271 .setDiscardResult() 7272 .setTailCall(isTailCall); 7273 7274 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7275 return CallResult.second; 7276 } 7277 7278 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7279 SDValue Dst, SDValue Src, SDValue Size, 7280 Type *SizeTy, unsigned ElemSz, 7281 bool isTailCall, 7282 MachinePointerInfo DstPtrInfo, 7283 MachinePointerInfo SrcPtrInfo) { 7284 // Emit a library call. 7285 TargetLowering::ArgListTy Args; 7286 TargetLowering::ArgListEntry Entry; 7287 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7288 Entry.Node = Dst; 7289 Args.push_back(Entry); 7290 7291 Entry.Node = Src; 7292 Args.push_back(Entry); 7293 7294 Entry.Ty = SizeTy; 7295 Entry.Node = Size; 7296 Args.push_back(Entry); 7297 7298 RTLIB::Libcall LibraryCall = 7299 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7300 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7301 report_fatal_error("Unsupported element size"); 7302 7303 TargetLowering::CallLoweringInfo CLI(*this); 7304 CLI.setDebugLoc(dl) 7305 .setChain(Chain) 7306 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7307 Type::getVoidTy(*getContext()), 7308 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7309 TLI->getPointerTy(getDataLayout())), 7310 std::move(Args)) 7311 .setDiscardResult() 7312 .setTailCall(isTailCall); 7313 7314 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7315 return CallResult.second; 7316 } 7317 7318 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7319 SDValue Src, SDValue Size, Align Alignment, 7320 bool isVol, bool AlwaysInline, bool isTailCall, 7321 MachinePointerInfo DstPtrInfo, 7322 const AAMDNodes &AAInfo) { 7323 // Check to see if we should lower the memset to stores first. 7324 // For cases within the target-specified limits, this is the best choice. 7325 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7326 if (ConstantSize) { 7327 // Memset with size zero? Just return the original chain. 7328 if (ConstantSize->isZero()) 7329 return Chain; 7330 7331 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7332 ConstantSize->getZExtValue(), Alignment, 7333 isVol, false, DstPtrInfo, AAInfo); 7334 7335 if (Result.getNode()) 7336 return Result; 7337 } 7338 7339 // Then check to see if we should lower the memset with target-specific 7340 // code. If the target chooses to do this, this is the next best. 7341 if (TSI) { 7342 SDValue Result = TSI->EmitTargetCodeForMemset( 7343 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo); 7344 if (Result.getNode()) 7345 return Result; 7346 } 7347 7348 // If we really need inline code and the target declined to provide it, 7349 // use a (potentially long) sequence of loads and stores. 7350 if (AlwaysInline) { 7351 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7352 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7353 ConstantSize->getZExtValue(), Alignment, 7354 isVol, true, DstPtrInfo, AAInfo); 7355 assert(Result && 7356 "getMemsetStores must return a valid sequence when AlwaysInline"); 7357 return Result; 7358 } 7359 7360 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7361 7362 // Emit a library call. 7363 auto &Ctx = *getContext(); 7364 const auto& DL = getDataLayout(); 7365 7366 TargetLowering::CallLoweringInfo CLI(*this); 7367 // FIXME: pass in SDLoc 7368 CLI.setDebugLoc(dl).setChain(Chain); 7369 7370 ConstantSDNode *ConstantSrc = dyn_cast<ConstantSDNode>(Src); 7371 const bool SrcIsZero = ConstantSrc && ConstantSrc->isZero(); 7372 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO); 7373 7374 // Helper function to create an Entry from Node and Type. 7375 const auto CreateEntry = [](SDValue Node, Type *Ty) { 7376 TargetLowering::ArgListEntry Entry; 7377 Entry.Node = Node; 7378 Entry.Ty = Ty; 7379 return Entry; 7380 }; 7381 7382 // If zeroing out and bzero is present, use it. 7383 if (SrcIsZero && BzeroName) { 7384 TargetLowering::ArgListTy Args; 7385 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7386 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7387 CLI.setLibCallee( 7388 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx), 7389 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args)); 7390 } else { 7391 TargetLowering::ArgListTy Args; 7392 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7393 Args.push_back(CreateEntry(Src, Src.getValueType().getTypeForEVT(Ctx))); 7394 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7395 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7396 Dst.getValueType().getTypeForEVT(Ctx), 7397 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7398 TLI->getPointerTy(DL)), 7399 std::move(Args)); 7400 } 7401 7402 CLI.setDiscardResult().setTailCall(isTailCall); 7403 7404 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7405 return CallResult.second; 7406 } 7407 7408 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7409 SDValue Dst, SDValue Value, SDValue Size, 7410 Type *SizeTy, unsigned ElemSz, 7411 bool isTailCall, 7412 MachinePointerInfo DstPtrInfo) { 7413 // Emit a library call. 7414 TargetLowering::ArgListTy Args; 7415 TargetLowering::ArgListEntry Entry; 7416 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7417 Entry.Node = Dst; 7418 Args.push_back(Entry); 7419 7420 Entry.Ty = Type::getInt8Ty(*getContext()); 7421 Entry.Node = Value; 7422 Args.push_back(Entry); 7423 7424 Entry.Ty = SizeTy; 7425 Entry.Node = Size; 7426 Args.push_back(Entry); 7427 7428 RTLIB::Libcall LibraryCall = 7429 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7430 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7431 report_fatal_error("Unsupported element size"); 7432 7433 TargetLowering::CallLoweringInfo CLI(*this); 7434 CLI.setDebugLoc(dl) 7435 .setChain(Chain) 7436 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7437 Type::getVoidTy(*getContext()), 7438 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7439 TLI->getPointerTy(getDataLayout())), 7440 std::move(Args)) 7441 .setDiscardResult() 7442 .setTailCall(isTailCall); 7443 7444 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7445 return CallResult.second; 7446 } 7447 7448 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7449 SDVTList VTList, ArrayRef<SDValue> Ops, 7450 MachineMemOperand *MMO) { 7451 FoldingSetNodeID ID; 7452 ID.AddInteger(MemVT.getRawBits()); 7453 AddNodeIDNode(ID, Opcode, VTList, Ops); 7454 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7455 ID.AddInteger(MMO->getFlags()); 7456 void* IP = nullptr; 7457 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7458 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7459 return SDValue(E, 0); 7460 } 7461 7462 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7463 VTList, MemVT, MMO); 7464 createOperands(N, Ops); 7465 7466 CSEMap.InsertNode(N, IP); 7467 InsertNode(N); 7468 return SDValue(N, 0); 7469 } 7470 7471 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7472 EVT MemVT, SDVTList VTs, SDValue Chain, 7473 SDValue Ptr, SDValue Cmp, SDValue Swp, 7474 MachineMemOperand *MMO) { 7475 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7476 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7477 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7478 7479 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7480 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7481 } 7482 7483 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7484 SDValue Chain, SDValue Ptr, SDValue Val, 7485 MachineMemOperand *MMO) { 7486 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7487 Opcode == ISD::ATOMIC_LOAD_SUB || 7488 Opcode == ISD::ATOMIC_LOAD_AND || 7489 Opcode == ISD::ATOMIC_LOAD_CLR || 7490 Opcode == ISD::ATOMIC_LOAD_OR || 7491 Opcode == ISD::ATOMIC_LOAD_XOR || 7492 Opcode == ISD::ATOMIC_LOAD_NAND || 7493 Opcode == ISD::ATOMIC_LOAD_MIN || 7494 Opcode == ISD::ATOMIC_LOAD_MAX || 7495 Opcode == ISD::ATOMIC_LOAD_UMIN || 7496 Opcode == ISD::ATOMIC_LOAD_UMAX || 7497 Opcode == ISD::ATOMIC_LOAD_FADD || 7498 Opcode == ISD::ATOMIC_LOAD_FSUB || 7499 Opcode == ISD::ATOMIC_SWAP || 7500 Opcode == ISD::ATOMIC_STORE) && 7501 "Invalid Atomic Op"); 7502 7503 EVT VT = Val.getValueType(); 7504 7505 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7506 getVTList(VT, MVT::Other); 7507 SDValue Ops[] = {Chain, Ptr, Val}; 7508 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7509 } 7510 7511 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7512 EVT VT, SDValue Chain, SDValue Ptr, 7513 MachineMemOperand *MMO) { 7514 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7515 7516 SDVTList VTs = getVTList(VT, MVT::Other); 7517 SDValue Ops[] = {Chain, Ptr}; 7518 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7519 } 7520 7521 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7522 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7523 if (Ops.size() == 1) 7524 return Ops[0]; 7525 7526 SmallVector<EVT, 4> VTs; 7527 VTs.reserve(Ops.size()); 7528 for (const SDValue &Op : Ops) 7529 VTs.push_back(Op.getValueType()); 7530 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7531 } 7532 7533 SDValue SelectionDAG::getMemIntrinsicNode( 7534 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7535 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7536 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7537 if (!Size && MemVT.isScalableVector()) 7538 Size = MemoryLocation::UnknownSize; 7539 else if (!Size) 7540 Size = MemVT.getStoreSize(); 7541 7542 MachineFunction &MF = getMachineFunction(); 7543 MachineMemOperand *MMO = 7544 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7545 7546 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7547 } 7548 7549 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7550 SDVTList VTList, 7551 ArrayRef<SDValue> Ops, EVT MemVT, 7552 MachineMemOperand *MMO) { 7553 assert((Opcode == ISD::INTRINSIC_VOID || 7554 Opcode == ISD::INTRINSIC_W_CHAIN || 7555 Opcode == ISD::PREFETCH || 7556 ((int)Opcode <= std::numeric_limits<int>::max() && 7557 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7558 "Opcode is not a memory-accessing opcode!"); 7559 7560 // Memoize the node unless it returns a flag. 7561 MemIntrinsicSDNode *N; 7562 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7563 FoldingSetNodeID ID; 7564 AddNodeIDNode(ID, Opcode, VTList, Ops); 7565 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7566 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7567 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7568 ID.AddInteger(MMO->getFlags()); 7569 void *IP = nullptr; 7570 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7571 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7572 return SDValue(E, 0); 7573 } 7574 7575 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7576 VTList, MemVT, MMO); 7577 createOperands(N, Ops); 7578 7579 CSEMap.InsertNode(N, IP); 7580 } else { 7581 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7582 VTList, MemVT, MMO); 7583 createOperands(N, Ops); 7584 } 7585 InsertNode(N); 7586 SDValue V(N, 0); 7587 NewSDValueDbgMsg(V, "Creating new node: ", this); 7588 return V; 7589 } 7590 7591 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7592 SDValue Chain, int FrameIndex, 7593 int64_t Size, int64_t Offset) { 7594 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7595 const auto VTs = getVTList(MVT::Other); 7596 SDValue Ops[2] = { 7597 Chain, 7598 getFrameIndex(FrameIndex, 7599 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7600 true)}; 7601 7602 FoldingSetNodeID ID; 7603 AddNodeIDNode(ID, Opcode, VTs, Ops); 7604 ID.AddInteger(FrameIndex); 7605 ID.AddInteger(Size); 7606 ID.AddInteger(Offset); 7607 void *IP = nullptr; 7608 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7609 return SDValue(E, 0); 7610 7611 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7612 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7613 createOperands(N, Ops); 7614 CSEMap.InsertNode(N, IP); 7615 InsertNode(N); 7616 SDValue V(N, 0); 7617 NewSDValueDbgMsg(V, "Creating new node: ", this); 7618 return V; 7619 } 7620 7621 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7622 uint64_t Guid, uint64_t Index, 7623 uint32_t Attr) { 7624 const unsigned Opcode = ISD::PSEUDO_PROBE; 7625 const auto VTs = getVTList(MVT::Other); 7626 SDValue Ops[] = {Chain}; 7627 FoldingSetNodeID ID; 7628 AddNodeIDNode(ID, Opcode, VTs, Ops); 7629 ID.AddInteger(Guid); 7630 ID.AddInteger(Index); 7631 void *IP = nullptr; 7632 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7633 return SDValue(E, 0); 7634 7635 auto *N = newSDNode<PseudoProbeSDNode>( 7636 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7637 createOperands(N, Ops); 7638 CSEMap.InsertNode(N, IP); 7639 InsertNode(N); 7640 SDValue V(N, 0); 7641 NewSDValueDbgMsg(V, "Creating new node: ", this); 7642 return V; 7643 } 7644 7645 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7646 /// MachinePointerInfo record from it. This is particularly useful because the 7647 /// code generator has many cases where it doesn't bother passing in a 7648 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7649 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7650 SelectionDAG &DAG, SDValue Ptr, 7651 int64_t Offset = 0) { 7652 // If this is FI+Offset, we can model it. 7653 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7654 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7655 FI->getIndex(), Offset); 7656 7657 // If this is (FI+Offset1)+Offset2, we can model it. 7658 if (Ptr.getOpcode() != ISD::ADD || 7659 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7660 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7661 return Info; 7662 7663 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7664 return MachinePointerInfo::getFixedStack( 7665 DAG.getMachineFunction(), FI, 7666 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7667 } 7668 7669 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7670 /// MachinePointerInfo record from it. This is particularly useful because the 7671 /// code generator has many cases where it doesn't bother passing in a 7672 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7673 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7674 SelectionDAG &DAG, SDValue Ptr, 7675 SDValue OffsetOp) { 7676 // If the 'Offset' value isn't a constant, we can't handle this. 7677 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7678 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7679 if (OffsetOp.isUndef()) 7680 return InferPointerInfo(Info, DAG, Ptr); 7681 return Info; 7682 } 7683 7684 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7685 EVT VT, const SDLoc &dl, SDValue Chain, 7686 SDValue Ptr, SDValue Offset, 7687 MachinePointerInfo PtrInfo, EVT MemVT, 7688 Align Alignment, 7689 MachineMemOperand::Flags MMOFlags, 7690 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7691 assert(Chain.getValueType() == MVT::Other && 7692 "Invalid chain type"); 7693 7694 MMOFlags |= MachineMemOperand::MOLoad; 7695 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7696 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7697 // clients. 7698 if (PtrInfo.V.isNull()) 7699 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7700 7701 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7702 MachineFunction &MF = getMachineFunction(); 7703 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7704 Alignment, AAInfo, Ranges); 7705 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7706 } 7707 7708 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7709 EVT VT, const SDLoc &dl, SDValue Chain, 7710 SDValue Ptr, SDValue Offset, EVT MemVT, 7711 MachineMemOperand *MMO) { 7712 if (VT == MemVT) { 7713 ExtType = ISD::NON_EXTLOAD; 7714 } else if (ExtType == ISD::NON_EXTLOAD) { 7715 assert(VT == MemVT && "Non-extending load from different memory type!"); 7716 } else { 7717 // Extending load. 7718 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7719 "Should only be an extending load, not truncating!"); 7720 assert(VT.isInteger() == MemVT.isInteger() && 7721 "Cannot convert from FP to Int or Int -> FP!"); 7722 assert(VT.isVector() == MemVT.isVector() && 7723 "Cannot use an ext load to convert to or from a vector!"); 7724 assert((!VT.isVector() || 7725 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7726 "Cannot use an ext load to change the number of vector elements!"); 7727 } 7728 7729 bool Indexed = AM != ISD::UNINDEXED; 7730 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7731 7732 SDVTList VTs = Indexed ? 7733 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7734 SDValue Ops[] = { Chain, Ptr, Offset }; 7735 FoldingSetNodeID ID; 7736 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7737 ID.AddInteger(MemVT.getRawBits()); 7738 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7739 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7740 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7741 ID.AddInteger(MMO->getFlags()); 7742 void *IP = nullptr; 7743 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7744 cast<LoadSDNode>(E)->refineAlignment(MMO); 7745 return SDValue(E, 0); 7746 } 7747 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7748 ExtType, MemVT, MMO); 7749 createOperands(N, Ops); 7750 7751 CSEMap.InsertNode(N, IP); 7752 InsertNode(N); 7753 SDValue V(N, 0); 7754 NewSDValueDbgMsg(V, "Creating new node: ", this); 7755 return V; 7756 } 7757 7758 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7759 SDValue Ptr, MachinePointerInfo PtrInfo, 7760 MaybeAlign Alignment, 7761 MachineMemOperand::Flags MMOFlags, 7762 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7763 SDValue Undef = getUNDEF(Ptr.getValueType()); 7764 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7765 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7766 } 7767 7768 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7769 SDValue Ptr, MachineMemOperand *MMO) { 7770 SDValue Undef = getUNDEF(Ptr.getValueType()); 7771 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7772 VT, MMO); 7773 } 7774 7775 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7776 EVT VT, SDValue Chain, SDValue Ptr, 7777 MachinePointerInfo PtrInfo, EVT MemVT, 7778 MaybeAlign Alignment, 7779 MachineMemOperand::Flags MMOFlags, 7780 const AAMDNodes &AAInfo) { 7781 SDValue Undef = getUNDEF(Ptr.getValueType()); 7782 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7783 MemVT, Alignment, MMOFlags, AAInfo); 7784 } 7785 7786 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7787 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7788 MachineMemOperand *MMO) { 7789 SDValue Undef = getUNDEF(Ptr.getValueType()); 7790 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7791 MemVT, MMO); 7792 } 7793 7794 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7795 SDValue Base, SDValue Offset, 7796 ISD::MemIndexedMode AM) { 7797 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7798 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7799 // Don't propagate the invariant or dereferenceable flags. 7800 auto MMOFlags = 7801 LD->getMemOperand()->getFlags() & 7802 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7803 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7804 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7805 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7806 } 7807 7808 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7809 SDValue Ptr, MachinePointerInfo PtrInfo, 7810 Align Alignment, 7811 MachineMemOperand::Flags MMOFlags, 7812 const AAMDNodes &AAInfo) { 7813 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7814 7815 MMOFlags |= MachineMemOperand::MOStore; 7816 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7817 7818 if (PtrInfo.V.isNull()) 7819 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7820 7821 MachineFunction &MF = getMachineFunction(); 7822 uint64_t Size = 7823 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7824 MachineMemOperand *MMO = 7825 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7826 return getStore(Chain, dl, Val, Ptr, MMO); 7827 } 7828 7829 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7830 SDValue Ptr, MachineMemOperand *MMO) { 7831 assert(Chain.getValueType() == MVT::Other && 7832 "Invalid chain type"); 7833 EVT VT = Val.getValueType(); 7834 SDVTList VTs = getVTList(MVT::Other); 7835 SDValue Undef = getUNDEF(Ptr.getValueType()); 7836 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7837 FoldingSetNodeID ID; 7838 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7839 ID.AddInteger(VT.getRawBits()); 7840 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7841 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7842 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7843 ID.AddInteger(MMO->getFlags()); 7844 void *IP = nullptr; 7845 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7846 cast<StoreSDNode>(E)->refineAlignment(MMO); 7847 return SDValue(E, 0); 7848 } 7849 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7850 ISD::UNINDEXED, false, VT, MMO); 7851 createOperands(N, Ops); 7852 7853 CSEMap.InsertNode(N, IP); 7854 InsertNode(N); 7855 SDValue V(N, 0); 7856 NewSDValueDbgMsg(V, "Creating new node: ", this); 7857 return V; 7858 } 7859 7860 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7861 SDValue Ptr, MachinePointerInfo PtrInfo, 7862 EVT SVT, Align Alignment, 7863 MachineMemOperand::Flags MMOFlags, 7864 const AAMDNodes &AAInfo) { 7865 assert(Chain.getValueType() == MVT::Other && 7866 "Invalid chain type"); 7867 7868 MMOFlags |= MachineMemOperand::MOStore; 7869 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7870 7871 if (PtrInfo.V.isNull()) 7872 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7873 7874 MachineFunction &MF = getMachineFunction(); 7875 MachineMemOperand *MMO = MF.getMachineMemOperand( 7876 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7877 Alignment, AAInfo); 7878 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7879 } 7880 7881 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7882 SDValue Ptr, EVT SVT, 7883 MachineMemOperand *MMO) { 7884 EVT VT = Val.getValueType(); 7885 7886 assert(Chain.getValueType() == MVT::Other && 7887 "Invalid chain type"); 7888 if (VT == SVT) 7889 return getStore(Chain, dl, Val, Ptr, MMO); 7890 7891 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7892 "Should only be a truncating store, not extending!"); 7893 assert(VT.isInteger() == SVT.isInteger() && 7894 "Can't do FP-INT conversion!"); 7895 assert(VT.isVector() == SVT.isVector() && 7896 "Cannot use trunc store to convert to or from a vector!"); 7897 assert((!VT.isVector() || 7898 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7899 "Cannot use trunc store to change the number of vector elements!"); 7900 7901 SDVTList VTs = getVTList(MVT::Other); 7902 SDValue Undef = getUNDEF(Ptr.getValueType()); 7903 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7904 FoldingSetNodeID ID; 7905 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7906 ID.AddInteger(SVT.getRawBits()); 7907 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7908 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7909 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7910 ID.AddInteger(MMO->getFlags()); 7911 void *IP = nullptr; 7912 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7913 cast<StoreSDNode>(E)->refineAlignment(MMO); 7914 return SDValue(E, 0); 7915 } 7916 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7917 ISD::UNINDEXED, true, SVT, MMO); 7918 createOperands(N, Ops); 7919 7920 CSEMap.InsertNode(N, IP); 7921 InsertNode(N); 7922 SDValue V(N, 0); 7923 NewSDValueDbgMsg(V, "Creating new node: ", this); 7924 return V; 7925 } 7926 7927 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7928 SDValue Base, SDValue Offset, 7929 ISD::MemIndexedMode AM) { 7930 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7931 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7932 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7933 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7934 FoldingSetNodeID ID; 7935 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7936 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7937 ID.AddInteger(ST->getRawSubclassData()); 7938 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7939 ID.AddInteger(ST->getMemOperand()->getFlags()); 7940 void *IP = nullptr; 7941 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7942 return SDValue(E, 0); 7943 7944 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7945 ST->isTruncatingStore(), ST->getMemoryVT(), 7946 ST->getMemOperand()); 7947 createOperands(N, Ops); 7948 7949 CSEMap.InsertNode(N, IP); 7950 InsertNode(N); 7951 SDValue V(N, 0); 7952 NewSDValueDbgMsg(V, "Creating new node: ", this); 7953 return V; 7954 } 7955 7956 SDValue SelectionDAG::getLoadVP( 7957 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7958 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7959 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7960 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7961 const MDNode *Ranges, bool IsExpanding) { 7962 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7963 7964 MMOFlags |= MachineMemOperand::MOLoad; 7965 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7966 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7967 // clients. 7968 if (PtrInfo.V.isNull()) 7969 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7970 7971 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7972 MachineFunction &MF = getMachineFunction(); 7973 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7974 Alignment, AAInfo, Ranges); 7975 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7976 MMO, IsExpanding); 7977 } 7978 7979 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7980 ISD::LoadExtType ExtType, EVT VT, 7981 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7982 SDValue Offset, SDValue Mask, SDValue EVL, 7983 EVT MemVT, MachineMemOperand *MMO, 7984 bool IsExpanding) { 7985 bool Indexed = AM != ISD::UNINDEXED; 7986 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7987 7988 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7989 : getVTList(VT, MVT::Other); 7990 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7991 FoldingSetNodeID ID; 7992 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7993 ID.AddInteger(VT.getRawBits()); 7994 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7995 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7996 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7997 ID.AddInteger(MMO->getFlags()); 7998 void *IP = nullptr; 7999 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8000 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 8001 return SDValue(E, 0); 8002 } 8003 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8004 ExtType, IsExpanding, MemVT, MMO); 8005 createOperands(N, Ops); 8006 8007 CSEMap.InsertNode(N, IP); 8008 InsertNode(N); 8009 SDValue V(N, 0); 8010 NewSDValueDbgMsg(V, "Creating new node: ", this); 8011 return V; 8012 } 8013 8014 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8015 SDValue Ptr, SDValue Mask, SDValue EVL, 8016 MachinePointerInfo PtrInfo, 8017 MaybeAlign Alignment, 8018 MachineMemOperand::Flags MMOFlags, 8019 const AAMDNodes &AAInfo, const MDNode *Ranges, 8020 bool IsExpanding) { 8021 SDValue Undef = getUNDEF(Ptr.getValueType()); 8022 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8023 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 8024 IsExpanding); 8025 } 8026 8027 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8028 SDValue Ptr, SDValue Mask, SDValue EVL, 8029 MachineMemOperand *MMO, bool IsExpanding) { 8030 SDValue Undef = getUNDEF(Ptr.getValueType()); 8031 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8032 Mask, EVL, VT, MMO, IsExpanding); 8033 } 8034 8035 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8036 EVT VT, SDValue Chain, SDValue Ptr, 8037 SDValue Mask, SDValue EVL, 8038 MachinePointerInfo PtrInfo, EVT MemVT, 8039 MaybeAlign Alignment, 8040 MachineMemOperand::Flags MMOFlags, 8041 const AAMDNodes &AAInfo, bool IsExpanding) { 8042 SDValue Undef = getUNDEF(Ptr.getValueType()); 8043 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8044 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 8045 IsExpanding); 8046 } 8047 8048 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8049 EVT VT, SDValue Chain, SDValue Ptr, 8050 SDValue Mask, SDValue EVL, EVT MemVT, 8051 MachineMemOperand *MMO, bool IsExpanding) { 8052 SDValue Undef = getUNDEF(Ptr.getValueType()); 8053 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8054 EVL, MemVT, MMO, IsExpanding); 8055 } 8056 8057 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 8058 SDValue Base, SDValue Offset, 8059 ISD::MemIndexedMode AM) { 8060 auto *LD = cast<VPLoadSDNode>(OrigLoad); 8061 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 8062 // Don't propagate the invariant or dereferenceable flags. 8063 auto MMOFlags = 8064 LD->getMemOperand()->getFlags() & 8065 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8066 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 8067 LD->getChain(), Base, Offset, LD->getMask(), 8068 LD->getVectorLength(), LD->getPointerInfo(), 8069 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 8070 nullptr, LD->isExpandingLoad()); 8071 } 8072 8073 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 8074 SDValue Ptr, SDValue Offset, SDValue Mask, 8075 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 8076 ISD::MemIndexedMode AM, bool IsTruncating, 8077 bool IsCompressing) { 8078 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8079 bool Indexed = AM != ISD::UNINDEXED; 8080 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8081 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8082 : getVTList(MVT::Other); 8083 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 8084 FoldingSetNodeID ID; 8085 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8086 ID.AddInteger(MemVT.getRawBits()); 8087 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8088 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8089 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8090 ID.AddInteger(MMO->getFlags()); 8091 void *IP = nullptr; 8092 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8093 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8094 return SDValue(E, 0); 8095 } 8096 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8097 IsTruncating, IsCompressing, MemVT, MMO); 8098 createOperands(N, Ops); 8099 8100 CSEMap.InsertNode(N, IP); 8101 InsertNode(N); 8102 SDValue V(N, 0); 8103 NewSDValueDbgMsg(V, "Creating new node: ", this); 8104 return V; 8105 } 8106 8107 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8108 SDValue Val, SDValue Ptr, SDValue Mask, 8109 SDValue EVL, MachinePointerInfo PtrInfo, 8110 EVT SVT, Align Alignment, 8111 MachineMemOperand::Flags MMOFlags, 8112 const AAMDNodes &AAInfo, 8113 bool IsCompressing) { 8114 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8115 8116 MMOFlags |= MachineMemOperand::MOStore; 8117 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8118 8119 if (PtrInfo.V.isNull()) 8120 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8121 8122 MachineFunction &MF = getMachineFunction(); 8123 MachineMemOperand *MMO = MF.getMachineMemOperand( 8124 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 8125 Alignment, AAInfo); 8126 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 8127 IsCompressing); 8128 } 8129 8130 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8131 SDValue Val, SDValue Ptr, SDValue Mask, 8132 SDValue EVL, EVT SVT, 8133 MachineMemOperand *MMO, 8134 bool IsCompressing) { 8135 EVT VT = Val.getValueType(); 8136 8137 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8138 if (VT == SVT) 8139 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 8140 EVL, VT, MMO, ISD::UNINDEXED, 8141 /*IsTruncating*/ false, IsCompressing); 8142 8143 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8144 "Should only be a truncating store, not extending!"); 8145 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8146 assert(VT.isVector() == SVT.isVector() && 8147 "Cannot use trunc store to convert to or from a vector!"); 8148 assert((!VT.isVector() || 8149 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8150 "Cannot use trunc store to change the number of vector elements!"); 8151 8152 SDVTList VTs = getVTList(MVT::Other); 8153 SDValue Undef = getUNDEF(Ptr.getValueType()); 8154 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 8155 FoldingSetNodeID ID; 8156 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8157 ID.AddInteger(SVT.getRawBits()); 8158 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8159 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8160 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8161 ID.AddInteger(MMO->getFlags()); 8162 void *IP = nullptr; 8163 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8164 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8165 return SDValue(E, 0); 8166 } 8167 auto *N = 8168 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8169 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 8170 createOperands(N, Ops); 8171 8172 CSEMap.InsertNode(N, IP); 8173 InsertNode(N); 8174 SDValue V(N, 0); 8175 NewSDValueDbgMsg(V, "Creating new node: ", this); 8176 return V; 8177 } 8178 8179 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 8180 SDValue Base, SDValue Offset, 8181 ISD::MemIndexedMode AM) { 8182 auto *ST = cast<VPStoreSDNode>(OrigStore); 8183 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 8184 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8185 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 8186 Offset, ST->getMask(), ST->getVectorLength()}; 8187 FoldingSetNodeID ID; 8188 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8189 ID.AddInteger(ST->getMemoryVT().getRawBits()); 8190 ID.AddInteger(ST->getRawSubclassData()); 8191 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 8192 ID.AddInteger(ST->getMemOperand()->getFlags()); 8193 void *IP = nullptr; 8194 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8195 return SDValue(E, 0); 8196 8197 auto *N = newSDNode<VPStoreSDNode>( 8198 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 8199 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 8200 createOperands(N, Ops); 8201 8202 CSEMap.InsertNode(N, IP); 8203 InsertNode(N); 8204 SDValue V(N, 0); 8205 NewSDValueDbgMsg(V, "Creating new node: ", this); 8206 return V; 8207 } 8208 8209 SDValue SelectionDAG::getStridedLoadVP( 8210 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8211 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8212 SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 8213 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8214 const MDNode *Ranges, bool IsExpanding) { 8215 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8216 8217 MMOFlags |= MachineMemOperand::MOLoad; 8218 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 8219 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 8220 // clients. 8221 if (PtrInfo.V.isNull()) 8222 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 8223 8224 uint64_t Size = MemoryLocation::UnknownSize; 8225 MachineFunction &MF = getMachineFunction(); 8226 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8227 Alignment, AAInfo, Ranges); 8228 return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask, 8229 EVL, MemVT, MMO, IsExpanding); 8230 } 8231 8232 SDValue SelectionDAG::getStridedLoadVP( 8233 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8234 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8235 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) { 8236 bool Indexed = AM != ISD::UNINDEXED; 8237 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8238 8239 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL}; 8240 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8241 : getVTList(VT, MVT::Other); 8242 FoldingSetNodeID ID; 8243 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops); 8244 ID.AddInteger(VT.getRawBits()); 8245 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>( 8246 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8247 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8248 8249 void *IP = nullptr; 8250 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8251 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO); 8252 return SDValue(E, 0); 8253 } 8254 8255 auto *N = 8256 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM, 8257 ExtType, IsExpanding, MemVT, MMO); 8258 createOperands(N, Ops); 8259 CSEMap.InsertNode(N, IP); 8260 InsertNode(N); 8261 SDValue V(N, 0); 8262 NewSDValueDbgMsg(V, "Creating new node: ", this); 8263 return V; 8264 } 8265 8266 SDValue SelectionDAG::getStridedLoadVP( 8267 EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride, 8268 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment, 8269 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8270 const MDNode *Ranges, bool IsExpanding) { 8271 SDValue Undef = getUNDEF(Ptr.getValueType()); 8272 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8273 Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment, 8274 MMOFlags, AAInfo, Ranges, IsExpanding); 8275 } 8276 8277 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, 8278 SDValue Ptr, SDValue Stride, 8279 SDValue Mask, SDValue EVL, 8280 MachineMemOperand *MMO, 8281 bool IsExpanding) { 8282 SDValue Undef = getUNDEF(Ptr.getValueType()); 8283 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8284 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding); 8285 } 8286 8287 SDValue SelectionDAG::getExtStridedLoadVP( 8288 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8289 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, 8290 MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, 8291 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8292 bool IsExpanding) { 8293 SDValue Undef = getUNDEF(Ptr.getValueType()); 8294 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8295 Stride, Mask, EVL, PtrInfo, MemVT, Alignment, 8296 MMOFlags, AAInfo, nullptr, IsExpanding); 8297 } 8298 8299 SDValue SelectionDAG::getExtStridedLoadVP( 8300 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8301 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, 8302 MachineMemOperand *MMO, bool IsExpanding) { 8303 SDValue Undef = getUNDEF(Ptr.getValueType()); 8304 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8305 Stride, Mask, EVL, MemVT, MMO, IsExpanding); 8306 } 8307 8308 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL, 8309 SDValue Base, SDValue Offset, 8310 ISD::MemIndexedMode AM) { 8311 auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad); 8312 assert(SLD->getOffset().isUndef() && 8313 "Strided load is already a indexed load!"); 8314 // Don't propagate the invariant or dereferenceable flags. 8315 auto MMOFlags = 8316 SLD->getMemOperand()->getFlags() & 8317 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8318 return getStridedLoadVP( 8319 AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(), 8320 Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(), 8321 SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags, 8322 SLD->getAAInfo(), nullptr, SLD->isExpandingLoad()); 8323 } 8324 8325 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL, 8326 SDValue Val, SDValue Ptr, 8327 SDValue Offset, SDValue Stride, 8328 SDValue Mask, SDValue EVL, EVT MemVT, 8329 MachineMemOperand *MMO, 8330 ISD::MemIndexedMode AM, 8331 bool IsTruncating, bool IsCompressing) { 8332 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8333 bool Indexed = AM != ISD::UNINDEXED; 8334 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8335 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8336 : getVTList(MVT::Other); 8337 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL}; 8338 FoldingSetNodeID ID; 8339 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8340 ID.AddInteger(MemVT.getRawBits()); 8341 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8342 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8343 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8344 void *IP = nullptr; 8345 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8346 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8347 return SDValue(E, 0); 8348 } 8349 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8350 VTs, AM, IsTruncating, 8351 IsCompressing, MemVT, MMO); 8352 createOperands(N, Ops); 8353 8354 CSEMap.InsertNode(N, IP); 8355 InsertNode(N); 8356 SDValue V(N, 0); 8357 NewSDValueDbgMsg(V, "Creating new node: ", this); 8358 return V; 8359 } 8360 8361 SDValue SelectionDAG::getTruncStridedStoreVP( 8362 SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, 8363 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, 8364 Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8365 bool IsCompressing) { 8366 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8367 8368 MMOFlags |= MachineMemOperand::MOStore; 8369 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8370 8371 if (PtrInfo.V.isNull()) 8372 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8373 8374 MachineFunction &MF = getMachineFunction(); 8375 MachineMemOperand *MMO = MF.getMachineMemOperand( 8376 PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo); 8377 return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT, 8378 MMO, IsCompressing); 8379 } 8380 8381 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, 8382 SDValue Val, SDValue Ptr, 8383 SDValue Stride, SDValue Mask, 8384 SDValue EVL, EVT SVT, 8385 MachineMemOperand *MMO, 8386 bool IsCompressing) { 8387 EVT VT = Val.getValueType(); 8388 8389 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8390 if (VT == SVT) 8391 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()), 8392 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED, 8393 /*IsTruncating*/ false, IsCompressing); 8394 8395 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8396 "Should only be a truncating store, not extending!"); 8397 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8398 assert(VT.isVector() == SVT.isVector() && 8399 "Cannot use trunc store to convert to or from a vector!"); 8400 assert((!VT.isVector() || 8401 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8402 "Cannot use trunc store to change the number of vector elements!"); 8403 8404 SDVTList VTs = getVTList(MVT::Other); 8405 SDValue Undef = getUNDEF(Ptr.getValueType()); 8406 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL}; 8407 FoldingSetNodeID ID; 8408 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8409 ID.AddInteger(SVT.getRawBits()); 8410 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8411 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8412 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8413 void *IP = nullptr; 8414 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8415 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8416 return SDValue(E, 0); 8417 } 8418 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8419 VTs, ISD::UNINDEXED, true, 8420 IsCompressing, SVT, MMO); 8421 createOperands(N, Ops); 8422 8423 CSEMap.InsertNode(N, IP); 8424 InsertNode(N); 8425 SDValue V(N, 0); 8426 NewSDValueDbgMsg(V, "Creating new node: ", this); 8427 return V; 8428 } 8429 8430 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore, 8431 const SDLoc &DL, SDValue Base, 8432 SDValue Offset, 8433 ISD::MemIndexedMode AM) { 8434 auto *SST = cast<VPStridedStoreSDNode>(OrigStore); 8435 assert(SST->getOffset().isUndef() && 8436 "Strided store is already an indexed store!"); 8437 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8438 SDValue Ops[] = { 8439 SST->getChain(), SST->getValue(), Base, Offset, SST->getStride(), 8440 SST->getMask(), SST->getVectorLength()}; 8441 FoldingSetNodeID ID; 8442 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8443 ID.AddInteger(SST->getMemoryVT().getRawBits()); 8444 ID.AddInteger(SST->getRawSubclassData()); 8445 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 8446 void *IP = nullptr; 8447 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8448 return SDValue(E, 0); 8449 8450 auto *N = newSDNode<VPStridedStoreSDNode>( 8451 DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(), 8452 SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand()); 8453 createOperands(N, Ops); 8454 8455 CSEMap.InsertNode(N, IP); 8456 InsertNode(N); 8457 SDValue V(N, 0); 8458 NewSDValueDbgMsg(V, "Creating new node: ", this); 8459 return V; 8460 } 8461 8462 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8463 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 8464 ISD::MemIndexType IndexType) { 8465 assert(Ops.size() == 6 && "Incompatible number of operands"); 8466 8467 FoldingSetNodeID ID; 8468 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 8469 ID.AddInteger(VT.getRawBits()); 8470 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 8471 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8472 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8473 ID.AddInteger(MMO->getFlags()); 8474 void *IP = nullptr; 8475 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8476 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 8477 return SDValue(E, 0); 8478 } 8479 8480 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8481 VT, MMO, IndexType); 8482 createOperands(N, Ops); 8483 8484 assert(N->getMask().getValueType().getVectorElementCount() == 8485 N->getValueType(0).getVectorElementCount() && 8486 "Vector width mismatch between mask and data"); 8487 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8488 N->getValueType(0).getVectorElementCount().isScalable() && 8489 "Scalable flags of index and data do not match"); 8490 assert(ElementCount::isKnownGE( 8491 N->getIndex().getValueType().getVectorElementCount(), 8492 N->getValueType(0).getVectorElementCount()) && 8493 "Vector width mismatch between index and data"); 8494 assert(isa<ConstantSDNode>(N->getScale()) && 8495 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8496 "Scale should be a constant power of 2"); 8497 8498 CSEMap.InsertNode(N, IP); 8499 InsertNode(N); 8500 SDValue V(N, 0); 8501 NewSDValueDbgMsg(V, "Creating new node: ", this); 8502 return V; 8503 } 8504 8505 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8506 ArrayRef<SDValue> Ops, 8507 MachineMemOperand *MMO, 8508 ISD::MemIndexType IndexType) { 8509 assert(Ops.size() == 7 && "Incompatible number of operands"); 8510 8511 FoldingSetNodeID ID; 8512 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8513 ID.AddInteger(VT.getRawBits()); 8514 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8515 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8516 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8517 ID.AddInteger(MMO->getFlags()); 8518 void *IP = nullptr; 8519 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8520 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8521 return SDValue(E, 0); 8522 } 8523 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8524 VT, MMO, IndexType); 8525 createOperands(N, Ops); 8526 8527 assert(N->getMask().getValueType().getVectorElementCount() == 8528 N->getValue().getValueType().getVectorElementCount() && 8529 "Vector width mismatch between mask and data"); 8530 assert( 8531 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8532 N->getValue().getValueType().getVectorElementCount().isScalable() && 8533 "Scalable flags of index and data do not match"); 8534 assert(ElementCount::isKnownGE( 8535 N->getIndex().getValueType().getVectorElementCount(), 8536 N->getValue().getValueType().getVectorElementCount()) && 8537 "Vector width mismatch between index and data"); 8538 assert(isa<ConstantSDNode>(N->getScale()) && 8539 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8540 "Scale should be a constant power of 2"); 8541 8542 CSEMap.InsertNode(N, IP); 8543 InsertNode(N); 8544 SDValue V(N, 0); 8545 NewSDValueDbgMsg(V, "Creating new node: ", this); 8546 return V; 8547 } 8548 8549 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8550 SDValue Base, SDValue Offset, SDValue Mask, 8551 SDValue PassThru, EVT MemVT, 8552 MachineMemOperand *MMO, 8553 ISD::MemIndexedMode AM, 8554 ISD::LoadExtType ExtTy, bool isExpanding) { 8555 bool Indexed = AM != ISD::UNINDEXED; 8556 assert((Indexed || Offset.isUndef()) && 8557 "Unindexed masked load with an offset!"); 8558 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8559 : getVTList(VT, MVT::Other); 8560 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8561 FoldingSetNodeID ID; 8562 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8563 ID.AddInteger(MemVT.getRawBits()); 8564 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8565 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8566 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8567 ID.AddInteger(MMO->getFlags()); 8568 void *IP = nullptr; 8569 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8570 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8571 return SDValue(E, 0); 8572 } 8573 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8574 AM, ExtTy, isExpanding, MemVT, MMO); 8575 createOperands(N, Ops); 8576 8577 CSEMap.InsertNode(N, IP); 8578 InsertNode(N); 8579 SDValue V(N, 0); 8580 NewSDValueDbgMsg(V, "Creating new node: ", this); 8581 return V; 8582 } 8583 8584 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8585 SDValue Base, SDValue Offset, 8586 ISD::MemIndexedMode AM) { 8587 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8588 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8589 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8590 Offset, LD->getMask(), LD->getPassThru(), 8591 LD->getMemoryVT(), LD->getMemOperand(), AM, 8592 LD->getExtensionType(), LD->isExpandingLoad()); 8593 } 8594 8595 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8596 SDValue Val, SDValue Base, SDValue Offset, 8597 SDValue Mask, EVT MemVT, 8598 MachineMemOperand *MMO, 8599 ISD::MemIndexedMode AM, bool IsTruncating, 8600 bool IsCompressing) { 8601 assert(Chain.getValueType() == MVT::Other && 8602 "Invalid chain type"); 8603 bool Indexed = AM != ISD::UNINDEXED; 8604 assert((Indexed || Offset.isUndef()) && 8605 "Unindexed masked store with an offset!"); 8606 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8607 : getVTList(MVT::Other); 8608 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8609 FoldingSetNodeID ID; 8610 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8611 ID.AddInteger(MemVT.getRawBits()); 8612 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8613 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8614 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8615 ID.AddInteger(MMO->getFlags()); 8616 void *IP = nullptr; 8617 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8618 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8619 return SDValue(E, 0); 8620 } 8621 auto *N = 8622 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8623 IsTruncating, IsCompressing, MemVT, MMO); 8624 createOperands(N, Ops); 8625 8626 CSEMap.InsertNode(N, IP); 8627 InsertNode(N); 8628 SDValue V(N, 0); 8629 NewSDValueDbgMsg(V, "Creating new node: ", this); 8630 return V; 8631 } 8632 8633 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8634 SDValue Base, SDValue Offset, 8635 ISD::MemIndexedMode AM) { 8636 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8637 assert(ST->getOffset().isUndef() && 8638 "Masked store is already a indexed store!"); 8639 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8640 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8641 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8642 } 8643 8644 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8645 ArrayRef<SDValue> Ops, 8646 MachineMemOperand *MMO, 8647 ISD::MemIndexType IndexType, 8648 ISD::LoadExtType ExtTy) { 8649 assert(Ops.size() == 6 && "Incompatible number of operands"); 8650 8651 FoldingSetNodeID ID; 8652 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8653 ID.AddInteger(MemVT.getRawBits()); 8654 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8655 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8656 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8657 ID.AddInteger(MMO->getFlags()); 8658 void *IP = nullptr; 8659 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8660 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8661 return SDValue(E, 0); 8662 } 8663 8664 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8665 VTs, MemVT, MMO, IndexType, ExtTy); 8666 createOperands(N, Ops); 8667 8668 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8669 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8670 assert(N->getMask().getValueType().getVectorElementCount() == 8671 N->getValueType(0).getVectorElementCount() && 8672 "Vector width mismatch between mask and data"); 8673 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8674 N->getValueType(0).getVectorElementCount().isScalable() && 8675 "Scalable flags of index and data do not match"); 8676 assert(ElementCount::isKnownGE( 8677 N->getIndex().getValueType().getVectorElementCount(), 8678 N->getValueType(0).getVectorElementCount()) && 8679 "Vector width mismatch between index and data"); 8680 assert(isa<ConstantSDNode>(N->getScale()) && 8681 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8682 "Scale should be a constant power of 2"); 8683 8684 CSEMap.InsertNode(N, IP); 8685 InsertNode(N); 8686 SDValue V(N, 0); 8687 NewSDValueDbgMsg(V, "Creating new node: ", this); 8688 return V; 8689 } 8690 8691 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8692 ArrayRef<SDValue> Ops, 8693 MachineMemOperand *MMO, 8694 ISD::MemIndexType IndexType, 8695 bool IsTrunc) { 8696 assert(Ops.size() == 6 && "Incompatible number of operands"); 8697 8698 FoldingSetNodeID ID; 8699 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8700 ID.AddInteger(MemVT.getRawBits()); 8701 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8702 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8703 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8704 ID.AddInteger(MMO->getFlags()); 8705 void *IP = nullptr; 8706 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8707 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8708 return SDValue(E, 0); 8709 } 8710 8711 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8712 VTs, MemVT, MMO, IndexType, IsTrunc); 8713 createOperands(N, Ops); 8714 8715 assert(N->getMask().getValueType().getVectorElementCount() == 8716 N->getValue().getValueType().getVectorElementCount() && 8717 "Vector width mismatch between mask and data"); 8718 assert( 8719 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8720 N->getValue().getValueType().getVectorElementCount().isScalable() && 8721 "Scalable flags of index and data do not match"); 8722 assert(ElementCount::isKnownGE( 8723 N->getIndex().getValueType().getVectorElementCount(), 8724 N->getValue().getValueType().getVectorElementCount()) && 8725 "Vector width mismatch between index and data"); 8726 assert(isa<ConstantSDNode>(N->getScale()) && 8727 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8728 "Scale should be a constant power of 2"); 8729 8730 CSEMap.InsertNode(N, IP); 8731 InsertNode(N); 8732 SDValue V(N, 0); 8733 NewSDValueDbgMsg(V, "Creating new node: ", this); 8734 return V; 8735 } 8736 8737 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8738 // select undef, T, F --> T (if T is a constant), otherwise F 8739 // select, ?, undef, F --> F 8740 // select, ?, T, undef --> T 8741 if (Cond.isUndef()) 8742 return isConstantValueOfAnyType(T) ? T : F; 8743 if (T.isUndef()) 8744 return F; 8745 if (F.isUndef()) 8746 return T; 8747 8748 // select true, T, F --> T 8749 // select false, T, F --> F 8750 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8751 return CondC->isZero() ? F : T; 8752 8753 // TODO: This should simplify VSELECT with constant condition using something 8754 // like this (but check boolean contents to be complete?): 8755 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8756 // return T; 8757 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8758 // return F; 8759 8760 // select ?, T, T --> T 8761 if (T == F) 8762 return T; 8763 8764 return SDValue(); 8765 } 8766 8767 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8768 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8769 if (X.isUndef()) 8770 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8771 // shift X, undef --> undef (because it may shift by the bitwidth) 8772 if (Y.isUndef()) 8773 return getUNDEF(X.getValueType()); 8774 8775 // shift 0, Y --> 0 8776 // shift X, 0 --> X 8777 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8778 return X; 8779 8780 // shift X, C >= bitwidth(X) --> undef 8781 // All vector elements must be too big (or undef) to avoid partial undefs. 8782 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8783 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8784 }; 8785 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8786 return getUNDEF(X.getValueType()); 8787 8788 return SDValue(); 8789 } 8790 8791 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8792 SDNodeFlags Flags) { 8793 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8794 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8795 // operation is poison. That result can be relaxed to undef. 8796 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8797 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8798 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8799 (YC && YC->getValueAPF().isNaN()); 8800 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8801 (YC && YC->getValueAPF().isInfinity()); 8802 8803 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8804 return getUNDEF(X.getValueType()); 8805 8806 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8807 return getUNDEF(X.getValueType()); 8808 8809 if (!YC) 8810 return SDValue(); 8811 8812 // X + -0.0 --> X 8813 if (Opcode == ISD::FADD) 8814 if (YC->getValueAPF().isNegZero()) 8815 return X; 8816 8817 // X - +0.0 --> X 8818 if (Opcode == ISD::FSUB) 8819 if (YC->getValueAPF().isPosZero()) 8820 return X; 8821 8822 // X * 1.0 --> X 8823 // X / 1.0 --> X 8824 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8825 if (YC->getValueAPF().isExactlyValue(1.0)) 8826 return X; 8827 8828 // X * 0.0 --> 0.0 8829 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8830 if (YC->getValueAPF().isZero()) 8831 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8832 8833 return SDValue(); 8834 } 8835 8836 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8837 SDValue Ptr, SDValue SV, unsigned Align) { 8838 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8839 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8840 } 8841 8842 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8843 ArrayRef<SDUse> Ops) { 8844 switch (Ops.size()) { 8845 case 0: return getNode(Opcode, DL, VT); 8846 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8847 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8848 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8849 default: break; 8850 } 8851 8852 // Copy from an SDUse array into an SDValue array for use with 8853 // the regular getNode logic. 8854 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8855 return getNode(Opcode, DL, VT, NewOps); 8856 } 8857 8858 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8859 ArrayRef<SDValue> Ops) { 8860 SDNodeFlags Flags; 8861 if (Inserter) 8862 Flags = Inserter->getFlags(); 8863 return getNode(Opcode, DL, VT, Ops, Flags); 8864 } 8865 8866 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8867 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8868 unsigned NumOps = Ops.size(); 8869 switch (NumOps) { 8870 case 0: return getNode(Opcode, DL, VT); 8871 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8872 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8873 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8874 default: break; 8875 } 8876 8877 #ifndef NDEBUG 8878 for (auto &Op : Ops) 8879 assert(Op.getOpcode() != ISD::DELETED_NODE && 8880 "Operand is DELETED_NODE!"); 8881 #endif 8882 8883 switch (Opcode) { 8884 default: break; 8885 case ISD::BUILD_VECTOR: 8886 // Attempt to simplify BUILD_VECTOR. 8887 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8888 return V; 8889 break; 8890 case ISD::CONCAT_VECTORS: 8891 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8892 return V; 8893 break; 8894 case ISD::SELECT_CC: 8895 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8896 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8897 "LHS and RHS of condition must have same type!"); 8898 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8899 "True and False arms of SelectCC must have same type!"); 8900 assert(Ops[2].getValueType() == VT && 8901 "select_cc node must be of same type as true and false value!"); 8902 break; 8903 case ISD::BR_CC: 8904 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8905 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8906 "LHS/RHS of comparison should match types!"); 8907 break; 8908 case ISD::VP_ADD: 8909 case ISD::VP_SUB: 8910 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR 8911 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8912 Opcode = ISD::VP_XOR; 8913 break; 8914 case ISD::VP_MUL: 8915 // If it is VP_MUL mask operation then turn it to VP_AND 8916 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8917 Opcode = ISD::VP_AND; 8918 break; 8919 case ISD::VP_REDUCE_MUL: 8920 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND 8921 if (VT == MVT::i1) 8922 Opcode = ISD::VP_REDUCE_AND; 8923 break; 8924 case ISD::VP_REDUCE_ADD: 8925 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR 8926 if (VT == MVT::i1) 8927 Opcode = ISD::VP_REDUCE_XOR; 8928 break; 8929 case ISD::VP_REDUCE_SMAX: 8930 case ISD::VP_REDUCE_UMIN: 8931 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to 8932 // VP_REDUCE_AND. 8933 if (VT == MVT::i1) 8934 Opcode = ISD::VP_REDUCE_AND; 8935 break; 8936 case ISD::VP_REDUCE_SMIN: 8937 case ISD::VP_REDUCE_UMAX: 8938 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to 8939 // VP_REDUCE_OR. 8940 if (VT == MVT::i1) 8941 Opcode = ISD::VP_REDUCE_OR; 8942 break; 8943 } 8944 8945 // Memoize nodes. 8946 SDNode *N; 8947 SDVTList VTs = getVTList(VT); 8948 8949 if (VT != MVT::Glue) { 8950 FoldingSetNodeID ID; 8951 AddNodeIDNode(ID, Opcode, VTs, Ops); 8952 void *IP = nullptr; 8953 8954 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8955 return SDValue(E, 0); 8956 8957 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8958 createOperands(N, Ops); 8959 8960 CSEMap.InsertNode(N, IP); 8961 } else { 8962 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8963 createOperands(N, Ops); 8964 } 8965 8966 N->setFlags(Flags); 8967 InsertNode(N); 8968 SDValue V(N, 0); 8969 NewSDValueDbgMsg(V, "Creating new node: ", this); 8970 return V; 8971 } 8972 8973 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8974 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8975 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8976 } 8977 8978 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8979 ArrayRef<SDValue> Ops) { 8980 SDNodeFlags Flags; 8981 if (Inserter) 8982 Flags = Inserter->getFlags(); 8983 return getNode(Opcode, DL, VTList, Ops, Flags); 8984 } 8985 8986 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8987 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8988 if (VTList.NumVTs == 1) 8989 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags); 8990 8991 #ifndef NDEBUG 8992 for (auto &Op : Ops) 8993 assert(Op.getOpcode() != ISD::DELETED_NODE && 8994 "Operand is DELETED_NODE!"); 8995 #endif 8996 8997 switch (Opcode) { 8998 case ISD::STRICT_FP_EXTEND: 8999 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 9000 "Invalid STRICT_FP_EXTEND!"); 9001 assert(VTList.VTs[0].isFloatingPoint() && 9002 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 9003 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9004 "STRICT_FP_EXTEND result type should be vector iff the operand " 9005 "type is vector!"); 9006 assert((!VTList.VTs[0].isVector() || 9007 VTList.VTs[0].getVectorNumElements() == 9008 Ops[1].getValueType().getVectorNumElements()) && 9009 "Vector element count mismatch!"); 9010 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 9011 "Invalid fpext node, dst <= src!"); 9012 break; 9013 case ISD::STRICT_FP_ROUND: 9014 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 9015 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9016 "STRICT_FP_ROUND result type should be vector iff the operand " 9017 "type is vector!"); 9018 assert((!VTList.VTs[0].isVector() || 9019 VTList.VTs[0].getVectorNumElements() == 9020 Ops[1].getValueType().getVectorNumElements()) && 9021 "Vector element count mismatch!"); 9022 assert(VTList.VTs[0].isFloatingPoint() && 9023 Ops[1].getValueType().isFloatingPoint() && 9024 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 9025 isa<ConstantSDNode>(Ops[2]) && 9026 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 9027 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 9028 "Invalid STRICT_FP_ROUND!"); 9029 break; 9030 #if 0 9031 // FIXME: figure out how to safely handle things like 9032 // int foo(int x) { return 1 << (x & 255); } 9033 // int bar() { return foo(256); } 9034 case ISD::SRA_PARTS: 9035 case ISD::SRL_PARTS: 9036 case ISD::SHL_PARTS: 9037 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 9038 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 9039 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9040 else if (N3.getOpcode() == ISD::AND) 9041 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 9042 // If the and is only masking out bits that cannot effect the shift, 9043 // eliminate the and. 9044 unsigned NumBits = VT.getScalarSizeInBits()*2; 9045 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 9046 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9047 } 9048 break; 9049 #endif 9050 } 9051 9052 // Memoize the node unless it returns a flag. 9053 SDNode *N; 9054 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 9055 FoldingSetNodeID ID; 9056 AddNodeIDNode(ID, Opcode, VTList, Ops); 9057 void *IP = nullptr; 9058 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 9059 return SDValue(E, 0); 9060 9061 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9062 createOperands(N, Ops); 9063 CSEMap.InsertNode(N, IP); 9064 } else { 9065 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9066 createOperands(N, Ops); 9067 } 9068 9069 N->setFlags(Flags); 9070 InsertNode(N); 9071 SDValue V(N, 0); 9072 NewSDValueDbgMsg(V, "Creating new node: ", this); 9073 return V; 9074 } 9075 9076 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 9077 SDVTList VTList) { 9078 return getNode(Opcode, DL, VTList, None); 9079 } 9080 9081 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9082 SDValue N1) { 9083 SDValue Ops[] = { N1 }; 9084 return getNode(Opcode, DL, VTList, Ops); 9085 } 9086 9087 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9088 SDValue N1, SDValue N2) { 9089 SDValue Ops[] = { N1, N2 }; 9090 return getNode(Opcode, DL, VTList, Ops); 9091 } 9092 9093 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9094 SDValue N1, SDValue N2, SDValue N3) { 9095 SDValue Ops[] = { N1, N2, N3 }; 9096 return getNode(Opcode, DL, VTList, Ops); 9097 } 9098 9099 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9100 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 9101 SDValue Ops[] = { N1, N2, N3, N4 }; 9102 return getNode(Opcode, DL, VTList, Ops); 9103 } 9104 9105 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9106 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 9107 SDValue N5) { 9108 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 9109 return getNode(Opcode, DL, VTList, Ops); 9110 } 9111 9112 SDVTList SelectionDAG::getVTList(EVT VT) { 9113 return makeVTList(SDNode::getValueTypeList(VT), 1); 9114 } 9115 9116 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 9117 FoldingSetNodeID ID; 9118 ID.AddInteger(2U); 9119 ID.AddInteger(VT1.getRawBits()); 9120 ID.AddInteger(VT2.getRawBits()); 9121 9122 void *IP = nullptr; 9123 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9124 if (!Result) { 9125 EVT *Array = Allocator.Allocate<EVT>(2); 9126 Array[0] = VT1; 9127 Array[1] = VT2; 9128 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 9129 VTListMap.InsertNode(Result, IP); 9130 } 9131 return Result->getSDVTList(); 9132 } 9133 9134 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 9135 FoldingSetNodeID ID; 9136 ID.AddInteger(3U); 9137 ID.AddInteger(VT1.getRawBits()); 9138 ID.AddInteger(VT2.getRawBits()); 9139 ID.AddInteger(VT3.getRawBits()); 9140 9141 void *IP = nullptr; 9142 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9143 if (!Result) { 9144 EVT *Array = Allocator.Allocate<EVT>(3); 9145 Array[0] = VT1; 9146 Array[1] = VT2; 9147 Array[2] = VT3; 9148 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 9149 VTListMap.InsertNode(Result, IP); 9150 } 9151 return Result->getSDVTList(); 9152 } 9153 9154 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 9155 FoldingSetNodeID ID; 9156 ID.AddInteger(4U); 9157 ID.AddInteger(VT1.getRawBits()); 9158 ID.AddInteger(VT2.getRawBits()); 9159 ID.AddInteger(VT3.getRawBits()); 9160 ID.AddInteger(VT4.getRawBits()); 9161 9162 void *IP = nullptr; 9163 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9164 if (!Result) { 9165 EVT *Array = Allocator.Allocate<EVT>(4); 9166 Array[0] = VT1; 9167 Array[1] = VT2; 9168 Array[2] = VT3; 9169 Array[3] = VT4; 9170 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 9171 VTListMap.InsertNode(Result, IP); 9172 } 9173 return Result->getSDVTList(); 9174 } 9175 9176 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 9177 unsigned NumVTs = VTs.size(); 9178 FoldingSetNodeID ID; 9179 ID.AddInteger(NumVTs); 9180 for (unsigned index = 0; index < NumVTs; index++) { 9181 ID.AddInteger(VTs[index].getRawBits()); 9182 } 9183 9184 void *IP = nullptr; 9185 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9186 if (!Result) { 9187 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 9188 llvm::copy(VTs, Array); 9189 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 9190 VTListMap.InsertNode(Result, IP); 9191 } 9192 return Result->getSDVTList(); 9193 } 9194 9195 9196 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 9197 /// specified operands. If the resultant node already exists in the DAG, 9198 /// this does not modify the specified node, instead it returns the node that 9199 /// already exists. If the resultant node does not exist in the DAG, the 9200 /// input node is returned. As a degenerate case, if you specify the same 9201 /// input operands as the node already has, the input node is returned. 9202 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 9203 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 9204 9205 // Check to see if there is no change. 9206 if (Op == N->getOperand(0)) return N; 9207 9208 // See if the modified node already exists. 9209 void *InsertPos = nullptr; 9210 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 9211 return Existing; 9212 9213 // Nope it doesn't. Remove the node from its current place in the maps. 9214 if (InsertPos) 9215 if (!RemoveNodeFromCSEMaps(N)) 9216 InsertPos = nullptr; 9217 9218 // Now we update the operands. 9219 N->OperandList[0].set(Op); 9220 9221 updateDivergence(N); 9222 // If this gets put into a CSE map, add it. 9223 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9224 return N; 9225 } 9226 9227 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 9228 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 9229 9230 // Check to see if there is no change. 9231 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 9232 return N; // No operands changed, just return the input node. 9233 9234 // See if the modified node already exists. 9235 void *InsertPos = nullptr; 9236 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 9237 return Existing; 9238 9239 // Nope it doesn't. Remove the node from its current place in the maps. 9240 if (InsertPos) 9241 if (!RemoveNodeFromCSEMaps(N)) 9242 InsertPos = nullptr; 9243 9244 // Now we update the operands. 9245 if (N->OperandList[0] != Op1) 9246 N->OperandList[0].set(Op1); 9247 if (N->OperandList[1] != Op2) 9248 N->OperandList[1].set(Op2); 9249 9250 updateDivergence(N); 9251 // If this gets put into a CSE map, add it. 9252 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9253 return N; 9254 } 9255 9256 SDNode *SelectionDAG:: 9257 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 9258 SDValue Ops[] = { Op1, Op2, Op3 }; 9259 return UpdateNodeOperands(N, Ops); 9260 } 9261 9262 SDNode *SelectionDAG:: 9263 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9264 SDValue Op3, SDValue Op4) { 9265 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 9266 return UpdateNodeOperands(N, Ops); 9267 } 9268 9269 SDNode *SelectionDAG:: 9270 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9271 SDValue Op3, SDValue Op4, SDValue Op5) { 9272 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 9273 return UpdateNodeOperands(N, Ops); 9274 } 9275 9276 SDNode *SelectionDAG:: 9277 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 9278 unsigned NumOps = Ops.size(); 9279 assert(N->getNumOperands() == NumOps && 9280 "Update with wrong number of operands"); 9281 9282 // If no operands changed just return the input node. 9283 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 9284 return N; 9285 9286 // See if the modified node already exists. 9287 void *InsertPos = nullptr; 9288 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 9289 return Existing; 9290 9291 // Nope it doesn't. Remove the node from its current place in the maps. 9292 if (InsertPos) 9293 if (!RemoveNodeFromCSEMaps(N)) 9294 InsertPos = nullptr; 9295 9296 // Now we update the operands. 9297 for (unsigned i = 0; i != NumOps; ++i) 9298 if (N->OperandList[i] != Ops[i]) 9299 N->OperandList[i].set(Ops[i]); 9300 9301 updateDivergence(N); 9302 // If this gets put into a CSE map, add it. 9303 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9304 return N; 9305 } 9306 9307 /// DropOperands - Release the operands and set this node to have 9308 /// zero operands. 9309 void SDNode::DropOperands() { 9310 // Unlike the code in MorphNodeTo that does this, we don't need to 9311 // watch for dead nodes here. 9312 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 9313 SDUse &Use = *I++; 9314 Use.set(SDValue()); 9315 } 9316 } 9317 9318 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 9319 ArrayRef<MachineMemOperand *> NewMemRefs) { 9320 if (NewMemRefs.empty()) { 9321 N->clearMemRefs(); 9322 return; 9323 } 9324 9325 // Check if we can avoid allocating by storing a single reference directly. 9326 if (NewMemRefs.size() == 1) { 9327 N->MemRefs = NewMemRefs[0]; 9328 N->NumMemRefs = 1; 9329 return; 9330 } 9331 9332 MachineMemOperand **MemRefsBuffer = 9333 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 9334 llvm::copy(NewMemRefs, MemRefsBuffer); 9335 N->MemRefs = MemRefsBuffer; 9336 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 9337 } 9338 9339 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 9340 /// machine opcode. 9341 /// 9342 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9343 EVT VT) { 9344 SDVTList VTs = getVTList(VT); 9345 return SelectNodeTo(N, MachineOpc, VTs, None); 9346 } 9347 9348 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9349 EVT VT, SDValue Op1) { 9350 SDVTList VTs = getVTList(VT); 9351 SDValue Ops[] = { Op1 }; 9352 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9353 } 9354 9355 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9356 EVT VT, SDValue Op1, 9357 SDValue Op2) { 9358 SDVTList VTs = getVTList(VT); 9359 SDValue Ops[] = { Op1, Op2 }; 9360 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9361 } 9362 9363 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9364 EVT VT, SDValue Op1, 9365 SDValue Op2, SDValue Op3) { 9366 SDVTList VTs = getVTList(VT); 9367 SDValue Ops[] = { Op1, Op2, Op3 }; 9368 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9369 } 9370 9371 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9372 EVT VT, ArrayRef<SDValue> Ops) { 9373 SDVTList VTs = getVTList(VT); 9374 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9375 } 9376 9377 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9378 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 9379 SDVTList VTs = getVTList(VT1, VT2); 9380 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9381 } 9382 9383 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9384 EVT VT1, EVT VT2) { 9385 SDVTList VTs = getVTList(VT1, VT2); 9386 return SelectNodeTo(N, MachineOpc, VTs, None); 9387 } 9388 9389 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9390 EVT VT1, EVT VT2, EVT VT3, 9391 ArrayRef<SDValue> Ops) { 9392 SDVTList VTs = getVTList(VT1, VT2, VT3); 9393 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9394 } 9395 9396 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9397 EVT VT1, EVT VT2, 9398 SDValue Op1, SDValue Op2) { 9399 SDVTList VTs = getVTList(VT1, VT2); 9400 SDValue Ops[] = { Op1, Op2 }; 9401 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9402 } 9403 9404 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9405 SDVTList VTs,ArrayRef<SDValue> Ops) { 9406 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 9407 // Reset the NodeID to -1. 9408 New->setNodeId(-1); 9409 if (New != N) { 9410 ReplaceAllUsesWith(N, New); 9411 RemoveDeadNode(N); 9412 } 9413 return New; 9414 } 9415 9416 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 9417 /// the line number information on the merged node since it is not possible to 9418 /// preserve the information that operation is associated with multiple lines. 9419 /// This will make the debugger working better at -O0, were there is a higher 9420 /// probability having other instructions associated with that line. 9421 /// 9422 /// For IROrder, we keep the smaller of the two 9423 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 9424 DebugLoc NLoc = N->getDebugLoc(); 9425 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 9426 N->setDebugLoc(DebugLoc()); 9427 } 9428 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 9429 N->setIROrder(Order); 9430 return N; 9431 } 9432 9433 /// MorphNodeTo - This *mutates* the specified node to have the specified 9434 /// return type, opcode, and operands. 9435 /// 9436 /// Note that MorphNodeTo returns the resultant node. If there is already a 9437 /// node of the specified opcode and operands, it returns that node instead of 9438 /// the current one. Note that the SDLoc need not be the same. 9439 /// 9440 /// Using MorphNodeTo is faster than creating a new node and swapping it in 9441 /// with ReplaceAllUsesWith both because it often avoids allocating a new 9442 /// node, and because it doesn't require CSE recalculation for any of 9443 /// the node's users. 9444 /// 9445 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 9446 /// As a consequence it isn't appropriate to use from within the DAG combiner or 9447 /// the legalizer which maintain worklists that would need to be updated when 9448 /// deleting things. 9449 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 9450 SDVTList VTs, ArrayRef<SDValue> Ops) { 9451 // If an identical node already exists, use it. 9452 void *IP = nullptr; 9453 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 9454 FoldingSetNodeID ID; 9455 AddNodeIDNode(ID, Opc, VTs, Ops); 9456 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 9457 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 9458 } 9459 9460 if (!RemoveNodeFromCSEMaps(N)) 9461 IP = nullptr; 9462 9463 // Start the morphing. 9464 N->NodeType = Opc; 9465 N->ValueList = VTs.VTs; 9466 N->NumValues = VTs.NumVTs; 9467 9468 // Clear the operands list, updating used nodes to remove this from their 9469 // use list. Keep track of any operands that become dead as a result. 9470 SmallPtrSet<SDNode*, 16> DeadNodeSet; 9471 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 9472 SDUse &Use = *I++; 9473 SDNode *Used = Use.getNode(); 9474 Use.set(SDValue()); 9475 if (Used->use_empty()) 9476 DeadNodeSet.insert(Used); 9477 } 9478 9479 // For MachineNode, initialize the memory references information. 9480 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 9481 MN->clearMemRefs(); 9482 9483 // Swap for an appropriately sized array from the recycler. 9484 removeOperands(N); 9485 createOperands(N, Ops); 9486 9487 // Delete any nodes that are still dead after adding the uses for the 9488 // new operands. 9489 if (!DeadNodeSet.empty()) { 9490 SmallVector<SDNode *, 16> DeadNodes; 9491 for (SDNode *N : DeadNodeSet) 9492 if (N->use_empty()) 9493 DeadNodes.push_back(N); 9494 RemoveDeadNodes(DeadNodes); 9495 } 9496 9497 if (IP) 9498 CSEMap.InsertNode(N, IP); // Memoize the new node. 9499 return N; 9500 } 9501 9502 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 9503 unsigned OrigOpc = Node->getOpcode(); 9504 unsigned NewOpc; 9505 switch (OrigOpc) { 9506 default: 9507 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 9508 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9509 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 9510 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9511 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 9512 #include "llvm/IR/ConstrainedOps.def" 9513 } 9514 9515 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 9516 9517 // We're taking this node out of the chain, so we need to re-link things. 9518 SDValue InputChain = Node->getOperand(0); 9519 SDValue OutputChain = SDValue(Node, 1); 9520 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 9521 9522 SmallVector<SDValue, 3> Ops; 9523 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 9524 Ops.push_back(Node->getOperand(i)); 9525 9526 SDVTList VTs = getVTList(Node->getValueType(0)); 9527 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 9528 9529 // MorphNodeTo can operate in two ways: if an existing node with the 9530 // specified operands exists, it can just return it. Otherwise, it 9531 // updates the node in place to have the requested operands. 9532 if (Res == Node) { 9533 // If we updated the node in place, reset the node ID. To the isel, 9534 // this should be just like a newly allocated machine node. 9535 Res->setNodeId(-1); 9536 } else { 9537 ReplaceAllUsesWith(Node, Res); 9538 RemoveDeadNode(Node); 9539 } 9540 9541 return Res; 9542 } 9543 9544 /// getMachineNode - These are used for target selectors to create a new node 9545 /// with specified return type(s), MachineInstr opcode, and operands. 9546 /// 9547 /// Note that getMachineNode returns the resultant node. If there is already a 9548 /// node of the specified opcode and operands, it returns that node instead of 9549 /// the current one. 9550 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9551 EVT VT) { 9552 SDVTList VTs = getVTList(VT); 9553 return getMachineNode(Opcode, dl, VTs, None); 9554 } 9555 9556 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9557 EVT VT, SDValue Op1) { 9558 SDVTList VTs = getVTList(VT); 9559 SDValue Ops[] = { Op1 }; 9560 return getMachineNode(Opcode, dl, VTs, Ops); 9561 } 9562 9563 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9564 EVT VT, SDValue Op1, SDValue Op2) { 9565 SDVTList VTs = getVTList(VT); 9566 SDValue Ops[] = { Op1, Op2 }; 9567 return getMachineNode(Opcode, dl, VTs, Ops); 9568 } 9569 9570 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9571 EVT VT, SDValue Op1, SDValue Op2, 9572 SDValue Op3) { 9573 SDVTList VTs = getVTList(VT); 9574 SDValue Ops[] = { Op1, Op2, Op3 }; 9575 return getMachineNode(Opcode, dl, VTs, Ops); 9576 } 9577 9578 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9579 EVT VT, ArrayRef<SDValue> Ops) { 9580 SDVTList VTs = getVTList(VT); 9581 return getMachineNode(Opcode, dl, VTs, Ops); 9582 } 9583 9584 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9585 EVT VT1, EVT VT2, SDValue Op1, 9586 SDValue Op2) { 9587 SDVTList VTs = getVTList(VT1, VT2); 9588 SDValue Ops[] = { Op1, Op2 }; 9589 return getMachineNode(Opcode, dl, VTs, Ops); 9590 } 9591 9592 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9593 EVT VT1, EVT VT2, SDValue Op1, 9594 SDValue Op2, SDValue Op3) { 9595 SDVTList VTs = getVTList(VT1, VT2); 9596 SDValue Ops[] = { Op1, Op2, Op3 }; 9597 return getMachineNode(Opcode, dl, VTs, Ops); 9598 } 9599 9600 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9601 EVT VT1, EVT VT2, 9602 ArrayRef<SDValue> Ops) { 9603 SDVTList VTs = getVTList(VT1, VT2); 9604 return getMachineNode(Opcode, dl, VTs, Ops); 9605 } 9606 9607 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9608 EVT VT1, EVT VT2, EVT VT3, 9609 SDValue Op1, SDValue Op2) { 9610 SDVTList VTs = getVTList(VT1, VT2, VT3); 9611 SDValue Ops[] = { Op1, Op2 }; 9612 return getMachineNode(Opcode, dl, VTs, Ops); 9613 } 9614 9615 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9616 EVT VT1, EVT VT2, EVT VT3, 9617 SDValue Op1, SDValue Op2, 9618 SDValue Op3) { 9619 SDVTList VTs = getVTList(VT1, VT2, VT3); 9620 SDValue Ops[] = { Op1, Op2, Op3 }; 9621 return getMachineNode(Opcode, dl, VTs, Ops); 9622 } 9623 9624 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9625 EVT VT1, EVT VT2, EVT VT3, 9626 ArrayRef<SDValue> Ops) { 9627 SDVTList VTs = getVTList(VT1, VT2, VT3); 9628 return getMachineNode(Opcode, dl, VTs, Ops); 9629 } 9630 9631 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9632 ArrayRef<EVT> ResultTys, 9633 ArrayRef<SDValue> Ops) { 9634 SDVTList VTs = getVTList(ResultTys); 9635 return getMachineNode(Opcode, dl, VTs, Ops); 9636 } 9637 9638 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9639 SDVTList VTs, 9640 ArrayRef<SDValue> Ops) { 9641 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9642 MachineSDNode *N; 9643 void *IP = nullptr; 9644 9645 if (DoCSE) { 9646 FoldingSetNodeID ID; 9647 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9648 IP = nullptr; 9649 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9650 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9651 } 9652 } 9653 9654 // Allocate a new MachineSDNode. 9655 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9656 createOperands(N, Ops); 9657 9658 if (DoCSE) 9659 CSEMap.InsertNode(N, IP); 9660 9661 InsertNode(N); 9662 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9663 return N; 9664 } 9665 9666 /// getTargetExtractSubreg - A convenience function for creating 9667 /// TargetOpcode::EXTRACT_SUBREG nodes. 9668 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9669 SDValue Operand) { 9670 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9671 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9672 VT, Operand, SRIdxVal); 9673 return SDValue(Subreg, 0); 9674 } 9675 9676 /// getTargetInsertSubreg - A convenience function for creating 9677 /// TargetOpcode::INSERT_SUBREG nodes. 9678 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9679 SDValue Operand, SDValue Subreg) { 9680 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9681 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9682 VT, Operand, Subreg, SRIdxVal); 9683 return SDValue(Result, 0); 9684 } 9685 9686 /// getNodeIfExists - Get the specified node if it's already available, or 9687 /// else return NULL. 9688 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9689 ArrayRef<SDValue> Ops) { 9690 SDNodeFlags Flags; 9691 if (Inserter) 9692 Flags = Inserter->getFlags(); 9693 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9694 } 9695 9696 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9697 ArrayRef<SDValue> Ops, 9698 const SDNodeFlags Flags) { 9699 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9700 FoldingSetNodeID ID; 9701 AddNodeIDNode(ID, Opcode, VTList, Ops); 9702 void *IP = nullptr; 9703 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9704 E->intersectFlagsWith(Flags); 9705 return E; 9706 } 9707 } 9708 return nullptr; 9709 } 9710 9711 /// doesNodeExist - Check if a node exists without modifying its flags. 9712 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9713 ArrayRef<SDValue> Ops) { 9714 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9715 FoldingSetNodeID ID; 9716 AddNodeIDNode(ID, Opcode, VTList, Ops); 9717 void *IP = nullptr; 9718 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9719 return true; 9720 } 9721 return false; 9722 } 9723 9724 /// getDbgValue - Creates a SDDbgValue node. 9725 /// 9726 /// SDNode 9727 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9728 SDNode *N, unsigned R, bool IsIndirect, 9729 const DebugLoc &DL, unsigned O) { 9730 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9731 "Expected inlined-at fields to agree"); 9732 return new (DbgInfo->getAlloc()) 9733 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9734 {}, IsIndirect, DL, O, 9735 /*IsVariadic=*/false); 9736 } 9737 9738 /// Constant 9739 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9740 DIExpression *Expr, 9741 const Value *C, 9742 const DebugLoc &DL, unsigned O) { 9743 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9744 "Expected inlined-at fields to agree"); 9745 return new (DbgInfo->getAlloc()) 9746 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9747 /*IsIndirect=*/false, DL, O, 9748 /*IsVariadic=*/false); 9749 } 9750 9751 /// FrameIndex 9752 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9753 DIExpression *Expr, unsigned FI, 9754 bool IsIndirect, 9755 const DebugLoc &DL, 9756 unsigned O) { 9757 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9758 "Expected inlined-at fields to agree"); 9759 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9760 } 9761 9762 /// FrameIndex with dependencies 9763 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9764 DIExpression *Expr, unsigned FI, 9765 ArrayRef<SDNode *> Dependencies, 9766 bool IsIndirect, 9767 const DebugLoc &DL, 9768 unsigned O) { 9769 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9770 "Expected inlined-at fields to agree"); 9771 return new (DbgInfo->getAlloc()) 9772 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9773 Dependencies, IsIndirect, DL, O, 9774 /*IsVariadic=*/false); 9775 } 9776 9777 /// VReg 9778 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9779 unsigned VReg, bool IsIndirect, 9780 const DebugLoc &DL, unsigned O) { 9781 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9782 "Expected inlined-at fields to agree"); 9783 return new (DbgInfo->getAlloc()) 9784 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9785 {}, IsIndirect, DL, O, 9786 /*IsVariadic=*/false); 9787 } 9788 9789 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9790 ArrayRef<SDDbgOperand> Locs, 9791 ArrayRef<SDNode *> Dependencies, 9792 bool IsIndirect, const DebugLoc &DL, 9793 unsigned O, bool IsVariadic) { 9794 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9795 "Expected inlined-at fields to agree"); 9796 return new (DbgInfo->getAlloc()) 9797 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9798 DL, O, IsVariadic); 9799 } 9800 9801 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9802 unsigned OffsetInBits, unsigned SizeInBits, 9803 bool InvalidateDbg) { 9804 SDNode *FromNode = From.getNode(); 9805 SDNode *ToNode = To.getNode(); 9806 assert(FromNode && ToNode && "Can't modify dbg values"); 9807 9808 // PR35338 9809 // TODO: assert(From != To && "Redundant dbg value transfer"); 9810 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9811 if (From == To || FromNode == ToNode) 9812 return; 9813 9814 if (!FromNode->getHasDebugValue()) 9815 return; 9816 9817 SDDbgOperand FromLocOp = 9818 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9819 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9820 9821 SmallVector<SDDbgValue *, 2> ClonedDVs; 9822 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9823 if (Dbg->isInvalidated()) 9824 continue; 9825 9826 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9827 9828 // Create a new location ops vector that is equal to the old vector, but 9829 // with each instance of FromLocOp replaced with ToLocOp. 9830 bool Changed = false; 9831 auto NewLocOps = Dbg->copyLocationOps(); 9832 std::replace_if( 9833 NewLocOps.begin(), NewLocOps.end(), 9834 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9835 bool Match = Op == FromLocOp; 9836 Changed |= Match; 9837 return Match; 9838 }, 9839 ToLocOp); 9840 // Ignore this SDDbgValue if we didn't find a matching location. 9841 if (!Changed) 9842 continue; 9843 9844 DIVariable *Var = Dbg->getVariable(); 9845 auto *Expr = Dbg->getExpression(); 9846 // If a fragment is requested, update the expression. 9847 if (SizeInBits) { 9848 // When splitting a larger (e.g., sign-extended) value whose 9849 // lower bits are described with an SDDbgValue, do not attempt 9850 // to transfer the SDDbgValue to the upper bits. 9851 if (auto FI = Expr->getFragmentInfo()) 9852 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9853 continue; 9854 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9855 SizeInBits); 9856 if (!Fragment) 9857 continue; 9858 Expr = *Fragment; 9859 } 9860 9861 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9862 // Clone the SDDbgValue and move it to To. 9863 SDDbgValue *Clone = getDbgValueList( 9864 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9865 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9866 Dbg->isVariadic()); 9867 ClonedDVs.push_back(Clone); 9868 9869 if (InvalidateDbg) { 9870 // Invalidate value and indicate the SDDbgValue should not be emitted. 9871 Dbg->setIsInvalidated(); 9872 Dbg->setIsEmitted(); 9873 } 9874 } 9875 9876 for (SDDbgValue *Dbg : ClonedDVs) { 9877 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9878 "Transferred DbgValues should depend on the new SDNode"); 9879 AddDbgValue(Dbg, false); 9880 } 9881 } 9882 9883 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9884 if (!N.getHasDebugValue()) 9885 return; 9886 9887 SmallVector<SDDbgValue *, 2> ClonedDVs; 9888 for (auto DV : GetDbgValues(&N)) { 9889 if (DV->isInvalidated()) 9890 continue; 9891 switch (N.getOpcode()) { 9892 default: 9893 break; 9894 case ISD::ADD: 9895 SDValue N0 = N.getOperand(0); 9896 SDValue N1 = N.getOperand(1); 9897 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9898 isConstantIntBuildVectorOrConstantInt(N1)) { 9899 uint64_t Offset = N.getConstantOperandVal(1); 9900 9901 // Rewrite an ADD constant node into a DIExpression. Since we are 9902 // performing arithmetic to compute the variable's *value* in the 9903 // DIExpression, we need to mark the expression with a 9904 // DW_OP_stack_value. 9905 auto *DIExpr = DV->getExpression(); 9906 auto NewLocOps = DV->copyLocationOps(); 9907 bool Changed = false; 9908 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9909 // We're not given a ResNo to compare against because the whole 9910 // node is going away. We know that any ISD::ADD only has one 9911 // result, so we can assume any node match is using the result. 9912 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9913 NewLocOps[i].getSDNode() != &N) 9914 continue; 9915 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9916 SmallVector<uint64_t, 3> ExprOps; 9917 DIExpression::appendOffset(ExprOps, Offset); 9918 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9919 Changed = true; 9920 } 9921 (void)Changed; 9922 assert(Changed && "Salvage target doesn't use N"); 9923 9924 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9925 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9926 NewLocOps, AdditionalDependencies, 9927 DV->isIndirect(), DV->getDebugLoc(), 9928 DV->getOrder(), DV->isVariadic()); 9929 ClonedDVs.push_back(Clone); 9930 DV->setIsInvalidated(); 9931 DV->setIsEmitted(); 9932 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9933 N0.getNode()->dumprFull(this); 9934 dbgs() << " into " << *DIExpr << '\n'); 9935 } 9936 } 9937 } 9938 9939 for (SDDbgValue *Dbg : ClonedDVs) { 9940 assert(!Dbg->getSDNodes().empty() && 9941 "Salvaged DbgValue should depend on a new SDNode"); 9942 AddDbgValue(Dbg, false); 9943 } 9944 } 9945 9946 /// Creates a SDDbgLabel node. 9947 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9948 const DebugLoc &DL, unsigned O) { 9949 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9950 "Expected inlined-at fields to agree"); 9951 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9952 } 9953 9954 namespace { 9955 9956 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9957 /// pointed to by a use iterator is deleted, increment the use iterator 9958 /// so that it doesn't dangle. 9959 /// 9960 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9961 SDNode::use_iterator &UI; 9962 SDNode::use_iterator &UE; 9963 9964 void NodeDeleted(SDNode *N, SDNode *E) override { 9965 // Increment the iterator as needed. 9966 while (UI != UE && N == *UI) 9967 ++UI; 9968 } 9969 9970 public: 9971 RAUWUpdateListener(SelectionDAG &d, 9972 SDNode::use_iterator &ui, 9973 SDNode::use_iterator &ue) 9974 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9975 }; 9976 9977 } // end anonymous namespace 9978 9979 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9980 /// This can cause recursive merging of nodes in the DAG. 9981 /// 9982 /// This version assumes From has a single result value. 9983 /// 9984 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9985 SDNode *From = FromN.getNode(); 9986 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9987 "Cannot replace with this method!"); 9988 assert(From != To.getNode() && "Cannot replace uses of with self"); 9989 9990 // Preserve Debug Values 9991 transferDbgValues(FromN, To); 9992 9993 // Iterate over all the existing uses of From. New uses will be added 9994 // to the beginning of the use list, which we avoid visiting. 9995 // This specifically avoids visiting uses of From that arise while the 9996 // replacement is happening, because any such uses would be the result 9997 // of CSE: If an existing node looks like From after one of its operands 9998 // is replaced by To, we don't want to replace of all its users with To 9999 // too. See PR3018 for more info. 10000 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10001 RAUWUpdateListener Listener(*this, UI, UE); 10002 while (UI != UE) { 10003 SDNode *User = *UI; 10004 10005 // This node is about to morph, remove its old self from the CSE maps. 10006 RemoveNodeFromCSEMaps(User); 10007 10008 // A user can appear in a use list multiple times, and when this 10009 // happens the uses are usually next to each other in the list. 10010 // To help reduce the number of CSE recomputations, process all 10011 // the uses of this user that we can find this way. 10012 do { 10013 SDUse &Use = UI.getUse(); 10014 ++UI; 10015 Use.set(To); 10016 if (To->isDivergent() != From->isDivergent()) 10017 updateDivergence(User); 10018 } while (UI != UE && *UI == User); 10019 // Now that we have modified User, add it back to the CSE maps. If it 10020 // already exists there, recursively merge the results together. 10021 AddModifiedNodeToCSEMaps(User); 10022 } 10023 10024 // If we just RAUW'd the root, take note. 10025 if (FromN == getRoot()) 10026 setRoot(To); 10027 } 10028 10029 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10030 /// This can cause recursive merging of nodes in the DAG. 10031 /// 10032 /// This version assumes that for each value of From, there is a 10033 /// corresponding value in To in the same position with the same type. 10034 /// 10035 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 10036 #ifndef NDEBUG 10037 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10038 assert((!From->hasAnyUseOfValue(i) || 10039 From->getValueType(i) == To->getValueType(i)) && 10040 "Cannot use this version of ReplaceAllUsesWith!"); 10041 #endif 10042 10043 // Handle the trivial case. 10044 if (From == To) 10045 return; 10046 10047 // Preserve Debug Info. Only do this if there's a use. 10048 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10049 if (From->hasAnyUseOfValue(i)) { 10050 assert((i < To->getNumValues()) && "Invalid To location"); 10051 transferDbgValues(SDValue(From, i), SDValue(To, i)); 10052 } 10053 10054 // Iterate over just the existing users of From. See the comments in 10055 // the ReplaceAllUsesWith above. 10056 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10057 RAUWUpdateListener Listener(*this, UI, UE); 10058 while (UI != UE) { 10059 SDNode *User = *UI; 10060 10061 // This node is about to morph, remove its old self from the CSE maps. 10062 RemoveNodeFromCSEMaps(User); 10063 10064 // A user can appear in a use list multiple times, and when this 10065 // happens the uses are usually next to each other in the list. 10066 // To help reduce the number of CSE recomputations, process all 10067 // the uses of this user that we can find this way. 10068 do { 10069 SDUse &Use = UI.getUse(); 10070 ++UI; 10071 Use.setNode(To); 10072 if (To->isDivergent() != From->isDivergent()) 10073 updateDivergence(User); 10074 } while (UI != UE && *UI == User); 10075 10076 // Now that we have modified User, add it back to the CSE maps. If it 10077 // already exists there, recursively merge the results together. 10078 AddModifiedNodeToCSEMaps(User); 10079 } 10080 10081 // If we just RAUW'd the root, take note. 10082 if (From == getRoot().getNode()) 10083 setRoot(SDValue(To, getRoot().getResNo())); 10084 } 10085 10086 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10087 /// This can cause recursive merging of nodes in the DAG. 10088 /// 10089 /// This version can replace From with any result values. To must match the 10090 /// number and types of values returned by From. 10091 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 10092 if (From->getNumValues() == 1) // Handle the simple case efficiently. 10093 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 10094 10095 // Preserve Debug Info. 10096 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10097 transferDbgValues(SDValue(From, i), To[i]); 10098 10099 // Iterate over just the existing users of From. See the comments in 10100 // the ReplaceAllUsesWith above. 10101 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10102 RAUWUpdateListener Listener(*this, UI, UE); 10103 while (UI != UE) { 10104 SDNode *User = *UI; 10105 10106 // This node is about to morph, remove its old self from the CSE maps. 10107 RemoveNodeFromCSEMaps(User); 10108 10109 // A user can appear in a use list multiple times, and when this happens the 10110 // uses are usually next to each other in the list. To help reduce the 10111 // number of CSE and divergence recomputations, process all the uses of this 10112 // user that we can find this way. 10113 bool To_IsDivergent = false; 10114 do { 10115 SDUse &Use = UI.getUse(); 10116 const SDValue &ToOp = To[Use.getResNo()]; 10117 ++UI; 10118 Use.set(ToOp); 10119 To_IsDivergent |= ToOp->isDivergent(); 10120 } while (UI != UE && *UI == User); 10121 10122 if (To_IsDivergent != From->isDivergent()) 10123 updateDivergence(User); 10124 10125 // Now that we have modified User, add it back to the CSE maps. If it 10126 // already exists there, recursively merge the results together. 10127 AddModifiedNodeToCSEMaps(User); 10128 } 10129 10130 // If we just RAUW'd the root, take note. 10131 if (From == getRoot().getNode()) 10132 setRoot(SDValue(To[getRoot().getResNo()])); 10133 } 10134 10135 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 10136 /// uses of other values produced by From.getNode() alone. The Deleted 10137 /// vector is handled the same way as for ReplaceAllUsesWith. 10138 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 10139 // Handle the really simple, really trivial case efficiently. 10140 if (From == To) return; 10141 10142 // Handle the simple, trivial, case efficiently. 10143 if (From.getNode()->getNumValues() == 1) { 10144 ReplaceAllUsesWith(From, To); 10145 return; 10146 } 10147 10148 // Preserve Debug Info. 10149 transferDbgValues(From, To); 10150 10151 // Iterate over just the existing users of From. See the comments in 10152 // the ReplaceAllUsesWith above. 10153 SDNode::use_iterator UI = From.getNode()->use_begin(), 10154 UE = From.getNode()->use_end(); 10155 RAUWUpdateListener Listener(*this, UI, UE); 10156 while (UI != UE) { 10157 SDNode *User = *UI; 10158 bool UserRemovedFromCSEMaps = false; 10159 10160 // A user can appear in a use list multiple times, and when this 10161 // happens the uses are usually next to each other in the list. 10162 // To help reduce the number of CSE recomputations, process all 10163 // the uses of this user that we can find this way. 10164 do { 10165 SDUse &Use = UI.getUse(); 10166 10167 // Skip uses of different values from the same node. 10168 if (Use.getResNo() != From.getResNo()) { 10169 ++UI; 10170 continue; 10171 } 10172 10173 // If this node hasn't been modified yet, it's still in the CSE maps, 10174 // so remove its old self from the CSE maps. 10175 if (!UserRemovedFromCSEMaps) { 10176 RemoveNodeFromCSEMaps(User); 10177 UserRemovedFromCSEMaps = true; 10178 } 10179 10180 ++UI; 10181 Use.set(To); 10182 if (To->isDivergent() != From->isDivergent()) 10183 updateDivergence(User); 10184 } while (UI != UE && *UI == User); 10185 // We are iterating over all uses of the From node, so if a use 10186 // doesn't use the specific value, no changes are made. 10187 if (!UserRemovedFromCSEMaps) 10188 continue; 10189 10190 // Now that we have modified User, add it back to the CSE maps. If it 10191 // already exists there, recursively merge the results together. 10192 AddModifiedNodeToCSEMaps(User); 10193 } 10194 10195 // If we just RAUW'd the root, take note. 10196 if (From == getRoot()) 10197 setRoot(To); 10198 } 10199 10200 namespace { 10201 10202 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 10203 /// to record information about a use. 10204 struct UseMemo { 10205 SDNode *User; 10206 unsigned Index; 10207 SDUse *Use; 10208 }; 10209 10210 /// operator< - Sort Memos by User. 10211 bool operator<(const UseMemo &L, const UseMemo &R) { 10212 return (intptr_t)L.User < (intptr_t)R.User; 10213 } 10214 10215 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node 10216 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that 10217 /// the node already has been taken care of recursively. 10218 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener { 10219 SmallVector<UseMemo, 4> &Uses; 10220 10221 void NodeDeleted(SDNode *N, SDNode *E) override { 10222 for (UseMemo &Memo : Uses) 10223 if (Memo.User == N) 10224 Memo.User = nullptr; 10225 } 10226 10227 public: 10228 RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses) 10229 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {} 10230 }; 10231 10232 } // end anonymous namespace 10233 10234 bool SelectionDAG::calculateDivergence(SDNode *N) { 10235 if (TLI->isSDNodeAlwaysUniform(N)) { 10236 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 10237 "Conflicting divergence information!"); 10238 return false; 10239 } 10240 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 10241 return true; 10242 for (auto &Op : N->ops()) { 10243 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 10244 return true; 10245 } 10246 return false; 10247 } 10248 10249 void SelectionDAG::updateDivergence(SDNode *N) { 10250 SmallVector<SDNode *, 16> Worklist(1, N); 10251 do { 10252 N = Worklist.pop_back_val(); 10253 bool IsDivergent = calculateDivergence(N); 10254 if (N->SDNodeBits.IsDivergent != IsDivergent) { 10255 N->SDNodeBits.IsDivergent = IsDivergent; 10256 llvm::append_range(Worklist, N->uses()); 10257 } 10258 } while (!Worklist.empty()); 10259 } 10260 10261 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 10262 DenseMap<SDNode *, unsigned> Degree; 10263 Order.reserve(AllNodes.size()); 10264 for (auto &N : allnodes()) { 10265 unsigned NOps = N.getNumOperands(); 10266 Degree[&N] = NOps; 10267 if (0 == NOps) 10268 Order.push_back(&N); 10269 } 10270 for (size_t I = 0; I != Order.size(); ++I) { 10271 SDNode *N = Order[I]; 10272 for (auto U : N->uses()) { 10273 unsigned &UnsortedOps = Degree[U]; 10274 if (0 == --UnsortedOps) 10275 Order.push_back(U); 10276 } 10277 } 10278 } 10279 10280 #ifndef NDEBUG 10281 void SelectionDAG::VerifyDAGDivergence() { 10282 std::vector<SDNode *> TopoOrder; 10283 CreateTopologicalOrder(TopoOrder); 10284 for (auto *N : TopoOrder) { 10285 assert(calculateDivergence(N) == N->isDivergent() && 10286 "Divergence bit inconsistency detected"); 10287 } 10288 } 10289 #endif 10290 10291 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 10292 /// uses of other values produced by From.getNode() alone. The same value 10293 /// may appear in both the From and To list. The Deleted vector is 10294 /// handled the same way as for ReplaceAllUsesWith. 10295 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 10296 const SDValue *To, 10297 unsigned Num){ 10298 // Handle the simple, trivial case efficiently. 10299 if (Num == 1) 10300 return ReplaceAllUsesOfValueWith(*From, *To); 10301 10302 transferDbgValues(*From, *To); 10303 10304 // Read up all the uses and make records of them. This helps 10305 // processing new uses that are introduced during the 10306 // replacement process. 10307 SmallVector<UseMemo, 4> Uses; 10308 for (unsigned i = 0; i != Num; ++i) { 10309 unsigned FromResNo = From[i].getResNo(); 10310 SDNode *FromNode = From[i].getNode(); 10311 for (SDNode::use_iterator UI = FromNode->use_begin(), 10312 E = FromNode->use_end(); UI != E; ++UI) { 10313 SDUse &Use = UI.getUse(); 10314 if (Use.getResNo() == FromResNo) { 10315 UseMemo Memo = { *UI, i, &Use }; 10316 Uses.push_back(Memo); 10317 } 10318 } 10319 } 10320 10321 // Sort the uses, so that all the uses from a given User are together. 10322 llvm::sort(Uses); 10323 RAUOVWUpdateListener Listener(*this, Uses); 10324 10325 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 10326 UseIndex != UseIndexEnd; ) { 10327 // We know that this user uses some value of From. If it is the right 10328 // value, update it. 10329 SDNode *User = Uses[UseIndex].User; 10330 // If the node has been deleted by recursive CSE updates when updating 10331 // another node, then just skip this entry. 10332 if (User == nullptr) { 10333 ++UseIndex; 10334 continue; 10335 } 10336 10337 // This node is about to morph, remove its old self from the CSE maps. 10338 RemoveNodeFromCSEMaps(User); 10339 10340 // The Uses array is sorted, so all the uses for a given User 10341 // are next to each other in the list. 10342 // To help reduce the number of CSE recomputations, process all 10343 // the uses of this user that we can find this way. 10344 do { 10345 unsigned i = Uses[UseIndex].Index; 10346 SDUse &Use = *Uses[UseIndex].Use; 10347 ++UseIndex; 10348 10349 Use.set(To[i]); 10350 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 10351 10352 // Now that we have modified User, add it back to the CSE maps. If it 10353 // already exists there, recursively merge the results together. 10354 AddModifiedNodeToCSEMaps(User); 10355 } 10356 } 10357 10358 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 10359 /// based on their topological order. It returns the maximum id and a vector 10360 /// of the SDNodes* in assigned order by reference. 10361 unsigned SelectionDAG::AssignTopologicalOrder() { 10362 unsigned DAGSize = 0; 10363 10364 // SortedPos tracks the progress of the algorithm. Nodes before it are 10365 // sorted, nodes after it are unsorted. When the algorithm completes 10366 // it is at the end of the list. 10367 allnodes_iterator SortedPos = allnodes_begin(); 10368 10369 // Visit all the nodes. Move nodes with no operands to the front of 10370 // the list immediately. Annotate nodes that do have operands with their 10371 // operand count. Before we do this, the Node Id fields of the nodes 10372 // may contain arbitrary values. After, the Node Id fields for nodes 10373 // before SortedPos will contain the topological sort index, and the 10374 // Node Id fields for nodes At SortedPos and after will contain the 10375 // count of outstanding operands. 10376 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 10377 checkForCycles(&N, this); 10378 unsigned Degree = N.getNumOperands(); 10379 if (Degree == 0) { 10380 // A node with no uses, add it to the result array immediately. 10381 N.setNodeId(DAGSize++); 10382 allnodes_iterator Q(&N); 10383 if (Q != SortedPos) 10384 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 10385 assert(SortedPos != AllNodes.end() && "Overran node list"); 10386 ++SortedPos; 10387 } else { 10388 // Temporarily use the Node Id as scratch space for the degree count. 10389 N.setNodeId(Degree); 10390 } 10391 } 10392 10393 // Visit all the nodes. As we iterate, move nodes into sorted order, 10394 // such that by the time the end is reached all nodes will be sorted. 10395 for (SDNode &Node : allnodes()) { 10396 SDNode *N = &Node; 10397 checkForCycles(N, this); 10398 // N is in sorted position, so all its uses have one less operand 10399 // that needs to be sorted. 10400 for (SDNode *P : N->uses()) { 10401 unsigned Degree = P->getNodeId(); 10402 assert(Degree != 0 && "Invalid node degree"); 10403 --Degree; 10404 if (Degree == 0) { 10405 // All of P's operands are sorted, so P may sorted now. 10406 P->setNodeId(DAGSize++); 10407 if (P->getIterator() != SortedPos) 10408 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 10409 assert(SortedPos != AllNodes.end() && "Overran node list"); 10410 ++SortedPos; 10411 } else { 10412 // Update P's outstanding operand count. 10413 P->setNodeId(Degree); 10414 } 10415 } 10416 if (Node.getIterator() == SortedPos) { 10417 #ifndef NDEBUG 10418 allnodes_iterator I(N); 10419 SDNode *S = &*++I; 10420 dbgs() << "Overran sorted position:\n"; 10421 S->dumprFull(this); dbgs() << "\n"; 10422 dbgs() << "Checking if this is due to cycles\n"; 10423 checkForCycles(this, true); 10424 #endif 10425 llvm_unreachable(nullptr); 10426 } 10427 } 10428 10429 assert(SortedPos == AllNodes.end() && 10430 "Topological sort incomplete!"); 10431 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 10432 "First node in topological sort is not the entry token!"); 10433 assert(AllNodes.front().getNodeId() == 0 && 10434 "First node in topological sort has non-zero id!"); 10435 assert(AllNodes.front().getNumOperands() == 0 && 10436 "First node in topological sort has operands!"); 10437 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 10438 "Last node in topologic sort has unexpected id!"); 10439 assert(AllNodes.back().use_empty() && 10440 "Last node in topologic sort has users!"); 10441 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 10442 return DAGSize; 10443 } 10444 10445 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 10446 /// value is produced by SD. 10447 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 10448 for (SDNode *SD : DB->getSDNodes()) { 10449 if (!SD) 10450 continue; 10451 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 10452 SD->setHasDebugValue(true); 10453 } 10454 DbgInfo->add(DB, isParameter); 10455 } 10456 10457 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 10458 10459 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 10460 SDValue NewMemOpChain) { 10461 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 10462 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 10463 // The new memory operation must have the same position as the old load in 10464 // terms of memory dependency. Create a TokenFactor for the old load and new 10465 // memory operation and update uses of the old load's output chain to use that 10466 // TokenFactor. 10467 if (OldChain == NewMemOpChain || OldChain.use_empty()) 10468 return NewMemOpChain; 10469 10470 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 10471 OldChain, NewMemOpChain); 10472 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 10473 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 10474 return TokenFactor; 10475 } 10476 10477 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 10478 SDValue NewMemOp) { 10479 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 10480 SDValue OldChain = SDValue(OldLoad, 1); 10481 SDValue NewMemOpChain = NewMemOp.getValue(1); 10482 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 10483 } 10484 10485 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 10486 Function **OutFunction) { 10487 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 10488 10489 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 10490 auto *Module = MF->getFunction().getParent(); 10491 auto *Function = Module->getFunction(Symbol); 10492 10493 if (OutFunction != nullptr) 10494 *OutFunction = Function; 10495 10496 if (Function != nullptr) { 10497 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 10498 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 10499 } 10500 10501 std::string ErrorStr; 10502 raw_string_ostream ErrorFormatter(ErrorStr); 10503 ErrorFormatter << "Undefined external symbol "; 10504 ErrorFormatter << '"' << Symbol << '"'; 10505 report_fatal_error(Twine(ErrorFormatter.str())); 10506 } 10507 10508 //===----------------------------------------------------------------------===// 10509 // SDNode Class 10510 //===----------------------------------------------------------------------===// 10511 10512 bool llvm::isNullConstant(SDValue V) { 10513 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10514 return Const != nullptr && Const->isZero(); 10515 } 10516 10517 bool llvm::isNullFPConstant(SDValue V) { 10518 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 10519 return Const != nullptr && Const->isZero() && !Const->isNegative(); 10520 } 10521 10522 bool llvm::isAllOnesConstant(SDValue V) { 10523 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10524 return Const != nullptr && Const->isAllOnes(); 10525 } 10526 10527 bool llvm::isOneConstant(SDValue V) { 10528 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10529 return Const != nullptr && Const->isOne(); 10530 } 10531 10532 bool llvm::isMinSignedConstant(SDValue V) { 10533 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10534 return Const != nullptr && Const->isMinSignedValue(); 10535 } 10536 10537 SDValue llvm::peekThroughBitcasts(SDValue V) { 10538 while (V.getOpcode() == ISD::BITCAST) 10539 V = V.getOperand(0); 10540 return V; 10541 } 10542 10543 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 10544 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 10545 V = V.getOperand(0); 10546 return V; 10547 } 10548 10549 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 10550 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 10551 V = V.getOperand(0); 10552 return V; 10553 } 10554 10555 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 10556 if (V.getOpcode() != ISD::XOR) 10557 return false; 10558 V = peekThroughBitcasts(V.getOperand(1)); 10559 unsigned NumBits = V.getScalarValueSizeInBits(); 10560 ConstantSDNode *C = 10561 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 10562 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 10563 } 10564 10565 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 10566 bool AllowTruncation) { 10567 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10568 return CN; 10569 10570 // SplatVectors can truncate their operands. Ignore that case here unless 10571 // AllowTruncation is set. 10572 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 10573 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 10574 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10575 EVT CVT = CN->getValueType(0); 10576 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 10577 if (AllowTruncation || CVT == VecEltVT) 10578 return CN; 10579 } 10580 } 10581 10582 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10583 BitVector UndefElements; 10584 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10585 10586 // BuildVectors can truncate their operands. Ignore that case here unless 10587 // AllowTruncation is set. 10588 if (CN && (UndefElements.none() || AllowUndefs)) { 10589 EVT CVT = CN->getValueType(0); 10590 EVT NSVT = N.getValueType().getScalarType(); 10591 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10592 if (AllowTruncation || (CVT == NSVT)) 10593 return CN; 10594 } 10595 } 10596 10597 return nullptr; 10598 } 10599 10600 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10601 bool AllowUndefs, 10602 bool AllowTruncation) { 10603 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10604 return CN; 10605 10606 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10607 BitVector UndefElements; 10608 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10609 10610 // BuildVectors can truncate their operands. Ignore that case here unless 10611 // AllowTruncation is set. 10612 if (CN && (UndefElements.none() || AllowUndefs)) { 10613 EVT CVT = CN->getValueType(0); 10614 EVT NSVT = N.getValueType().getScalarType(); 10615 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10616 if (AllowTruncation || (CVT == NSVT)) 10617 return CN; 10618 } 10619 } 10620 10621 return nullptr; 10622 } 10623 10624 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10625 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10626 return CN; 10627 10628 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10629 BitVector UndefElements; 10630 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10631 if (CN && (UndefElements.none() || AllowUndefs)) 10632 return CN; 10633 } 10634 10635 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10636 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10637 return CN; 10638 10639 return nullptr; 10640 } 10641 10642 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10643 const APInt &DemandedElts, 10644 bool AllowUndefs) { 10645 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10646 return CN; 10647 10648 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10649 BitVector UndefElements; 10650 ConstantFPSDNode *CN = 10651 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10652 if (CN && (UndefElements.none() || AllowUndefs)) 10653 return CN; 10654 } 10655 10656 return nullptr; 10657 } 10658 10659 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10660 // TODO: may want to use peekThroughBitcast() here. 10661 ConstantSDNode *C = 10662 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10663 return C && C->isZero(); 10664 } 10665 10666 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10667 ConstantSDNode *C = 10668 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true); 10669 return C && C->isOne(); 10670 } 10671 10672 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10673 N = peekThroughBitcasts(N); 10674 unsigned BitWidth = N.getScalarValueSizeInBits(); 10675 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10676 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10677 } 10678 10679 HandleSDNode::~HandleSDNode() { 10680 DropOperands(); 10681 } 10682 10683 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10684 const DebugLoc &DL, 10685 const GlobalValue *GA, EVT VT, 10686 int64_t o, unsigned TF) 10687 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10688 TheGlobal = GA; 10689 } 10690 10691 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10692 EVT VT, unsigned SrcAS, 10693 unsigned DestAS) 10694 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10695 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10696 10697 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10698 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10699 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10700 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10701 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10702 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10703 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10704 10705 // We check here that the size of the memory operand fits within the size of 10706 // the MMO. This is because the MMO might indicate only a possible address 10707 // range instead of specifying the affected memory addresses precisely. 10708 // TODO: Make MachineMemOperands aware of scalable vectors. 10709 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10710 "Size mismatch!"); 10711 } 10712 10713 /// Profile - Gather unique data for the node. 10714 /// 10715 void SDNode::Profile(FoldingSetNodeID &ID) const { 10716 AddNodeIDNode(ID, this); 10717 } 10718 10719 namespace { 10720 10721 struct EVTArray { 10722 std::vector<EVT> VTs; 10723 10724 EVTArray() { 10725 VTs.reserve(MVT::VALUETYPE_SIZE); 10726 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10727 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10728 } 10729 }; 10730 10731 } // end anonymous namespace 10732 10733 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10734 static ManagedStatic<EVTArray> SimpleVTArray; 10735 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10736 10737 /// getValueTypeList - Return a pointer to the specified value type. 10738 /// 10739 const EVT *SDNode::getValueTypeList(EVT VT) { 10740 if (VT.isExtended()) { 10741 sys::SmartScopedLock<true> Lock(*VTMutex); 10742 return &(*EVTs->insert(VT).first); 10743 } 10744 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10745 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10746 } 10747 10748 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10749 /// indicated value. This method ignores uses of other values defined by this 10750 /// operation. 10751 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10752 assert(Value < getNumValues() && "Bad value!"); 10753 10754 // TODO: Only iterate over uses of a given value of the node 10755 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10756 if (UI.getUse().getResNo() == Value) { 10757 if (NUses == 0) 10758 return false; 10759 --NUses; 10760 } 10761 } 10762 10763 // Found exactly the right number of uses? 10764 return NUses == 0; 10765 } 10766 10767 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10768 /// value. This method ignores uses of other values defined by this operation. 10769 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10770 assert(Value < getNumValues() && "Bad value!"); 10771 10772 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10773 if (UI.getUse().getResNo() == Value) 10774 return true; 10775 10776 return false; 10777 } 10778 10779 /// isOnlyUserOf - Return true if this node is the only use of N. 10780 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10781 bool Seen = false; 10782 for (const SDNode *User : N->uses()) { 10783 if (User == this) 10784 Seen = true; 10785 else 10786 return false; 10787 } 10788 10789 return Seen; 10790 } 10791 10792 /// Return true if the only users of N are contained in Nodes. 10793 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10794 bool Seen = false; 10795 for (const SDNode *User : N->uses()) { 10796 if (llvm::is_contained(Nodes, User)) 10797 Seen = true; 10798 else 10799 return false; 10800 } 10801 10802 return Seen; 10803 } 10804 10805 /// isOperand - Return true if this node is an operand of N. 10806 bool SDValue::isOperandOf(const SDNode *N) const { 10807 return is_contained(N->op_values(), *this); 10808 } 10809 10810 bool SDNode::isOperandOf(const SDNode *N) const { 10811 return any_of(N->op_values(), 10812 [this](SDValue Op) { return this == Op.getNode(); }); 10813 } 10814 10815 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10816 /// be a chain) reaches the specified operand without crossing any 10817 /// side-effecting instructions on any chain path. In practice, this looks 10818 /// through token factors and non-volatile loads. In order to remain efficient, 10819 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10820 /// 10821 /// Note that we only need to examine chains when we're searching for 10822 /// side-effects; SelectionDAG requires that all side-effects are represented 10823 /// by chains, even if another operand would force a specific ordering. This 10824 /// constraint is necessary to allow transformations like splitting loads. 10825 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10826 unsigned Depth) const { 10827 if (*this == Dest) return true; 10828 10829 // Don't search too deeply, we just want to be able to see through 10830 // TokenFactor's etc. 10831 if (Depth == 0) return false; 10832 10833 // If this is a token factor, all inputs to the TF happen in parallel. 10834 if (getOpcode() == ISD::TokenFactor) { 10835 // First, try a shallow search. 10836 if (is_contained((*this)->ops(), Dest)) { 10837 // We found the chain we want as an operand of this TokenFactor. 10838 // Essentially, we reach the chain without side-effects if we could 10839 // serialize the TokenFactor into a simple chain of operations with 10840 // Dest as the last operation. This is automatically true if the 10841 // chain has one use: there are no other ordering constraints. 10842 // If the chain has more than one use, we give up: some other 10843 // use of Dest might force a side-effect between Dest and the current 10844 // node. 10845 if (Dest.hasOneUse()) 10846 return true; 10847 } 10848 // Next, try a deep search: check whether every operand of the TokenFactor 10849 // reaches Dest. 10850 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10851 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10852 }); 10853 } 10854 10855 // Loads don't have side effects, look through them. 10856 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10857 if (Ld->isUnordered()) 10858 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10859 } 10860 return false; 10861 } 10862 10863 bool SDNode::hasPredecessor(const SDNode *N) const { 10864 SmallPtrSet<const SDNode *, 32> Visited; 10865 SmallVector<const SDNode *, 16> Worklist; 10866 Worklist.push_back(this); 10867 return hasPredecessorHelper(N, Visited, Worklist); 10868 } 10869 10870 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10871 this->Flags.intersectWith(Flags); 10872 } 10873 10874 SDValue 10875 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10876 ArrayRef<ISD::NodeType> CandidateBinOps, 10877 bool AllowPartials) { 10878 // The pattern must end in an extract from index 0. 10879 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10880 !isNullConstant(Extract->getOperand(1))) 10881 return SDValue(); 10882 10883 // Match against one of the candidate binary ops. 10884 SDValue Op = Extract->getOperand(0); 10885 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10886 return Op.getOpcode() == unsigned(BinOp); 10887 })) 10888 return SDValue(); 10889 10890 // Floating-point reductions may require relaxed constraints on the final step 10891 // of the reduction because they may reorder intermediate operations. 10892 unsigned CandidateBinOp = Op.getOpcode(); 10893 if (Op.getValueType().isFloatingPoint()) { 10894 SDNodeFlags Flags = Op->getFlags(); 10895 switch (CandidateBinOp) { 10896 case ISD::FADD: 10897 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10898 return SDValue(); 10899 break; 10900 default: 10901 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10902 } 10903 } 10904 10905 // Matching failed - attempt to see if we did enough stages that a partial 10906 // reduction from a subvector is possible. 10907 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10908 if (!AllowPartials || !Op) 10909 return SDValue(); 10910 EVT OpVT = Op.getValueType(); 10911 EVT OpSVT = OpVT.getScalarType(); 10912 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10913 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10914 return SDValue(); 10915 BinOp = (ISD::NodeType)CandidateBinOp; 10916 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10917 getVectorIdxConstant(0, SDLoc(Op))); 10918 }; 10919 10920 // At each stage, we're looking for something that looks like: 10921 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10922 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10923 // i32 undef, i32 undef, i32 undef, i32 undef> 10924 // %a = binop <8 x i32> %op, %s 10925 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10926 // we expect something like: 10927 // <4,5,6,7,u,u,u,u> 10928 // <2,3,u,u,u,u,u,u> 10929 // <1,u,u,u,u,u,u,u> 10930 // While a partial reduction match would be: 10931 // <2,3,u,u,u,u,u,u> 10932 // <1,u,u,u,u,u,u,u> 10933 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10934 SDValue PrevOp; 10935 for (unsigned i = 0; i < Stages; ++i) { 10936 unsigned MaskEnd = (1 << i); 10937 10938 if (Op.getOpcode() != CandidateBinOp) 10939 return PartialReduction(PrevOp, MaskEnd); 10940 10941 SDValue Op0 = Op.getOperand(0); 10942 SDValue Op1 = Op.getOperand(1); 10943 10944 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10945 if (Shuffle) { 10946 Op = Op1; 10947 } else { 10948 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10949 Op = Op0; 10950 } 10951 10952 // The first operand of the shuffle should be the same as the other operand 10953 // of the binop. 10954 if (!Shuffle || Shuffle->getOperand(0) != Op) 10955 return PartialReduction(PrevOp, MaskEnd); 10956 10957 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10958 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10959 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10960 return PartialReduction(PrevOp, MaskEnd); 10961 10962 PrevOp = Op; 10963 } 10964 10965 // Handle subvector reductions, which tend to appear after the shuffle 10966 // reduction stages. 10967 while (Op.getOpcode() == CandidateBinOp) { 10968 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10969 SDValue Op0 = Op.getOperand(0); 10970 SDValue Op1 = Op.getOperand(1); 10971 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10972 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10973 Op0.getOperand(0) != Op1.getOperand(0)) 10974 break; 10975 SDValue Src = Op0.getOperand(0); 10976 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10977 if (NumSrcElts != (2 * NumElts)) 10978 break; 10979 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10980 Op1.getConstantOperandAPInt(1) == NumElts) && 10981 !(Op1.getConstantOperandAPInt(1) == 0 && 10982 Op0.getConstantOperandAPInt(1) == NumElts)) 10983 break; 10984 Op = Src; 10985 } 10986 10987 BinOp = (ISD::NodeType)CandidateBinOp; 10988 return Op; 10989 } 10990 10991 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10992 assert(N->getNumValues() == 1 && 10993 "Can't unroll a vector with multiple results!"); 10994 10995 EVT VT = N->getValueType(0); 10996 unsigned NE = VT.getVectorNumElements(); 10997 EVT EltVT = VT.getVectorElementType(); 10998 SDLoc dl(N); 10999 11000 SmallVector<SDValue, 8> Scalars; 11001 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 11002 11003 // If ResNE is 0, fully unroll the vector op. 11004 if (ResNE == 0) 11005 ResNE = NE; 11006 else if (NE > ResNE) 11007 NE = ResNE; 11008 11009 unsigned i; 11010 for (i= 0; i != NE; ++i) { 11011 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 11012 SDValue Operand = N->getOperand(j); 11013 EVT OperandVT = Operand.getValueType(); 11014 if (OperandVT.isVector()) { 11015 // A vector operand; extract a single element. 11016 EVT OperandEltVT = OperandVT.getVectorElementType(); 11017 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 11018 Operand, getVectorIdxConstant(i, dl)); 11019 } else { 11020 // A scalar operand; just use it as is. 11021 Operands[j] = Operand; 11022 } 11023 } 11024 11025 switch (N->getOpcode()) { 11026 default: { 11027 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 11028 N->getFlags())); 11029 break; 11030 } 11031 case ISD::VSELECT: 11032 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 11033 break; 11034 case ISD::SHL: 11035 case ISD::SRA: 11036 case ISD::SRL: 11037 case ISD::ROTL: 11038 case ISD::ROTR: 11039 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 11040 getShiftAmountOperand(Operands[0].getValueType(), 11041 Operands[1]))); 11042 break; 11043 case ISD::SIGN_EXTEND_INREG: { 11044 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 11045 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 11046 Operands[0], 11047 getValueType(ExtVT))); 11048 } 11049 } 11050 } 11051 11052 for (; i < ResNE; ++i) 11053 Scalars.push_back(getUNDEF(EltVT)); 11054 11055 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 11056 return getBuildVector(VecVT, dl, Scalars); 11057 } 11058 11059 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 11060 SDNode *N, unsigned ResNE) { 11061 unsigned Opcode = N->getOpcode(); 11062 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 11063 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 11064 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 11065 "Expected an overflow opcode"); 11066 11067 EVT ResVT = N->getValueType(0); 11068 EVT OvVT = N->getValueType(1); 11069 EVT ResEltVT = ResVT.getVectorElementType(); 11070 EVT OvEltVT = OvVT.getVectorElementType(); 11071 SDLoc dl(N); 11072 11073 // If ResNE is 0, fully unroll the vector op. 11074 unsigned NE = ResVT.getVectorNumElements(); 11075 if (ResNE == 0) 11076 ResNE = NE; 11077 else if (NE > ResNE) 11078 NE = ResNE; 11079 11080 SmallVector<SDValue, 8> LHSScalars; 11081 SmallVector<SDValue, 8> RHSScalars; 11082 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 11083 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 11084 11085 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 11086 SDVTList VTs = getVTList(ResEltVT, SVT); 11087 SmallVector<SDValue, 8> ResScalars; 11088 SmallVector<SDValue, 8> OvScalars; 11089 for (unsigned i = 0; i < NE; ++i) { 11090 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 11091 SDValue Ov = 11092 getSelect(dl, OvEltVT, Res.getValue(1), 11093 getBoolConstant(true, dl, OvEltVT, ResVT), 11094 getConstant(0, dl, OvEltVT)); 11095 11096 ResScalars.push_back(Res); 11097 OvScalars.push_back(Ov); 11098 } 11099 11100 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 11101 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 11102 11103 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 11104 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 11105 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 11106 getBuildVector(NewOvVT, dl, OvScalars)); 11107 } 11108 11109 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 11110 LoadSDNode *Base, 11111 unsigned Bytes, 11112 int Dist) const { 11113 if (LD->isVolatile() || Base->isVolatile()) 11114 return false; 11115 // TODO: probably too restrictive for atomics, revisit 11116 if (!LD->isSimple()) 11117 return false; 11118 if (LD->isIndexed() || Base->isIndexed()) 11119 return false; 11120 if (LD->getChain() != Base->getChain()) 11121 return false; 11122 EVT VT = LD->getValueType(0); 11123 if (VT.getSizeInBits() / 8 != Bytes) 11124 return false; 11125 11126 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 11127 auto LocDecomp = BaseIndexOffset::match(LD, *this); 11128 11129 int64_t Offset = 0; 11130 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 11131 return (Dist * Bytes == Offset); 11132 return false; 11133 } 11134 11135 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 11136 /// if it cannot be inferred. 11137 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 11138 // If this is a GlobalAddress + cst, return the alignment. 11139 const GlobalValue *GV = nullptr; 11140 int64_t GVOffset = 0; 11141 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 11142 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 11143 KnownBits Known(PtrWidth); 11144 llvm::computeKnownBits(GV, Known, getDataLayout()); 11145 unsigned AlignBits = Known.countMinTrailingZeros(); 11146 if (AlignBits) 11147 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 11148 } 11149 11150 // If this is a direct reference to a stack slot, use information about the 11151 // stack slot's alignment. 11152 int FrameIdx = INT_MIN; 11153 int64_t FrameOffset = 0; 11154 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 11155 FrameIdx = FI->getIndex(); 11156 } else if (isBaseWithConstantOffset(Ptr) && 11157 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 11158 // Handle FI+Cst 11159 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 11160 FrameOffset = Ptr.getConstantOperandVal(1); 11161 } 11162 11163 if (FrameIdx != INT_MIN) { 11164 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 11165 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 11166 } 11167 11168 return None; 11169 } 11170 11171 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 11172 /// which is split (or expanded) into two not necessarily identical pieces. 11173 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 11174 // Currently all types are split in half. 11175 EVT LoVT, HiVT; 11176 if (!VT.isVector()) 11177 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 11178 else 11179 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 11180 11181 return std::make_pair(LoVT, HiVT); 11182 } 11183 11184 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 11185 /// type, dependent on an enveloping VT that has been split into two identical 11186 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 11187 std::pair<EVT, EVT> 11188 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 11189 bool *HiIsEmpty) const { 11190 EVT EltTp = VT.getVectorElementType(); 11191 // Examples: 11192 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 11193 // custom VL=9 with enveloping VL=8/8 yields 8/1 11194 // custom VL=10 with enveloping VL=8/8 yields 8/2 11195 // etc. 11196 ElementCount VTNumElts = VT.getVectorElementCount(); 11197 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 11198 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 11199 "Mixing fixed width and scalable vectors when enveloping a type"); 11200 EVT LoVT, HiVT; 11201 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 11202 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11203 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 11204 *HiIsEmpty = false; 11205 } else { 11206 // Flag that hi type has zero storage size, but return split envelop type 11207 // (this would be easier if vector types with zero elements were allowed). 11208 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 11209 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11210 *HiIsEmpty = true; 11211 } 11212 return std::make_pair(LoVT, HiVT); 11213 } 11214 11215 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 11216 /// low/high part. 11217 std::pair<SDValue, SDValue> 11218 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 11219 const EVT &HiVT) { 11220 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 11221 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 11222 "Splitting vector with an invalid mixture of fixed and scalable " 11223 "vector types"); 11224 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 11225 N.getValueType().getVectorMinNumElements() && 11226 "More vector elements requested than available!"); 11227 SDValue Lo, Hi; 11228 Lo = 11229 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 11230 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 11231 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 11232 // IDX with the runtime scaling factor of the result vector type. For 11233 // fixed-width result vectors, that runtime scaling factor is 1. 11234 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 11235 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 11236 return std::make_pair(Lo, Hi); 11237 } 11238 11239 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 11240 const SDLoc &DL) { 11241 // Split the vector length parameter. 11242 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 11243 EVT VT = N.getValueType(); 11244 assert(VecVT.getVectorElementCount().isKnownEven() && 11245 "Expecting the mask to be an evenly-sized vector"); 11246 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 11247 SDValue HalfNumElts = 11248 VecVT.isFixedLengthVector() 11249 ? getConstant(HalfMinNumElts, DL, VT) 11250 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 11251 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 11252 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 11253 return std::make_pair(Lo, Hi); 11254 } 11255 11256 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 11257 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 11258 EVT VT = N.getValueType(); 11259 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 11260 NextPowerOf2(VT.getVectorNumElements())); 11261 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 11262 getVectorIdxConstant(0, DL)); 11263 } 11264 11265 void SelectionDAG::ExtractVectorElements(SDValue Op, 11266 SmallVectorImpl<SDValue> &Args, 11267 unsigned Start, unsigned Count, 11268 EVT EltVT) { 11269 EVT VT = Op.getValueType(); 11270 if (Count == 0) 11271 Count = VT.getVectorNumElements(); 11272 if (EltVT == EVT()) 11273 EltVT = VT.getVectorElementType(); 11274 SDLoc SL(Op); 11275 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 11276 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 11277 getVectorIdxConstant(i, SL))); 11278 } 11279 } 11280 11281 // getAddressSpace - Return the address space this GlobalAddress belongs to. 11282 unsigned GlobalAddressSDNode::getAddressSpace() const { 11283 return getGlobal()->getType()->getAddressSpace(); 11284 } 11285 11286 Type *ConstantPoolSDNode::getType() const { 11287 if (isMachineConstantPoolEntry()) 11288 return Val.MachineCPVal->getType(); 11289 return Val.ConstVal->getType(); 11290 } 11291 11292 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 11293 unsigned &SplatBitSize, 11294 bool &HasAnyUndefs, 11295 unsigned MinSplatBits, 11296 bool IsBigEndian) const { 11297 EVT VT = getValueType(0); 11298 assert(VT.isVector() && "Expected a vector type"); 11299 unsigned VecWidth = VT.getSizeInBits(); 11300 if (MinSplatBits > VecWidth) 11301 return false; 11302 11303 // FIXME: The widths are based on this node's type, but build vectors can 11304 // truncate their operands. 11305 SplatValue = APInt(VecWidth, 0); 11306 SplatUndef = APInt(VecWidth, 0); 11307 11308 // Get the bits. Bits with undefined values (when the corresponding element 11309 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 11310 // in SplatValue. If any of the values are not constant, give up and return 11311 // false. 11312 unsigned int NumOps = getNumOperands(); 11313 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 11314 unsigned EltWidth = VT.getScalarSizeInBits(); 11315 11316 for (unsigned j = 0; j < NumOps; ++j) { 11317 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 11318 SDValue OpVal = getOperand(i); 11319 unsigned BitPos = j * EltWidth; 11320 11321 if (OpVal.isUndef()) 11322 SplatUndef.setBits(BitPos, BitPos + EltWidth); 11323 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 11324 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 11325 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 11326 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 11327 else 11328 return false; 11329 } 11330 11331 // The build_vector is all constants or undefs. Find the smallest element 11332 // size that splats the vector. 11333 HasAnyUndefs = (SplatUndef != 0); 11334 11335 // FIXME: This does not work for vectors with elements less than 8 bits. 11336 while (VecWidth > 8) { 11337 unsigned HalfSize = VecWidth / 2; 11338 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 11339 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 11340 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 11341 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 11342 11343 // If the two halves do not match (ignoring undef bits), stop here. 11344 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 11345 MinSplatBits > HalfSize) 11346 break; 11347 11348 SplatValue = HighValue | LowValue; 11349 SplatUndef = HighUndef & LowUndef; 11350 11351 VecWidth = HalfSize; 11352 } 11353 11354 SplatBitSize = VecWidth; 11355 return true; 11356 } 11357 11358 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 11359 BitVector *UndefElements) const { 11360 unsigned NumOps = getNumOperands(); 11361 if (UndefElements) { 11362 UndefElements->clear(); 11363 UndefElements->resize(NumOps); 11364 } 11365 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11366 if (!DemandedElts) 11367 return SDValue(); 11368 SDValue Splatted; 11369 for (unsigned i = 0; i != NumOps; ++i) { 11370 if (!DemandedElts[i]) 11371 continue; 11372 SDValue Op = getOperand(i); 11373 if (Op.isUndef()) { 11374 if (UndefElements) 11375 (*UndefElements)[i] = true; 11376 } else if (!Splatted) { 11377 Splatted = Op; 11378 } else if (Splatted != Op) { 11379 return SDValue(); 11380 } 11381 } 11382 11383 if (!Splatted) { 11384 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 11385 assert(getOperand(FirstDemandedIdx).isUndef() && 11386 "Can only have a splat without a constant for all undefs."); 11387 return getOperand(FirstDemandedIdx); 11388 } 11389 11390 return Splatted; 11391 } 11392 11393 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 11394 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11395 return getSplatValue(DemandedElts, UndefElements); 11396 } 11397 11398 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 11399 SmallVectorImpl<SDValue> &Sequence, 11400 BitVector *UndefElements) const { 11401 unsigned NumOps = getNumOperands(); 11402 Sequence.clear(); 11403 if (UndefElements) { 11404 UndefElements->clear(); 11405 UndefElements->resize(NumOps); 11406 } 11407 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11408 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 11409 return false; 11410 11411 // Set the undefs even if we don't find a sequence (like getSplatValue). 11412 if (UndefElements) 11413 for (unsigned I = 0; I != NumOps; ++I) 11414 if (DemandedElts[I] && getOperand(I).isUndef()) 11415 (*UndefElements)[I] = true; 11416 11417 // Iteratively widen the sequence length looking for repetitions. 11418 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 11419 Sequence.append(SeqLen, SDValue()); 11420 for (unsigned I = 0; I != NumOps; ++I) { 11421 if (!DemandedElts[I]) 11422 continue; 11423 SDValue &SeqOp = Sequence[I % SeqLen]; 11424 SDValue Op = getOperand(I); 11425 if (Op.isUndef()) { 11426 if (!SeqOp) 11427 SeqOp = Op; 11428 continue; 11429 } 11430 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 11431 Sequence.clear(); 11432 break; 11433 } 11434 SeqOp = Op; 11435 } 11436 if (!Sequence.empty()) 11437 return true; 11438 } 11439 11440 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 11441 return false; 11442 } 11443 11444 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 11445 BitVector *UndefElements) const { 11446 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11447 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 11448 } 11449 11450 ConstantSDNode * 11451 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 11452 BitVector *UndefElements) const { 11453 return dyn_cast_or_null<ConstantSDNode>( 11454 getSplatValue(DemandedElts, UndefElements)); 11455 } 11456 11457 ConstantSDNode * 11458 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 11459 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 11460 } 11461 11462 ConstantFPSDNode * 11463 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 11464 BitVector *UndefElements) const { 11465 return dyn_cast_or_null<ConstantFPSDNode>( 11466 getSplatValue(DemandedElts, UndefElements)); 11467 } 11468 11469 ConstantFPSDNode * 11470 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 11471 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 11472 } 11473 11474 int32_t 11475 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 11476 uint32_t BitWidth) const { 11477 if (ConstantFPSDNode *CN = 11478 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 11479 bool IsExact; 11480 APSInt IntVal(BitWidth); 11481 const APFloat &APF = CN->getValueAPF(); 11482 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 11483 APFloat::opOK || 11484 !IsExact) 11485 return -1; 11486 11487 return IntVal.exactLogBase2(); 11488 } 11489 return -1; 11490 } 11491 11492 bool BuildVectorSDNode::getConstantRawBits( 11493 bool IsLittleEndian, unsigned DstEltSizeInBits, 11494 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 11495 // Early-out if this contains anything but Undef/Constant/ConstantFP. 11496 if (!isConstant()) 11497 return false; 11498 11499 unsigned NumSrcOps = getNumOperands(); 11500 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 11501 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11502 "Invalid bitcast scale"); 11503 11504 // Extract raw src bits. 11505 SmallVector<APInt> SrcBitElements(NumSrcOps, 11506 APInt::getNullValue(SrcEltSizeInBits)); 11507 BitVector SrcUndeElements(NumSrcOps, false); 11508 11509 for (unsigned I = 0; I != NumSrcOps; ++I) { 11510 SDValue Op = getOperand(I); 11511 if (Op.isUndef()) { 11512 SrcUndeElements.set(I); 11513 continue; 11514 } 11515 auto *CInt = dyn_cast<ConstantSDNode>(Op); 11516 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 11517 assert((CInt || CFP) && "Unknown constant"); 11518 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits) 11519 : CFP->getValueAPF().bitcastToAPInt(); 11520 } 11521 11522 // Recast to dst width. 11523 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 11524 SrcBitElements, UndefElements, SrcUndeElements); 11525 return true; 11526 } 11527 11528 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 11529 unsigned DstEltSizeInBits, 11530 SmallVectorImpl<APInt> &DstBitElements, 11531 ArrayRef<APInt> SrcBitElements, 11532 BitVector &DstUndefElements, 11533 const BitVector &SrcUndefElements) { 11534 unsigned NumSrcOps = SrcBitElements.size(); 11535 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 11536 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11537 "Invalid bitcast scale"); 11538 assert(NumSrcOps == SrcUndefElements.size() && 11539 "Vector size mismatch"); 11540 11541 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 11542 DstUndefElements.clear(); 11543 DstUndefElements.resize(NumDstOps, false); 11544 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 11545 11546 // Concatenate src elements constant bits together into dst element. 11547 if (SrcEltSizeInBits <= DstEltSizeInBits) { 11548 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 11549 for (unsigned I = 0; I != NumDstOps; ++I) { 11550 DstUndefElements.set(I); 11551 APInt &DstBits = DstBitElements[I]; 11552 for (unsigned J = 0; J != Scale; ++J) { 11553 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11554 if (SrcUndefElements[Idx]) 11555 continue; 11556 DstUndefElements.reset(I); 11557 const APInt &SrcBits = SrcBitElements[Idx]; 11558 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 11559 "Illegal constant bitwidths"); 11560 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 11561 } 11562 } 11563 return; 11564 } 11565 11566 // Split src element constant bits into dst elements. 11567 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 11568 for (unsigned I = 0; I != NumSrcOps; ++I) { 11569 if (SrcUndefElements[I]) { 11570 DstUndefElements.set(I * Scale, (I + 1) * Scale); 11571 continue; 11572 } 11573 const APInt &SrcBits = SrcBitElements[I]; 11574 for (unsigned J = 0; J != Scale; ++J) { 11575 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11576 APInt &DstBits = DstBitElements[Idx]; 11577 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 11578 } 11579 } 11580 } 11581 11582 bool BuildVectorSDNode::isConstant() const { 11583 for (const SDValue &Op : op_values()) { 11584 unsigned Opc = Op.getOpcode(); 11585 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 11586 return false; 11587 } 11588 return true; 11589 } 11590 11591 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 11592 // Find the first non-undef value in the shuffle mask. 11593 unsigned i, e; 11594 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11595 /* search */; 11596 11597 // If all elements are undefined, this shuffle can be considered a splat 11598 // (although it should eventually get simplified away completely). 11599 if (i == e) 11600 return true; 11601 11602 // Make sure all remaining elements are either undef or the same as the first 11603 // non-undef value. 11604 for (int Idx = Mask[i]; i != e; ++i) 11605 if (Mask[i] >= 0 && Mask[i] != Idx) 11606 return false; 11607 return true; 11608 } 11609 11610 // Returns the SDNode if it is a constant integer BuildVector 11611 // or constant integer. 11612 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11613 if (isa<ConstantSDNode>(N)) 11614 return N.getNode(); 11615 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11616 return N.getNode(); 11617 // Treat a GlobalAddress supporting constant offset folding as a 11618 // constant integer. 11619 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11620 if (GA->getOpcode() == ISD::GlobalAddress && 11621 TLI->isOffsetFoldingLegal(GA)) 11622 return GA; 11623 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11624 isa<ConstantSDNode>(N.getOperand(0))) 11625 return N.getNode(); 11626 return nullptr; 11627 } 11628 11629 // Returns the SDNode if it is a constant float BuildVector 11630 // or constant float. 11631 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11632 if (isa<ConstantFPSDNode>(N)) 11633 return N.getNode(); 11634 11635 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11636 return N.getNode(); 11637 11638 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11639 isa<ConstantFPSDNode>(N.getOperand(0))) 11640 return N.getNode(); 11641 11642 return nullptr; 11643 } 11644 11645 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11646 assert(!Node->OperandList && "Node already has operands"); 11647 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11648 "too many operands to fit into SDNode"); 11649 SDUse *Ops = OperandRecycler.allocate( 11650 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11651 11652 bool IsDivergent = false; 11653 for (unsigned I = 0; I != Vals.size(); ++I) { 11654 Ops[I].setUser(Node); 11655 Ops[I].setInitial(Vals[I]); 11656 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11657 IsDivergent |= Ops[I].getNode()->isDivergent(); 11658 } 11659 Node->NumOperands = Vals.size(); 11660 Node->OperandList = Ops; 11661 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11662 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11663 Node->SDNodeBits.IsDivergent = IsDivergent; 11664 } 11665 checkForCycles(Node); 11666 } 11667 11668 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11669 SmallVectorImpl<SDValue> &Vals) { 11670 size_t Limit = SDNode::getMaxNumOperands(); 11671 while (Vals.size() > Limit) { 11672 unsigned SliceIdx = Vals.size() - Limit; 11673 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11674 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11675 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11676 Vals.emplace_back(NewTF); 11677 } 11678 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11679 } 11680 11681 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11682 EVT VT, SDNodeFlags Flags) { 11683 switch (Opcode) { 11684 default: 11685 return SDValue(); 11686 case ISD::ADD: 11687 case ISD::OR: 11688 case ISD::XOR: 11689 case ISD::UMAX: 11690 return getConstant(0, DL, VT); 11691 case ISD::MUL: 11692 return getConstant(1, DL, VT); 11693 case ISD::AND: 11694 case ISD::UMIN: 11695 return getAllOnesConstant(DL, VT); 11696 case ISD::SMAX: 11697 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11698 case ISD::SMIN: 11699 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11700 case ISD::FADD: 11701 return getConstantFP(-0.0, DL, VT); 11702 case ISD::FMUL: 11703 return getConstantFP(1.0, DL, VT); 11704 case ISD::FMINNUM: 11705 case ISD::FMAXNUM: { 11706 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11707 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11708 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11709 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11710 APFloat::getLargest(Semantics); 11711 if (Opcode == ISD::FMAXNUM) 11712 NeutralAF.changeSign(); 11713 11714 return getConstantFP(NeutralAF, DL, VT); 11715 } 11716 } 11717 } 11718 11719 #ifndef NDEBUG 11720 static void checkForCyclesHelper(const SDNode *N, 11721 SmallPtrSetImpl<const SDNode*> &Visited, 11722 SmallPtrSetImpl<const SDNode*> &Checked, 11723 const llvm::SelectionDAG *DAG) { 11724 // If this node has already been checked, don't check it again. 11725 if (Checked.count(N)) 11726 return; 11727 11728 // If a node has already been visited on this depth-first walk, reject it as 11729 // a cycle. 11730 if (!Visited.insert(N).second) { 11731 errs() << "Detected cycle in SelectionDAG\n"; 11732 dbgs() << "Offending node:\n"; 11733 N->dumprFull(DAG); dbgs() << "\n"; 11734 abort(); 11735 } 11736 11737 for (const SDValue &Op : N->op_values()) 11738 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11739 11740 Checked.insert(N); 11741 Visited.erase(N); 11742 } 11743 #endif 11744 11745 void llvm::checkForCycles(const llvm::SDNode *N, 11746 const llvm::SelectionDAG *DAG, 11747 bool force) { 11748 #ifndef NDEBUG 11749 bool check = force; 11750 #ifdef EXPENSIVE_CHECKS 11751 check = true; 11752 #endif // EXPENSIVE_CHECKS 11753 if (check) { 11754 assert(N && "Checking nonexistent SDNode"); 11755 SmallPtrSet<const SDNode*, 32> visited; 11756 SmallPtrSet<const SDNode*, 32> checked; 11757 checkForCyclesHelper(N, visited, checked, DAG); 11758 } 11759 #endif // !NDEBUG 11760 } 11761 11762 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11763 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11764 } 11765