1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/APSInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/FoldingSet.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/RuntimeLibcalls.h"
36 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/KnownBits.h"
60 #include "llvm/Support/MachineValueType.h"
61 #include "llvm/Support/ManagedStatic.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/Mutex.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Target/TargetMachine.h"
66 #include "llvm/Target/TargetOptions.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <cstdlib>
71 #include <limits>
72 #include <set>
73 #include <string>
74 #include <utility>
75 #include <vector>
76 
77 using namespace llvm;
78 
79 /// makeVTList - Return an instance of the SDVTList struct initialized with the
80 /// specified members.
81 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
82   SDVTList Res = {VTs, NumVTs};
83   return Res;
84 }
85 
86 // Default null implementations of the callbacks.
87 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
88 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
89 
90 #define DEBUG_TYPE "selectiondag"
91 
92 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
93        cl::Hidden, cl::init(true),
94        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
95 
96 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
97        cl::desc("Number limit for gluing ld/st of memcpy."),
98        cl::Hidden, cl::init(0));
99 
100 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
101   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
102 }
103 
104 //===----------------------------------------------------------------------===//
105 //                              ConstantFPSDNode Class
106 //===----------------------------------------------------------------------===//
107 
108 /// isExactlyValue - We don't rely on operator== working on double values, as
109 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
110 /// As such, this method can be used to do an exact bit-for-bit comparison of
111 /// two floating point values.
112 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
113   return getValueAPF().bitwiseIsEqual(V);
114 }
115 
116 bool ConstantFPSDNode::isValueValidForType(EVT VT,
117                                            const APFloat& Val) {
118   assert(VT.isFloatingPoint() && "Can only convert between FP types");
119 
120   // convert modifies in place, so make a copy.
121   APFloat Val2 = APFloat(Val);
122   bool losesInfo;
123   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
124                       APFloat::rmNearestTiesToEven,
125                       &losesInfo);
126   return !losesInfo;
127 }
128 
129 //===----------------------------------------------------------------------===//
130 //                              ISD Namespace
131 //===----------------------------------------------------------------------===//
132 
133 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
134   auto *BV = dyn_cast<BuildVectorSDNode>(N);
135   if (!BV)
136     return false;
137 
138   APInt SplatUndef;
139   unsigned SplatBitSize;
140   bool HasUndefs;
141   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
142   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
143                              EltSize) &&
144          EltSize == SplatBitSize;
145 }
146 
147 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
148 // specializations of the more general isConstantSplatVector()?
149 
150 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
151   // Look through a bit convert.
152   while (N->getOpcode() == ISD::BITCAST)
153     N = N->getOperand(0).getNode();
154 
155   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
156 
157   unsigned i = 0, e = N->getNumOperands();
158 
159   // Skip over all of the undef values.
160   while (i != e && N->getOperand(i).isUndef())
161     ++i;
162 
163   // Do not accept an all-undef vector.
164   if (i == e) return false;
165 
166   // Do not accept build_vectors that aren't all constants or which have non-~0
167   // elements. We have to be a bit careful here, as the type of the constant
168   // may not be the same as the type of the vector elements due to type
169   // legalization (the elements are promoted to a legal type for the target and
170   // a vector of a type may be legal when the base element type is not).
171   // We only want to check enough bits to cover the vector elements, because
172   // we care if the resultant vector is all ones, not whether the individual
173   // constants are.
174   SDValue NotZero = N->getOperand(i);
175   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
176   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
177     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
178       return false;
179   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
180     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
181       return false;
182   } else
183     return false;
184 
185   // Okay, we have at least one ~0 value, check to see if the rest match or are
186   // undefs. Even with the above element type twiddling, this should be OK, as
187   // the same type legalization should have applied to all the elements.
188   for (++i; i != e; ++i)
189     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
190       return false;
191   return true;
192 }
193 
194 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
195   // Look through a bit convert.
196   while (N->getOpcode() == ISD::BITCAST)
197     N = N->getOperand(0).getNode();
198 
199   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
200 
201   bool IsAllUndef = true;
202   for (const SDValue &Op : N->op_values()) {
203     if (Op.isUndef())
204       continue;
205     IsAllUndef = false;
206     // Do not accept build_vectors that aren't all constants or which have non-0
207     // elements. We have to be a bit careful here, as the type of the constant
208     // may not be the same as the type of the vector elements due to type
209     // legalization (the elements are promoted to a legal type for the target
210     // and a vector of a type may be legal when the base element type is not).
211     // We only want to check enough bits to cover the vector elements, because
212     // we care if the resultant vector is all zeros, not whether the individual
213     // constants are.
214     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
215     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
216       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
217         return false;
218     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
219       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
220         return false;
221     } else
222       return false;
223   }
224 
225   // Do not accept an all-undef vector.
226   if (IsAllUndef)
227     return false;
228   return true;
229 }
230 
231 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
232   if (N->getOpcode() != ISD::BUILD_VECTOR)
233     return false;
234 
235   for (const SDValue &Op : N->op_values()) {
236     if (Op.isUndef())
237       continue;
238     if (!isa<ConstantSDNode>(Op))
239       return false;
240   }
241   return true;
242 }
243 
244 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
245   if (N->getOpcode() != ISD::BUILD_VECTOR)
246     return false;
247 
248   for (const SDValue &Op : N->op_values()) {
249     if (Op.isUndef())
250       continue;
251     if (!isa<ConstantFPSDNode>(Op))
252       return false;
253   }
254   return true;
255 }
256 
257 bool ISD::allOperandsUndef(const SDNode *N) {
258   // Return false if the node has no operands.
259   // This is "logically inconsistent" with the definition of "all" but
260   // is probably the desired behavior.
261   if (N->getNumOperands() == 0)
262     return false;
263 
264   for (const SDValue &Op : N->op_values())
265     if (!Op.isUndef())
266       return false;
267 
268   return true;
269 }
270 
271 bool ISD::matchUnaryPredicate(SDValue Op,
272                               std::function<bool(ConstantSDNode *)> Match) {
273   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
274     return Match(Cst);
275 
276   if (ISD::BUILD_VECTOR != Op.getOpcode())
277     return false;
278 
279   EVT SVT = Op.getValueType().getScalarType();
280   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
281     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
282     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
283       return false;
284   }
285   return true;
286 }
287 
288 bool ISD::matchBinaryPredicate(
289     SDValue LHS, SDValue RHS,
290     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match) {
291   if (LHS.getValueType() != RHS.getValueType())
292     return false;
293 
294   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
295     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
296       return Match(LHSCst, RHSCst);
297 
298   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
299       ISD::BUILD_VECTOR != RHS.getOpcode())
300     return false;
301 
302   EVT SVT = LHS.getValueType().getScalarType();
303   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
304     auto *LHSCst = dyn_cast<ConstantSDNode>(LHS.getOperand(i));
305     auto *RHSCst = dyn_cast<ConstantSDNode>(RHS.getOperand(i));
306     if (!LHSCst || !RHSCst)
307       return false;
308     if (LHSCst->getValueType(0) != SVT ||
309         LHSCst->getValueType(0) != RHSCst->getValueType(0))
310       return false;
311     if (!Match(LHSCst, RHSCst))
312       return false;
313   }
314   return true;
315 }
316 
317 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
318   switch (ExtType) {
319   case ISD::EXTLOAD:
320     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
321   case ISD::SEXTLOAD:
322     return ISD::SIGN_EXTEND;
323   case ISD::ZEXTLOAD:
324     return ISD::ZERO_EXTEND;
325   default:
326     break;
327   }
328 
329   llvm_unreachable("Invalid LoadExtType");
330 }
331 
332 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
333   // To perform this operation, we just need to swap the L and G bits of the
334   // operation.
335   unsigned OldL = (Operation >> 2) & 1;
336   unsigned OldG = (Operation >> 1) & 1;
337   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
338                        (OldL << 1) |       // New G bit
339                        (OldG << 2));       // New L bit.
340 }
341 
342 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
343   unsigned Operation = Op;
344   if (isInteger)
345     Operation ^= 7;   // Flip L, G, E bits, but not U.
346   else
347     Operation ^= 15;  // Flip all of the condition bits.
348 
349   if (Operation > ISD::SETTRUE2)
350     Operation &= ~8;  // Don't let N and U bits get set.
351 
352   return ISD::CondCode(Operation);
353 }
354 
355 /// For an integer comparison, return 1 if the comparison is a signed operation
356 /// and 2 if the result is an unsigned comparison. Return zero if the operation
357 /// does not depend on the sign of the input (setne and seteq).
358 static int isSignedOp(ISD::CondCode Opcode) {
359   switch (Opcode) {
360   default: llvm_unreachable("Illegal integer setcc operation!");
361   case ISD::SETEQ:
362   case ISD::SETNE: return 0;
363   case ISD::SETLT:
364   case ISD::SETLE:
365   case ISD::SETGT:
366   case ISD::SETGE: return 1;
367   case ISD::SETULT:
368   case ISD::SETULE:
369   case ISD::SETUGT:
370   case ISD::SETUGE: return 2;
371   }
372 }
373 
374 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
375                                        bool IsInteger) {
376   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
377     // Cannot fold a signed integer setcc with an unsigned integer setcc.
378     return ISD::SETCC_INVALID;
379 
380   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
381 
382   // If the N and U bits get set, then the resultant comparison DOES suddenly
383   // care about orderedness, and it is true when ordered.
384   if (Op > ISD::SETTRUE2)
385     Op &= ~16;     // Clear the U bit if the N bit is set.
386 
387   // Canonicalize illegal integer setcc's.
388   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
389     Op = ISD::SETNE;
390 
391   return ISD::CondCode(Op);
392 }
393 
394 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
395                                         bool IsInteger) {
396   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
397     // Cannot fold a signed setcc with an unsigned setcc.
398     return ISD::SETCC_INVALID;
399 
400   // Combine all of the condition bits.
401   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
402 
403   // Canonicalize illegal integer setcc's.
404   if (IsInteger) {
405     switch (Result) {
406     default: break;
407     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
408     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
409     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
410     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
411     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
412     }
413   }
414 
415   return Result;
416 }
417 
418 //===----------------------------------------------------------------------===//
419 //                           SDNode Profile Support
420 //===----------------------------------------------------------------------===//
421 
422 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
423 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
424   ID.AddInteger(OpC);
425 }
426 
427 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
428 /// solely with their pointer.
429 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
430   ID.AddPointer(VTList.VTs);
431 }
432 
433 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
434 static void AddNodeIDOperands(FoldingSetNodeID &ID,
435                               ArrayRef<SDValue> Ops) {
436   for (auto& Op : Ops) {
437     ID.AddPointer(Op.getNode());
438     ID.AddInteger(Op.getResNo());
439   }
440 }
441 
442 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
443 static void AddNodeIDOperands(FoldingSetNodeID &ID,
444                               ArrayRef<SDUse> Ops) {
445   for (auto& Op : Ops) {
446     ID.AddPointer(Op.getNode());
447     ID.AddInteger(Op.getResNo());
448   }
449 }
450 
451 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
452                           SDVTList VTList, ArrayRef<SDValue> OpList) {
453   AddNodeIDOpcode(ID, OpC);
454   AddNodeIDValueTypes(ID, VTList);
455   AddNodeIDOperands(ID, OpList);
456 }
457 
458 /// If this is an SDNode with special info, add this info to the NodeID data.
459 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
460   switch (N->getOpcode()) {
461   case ISD::TargetExternalSymbol:
462   case ISD::ExternalSymbol:
463   case ISD::MCSymbol:
464     llvm_unreachable("Should only be used on nodes with operands");
465   default: break;  // Normal nodes don't need extra info.
466   case ISD::TargetConstant:
467   case ISD::Constant: {
468     const ConstantSDNode *C = cast<ConstantSDNode>(N);
469     ID.AddPointer(C->getConstantIntValue());
470     ID.AddBoolean(C->isOpaque());
471     break;
472   }
473   case ISD::TargetConstantFP:
474   case ISD::ConstantFP:
475     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
476     break;
477   case ISD::TargetGlobalAddress:
478   case ISD::GlobalAddress:
479   case ISD::TargetGlobalTLSAddress:
480   case ISD::GlobalTLSAddress: {
481     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
482     ID.AddPointer(GA->getGlobal());
483     ID.AddInteger(GA->getOffset());
484     ID.AddInteger(GA->getTargetFlags());
485     break;
486   }
487   case ISD::BasicBlock:
488     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
489     break;
490   case ISD::Register:
491     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
492     break;
493   case ISD::RegisterMask:
494     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
495     break;
496   case ISD::SRCVALUE:
497     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
498     break;
499   case ISD::FrameIndex:
500   case ISD::TargetFrameIndex:
501     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
502     break;
503   case ISD::JumpTable:
504   case ISD::TargetJumpTable:
505     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
506     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
507     break;
508   case ISD::ConstantPool:
509   case ISD::TargetConstantPool: {
510     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
511     ID.AddInteger(CP->getAlignment());
512     ID.AddInteger(CP->getOffset());
513     if (CP->isMachineConstantPoolEntry())
514       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
515     else
516       ID.AddPointer(CP->getConstVal());
517     ID.AddInteger(CP->getTargetFlags());
518     break;
519   }
520   case ISD::TargetIndex: {
521     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
522     ID.AddInteger(TI->getIndex());
523     ID.AddInteger(TI->getOffset());
524     ID.AddInteger(TI->getTargetFlags());
525     break;
526   }
527   case ISD::LOAD: {
528     const LoadSDNode *LD = cast<LoadSDNode>(N);
529     ID.AddInteger(LD->getMemoryVT().getRawBits());
530     ID.AddInteger(LD->getRawSubclassData());
531     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
532     break;
533   }
534   case ISD::STORE: {
535     const StoreSDNode *ST = cast<StoreSDNode>(N);
536     ID.AddInteger(ST->getMemoryVT().getRawBits());
537     ID.AddInteger(ST->getRawSubclassData());
538     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
539     break;
540   }
541   case ISD::MLOAD: {
542     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
543     ID.AddInteger(MLD->getMemoryVT().getRawBits());
544     ID.AddInteger(MLD->getRawSubclassData());
545     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
546     break;
547   }
548   case ISD::MSTORE: {
549     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
550     ID.AddInteger(MST->getMemoryVT().getRawBits());
551     ID.AddInteger(MST->getRawSubclassData());
552     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
553     break;
554   }
555   case ISD::MGATHER: {
556     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
557     ID.AddInteger(MG->getMemoryVT().getRawBits());
558     ID.AddInteger(MG->getRawSubclassData());
559     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
560     break;
561   }
562   case ISD::MSCATTER: {
563     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
564     ID.AddInteger(MS->getMemoryVT().getRawBits());
565     ID.AddInteger(MS->getRawSubclassData());
566     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
567     break;
568   }
569   case ISD::ATOMIC_CMP_SWAP:
570   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
571   case ISD::ATOMIC_SWAP:
572   case ISD::ATOMIC_LOAD_ADD:
573   case ISD::ATOMIC_LOAD_SUB:
574   case ISD::ATOMIC_LOAD_AND:
575   case ISD::ATOMIC_LOAD_CLR:
576   case ISD::ATOMIC_LOAD_OR:
577   case ISD::ATOMIC_LOAD_XOR:
578   case ISD::ATOMIC_LOAD_NAND:
579   case ISD::ATOMIC_LOAD_MIN:
580   case ISD::ATOMIC_LOAD_MAX:
581   case ISD::ATOMIC_LOAD_UMIN:
582   case ISD::ATOMIC_LOAD_UMAX:
583   case ISD::ATOMIC_LOAD:
584   case ISD::ATOMIC_STORE: {
585     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
586     ID.AddInteger(AT->getMemoryVT().getRawBits());
587     ID.AddInteger(AT->getRawSubclassData());
588     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
589     break;
590   }
591   case ISD::PREFETCH: {
592     const MemSDNode *PF = cast<MemSDNode>(N);
593     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
594     break;
595   }
596   case ISD::VECTOR_SHUFFLE: {
597     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
598     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
599          i != e; ++i)
600       ID.AddInteger(SVN->getMaskElt(i));
601     break;
602   }
603   case ISD::TargetBlockAddress:
604   case ISD::BlockAddress: {
605     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
606     ID.AddPointer(BA->getBlockAddress());
607     ID.AddInteger(BA->getOffset());
608     ID.AddInteger(BA->getTargetFlags());
609     break;
610   }
611   } // end switch (N->getOpcode())
612 
613   // Target specific memory nodes could also have address spaces to check.
614   if (N->isTargetMemoryOpcode())
615     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
616 }
617 
618 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
619 /// data.
620 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
621   AddNodeIDOpcode(ID, N->getOpcode());
622   // Add the return value info.
623   AddNodeIDValueTypes(ID, N->getVTList());
624   // Add the operand info.
625   AddNodeIDOperands(ID, N->ops());
626 
627   // Handle SDNode leafs with special info.
628   AddNodeIDCustom(ID, N);
629 }
630 
631 //===----------------------------------------------------------------------===//
632 //                              SelectionDAG Class
633 //===----------------------------------------------------------------------===//
634 
635 /// doNotCSE - Return true if CSE should not be performed for this node.
636 static bool doNotCSE(SDNode *N) {
637   if (N->getValueType(0) == MVT::Glue)
638     return true; // Never CSE anything that produces a flag.
639 
640   switch (N->getOpcode()) {
641   default: break;
642   case ISD::HANDLENODE:
643   case ISD::EH_LABEL:
644     return true;   // Never CSE these nodes.
645   }
646 
647   // Check that remaining values produced are not flags.
648   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
649     if (N->getValueType(i) == MVT::Glue)
650       return true; // Never CSE anything that produces a flag.
651 
652   return false;
653 }
654 
655 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
656 /// SelectionDAG.
657 void SelectionDAG::RemoveDeadNodes() {
658   // Create a dummy node (which is not added to allnodes), that adds a reference
659   // to the root node, preventing it from being deleted.
660   HandleSDNode Dummy(getRoot());
661 
662   SmallVector<SDNode*, 128> DeadNodes;
663 
664   // Add all obviously-dead nodes to the DeadNodes worklist.
665   for (SDNode &Node : allnodes())
666     if (Node.use_empty())
667       DeadNodes.push_back(&Node);
668 
669   RemoveDeadNodes(DeadNodes);
670 
671   // If the root changed (e.g. it was a dead load, update the root).
672   setRoot(Dummy.getValue());
673 }
674 
675 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
676 /// given list, and any nodes that become unreachable as a result.
677 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
678 
679   // Process the worklist, deleting the nodes and adding their uses to the
680   // worklist.
681   while (!DeadNodes.empty()) {
682     SDNode *N = DeadNodes.pop_back_val();
683     // Skip to next node if we've already managed to delete the node. This could
684     // happen if replacing a node causes a node previously added to the node to
685     // be deleted.
686     if (N->getOpcode() == ISD::DELETED_NODE)
687       continue;
688 
689     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
690       DUL->NodeDeleted(N, nullptr);
691 
692     // Take the node out of the appropriate CSE map.
693     RemoveNodeFromCSEMaps(N);
694 
695     // Next, brutally remove the operand list.  This is safe to do, as there are
696     // no cycles in the graph.
697     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
698       SDUse &Use = *I++;
699       SDNode *Operand = Use.getNode();
700       Use.set(SDValue());
701 
702       // Now that we removed this operand, see if there are no uses of it left.
703       if (Operand->use_empty())
704         DeadNodes.push_back(Operand);
705     }
706 
707     DeallocateNode(N);
708   }
709 }
710 
711 void SelectionDAG::RemoveDeadNode(SDNode *N){
712   SmallVector<SDNode*, 16> DeadNodes(1, N);
713 
714   // Create a dummy node that adds a reference to the root node, preventing
715   // it from being deleted.  (This matters if the root is an operand of the
716   // dead node.)
717   HandleSDNode Dummy(getRoot());
718 
719   RemoveDeadNodes(DeadNodes);
720 }
721 
722 void SelectionDAG::DeleteNode(SDNode *N) {
723   // First take this out of the appropriate CSE map.
724   RemoveNodeFromCSEMaps(N);
725 
726   // Finally, remove uses due to operands of this node, remove from the
727   // AllNodes list, and delete the node.
728   DeleteNodeNotInCSEMaps(N);
729 }
730 
731 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
732   assert(N->getIterator() != AllNodes.begin() &&
733          "Cannot delete the entry node!");
734   assert(N->use_empty() && "Cannot delete a node that is not dead!");
735 
736   // Drop all of the operands and decrement used node's use counts.
737   N->DropOperands();
738 
739   DeallocateNode(N);
740 }
741 
742 void SDDbgInfo::erase(const SDNode *Node) {
743   DbgValMapType::iterator I = DbgValMap.find(Node);
744   if (I == DbgValMap.end())
745     return;
746   for (auto &Val: I->second)
747     Val->setIsInvalidated();
748   DbgValMap.erase(I);
749 }
750 
751 void SelectionDAG::DeallocateNode(SDNode *N) {
752   // If we have operands, deallocate them.
753   removeOperands(N);
754 
755   NodeAllocator.Deallocate(AllNodes.remove(N));
756 
757   // Set the opcode to DELETED_NODE to help catch bugs when node
758   // memory is reallocated.
759   // FIXME: There are places in SDag that have grown a dependency on the opcode
760   // value in the released node.
761   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
762   N->NodeType = ISD::DELETED_NODE;
763 
764   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
765   // them and forget about that node.
766   DbgInfo->erase(N);
767 }
768 
769 #ifndef NDEBUG
770 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
771 static void VerifySDNode(SDNode *N) {
772   switch (N->getOpcode()) {
773   default:
774     break;
775   case ISD::BUILD_PAIR: {
776     EVT VT = N->getValueType(0);
777     assert(N->getNumValues() == 1 && "Too many results!");
778     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
779            "Wrong return type!");
780     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
781     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
782            "Mismatched operand types!");
783     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
784            "Wrong operand type!");
785     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
786            "Wrong return type size");
787     break;
788   }
789   case ISD::BUILD_VECTOR: {
790     assert(N->getNumValues() == 1 && "Too many results!");
791     assert(N->getValueType(0).isVector() && "Wrong return type!");
792     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
793            "Wrong number of operands!");
794     EVT EltVT = N->getValueType(0).getVectorElementType();
795     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
796       assert((I->getValueType() == EltVT ||
797              (EltVT.isInteger() && I->getValueType().isInteger() &&
798               EltVT.bitsLE(I->getValueType()))) &&
799             "Wrong operand type!");
800       assert(I->getValueType() == N->getOperand(0).getValueType() &&
801              "Operands must all have the same type");
802     }
803     break;
804   }
805   }
806 }
807 #endif // NDEBUG
808 
809 /// Insert a newly allocated node into the DAG.
810 ///
811 /// Handles insertion into the all nodes list and CSE map, as well as
812 /// verification and other common operations when a new node is allocated.
813 void SelectionDAG::InsertNode(SDNode *N) {
814   AllNodes.push_back(N);
815 #ifndef NDEBUG
816   N->PersistentId = NextPersistentId++;
817   VerifySDNode(N);
818 #endif
819 }
820 
821 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
822 /// correspond to it.  This is useful when we're about to delete or repurpose
823 /// the node.  We don't want future request for structurally identical nodes
824 /// to return N anymore.
825 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
826   bool Erased = false;
827   switch (N->getOpcode()) {
828   case ISD::HANDLENODE: return false;  // noop.
829   case ISD::CONDCODE:
830     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
831            "Cond code doesn't exist!");
832     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
833     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
834     break;
835   case ISD::ExternalSymbol:
836     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
837     break;
838   case ISD::TargetExternalSymbol: {
839     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
840     Erased = TargetExternalSymbols.erase(
841                std::pair<std::string,unsigned char>(ESN->getSymbol(),
842                                                     ESN->getTargetFlags()));
843     break;
844   }
845   case ISD::MCSymbol: {
846     auto *MCSN = cast<MCSymbolSDNode>(N);
847     Erased = MCSymbols.erase(MCSN->getMCSymbol());
848     break;
849   }
850   case ISD::VALUETYPE: {
851     EVT VT = cast<VTSDNode>(N)->getVT();
852     if (VT.isExtended()) {
853       Erased = ExtendedValueTypeNodes.erase(VT);
854     } else {
855       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
856       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
857     }
858     break;
859   }
860   default:
861     // Remove it from the CSE Map.
862     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
863     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
864     Erased = CSEMap.RemoveNode(N);
865     break;
866   }
867 #ifndef NDEBUG
868   // Verify that the node was actually in one of the CSE maps, unless it has a
869   // flag result (which cannot be CSE'd) or is one of the special cases that are
870   // not subject to CSE.
871   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
872       !N->isMachineOpcode() && !doNotCSE(N)) {
873     N->dump(this);
874     dbgs() << "\n";
875     llvm_unreachable("Node is not in map!");
876   }
877 #endif
878   return Erased;
879 }
880 
881 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
882 /// maps and modified in place. Add it back to the CSE maps, unless an identical
883 /// node already exists, in which case transfer all its users to the existing
884 /// node. This transfer can potentially trigger recursive merging.
885 void
886 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
887   // For node types that aren't CSE'd, just act as if no identical node
888   // already exists.
889   if (!doNotCSE(N)) {
890     SDNode *Existing = CSEMap.GetOrInsertNode(N);
891     if (Existing != N) {
892       // If there was already an existing matching node, use ReplaceAllUsesWith
893       // to replace the dead one with the existing one.  This can cause
894       // recursive merging of other unrelated nodes down the line.
895       ReplaceAllUsesWith(N, Existing);
896 
897       // N is now dead. Inform the listeners and delete it.
898       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
899         DUL->NodeDeleted(N, Existing);
900       DeleteNodeNotInCSEMaps(N);
901       return;
902     }
903   }
904 
905   // If the node doesn't already exist, we updated it.  Inform listeners.
906   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
907     DUL->NodeUpdated(N);
908 }
909 
910 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
911 /// were replaced with those specified.  If this node is never memoized,
912 /// return null, otherwise return a pointer to the slot it would take.  If a
913 /// node already exists with these operands, the slot will be non-null.
914 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
915                                            void *&InsertPos) {
916   if (doNotCSE(N))
917     return nullptr;
918 
919   SDValue Ops[] = { Op };
920   FoldingSetNodeID ID;
921   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
922   AddNodeIDCustom(ID, N);
923   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
924   if (Node)
925     Node->intersectFlagsWith(N->getFlags());
926   return Node;
927 }
928 
929 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
930 /// were replaced with those specified.  If this node is never memoized,
931 /// return null, otherwise return a pointer to the slot it would take.  If a
932 /// node already exists with these operands, the slot will be non-null.
933 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
934                                            SDValue Op1, SDValue Op2,
935                                            void *&InsertPos) {
936   if (doNotCSE(N))
937     return nullptr;
938 
939   SDValue Ops[] = { Op1, Op2 };
940   FoldingSetNodeID ID;
941   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
942   AddNodeIDCustom(ID, N);
943   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
944   if (Node)
945     Node->intersectFlagsWith(N->getFlags());
946   return Node;
947 }
948 
949 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
950 /// were replaced with those specified.  If this node is never memoized,
951 /// return null, otherwise return a pointer to the slot it would take.  If a
952 /// node already exists with these operands, the slot will be non-null.
953 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
954                                            void *&InsertPos) {
955   if (doNotCSE(N))
956     return nullptr;
957 
958   FoldingSetNodeID ID;
959   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
960   AddNodeIDCustom(ID, N);
961   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
962   if (Node)
963     Node->intersectFlagsWith(N->getFlags());
964   return Node;
965 }
966 
967 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
968   Type *Ty = VT == MVT::iPTR ?
969                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
970                    VT.getTypeForEVT(*getContext());
971 
972   return getDataLayout().getABITypeAlignment(Ty);
973 }
974 
975 // EntryNode could meaningfully have debug info if we can find it...
976 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
977     : TM(tm), OptLevel(OL),
978       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
979       Root(getEntryNode()) {
980   InsertNode(&EntryNode);
981   DbgInfo = new SDDbgInfo();
982 }
983 
984 void SelectionDAG::init(MachineFunction &NewMF,
985                         OptimizationRemarkEmitter &NewORE,
986                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
987                         LegacyDivergenceAnalysis * Divergence) {
988   MF = &NewMF;
989   SDAGISelPass = PassPtr;
990   ORE = &NewORE;
991   TLI = getSubtarget().getTargetLowering();
992   TSI = getSubtarget().getSelectionDAGInfo();
993   LibInfo = LibraryInfo;
994   Context = &MF->getFunction().getContext();
995   DA = Divergence;
996 }
997 
998 SelectionDAG::~SelectionDAG() {
999   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1000   allnodes_clear();
1001   OperandRecycler.clear(OperandAllocator);
1002   delete DbgInfo;
1003 }
1004 
1005 void SelectionDAG::allnodes_clear() {
1006   assert(&*AllNodes.begin() == &EntryNode);
1007   AllNodes.remove(AllNodes.begin());
1008   while (!AllNodes.empty())
1009     DeallocateNode(&AllNodes.front());
1010 #ifndef NDEBUG
1011   NextPersistentId = 0;
1012 #endif
1013 }
1014 
1015 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1016                                           void *&InsertPos) {
1017   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1018   if (N) {
1019     switch (N->getOpcode()) {
1020     default: break;
1021     case ISD::Constant:
1022     case ISD::ConstantFP:
1023       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1024                        "debug location.  Use another overload.");
1025     }
1026   }
1027   return N;
1028 }
1029 
1030 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1031                                           const SDLoc &DL, void *&InsertPos) {
1032   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1033   if (N) {
1034     switch (N->getOpcode()) {
1035     case ISD::Constant:
1036     case ISD::ConstantFP:
1037       // Erase debug location from the node if the node is used at several
1038       // different places. Do not propagate one location to all uses as it
1039       // will cause a worse single stepping debugging experience.
1040       if (N->getDebugLoc() != DL.getDebugLoc())
1041         N->setDebugLoc(DebugLoc());
1042       break;
1043     default:
1044       // When the node's point of use is located earlier in the instruction
1045       // sequence than its prior point of use, update its debug info to the
1046       // earlier location.
1047       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1048         N->setDebugLoc(DL.getDebugLoc());
1049       break;
1050     }
1051   }
1052   return N;
1053 }
1054 
1055 void SelectionDAG::clear() {
1056   allnodes_clear();
1057   OperandRecycler.clear(OperandAllocator);
1058   OperandAllocator.Reset();
1059   CSEMap.clear();
1060 
1061   ExtendedValueTypeNodes.clear();
1062   ExternalSymbols.clear();
1063   TargetExternalSymbols.clear();
1064   MCSymbols.clear();
1065   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1066             static_cast<CondCodeSDNode*>(nullptr));
1067   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1068             static_cast<SDNode*>(nullptr));
1069 
1070   EntryNode.UseList = nullptr;
1071   InsertNode(&EntryNode);
1072   Root = getEntryNode();
1073   DbgInfo->clear();
1074 }
1075 
1076 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1077   return VT.bitsGT(Op.getValueType())
1078              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1079              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1080 }
1081 
1082 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1083   return VT.bitsGT(Op.getValueType()) ?
1084     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1085     getNode(ISD::TRUNCATE, DL, VT, Op);
1086 }
1087 
1088 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1089   return VT.bitsGT(Op.getValueType()) ?
1090     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1091     getNode(ISD::TRUNCATE, DL, VT, Op);
1092 }
1093 
1094 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1095   return VT.bitsGT(Op.getValueType()) ?
1096     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1097     getNode(ISD::TRUNCATE, DL, VT, Op);
1098 }
1099 
1100 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1101                                         EVT OpVT) {
1102   if (VT.bitsLE(Op.getValueType()))
1103     return getNode(ISD::TRUNCATE, SL, VT, Op);
1104 
1105   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1106   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1107 }
1108 
1109 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1110   assert(!VT.isVector() &&
1111          "getZeroExtendInReg should use the vector element type instead of "
1112          "the vector type!");
1113   if (Op.getValueType().getScalarType() == VT) return Op;
1114   unsigned BitWidth = Op.getScalarValueSizeInBits();
1115   APInt Imm = APInt::getLowBitsSet(BitWidth,
1116                                    VT.getSizeInBits());
1117   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1118                  getConstant(Imm, DL, Op.getValueType()));
1119 }
1120 
1121 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1122 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1123   EVT EltVT = VT.getScalarType();
1124   SDValue NegOne =
1125     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1126   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1127 }
1128 
1129 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1130   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1131   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1132 }
1133 
1134 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1135                                       EVT OpVT) {
1136   if (!V)
1137     return getConstant(0, DL, VT);
1138 
1139   switch (TLI->getBooleanContents(OpVT)) {
1140   case TargetLowering::ZeroOrOneBooleanContent:
1141   case TargetLowering::UndefinedBooleanContent:
1142     return getConstant(1, DL, VT);
1143   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1144     return getAllOnesConstant(DL, VT);
1145   }
1146   llvm_unreachable("Unexpected boolean content enum!");
1147 }
1148 
1149 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1150                                   bool isT, bool isO) {
1151   EVT EltVT = VT.getScalarType();
1152   assert((EltVT.getSizeInBits() >= 64 ||
1153          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1154          "getConstant with a uint64_t value that doesn't fit in the type!");
1155   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1156 }
1157 
1158 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1159                                   bool isT, bool isO) {
1160   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1161 }
1162 
1163 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1164                                   EVT VT, bool isT, bool isO) {
1165   assert(VT.isInteger() && "Cannot create FP integer constant!");
1166 
1167   EVT EltVT = VT.getScalarType();
1168   const ConstantInt *Elt = &Val;
1169 
1170   // In some cases the vector type is legal but the element type is illegal and
1171   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1172   // inserted value (the type does not need to match the vector element type).
1173   // Any extra bits introduced will be truncated away.
1174   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1175       TargetLowering::TypePromoteInteger) {
1176    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1177    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1178    Elt = ConstantInt::get(*getContext(), NewVal);
1179   }
1180   // In other cases the element type is illegal and needs to be expanded, for
1181   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1182   // the value into n parts and use a vector type with n-times the elements.
1183   // Then bitcast to the type requested.
1184   // Legalizing constants too early makes the DAGCombiner's job harder so we
1185   // only legalize if the DAG tells us we must produce legal types.
1186   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1187            TLI->getTypeAction(*getContext(), EltVT) ==
1188            TargetLowering::TypeExpandInteger) {
1189     const APInt &NewVal = Elt->getValue();
1190     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1191     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1192     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1193     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1194 
1195     // Check the temporary vector is the correct size. If this fails then
1196     // getTypeToTransformTo() probably returned a type whose size (in bits)
1197     // isn't a power-of-2 factor of the requested type size.
1198     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1199 
1200     SmallVector<SDValue, 2> EltParts;
1201     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1202       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1203                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1204                                      ViaEltVT, isT, isO));
1205     }
1206 
1207     // EltParts is currently in little endian order. If we actually want
1208     // big-endian order then reverse it now.
1209     if (getDataLayout().isBigEndian())
1210       std::reverse(EltParts.begin(), EltParts.end());
1211 
1212     // The elements must be reversed when the element order is different
1213     // to the endianness of the elements (because the BITCAST is itself a
1214     // vector shuffle in this situation). However, we do not need any code to
1215     // perform this reversal because getConstant() is producing a vector
1216     // splat.
1217     // This situation occurs in MIPS MSA.
1218 
1219     SmallVector<SDValue, 8> Ops;
1220     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1221       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1222 
1223     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1224     return V;
1225   }
1226 
1227   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1228          "APInt size does not match type size!");
1229   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1230   FoldingSetNodeID ID;
1231   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1232   ID.AddPointer(Elt);
1233   ID.AddBoolean(isO);
1234   void *IP = nullptr;
1235   SDNode *N = nullptr;
1236   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1237     if (!VT.isVector())
1238       return SDValue(N, 0);
1239 
1240   if (!N) {
1241     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1242     CSEMap.InsertNode(N, IP);
1243     InsertNode(N);
1244     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1245   }
1246 
1247   SDValue Result(N, 0);
1248   if (VT.isVector())
1249     Result = getSplatBuildVector(VT, DL, Result);
1250 
1251   return Result;
1252 }
1253 
1254 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1255                                         bool isTarget) {
1256   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1257 }
1258 
1259 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1260                                     bool isTarget) {
1261   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1262 }
1263 
1264 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1265                                     EVT VT, bool isTarget) {
1266   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1267 
1268   EVT EltVT = VT.getScalarType();
1269 
1270   // Do the map lookup using the actual bit pattern for the floating point
1271   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1272   // we don't have issues with SNANs.
1273   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1274   FoldingSetNodeID ID;
1275   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1276   ID.AddPointer(&V);
1277   void *IP = nullptr;
1278   SDNode *N = nullptr;
1279   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1280     if (!VT.isVector())
1281       return SDValue(N, 0);
1282 
1283   if (!N) {
1284     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1285     CSEMap.InsertNode(N, IP);
1286     InsertNode(N);
1287   }
1288 
1289   SDValue Result(N, 0);
1290   if (VT.isVector())
1291     Result = getSplatBuildVector(VT, DL, Result);
1292   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1293   return Result;
1294 }
1295 
1296 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1297                                     bool isTarget) {
1298   EVT EltVT = VT.getScalarType();
1299   if (EltVT == MVT::f32)
1300     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1301   else if (EltVT == MVT::f64)
1302     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1303   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1304            EltVT == MVT::f16) {
1305     bool Ignored;
1306     APFloat APF = APFloat(Val);
1307     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1308                 &Ignored);
1309     return getConstantFP(APF, DL, VT, isTarget);
1310   } else
1311     llvm_unreachable("Unsupported type in getConstantFP");
1312 }
1313 
1314 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1315                                        EVT VT, int64_t Offset, bool isTargetGA,
1316                                        unsigned char TargetFlags) {
1317   assert((TargetFlags == 0 || isTargetGA) &&
1318          "Cannot set target flags on target-independent globals");
1319 
1320   // Truncate (with sign-extension) the offset value to the pointer size.
1321   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1322   if (BitWidth < 64)
1323     Offset = SignExtend64(Offset, BitWidth);
1324 
1325   unsigned Opc;
1326   if (GV->isThreadLocal())
1327     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1328   else
1329     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1330 
1331   FoldingSetNodeID ID;
1332   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1333   ID.AddPointer(GV);
1334   ID.AddInteger(Offset);
1335   ID.AddInteger(TargetFlags);
1336   void *IP = nullptr;
1337   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1338     return SDValue(E, 0);
1339 
1340   auto *N = newSDNode<GlobalAddressSDNode>(
1341       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1342   CSEMap.InsertNode(N, IP);
1343     InsertNode(N);
1344   return SDValue(N, 0);
1345 }
1346 
1347 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1348   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1349   FoldingSetNodeID ID;
1350   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1351   ID.AddInteger(FI);
1352   void *IP = nullptr;
1353   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1354     return SDValue(E, 0);
1355 
1356   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1357   CSEMap.InsertNode(N, IP);
1358   InsertNode(N);
1359   return SDValue(N, 0);
1360 }
1361 
1362 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1363                                    unsigned char TargetFlags) {
1364   assert((TargetFlags == 0 || isTarget) &&
1365          "Cannot set target flags on target-independent jump tables");
1366   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1367   FoldingSetNodeID ID;
1368   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1369   ID.AddInteger(JTI);
1370   ID.AddInteger(TargetFlags);
1371   void *IP = nullptr;
1372   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1373     return SDValue(E, 0);
1374 
1375   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1376   CSEMap.InsertNode(N, IP);
1377   InsertNode(N);
1378   return SDValue(N, 0);
1379 }
1380 
1381 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1382                                       unsigned Alignment, int Offset,
1383                                       bool isTarget,
1384                                       unsigned char TargetFlags) {
1385   assert((TargetFlags == 0 || isTarget) &&
1386          "Cannot set target flags on target-independent globals");
1387   if (Alignment == 0)
1388     Alignment = MF->getFunction().optForSize()
1389                     ? getDataLayout().getABITypeAlignment(C->getType())
1390                     : getDataLayout().getPrefTypeAlignment(C->getType());
1391   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1392   FoldingSetNodeID ID;
1393   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1394   ID.AddInteger(Alignment);
1395   ID.AddInteger(Offset);
1396   ID.AddPointer(C);
1397   ID.AddInteger(TargetFlags);
1398   void *IP = nullptr;
1399   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1400     return SDValue(E, 0);
1401 
1402   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1403                                           TargetFlags);
1404   CSEMap.InsertNode(N, IP);
1405   InsertNode(N);
1406   return SDValue(N, 0);
1407 }
1408 
1409 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1410                                       unsigned Alignment, int Offset,
1411                                       bool isTarget,
1412                                       unsigned char TargetFlags) {
1413   assert((TargetFlags == 0 || isTarget) &&
1414          "Cannot set target flags on target-independent globals");
1415   if (Alignment == 0)
1416     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1417   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1418   FoldingSetNodeID ID;
1419   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1420   ID.AddInteger(Alignment);
1421   ID.AddInteger(Offset);
1422   C->addSelectionDAGCSEId(ID);
1423   ID.AddInteger(TargetFlags);
1424   void *IP = nullptr;
1425   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1426     return SDValue(E, 0);
1427 
1428   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1429                                           TargetFlags);
1430   CSEMap.InsertNode(N, IP);
1431   InsertNode(N);
1432   return SDValue(N, 0);
1433 }
1434 
1435 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1436                                      unsigned char TargetFlags) {
1437   FoldingSetNodeID ID;
1438   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1439   ID.AddInteger(Index);
1440   ID.AddInteger(Offset);
1441   ID.AddInteger(TargetFlags);
1442   void *IP = nullptr;
1443   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1444     return SDValue(E, 0);
1445 
1446   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1447   CSEMap.InsertNode(N, IP);
1448   InsertNode(N);
1449   return SDValue(N, 0);
1450 }
1451 
1452 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1453   FoldingSetNodeID ID;
1454   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1455   ID.AddPointer(MBB);
1456   void *IP = nullptr;
1457   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1458     return SDValue(E, 0);
1459 
1460   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1461   CSEMap.InsertNode(N, IP);
1462   InsertNode(N);
1463   return SDValue(N, 0);
1464 }
1465 
1466 SDValue SelectionDAG::getValueType(EVT VT) {
1467   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1468       ValueTypeNodes.size())
1469     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1470 
1471   SDNode *&N = VT.isExtended() ?
1472     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1473 
1474   if (N) return SDValue(N, 0);
1475   N = newSDNode<VTSDNode>(VT);
1476   InsertNode(N);
1477   return SDValue(N, 0);
1478 }
1479 
1480 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1481   SDNode *&N = ExternalSymbols[Sym];
1482   if (N) return SDValue(N, 0);
1483   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1484   InsertNode(N);
1485   return SDValue(N, 0);
1486 }
1487 
1488 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1489   SDNode *&N = MCSymbols[Sym];
1490   if (N)
1491     return SDValue(N, 0);
1492   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1493   InsertNode(N);
1494   return SDValue(N, 0);
1495 }
1496 
1497 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1498                                               unsigned char TargetFlags) {
1499   SDNode *&N =
1500     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1501                                                                TargetFlags)];
1502   if (N) return SDValue(N, 0);
1503   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1504   InsertNode(N);
1505   return SDValue(N, 0);
1506 }
1507 
1508 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1509   if ((unsigned)Cond >= CondCodeNodes.size())
1510     CondCodeNodes.resize(Cond+1);
1511 
1512   if (!CondCodeNodes[Cond]) {
1513     auto *N = newSDNode<CondCodeSDNode>(Cond);
1514     CondCodeNodes[Cond] = N;
1515     InsertNode(N);
1516   }
1517 
1518   return SDValue(CondCodeNodes[Cond], 0);
1519 }
1520 
1521 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1522 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1523 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1524   std::swap(N1, N2);
1525   ShuffleVectorSDNode::commuteMask(M);
1526 }
1527 
1528 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1529                                        SDValue N2, ArrayRef<int> Mask) {
1530   assert(VT.getVectorNumElements() == Mask.size() &&
1531            "Must have the same number of vector elements as mask elements!");
1532   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1533          "Invalid VECTOR_SHUFFLE");
1534 
1535   // Canonicalize shuffle undef, undef -> undef
1536   if (N1.isUndef() && N2.isUndef())
1537     return getUNDEF(VT);
1538 
1539   // Validate that all indices in Mask are within the range of the elements
1540   // input to the shuffle.
1541   int NElts = Mask.size();
1542   assert(llvm::all_of(Mask,
1543                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1544          "Index out of range");
1545 
1546   // Copy the mask so we can do any needed cleanup.
1547   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1548 
1549   // Canonicalize shuffle v, v -> v, undef
1550   if (N1 == N2) {
1551     N2 = getUNDEF(VT);
1552     for (int i = 0; i != NElts; ++i)
1553       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1554   }
1555 
1556   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1557   if (N1.isUndef())
1558     commuteShuffle(N1, N2, MaskVec);
1559 
1560   if (TLI->hasVectorBlend()) {
1561     // If shuffling a splat, try to blend the splat instead. We do this here so
1562     // that even when this arises during lowering we don't have to re-handle it.
1563     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1564       BitVector UndefElements;
1565       SDValue Splat = BV->getSplatValue(&UndefElements);
1566       if (!Splat)
1567         return;
1568 
1569       for (int i = 0; i < NElts; ++i) {
1570         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1571           continue;
1572 
1573         // If this input comes from undef, mark it as such.
1574         if (UndefElements[MaskVec[i] - Offset]) {
1575           MaskVec[i] = -1;
1576           continue;
1577         }
1578 
1579         // If we can blend a non-undef lane, use that instead.
1580         if (!UndefElements[i])
1581           MaskVec[i] = i + Offset;
1582       }
1583     };
1584     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1585       BlendSplat(N1BV, 0);
1586     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1587       BlendSplat(N2BV, NElts);
1588   }
1589 
1590   // Canonicalize all index into lhs, -> shuffle lhs, undef
1591   // Canonicalize all index into rhs, -> shuffle rhs, undef
1592   bool AllLHS = true, AllRHS = true;
1593   bool N2Undef = N2.isUndef();
1594   for (int i = 0; i != NElts; ++i) {
1595     if (MaskVec[i] >= NElts) {
1596       if (N2Undef)
1597         MaskVec[i] = -1;
1598       else
1599         AllLHS = false;
1600     } else if (MaskVec[i] >= 0) {
1601       AllRHS = false;
1602     }
1603   }
1604   if (AllLHS && AllRHS)
1605     return getUNDEF(VT);
1606   if (AllLHS && !N2Undef)
1607     N2 = getUNDEF(VT);
1608   if (AllRHS) {
1609     N1 = getUNDEF(VT);
1610     commuteShuffle(N1, N2, MaskVec);
1611   }
1612   // Reset our undef status after accounting for the mask.
1613   N2Undef = N2.isUndef();
1614   // Re-check whether both sides ended up undef.
1615   if (N1.isUndef() && N2Undef)
1616     return getUNDEF(VT);
1617 
1618   // If Identity shuffle return that node.
1619   bool Identity = true, AllSame = true;
1620   for (int i = 0; i != NElts; ++i) {
1621     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1622     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1623   }
1624   if (Identity && NElts)
1625     return N1;
1626 
1627   // Shuffling a constant splat doesn't change the result.
1628   if (N2Undef) {
1629     SDValue V = N1;
1630 
1631     // Look through any bitcasts. We check that these don't change the number
1632     // (and size) of elements and just changes their types.
1633     while (V.getOpcode() == ISD::BITCAST)
1634       V = V->getOperand(0);
1635 
1636     // A splat should always show up as a build vector node.
1637     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1638       BitVector UndefElements;
1639       SDValue Splat = BV->getSplatValue(&UndefElements);
1640       // If this is a splat of an undef, shuffling it is also undef.
1641       if (Splat && Splat.isUndef())
1642         return getUNDEF(VT);
1643 
1644       bool SameNumElts =
1645           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1646 
1647       // We only have a splat which can skip shuffles if there is a splatted
1648       // value and no undef lanes rearranged by the shuffle.
1649       if (Splat && UndefElements.none()) {
1650         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1651         // number of elements match or the value splatted is a zero constant.
1652         if (SameNumElts)
1653           return N1;
1654         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1655           if (C->isNullValue())
1656             return N1;
1657       }
1658 
1659       // If the shuffle itself creates a splat, build the vector directly.
1660       if (AllSame && SameNumElts) {
1661         EVT BuildVT = BV->getValueType(0);
1662         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1663         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1664 
1665         // We may have jumped through bitcasts, so the type of the
1666         // BUILD_VECTOR may not match the type of the shuffle.
1667         if (BuildVT != VT)
1668           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1669         return NewBV;
1670       }
1671     }
1672   }
1673 
1674   FoldingSetNodeID ID;
1675   SDValue Ops[2] = { N1, N2 };
1676   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1677   for (int i = 0; i != NElts; ++i)
1678     ID.AddInteger(MaskVec[i]);
1679 
1680   void* IP = nullptr;
1681   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1682     return SDValue(E, 0);
1683 
1684   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1685   // SDNode doesn't have access to it.  This memory will be "leaked" when
1686   // the node is deallocated, but recovered when the NodeAllocator is released.
1687   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1688   std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc);
1689 
1690   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1691                                            dl.getDebugLoc(), MaskAlloc);
1692   createOperands(N, Ops);
1693 
1694   CSEMap.InsertNode(N, IP);
1695   InsertNode(N);
1696   SDValue V = SDValue(N, 0);
1697   NewSDValueDbgMsg(V, "Creating new node: ", this);
1698   return V;
1699 }
1700 
1701 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1702   EVT VT = SV.getValueType(0);
1703   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1704   ShuffleVectorSDNode::commuteMask(MaskVec);
1705 
1706   SDValue Op0 = SV.getOperand(0);
1707   SDValue Op1 = SV.getOperand(1);
1708   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1709 }
1710 
1711 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1712   FoldingSetNodeID ID;
1713   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1714   ID.AddInteger(RegNo);
1715   void *IP = nullptr;
1716   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1717     return SDValue(E, 0);
1718 
1719   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1720   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1721   CSEMap.InsertNode(N, IP);
1722   InsertNode(N);
1723   return SDValue(N, 0);
1724 }
1725 
1726 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1727   FoldingSetNodeID ID;
1728   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1729   ID.AddPointer(RegMask);
1730   void *IP = nullptr;
1731   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1732     return SDValue(E, 0);
1733 
1734   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1735   CSEMap.InsertNode(N, IP);
1736   InsertNode(N);
1737   return SDValue(N, 0);
1738 }
1739 
1740 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1741                                  MCSymbol *Label) {
1742   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1743 }
1744 
1745 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1746                                    SDValue Root, MCSymbol *Label) {
1747   FoldingSetNodeID ID;
1748   SDValue Ops[] = { Root };
1749   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1750   ID.AddPointer(Label);
1751   void *IP = nullptr;
1752   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1753     return SDValue(E, 0);
1754 
1755   auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1756   createOperands(N, Ops);
1757 
1758   CSEMap.InsertNode(N, IP);
1759   InsertNode(N);
1760   return SDValue(N, 0);
1761 }
1762 
1763 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1764                                       int64_t Offset,
1765                                       bool isTarget,
1766                                       unsigned char TargetFlags) {
1767   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1768 
1769   FoldingSetNodeID ID;
1770   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1771   ID.AddPointer(BA);
1772   ID.AddInteger(Offset);
1773   ID.AddInteger(TargetFlags);
1774   void *IP = nullptr;
1775   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1776     return SDValue(E, 0);
1777 
1778   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1779   CSEMap.InsertNode(N, IP);
1780   InsertNode(N);
1781   return SDValue(N, 0);
1782 }
1783 
1784 SDValue SelectionDAG::getSrcValue(const Value *V) {
1785   assert((!V || V->getType()->isPointerTy()) &&
1786          "SrcValue is not a pointer?");
1787 
1788   FoldingSetNodeID ID;
1789   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1790   ID.AddPointer(V);
1791 
1792   void *IP = nullptr;
1793   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1794     return SDValue(E, 0);
1795 
1796   auto *N = newSDNode<SrcValueSDNode>(V);
1797   CSEMap.InsertNode(N, IP);
1798   InsertNode(N);
1799   return SDValue(N, 0);
1800 }
1801 
1802 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1803   FoldingSetNodeID ID;
1804   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1805   ID.AddPointer(MD);
1806 
1807   void *IP = nullptr;
1808   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1809     return SDValue(E, 0);
1810 
1811   auto *N = newSDNode<MDNodeSDNode>(MD);
1812   CSEMap.InsertNode(N, IP);
1813   InsertNode(N);
1814   return SDValue(N, 0);
1815 }
1816 
1817 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1818   if (VT == V.getValueType())
1819     return V;
1820 
1821   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1822 }
1823 
1824 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1825                                        unsigned SrcAS, unsigned DestAS) {
1826   SDValue Ops[] = {Ptr};
1827   FoldingSetNodeID ID;
1828   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1829   ID.AddInteger(SrcAS);
1830   ID.AddInteger(DestAS);
1831 
1832   void *IP = nullptr;
1833   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1834     return SDValue(E, 0);
1835 
1836   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1837                                            VT, SrcAS, DestAS);
1838   createOperands(N, Ops);
1839 
1840   CSEMap.InsertNode(N, IP);
1841   InsertNode(N);
1842   return SDValue(N, 0);
1843 }
1844 
1845 /// getShiftAmountOperand - Return the specified value casted to
1846 /// the target's desired shift amount type.
1847 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1848   EVT OpTy = Op.getValueType();
1849   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1850   if (OpTy == ShTy || OpTy.isVector()) return Op;
1851 
1852   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1853 }
1854 
1855 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1856   SDLoc dl(Node);
1857   const TargetLowering &TLI = getTargetLoweringInfo();
1858   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1859   EVT VT = Node->getValueType(0);
1860   SDValue Tmp1 = Node->getOperand(0);
1861   SDValue Tmp2 = Node->getOperand(1);
1862   unsigned Align = Node->getConstantOperandVal(3);
1863 
1864   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1865                                Tmp2, MachinePointerInfo(V));
1866   SDValue VAList = VAListLoad;
1867 
1868   if (Align > TLI.getMinStackArgumentAlignment()) {
1869     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1870 
1871     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1872                      getConstant(Align - 1, dl, VAList.getValueType()));
1873 
1874     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1875                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1876   }
1877 
1878   // Increment the pointer, VAList, to the next vaarg
1879   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1880                  getConstant(getDataLayout().getTypeAllocSize(
1881                                                VT.getTypeForEVT(*getContext())),
1882                              dl, VAList.getValueType()));
1883   // Store the incremented VAList to the legalized pointer
1884   Tmp1 =
1885       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1886   // Load the actual argument out of the pointer VAList
1887   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1888 }
1889 
1890 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1891   SDLoc dl(Node);
1892   const TargetLowering &TLI = getTargetLoweringInfo();
1893   // This defaults to loading a pointer from the input and storing it to the
1894   // output, returning the chain.
1895   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1896   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1897   SDValue Tmp1 =
1898       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1899               Node->getOperand(2), MachinePointerInfo(VS));
1900   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1901                   MachinePointerInfo(VD));
1902 }
1903 
1904 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1905   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1906   unsigned ByteSize = VT.getStoreSize();
1907   Type *Ty = VT.getTypeForEVT(*getContext());
1908   unsigned StackAlign =
1909       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1910 
1911   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1912   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1913 }
1914 
1915 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1916   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1917   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1918   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1919   const DataLayout &DL = getDataLayout();
1920   unsigned Align =
1921       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1922 
1923   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1924   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1925   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1926 }
1927 
1928 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1929                                 ISD::CondCode Cond, const SDLoc &dl) {
1930   EVT OpVT = N1.getValueType();
1931 
1932   // These setcc operations always fold.
1933   switch (Cond) {
1934   default: break;
1935   case ISD::SETFALSE:
1936   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
1937   case ISD::SETTRUE:
1938   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
1939 
1940   case ISD::SETOEQ:
1941   case ISD::SETOGT:
1942   case ISD::SETOGE:
1943   case ISD::SETOLT:
1944   case ISD::SETOLE:
1945   case ISD::SETONE:
1946   case ISD::SETO:
1947   case ISD::SETUO:
1948   case ISD::SETUEQ:
1949   case ISD::SETUNE:
1950     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1951     break;
1952   }
1953 
1954   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
1955     const APInt &C2 = N2C->getAPIntValue();
1956     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
1957       const APInt &C1 = N1C->getAPIntValue();
1958 
1959       switch (Cond) {
1960       default: llvm_unreachable("Unknown integer setcc!");
1961       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
1962       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
1963       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
1964       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
1965       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
1966       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
1967       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
1968       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
1969       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
1970       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
1971       }
1972     }
1973   }
1974   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
1975     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
1976       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1977       switch (Cond) {
1978       default: break;
1979       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1980                           return getUNDEF(VT);
1981                         LLVM_FALLTHROUGH;
1982       case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
1983                                                OpVT);
1984       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1985                           return getUNDEF(VT);
1986                         LLVM_FALLTHROUGH;
1987       case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
1988                                                R==APFloat::cmpLessThan, dl, VT,
1989                                                OpVT);
1990       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1991                           return getUNDEF(VT);
1992                         LLVM_FALLTHROUGH;
1993       case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
1994                                                OpVT);
1995       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1996                           return getUNDEF(VT);
1997                         LLVM_FALLTHROUGH;
1998       case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
1999                                                VT, OpVT);
2000       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2001                           return getUNDEF(VT);
2002                         LLVM_FALLTHROUGH;
2003       case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2004                                                R==APFloat::cmpEqual, dl, VT,
2005                                                OpVT);
2006       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2007                           return getUNDEF(VT);
2008                         LLVM_FALLTHROUGH;
2009       case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2010                                            R==APFloat::cmpEqual, dl, VT, OpVT);
2011       case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2012                                                OpVT);
2013       case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2014                                                OpVT);
2015       case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2016                                                R==APFloat::cmpEqual, dl, VT,
2017                                                OpVT);
2018       case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2019                                                OpVT);
2020       case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2021                                                R==APFloat::cmpLessThan, dl, VT,
2022                                                OpVT);
2023       case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2024                                                R==APFloat::cmpUnordered, dl, VT,
2025                                                OpVT);
2026       case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2027                                                VT, OpVT);
2028       case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2029                                                OpVT);
2030       }
2031     } else {
2032       // Ensure that the constant occurs on the RHS.
2033       ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2034       MVT CompVT = N1.getValueType().getSimpleVT();
2035       if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
2036         return SDValue();
2037 
2038       return getSetCC(dl, VT, N2, N1, SwappedCond);
2039     }
2040   }
2041 
2042   // Could not fold it.
2043   return SDValue();
2044 }
2045 
2046 /// See if the specified operand can be simplified with the knowledge that only
2047 /// the bits specified by Mask are used.
2048 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) {
2049   switch (V.getOpcode()) {
2050   default:
2051     break;
2052   case ISD::Constant: {
2053     const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
2054     assert(CV && "Const value should be ConstSDNode.");
2055     const APInt &CVal = CV->getAPIntValue();
2056     APInt NewVal = CVal & Mask;
2057     if (NewVal != CVal)
2058       return getConstant(NewVal, SDLoc(V), V.getValueType());
2059     break;
2060   }
2061   case ISD::OR:
2062   case ISD::XOR:
2063     // If the LHS or RHS don't contribute bits to the or, drop them.
2064     if (MaskedValueIsZero(V.getOperand(0), Mask))
2065       return V.getOperand(1);
2066     if (MaskedValueIsZero(V.getOperand(1), Mask))
2067       return V.getOperand(0);
2068     break;
2069   case ISD::SRL:
2070     // Only look at single-use SRLs.
2071     if (!V.getNode()->hasOneUse())
2072       break;
2073     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2074       // See if we can recursively simplify the LHS.
2075       unsigned Amt = RHSC->getZExtValue();
2076 
2077       // Watch out for shift count overflow though.
2078       if (Amt >= Mask.getBitWidth())
2079         break;
2080       APInt NewMask = Mask << Amt;
2081       if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
2082         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2083                        V.getOperand(1));
2084     }
2085     break;
2086   case ISD::AND: {
2087     // X & -1 -> X (ignoring bits which aren't demanded).
2088     ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1));
2089     if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue()))
2090       return V.getOperand(0);
2091     break;
2092   }
2093   case ISD::ANY_EXTEND: {
2094     SDValue Src = V.getOperand(0);
2095     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2096     // Being conservative here - only peek through if we only demand bits in the
2097     // non-extended source (even though the extended bits are technically undef).
2098     if (Mask.getActiveBits() > SrcBitWidth)
2099       break;
2100     APInt SrcMask = Mask.trunc(SrcBitWidth);
2101     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask))
2102       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2103     break;
2104   }
2105   }
2106   return SDValue();
2107 }
2108 
2109 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2110 /// use this predicate to simplify operations downstream.
2111 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2112   unsigned BitWidth = Op.getScalarValueSizeInBits();
2113   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2114 }
2115 
2116 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2117 /// this predicate to simplify operations downstream.  Mask is known to be zero
2118 /// for bits that V cannot have.
2119 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
2120                                      unsigned Depth) const {
2121   return Mask.isSubsetOf(computeKnownBits(Op, Depth).Zero);
2122 }
2123 
2124 /// Helper function that checks to see if a node is a constant or a
2125 /// build vector of splat constants at least within the demanded elts.
2126 static ConstantSDNode *isConstOrDemandedConstSplat(SDValue N,
2127                                                    const APInt &DemandedElts) {
2128   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
2129     return CN;
2130   if (N.getOpcode() != ISD::BUILD_VECTOR)
2131     return nullptr;
2132   EVT VT = N.getValueType();
2133   ConstantSDNode *Cst = nullptr;
2134   unsigned NumElts = VT.getVectorNumElements();
2135   assert(DemandedElts.getBitWidth() == NumElts && "Unexpected vector size");
2136   for (unsigned i = 0; i != NumElts; ++i) {
2137     if (!DemandedElts[i])
2138       continue;
2139     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(i));
2140     if (!C || (Cst && Cst->getAPIntValue() != C->getAPIntValue()) ||
2141         C->getValueType(0) != VT.getScalarType())
2142       return nullptr;
2143     Cst = C;
2144   }
2145   return Cst;
2146 }
2147 
2148 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2149 /// is less than the element bit-width of the shift node, return it.
2150 static const APInt *getValidShiftAmountConstant(SDValue V) {
2151   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2152     // Shifting more than the bitwidth is not valid.
2153     const APInt &ShAmt = SA->getAPIntValue();
2154     if (ShAmt.ult(V.getScalarValueSizeInBits()))
2155       return &ShAmt;
2156   }
2157   return nullptr;
2158 }
2159 
2160 /// Determine which bits of Op are known to be either zero or one and return
2161 /// them in Known. For vectors, the known bits are those that are shared by
2162 /// every vector element.
2163 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2164   EVT VT = Op.getValueType();
2165   APInt DemandedElts = VT.isVector()
2166                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2167                            : APInt(1, 1);
2168   return computeKnownBits(Op, DemandedElts, Depth);
2169 }
2170 
2171 /// Determine which bits of Op are known to be either zero or one and return
2172 /// them in Known. The DemandedElts argument allows us to only collect the known
2173 /// bits that are shared by the requested vector elements.
2174 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2175                                          unsigned Depth) const {
2176   unsigned BitWidth = Op.getScalarValueSizeInBits();
2177 
2178   KnownBits Known(BitWidth);   // Don't know anything.
2179 
2180   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2181     // We know all of the bits for a constant!
2182     Known.One = C->getAPIntValue();
2183     Known.Zero = ~Known.One;
2184     return Known;
2185   }
2186   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2187     // We know all of the bits for a constant fp!
2188     Known.One = C->getValueAPF().bitcastToAPInt();
2189     Known.Zero = ~Known.One;
2190     return Known;
2191   }
2192 
2193   if (Depth == 6)
2194     return Known;  // Limit search depth.
2195 
2196   KnownBits Known2;
2197   unsigned NumElts = DemandedElts.getBitWidth();
2198   assert((!Op.getValueType().isVector() ||
2199           NumElts == Op.getValueType().getVectorNumElements()) &&
2200          "Unexpected vector size");
2201 
2202   if (!DemandedElts)
2203     return Known;  // No demanded elts, better to assume we don't know anything.
2204 
2205   unsigned Opcode = Op.getOpcode();
2206   switch (Opcode) {
2207   case ISD::BUILD_VECTOR:
2208     // Collect the known bits that are shared by every demanded vector element.
2209     Known.Zero.setAllBits(); Known.One.setAllBits();
2210     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2211       if (!DemandedElts[i])
2212         continue;
2213 
2214       SDValue SrcOp = Op.getOperand(i);
2215       Known2 = computeKnownBits(SrcOp, Depth + 1);
2216 
2217       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2218       if (SrcOp.getValueSizeInBits() != BitWidth) {
2219         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2220                "Expected BUILD_VECTOR implicit truncation");
2221         Known2 = Known2.trunc(BitWidth);
2222       }
2223 
2224       // Known bits are the values that are shared by every demanded element.
2225       Known.One &= Known2.One;
2226       Known.Zero &= Known2.Zero;
2227 
2228       // If we don't know any bits, early out.
2229       if (Known.isUnknown())
2230         break;
2231     }
2232     break;
2233   case ISD::VECTOR_SHUFFLE: {
2234     // Collect the known bits that are shared by every vector element referenced
2235     // by the shuffle.
2236     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2237     Known.Zero.setAllBits(); Known.One.setAllBits();
2238     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2239     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2240     for (unsigned i = 0; i != NumElts; ++i) {
2241       if (!DemandedElts[i])
2242         continue;
2243 
2244       int M = SVN->getMaskElt(i);
2245       if (M < 0) {
2246         // For UNDEF elements, we don't know anything about the common state of
2247         // the shuffle result.
2248         Known.resetAll();
2249         DemandedLHS.clearAllBits();
2250         DemandedRHS.clearAllBits();
2251         break;
2252       }
2253 
2254       if ((unsigned)M < NumElts)
2255         DemandedLHS.setBit((unsigned)M % NumElts);
2256       else
2257         DemandedRHS.setBit((unsigned)M % NumElts);
2258     }
2259     // Known bits are the values that are shared by every demanded element.
2260     if (!!DemandedLHS) {
2261       SDValue LHS = Op.getOperand(0);
2262       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2263       Known.One &= Known2.One;
2264       Known.Zero &= Known2.Zero;
2265     }
2266     // If we don't know any bits, early out.
2267     if (Known.isUnknown())
2268       break;
2269     if (!!DemandedRHS) {
2270       SDValue RHS = Op.getOperand(1);
2271       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2272       Known.One &= Known2.One;
2273       Known.Zero &= Known2.Zero;
2274     }
2275     break;
2276   }
2277   case ISD::CONCAT_VECTORS: {
2278     // Split DemandedElts and test each of the demanded subvectors.
2279     Known.Zero.setAllBits(); Known.One.setAllBits();
2280     EVT SubVectorVT = Op.getOperand(0).getValueType();
2281     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2282     unsigned NumSubVectors = Op.getNumOperands();
2283     for (unsigned i = 0; i != NumSubVectors; ++i) {
2284       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2285       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2286       if (!!DemandedSub) {
2287         SDValue Sub = Op.getOperand(i);
2288         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2289         Known.One &= Known2.One;
2290         Known.Zero &= Known2.Zero;
2291       }
2292       // If we don't know any bits, early out.
2293       if (Known.isUnknown())
2294         break;
2295     }
2296     break;
2297   }
2298   case ISD::INSERT_SUBVECTOR: {
2299     // If we know the element index, demand any elements from the subvector and
2300     // the remainder from the src its inserted into, otherwise demand them all.
2301     SDValue Src = Op.getOperand(0);
2302     SDValue Sub = Op.getOperand(1);
2303     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2304     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2305     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2306       Known.One.setAllBits();
2307       Known.Zero.setAllBits();
2308       uint64_t Idx = SubIdx->getZExtValue();
2309       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2310       if (!!DemandedSubElts) {
2311         Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2312         if (Known.isUnknown())
2313           break; // early-out.
2314       }
2315       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2316       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2317       if (!!DemandedSrcElts) {
2318         Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2319         Known.One &= Known2.One;
2320         Known.Zero &= Known2.Zero;
2321       }
2322     } else {
2323       Known = computeKnownBits(Sub, Depth + 1);
2324       if (Known.isUnknown())
2325         break; // early-out.
2326       Known2 = computeKnownBits(Src, Depth + 1);
2327       Known.One &= Known2.One;
2328       Known.Zero &= Known2.Zero;
2329     }
2330     break;
2331   }
2332   case ISD::EXTRACT_SUBVECTOR: {
2333     // If we know the element index, just demand that subvector elements,
2334     // otherwise demand them all.
2335     SDValue Src = Op.getOperand(0);
2336     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2337     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2338     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2339       // Offset the demanded elts by the subvector index.
2340       uint64_t Idx = SubIdx->getZExtValue();
2341       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2342       Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2343     } else {
2344       Known = computeKnownBits(Src, Depth + 1);
2345     }
2346     break;
2347   }
2348   case ISD::BITCAST: {
2349     SDValue N0 = Op.getOperand(0);
2350     EVT SubVT = N0.getValueType();
2351     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2352 
2353     // Ignore bitcasts from unsupported types.
2354     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2355       break;
2356 
2357     // Fast handling of 'identity' bitcasts.
2358     if (BitWidth == SubBitWidth) {
2359       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2360       break;
2361     }
2362 
2363     bool IsLE = getDataLayout().isLittleEndian();
2364 
2365     // Bitcast 'small element' vector to 'large element' scalar/vector.
2366     if ((BitWidth % SubBitWidth) == 0) {
2367       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2368 
2369       // Collect known bits for the (larger) output by collecting the known
2370       // bits from each set of sub elements and shift these into place.
2371       // We need to separately call computeKnownBits for each set of
2372       // sub elements as the knownbits for each is likely to be different.
2373       unsigned SubScale = BitWidth / SubBitWidth;
2374       APInt SubDemandedElts(NumElts * SubScale, 0);
2375       for (unsigned i = 0; i != NumElts; ++i)
2376         if (DemandedElts[i])
2377           SubDemandedElts.setBit(i * SubScale);
2378 
2379       for (unsigned i = 0; i != SubScale; ++i) {
2380         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2381                          Depth + 1);
2382         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2383         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2384         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2385       }
2386     }
2387 
2388     // Bitcast 'large element' scalar/vector to 'small element' vector.
2389     if ((SubBitWidth % BitWidth) == 0) {
2390       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2391 
2392       // Collect known bits for the (smaller) output by collecting the known
2393       // bits from the overlapping larger input elements and extracting the
2394       // sub sections we actually care about.
2395       unsigned SubScale = SubBitWidth / BitWidth;
2396       APInt SubDemandedElts(NumElts / SubScale, 0);
2397       for (unsigned i = 0; i != NumElts; ++i)
2398         if (DemandedElts[i])
2399           SubDemandedElts.setBit(i / SubScale);
2400 
2401       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2402 
2403       Known.Zero.setAllBits(); Known.One.setAllBits();
2404       for (unsigned i = 0; i != NumElts; ++i)
2405         if (DemandedElts[i]) {
2406           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2407           unsigned Offset = (Shifts % SubScale) * BitWidth;
2408           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2409           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2410           // If we don't know any bits, early out.
2411           if (Known.isUnknown())
2412             break;
2413         }
2414     }
2415     break;
2416   }
2417   case ISD::AND:
2418     // If either the LHS or the RHS are Zero, the result is zero.
2419     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2420     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2421 
2422     // Output known-1 bits are only known if set in both the LHS & RHS.
2423     Known.One &= Known2.One;
2424     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2425     Known.Zero |= Known2.Zero;
2426     break;
2427   case ISD::OR:
2428     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2429     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2430 
2431     // Output known-0 bits are only known if clear in both the LHS & RHS.
2432     Known.Zero &= Known2.Zero;
2433     // Output known-1 are known to be set if set in either the LHS | RHS.
2434     Known.One |= Known2.One;
2435     break;
2436   case ISD::XOR: {
2437     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2438     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2439 
2440     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2441     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2442     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2443     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2444     Known.Zero = KnownZeroOut;
2445     break;
2446   }
2447   case ISD::MUL: {
2448     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2449     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2450 
2451     // If low bits are zero in either operand, output low known-0 bits.
2452     // Also compute a conservative estimate for high known-0 bits.
2453     // More trickiness is possible, but this is sufficient for the
2454     // interesting case of alignment computation.
2455     unsigned TrailZ = Known.countMinTrailingZeros() +
2456                       Known2.countMinTrailingZeros();
2457     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2458                                Known2.countMinLeadingZeros(),
2459                                BitWidth) - BitWidth;
2460 
2461     Known.resetAll();
2462     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2463     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2464     break;
2465   }
2466   case ISD::UDIV: {
2467     // For the purposes of computing leading zeros we can conservatively
2468     // treat a udiv as a logical right shift by the power of 2 known to
2469     // be less than the denominator.
2470     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2471     unsigned LeadZ = Known2.countMinLeadingZeros();
2472 
2473     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2474     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2475     if (RHSMaxLeadingZeros != BitWidth)
2476       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2477 
2478     Known.Zero.setHighBits(LeadZ);
2479     break;
2480   }
2481   case ISD::SELECT:
2482   case ISD::VSELECT:
2483     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2484     // If we don't know any bits, early out.
2485     if (Known.isUnknown())
2486       break;
2487     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2488 
2489     // Only known if known in both the LHS and RHS.
2490     Known.One &= Known2.One;
2491     Known.Zero &= Known2.Zero;
2492     break;
2493   case ISD::SELECT_CC:
2494     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2495     // If we don't know any bits, early out.
2496     if (Known.isUnknown())
2497       break;
2498     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2499 
2500     // Only known if known in both the LHS and RHS.
2501     Known.One &= Known2.One;
2502     Known.Zero &= Known2.Zero;
2503     break;
2504   case ISD::SMULO:
2505   case ISD::UMULO:
2506   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2507     if (Op.getResNo() != 1)
2508       break;
2509     // The boolean result conforms to getBooleanContents.
2510     // If we know the result of a setcc has the top bits zero, use this info.
2511     // We know that we have an integer-based boolean since these operations
2512     // are only available for integer.
2513     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2514             TargetLowering::ZeroOrOneBooleanContent &&
2515         BitWidth > 1)
2516       Known.Zero.setBitsFrom(1);
2517     break;
2518   case ISD::SETCC:
2519     // If we know the result of a setcc has the top bits zero, use this info.
2520     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2521             TargetLowering::ZeroOrOneBooleanContent &&
2522         BitWidth > 1)
2523       Known.Zero.setBitsFrom(1);
2524     break;
2525   case ISD::SHL:
2526     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2527       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2528       unsigned Shift = ShAmt->getZExtValue();
2529       Known.Zero <<= Shift;
2530       Known.One <<= Shift;
2531       // Low bits are known zero.
2532       Known.Zero.setLowBits(Shift);
2533     }
2534     break;
2535   case ISD::SRL:
2536     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2537       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2538       unsigned Shift = ShAmt->getZExtValue();
2539       Known.Zero.lshrInPlace(Shift);
2540       Known.One.lshrInPlace(Shift);
2541       // High bits are known zero.
2542       Known.Zero.setHighBits(Shift);
2543     } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
2544       // If the shift amount is a vector of constants see if we can bound
2545       // the number of upper zero bits.
2546       unsigned ShiftAmountMin = BitWidth;
2547       for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
2548         if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
2549           const APInt &ShAmt = C->getAPIntValue();
2550           if (ShAmt.ult(BitWidth)) {
2551             ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
2552                                                 ShAmt.getZExtValue());
2553             continue;
2554           }
2555         }
2556         // Don't know anything.
2557         ShiftAmountMin = 0;
2558         break;
2559       }
2560 
2561       Known.Zero.setHighBits(ShiftAmountMin);
2562     }
2563     break;
2564   case ISD::SRA:
2565     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2566       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2567       unsigned Shift = ShAmt->getZExtValue();
2568       // Sign extend known zero/one bit (else is unknown).
2569       Known.Zero.ashrInPlace(Shift);
2570       Known.One.ashrInPlace(Shift);
2571     }
2572     break;
2573   case ISD::SIGN_EXTEND_INREG: {
2574     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2575     unsigned EBits = EVT.getScalarSizeInBits();
2576 
2577     // Sign extension.  Compute the demanded bits in the result that are not
2578     // present in the input.
2579     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2580 
2581     APInt InSignMask = APInt::getSignMask(EBits);
2582     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2583 
2584     // If the sign extended bits are demanded, we know that the sign
2585     // bit is demanded.
2586     InSignMask = InSignMask.zext(BitWidth);
2587     if (NewBits.getBoolValue())
2588       InputDemandedBits |= InSignMask;
2589 
2590     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2591     Known.One &= InputDemandedBits;
2592     Known.Zero &= InputDemandedBits;
2593 
2594     // If the sign bit of the input is known set or clear, then we know the
2595     // top bits of the result.
2596     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2597       Known.Zero |= NewBits;
2598       Known.One  &= ~NewBits;
2599     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2600       Known.One  |= NewBits;
2601       Known.Zero &= ~NewBits;
2602     } else {                              // Input sign bit unknown
2603       Known.Zero &= ~NewBits;
2604       Known.One  &= ~NewBits;
2605     }
2606     break;
2607   }
2608   case ISD::CTTZ:
2609   case ISD::CTTZ_ZERO_UNDEF: {
2610     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2611     // If we have a known 1, its position is our upper bound.
2612     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2613     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2614     Known.Zero.setBitsFrom(LowBits);
2615     break;
2616   }
2617   case ISD::CTLZ:
2618   case ISD::CTLZ_ZERO_UNDEF: {
2619     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2620     // If we have a known 1, its position is our upper bound.
2621     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2622     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2623     Known.Zero.setBitsFrom(LowBits);
2624     break;
2625   }
2626   case ISD::CTPOP: {
2627     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2628     // If we know some of the bits are zero, they can't be one.
2629     unsigned PossibleOnes = Known2.countMaxPopulation();
2630     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2631     break;
2632   }
2633   case ISD::LOAD: {
2634     LoadSDNode *LD = cast<LoadSDNode>(Op);
2635     // If this is a ZEXTLoad and we are looking at the loaded value.
2636     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2637       EVT VT = LD->getMemoryVT();
2638       unsigned MemBits = VT.getScalarSizeInBits();
2639       Known.Zero.setBitsFrom(MemBits);
2640     } else if (const MDNode *Ranges = LD->getRanges()) {
2641       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2642         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2643     }
2644     break;
2645   }
2646   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2647     EVT InVT = Op.getOperand(0).getValueType();
2648     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2649     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2650     Known = Known.zext(BitWidth);
2651     Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
2652     break;
2653   }
2654   case ISD::ZERO_EXTEND: {
2655     EVT InVT = Op.getOperand(0).getValueType();
2656     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2657     Known = Known.zext(BitWidth);
2658     Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
2659     break;
2660   }
2661   // TODO ISD::SIGN_EXTEND_VECTOR_INREG
2662   case ISD::SIGN_EXTEND: {
2663     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2664     // If the sign bit is known to be zero or one, then sext will extend
2665     // it to the top bits, else it will just zext.
2666     Known = Known.sext(BitWidth);
2667     break;
2668   }
2669   case ISD::ANY_EXTEND: {
2670     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2671     Known = Known.zext(BitWidth);
2672     break;
2673   }
2674   case ISD::TRUNCATE: {
2675     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2676     Known = Known.trunc(BitWidth);
2677     break;
2678   }
2679   case ISD::AssertZext: {
2680     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2681     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2682     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2683     Known.Zero |= (~InMask);
2684     Known.One  &= (~Known.Zero);
2685     break;
2686   }
2687   case ISD::FGETSIGN:
2688     // All bits are zero except the low bit.
2689     Known.Zero.setBitsFrom(1);
2690     break;
2691   case ISD::USUBO:
2692   case ISD::SSUBO:
2693     if (Op.getResNo() == 1) {
2694       // If we know the result of a setcc has the top bits zero, use this info.
2695       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2696               TargetLowering::ZeroOrOneBooleanContent &&
2697           BitWidth > 1)
2698         Known.Zero.setBitsFrom(1);
2699       break;
2700     }
2701     LLVM_FALLTHROUGH;
2702   case ISD::SUB:
2703   case ISD::SUBC: {
2704     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
2705       // We know that the top bits of C-X are clear if X contains less bits
2706       // than C (i.e. no wrap-around can happen).  For example, 20-X is
2707       // positive if we can prove that X is >= 0 and < 16.
2708       if (CLHS->getAPIntValue().isNonNegative()) {
2709         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2710         // NLZ can't be BitWidth with no sign bit
2711         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2712         Known2 = computeKnownBits(Op.getOperand(1), DemandedElts,
2713                          Depth + 1);
2714 
2715         // If all of the MaskV bits are known to be zero, then we know the
2716         // output top bits are zero, because we now know that the output is
2717         // from [0-C].
2718         if ((Known2.Zero & MaskV) == MaskV) {
2719           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2720           // Top bits known zero.
2721           Known.Zero.setHighBits(NLZ2);
2722         }
2723       }
2724     }
2725 
2726     // If low bits are know to be zero in both operands, then we know they are
2727     // going to be 0 in the result. Both addition and complement operations
2728     // preserve the low zero bits.
2729     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2730     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2731     if (KnownZeroLow == 0)
2732       break;
2733 
2734     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2735     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2736     Known.Zero.setLowBits(KnownZeroLow);
2737     break;
2738   }
2739   case ISD::UADDO:
2740   case ISD::SADDO:
2741   case ISD::ADDCARRY:
2742     if (Op.getResNo() == 1) {
2743       // If we know the result of a setcc has the top bits zero, use this info.
2744       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2745               TargetLowering::ZeroOrOneBooleanContent &&
2746           BitWidth > 1)
2747         Known.Zero.setBitsFrom(1);
2748       break;
2749     }
2750     LLVM_FALLTHROUGH;
2751   case ISD::ADD:
2752   case ISD::ADDC:
2753   case ISD::ADDE: {
2754     // Output known-0 bits are known if clear or set in both the low clear bits
2755     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2756     // low 3 bits clear.
2757     // Output known-0 bits are also known if the top bits of each input are
2758     // known to be clear. For example, if one input has the top 10 bits clear
2759     // and the other has the top 8 bits clear, we know the top 7 bits of the
2760     // output must be clear.
2761     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2762     unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
2763     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2764 
2765     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2766     KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
2767     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2768 
2769     if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) {
2770       // With ADDE and ADDCARRY, a carry bit may be added in, so we can only
2771       // use this information if we know (at least) that the low two bits are
2772       // clear. We then return to the caller that the low bit is unknown but
2773       // that other bits are known zero.
2774       if (KnownZeroLow >= 2)
2775         Known.Zero.setBits(1, KnownZeroLow);
2776       break;
2777     }
2778 
2779     Known.Zero.setLowBits(KnownZeroLow);
2780     if (KnownZeroHigh > 1)
2781       Known.Zero.setHighBits(KnownZeroHigh - 1);
2782     break;
2783   }
2784   case ISD::SREM:
2785     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2786       const APInt &RA = Rem->getAPIntValue().abs();
2787       if (RA.isPowerOf2()) {
2788         APInt LowBits = RA - 1;
2789         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2790 
2791         // The low bits of the first operand are unchanged by the srem.
2792         Known.Zero = Known2.Zero & LowBits;
2793         Known.One = Known2.One & LowBits;
2794 
2795         // If the first operand is non-negative or has all low bits zero, then
2796         // the upper bits are all zero.
2797         if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
2798           Known.Zero |= ~LowBits;
2799 
2800         // If the first operand is negative and not all low bits are zero, then
2801         // the upper bits are all one.
2802         if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
2803           Known.One |= ~LowBits;
2804         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
2805       }
2806     }
2807     break;
2808   case ISD::UREM: {
2809     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2810       const APInt &RA = Rem->getAPIntValue();
2811       if (RA.isPowerOf2()) {
2812         APInt LowBits = (RA - 1);
2813         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2814 
2815         // The upper bits are all zero, the lower ones are unchanged.
2816         Known.Zero = Known2.Zero | ~LowBits;
2817         Known.One = Known2.One & LowBits;
2818         break;
2819       }
2820     }
2821 
2822     // Since the result is less than or equal to either operand, any leading
2823     // zero bits in either operand must also exist in the result.
2824     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2825     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2826 
2827     uint32_t Leaders =
2828         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
2829     Known.resetAll();
2830     Known.Zero.setHighBits(Leaders);
2831     break;
2832   }
2833   case ISD::EXTRACT_ELEMENT: {
2834     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2835     const unsigned Index = Op.getConstantOperandVal(1);
2836     const unsigned BitWidth = Op.getValueSizeInBits();
2837 
2838     // Remove low part of known bits mask
2839     Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth);
2840     Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth);
2841 
2842     // Remove high part of known bit mask
2843     Known = Known.trunc(BitWidth);
2844     break;
2845   }
2846   case ISD::EXTRACT_VECTOR_ELT: {
2847     SDValue InVec = Op.getOperand(0);
2848     SDValue EltNo = Op.getOperand(1);
2849     EVT VecVT = InVec.getValueType();
2850     const unsigned BitWidth = Op.getValueSizeInBits();
2851     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
2852     const unsigned NumSrcElts = VecVT.getVectorNumElements();
2853     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2854     // anything about the extended bits.
2855     if (BitWidth > EltBitWidth)
2856       Known = Known.trunc(EltBitWidth);
2857     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
2858     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
2859       // If we know the element index, just demand that vector element.
2860       unsigned Idx = ConstEltNo->getZExtValue();
2861       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
2862       Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
2863     } else {
2864       // Unknown element index, so ignore DemandedElts and demand them all.
2865       Known = computeKnownBits(InVec, Depth + 1);
2866     }
2867     if (BitWidth > EltBitWidth)
2868       Known = Known.zext(BitWidth);
2869     break;
2870   }
2871   case ISD::INSERT_VECTOR_ELT: {
2872     SDValue InVec = Op.getOperand(0);
2873     SDValue InVal = Op.getOperand(1);
2874     SDValue EltNo = Op.getOperand(2);
2875 
2876     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
2877     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
2878       // If we know the element index, split the demand between the
2879       // source vector and the inserted element.
2880       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
2881       unsigned EltIdx = CEltNo->getZExtValue();
2882 
2883       // If we demand the inserted element then add its common known bits.
2884       if (DemandedElts[EltIdx]) {
2885         Known2 = computeKnownBits(InVal, Depth + 1);
2886         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
2887         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
2888       }
2889 
2890       // If we demand the source vector then add its common known bits, ensuring
2891       // that we don't demand the inserted element.
2892       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
2893       if (!!VectorElts) {
2894         Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
2895         Known.One &= Known2.One;
2896         Known.Zero &= Known2.Zero;
2897       }
2898     } else {
2899       // Unknown element index, so ignore DemandedElts and demand them all.
2900       Known = computeKnownBits(InVec, Depth + 1);
2901       Known2 = computeKnownBits(InVal, Depth + 1);
2902       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
2903       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
2904     }
2905     break;
2906   }
2907   case ISD::BITREVERSE: {
2908     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2909     Known.Zero = Known2.Zero.reverseBits();
2910     Known.One = Known2.One.reverseBits();
2911     break;
2912   }
2913   case ISD::BSWAP: {
2914     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2915     Known.Zero = Known2.Zero.byteSwap();
2916     Known.One = Known2.One.byteSwap();
2917     break;
2918   }
2919   case ISD::ABS: {
2920     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2921 
2922     // If the source's MSB is zero then we know the rest of the bits already.
2923     if (Known2.isNonNegative()) {
2924       Known.Zero = Known2.Zero;
2925       Known.One = Known2.One;
2926       break;
2927     }
2928 
2929     // We only know that the absolute values's MSB will be zero iff there is
2930     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
2931     Known2.One.clearSignBit();
2932     if (Known2.One.getBoolValue()) {
2933       Known.Zero = APInt::getSignMask(BitWidth);
2934       break;
2935     }
2936     break;
2937   }
2938   case ISD::UMIN: {
2939     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2940     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2941 
2942     // UMIN - we know that the result will have the maximum of the
2943     // known zero leading bits of the inputs.
2944     unsigned LeadZero = Known.countMinLeadingZeros();
2945     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
2946 
2947     Known.Zero &= Known2.Zero;
2948     Known.One &= Known2.One;
2949     Known.Zero.setHighBits(LeadZero);
2950     break;
2951   }
2952   case ISD::UMAX: {
2953     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2954     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2955 
2956     // UMAX - we know that the result will have the maximum of the
2957     // known one leading bits of the inputs.
2958     unsigned LeadOne = Known.countMinLeadingOnes();
2959     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
2960 
2961     Known.Zero &= Known2.Zero;
2962     Known.One &= Known2.One;
2963     Known.One.setHighBits(LeadOne);
2964     break;
2965   }
2966   case ISD::SMIN:
2967   case ISD::SMAX: {
2968     // If we have a clamp pattern, we know that the number of sign bits will be
2969     // the minimum of the clamp min/max range.
2970     bool IsMax = (Opcode == ISD::SMAX);
2971     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
2972     if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)))
2973       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
2974         CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1),
2975                                               DemandedElts);
2976     if (CstLow && CstHigh) {
2977       if (!IsMax)
2978         std::swap(CstLow, CstHigh);
2979 
2980       const APInt &ValueLow = CstLow->getAPIntValue();
2981       const APInt &ValueHigh = CstHigh->getAPIntValue();
2982       if (ValueLow.sle(ValueHigh)) {
2983         unsigned LowSignBits = ValueLow.getNumSignBits();
2984         unsigned HighSignBits = ValueHigh.getNumSignBits();
2985         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
2986         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
2987           Known.One.setHighBits(MinSignBits);
2988           break;
2989         }
2990         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
2991           Known.Zero.setHighBits(MinSignBits);
2992           break;
2993         }
2994       }
2995     }
2996 
2997     // Fallback - just get the shared known bits of the operands.
2998     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2999     if (Known.isUnknown()) break; // Early-out
3000     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3001     Known.Zero &= Known2.Zero;
3002     Known.One &= Known2.One;
3003     break;
3004   }
3005   case ISD::FrameIndex:
3006   case ISD::TargetFrameIndex:
3007     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3008     break;
3009 
3010   default:
3011     if (Opcode < ISD::BUILTIN_OP_END)
3012       break;
3013     LLVM_FALLTHROUGH;
3014   case ISD::INTRINSIC_WO_CHAIN:
3015   case ISD::INTRINSIC_W_CHAIN:
3016   case ISD::INTRINSIC_VOID:
3017     // Allow the target to implement this method for its nodes.
3018     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3019     break;
3020   }
3021 
3022   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3023   return Known;
3024 }
3025 
3026 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3027                                                              SDValue N1) const {
3028   // X + 0 never overflow
3029   if (isNullConstant(N1))
3030     return OFK_Never;
3031 
3032   KnownBits N1Known;
3033   computeKnownBits(N1, N1Known);
3034   if (N1Known.Zero.getBoolValue()) {
3035     KnownBits N0Known;
3036     computeKnownBits(N0, N0Known);
3037 
3038     bool overflow;
3039     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
3040     if (!overflow)
3041       return OFK_Never;
3042   }
3043 
3044   // mulhi + 1 never overflow
3045   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3046       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
3047     return OFK_Never;
3048 
3049   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3050     KnownBits N0Known;
3051     computeKnownBits(N0, N0Known);
3052 
3053     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
3054       return OFK_Never;
3055   }
3056 
3057   return OFK_Sometime;
3058 }
3059 
3060 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3061   EVT OpVT = Val.getValueType();
3062   unsigned BitWidth = OpVT.getScalarSizeInBits();
3063 
3064   // Is the constant a known power of 2?
3065   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3066     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3067 
3068   // A left-shift of a constant one will have exactly one bit set because
3069   // shifting the bit off the end is undefined.
3070   if (Val.getOpcode() == ISD::SHL) {
3071     auto *C = isConstOrConstSplat(Val.getOperand(0));
3072     if (C && C->getAPIntValue() == 1)
3073       return true;
3074   }
3075 
3076   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3077   // one bit set.
3078   if (Val.getOpcode() == ISD::SRL) {
3079     auto *C = isConstOrConstSplat(Val.getOperand(0));
3080     if (C && C->getAPIntValue().isSignMask())
3081       return true;
3082   }
3083 
3084   // Are all operands of a build vector constant powers of two?
3085   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3086     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3087           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3088             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3089           return false;
3090         }))
3091       return true;
3092 
3093   // More could be done here, though the above checks are enough
3094   // to handle some common cases.
3095 
3096   // Fall back to computeKnownBits to catch other known cases.
3097   KnownBits Known = computeKnownBits(Val);
3098   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3099 }
3100 
3101 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3102   EVT VT = Op.getValueType();
3103   APInt DemandedElts = VT.isVector()
3104                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3105                            : APInt(1, 1);
3106   return ComputeNumSignBits(Op, DemandedElts, Depth);
3107 }
3108 
3109 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3110                                           unsigned Depth) const {
3111   EVT VT = Op.getValueType();
3112   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3113   unsigned VTBits = VT.getScalarSizeInBits();
3114   unsigned NumElts = DemandedElts.getBitWidth();
3115   unsigned Tmp, Tmp2;
3116   unsigned FirstAnswer = 1;
3117 
3118   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3119     const APInt &Val = C->getAPIntValue();
3120     return Val.getNumSignBits();
3121   }
3122 
3123   if (Depth == 6)
3124     return 1;  // Limit search depth.
3125 
3126   if (!DemandedElts)
3127     return 1;  // No demanded elts, better to assume we don't know anything.
3128 
3129   unsigned Opcode = Op.getOpcode();
3130   switch (Opcode) {
3131   default: break;
3132   case ISD::AssertSext:
3133     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3134     return VTBits-Tmp+1;
3135   case ISD::AssertZext:
3136     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3137     return VTBits-Tmp;
3138 
3139   case ISD::BUILD_VECTOR:
3140     Tmp = VTBits;
3141     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3142       if (!DemandedElts[i])
3143         continue;
3144 
3145       SDValue SrcOp = Op.getOperand(i);
3146       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3147 
3148       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3149       if (SrcOp.getValueSizeInBits() != VTBits) {
3150         assert(SrcOp.getValueSizeInBits() > VTBits &&
3151                "Expected BUILD_VECTOR implicit truncation");
3152         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3153         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3154       }
3155       Tmp = std::min(Tmp, Tmp2);
3156     }
3157     return Tmp;
3158 
3159   case ISD::VECTOR_SHUFFLE: {
3160     // Collect the minimum number of sign bits that are shared by every vector
3161     // element referenced by the shuffle.
3162     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3163     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3164     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3165     for (unsigned i = 0; i != NumElts; ++i) {
3166       int M = SVN->getMaskElt(i);
3167       if (!DemandedElts[i])
3168         continue;
3169       // For UNDEF elements, we don't know anything about the common state of
3170       // the shuffle result.
3171       if (M < 0)
3172         return 1;
3173       if ((unsigned)M < NumElts)
3174         DemandedLHS.setBit((unsigned)M % NumElts);
3175       else
3176         DemandedRHS.setBit((unsigned)M % NumElts);
3177     }
3178     Tmp = std::numeric_limits<unsigned>::max();
3179     if (!!DemandedLHS)
3180       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3181     if (!!DemandedRHS) {
3182       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3183       Tmp = std::min(Tmp, Tmp2);
3184     }
3185     // If we don't know anything, early out and try computeKnownBits fall-back.
3186     if (Tmp == 1)
3187       break;
3188     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3189     return Tmp;
3190   }
3191 
3192   case ISD::BITCAST: {
3193     SDValue N0 = Op.getOperand(0);
3194     EVT SrcVT = N0.getValueType();
3195     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3196 
3197     // Ignore bitcasts from unsupported types..
3198     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3199       break;
3200 
3201     // Fast handling of 'identity' bitcasts.
3202     if (VTBits == SrcBits)
3203       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3204 
3205     bool IsLE = getDataLayout().isLittleEndian();
3206 
3207     // Bitcast 'large element' scalar/vector to 'small element' vector.
3208     if ((SrcBits % VTBits) == 0) {
3209       assert(VT.isVector() && "Expected bitcast to vector");
3210 
3211       unsigned Scale = SrcBits / VTBits;
3212       APInt SrcDemandedElts(NumElts / Scale, 0);
3213       for (unsigned i = 0; i != NumElts; ++i)
3214         if (DemandedElts[i])
3215           SrcDemandedElts.setBit(i / Scale);
3216 
3217       // Fast case - sign splat can be simply split across the small elements.
3218       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3219       if (Tmp == SrcBits)
3220         return VTBits;
3221 
3222       // Slow case - determine how far the sign extends into each sub-element.
3223       Tmp2 = VTBits;
3224       for (unsigned i = 0; i != NumElts; ++i)
3225         if (DemandedElts[i]) {
3226           unsigned SubOffset = i % Scale;
3227           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3228           SubOffset = SubOffset * VTBits;
3229           if (Tmp <= SubOffset)
3230             return 1;
3231           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3232         }
3233       return Tmp2;
3234     }
3235     break;
3236   }
3237 
3238   case ISD::SIGN_EXTEND:
3239     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3240     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3241   case ISD::SIGN_EXTEND_INREG:
3242     // Max of the input and what this extends.
3243     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3244     Tmp = VTBits-Tmp+1;
3245     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3246     return std::max(Tmp, Tmp2);
3247   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3248     SDValue Src = Op.getOperand(0);
3249     EVT SrcVT = Src.getValueType();
3250     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3251     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3252     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3253   }
3254 
3255   case ISD::SRA:
3256     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3257     // SRA X, C   -> adds C sign bits.
3258     if (ConstantSDNode *C =
3259             isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
3260       APInt ShiftVal = C->getAPIntValue();
3261       ShiftVal += Tmp;
3262       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3263     }
3264     return Tmp;
3265   case ISD::SHL:
3266     if (ConstantSDNode *C =
3267             isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
3268       // shl destroys sign bits.
3269       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3270       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3271           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3272       return Tmp - C->getZExtValue();
3273     }
3274     break;
3275   case ISD::AND:
3276   case ISD::OR:
3277   case ISD::XOR:    // NOT is handled here.
3278     // Logical binary ops preserve the number of sign bits at the worst.
3279     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3280     if (Tmp != 1) {
3281       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3282       FirstAnswer = std::min(Tmp, Tmp2);
3283       // We computed what we know about the sign bits as our first
3284       // answer. Now proceed to the generic code that uses
3285       // computeKnownBits, and pick whichever answer is better.
3286     }
3287     break;
3288 
3289   case ISD::SELECT:
3290   case ISD::VSELECT:
3291     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3292     if (Tmp == 1) return 1;  // Early out.
3293     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3294     return std::min(Tmp, Tmp2);
3295   case ISD::SELECT_CC:
3296     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3297     if (Tmp == 1) return 1;  // Early out.
3298     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3299     return std::min(Tmp, Tmp2);
3300 
3301   case ISD::SMIN:
3302   case ISD::SMAX: {
3303     // If we have a clamp pattern, we know that the number of sign bits will be
3304     // the minimum of the clamp min/max range.
3305     bool IsMax = (Opcode == ISD::SMAX);
3306     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3307     if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)))
3308       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3309         CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1),
3310                                               DemandedElts);
3311     if (CstLow && CstHigh) {
3312       if (!IsMax)
3313         std::swap(CstLow, CstHigh);
3314       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3315         Tmp = CstLow->getAPIntValue().getNumSignBits();
3316         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3317         return std::min(Tmp, Tmp2);
3318       }
3319     }
3320 
3321     // Fallback - just get the minimum number of sign bits of the operands.
3322     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3323     if (Tmp == 1)
3324       return 1;  // Early out.
3325     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3326     return std::min(Tmp, Tmp2);
3327   }
3328   case ISD::UMIN:
3329   case ISD::UMAX:
3330     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3331     if (Tmp == 1)
3332       return 1;  // Early out.
3333     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3334     return std::min(Tmp, Tmp2);
3335   case ISD::SADDO:
3336   case ISD::UADDO:
3337   case ISD::SSUBO:
3338   case ISD::USUBO:
3339   case ISD::SMULO:
3340   case ISD::UMULO:
3341     if (Op.getResNo() != 1)
3342       break;
3343     // The boolean result conforms to getBooleanContents.  Fall through.
3344     // If setcc returns 0/-1, all bits are sign bits.
3345     // We know that we have an integer-based boolean since these operations
3346     // are only available for integer.
3347     if (TLI->getBooleanContents(VT.isVector(), false) ==
3348         TargetLowering::ZeroOrNegativeOneBooleanContent)
3349       return VTBits;
3350     break;
3351   case ISD::SETCC:
3352     // If setcc returns 0/-1, all bits are sign bits.
3353     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3354         TargetLowering::ZeroOrNegativeOneBooleanContent)
3355       return VTBits;
3356     break;
3357   case ISD::ROTL:
3358   case ISD::ROTR:
3359     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3360       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3361 
3362       // Handle rotate right by N like a rotate left by 32-N.
3363       if (Opcode == ISD::ROTR)
3364         RotAmt = (VTBits - RotAmt) % VTBits;
3365 
3366       // If we aren't rotating out all of the known-in sign bits, return the
3367       // number that are left.  This handles rotl(sext(x), 1) for example.
3368       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3369       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3370     }
3371     break;
3372   case ISD::ADD:
3373   case ISD::ADDC:
3374     // Add can have at most one carry bit.  Thus we know that the output
3375     // is, at worst, one more bit than the inputs.
3376     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3377     if (Tmp == 1) return 1;  // Early out.
3378 
3379     // Special case decrementing a value (ADD X, -1):
3380     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3381       if (CRHS->isAllOnesValue()) {
3382         KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3383 
3384         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3385         // sign bits set.
3386         if ((Known.Zero | 1).isAllOnesValue())
3387           return VTBits;
3388 
3389         // If we are subtracting one from a positive number, there is no carry
3390         // out of the result.
3391         if (Known.isNonNegative())
3392           return Tmp;
3393       }
3394 
3395     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3396     if (Tmp2 == 1) return 1;
3397     return std::min(Tmp, Tmp2)-1;
3398 
3399   case ISD::SUB:
3400     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3401     if (Tmp2 == 1) return 1;
3402 
3403     // Handle NEG.
3404     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3405       if (CLHS->isNullValue()) {
3406         KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3407         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3408         // sign bits set.
3409         if ((Known.Zero | 1).isAllOnesValue())
3410           return VTBits;
3411 
3412         // If the input is known to be positive (the sign bit is known clear),
3413         // the output of the NEG has the same number of sign bits as the input.
3414         if (Known.isNonNegative())
3415           return Tmp2;
3416 
3417         // Otherwise, we treat this like a SUB.
3418       }
3419 
3420     // Sub can have at most one carry bit.  Thus we know that the output
3421     // is, at worst, one more bit than the inputs.
3422     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3423     if (Tmp == 1) return 1;  // Early out.
3424     return std::min(Tmp, Tmp2)-1;
3425   case ISD::TRUNCATE: {
3426     // Check if the sign bits of source go down as far as the truncated value.
3427     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3428     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3429     if (NumSrcSignBits > (NumSrcBits - VTBits))
3430       return NumSrcSignBits - (NumSrcBits - VTBits);
3431     break;
3432   }
3433   case ISD::EXTRACT_ELEMENT: {
3434     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3435     const int BitWidth = Op.getValueSizeInBits();
3436     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3437 
3438     // Get reverse index (starting from 1), Op1 value indexes elements from
3439     // little end. Sign starts at big end.
3440     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3441 
3442     // If the sign portion ends in our element the subtraction gives correct
3443     // result. Otherwise it gives either negative or > bitwidth result
3444     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3445   }
3446   case ISD::INSERT_VECTOR_ELT: {
3447     SDValue InVec = Op.getOperand(0);
3448     SDValue InVal = Op.getOperand(1);
3449     SDValue EltNo = Op.getOperand(2);
3450     unsigned NumElts = InVec.getValueType().getVectorNumElements();
3451 
3452     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3453     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3454       // If we know the element index, split the demand between the
3455       // source vector and the inserted element.
3456       unsigned EltIdx = CEltNo->getZExtValue();
3457 
3458       // If we demand the inserted element then get its sign bits.
3459       Tmp = std::numeric_limits<unsigned>::max();
3460       if (DemandedElts[EltIdx]) {
3461         // TODO - handle implicit truncation of inserted elements.
3462         if (InVal.getScalarValueSizeInBits() != VTBits)
3463           break;
3464         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3465       }
3466 
3467       // If we demand the source vector then get its sign bits, and determine
3468       // the minimum.
3469       APInt VectorElts = DemandedElts;
3470       VectorElts.clearBit(EltIdx);
3471       if (!!VectorElts) {
3472         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3473         Tmp = std::min(Tmp, Tmp2);
3474       }
3475     } else {
3476       // Unknown element index, so ignore DemandedElts and demand them all.
3477       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3478       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3479       Tmp = std::min(Tmp, Tmp2);
3480     }
3481     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3482     return Tmp;
3483   }
3484   case ISD::EXTRACT_VECTOR_ELT: {
3485     SDValue InVec = Op.getOperand(0);
3486     SDValue EltNo = Op.getOperand(1);
3487     EVT VecVT = InVec.getValueType();
3488     const unsigned BitWidth = Op.getValueSizeInBits();
3489     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3490     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3491 
3492     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3493     // anything about sign bits. But if the sizes match we can derive knowledge
3494     // about sign bits from the vector operand.
3495     if (BitWidth != EltBitWidth)
3496       break;
3497 
3498     // If we know the element index, just demand that vector element, else for
3499     // an unknown element index, ignore DemandedElts and demand them all.
3500     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3501     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3502     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3503       DemandedSrcElts =
3504           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3505 
3506     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3507   }
3508   case ISD::EXTRACT_SUBVECTOR: {
3509     // If we know the element index, just demand that subvector elements,
3510     // otherwise demand them all.
3511     SDValue Src = Op.getOperand(0);
3512     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3513     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3514     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3515       // Offset the demanded elts by the subvector index.
3516       uint64_t Idx = SubIdx->getZExtValue();
3517       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3518       return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3519     }
3520     return ComputeNumSignBits(Src, Depth + 1);
3521   }
3522   case ISD::CONCAT_VECTORS:
3523     // Determine the minimum number of sign bits across all demanded
3524     // elts of the input vectors. Early out if the result is already 1.
3525     Tmp = std::numeric_limits<unsigned>::max();
3526     EVT SubVectorVT = Op.getOperand(0).getValueType();
3527     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3528     unsigned NumSubVectors = Op.getNumOperands();
3529     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3530       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3531       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3532       if (!DemandedSub)
3533         continue;
3534       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3535       Tmp = std::min(Tmp, Tmp2);
3536     }
3537     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3538     return Tmp;
3539   }
3540 
3541   // If we are looking at the loaded value of the SDNode.
3542   if (Op.getResNo() == 0) {
3543     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3544     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3545       unsigned ExtType = LD->getExtensionType();
3546       switch (ExtType) {
3547         default: break;
3548         case ISD::SEXTLOAD:    // '17' bits known
3549           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3550           return VTBits-Tmp+1;
3551         case ISD::ZEXTLOAD:    // '16' bits known
3552           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3553           return VTBits-Tmp;
3554       }
3555     }
3556   }
3557 
3558   // Allow the target to implement this method for its nodes.
3559   if (Opcode >= ISD::BUILTIN_OP_END ||
3560       Opcode == ISD::INTRINSIC_WO_CHAIN ||
3561       Opcode == ISD::INTRINSIC_W_CHAIN ||
3562       Opcode == ISD::INTRINSIC_VOID) {
3563     unsigned NumBits =
3564         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3565     if (NumBits > 1)
3566       FirstAnswer = std::max(FirstAnswer, NumBits);
3567   }
3568 
3569   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3570   // use this information.
3571   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
3572 
3573   APInt Mask;
3574   if (Known.isNonNegative()) {        // sign bit is 0
3575     Mask = Known.Zero;
3576   } else if (Known.isNegative()) {  // sign bit is 1;
3577     Mask = Known.One;
3578   } else {
3579     // Nothing known.
3580     return FirstAnswer;
3581   }
3582 
3583   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3584   // the number of identical bits in the top of the input value.
3585   Mask = ~Mask;
3586   Mask <<= Mask.getBitWidth()-VTBits;
3587   // Return # leading zeros.  We use 'min' here in case Val was zero before
3588   // shifting.  We don't want to return '64' as for an i32 "0".
3589   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3590 }
3591 
3592 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3593   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3594       !isa<ConstantSDNode>(Op.getOperand(1)))
3595     return false;
3596 
3597   if (Op.getOpcode() == ISD::OR &&
3598       !MaskedValueIsZero(Op.getOperand(0),
3599                      cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
3600     return false;
3601 
3602   return true;
3603 }
3604 
3605 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
3606   // If we're told that NaNs won't happen, assume they won't.
3607   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
3608     return true;
3609 
3610   if (Depth == 6)
3611     return false; // Limit search depth.
3612 
3613   // TODO: Handle vectors.
3614   // If the value is a constant, we can obviously see if it is a NaN or not.
3615   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
3616     return !C->getValueAPF().isNaN() ||
3617            (SNaN && !C->getValueAPF().isSignaling());
3618   }
3619 
3620   unsigned Opcode = Op.getOpcode();
3621   switch (Opcode) {
3622   case ISD::FADD:
3623   case ISD::FSUB:
3624   case ISD::FMUL:
3625   case ISD::FDIV:
3626   case ISD::FREM:
3627   case ISD::FSIN:
3628   case ISD::FCOS: {
3629     if (SNaN)
3630       return true;
3631     // TODO: Need isKnownNeverInfinity
3632     return false;
3633   }
3634   case ISD::FCANONICALIZE:
3635   case ISD::FEXP:
3636   case ISD::FEXP2:
3637   case ISD::FTRUNC:
3638   case ISD::FFLOOR:
3639   case ISD::FCEIL:
3640   case ISD::FROUND:
3641   case ISD::FRINT:
3642   case ISD::FNEARBYINT: {
3643     if (SNaN)
3644       return true;
3645     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3646   }
3647   case ISD::FABS:
3648   case ISD::FNEG:
3649   case ISD::FCOPYSIGN: {
3650     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3651   }
3652   case ISD::SELECT:
3653     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
3654            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
3655   case ISD::FP_EXTEND:
3656   case ISD::FP_ROUND: {
3657     if (SNaN)
3658       return true;
3659     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3660   }
3661   case ISD::SINT_TO_FP:
3662   case ISD::UINT_TO_FP:
3663     return true;
3664   case ISD::FMA:
3665   case ISD::FMAD: {
3666     if (SNaN)
3667       return true;
3668     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
3669            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
3670            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
3671   }
3672   case ISD::FSQRT: // Need is known positive
3673   case ISD::FLOG:
3674   case ISD::FLOG2:
3675   case ISD::FLOG10:
3676   case ISD::FPOWI:
3677   case ISD::FPOW: {
3678     if (SNaN)
3679       return true;
3680     // TODO: Refine on operand
3681     return false;
3682   }
3683   case ISD::FMINNUM:
3684   case ISD::FMAXNUM: {
3685     // Only one needs to be known not-nan, since it will be returned if the
3686     // other ends up being one.
3687     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
3688            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
3689   }
3690   case ISD::FMINNUM_IEEE:
3691   case ISD::FMAXNUM_IEEE: {
3692     if (SNaN)
3693       return true;
3694     // This can return a NaN if either operand is an sNaN, or if both operands
3695     // are NaN.
3696     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
3697             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
3698            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
3699             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
3700   }
3701   case ISD::FMINIMUM:
3702   case ISD::FMAXIMUM: {
3703     // TODO: Does this quiet or return the origina NaN as-is?
3704     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
3705            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
3706   }
3707   case ISD::EXTRACT_VECTOR_ELT: {
3708     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3709   }
3710   default:
3711     if (Opcode >= ISD::BUILTIN_OP_END ||
3712         Opcode == ISD::INTRINSIC_WO_CHAIN ||
3713         Opcode == ISD::INTRINSIC_W_CHAIN ||
3714         Opcode == ISD::INTRINSIC_VOID) {
3715       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
3716     }
3717 
3718     return false;
3719   }
3720 }
3721 
3722 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
3723   assert(Op.getValueType().isFloatingPoint() &&
3724          "Floating point type expected");
3725 
3726   // If the value is a constant, we can obviously see if it is a zero or not.
3727   // TODO: Add BuildVector support.
3728   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3729     return !C->isZero();
3730   return false;
3731 }
3732 
3733 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
3734   assert(!Op.getValueType().isFloatingPoint() &&
3735          "Floating point types unsupported - use isKnownNeverZeroFloat");
3736 
3737   // If the value is a constant, we can obviously see if it is a zero or not.
3738   if (ISD::matchUnaryPredicate(
3739           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
3740     return true;
3741 
3742   // TODO: Recognize more cases here.
3743   switch (Op.getOpcode()) {
3744   default: break;
3745   case ISD::OR:
3746     if (isKnownNeverZero(Op.getOperand(1)) ||
3747         isKnownNeverZero(Op.getOperand(0)))
3748       return true;
3749     break;
3750   }
3751 
3752   return false;
3753 }
3754 
3755 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
3756   // Check the obvious case.
3757   if (A == B) return true;
3758 
3759   // For for negative and positive zero.
3760   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
3761     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
3762       if (CA->isZero() && CB->isZero()) return true;
3763 
3764   // Otherwise they may not be equal.
3765   return false;
3766 }
3767 
3768 // FIXME: unify with llvm::haveNoCommonBitsSet.
3769 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
3770 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
3771   assert(A.getValueType() == B.getValueType() &&
3772          "Values must have the same type");
3773   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
3774 }
3775 
3776 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
3777                                 ArrayRef<SDValue> Ops,
3778                                 SelectionDAG &DAG) {
3779   int NumOps = Ops.size();
3780   assert(NumOps != 0 && "Can't build an empty vector!");
3781   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
3782          "Incorrect element count in BUILD_VECTOR!");
3783 
3784   // BUILD_VECTOR of UNDEFs is UNDEF.
3785   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
3786     return DAG.getUNDEF(VT);
3787 
3788   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
3789   SDValue IdentitySrc;
3790   bool IsIdentity = true;
3791   for (int i = 0; i != NumOps; ++i) {
3792     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
3793         Ops[i].getOperand(0).getValueType() != VT ||
3794         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
3795         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
3796         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
3797       IsIdentity = false;
3798       break;
3799     }
3800     IdentitySrc = Ops[i].getOperand(0);
3801   }
3802   if (IsIdentity)
3803     return IdentitySrc;
3804 
3805   return SDValue();
3806 }
3807 
3808 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
3809                                   ArrayRef<SDValue> Ops,
3810                                   SelectionDAG &DAG) {
3811   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
3812   assert(llvm::all_of(Ops,
3813                       [Ops](SDValue Op) {
3814                         return Ops[0].getValueType() == Op.getValueType();
3815                       }) &&
3816          "Concatenation of vectors with inconsistent value types!");
3817   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
3818              VT.getVectorNumElements() &&
3819          "Incorrect element count in vector concatenation!");
3820 
3821   if (Ops.size() == 1)
3822     return Ops[0];
3823 
3824   // Concat of UNDEFs is UNDEF.
3825   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
3826     return DAG.getUNDEF(VT);
3827 
3828   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
3829   // simplified to one big BUILD_VECTOR.
3830   // FIXME: Add support for SCALAR_TO_VECTOR as well.
3831   EVT SVT = VT.getScalarType();
3832   SmallVector<SDValue, 16> Elts;
3833   for (SDValue Op : Ops) {
3834     EVT OpVT = Op.getValueType();
3835     if (Op.isUndef())
3836       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
3837     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
3838       Elts.append(Op->op_begin(), Op->op_end());
3839     else
3840       return SDValue();
3841   }
3842 
3843   // BUILD_VECTOR requires all inputs to be of the same type, find the
3844   // maximum type and extend them all.
3845   for (SDValue Op : Elts)
3846     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
3847 
3848   if (SVT.bitsGT(VT.getScalarType()))
3849     for (SDValue &Op : Elts)
3850       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
3851                ? DAG.getZExtOrTrunc(Op, DL, SVT)
3852                : DAG.getSExtOrTrunc(Op, DL, SVT);
3853 
3854   SDValue V = DAG.getBuildVector(VT, DL, Elts);
3855   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
3856   return V;
3857 }
3858 
3859 /// Gets or creates the specified node.
3860 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
3861   FoldingSetNodeID ID;
3862   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
3863   void *IP = nullptr;
3864   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
3865     return SDValue(E, 0);
3866 
3867   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
3868                               getVTList(VT));
3869   CSEMap.InsertNode(N, IP);
3870 
3871   InsertNode(N);
3872   SDValue V = SDValue(N, 0);
3873   NewSDValueDbgMsg(V, "Creating new node: ", this);
3874   return V;
3875 }
3876 
3877 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3878                               SDValue Operand, const SDNodeFlags Flags) {
3879   // Constant fold unary operations with an integer constant operand. Even
3880   // opaque constant will be folded, because the folding of unary operations
3881   // doesn't create new constants with different values. Nevertheless, the
3882   // opaque flag is preserved during folding to prevent future folding with
3883   // other constants.
3884   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
3885     const APInt &Val = C->getAPIntValue();
3886     switch (Opcode) {
3887     default: break;
3888     case ISD::SIGN_EXTEND:
3889       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
3890                          C->isTargetOpcode(), C->isOpaque());
3891     case ISD::TRUNCATE:
3892       if (C->isOpaque())
3893         break;
3894       LLVM_FALLTHROUGH;
3895     case ISD::ANY_EXTEND:
3896     case ISD::ZERO_EXTEND:
3897       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
3898                          C->isTargetOpcode(), C->isOpaque());
3899     case ISD::UINT_TO_FP:
3900     case ISD::SINT_TO_FP: {
3901       APFloat apf(EVTToAPFloatSemantics(VT),
3902                   APInt::getNullValue(VT.getSizeInBits()));
3903       (void)apf.convertFromAPInt(Val,
3904                                  Opcode==ISD::SINT_TO_FP,
3905                                  APFloat::rmNearestTiesToEven);
3906       return getConstantFP(apf, DL, VT);
3907     }
3908     case ISD::BITCAST:
3909       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
3910         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
3911       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
3912         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
3913       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
3914         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
3915       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
3916         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
3917       break;
3918     case ISD::ABS:
3919       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
3920                          C->isOpaque());
3921     case ISD::BITREVERSE:
3922       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
3923                          C->isOpaque());
3924     case ISD::BSWAP:
3925       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
3926                          C->isOpaque());
3927     case ISD::CTPOP:
3928       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
3929                          C->isOpaque());
3930     case ISD::CTLZ:
3931     case ISD::CTLZ_ZERO_UNDEF:
3932       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
3933                          C->isOpaque());
3934     case ISD::CTTZ:
3935     case ISD::CTTZ_ZERO_UNDEF:
3936       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
3937                          C->isOpaque());
3938     case ISD::FP16_TO_FP: {
3939       bool Ignored;
3940       APFloat FPV(APFloat::IEEEhalf(),
3941                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
3942 
3943       // This can return overflow, underflow, or inexact; we don't care.
3944       // FIXME need to be more flexible about rounding mode.
3945       (void)FPV.convert(EVTToAPFloatSemantics(VT),
3946                         APFloat::rmNearestTiesToEven, &Ignored);
3947       return getConstantFP(FPV, DL, VT);
3948     }
3949     }
3950   }
3951 
3952   // Constant fold unary operations with a floating point constant operand.
3953   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
3954     APFloat V = C->getValueAPF();    // make copy
3955     switch (Opcode) {
3956     case ISD::FNEG:
3957       V.changeSign();
3958       return getConstantFP(V, DL, VT);
3959     case ISD::FABS:
3960       V.clearSign();
3961       return getConstantFP(V, DL, VT);
3962     case ISD::FCEIL: {
3963       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
3964       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3965         return getConstantFP(V, DL, VT);
3966       break;
3967     }
3968     case ISD::FTRUNC: {
3969       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
3970       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3971         return getConstantFP(V, DL, VT);
3972       break;
3973     }
3974     case ISD::FFLOOR: {
3975       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
3976       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3977         return getConstantFP(V, DL, VT);
3978       break;
3979     }
3980     case ISD::FP_EXTEND: {
3981       bool ignored;
3982       // This can return overflow, underflow, or inexact; we don't care.
3983       // FIXME need to be more flexible about rounding mode.
3984       (void)V.convert(EVTToAPFloatSemantics(VT),
3985                       APFloat::rmNearestTiesToEven, &ignored);
3986       return getConstantFP(V, DL, VT);
3987     }
3988     case ISD::FP_TO_SINT:
3989     case ISD::FP_TO_UINT: {
3990       bool ignored;
3991       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
3992       // FIXME need to be more flexible about rounding mode.
3993       APFloat::opStatus s =
3994           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
3995       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
3996         break;
3997       return getConstant(IntVal, DL, VT);
3998     }
3999     case ISD::BITCAST:
4000       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4001         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4002       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4003         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4004       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4005         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4006       break;
4007     case ISD::FP_TO_FP16: {
4008       bool Ignored;
4009       // This can return overflow, underflow, or inexact; we don't care.
4010       // FIXME need to be more flexible about rounding mode.
4011       (void)V.convert(APFloat::IEEEhalf(),
4012                       APFloat::rmNearestTiesToEven, &Ignored);
4013       return getConstant(V.bitcastToAPInt(), DL, VT);
4014     }
4015     }
4016   }
4017 
4018   // Constant fold unary operations with a vector integer or float operand.
4019   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4020     if (BV->isConstant()) {
4021       switch (Opcode) {
4022       default:
4023         // FIXME: Entirely reasonable to perform folding of other unary
4024         // operations here as the need arises.
4025         break;
4026       case ISD::FNEG:
4027       case ISD::FABS:
4028       case ISD::FCEIL:
4029       case ISD::FTRUNC:
4030       case ISD::FFLOOR:
4031       case ISD::FP_EXTEND:
4032       case ISD::FP_TO_SINT:
4033       case ISD::FP_TO_UINT:
4034       case ISD::TRUNCATE:
4035       case ISD::ANY_EXTEND:
4036       case ISD::ZERO_EXTEND:
4037       case ISD::SIGN_EXTEND:
4038       case ISD::UINT_TO_FP:
4039       case ISD::SINT_TO_FP:
4040       case ISD::ABS:
4041       case ISD::BITREVERSE:
4042       case ISD::BSWAP:
4043       case ISD::CTLZ:
4044       case ISD::CTLZ_ZERO_UNDEF:
4045       case ISD::CTTZ:
4046       case ISD::CTTZ_ZERO_UNDEF:
4047       case ISD::CTPOP: {
4048         SDValue Ops = { Operand };
4049         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4050           return Fold;
4051       }
4052       }
4053     }
4054   }
4055 
4056   unsigned OpOpcode = Operand.getNode()->getOpcode();
4057   switch (Opcode) {
4058   case ISD::TokenFactor:
4059   case ISD::MERGE_VALUES:
4060   case ISD::CONCAT_VECTORS:
4061     return Operand;         // Factor, merge or concat of one node?  No need.
4062   case ISD::BUILD_VECTOR: {
4063     // Attempt to simplify BUILD_VECTOR.
4064     SDValue Ops[] = {Operand};
4065     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4066       return V;
4067     break;
4068   }
4069   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4070   case ISD::FP_EXTEND:
4071     assert(VT.isFloatingPoint() &&
4072            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4073     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4074     assert((!VT.isVector() ||
4075             VT.getVectorNumElements() ==
4076             Operand.getValueType().getVectorNumElements()) &&
4077            "Vector element count mismatch!");
4078     assert(Operand.getValueType().bitsLT(VT) &&
4079            "Invalid fpext node, dst < src!");
4080     if (Operand.isUndef())
4081       return getUNDEF(VT);
4082     break;
4083   case ISD::SIGN_EXTEND:
4084     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4085            "Invalid SIGN_EXTEND!");
4086     if (Operand.getValueType() == VT) return Operand;   // noop extension
4087     assert((!VT.isVector() ||
4088             VT.getVectorNumElements() ==
4089             Operand.getValueType().getVectorNumElements()) &&
4090            "Vector element count mismatch!");
4091     assert(Operand.getValueType().bitsLT(VT) &&
4092            "Invalid sext node, dst < src!");
4093     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4094       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4095     else if (OpOpcode == ISD::UNDEF)
4096       // sext(undef) = 0, because the top bits will all be the same.
4097       return getConstant(0, DL, VT);
4098     break;
4099   case ISD::ZERO_EXTEND:
4100     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4101            "Invalid ZERO_EXTEND!");
4102     if (Operand.getValueType() == VT) return Operand;   // noop extension
4103     assert((!VT.isVector() ||
4104             VT.getVectorNumElements() ==
4105             Operand.getValueType().getVectorNumElements()) &&
4106            "Vector element count mismatch!");
4107     assert(Operand.getValueType().bitsLT(VT) &&
4108            "Invalid zext node, dst < src!");
4109     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4110       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4111     else if (OpOpcode == ISD::UNDEF)
4112       // zext(undef) = 0, because the top bits will be zero.
4113       return getConstant(0, DL, VT);
4114     break;
4115   case ISD::ANY_EXTEND:
4116     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4117            "Invalid ANY_EXTEND!");
4118     if (Operand.getValueType() == VT) return Operand;   // noop extension
4119     assert((!VT.isVector() ||
4120             VT.getVectorNumElements() ==
4121             Operand.getValueType().getVectorNumElements()) &&
4122            "Vector element count mismatch!");
4123     assert(Operand.getValueType().bitsLT(VT) &&
4124            "Invalid anyext node, dst < src!");
4125 
4126     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4127         OpOpcode == ISD::ANY_EXTEND)
4128       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4129       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4130     else if (OpOpcode == ISD::UNDEF)
4131       return getUNDEF(VT);
4132 
4133     // (ext (trunc x)) -> x
4134     if (OpOpcode == ISD::TRUNCATE) {
4135       SDValue OpOp = Operand.getOperand(0);
4136       if (OpOp.getValueType() == VT) {
4137         transferDbgValues(Operand, OpOp);
4138         return OpOp;
4139       }
4140     }
4141     break;
4142   case ISD::TRUNCATE:
4143     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4144            "Invalid TRUNCATE!");
4145     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4146     assert((!VT.isVector() ||
4147             VT.getVectorNumElements() ==
4148             Operand.getValueType().getVectorNumElements()) &&
4149            "Vector element count mismatch!");
4150     assert(Operand.getValueType().bitsGT(VT) &&
4151            "Invalid truncate node, src < dst!");
4152     if (OpOpcode == ISD::TRUNCATE)
4153       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4154     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4155         OpOpcode == ISD::ANY_EXTEND) {
4156       // If the source is smaller than the dest, we still need an extend.
4157       if (Operand.getOperand(0).getValueType().getScalarType()
4158             .bitsLT(VT.getScalarType()))
4159         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4160       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4161         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4162       return Operand.getOperand(0);
4163     }
4164     if (OpOpcode == ISD::UNDEF)
4165       return getUNDEF(VT);
4166     break;
4167   case ISD::ANY_EXTEND_VECTOR_INREG:
4168   case ISD::ZERO_EXTEND_VECTOR_INREG:
4169   case ISD::SIGN_EXTEND_VECTOR_INREG:
4170     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4171     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4172            "The sizes of the input and result must match in order to perform the "
4173            "extend in-register.");
4174     assert(VT.getVectorNumElements() <
4175              Operand.getValueType().getVectorNumElements() &&
4176            "The destination vector type must have fewer lanes than the input.");
4177     break;
4178   case ISD::ABS:
4179     assert(VT.isInteger() && VT == Operand.getValueType() &&
4180            "Invalid ABS!");
4181     if (OpOpcode == ISD::UNDEF)
4182       return getUNDEF(VT);
4183     break;
4184   case ISD::BSWAP:
4185     assert(VT.isInteger() && VT == Operand.getValueType() &&
4186            "Invalid BSWAP!");
4187     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4188            "BSWAP types must be a multiple of 16 bits!");
4189     if (OpOpcode == ISD::UNDEF)
4190       return getUNDEF(VT);
4191     break;
4192   case ISD::BITREVERSE:
4193     assert(VT.isInteger() && VT == Operand.getValueType() &&
4194            "Invalid BITREVERSE!");
4195     if (OpOpcode == ISD::UNDEF)
4196       return getUNDEF(VT);
4197     break;
4198   case ISD::BITCAST:
4199     // Basic sanity checking.
4200     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4201            "Cannot BITCAST between types of different sizes!");
4202     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4203     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4204       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4205     if (OpOpcode == ISD::UNDEF)
4206       return getUNDEF(VT);
4207     break;
4208   case ISD::SCALAR_TO_VECTOR:
4209     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4210            (VT.getVectorElementType() == Operand.getValueType() ||
4211             (VT.getVectorElementType().isInteger() &&
4212              Operand.getValueType().isInteger() &&
4213              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4214            "Illegal SCALAR_TO_VECTOR node!");
4215     if (OpOpcode == ISD::UNDEF)
4216       return getUNDEF(VT);
4217     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4218     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4219         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4220         Operand.getConstantOperandVal(1) == 0 &&
4221         Operand.getOperand(0).getValueType() == VT)
4222       return Operand.getOperand(0);
4223     break;
4224   case ISD::FNEG:
4225     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4226     if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) &&
4227         OpOpcode == ISD::FSUB)
4228       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
4229                      Operand.getOperand(0), Flags);
4230     if (OpOpcode == ISD::FNEG)  // --X -> X
4231       return Operand.getOperand(0);
4232     break;
4233   case ISD::FABS:
4234     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4235       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4236     break;
4237   }
4238 
4239   SDNode *N;
4240   SDVTList VTs = getVTList(VT);
4241   SDValue Ops[] = {Operand};
4242   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4243     FoldingSetNodeID ID;
4244     AddNodeIDNode(ID, Opcode, VTs, Ops);
4245     void *IP = nullptr;
4246     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4247       E->intersectFlagsWith(Flags);
4248       return SDValue(E, 0);
4249     }
4250 
4251     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4252     N->setFlags(Flags);
4253     createOperands(N, Ops);
4254     CSEMap.InsertNode(N, IP);
4255   } else {
4256     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4257     createOperands(N, Ops);
4258   }
4259 
4260   InsertNode(N);
4261   SDValue V = SDValue(N, 0);
4262   NewSDValueDbgMsg(V, "Creating new node: ", this);
4263   return V;
4264 }
4265 
4266 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
4267                                         const APInt &C2) {
4268   switch (Opcode) {
4269   case ISD::ADD:  return std::make_pair(C1 + C2, true);
4270   case ISD::SUB:  return std::make_pair(C1 - C2, true);
4271   case ISD::MUL:  return std::make_pair(C1 * C2, true);
4272   case ISD::AND:  return std::make_pair(C1 & C2, true);
4273   case ISD::OR:   return std::make_pair(C1 | C2, true);
4274   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
4275   case ISD::SHL:  return std::make_pair(C1 << C2, true);
4276   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
4277   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
4278   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
4279   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
4280   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
4281   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
4282   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
4283   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
4284   case ISD::UDIV:
4285     if (!C2.getBoolValue())
4286       break;
4287     return std::make_pair(C1.udiv(C2), true);
4288   case ISD::UREM:
4289     if (!C2.getBoolValue())
4290       break;
4291     return std::make_pair(C1.urem(C2), true);
4292   case ISD::SDIV:
4293     if (!C2.getBoolValue())
4294       break;
4295     return std::make_pair(C1.sdiv(C2), true);
4296   case ISD::SREM:
4297     if (!C2.getBoolValue())
4298       break;
4299     return std::make_pair(C1.srem(C2), true);
4300   }
4301   return std::make_pair(APInt(1, 0), false);
4302 }
4303 
4304 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4305                                              EVT VT, const ConstantSDNode *Cst1,
4306                                              const ConstantSDNode *Cst2) {
4307   if (Cst1->isOpaque() || Cst2->isOpaque())
4308     return SDValue();
4309 
4310   std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(),
4311                                             Cst2->getAPIntValue());
4312   if (!Folded.second)
4313     return SDValue();
4314   return getConstant(Folded.first, DL, VT);
4315 }
4316 
4317 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4318                                        const GlobalAddressSDNode *GA,
4319                                        const SDNode *N2) {
4320   if (GA->getOpcode() != ISD::GlobalAddress)
4321     return SDValue();
4322   if (!TLI->isOffsetFoldingLegal(GA))
4323     return SDValue();
4324   const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2);
4325   if (!Cst2)
4326     return SDValue();
4327   int64_t Offset = Cst2->getSExtValue();
4328   switch (Opcode) {
4329   case ISD::ADD: break;
4330   case ISD::SUB: Offset = -uint64_t(Offset); break;
4331   default: return SDValue();
4332   }
4333   return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT,
4334                           GA->getOffset() + uint64_t(Offset));
4335 }
4336 
4337 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4338   switch (Opcode) {
4339   case ISD::SDIV:
4340   case ISD::UDIV:
4341   case ISD::SREM:
4342   case ISD::UREM: {
4343     // If a divisor is zero/undef or any element of a divisor vector is
4344     // zero/undef, the whole op is undef.
4345     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4346     SDValue Divisor = Ops[1];
4347     if (Divisor.isUndef() || isNullConstant(Divisor))
4348       return true;
4349 
4350     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4351            llvm::any_of(Divisor->op_values(),
4352                         [](SDValue V) { return V.isUndef() ||
4353                                         isNullConstant(V); });
4354     // TODO: Handle signed overflow.
4355   }
4356   // TODO: Handle oversized shifts.
4357   default:
4358     return false;
4359   }
4360 }
4361 
4362 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4363                                              EVT VT, SDNode *Cst1,
4364                                              SDNode *Cst2) {
4365   // If the opcode is a target-specific ISD node, there's nothing we can
4366   // do here and the operand rules may not line up with the below, so
4367   // bail early.
4368   if (Opcode >= ISD::BUILTIN_OP_END)
4369     return SDValue();
4370 
4371   if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)}))
4372     return getUNDEF(VT);
4373 
4374   // Handle the case of two scalars.
4375   if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) {
4376     if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) {
4377       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2);
4378       assert((!Folded || !VT.isVector()) &&
4379              "Can't fold vectors ops with scalar operands");
4380       return Folded;
4381     }
4382   }
4383 
4384   // fold (add Sym, c) -> Sym+c
4385   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1))
4386     return FoldSymbolOffset(Opcode, VT, GA, Cst2);
4387   if (TLI->isCommutativeBinOp(Opcode))
4388     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2))
4389       return FoldSymbolOffset(Opcode, VT, GA, Cst1);
4390 
4391   // For vectors extract each constant element into Inputs so we can constant
4392   // fold them individually.
4393   BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
4394   BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
4395   if (!BV1 || !BV2)
4396     return SDValue();
4397 
4398   assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
4399 
4400   EVT SVT = VT.getScalarType();
4401   EVT LegalSVT = SVT;
4402   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4403     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4404     if (LegalSVT.bitsLT(SVT))
4405       return SDValue();
4406   }
4407   SmallVector<SDValue, 4> Outputs;
4408   for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
4409     SDValue V1 = BV1->getOperand(I);
4410     SDValue V2 = BV2->getOperand(I);
4411 
4412     if (SVT.isInteger()) {
4413       if (V1->getValueType(0).bitsGT(SVT))
4414         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4415       if (V2->getValueType(0).bitsGT(SVT))
4416         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4417     }
4418 
4419     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4420       return SDValue();
4421 
4422     // Fold one vector element.
4423     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4424     if (LegalSVT != SVT)
4425       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4426 
4427     // Scalar folding only succeeded if the result is a constant or UNDEF.
4428     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4429         ScalarResult.getOpcode() != ISD::ConstantFP)
4430       return SDValue();
4431     Outputs.push_back(ScalarResult);
4432   }
4433 
4434   assert(VT.getVectorNumElements() == Outputs.size() &&
4435          "Vector size mismatch!");
4436 
4437   // We may have a vector type but a scalar result. Create a splat.
4438   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4439 
4440   // Build a big vector out of the scalar elements we generated.
4441   return getBuildVector(VT, SDLoc(), Outputs);
4442 }
4443 
4444 // TODO: Merge with FoldConstantArithmetic
4445 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4446                                                    const SDLoc &DL, EVT VT,
4447                                                    ArrayRef<SDValue> Ops,
4448                                                    const SDNodeFlags Flags) {
4449   // If the opcode is a target-specific ISD node, there's nothing we can
4450   // do here and the operand rules may not line up with the below, so
4451   // bail early.
4452   if (Opcode >= ISD::BUILTIN_OP_END)
4453     return SDValue();
4454 
4455   if (isUndef(Opcode, Ops))
4456     return getUNDEF(VT);
4457 
4458   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4459   if (!VT.isVector())
4460     return SDValue();
4461 
4462   unsigned NumElts = VT.getVectorNumElements();
4463 
4464   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4465     return !Op.getValueType().isVector() ||
4466            Op.getValueType().getVectorNumElements() == NumElts;
4467   };
4468 
4469   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4470     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4471     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4472            (BV && BV->isConstant());
4473   };
4474 
4475   // All operands must be vector types with the same number of elements as
4476   // the result type and must be either UNDEF or a build vector of constant
4477   // or UNDEF scalars.
4478   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4479       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4480     return SDValue();
4481 
4482   // If we are comparing vectors, then the result needs to be a i1 boolean
4483   // that is then sign-extended back to the legal result type.
4484   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4485 
4486   // Find legal integer scalar type for constant promotion and
4487   // ensure that its scalar size is at least as large as source.
4488   EVT LegalSVT = VT.getScalarType();
4489   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4490     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4491     if (LegalSVT.bitsLT(VT.getScalarType()))
4492       return SDValue();
4493   }
4494 
4495   // Constant fold each scalar lane separately.
4496   SmallVector<SDValue, 4> ScalarResults;
4497   for (unsigned i = 0; i != NumElts; i++) {
4498     SmallVector<SDValue, 4> ScalarOps;
4499     for (SDValue Op : Ops) {
4500       EVT InSVT = Op.getValueType().getScalarType();
4501       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4502       if (!InBV) {
4503         // We've checked that this is UNDEF or a constant of some kind.
4504         if (Op.isUndef())
4505           ScalarOps.push_back(getUNDEF(InSVT));
4506         else
4507           ScalarOps.push_back(Op);
4508         continue;
4509       }
4510 
4511       SDValue ScalarOp = InBV->getOperand(i);
4512       EVT ScalarVT = ScalarOp.getValueType();
4513 
4514       // Build vector (integer) scalar operands may need implicit
4515       // truncation - do this before constant folding.
4516       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4517         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4518 
4519       ScalarOps.push_back(ScalarOp);
4520     }
4521 
4522     // Constant fold the scalar operands.
4523     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4524 
4525     // Legalize the (integer) scalar constant if necessary.
4526     if (LegalSVT != SVT)
4527       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4528 
4529     // Scalar folding only succeeded if the result is a constant or UNDEF.
4530     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4531         ScalarResult.getOpcode() != ISD::ConstantFP)
4532       return SDValue();
4533     ScalarResults.push_back(ScalarResult);
4534   }
4535 
4536   SDValue V = getBuildVector(VT, DL, ScalarResults);
4537   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4538   return V;
4539 }
4540 
4541 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4542                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
4543   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4544   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4545   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4546   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4547 
4548   // Canonicalize constant to RHS if commutative.
4549   if (TLI->isCommutativeBinOp(Opcode)) {
4550     if (N1C && !N2C) {
4551       std::swap(N1C, N2C);
4552       std::swap(N1, N2);
4553     } else if (N1CFP && !N2CFP) {
4554       std::swap(N1CFP, N2CFP);
4555       std::swap(N1, N2);
4556     }
4557   }
4558 
4559   switch (Opcode) {
4560   default: break;
4561   case ISD::TokenFactor:
4562     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
4563            N2.getValueType() == MVT::Other && "Invalid token factor!");
4564     // Fold trivial token factors.
4565     if (N1.getOpcode() == ISD::EntryToken) return N2;
4566     if (N2.getOpcode() == ISD::EntryToken) return N1;
4567     if (N1 == N2) return N1;
4568     break;
4569   case ISD::BUILD_VECTOR: {
4570     // Attempt to simplify BUILD_VECTOR.
4571     SDValue Ops[] = {N1, N2};
4572     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4573       return V;
4574     break;
4575   }
4576   case ISD::CONCAT_VECTORS: {
4577     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4578     SDValue Ops[] = {N1, N2};
4579     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4580       return V;
4581     break;
4582   }
4583   case ISD::AND:
4584     assert(VT.isInteger() && "This operator does not apply to FP types!");
4585     assert(N1.getValueType() == N2.getValueType() &&
4586            N1.getValueType() == VT && "Binary operator types must match!");
4587     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
4588     // worth handling here.
4589     if (N2C && N2C->isNullValue())
4590       return N2;
4591     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
4592       return N1;
4593     break;
4594   case ISD::OR:
4595   case ISD::XOR:
4596   case ISD::ADD:
4597   case ISD::SUB:
4598     assert(VT.isInteger() && "This operator does not apply to FP types!");
4599     assert(N1.getValueType() == N2.getValueType() &&
4600            N1.getValueType() == VT && "Binary operator types must match!");
4601     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
4602     // it's worth handling here.
4603     if (N2C && N2C->isNullValue())
4604       return N1;
4605     break;
4606   case ISD::UDIV:
4607   case ISD::UREM:
4608   case ISD::MULHU:
4609   case ISD::MULHS:
4610   case ISD::MUL:
4611   case ISD::SDIV:
4612   case ISD::SREM:
4613   case ISD::SMIN:
4614   case ISD::SMAX:
4615   case ISD::UMIN:
4616   case ISD::UMAX:
4617     assert(VT.isInteger() && "This operator does not apply to FP types!");
4618     assert(N1.getValueType() == N2.getValueType() &&
4619            N1.getValueType() == VT && "Binary operator types must match!");
4620     break;
4621   case ISD::FADD:
4622   case ISD::FSUB:
4623   case ISD::FMUL:
4624   case ISD::FDIV:
4625   case ISD::FREM:
4626     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4627     assert(N1.getValueType() == N2.getValueType() &&
4628            N1.getValueType() == VT && "Binary operator types must match!");
4629     break;
4630   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
4631     assert(N1.getValueType() == VT &&
4632            N1.getValueType().isFloatingPoint() &&
4633            N2.getValueType().isFloatingPoint() &&
4634            "Invalid FCOPYSIGN!");
4635     break;
4636   case ISD::SHL:
4637   case ISD::SRA:
4638   case ISD::SRL:
4639   case ISD::ROTL:
4640   case ISD::ROTR:
4641     assert(VT == N1.getValueType() &&
4642            "Shift operators return type must be the same as their first arg");
4643     assert(VT.isInteger() && N2.getValueType().isInteger() &&
4644            "Shifts only work on integers");
4645     assert((!VT.isVector() || VT == N2.getValueType()) &&
4646            "Vector shift amounts must be in the same as their first arg");
4647     // Verify that the shift amount VT is bit enough to hold valid shift
4648     // amounts.  This catches things like trying to shift an i1024 value by an
4649     // i8, which is easy to fall into in generic code that uses
4650     // TLI.getShiftAmount().
4651     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
4652            "Invalid use of small shift amount with oversized value!");
4653 
4654     // Always fold shifts of i1 values so the code generator doesn't need to
4655     // handle them.  Since we know the size of the shift has to be less than the
4656     // size of the value, the shift/rotate count is guaranteed to be zero.
4657     if (VT == MVT::i1)
4658       return N1;
4659     if (N2C && N2C->isNullValue())
4660       return N1;
4661     break;
4662   case ISD::FP_ROUND_INREG: {
4663     EVT EVT = cast<VTSDNode>(N2)->getVT();
4664     assert(VT == N1.getValueType() && "Not an inreg round!");
4665     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
4666            "Cannot FP_ROUND_INREG integer types");
4667     assert(EVT.isVector() == VT.isVector() &&
4668            "FP_ROUND_INREG type should be vector iff the operand "
4669            "type is vector!");
4670     assert((!EVT.isVector() ||
4671             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4672            "Vector element counts must match in FP_ROUND_INREG");
4673     assert(EVT.bitsLE(VT) && "Not rounding down!");
4674     (void)EVT;
4675     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
4676     break;
4677   }
4678   case ISD::FP_ROUND:
4679     assert(VT.isFloatingPoint() &&
4680            N1.getValueType().isFloatingPoint() &&
4681            VT.bitsLE(N1.getValueType()) &&
4682            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
4683            "Invalid FP_ROUND!");
4684     if (N1.getValueType() == VT) return N1;  // noop conversion.
4685     break;
4686   case ISD::AssertSext:
4687   case ISD::AssertZext: {
4688     EVT EVT = cast<VTSDNode>(N2)->getVT();
4689     assert(VT == N1.getValueType() && "Not an inreg extend!");
4690     assert(VT.isInteger() && EVT.isInteger() &&
4691            "Cannot *_EXTEND_INREG FP types");
4692     assert(!EVT.isVector() &&
4693            "AssertSExt/AssertZExt type should be the vector element type "
4694            "rather than the vector type!");
4695     assert(EVT.bitsLE(VT) && "Not extending!");
4696     if (VT == EVT) return N1; // noop assertion.
4697     break;
4698   }
4699   case ISD::SIGN_EXTEND_INREG: {
4700     EVT EVT = cast<VTSDNode>(N2)->getVT();
4701     assert(VT == N1.getValueType() && "Not an inreg extend!");
4702     assert(VT.isInteger() && EVT.isInteger() &&
4703            "Cannot *_EXTEND_INREG FP types");
4704     assert(EVT.isVector() == VT.isVector() &&
4705            "SIGN_EXTEND_INREG type should be vector iff the operand "
4706            "type is vector!");
4707     assert((!EVT.isVector() ||
4708             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4709            "Vector element counts must match in SIGN_EXTEND_INREG");
4710     assert(EVT.bitsLE(VT) && "Not extending!");
4711     if (EVT == VT) return N1;  // Not actually extending
4712 
4713     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
4714       unsigned FromBits = EVT.getScalarSizeInBits();
4715       Val <<= Val.getBitWidth() - FromBits;
4716       Val.ashrInPlace(Val.getBitWidth() - FromBits);
4717       return getConstant(Val, DL, ConstantVT);
4718     };
4719 
4720     if (N1C) {
4721       const APInt &Val = N1C->getAPIntValue();
4722       return SignExtendInReg(Val, VT);
4723     }
4724     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
4725       SmallVector<SDValue, 8> Ops;
4726       llvm::EVT OpVT = N1.getOperand(0).getValueType();
4727       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4728         SDValue Op = N1.getOperand(i);
4729         if (Op.isUndef()) {
4730           Ops.push_back(getUNDEF(OpVT));
4731           continue;
4732         }
4733         ConstantSDNode *C = cast<ConstantSDNode>(Op);
4734         APInt Val = C->getAPIntValue();
4735         Ops.push_back(SignExtendInReg(Val, OpVT));
4736       }
4737       return getBuildVector(VT, DL, Ops);
4738     }
4739     break;
4740   }
4741   case ISD::EXTRACT_VECTOR_ELT:
4742     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
4743            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
4744              element type of the vector.");
4745 
4746     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
4747     if (N1.isUndef())
4748       return getUNDEF(VT);
4749 
4750     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
4751     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
4752       return getUNDEF(VT);
4753 
4754     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
4755     // expanding copies of large vectors from registers.
4756     if (N2C &&
4757         N1.getOpcode() == ISD::CONCAT_VECTORS &&
4758         N1.getNumOperands() > 0) {
4759       unsigned Factor =
4760         N1.getOperand(0).getValueType().getVectorNumElements();
4761       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
4762                      N1.getOperand(N2C->getZExtValue() / Factor),
4763                      getConstant(N2C->getZExtValue() % Factor, DL,
4764                                  N2.getValueType()));
4765     }
4766 
4767     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
4768     // expanding large vector constants.
4769     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
4770       SDValue Elt = N1.getOperand(N2C->getZExtValue());
4771 
4772       if (VT != Elt.getValueType())
4773         // If the vector element type is not legal, the BUILD_VECTOR operands
4774         // are promoted and implicitly truncated, and the result implicitly
4775         // extended. Make that explicit here.
4776         Elt = getAnyExtOrTrunc(Elt, DL, VT);
4777 
4778       return Elt;
4779     }
4780 
4781     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
4782     // operations are lowered to scalars.
4783     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
4784       // If the indices are the same, return the inserted element else
4785       // if the indices are known different, extract the element from
4786       // the original vector.
4787       SDValue N1Op2 = N1.getOperand(2);
4788       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
4789 
4790       if (N1Op2C && N2C) {
4791         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
4792           if (VT == N1.getOperand(1).getValueType())
4793             return N1.getOperand(1);
4794           else
4795             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
4796         }
4797 
4798         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
4799       }
4800     }
4801 
4802     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
4803     // when vector types are scalarized and v1iX is legal.
4804     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
4805     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
4806         N1.getValueType().getVectorNumElements() == 1) {
4807       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
4808                      N1.getOperand(1));
4809     }
4810     break;
4811   case ISD::EXTRACT_ELEMENT:
4812     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
4813     assert(!N1.getValueType().isVector() && !VT.isVector() &&
4814            (N1.getValueType().isInteger() == VT.isInteger()) &&
4815            N1.getValueType() != VT &&
4816            "Wrong types for EXTRACT_ELEMENT!");
4817 
4818     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
4819     // 64-bit integers into 32-bit parts.  Instead of building the extract of
4820     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
4821     if (N1.getOpcode() == ISD::BUILD_PAIR)
4822       return N1.getOperand(N2C->getZExtValue());
4823 
4824     // EXTRACT_ELEMENT of a constant int is also very common.
4825     if (N1C) {
4826       unsigned ElementSize = VT.getSizeInBits();
4827       unsigned Shift = ElementSize * N2C->getZExtValue();
4828       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
4829       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
4830     }
4831     break;
4832   case ISD::EXTRACT_SUBVECTOR:
4833     if (VT.isSimple() && N1.getValueType().isSimple()) {
4834       assert(VT.isVector() && N1.getValueType().isVector() &&
4835              "Extract subvector VTs must be a vectors!");
4836       assert(VT.getVectorElementType() ==
4837              N1.getValueType().getVectorElementType() &&
4838              "Extract subvector VTs must have the same element type!");
4839       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
4840              "Extract subvector must be from larger vector to smaller vector!");
4841 
4842       if (N2C) {
4843         assert((VT.getVectorNumElements() + N2C->getZExtValue()
4844                 <= N1.getValueType().getVectorNumElements())
4845                && "Extract subvector overflow!");
4846       }
4847 
4848       // Trivial extraction.
4849       if (VT.getSimpleVT() == N1.getSimpleValueType())
4850         return N1;
4851 
4852       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
4853       if (N1.isUndef())
4854         return getUNDEF(VT);
4855 
4856       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
4857       // the concat have the same type as the extract.
4858       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
4859           N1.getNumOperands() > 0 &&
4860           VT == N1.getOperand(0).getValueType()) {
4861         unsigned Factor = VT.getVectorNumElements();
4862         return N1.getOperand(N2C->getZExtValue() / Factor);
4863       }
4864 
4865       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
4866       // during shuffle legalization.
4867       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
4868           VT == N1.getOperand(1).getValueType())
4869         return N1.getOperand(1);
4870     }
4871     break;
4872   }
4873 
4874   // Perform trivial constant folding.
4875   if (SDValue SV =
4876           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
4877     return SV;
4878 
4879   // Constant fold FP operations.
4880   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
4881   if (N1CFP) {
4882     if (N2CFP) {
4883       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
4884       APFloat::opStatus s;
4885       switch (Opcode) {
4886       case ISD::FADD:
4887         s = V1.add(V2, APFloat::rmNearestTiesToEven);
4888         if (!HasFPExceptions || s != APFloat::opInvalidOp)
4889           return getConstantFP(V1, DL, VT);
4890         break;
4891       case ISD::FSUB:
4892         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
4893         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4894           return getConstantFP(V1, DL, VT);
4895         break;
4896       case ISD::FMUL:
4897         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
4898         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4899           return getConstantFP(V1, DL, VT);
4900         break;
4901       case ISD::FDIV:
4902         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
4903         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4904                                  s!=APFloat::opDivByZero)) {
4905           return getConstantFP(V1, DL, VT);
4906         }
4907         break;
4908       case ISD::FREM :
4909         s = V1.mod(V2);
4910         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4911                                  s!=APFloat::opDivByZero)) {
4912           return getConstantFP(V1, DL, VT);
4913         }
4914         break;
4915       case ISD::FCOPYSIGN:
4916         V1.copySign(V2);
4917         return getConstantFP(V1, DL, VT);
4918       default: break;
4919       }
4920     }
4921 
4922     if (Opcode == ISD::FP_ROUND) {
4923       APFloat V = N1CFP->getValueAPF();    // make copy
4924       bool ignored;
4925       // This can return overflow, underflow, or inexact; we don't care.
4926       // FIXME need to be more flexible about rounding mode.
4927       (void)V.convert(EVTToAPFloatSemantics(VT),
4928                       APFloat::rmNearestTiesToEven, &ignored);
4929       return getConstantFP(V, DL, VT);
4930     }
4931   }
4932 
4933   // Any FP binop with an undef operand is folded to NaN. This matches the
4934   // behavior of the IR optimizer.
4935   switch (Opcode) {
4936   case ISD::FADD:
4937   case ISD::FSUB:
4938   case ISD::FMUL:
4939   case ISD::FDIV:
4940   case ISD::FREM:
4941     if (N1.isUndef() || N2.isUndef())
4942       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
4943   }
4944 
4945   // Canonicalize an UNDEF to the RHS, even over a constant.
4946   if (N1.isUndef()) {
4947     if (TLI->isCommutativeBinOp(Opcode)) {
4948       std::swap(N1, N2);
4949     } else {
4950       switch (Opcode) {
4951       case ISD::FP_ROUND_INREG:
4952       case ISD::SIGN_EXTEND_INREG:
4953       case ISD::SUB:
4954         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
4955       case ISD::UDIV:
4956       case ISD::SDIV:
4957       case ISD::UREM:
4958       case ISD::SREM:
4959       case ISD::SRA:
4960       case ISD::SRL:
4961       case ISD::SHL:
4962         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
4963       }
4964     }
4965   }
4966 
4967   // Fold a bunch of operators when the RHS is undef.
4968   if (N2.isUndef()) {
4969     switch (Opcode) {
4970     case ISD::XOR:
4971       if (N1.isUndef())
4972         // Handle undef ^ undef -> 0 special case. This is a common
4973         // idiom (misuse).
4974         return getConstant(0, DL, VT);
4975       LLVM_FALLTHROUGH;
4976     case ISD::ADD:
4977     case ISD::ADDC:
4978     case ISD::ADDE:
4979     case ISD::SUB:
4980     case ISD::UDIV:
4981     case ISD::SDIV:
4982     case ISD::UREM:
4983     case ISD::SREM:
4984     case ISD::SRA:
4985     case ISD::SRL:
4986     case ISD::SHL:
4987       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
4988     case ISD::MUL:
4989     case ISD::AND:
4990       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
4991     case ISD::OR:
4992       return getAllOnesConstant(DL, VT);
4993     }
4994   }
4995 
4996   // Memoize this node if possible.
4997   SDNode *N;
4998   SDVTList VTs = getVTList(VT);
4999   SDValue Ops[] = {N1, N2};
5000   if (VT != MVT::Glue) {
5001     FoldingSetNodeID ID;
5002     AddNodeIDNode(ID, Opcode, VTs, Ops);
5003     void *IP = nullptr;
5004     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5005       E->intersectFlagsWith(Flags);
5006       return SDValue(E, 0);
5007     }
5008 
5009     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5010     N->setFlags(Flags);
5011     createOperands(N, Ops);
5012     CSEMap.InsertNode(N, IP);
5013   } else {
5014     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5015     createOperands(N, Ops);
5016   }
5017 
5018   InsertNode(N);
5019   SDValue V = SDValue(N, 0);
5020   NewSDValueDbgMsg(V, "Creating new node: ", this);
5021   return V;
5022 }
5023 
5024 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5025                               SDValue N1, SDValue N2, SDValue N3,
5026                               const SDNodeFlags Flags) {
5027   // Perform various simplifications.
5028   switch (Opcode) {
5029   case ISD::FMA: {
5030     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5031     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5032            N3.getValueType() == VT && "FMA types must match!");
5033     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5034     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5035     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5036     if (N1CFP && N2CFP && N3CFP) {
5037       APFloat  V1 = N1CFP->getValueAPF();
5038       const APFloat &V2 = N2CFP->getValueAPF();
5039       const APFloat &V3 = N3CFP->getValueAPF();
5040       APFloat::opStatus s =
5041         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5042       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
5043         return getConstantFP(V1, DL, VT);
5044     }
5045     break;
5046   }
5047   case ISD::BUILD_VECTOR: {
5048     // Attempt to simplify BUILD_VECTOR.
5049     SDValue Ops[] = {N1, N2, N3};
5050     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5051       return V;
5052     break;
5053   }
5054   case ISD::CONCAT_VECTORS: {
5055     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
5056     SDValue Ops[] = {N1, N2, N3};
5057     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
5058       return V;
5059     break;
5060   }
5061   case ISD::SETCC: {
5062     assert(VT.isInteger() && "SETCC result type must be an integer!");
5063     assert(N1.getValueType() == N2.getValueType() &&
5064            "SETCC operands must have the same type!");
5065     assert(VT.isVector() == N1.getValueType().isVector() &&
5066            "SETCC type should be vector iff the operand type is vector!");
5067     assert((!VT.isVector() ||
5068             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5069            "SETCC vector element counts must match!");
5070     // Use FoldSetCC to simplify SETCC's.
5071     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5072       return V;
5073     // Vector constant folding.
5074     SDValue Ops[] = {N1, N2, N3};
5075     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5076       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5077       return V;
5078     }
5079     break;
5080   }
5081   case ISD::SELECT:
5082     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
5083      if (N1C->getZExtValue())
5084        return N2;             // select true, X, Y -> X
5085      return N3;             // select false, X, Y -> Y
5086     }
5087 
5088     if (N2 == N3) return N2;   // select C, X, X -> X
5089     break;
5090   case ISD::VECTOR_SHUFFLE:
5091     llvm_unreachable("should use getVectorShuffle constructor!");
5092   case ISD::INSERT_VECTOR_ELT: {
5093     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5094     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5095     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5096       return getUNDEF(VT);
5097     break;
5098   }
5099   case ISD::INSERT_SUBVECTOR: {
5100     SDValue Index = N3;
5101     if (VT.isSimple() && N1.getValueType().isSimple()
5102         && N2.getValueType().isSimple()) {
5103       assert(VT.isVector() && N1.getValueType().isVector() &&
5104              N2.getValueType().isVector() &&
5105              "Insert subvector VTs must be a vectors");
5106       assert(VT == N1.getValueType() &&
5107              "Dest and insert subvector source types must match!");
5108       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5109              "Insert subvector must be from smaller vector to larger vector!");
5110       if (isa<ConstantSDNode>(Index)) {
5111         assert((N2.getValueType().getVectorNumElements() +
5112                 cast<ConstantSDNode>(Index)->getZExtValue()
5113                 <= VT.getVectorNumElements())
5114                && "Insert subvector overflow!");
5115       }
5116 
5117       // Trivial insertion.
5118       if (VT.getSimpleVT() == N2.getSimpleValueType())
5119         return N2;
5120     }
5121     break;
5122   }
5123   case ISD::BITCAST:
5124     // Fold bit_convert nodes from a type to themselves.
5125     if (N1.getValueType() == VT)
5126       return N1;
5127     break;
5128   }
5129 
5130   // Memoize node if it doesn't produce a flag.
5131   SDNode *N;
5132   SDVTList VTs = getVTList(VT);
5133   SDValue Ops[] = {N1, N2, N3};
5134   if (VT != MVT::Glue) {
5135     FoldingSetNodeID ID;
5136     AddNodeIDNode(ID, Opcode, VTs, Ops);
5137     void *IP = nullptr;
5138     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5139       E->intersectFlagsWith(Flags);
5140       return SDValue(E, 0);
5141     }
5142 
5143     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5144     N->setFlags(Flags);
5145     createOperands(N, Ops);
5146     CSEMap.InsertNode(N, IP);
5147   } else {
5148     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5149     createOperands(N, Ops);
5150   }
5151 
5152   InsertNode(N);
5153   SDValue V = SDValue(N, 0);
5154   NewSDValueDbgMsg(V, "Creating new node: ", this);
5155   return V;
5156 }
5157 
5158 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5159                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5160   SDValue Ops[] = { N1, N2, N3, N4 };
5161   return getNode(Opcode, DL, VT, Ops);
5162 }
5163 
5164 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5165                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5166                               SDValue N5) {
5167   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5168   return getNode(Opcode, DL, VT, Ops);
5169 }
5170 
5171 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5172 /// the incoming stack arguments to be loaded from the stack.
5173 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5174   SmallVector<SDValue, 8> ArgChains;
5175 
5176   // Include the original chain at the beginning of the list. When this is
5177   // used by target LowerCall hooks, this helps legalize find the
5178   // CALLSEQ_BEGIN node.
5179   ArgChains.push_back(Chain);
5180 
5181   // Add a chain value for each stack argument.
5182   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5183        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5184     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5185       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5186         if (FI->getIndex() < 0)
5187           ArgChains.push_back(SDValue(L, 1));
5188 
5189   // Build a tokenfactor for all the chains.
5190   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5191 }
5192 
5193 /// getMemsetValue - Vectorized representation of the memset value
5194 /// operand.
5195 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5196                               const SDLoc &dl) {
5197   assert(!Value.isUndef());
5198 
5199   unsigned NumBits = VT.getScalarSizeInBits();
5200   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5201     assert(C->getAPIntValue().getBitWidth() == 8);
5202     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5203     if (VT.isInteger()) {
5204       bool IsOpaque = VT.getSizeInBits() > 64 ||
5205           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5206       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5207     }
5208     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5209                              VT);
5210   }
5211 
5212   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5213   EVT IntVT = VT.getScalarType();
5214   if (!IntVT.isInteger())
5215     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5216 
5217   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5218   if (NumBits > 8) {
5219     // Use a multiplication with 0x010101... to extend the input to the
5220     // required length.
5221     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5222     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5223                         DAG.getConstant(Magic, dl, IntVT));
5224   }
5225 
5226   if (VT != Value.getValueType() && !VT.isInteger())
5227     Value = DAG.getBitcast(VT.getScalarType(), Value);
5228   if (VT != Value.getValueType())
5229     Value = DAG.getSplatBuildVector(VT, dl, Value);
5230 
5231   return Value;
5232 }
5233 
5234 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5235 /// used when a memcpy is turned into a memset when the source is a constant
5236 /// string ptr.
5237 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5238                                   const TargetLowering &TLI,
5239                                   const ConstantDataArraySlice &Slice) {
5240   // Handle vector with all elements zero.
5241   if (Slice.Array == nullptr) {
5242     if (VT.isInteger())
5243       return DAG.getConstant(0, dl, VT);
5244     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5245       return DAG.getConstantFP(0.0, dl, VT);
5246     else if (VT.isVector()) {
5247       unsigned NumElts = VT.getVectorNumElements();
5248       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5249       return DAG.getNode(ISD::BITCAST, dl, VT,
5250                          DAG.getConstant(0, dl,
5251                                          EVT::getVectorVT(*DAG.getContext(),
5252                                                           EltVT, NumElts)));
5253     } else
5254       llvm_unreachable("Expected type!");
5255   }
5256 
5257   assert(!VT.isVector() && "Can't handle vector type here!");
5258   unsigned NumVTBits = VT.getSizeInBits();
5259   unsigned NumVTBytes = NumVTBits / 8;
5260   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5261 
5262   APInt Val(NumVTBits, 0);
5263   if (DAG.getDataLayout().isLittleEndian()) {
5264     for (unsigned i = 0; i != NumBytes; ++i)
5265       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5266   } else {
5267     for (unsigned i = 0; i != NumBytes; ++i)
5268       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5269   }
5270 
5271   // If the "cost" of materializing the integer immediate is less than the cost
5272   // of a load, then it is cost effective to turn the load into the immediate.
5273   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5274   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5275     return DAG.getConstant(Val, dl, VT);
5276   return SDValue(nullptr, 0);
5277 }
5278 
5279 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
5280                                            const SDLoc &DL) {
5281   EVT VT = Base.getValueType();
5282   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
5283 }
5284 
5285 /// Returns true if memcpy source is constant data.
5286 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5287   uint64_t SrcDelta = 0;
5288   GlobalAddressSDNode *G = nullptr;
5289   if (Src.getOpcode() == ISD::GlobalAddress)
5290     G = cast<GlobalAddressSDNode>(Src);
5291   else if (Src.getOpcode() == ISD::ADD &&
5292            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5293            Src.getOperand(1).getOpcode() == ISD::Constant) {
5294     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5295     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5296   }
5297   if (!G)
5298     return false;
5299 
5300   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5301                                   SrcDelta + G->getOffset());
5302 }
5303 
5304 /// Determines the optimal series of memory ops to replace the memset / memcpy.
5305 /// Return true if the number of memory ops is below the threshold (Limit).
5306 /// It returns the types of the sequence of memory ops to perform
5307 /// memset / memcpy by reference.
5308 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
5309                                      unsigned Limit, uint64_t Size,
5310                                      unsigned DstAlign, unsigned SrcAlign,
5311                                      bool IsMemset,
5312                                      bool ZeroMemset,
5313                                      bool MemcpyStrSrc,
5314                                      bool AllowOverlap,
5315                                      unsigned DstAS, unsigned SrcAS,
5316                                      SelectionDAG &DAG,
5317                                      const TargetLowering &TLI) {
5318   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
5319          "Expecting memcpy / memset source to meet alignment requirement!");
5320   // If 'SrcAlign' is zero, that means the memory operation does not need to
5321   // load the value, i.e. memset or memcpy from constant string. Otherwise,
5322   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
5323   // is the specified alignment of the memory operation. If it is zero, that
5324   // means it's possible to change the alignment of the destination.
5325   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
5326   // not need to be loaded.
5327   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
5328                                    IsMemset, ZeroMemset, MemcpyStrSrc,
5329                                    DAG.getMachineFunction());
5330 
5331   if (VT == MVT::Other) {
5332     // Use the largest integer type whose alignment constraints are satisfied.
5333     // We only need to check DstAlign here as SrcAlign is always greater or
5334     // equal to DstAlign (or zero).
5335     VT = MVT::i64;
5336     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
5337            !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
5338       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
5339     assert(VT.isInteger());
5340 
5341     // Find the largest legal integer type.
5342     MVT LVT = MVT::i64;
5343     while (!TLI.isTypeLegal(LVT))
5344       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
5345     assert(LVT.isInteger());
5346 
5347     // If the type we've chosen is larger than the largest legal integer type
5348     // then use that instead.
5349     if (VT.bitsGT(LVT))
5350       VT = LVT;
5351   }
5352 
5353   unsigned NumMemOps = 0;
5354   while (Size != 0) {
5355     unsigned VTSize = VT.getSizeInBits() / 8;
5356     while (VTSize > Size) {
5357       // For now, only use non-vector load / store's for the left-over pieces.
5358       EVT NewVT = VT;
5359       unsigned NewVTSize;
5360 
5361       bool Found = false;
5362       if (VT.isVector() || VT.isFloatingPoint()) {
5363         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
5364         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
5365             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
5366           Found = true;
5367         else if (NewVT == MVT::i64 &&
5368                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
5369                  TLI.isSafeMemOpType(MVT::f64)) {
5370           // i64 is usually not legal on 32-bit targets, but f64 may be.
5371           NewVT = MVT::f64;
5372           Found = true;
5373         }
5374       }
5375 
5376       if (!Found) {
5377         do {
5378           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
5379           if (NewVT == MVT::i8)
5380             break;
5381         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
5382       }
5383       NewVTSize = NewVT.getSizeInBits() / 8;
5384 
5385       // If the new VT cannot cover all of the remaining bits, then consider
5386       // issuing a (or a pair of) unaligned and overlapping load / store.
5387       // FIXME: Only does this for 64-bit or more since we don't have proper
5388       // cost model for unaligned load / store.
5389       bool Fast;
5390       if (NumMemOps && AllowOverlap &&
5391           VTSize >= 8 && NewVTSize < Size &&
5392           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast)
5393         VTSize = Size;
5394       else {
5395         VT = NewVT;
5396         VTSize = NewVTSize;
5397       }
5398     }
5399 
5400     if (++NumMemOps > Limit)
5401       return false;
5402 
5403     MemOps.push_back(VT);
5404     Size -= VTSize;
5405   }
5406 
5407   return true;
5408 }
5409 
5410 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5411   // On Darwin, -Os means optimize for size without hurting performance, so
5412   // only really optimize for size when -Oz (MinSize) is used.
5413   if (MF.getTarget().getTargetTriple().isOSDarwin())
5414     return MF.getFunction().optForMinSize();
5415   return MF.getFunction().optForSize();
5416 }
5417 
5418 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5419                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5420                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5421                           SmallVector<SDValue, 16> &OutStoreChains) {
5422   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5423   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5424   SmallVector<SDValue, 16> GluedLoadChains;
5425   for (unsigned i = From; i < To; ++i) {
5426     OutChains.push_back(OutLoadChains[i]);
5427     GluedLoadChains.push_back(OutLoadChains[i]);
5428   }
5429 
5430   // Chain for all loads.
5431   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5432                                   GluedLoadChains);
5433 
5434   for (unsigned i = From; i < To; ++i) {
5435     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5436     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5437                                   ST->getBasePtr(), ST->getMemoryVT(),
5438                                   ST->getMemOperand());
5439     OutChains.push_back(NewStore);
5440   }
5441 }
5442 
5443 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5444                                        SDValue Chain, SDValue Dst, SDValue Src,
5445                                        uint64_t Size, unsigned Align,
5446                                        bool isVol, bool AlwaysInline,
5447                                        MachinePointerInfo DstPtrInfo,
5448                                        MachinePointerInfo SrcPtrInfo) {
5449   // Turn a memcpy of undef to nop.
5450   if (Src.isUndef())
5451     return Chain;
5452 
5453   // Expand memcpy to a series of load and store ops if the size operand falls
5454   // below a certain threshold.
5455   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5456   // rather than maybe a humongous number of loads and stores.
5457   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5458   const DataLayout &DL = DAG.getDataLayout();
5459   LLVMContext &C = *DAG.getContext();
5460   std::vector<EVT> MemOps;
5461   bool DstAlignCanChange = false;
5462   MachineFunction &MF = DAG.getMachineFunction();
5463   MachineFrameInfo &MFI = MF.getFrameInfo();
5464   bool OptSize = shouldLowerMemFuncForSize(MF);
5465   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5466   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5467     DstAlignCanChange = true;
5468   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5469   if (Align > SrcAlign)
5470     SrcAlign = Align;
5471   ConstantDataArraySlice Slice;
5472   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5473   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5474   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5475 
5476   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5477                                 (DstAlignCanChange ? 0 : Align),
5478                                 (isZeroConstant ? 0 : SrcAlign),
5479                                 false, false, CopyFromConstant, true,
5480                                 DstPtrInfo.getAddrSpace(),
5481                                 SrcPtrInfo.getAddrSpace(),
5482                                 DAG, TLI))
5483     return SDValue();
5484 
5485   if (DstAlignCanChange) {
5486     Type *Ty = MemOps[0].getTypeForEVT(C);
5487     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5488 
5489     // Don't promote to an alignment that would require dynamic stack
5490     // realignment.
5491     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5492     if (!TRI->needsStackRealignment(MF))
5493       while (NewAlign > Align &&
5494              DL.exceedsNaturalStackAlignment(NewAlign))
5495           NewAlign /= 2;
5496 
5497     if (NewAlign > Align) {
5498       // Give the stack frame object a larger alignment if needed.
5499       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5500         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5501       Align = NewAlign;
5502     }
5503   }
5504 
5505   MachineMemOperand::Flags MMOFlags =
5506       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5507   SmallVector<SDValue, 16> OutLoadChains;
5508   SmallVector<SDValue, 16> OutStoreChains;
5509   SmallVector<SDValue, 32> OutChains;
5510   unsigned NumMemOps = MemOps.size();
5511   uint64_t SrcOff = 0, DstOff = 0;
5512   for (unsigned i = 0; i != NumMemOps; ++i) {
5513     EVT VT = MemOps[i];
5514     unsigned VTSize = VT.getSizeInBits() / 8;
5515     SDValue Value, Store;
5516 
5517     if (VTSize > Size) {
5518       // Issuing an unaligned load / store pair  that overlaps with the previous
5519       // pair. Adjust the offset accordingly.
5520       assert(i == NumMemOps-1 && i != 0);
5521       SrcOff -= VTSize - Size;
5522       DstOff -= VTSize - Size;
5523     }
5524 
5525     if (CopyFromConstant &&
5526         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5527       // It's unlikely a store of a vector immediate can be done in a single
5528       // instruction. It would require a load from a constantpool first.
5529       // We only handle zero vectors here.
5530       // FIXME: Handle other cases where store of vector immediate is done in
5531       // a single instruction.
5532       ConstantDataArraySlice SubSlice;
5533       if (SrcOff < Slice.Length) {
5534         SubSlice = Slice;
5535         SubSlice.move(SrcOff);
5536       } else {
5537         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5538         SubSlice.Array = nullptr;
5539         SubSlice.Offset = 0;
5540         SubSlice.Length = VTSize;
5541       }
5542       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5543       if (Value.getNode()) {
5544         Store = DAG.getStore(Chain, dl, Value,
5545                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5546                              DstPtrInfo.getWithOffset(DstOff), Align,
5547                              MMOFlags);
5548         OutChains.push_back(Store);
5549       }
5550     }
5551 
5552     if (!Store.getNode()) {
5553       // The type might not be legal for the target.  This should only happen
5554       // if the type is smaller than a legal type, as on PPC, so the right
5555       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5556       // to Load/Store if NVT==VT.
5557       // FIXME does the case above also need this?
5558       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5559       assert(NVT.bitsGE(VT));
5560 
5561       bool isDereferenceable =
5562         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5563       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5564       if (isDereferenceable)
5565         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5566 
5567       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5568                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5569                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5570                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5571       OutLoadChains.push_back(Value.getValue(1));
5572 
5573       Store = DAG.getTruncStore(
5574           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5575           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5576       OutStoreChains.push_back(Store);
5577     }
5578     SrcOff += VTSize;
5579     DstOff += VTSize;
5580     Size -= VTSize;
5581   }
5582 
5583   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
5584                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
5585   unsigned NumLdStInMemcpy = OutStoreChains.size();
5586 
5587   if (NumLdStInMemcpy) {
5588     // It may be that memcpy might be converted to memset if it's memcpy
5589     // of constants. In such a case, we won't have loads and stores, but
5590     // just stores. In the absence of loads, there is nothing to gang up.
5591     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
5592       // If target does not care, just leave as it.
5593       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
5594         OutChains.push_back(OutLoadChains[i]);
5595         OutChains.push_back(OutStoreChains[i]);
5596       }
5597     } else {
5598       // Ld/St less than/equal limit set by target.
5599       if (NumLdStInMemcpy <= GluedLdStLimit) {
5600           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5601                                         NumLdStInMemcpy, OutLoadChains,
5602                                         OutStoreChains);
5603       } else {
5604         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
5605         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
5606         unsigned GlueIter = 0;
5607 
5608         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
5609           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
5610           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
5611 
5612           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
5613                                        OutLoadChains, OutStoreChains);
5614           GlueIter += GluedLdStLimit;
5615         }
5616 
5617         // Residual ld/st.
5618         if (RemainingLdStInMemcpy) {
5619           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5620                                         RemainingLdStInMemcpy, OutLoadChains,
5621                                         OutStoreChains);
5622         }
5623       }
5624     }
5625   }
5626   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5627 }
5628 
5629 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5630                                         SDValue Chain, SDValue Dst, SDValue Src,
5631                                         uint64_t Size, unsigned Align,
5632                                         bool isVol, bool AlwaysInline,
5633                                         MachinePointerInfo DstPtrInfo,
5634                                         MachinePointerInfo SrcPtrInfo) {
5635   // Turn a memmove of undef to nop.
5636   if (Src.isUndef())
5637     return Chain;
5638 
5639   // Expand memmove to a series of load and store ops if the size operand falls
5640   // below a certain threshold.
5641   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5642   const DataLayout &DL = DAG.getDataLayout();
5643   LLVMContext &C = *DAG.getContext();
5644   std::vector<EVT> MemOps;
5645   bool DstAlignCanChange = false;
5646   MachineFunction &MF = DAG.getMachineFunction();
5647   MachineFrameInfo &MFI = MF.getFrameInfo();
5648   bool OptSize = shouldLowerMemFuncForSize(MF);
5649   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5650   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5651     DstAlignCanChange = true;
5652   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5653   if (Align > SrcAlign)
5654     SrcAlign = Align;
5655   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5656 
5657   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5658                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
5659                                 false, false, false, false,
5660                                 DstPtrInfo.getAddrSpace(),
5661                                 SrcPtrInfo.getAddrSpace(),
5662                                 DAG, TLI))
5663     return SDValue();
5664 
5665   if (DstAlignCanChange) {
5666     Type *Ty = MemOps[0].getTypeForEVT(C);
5667     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5668     if (NewAlign > Align) {
5669       // Give the stack frame object a larger alignment if needed.
5670       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5671         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5672       Align = NewAlign;
5673     }
5674   }
5675 
5676   MachineMemOperand::Flags MMOFlags =
5677       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5678   uint64_t SrcOff = 0, DstOff = 0;
5679   SmallVector<SDValue, 8> LoadValues;
5680   SmallVector<SDValue, 8> LoadChains;
5681   SmallVector<SDValue, 8> OutChains;
5682   unsigned NumMemOps = MemOps.size();
5683   for (unsigned i = 0; i < NumMemOps; i++) {
5684     EVT VT = MemOps[i];
5685     unsigned VTSize = VT.getSizeInBits() / 8;
5686     SDValue Value;
5687 
5688     bool isDereferenceable =
5689       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5690     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5691     if (isDereferenceable)
5692       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5693 
5694     Value =
5695         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5696                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
5697     LoadValues.push_back(Value);
5698     LoadChains.push_back(Value.getValue(1));
5699     SrcOff += VTSize;
5700   }
5701   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
5702   OutChains.clear();
5703   for (unsigned i = 0; i < NumMemOps; i++) {
5704     EVT VT = MemOps[i];
5705     unsigned VTSize = VT.getSizeInBits() / 8;
5706     SDValue Store;
5707 
5708     Store = DAG.getStore(Chain, dl, LoadValues[i],
5709                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5710                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
5711     OutChains.push_back(Store);
5712     DstOff += VTSize;
5713   }
5714 
5715   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5716 }
5717 
5718 /// Lower the call to 'memset' intrinsic function into a series of store
5719 /// operations.
5720 ///
5721 /// \param DAG Selection DAG where lowered code is placed.
5722 /// \param dl Link to corresponding IR location.
5723 /// \param Chain Control flow dependency.
5724 /// \param Dst Pointer to destination memory location.
5725 /// \param Src Value of byte to write into the memory.
5726 /// \param Size Number of bytes to write.
5727 /// \param Align Alignment of the destination in bytes.
5728 /// \param isVol True if destination is volatile.
5729 /// \param DstPtrInfo IR information on the memory pointer.
5730 /// \returns New head in the control flow, if lowering was successful, empty
5731 /// SDValue otherwise.
5732 ///
5733 /// The function tries to replace 'llvm.memset' intrinsic with several store
5734 /// operations and value calculation code. This is usually profitable for small
5735 /// memory size.
5736 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
5737                                SDValue Chain, SDValue Dst, SDValue Src,
5738                                uint64_t Size, unsigned Align, bool isVol,
5739                                MachinePointerInfo DstPtrInfo) {
5740   // Turn a memset of undef to nop.
5741   if (Src.isUndef())
5742     return Chain;
5743 
5744   // Expand memset to a series of load/store ops if the size operand
5745   // falls below a certain threshold.
5746   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5747   std::vector<EVT> MemOps;
5748   bool DstAlignCanChange = false;
5749   MachineFunction &MF = DAG.getMachineFunction();
5750   MachineFrameInfo &MFI = MF.getFrameInfo();
5751   bool OptSize = shouldLowerMemFuncForSize(MF);
5752   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5753   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5754     DstAlignCanChange = true;
5755   bool IsZeroVal =
5756     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
5757   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
5758                                 Size, (DstAlignCanChange ? 0 : Align), 0,
5759                                 true, IsZeroVal, false, true,
5760                                 DstPtrInfo.getAddrSpace(), ~0u,
5761                                 DAG, TLI))
5762     return SDValue();
5763 
5764   if (DstAlignCanChange) {
5765     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
5766     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
5767     if (NewAlign > Align) {
5768       // Give the stack frame object a larger alignment if needed.
5769       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5770         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5771       Align = NewAlign;
5772     }
5773   }
5774 
5775   SmallVector<SDValue, 8> OutChains;
5776   uint64_t DstOff = 0;
5777   unsigned NumMemOps = MemOps.size();
5778 
5779   // Find the largest store and generate the bit pattern for it.
5780   EVT LargestVT = MemOps[0];
5781   for (unsigned i = 1; i < NumMemOps; i++)
5782     if (MemOps[i].bitsGT(LargestVT))
5783       LargestVT = MemOps[i];
5784   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
5785 
5786   for (unsigned i = 0; i < NumMemOps; i++) {
5787     EVT VT = MemOps[i];
5788     unsigned VTSize = VT.getSizeInBits() / 8;
5789     if (VTSize > Size) {
5790       // Issuing an unaligned load / store pair  that overlaps with the previous
5791       // pair. Adjust the offset accordingly.
5792       assert(i == NumMemOps-1 && i != 0);
5793       DstOff -= VTSize - Size;
5794     }
5795 
5796     // If this store is smaller than the largest store see whether we can get
5797     // the smaller value for free with a truncate.
5798     SDValue Value = MemSetValue;
5799     if (VT.bitsLT(LargestVT)) {
5800       if (!LargestVT.isVector() && !VT.isVector() &&
5801           TLI.isTruncateFree(LargestVT, VT))
5802         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
5803       else
5804         Value = getMemsetValue(Src, VT, DAG, dl);
5805     }
5806     assert(Value.getValueType() == VT && "Value with wrong type.");
5807     SDValue Store = DAG.getStore(
5808         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5809         DstPtrInfo.getWithOffset(DstOff), Align,
5810         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
5811     OutChains.push_back(Store);
5812     DstOff += VT.getSizeInBits() / 8;
5813     Size -= VTSize;
5814   }
5815 
5816   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5817 }
5818 
5819 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
5820                                             unsigned AS) {
5821   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
5822   // pointer operands can be losslessly bitcasted to pointers of address space 0
5823   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
5824     report_fatal_error("cannot lower memory intrinsic in address space " +
5825                        Twine(AS));
5826   }
5827 }
5828 
5829 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
5830                                 SDValue Src, SDValue Size, unsigned Align,
5831                                 bool isVol, bool AlwaysInline, bool isTailCall,
5832                                 MachinePointerInfo DstPtrInfo,
5833                                 MachinePointerInfo SrcPtrInfo) {
5834   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5835 
5836   // Check to see if we should lower the memcpy to loads and stores first.
5837   // For cases within the target-specified limits, this is the best choice.
5838   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5839   if (ConstantSize) {
5840     // Memcpy with size zero? Just return the original chain.
5841     if (ConstantSize->isNullValue())
5842       return Chain;
5843 
5844     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5845                                              ConstantSize->getZExtValue(),Align,
5846                                 isVol, false, DstPtrInfo, SrcPtrInfo);
5847     if (Result.getNode())
5848       return Result;
5849   }
5850 
5851   // Then check to see if we should lower the memcpy with target-specific
5852   // code. If the target chooses to do this, this is the next best.
5853   if (TSI) {
5854     SDValue Result = TSI->EmitTargetCodeForMemcpy(
5855         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
5856         DstPtrInfo, SrcPtrInfo);
5857     if (Result.getNode())
5858       return Result;
5859   }
5860 
5861   // If we really need inline code and the target declined to provide it,
5862   // use a (potentially long) sequence of loads and stores.
5863   if (AlwaysInline) {
5864     assert(ConstantSize && "AlwaysInline requires a constant size!");
5865     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5866                                    ConstantSize->getZExtValue(), Align, isVol,
5867                                    true, DstPtrInfo, SrcPtrInfo);
5868   }
5869 
5870   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5871   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5872 
5873   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
5874   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
5875   // respect volatile, so they may do things like read or write memory
5876   // beyond the given memory regions. But fixing this isn't easy, and most
5877   // people don't care.
5878 
5879   // Emit a library call.
5880   TargetLowering::ArgListTy Args;
5881   TargetLowering::ArgListEntry Entry;
5882   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5883   Entry.Node = Dst; Args.push_back(Entry);
5884   Entry.Node = Src; Args.push_back(Entry);
5885   Entry.Node = Size; Args.push_back(Entry);
5886   // FIXME: pass in SDLoc
5887   TargetLowering::CallLoweringInfo CLI(*this);
5888   CLI.setDebugLoc(dl)
5889       .setChain(Chain)
5890       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
5891                     Dst.getValueType().getTypeForEVT(*getContext()),
5892                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
5893                                       TLI->getPointerTy(getDataLayout())),
5894                     std::move(Args))
5895       .setDiscardResult()
5896       .setTailCall(isTailCall);
5897 
5898   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5899   return CallResult.second;
5900 }
5901 
5902 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
5903                                       SDValue Dst, unsigned DstAlign,
5904                                       SDValue Src, unsigned SrcAlign,
5905                                       SDValue Size, Type *SizeTy,
5906                                       unsigned ElemSz, bool isTailCall,
5907                                       MachinePointerInfo DstPtrInfo,
5908                                       MachinePointerInfo SrcPtrInfo) {
5909   // Emit a library call.
5910   TargetLowering::ArgListTy Args;
5911   TargetLowering::ArgListEntry Entry;
5912   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5913   Entry.Node = Dst;
5914   Args.push_back(Entry);
5915 
5916   Entry.Node = Src;
5917   Args.push_back(Entry);
5918 
5919   Entry.Ty = SizeTy;
5920   Entry.Node = Size;
5921   Args.push_back(Entry);
5922 
5923   RTLIB::Libcall LibraryCall =
5924       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
5925   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5926     report_fatal_error("Unsupported element size");
5927 
5928   TargetLowering::CallLoweringInfo CLI(*this);
5929   CLI.setDebugLoc(dl)
5930       .setChain(Chain)
5931       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
5932                     Type::getVoidTy(*getContext()),
5933                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
5934                                       TLI->getPointerTy(getDataLayout())),
5935                     std::move(Args))
5936       .setDiscardResult()
5937       .setTailCall(isTailCall);
5938 
5939   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
5940   return CallResult.second;
5941 }
5942 
5943 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
5944                                  SDValue Src, SDValue Size, unsigned Align,
5945                                  bool isVol, bool isTailCall,
5946                                  MachinePointerInfo DstPtrInfo,
5947                                  MachinePointerInfo SrcPtrInfo) {
5948   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5949 
5950   // Check to see if we should lower the memmove to loads and stores first.
5951   // For cases within the target-specified limits, this is the best choice.
5952   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5953   if (ConstantSize) {
5954     // Memmove with size zero? Just return the original chain.
5955     if (ConstantSize->isNullValue())
5956       return Chain;
5957 
5958     SDValue Result =
5959       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
5960                                ConstantSize->getZExtValue(), Align, isVol,
5961                                false, DstPtrInfo, SrcPtrInfo);
5962     if (Result.getNode())
5963       return Result;
5964   }
5965 
5966   // Then check to see if we should lower the memmove with target-specific
5967   // code. If the target chooses to do this, this is the next best.
5968   if (TSI) {
5969     SDValue Result = TSI->EmitTargetCodeForMemmove(
5970         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
5971     if (Result.getNode())
5972       return Result;
5973   }
5974 
5975   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5976   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5977 
5978   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
5979   // not be safe.  See memcpy above for more details.
5980 
5981   // Emit a library call.
5982   TargetLowering::ArgListTy Args;
5983   TargetLowering::ArgListEntry Entry;
5984   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5985   Entry.Node = Dst; Args.push_back(Entry);
5986   Entry.Node = Src; Args.push_back(Entry);
5987   Entry.Node = Size; Args.push_back(Entry);
5988   // FIXME:  pass in SDLoc
5989   TargetLowering::CallLoweringInfo CLI(*this);
5990   CLI.setDebugLoc(dl)
5991       .setChain(Chain)
5992       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
5993                     Dst.getValueType().getTypeForEVT(*getContext()),
5994                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
5995                                       TLI->getPointerTy(getDataLayout())),
5996                     std::move(Args))
5997       .setDiscardResult()
5998       .setTailCall(isTailCall);
5999 
6000   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6001   return CallResult.second;
6002 }
6003 
6004 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6005                                        SDValue Dst, unsigned DstAlign,
6006                                        SDValue Src, unsigned SrcAlign,
6007                                        SDValue Size, Type *SizeTy,
6008                                        unsigned ElemSz, bool isTailCall,
6009                                        MachinePointerInfo DstPtrInfo,
6010                                        MachinePointerInfo SrcPtrInfo) {
6011   // Emit a library call.
6012   TargetLowering::ArgListTy Args;
6013   TargetLowering::ArgListEntry Entry;
6014   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6015   Entry.Node = Dst;
6016   Args.push_back(Entry);
6017 
6018   Entry.Node = Src;
6019   Args.push_back(Entry);
6020 
6021   Entry.Ty = SizeTy;
6022   Entry.Node = Size;
6023   Args.push_back(Entry);
6024 
6025   RTLIB::Libcall LibraryCall =
6026       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6027   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6028     report_fatal_error("Unsupported element size");
6029 
6030   TargetLowering::CallLoweringInfo CLI(*this);
6031   CLI.setDebugLoc(dl)
6032       .setChain(Chain)
6033       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6034                     Type::getVoidTy(*getContext()),
6035                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6036                                       TLI->getPointerTy(getDataLayout())),
6037                     std::move(Args))
6038       .setDiscardResult()
6039       .setTailCall(isTailCall);
6040 
6041   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6042   return CallResult.second;
6043 }
6044 
6045 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6046                                 SDValue Src, SDValue Size, unsigned Align,
6047                                 bool isVol, bool isTailCall,
6048                                 MachinePointerInfo DstPtrInfo) {
6049   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6050 
6051   // Check to see if we should lower the memset to stores first.
6052   // For cases within the target-specified limits, this is the best choice.
6053   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6054   if (ConstantSize) {
6055     // Memset with size zero? Just return the original chain.
6056     if (ConstantSize->isNullValue())
6057       return Chain;
6058 
6059     SDValue Result =
6060       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6061                       Align, isVol, DstPtrInfo);
6062 
6063     if (Result.getNode())
6064       return Result;
6065   }
6066 
6067   // Then check to see if we should lower the memset with target-specific
6068   // code. If the target chooses to do this, this is the next best.
6069   if (TSI) {
6070     SDValue Result = TSI->EmitTargetCodeForMemset(
6071         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6072     if (Result.getNode())
6073       return Result;
6074   }
6075 
6076   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6077 
6078   // Emit a library call.
6079   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
6080   TargetLowering::ArgListTy Args;
6081   TargetLowering::ArgListEntry Entry;
6082   Entry.Node = Dst; Entry.Ty = IntPtrTy;
6083   Args.push_back(Entry);
6084   Entry.Node = Src;
6085   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6086   Args.push_back(Entry);
6087   Entry.Node = Size;
6088   Entry.Ty = IntPtrTy;
6089   Args.push_back(Entry);
6090 
6091   // FIXME: pass in SDLoc
6092   TargetLowering::CallLoweringInfo CLI(*this);
6093   CLI.setDebugLoc(dl)
6094       .setChain(Chain)
6095       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6096                     Dst.getValueType().getTypeForEVT(*getContext()),
6097                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6098                                       TLI->getPointerTy(getDataLayout())),
6099                     std::move(Args))
6100       .setDiscardResult()
6101       .setTailCall(isTailCall);
6102 
6103   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6104   return CallResult.second;
6105 }
6106 
6107 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6108                                       SDValue Dst, unsigned DstAlign,
6109                                       SDValue Value, SDValue Size, Type *SizeTy,
6110                                       unsigned ElemSz, bool isTailCall,
6111                                       MachinePointerInfo DstPtrInfo) {
6112   // Emit a library call.
6113   TargetLowering::ArgListTy Args;
6114   TargetLowering::ArgListEntry Entry;
6115   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6116   Entry.Node = Dst;
6117   Args.push_back(Entry);
6118 
6119   Entry.Ty = Type::getInt8Ty(*getContext());
6120   Entry.Node = Value;
6121   Args.push_back(Entry);
6122 
6123   Entry.Ty = SizeTy;
6124   Entry.Node = Size;
6125   Args.push_back(Entry);
6126 
6127   RTLIB::Libcall LibraryCall =
6128       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6129   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6130     report_fatal_error("Unsupported element size");
6131 
6132   TargetLowering::CallLoweringInfo CLI(*this);
6133   CLI.setDebugLoc(dl)
6134       .setChain(Chain)
6135       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6136                     Type::getVoidTy(*getContext()),
6137                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6138                                       TLI->getPointerTy(getDataLayout())),
6139                     std::move(Args))
6140       .setDiscardResult()
6141       .setTailCall(isTailCall);
6142 
6143   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6144   return CallResult.second;
6145 }
6146 
6147 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6148                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6149                                 MachineMemOperand *MMO) {
6150   FoldingSetNodeID ID;
6151   ID.AddInteger(MemVT.getRawBits());
6152   AddNodeIDNode(ID, Opcode, VTList, Ops);
6153   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6154   void* IP = nullptr;
6155   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6156     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6157     return SDValue(E, 0);
6158   }
6159 
6160   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6161                                     VTList, MemVT, MMO);
6162   createOperands(N, Ops);
6163 
6164   CSEMap.InsertNode(N, IP);
6165   InsertNode(N);
6166   return SDValue(N, 0);
6167 }
6168 
6169 SDValue SelectionDAG::getAtomicCmpSwap(
6170     unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
6171     SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
6172     unsigned Alignment, AtomicOrdering SuccessOrdering,
6173     AtomicOrdering FailureOrdering, SyncScope::ID SSID) {
6174   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6175          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6176   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6177 
6178   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6179     Alignment = getEVTAlignment(MemVT);
6180 
6181   MachineFunction &MF = getMachineFunction();
6182 
6183   // FIXME: Volatile isn't really correct; we should keep track of atomic
6184   // orderings in the memoperand.
6185   auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
6186                MachineMemOperand::MOStore;
6187   MachineMemOperand *MMO =
6188     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
6189                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
6190                             FailureOrdering);
6191 
6192   return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO);
6193 }
6194 
6195 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6196                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6197                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6198                                        MachineMemOperand *MMO) {
6199   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6200          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6201   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6202 
6203   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6204   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6205 }
6206 
6207 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6208                                 SDValue Chain, SDValue Ptr, SDValue Val,
6209                                 const Value *PtrVal, unsigned Alignment,
6210                                 AtomicOrdering Ordering,
6211                                 SyncScope::ID SSID) {
6212   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6213     Alignment = getEVTAlignment(MemVT);
6214 
6215   MachineFunction &MF = getMachineFunction();
6216   // An atomic store does not load. An atomic load does not store.
6217   // (An atomicrmw obviously both loads and stores.)
6218   // For now, atomics are considered to be volatile always, and they are
6219   // chained as such.
6220   // FIXME: Volatile isn't really correct; we should keep track of atomic
6221   // orderings in the memoperand.
6222   auto Flags = MachineMemOperand::MOVolatile;
6223   if (Opcode != ISD::ATOMIC_STORE)
6224     Flags |= MachineMemOperand::MOLoad;
6225   if (Opcode != ISD::ATOMIC_LOAD)
6226     Flags |= MachineMemOperand::MOStore;
6227 
6228   MachineMemOperand *MMO =
6229     MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
6230                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
6231                             nullptr, SSID, Ordering);
6232 
6233   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
6234 }
6235 
6236 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6237                                 SDValue Chain, SDValue Ptr, SDValue Val,
6238                                 MachineMemOperand *MMO) {
6239   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6240           Opcode == ISD::ATOMIC_LOAD_SUB ||
6241           Opcode == ISD::ATOMIC_LOAD_AND ||
6242           Opcode == ISD::ATOMIC_LOAD_CLR ||
6243           Opcode == ISD::ATOMIC_LOAD_OR ||
6244           Opcode == ISD::ATOMIC_LOAD_XOR ||
6245           Opcode == ISD::ATOMIC_LOAD_NAND ||
6246           Opcode == ISD::ATOMIC_LOAD_MIN ||
6247           Opcode == ISD::ATOMIC_LOAD_MAX ||
6248           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6249           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6250           Opcode == ISD::ATOMIC_SWAP ||
6251           Opcode == ISD::ATOMIC_STORE) &&
6252          "Invalid Atomic Op");
6253 
6254   EVT VT = Val.getValueType();
6255 
6256   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6257                                                getVTList(VT, MVT::Other);
6258   SDValue Ops[] = {Chain, Ptr, Val};
6259   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6260 }
6261 
6262 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6263                                 EVT VT, SDValue Chain, SDValue Ptr,
6264                                 MachineMemOperand *MMO) {
6265   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6266 
6267   SDVTList VTs = getVTList(VT, MVT::Other);
6268   SDValue Ops[] = {Chain, Ptr};
6269   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6270 }
6271 
6272 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6273 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6274   if (Ops.size() == 1)
6275     return Ops[0];
6276 
6277   SmallVector<EVT, 4> VTs;
6278   VTs.reserve(Ops.size());
6279   for (unsigned i = 0; i < Ops.size(); ++i)
6280     VTs.push_back(Ops[i].getValueType());
6281   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6282 }
6283 
6284 SDValue SelectionDAG::getMemIntrinsicNode(
6285     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6286     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6287     MachineMemOperand::Flags Flags, unsigned Size) {
6288   if (Align == 0)  // Ensure that codegen never sees alignment 0
6289     Align = getEVTAlignment(MemVT);
6290 
6291   if (!Size)
6292     Size = MemVT.getStoreSize();
6293 
6294   MachineFunction &MF = getMachineFunction();
6295   MachineMemOperand *MMO =
6296     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
6297 
6298   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6299 }
6300 
6301 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6302                                           SDVTList VTList,
6303                                           ArrayRef<SDValue> Ops, EVT MemVT,
6304                                           MachineMemOperand *MMO) {
6305   assert((Opcode == ISD::INTRINSIC_VOID ||
6306           Opcode == ISD::INTRINSIC_W_CHAIN ||
6307           Opcode == ISD::PREFETCH ||
6308           Opcode == ISD::LIFETIME_START ||
6309           Opcode == ISD::LIFETIME_END ||
6310           ((int)Opcode <= std::numeric_limits<int>::max() &&
6311            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6312          "Opcode is not a memory-accessing opcode!");
6313 
6314   // Memoize the node unless it returns a flag.
6315   MemIntrinsicSDNode *N;
6316   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6317     FoldingSetNodeID ID;
6318     AddNodeIDNode(ID, Opcode, VTList, Ops);
6319     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6320         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6321     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6322     void *IP = nullptr;
6323     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6324       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6325       return SDValue(E, 0);
6326     }
6327 
6328     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6329                                       VTList, MemVT, MMO);
6330     createOperands(N, Ops);
6331 
6332   CSEMap.InsertNode(N, IP);
6333   } else {
6334     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6335                                       VTList, MemVT, MMO);
6336     createOperands(N, Ops);
6337   }
6338   InsertNode(N);
6339   return SDValue(N, 0);
6340 }
6341 
6342 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6343 /// MachinePointerInfo record from it.  This is particularly useful because the
6344 /// code generator has many cases where it doesn't bother passing in a
6345 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6346 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6347                                            SelectionDAG &DAG, SDValue Ptr,
6348                                            int64_t Offset = 0) {
6349   // If this is FI+Offset, we can model it.
6350   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6351     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6352                                              FI->getIndex(), Offset);
6353 
6354   // If this is (FI+Offset1)+Offset2, we can model it.
6355   if (Ptr.getOpcode() != ISD::ADD ||
6356       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6357       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6358     return Info;
6359 
6360   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6361   return MachinePointerInfo::getFixedStack(
6362       DAG.getMachineFunction(), FI,
6363       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6364 }
6365 
6366 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6367 /// MachinePointerInfo record from it.  This is particularly useful because the
6368 /// code generator has many cases where it doesn't bother passing in a
6369 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6370 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6371                                            SelectionDAG &DAG, SDValue Ptr,
6372                                            SDValue OffsetOp) {
6373   // If the 'Offset' value isn't a constant, we can't handle this.
6374   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6375     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6376   if (OffsetOp.isUndef())
6377     return InferPointerInfo(Info, DAG, Ptr);
6378   return Info;
6379 }
6380 
6381 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6382                               EVT VT, const SDLoc &dl, SDValue Chain,
6383                               SDValue Ptr, SDValue Offset,
6384                               MachinePointerInfo PtrInfo, EVT MemVT,
6385                               unsigned Alignment,
6386                               MachineMemOperand::Flags MMOFlags,
6387                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6388   assert(Chain.getValueType() == MVT::Other &&
6389         "Invalid chain type");
6390   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6391     Alignment = getEVTAlignment(MemVT);
6392 
6393   MMOFlags |= MachineMemOperand::MOLoad;
6394   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6395   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6396   // clients.
6397   if (PtrInfo.V.isNull())
6398     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6399 
6400   MachineFunction &MF = getMachineFunction();
6401   MachineMemOperand *MMO = MF.getMachineMemOperand(
6402       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6403   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6404 }
6405 
6406 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6407                               EVT VT, const SDLoc &dl, SDValue Chain,
6408                               SDValue Ptr, SDValue Offset, EVT MemVT,
6409                               MachineMemOperand *MMO) {
6410   if (VT == MemVT) {
6411     ExtType = ISD::NON_EXTLOAD;
6412   } else if (ExtType == ISD::NON_EXTLOAD) {
6413     assert(VT == MemVT && "Non-extending load from different memory type!");
6414   } else {
6415     // Extending load.
6416     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6417            "Should only be an extending load, not truncating!");
6418     assert(VT.isInteger() == MemVT.isInteger() &&
6419            "Cannot convert from FP to Int or Int -> FP!");
6420     assert(VT.isVector() == MemVT.isVector() &&
6421            "Cannot use an ext load to convert to or from a vector!");
6422     assert((!VT.isVector() ||
6423             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6424            "Cannot use an ext load to change the number of vector elements!");
6425   }
6426 
6427   bool Indexed = AM != ISD::UNINDEXED;
6428   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6429 
6430   SDVTList VTs = Indexed ?
6431     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6432   SDValue Ops[] = { Chain, Ptr, Offset };
6433   FoldingSetNodeID ID;
6434   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6435   ID.AddInteger(MemVT.getRawBits());
6436   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6437       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6438   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6439   void *IP = nullptr;
6440   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6441     cast<LoadSDNode>(E)->refineAlignment(MMO);
6442     return SDValue(E, 0);
6443   }
6444   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6445                                   ExtType, MemVT, MMO);
6446   createOperands(N, Ops);
6447 
6448   CSEMap.InsertNode(N, IP);
6449   InsertNode(N);
6450   SDValue V(N, 0);
6451   NewSDValueDbgMsg(V, "Creating new node: ", this);
6452   return V;
6453 }
6454 
6455 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6456                               SDValue Ptr, MachinePointerInfo PtrInfo,
6457                               unsigned Alignment,
6458                               MachineMemOperand::Flags MMOFlags,
6459                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6460   SDValue Undef = getUNDEF(Ptr.getValueType());
6461   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6462                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6463 }
6464 
6465 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6466                               SDValue Ptr, MachineMemOperand *MMO) {
6467   SDValue Undef = getUNDEF(Ptr.getValueType());
6468   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6469                  VT, MMO);
6470 }
6471 
6472 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6473                                  EVT VT, SDValue Chain, SDValue Ptr,
6474                                  MachinePointerInfo PtrInfo, EVT MemVT,
6475                                  unsigned Alignment,
6476                                  MachineMemOperand::Flags MMOFlags,
6477                                  const AAMDNodes &AAInfo) {
6478   SDValue Undef = getUNDEF(Ptr.getValueType());
6479   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6480                  MemVT, Alignment, MMOFlags, AAInfo);
6481 }
6482 
6483 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6484                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6485                                  MachineMemOperand *MMO) {
6486   SDValue Undef = getUNDEF(Ptr.getValueType());
6487   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6488                  MemVT, MMO);
6489 }
6490 
6491 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6492                                      SDValue Base, SDValue Offset,
6493                                      ISD::MemIndexedMode AM) {
6494   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6495   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6496   // Don't propagate the invariant or dereferenceable flags.
6497   auto MMOFlags =
6498       LD->getMemOperand()->getFlags() &
6499       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6500   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6501                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6502                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6503                  LD->getAAInfo());
6504 }
6505 
6506 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6507                                SDValue Ptr, MachinePointerInfo PtrInfo,
6508                                unsigned Alignment,
6509                                MachineMemOperand::Flags MMOFlags,
6510                                const AAMDNodes &AAInfo) {
6511   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6512   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6513     Alignment = getEVTAlignment(Val.getValueType());
6514 
6515   MMOFlags |= MachineMemOperand::MOStore;
6516   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6517 
6518   if (PtrInfo.V.isNull())
6519     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6520 
6521   MachineFunction &MF = getMachineFunction();
6522   MachineMemOperand *MMO = MF.getMachineMemOperand(
6523       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6524   return getStore(Chain, dl, Val, Ptr, MMO);
6525 }
6526 
6527 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6528                                SDValue Ptr, MachineMemOperand *MMO) {
6529   assert(Chain.getValueType() == MVT::Other &&
6530         "Invalid chain type");
6531   EVT VT = Val.getValueType();
6532   SDVTList VTs = getVTList(MVT::Other);
6533   SDValue Undef = getUNDEF(Ptr.getValueType());
6534   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6535   FoldingSetNodeID ID;
6536   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6537   ID.AddInteger(VT.getRawBits());
6538   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6539       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6540   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6541   void *IP = nullptr;
6542   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6543     cast<StoreSDNode>(E)->refineAlignment(MMO);
6544     return SDValue(E, 0);
6545   }
6546   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6547                                    ISD::UNINDEXED, false, VT, MMO);
6548   createOperands(N, Ops);
6549 
6550   CSEMap.InsertNode(N, IP);
6551   InsertNode(N);
6552   SDValue V(N, 0);
6553   NewSDValueDbgMsg(V, "Creating new node: ", this);
6554   return V;
6555 }
6556 
6557 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6558                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6559                                     EVT SVT, unsigned Alignment,
6560                                     MachineMemOperand::Flags MMOFlags,
6561                                     const AAMDNodes &AAInfo) {
6562   assert(Chain.getValueType() == MVT::Other &&
6563         "Invalid chain type");
6564   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6565     Alignment = getEVTAlignment(SVT);
6566 
6567   MMOFlags |= MachineMemOperand::MOStore;
6568   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6569 
6570   if (PtrInfo.V.isNull())
6571     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6572 
6573   MachineFunction &MF = getMachineFunction();
6574   MachineMemOperand *MMO = MF.getMachineMemOperand(
6575       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6576   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6577 }
6578 
6579 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6580                                     SDValue Ptr, EVT SVT,
6581                                     MachineMemOperand *MMO) {
6582   EVT VT = Val.getValueType();
6583 
6584   assert(Chain.getValueType() == MVT::Other &&
6585         "Invalid chain type");
6586   if (VT == SVT)
6587     return getStore(Chain, dl, Val, Ptr, MMO);
6588 
6589   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6590          "Should only be a truncating store, not extending!");
6591   assert(VT.isInteger() == SVT.isInteger() &&
6592          "Can't do FP-INT conversion!");
6593   assert(VT.isVector() == SVT.isVector() &&
6594          "Cannot use trunc store to convert to or from a vector!");
6595   assert((!VT.isVector() ||
6596           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6597          "Cannot use trunc store to change the number of vector elements!");
6598 
6599   SDVTList VTs = getVTList(MVT::Other);
6600   SDValue Undef = getUNDEF(Ptr.getValueType());
6601   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6602   FoldingSetNodeID ID;
6603   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6604   ID.AddInteger(SVT.getRawBits());
6605   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6606       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6607   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6608   void *IP = nullptr;
6609   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6610     cast<StoreSDNode>(E)->refineAlignment(MMO);
6611     return SDValue(E, 0);
6612   }
6613   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6614                                    ISD::UNINDEXED, true, SVT, MMO);
6615   createOperands(N, Ops);
6616 
6617   CSEMap.InsertNode(N, IP);
6618   InsertNode(N);
6619   SDValue V(N, 0);
6620   NewSDValueDbgMsg(V, "Creating new node: ", this);
6621   return V;
6622 }
6623 
6624 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6625                                       SDValue Base, SDValue Offset,
6626                                       ISD::MemIndexedMode AM) {
6627   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6628   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6629   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6630   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6631   FoldingSetNodeID ID;
6632   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6633   ID.AddInteger(ST->getMemoryVT().getRawBits());
6634   ID.AddInteger(ST->getRawSubclassData());
6635   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6636   void *IP = nullptr;
6637   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6638     return SDValue(E, 0);
6639 
6640   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6641                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6642                                    ST->getMemOperand());
6643   createOperands(N, Ops);
6644 
6645   CSEMap.InsertNode(N, IP);
6646   InsertNode(N);
6647   SDValue V(N, 0);
6648   NewSDValueDbgMsg(V, "Creating new node: ", this);
6649   return V;
6650 }
6651 
6652 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6653                                     SDValue Ptr, SDValue Mask, SDValue PassThru,
6654                                     EVT MemVT, MachineMemOperand *MMO,
6655                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6656   SDVTList VTs = getVTList(VT, MVT::Other);
6657   SDValue Ops[] = { Chain, Ptr, Mask, PassThru };
6658   FoldingSetNodeID ID;
6659   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6660   ID.AddInteger(VT.getRawBits());
6661   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6662       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6663   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6664   void *IP = nullptr;
6665   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6666     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6667     return SDValue(E, 0);
6668   }
6669   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6670                                         ExtTy, isExpanding, MemVT, MMO);
6671   createOperands(N, Ops);
6672 
6673   CSEMap.InsertNode(N, IP);
6674   InsertNode(N);
6675   SDValue V(N, 0);
6676   NewSDValueDbgMsg(V, "Creating new node: ", this);
6677   return V;
6678 }
6679 
6680 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6681                                      SDValue Val, SDValue Ptr, SDValue Mask,
6682                                      EVT MemVT, MachineMemOperand *MMO,
6683                                      bool IsTruncating, bool IsCompressing) {
6684   assert(Chain.getValueType() == MVT::Other &&
6685         "Invalid chain type");
6686   EVT VT = Val.getValueType();
6687   SDVTList VTs = getVTList(MVT::Other);
6688   SDValue Ops[] = { Chain, Val, Ptr, Mask };
6689   FoldingSetNodeID ID;
6690   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6691   ID.AddInteger(VT.getRawBits());
6692   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6693       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6694   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6695   void *IP = nullptr;
6696   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6697     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6698     return SDValue(E, 0);
6699   }
6700   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6701                                          IsTruncating, IsCompressing, MemVT, MMO);
6702   createOperands(N, Ops);
6703 
6704   CSEMap.InsertNode(N, IP);
6705   InsertNode(N);
6706   SDValue V(N, 0);
6707   NewSDValueDbgMsg(V, "Creating new node: ", this);
6708   return V;
6709 }
6710 
6711 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
6712                                       ArrayRef<SDValue> Ops,
6713                                       MachineMemOperand *MMO) {
6714   assert(Ops.size() == 6 && "Incompatible number of operands");
6715 
6716   FoldingSetNodeID ID;
6717   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
6718   ID.AddInteger(VT.getRawBits());
6719   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
6720       dl.getIROrder(), VTs, VT, MMO));
6721   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6722   void *IP = nullptr;
6723   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6724     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
6725     return SDValue(E, 0);
6726   }
6727 
6728   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6729                                           VTs, VT, MMO);
6730   createOperands(N, Ops);
6731 
6732   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
6733          "Incompatible type of the PassThru value in MaskedGatherSDNode");
6734   assert(N->getMask().getValueType().getVectorNumElements() ==
6735              N->getValueType(0).getVectorNumElements() &&
6736          "Vector width mismatch between mask and data");
6737   assert(N->getIndex().getValueType().getVectorNumElements() >=
6738              N->getValueType(0).getVectorNumElements() &&
6739          "Vector width mismatch between index and data");
6740   assert(isa<ConstantSDNode>(N->getScale()) &&
6741          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6742          "Scale should be a constant power of 2");
6743 
6744   CSEMap.InsertNode(N, IP);
6745   InsertNode(N);
6746   SDValue V(N, 0);
6747   NewSDValueDbgMsg(V, "Creating new node: ", this);
6748   return V;
6749 }
6750 
6751 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
6752                                        ArrayRef<SDValue> Ops,
6753                                        MachineMemOperand *MMO) {
6754   assert(Ops.size() == 6 && "Incompatible number of operands");
6755 
6756   FoldingSetNodeID ID;
6757   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
6758   ID.AddInteger(VT.getRawBits());
6759   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
6760       dl.getIROrder(), VTs, VT, MMO));
6761   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6762   void *IP = nullptr;
6763   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6764     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
6765     return SDValue(E, 0);
6766   }
6767   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6768                                            VTs, VT, MMO);
6769   createOperands(N, Ops);
6770 
6771   assert(N->getMask().getValueType().getVectorNumElements() ==
6772              N->getValue().getValueType().getVectorNumElements() &&
6773          "Vector width mismatch between mask and data");
6774   assert(N->getIndex().getValueType().getVectorNumElements() >=
6775              N->getValue().getValueType().getVectorNumElements() &&
6776          "Vector width mismatch between index and data");
6777   assert(isa<ConstantSDNode>(N->getScale()) &&
6778          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6779          "Scale should be a constant power of 2");
6780 
6781   CSEMap.InsertNode(N, IP);
6782   InsertNode(N);
6783   SDValue V(N, 0);
6784   NewSDValueDbgMsg(V, "Creating new node: ", this);
6785   return V;
6786 }
6787 
6788 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
6789                                SDValue Ptr, SDValue SV, unsigned Align) {
6790   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
6791   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
6792 }
6793 
6794 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6795                               ArrayRef<SDUse> Ops) {
6796   switch (Ops.size()) {
6797   case 0: return getNode(Opcode, DL, VT);
6798   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
6799   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
6800   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
6801   default: break;
6802   }
6803 
6804   // Copy from an SDUse array into an SDValue array for use with
6805   // the regular getNode logic.
6806   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
6807   return getNode(Opcode, DL, VT, NewOps);
6808 }
6809 
6810 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6811                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
6812   unsigned NumOps = Ops.size();
6813   switch (NumOps) {
6814   case 0: return getNode(Opcode, DL, VT);
6815   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
6816   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
6817   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
6818   default: break;
6819   }
6820 
6821   switch (Opcode) {
6822   default: break;
6823   case ISD::BUILD_VECTOR:
6824     // Attempt to simplify BUILD_VECTOR.
6825     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6826       return V;
6827     break;
6828   case ISD::CONCAT_VECTORS:
6829     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
6830     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
6831       return V;
6832     break;
6833   case ISD::SELECT_CC:
6834     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
6835     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
6836            "LHS and RHS of condition must have same type!");
6837     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
6838            "True and False arms of SelectCC must have same type!");
6839     assert(Ops[2].getValueType() == VT &&
6840            "select_cc node must be of same type as true and false value!");
6841     break;
6842   case ISD::BR_CC:
6843     assert(NumOps == 5 && "BR_CC takes 5 operands!");
6844     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
6845            "LHS/RHS of comparison should match types!");
6846     break;
6847   }
6848 
6849   // Memoize nodes.
6850   SDNode *N;
6851   SDVTList VTs = getVTList(VT);
6852 
6853   if (VT != MVT::Glue) {
6854     FoldingSetNodeID ID;
6855     AddNodeIDNode(ID, Opcode, VTs, Ops);
6856     void *IP = nullptr;
6857 
6858     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6859       return SDValue(E, 0);
6860 
6861     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6862     createOperands(N, Ops);
6863 
6864     CSEMap.InsertNode(N, IP);
6865   } else {
6866     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6867     createOperands(N, Ops);
6868   }
6869 
6870   InsertNode(N);
6871   SDValue V(N, 0);
6872   NewSDValueDbgMsg(V, "Creating new node: ", this);
6873   return V;
6874 }
6875 
6876 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
6877                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
6878   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
6879 }
6880 
6881 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6882                               ArrayRef<SDValue> Ops) {
6883   if (VTList.NumVTs == 1)
6884     return getNode(Opcode, DL, VTList.VTs[0], Ops);
6885 
6886 #if 0
6887   switch (Opcode) {
6888   // FIXME: figure out how to safely handle things like
6889   // int foo(int x) { return 1 << (x & 255); }
6890   // int bar() { return foo(256); }
6891   case ISD::SRA_PARTS:
6892   case ISD::SRL_PARTS:
6893   case ISD::SHL_PARTS:
6894     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
6895         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
6896       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6897     else if (N3.getOpcode() == ISD::AND)
6898       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
6899         // If the and is only masking out bits that cannot effect the shift,
6900         // eliminate the and.
6901         unsigned NumBits = VT.getScalarSizeInBits()*2;
6902         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
6903           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6904       }
6905     break;
6906   }
6907 #endif
6908 
6909   // Memoize the node unless it returns a flag.
6910   SDNode *N;
6911   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6912     FoldingSetNodeID ID;
6913     AddNodeIDNode(ID, Opcode, VTList, Ops);
6914     void *IP = nullptr;
6915     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6916       return SDValue(E, 0);
6917 
6918     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6919     createOperands(N, Ops);
6920     CSEMap.InsertNode(N, IP);
6921   } else {
6922     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6923     createOperands(N, Ops);
6924   }
6925   InsertNode(N);
6926   SDValue V(N, 0);
6927   NewSDValueDbgMsg(V, "Creating new node: ", this);
6928   return V;
6929 }
6930 
6931 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
6932                               SDVTList VTList) {
6933   return getNode(Opcode, DL, VTList, None);
6934 }
6935 
6936 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6937                               SDValue N1) {
6938   SDValue Ops[] = { N1 };
6939   return getNode(Opcode, DL, VTList, Ops);
6940 }
6941 
6942 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6943                               SDValue N1, SDValue N2) {
6944   SDValue Ops[] = { N1, N2 };
6945   return getNode(Opcode, DL, VTList, Ops);
6946 }
6947 
6948 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6949                               SDValue N1, SDValue N2, SDValue N3) {
6950   SDValue Ops[] = { N1, N2, N3 };
6951   return getNode(Opcode, DL, VTList, Ops);
6952 }
6953 
6954 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6955                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6956   SDValue Ops[] = { N1, N2, N3, N4 };
6957   return getNode(Opcode, DL, VTList, Ops);
6958 }
6959 
6960 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6961                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6962                               SDValue N5) {
6963   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6964   return getNode(Opcode, DL, VTList, Ops);
6965 }
6966 
6967 SDVTList SelectionDAG::getVTList(EVT VT) {
6968   return makeVTList(SDNode::getValueTypeList(VT), 1);
6969 }
6970 
6971 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
6972   FoldingSetNodeID ID;
6973   ID.AddInteger(2U);
6974   ID.AddInteger(VT1.getRawBits());
6975   ID.AddInteger(VT2.getRawBits());
6976 
6977   void *IP = nullptr;
6978   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6979   if (!Result) {
6980     EVT *Array = Allocator.Allocate<EVT>(2);
6981     Array[0] = VT1;
6982     Array[1] = VT2;
6983     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
6984     VTListMap.InsertNode(Result, IP);
6985   }
6986   return Result->getSDVTList();
6987 }
6988 
6989 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
6990   FoldingSetNodeID ID;
6991   ID.AddInteger(3U);
6992   ID.AddInteger(VT1.getRawBits());
6993   ID.AddInteger(VT2.getRawBits());
6994   ID.AddInteger(VT3.getRawBits());
6995 
6996   void *IP = nullptr;
6997   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6998   if (!Result) {
6999     EVT *Array = Allocator.Allocate<EVT>(3);
7000     Array[0] = VT1;
7001     Array[1] = VT2;
7002     Array[2] = VT3;
7003     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7004     VTListMap.InsertNode(Result, IP);
7005   }
7006   return Result->getSDVTList();
7007 }
7008 
7009 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7010   FoldingSetNodeID ID;
7011   ID.AddInteger(4U);
7012   ID.AddInteger(VT1.getRawBits());
7013   ID.AddInteger(VT2.getRawBits());
7014   ID.AddInteger(VT3.getRawBits());
7015   ID.AddInteger(VT4.getRawBits());
7016 
7017   void *IP = nullptr;
7018   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7019   if (!Result) {
7020     EVT *Array = Allocator.Allocate<EVT>(4);
7021     Array[0] = VT1;
7022     Array[1] = VT2;
7023     Array[2] = VT3;
7024     Array[3] = VT4;
7025     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7026     VTListMap.InsertNode(Result, IP);
7027   }
7028   return Result->getSDVTList();
7029 }
7030 
7031 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7032   unsigned NumVTs = VTs.size();
7033   FoldingSetNodeID ID;
7034   ID.AddInteger(NumVTs);
7035   for (unsigned index = 0; index < NumVTs; index++) {
7036     ID.AddInteger(VTs[index].getRawBits());
7037   }
7038 
7039   void *IP = nullptr;
7040   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7041   if (!Result) {
7042     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7043     std::copy(VTs.begin(), VTs.end(), Array);
7044     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7045     VTListMap.InsertNode(Result, IP);
7046   }
7047   return Result->getSDVTList();
7048 }
7049 
7050 
7051 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7052 /// specified operands.  If the resultant node already exists in the DAG,
7053 /// this does not modify the specified node, instead it returns the node that
7054 /// already exists.  If the resultant node does not exist in the DAG, the
7055 /// input node is returned.  As a degenerate case, if you specify the same
7056 /// input operands as the node already has, the input node is returned.
7057 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7058   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7059 
7060   // Check to see if there is no change.
7061   if (Op == N->getOperand(0)) return N;
7062 
7063   // See if the modified node already exists.
7064   void *InsertPos = nullptr;
7065   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7066     return Existing;
7067 
7068   // Nope it doesn't.  Remove the node from its current place in the maps.
7069   if (InsertPos)
7070     if (!RemoveNodeFromCSEMaps(N))
7071       InsertPos = nullptr;
7072 
7073   // Now we update the operands.
7074   N->OperandList[0].set(Op);
7075 
7076   updateDivergence(N);
7077   // If this gets put into a CSE map, add it.
7078   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7079   return N;
7080 }
7081 
7082 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7083   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7084 
7085   // Check to see if there is no change.
7086   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7087     return N;   // No operands changed, just return the input node.
7088 
7089   // See if the modified node already exists.
7090   void *InsertPos = nullptr;
7091   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7092     return Existing;
7093 
7094   // Nope it doesn't.  Remove the node from its current place in the maps.
7095   if (InsertPos)
7096     if (!RemoveNodeFromCSEMaps(N))
7097       InsertPos = nullptr;
7098 
7099   // Now we update the operands.
7100   if (N->OperandList[0] != Op1)
7101     N->OperandList[0].set(Op1);
7102   if (N->OperandList[1] != Op2)
7103     N->OperandList[1].set(Op2);
7104 
7105   updateDivergence(N);
7106   // If this gets put into a CSE map, add it.
7107   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7108   return N;
7109 }
7110 
7111 SDNode *SelectionDAG::
7112 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7113   SDValue Ops[] = { Op1, Op2, Op3 };
7114   return UpdateNodeOperands(N, Ops);
7115 }
7116 
7117 SDNode *SelectionDAG::
7118 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7119                    SDValue Op3, SDValue Op4) {
7120   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7121   return UpdateNodeOperands(N, Ops);
7122 }
7123 
7124 SDNode *SelectionDAG::
7125 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7126                    SDValue Op3, SDValue Op4, SDValue Op5) {
7127   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7128   return UpdateNodeOperands(N, Ops);
7129 }
7130 
7131 SDNode *SelectionDAG::
7132 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7133   unsigned NumOps = Ops.size();
7134   assert(N->getNumOperands() == NumOps &&
7135          "Update with wrong number of operands");
7136 
7137   // If no operands changed just return the input node.
7138   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7139     return N;
7140 
7141   // See if the modified node already exists.
7142   void *InsertPos = nullptr;
7143   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7144     return Existing;
7145 
7146   // Nope it doesn't.  Remove the node from its current place in the maps.
7147   if (InsertPos)
7148     if (!RemoveNodeFromCSEMaps(N))
7149       InsertPos = nullptr;
7150 
7151   // Now we update the operands.
7152   for (unsigned i = 0; i != NumOps; ++i)
7153     if (N->OperandList[i] != Ops[i])
7154       N->OperandList[i].set(Ops[i]);
7155 
7156   updateDivergence(N);
7157   // If this gets put into a CSE map, add it.
7158   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7159   return N;
7160 }
7161 
7162 /// DropOperands - Release the operands and set this node to have
7163 /// zero operands.
7164 void SDNode::DropOperands() {
7165   // Unlike the code in MorphNodeTo that does this, we don't need to
7166   // watch for dead nodes here.
7167   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7168     SDUse &Use = *I++;
7169     Use.set(SDValue());
7170   }
7171 }
7172 
7173 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7174                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7175   if (NewMemRefs.empty()) {
7176     N->clearMemRefs();
7177     return;
7178   }
7179 
7180   // Check if we can avoid allocating by storing a single reference directly.
7181   if (NewMemRefs.size() == 1) {
7182     N->MemRefs = NewMemRefs[0];
7183     N->NumMemRefs = 1;
7184     return;
7185   }
7186 
7187   MachineMemOperand **MemRefsBuffer =
7188       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7189   std::copy(NewMemRefs.begin(), NewMemRefs.end(), MemRefsBuffer);
7190   N->MemRefs = MemRefsBuffer;
7191   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7192 }
7193 
7194 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7195 /// machine opcode.
7196 ///
7197 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7198                                    EVT VT) {
7199   SDVTList VTs = getVTList(VT);
7200   return SelectNodeTo(N, MachineOpc, VTs, None);
7201 }
7202 
7203 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7204                                    EVT VT, SDValue Op1) {
7205   SDVTList VTs = getVTList(VT);
7206   SDValue Ops[] = { Op1 };
7207   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7208 }
7209 
7210 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7211                                    EVT VT, SDValue Op1,
7212                                    SDValue Op2) {
7213   SDVTList VTs = getVTList(VT);
7214   SDValue Ops[] = { Op1, Op2 };
7215   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7216 }
7217 
7218 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7219                                    EVT VT, SDValue Op1,
7220                                    SDValue Op2, SDValue Op3) {
7221   SDVTList VTs = getVTList(VT);
7222   SDValue Ops[] = { Op1, Op2, Op3 };
7223   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7224 }
7225 
7226 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7227                                    EVT VT, ArrayRef<SDValue> Ops) {
7228   SDVTList VTs = getVTList(VT);
7229   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7230 }
7231 
7232 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7233                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7234   SDVTList VTs = getVTList(VT1, VT2);
7235   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7236 }
7237 
7238 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7239                                    EVT VT1, EVT VT2) {
7240   SDVTList VTs = getVTList(VT1, VT2);
7241   return SelectNodeTo(N, MachineOpc, VTs, None);
7242 }
7243 
7244 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7245                                    EVT VT1, EVT VT2, EVT VT3,
7246                                    ArrayRef<SDValue> Ops) {
7247   SDVTList VTs = getVTList(VT1, VT2, VT3);
7248   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7249 }
7250 
7251 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7252                                    EVT VT1, EVT VT2,
7253                                    SDValue Op1, SDValue Op2) {
7254   SDVTList VTs = getVTList(VT1, VT2);
7255   SDValue Ops[] = { Op1, Op2 };
7256   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7257 }
7258 
7259 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7260                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7261   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7262   // Reset the NodeID to -1.
7263   New->setNodeId(-1);
7264   if (New != N) {
7265     ReplaceAllUsesWith(N, New);
7266     RemoveDeadNode(N);
7267   }
7268   return New;
7269 }
7270 
7271 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7272 /// the line number information on the merged node since it is not possible to
7273 /// preserve the information that operation is associated with multiple lines.
7274 /// This will make the debugger working better at -O0, were there is a higher
7275 /// probability having other instructions associated with that line.
7276 ///
7277 /// For IROrder, we keep the smaller of the two
7278 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7279   DebugLoc NLoc = N->getDebugLoc();
7280   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7281     N->setDebugLoc(DebugLoc());
7282   }
7283   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7284   N->setIROrder(Order);
7285   return N;
7286 }
7287 
7288 /// MorphNodeTo - This *mutates* the specified node to have the specified
7289 /// return type, opcode, and operands.
7290 ///
7291 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7292 /// node of the specified opcode and operands, it returns that node instead of
7293 /// the current one.  Note that the SDLoc need not be the same.
7294 ///
7295 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7296 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7297 /// node, and because it doesn't require CSE recalculation for any of
7298 /// the node's users.
7299 ///
7300 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7301 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7302 /// the legalizer which maintain worklists that would need to be updated when
7303 /// deleting things.
7304 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7305                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7306   // If an identical node already exists, use it.
7307   void *IP = nullptr;
7308   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7309     FoldingSetNodeID ID;
7310     AddNodeIDNode(ID, Opc, VTs, Ops);
7311     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7312       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7313   }
7314 
7315   if (!RemoveNodeFromCSEMaps(N))
7316     IP = nullptr;
7317 
7318   // Start the morphing.
7319   N->NodeType = Opc;
7320   N->ValueList = VTs.VTs;
7321   N->NumValues = VTs.NumVTs;
7322 
7323   // Clear the operands list, updating used nodes to remove this from their
7324   // use list.  Keep track of any operands that become dead as a result.
7325   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7326   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7327     SDUse &Use = *I++;
7328     SDNode *Used = Use.getNode();
7329     Use.set(SDValue());
7330     if (Used->use_empty())
7331       DeadNodeSet.insert(Used);
7332   }
7333 
7334   // For MachineNode, initialize the memory references information.
7335   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7336     MN->clearMemRefs();
7337 
7338   // Swap for an appropriately sized array from the recycler.
7339   removeOperands(N);
7340   createOperands(N, Ops);
7341 
7342   // Delete any nodes that are still dead after adding the uses for the
7343   // new operands.
7344   if (!DeadNodeSet.empty()) {
7345     SmallVector<SDNode *, 16> DeadNodes;
7346     for (SDNode *N : DeadNodeSet)
7347       if (N->use_empty())
7348         DeadNodes.push_back(N);
7349     RemoveDeadNodes(DeadNodes);
7350   }
7351 
7352   if (IP)
7353     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7354   return N;
7355 }
7356 
7357 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7358   unsigned OrigOpc = Node->getOpcode();
7359   unsigned NewOpc;
7360   bool IsUnary = false;
7361   bool IsTernary = false;
7362   switch (OrigOpc) {
7363   default:
7364     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7365   case ISD::STRICT_FADD: NewOpc = ISD::FADD; break;
7366   case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break;
7367   case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break;
7368   case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break;
7369   case ISD::STRICT_FREM: NewOpc = ISD::FREM; break;
7370   case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break;
7371   case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break;
7372   case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break;
7373   case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break;
7374   case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break;
7375   case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break;
7376   case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break;
7377   case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break;
7378   case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break;
7379   case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break;
7380   case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break;
7381   case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break;
7382   case ISD::STRICT_FNEARBYINT:
7383     NewOpc = ISD::FNEARBYINT;
7384     IsUnary = true;
7385     break;
7386   case ISD::STRICT_FMAXNUM: NewOpc = ISD::FMAXNUM; break;
7387   case ISD::STRICT_FMINNUM: NewOpc = ISD::FMINNUM; break;
7388   case ISD::STRICT_FCEIL: NewOpc = ISD::FCEIL; IsUnary = true; break;
7389   case ISD::STRICT_FFLOOR: NewOpc = ISD::FFLOOR; IsUnary = true; break;
7390   case ISD::STRICT_FROUND: NewOpc = ISD::FROUND; IsUnary = true; break;
7391   case ISD::STRICT_FTRUNC: NewOpc = ISD::FTRUNC; IsUnary = true; break;
7392   }
7393 
7394   // We're taking this node out of the chain, so we need to re-link things.
7395   SDValue InputChain = Node->getOperand(0);
7396   SDValue OutputChain = SDValue(Node, 1);
7397   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7398 
7399   SDVTList VTs = getVTList(Node->getOperand(1).getValueType());
7400   SDNode *Res = nullptr;
7401   if (IsUnary)
7402     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) });
7403   else if (IsTernary)
7404     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7405                                            Node->getOperand(2),
7406                                            Node->getOperand(3)});
7407   else
7408     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7409                                            Node->getOperand(2) });
7410 
7411   // MorphNodeTo can operate in two ways: if an existing node with the
7412   // specified operands exists, it can just return it.  Otherwise, it
7413   // updates the node in place to have the requested operands.
7414   if (Res == Node) {
7415     // If we updated the node in place, reset the node ID.  To the isel,
7416     // this should be just like a newly allocated machine node.
7417     Res->setNodeId(-1);
7418   } else {
7419     ReplaceAllUsesWith(Node, Res);
7420     RemoveDeadNode(Node);
7421   }
7422 
7423   return Res;
7424 }
7425 
7426 /// getMachineNode - These are used for target selectors to create a new node
7427 /// with specified return type(s), MachineInstr opcode, and operands.
7428 ///
7429 /// Note that getMachineNode returns the resultant node.  If there is already a
7430 /// node of the specified opcode and operands, it returns that node instead of
7431 /// the current one.
7432 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7433                                             EVT VT) {
7434   SDVTList VTs = getVTList(VT);
7435   return getMachineNode(Opcode, dl, VTs, None);
7436 }
7437 
7438 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7439                                             EVT VT, SDValue Op1) {
7440   SDVTList VTs = getVTList(VT);
7441   SDValue Ops[] = { Op1 };
7442   return getMachineNode(Opcode, dl, VTs, Ops);
7443 }
7444 
7445 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7446                                             EVT VT, SDValue Op1, SDValue Op2) {
7447   SDVTList VTs = getVTList(VT);
7448   SDValue Ops[] = { Op1, Op2 };
7449   return getMachineNode(Opcode, dl, VTs, Ops);
7450 }
7451 
7452 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7453                                             EVT VT, SDValue Op1, SDValue Op2,
7454                                             SDValue Op3) {
7455   SDVTList VTs = getVTList(VT);
7456   SDValue Ops[] = { Op1, Op2, Op3 };
7457   return getMachineNode(Opcode, dl, VTs, Ops);
7458 }
7459 
7460 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7461                                             EVT VT, ArrayRef<SDValue> Ops) {
7462   SDVTList VTs = getVTList(VT);
7463   return getMachineNode(Opcode, dl, VTs, Ops);
7464 }
7465 
7466 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7467                                             EVT VT1, EVT VT2, SDValue Op1,
7468                                             SDValue Op2) {
7469   SDVTList VTs = getVTList(VT1, VT2);
7470   SDValue Ops[] = { Op1, Op2 };
7471   return getMachineNode(Opcode, dl, VTs, Ops);
7472 }
7473 
7474 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7475                                             EVT VT1, EVT VT2, SDValue Op1,
7476                                             SDValue Op2, SDValue Op3) {
7477   SDVTList VTs = getVTList(VT1, VT2);
7478   SDValue Ops[] = { Op1, Op2, Op3 };
7479   return getMachineNode(Opcode, dl, VTs, Ops);
7480 }
7481 
7482 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7483                                             EVT VT1, EVT VT2,
7484                                             ArrayRef<SDValue> Ops) {
7485   SDVTList VTs = getVTList(VT1, VT2);
7486   return getMachineNode(Opcode, dl, VTs, Ops);
7487 }
7488 
7489 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7490                                             EVT VT1, EVT VT2, EVT VT3,
7491                                             SDValue Op1, SDValue Op2) {
7492   SDVTList VTs = getVTList(VT1, VT2, VT3);
7493   SDValue Ops[] = { Op1, Op2 };
7494   return getMachineNode(Opcode, dl, VTs, Ops);
7495 }
7496 
7497 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7498                                             EVT VT1, EVT VT2, EVT VT3,
7499                                             SDValue Op1, SDValue Op2,
7500                                             SDValue Op3) {
7501   SDVTList VTs = getVTList(VT1, VT2, VT3);
7502   SDValue Ops[] = { Op1, Op2, Op3 };
7503   return getMachineNode(Opcode, dl, VTs, Ops);
7504 }
7505 
7506 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7507                                             EVT VT1, EVT VT2, EVT VT3,
7508                                             ArrayRef<SDValue> Ops) {
7509   SDVTList VTs = getVTList(VT1, VT2, VT3);
7510   return getMachineNode(Opcode, dl, VTs, Ops);
7511 }
7512 
7513 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7514                                             ArrayRef<EVT> ResultTys,
7515                                             ArrayRef<SDValue> Ops) {
7516   SDVTList VTs = getVTList(ResultTys);
7517   return getMachineNode(Opcode, dl, VTs, Ops);
7518 }
7519 
7520 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
7521                                             SDVTList VTs,
7522                                             ArrayRef<SDValue> Ops) {
7523   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
7524   MachineSDNode *N;
7525   void *IP = nullptr;
7526 
7527   if (DoCSE) {
7528     FoldingSetNodeID ID;
7529     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
7530     IP = nullptr;
7531     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7532       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
7533     }
7534   }
7535 
7536   // Allocate a new MachineSDNode.
7537   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7538   createOperands(N, Ops);
7539 
7540   if (DoCSE)
7541     CSEMap.InsertNode(N, IP);
7542 
7543   InsertNode(N);
7544   return N;
7545 }
7546 
7547 /// getTargetExtractSubreg - A convenience function for creating
7548 /// TargetOpcode::EXTRACT_SUBREG nodes.
7549 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7550                                              SDValue Operand) {
7551   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7552   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7553                                   VT, Operand, SRIdxVal);
7554   return SDValue(Subreg, 0);
7555 }
7556 
7557 /// getTargetInsertSubreg - A convenience function for creating
7558 /// TargetOpcode::INSERT_SUBREG nodes.
7559 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7560                                             SDValue Operand, SDValue Subreg) {
7561   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7562   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7563                                   VT, Operand, Subreg, SRIdxVal);
7564   return SDValue(Result, 0);
7565 }
7566 
7567 /// getNodeIfExists - Get the specified node if it's already available, or
7568 /// else return NULL.
7569 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7570                                       ArrayRef<SDValue> Ops,
7571                                       const SDNodeFlags Flags) {
7572   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7573     FoldingSetNodeID ID;
7574     AddNodeIDNode(ID, Opcode, VTList, Ops);
7575     void *IP = nullptr;
7576     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7577       E->intersectFlagsWith(Flags);
7578       return E;
7579     }
7580   }
7581   return nullptr;
7582 }
7583 
7584 /// getDbgValue - Creates a SDDbgValue node.
7585 ///
7586 /// SDNode
7587 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7588                                       SDNode *N, unsigned R, bool IsIndirect,
7589                                       const DebugLoc &DL, unsigned O) {
7590   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7591          "Expected inlined-at fields to agree");
7592   return new (DbgInfo->getAlloc())
7593       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7594 }
7595 
7596 /// Constant
7597 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7598                                               DIExpression *Expr,
7599                                               const Value *C,
7600                                               const DebugLoc &DL, unsigned O) {
7601   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7602          "Expected inlined-at fields to agree");
7603   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7604 }
7605 
7606 /// FrameIndex
7607 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7608                                                 DIExpression *Expr, unsigned FI,
7609                                                 bool IsIndirect,
7610                                                 const DebugLoc &DL,
7611                                                 unsigned O) {
7612   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7613          "Expected inlined-at fields to agree");
7614   return new (DbgInfo->getAlloc())
7615       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
7616 }
7617 
7618 /// VReg
7619 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
7620                                           DIExpression *Expr,
7621                                           unsigned VReg, bool IsIndirect,
7622                                           const DebugLoc &DL, unsigned O) {
7623   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7624          "Expected inlined-at fields to agree");
7625   return new (DbgInfo->getAlloc())
7626       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
7627 }
7628 
7629 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
7630                                      unsigned OffsetInBits, unsigned SizeInBits,
7631                                      bool InvalidateDbg) {
7632   SDNode *FromNode = From.getNode();
7633   SDNode *ToNode = To.getNode();
7634   assert(FromNode && ToNode && "Can't modify dbg values");
7635 
7636   // PR35338
7637   // TODO: assert(From != To && "Redundant dbg value transfer");
7638   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
7639   if (From == To || FromNode == ToNode)
7640     return;
7641 
7642   if (!FromNode->getHasDebugValue())
7643     return;
7644 
7645   SmallVector<SDDbgValue *, 2> ClonedDVs;
7646   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
7647     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
7648       continue;
7649 
7650     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
7651 
7652     // Just transfer the dbg value attached to From.
7653     if (Dbg->getResNo() != From.getResNo())
7654       continue;
7655 
7656     DIVariable *Var = Dbg->getVariable();
7657     auto *Expr = Dbg->getExpression();
7658     // If a fragment is requested, update the expression.
7659     if (SizeInBits) {
7660       // When splitting a larger (e.g., sign-extended) value whose
7661       // lower bits are described with an SDDbgValue, do not attempt
7662       // to transfer the SDDbgValue to the upper bits.
7663       if (auto FI = Expr->getFragmentInfo())
7664         if (OffsetInBits + SizeInBits > FI->SizeInBits)
7665           continue;
7666       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
7667                                                              SizeInBits);
7668       if (!Fragment)
7669         continue;
7670       Expr = *Fragment;
7671     }
7672     // Clone the SDDbgValue and move it to To.
7673     SDDbgValue *Clone =
7674         getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
7675                     Dbg->getDebugLoc(), Dbg->getOrder());
7676     ClonedDVs.push_back(Clone);
7677 
7678     if (InvalidateDbg)
7679       Dbg->setIsInvalidated();
7680   }
7681 
7682   for (SDDbgValue *Dbg : ClonedDVs)
7683     AddDbgValue(Dbg, ToNode, false);
7684 }
7685 
7686 void SelectionDAG::salvageDebugInfo(SDNode &N) {
7687   if (!N.getHasDebugValue())
7688     return;
7689 
7690   SmallVector<SDDbgValue *, 2> ClonedDVs;
7691   for (auto DV : GetDbgValues(&N)) {
7692     if (DV->isInvalidated())
7693       continue;
7694     switch (N.getOpcode()) {
7695     default:
7696       break;
7697     case ISD::ADD:
7698       SDValue N0 = N.getOperand(0);
7699       SDValue N1 = N.getOperand(1);
7700       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
7701           isConstantIntBuildVectorOrConstantInt(N1)) {
7702         uint64_t Offset = N.getConstantOperandVal(1);
7703         // Rewrite an ADD constant node into a DIExpression. Since we are
7704         // performing arithmetic to compute the variable's *value* in the
7705         // DIExpression, we need to mark the expression with a
7706         // DW_OP_stack_value.
7707         auto *DIExpr = DV->getExpression();
7708         DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset,
7709                                        DIExpression::NoDeref,
7710                                        DIExpression::WithStackValue);
7711         SDDbgValue *Clone =
7712             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
7713                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
7714         ClonedDVs.push_back(Clone);
7715         DV->setIsInvalidated();
7716         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
7717                    N0.getNode()->dumprFull(this);
7718                    dbgs() << " into " << *DIExpr << '\n');
7719       }
7720     }
7721   }
7722 
7723   for (SDDbgValue *Dbg : ClonedDVs)
7724     AddDbgValue(Dbg, Dbg->getSDNode(), false);
7725 }
7726 
7727 /// Creates a SDDbgLabel node.
7728 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
7729                                       const DebugLoc &DL, unsigned O) {
7730   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
7731          "Expected inlined-at fields to agree");
7732   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
7733 }
7734 
7735 namespace {
7736 
7737 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
7738 /// pointed to by a use iterator is deleted, increment the use iterator
7739 /// so that it doesn't dangle.
7740 ///
7741 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
7742   SDNode::use_iterator &UI;
7743   SDNode::use_iterator &UE;
7744 
7745   void NodeDeleted(SDNode *N, SDNode *E) override {
7746     // Increment the iterator as needed.
7747     while (UI != UE && N == *UI)
7748       ++UI;
7749   }
7750 
7751 public:
7752   RAUWUpdateListener(SelectionDAG &d,
7753                      SDNode::use_iterator &ui,
7754                      SDNode::use_iterator &ue)
7755     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
7756 };
7757 
7758 } // end anonymous namespace
7759 
7760 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7761 /// This can cause recursive merging of nodes in the DAG.
7762 ///
7763 /// This version assumes From has a single result value.
7764 ///
7765 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
7766   SDNode *From = FromN.getNode();
7767   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
7768          "Cannot replace with this method!");
7769   assert(From != To.getNode() && "Cannot replace uses of with self");
7770 
7771   // Preserve Debug Values
7772   transferDbgValues(FromN, To);
7773 
7774   // Iterate over all the existing uses of From. New uses will be added
7775   // to the beginning of the use list, which we avoid visiting.
7776   // This specifically avoids visiting uses of From that arise while the
7777   // replacement is happening, because any such uses would be the result
7778   // of CSE: If an existing node looks like From after one of its operands
7779   // is replaced by To, we don't want to replace of all its users with To
7780   // too. See PR3018 for more info.
7781   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7782   RAUWUpdateListener Listener(*this, UI, UE);
7783   while (UI != UE) {
7784     SDNode *User = *UI;
7785 
7786     // This node is about to morph, remove its old self from the CSE maps.
7787     RemoveNodeFromCSEMaps(User);
7788 
7789     // A user can appear in a use list multiple times, and when this
7790     // happens the uses are usually next to each other in the list.
7791     // To help reduce the number of CSE recomputations, process all
7792     // the uses of this user that we can find this way.
7793     do {
7794       SDUse &Use = UI.getUse();
7795       ++UI;
7796       Use.set(To);
7797       if (To->isDivergent() != From->isDivergent())
7798         updateDivergence(User);
7799     } while (UI != UE && *UI == User);
7800     // Now that we have modified User, add it back to the CSE maps.  If it
7801     // already exists there, recursively merge the results together.
7802     AddModifiedNodeToCSEMaps(User);
7803   }
7804 
7805   // If we just RAUW'd the root, take note.
7806   if (FromN == getRoot())
7807     setRoot(To);
7808 }
7809 
7810 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7811 /// This can cause recursive merging of nodes in the DAG.
7812 ///
7813 /// This version assumes that for each value of From, there is a
7814 /// corresponding value in To in the same position with the same type.
7815 ///
7816 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
7817 #ifndef NDEBUG
7818   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7819     assert((!From->hasAnyUseOfValue(i) ||
7820             From->getValueType(i) == To->getValueType(i)) &&
7821            "Cannot use this version of ReplaceAllUsesWith!");
7822 #endif
7823 
7824   // Handle the trivial case.
7825   if (From == To)
7826     return;
7827 
7828   // Preserve Debug Info. Only do this if there's a use.
7829   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7830     if (From->hasAnyUseOfValue(i)) {
7831       assert((i < To->getNumValues()) && "Invalid To location");
7832       transferDbgValues(SDValue(From, i), SDValue(To, i));
7833     }
7834 
7835   // Iterate over just the existing users of From. See the comments in
7836   // the ReplaceAllUsesWith above.
7837   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7838   RAUWUpdateListener Listener(*this, UI, UE);
7839   while (UI != UE) {
7840     SDNode *User = *UI;
7841 
7842     // This node is about to morph, remove its old self from the CSE maps.
7843     RemoveNodeFromCSEMaps(User);
7844 
7845     // A user can appear in a use list multiple times, and when this
7846     // happens the uses are usually next to each other in the list.
7847     // To help reduce the number of CSE recomputations, process all
7848     // the uses of this user that we can find this way.
7849     do {
7850       SDUse &Use = UI.getUse();
7851       ++UI;
7852       Use.setNode(To);
7853       if (To->isDivergent() != From->isDivergent())
7854         updateDivergence(User);
7855     } while (UI != UE && *UI == User);
7856 
7857     // Now that we have modified User, add it back to the CSE maps.  If it
7858     // already exists there, recursively merge the results together.
7859     AddModifiedNodeToCSEMaps(User);
7860   }
7861 
7862   // If we just RAUW'd the root, take note.
7863   if (From == getRoot().getNode())
7864     setRoot(SDValue(To, getRoot().getResNo()));
7865 }
7866 
7867 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7868 /// This can cause recursive merging of nodes in the DAG.
7869 ///
7870 /// This version can replace From with any result values.  To must match the
7871 /// number and types of values returned by From.
7872 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
7873   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
7874     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
7875 
7876   // Preserve Debug Info.
7877   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7878     transferDbgValues(SDValue(From, i), To[i]);
7879 
7880   // Iterate over just the existing users of From. See the comments in
7881   // the ReplaceAllUsesWith above.
7882   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7883   RAUWUpdateListener Listener(*this, UI, UE);
7884   while (UI != UE) {
7885     SDNode *User = *UI;
7886 
7887     // This node is about to morph, remove its old self from the CSE maps.
7888     RemoveNodeFromCSEMaps(User);
7889 
7890     // A user can appear in a use list multiple times, and when this happens the
7891     // uses are usually next to each other in the list.  To help reduce the
7892     // number of CSE and divergence recomputations, process all the uses of this
7893     // user that we can find this way.
7894     bool To_IsDivergent = false;
7895     do {
7896       SDUse &Use = UI.getUse();
7897       const SDValue &ToOp = To[Use.getResNo()];
7898       ++UI;
7899       Use.set(ToOp);
7900       To_IsDivergent |= ToOp->isDivergent();
7901     } while (UI != UE && *UI == User);
7902 
7903     if (To_IsDivergent != From->isDivergent())
7904       updateDivergence(User);
7905 
7906     // Now that we have modified User, add it back to the CSE maps.  If it
7907     // already exists there, recursively merge the results together.
7908     AddModifiedNodeToCSEMaps(User);
7909   }
7910 
7911   // If we just RAUW'd the root, take note.
7912   if (From == getRoot().getNode())
7913     setRoot(SDValue(To[getRoot().getResNo()]));
7914 }
7915 
7916 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
7917 /// uses of other values produced by From.getNode() alone.  The Deleted
7918 /// vector is handled the same way as for ReplaceAllUsesWith.
7919 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
7920   // Handle the really simple, really trivial case efficiently.
7921   if (From == To) return;
7922 
7923   // Handle the simple, trivial, case efficiently.
7924   if (From.getNode()->getNumValues() == 1) {
7925     ReplaceAllUsesWith(From, To);
7926     return;
7927   }
7928 
7929   // Preserve Debug Info.
7930   transferDbgValues(From, To);
7931 
7932   // Iterate over just the existing users of From. See the comments in
7933   // the ReplaceAllUsesWith above.
7934   SDNode::use_iterator UI = From.getNode()->use_begin(),
7935                        UE = From.getNode()->use_end();
7936   RAUWUpdateListener Listener(*this, UI, UE);
7937   while (UI != UE) {
7938     SDNode *User = *UI;
7939     bool UserRemovedFromCSEMaps = false;
7940 
7941     // A user can appear in a use list multiple times, and when this
7942     // happens the uses are usually next to each other in the list.
7943     // To help reduce the number of CSE recomputations, process all
7944     // the uses of this user that we can find this way.
7945     do {
7946       SDUse &Use = UI.getUse();
7947 
7948       // Skip uses of different values from the same node.
7949       if (Use.getResNo() != From.getResNo()) {
7950         ++UI;
7951         continue;
7952       }
7953 
7954       // If this node hasn't been modified yet, it's still in the CSE maps,
7955       // so remove its old self from the CSE maps.
7956       if (!UserRemovedFromCSEMaps) {
7957         RemoveNodeFromCSEMaps(User);
7958         UserRemovedFromCSEMaps = true;
7959       }
7960 
7961       ++UI;
7962       Use.set(To);
7963       if (To->isDivergent() != From->isDivergent())
7964         updateDivergence(User);
7965     } while (UI != UE && *UI == User);
7966     // We are iterating over all uses of the From node, so if a use
7967     // doesn't use the specific value, no changes are made.
7968     if (!UserRemovedFromCSEMaps)
7969       continue;
7970 
7971     // Now that we have modified User, add it back to the CSE maps.  If it
7972     // already exists there, recursively merge the results together.
7973     AddModifiedNodeToCSEMaps(User);
7974   }
7975 
7976   // If we just RAUW'd the root, take note.
7977   if (From == getRoot())
7978     setRoot(To);
7979 }
7980 
7981 namespace {
7982 
7983   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
7984   /// to record information about a use.
7985   struct UseMemo {
7986     SDNode *User;
7987     unsigned Index;
7988     SDUse *Use;
7989   };
7990 
7991   /// operator< - Sort Memos by User.
7992   bool operator<(const UseMemo &L, const UseMemo &R) {
7993     return (intptr_t)L.User < (intptr_t)R.User;
7994   }
7995 
7996 } // end anonymous namespace
7997 
7998 void SelectionDAG::updateDivergence(SDNode * N)
7999 {
8000   if (TLI->isSDNodeAlwaysUniform(N))
8001     return;
8002   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8003   for (auto &Op : N->ops()) {
8004     if (Op.Val.getValueType() != MVT::Other)
8005       IsDivergent |= Op.getNode()->isDivergent();
8006   }
8007   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8008     N->SDNodeBits.IsDivergent = IsDivergent;
8009     for (auto U : N->uses()) {
8010       updateDivergence(U);
8011     }
8012   }
8013 }
8014 
8015 
8016 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode*>& Order) {
8017   DenseMap<SDNode *, unsigned> Degree;
8018   Order.reserve(AllNodes.size());
8019   for (auto & N : allnodes()) {
8020     unsigned NOps = N.getNumOperands();
8021     Degree[&N] = NOps;
8022     if (0 == NOps)
8023       Order.push_back(&N);
8024   }
8025   for (std::vector<SDNode *>::iterator I = Order.begin();
8026   I!=Order.end();++I) {
8027     SDNode * N = *I;
8028     for (auto U : N->uses()) {
8029       unsigned &UnsortedOps = Degree[U];
8030       if (0 == --UnsortedOps)
8031         Order.push_back(U);
8032     }
8033   }
8034 }
8035 
8036 #ifndef NDEBUG
8037 void SelectionDAG::VerifyDAGDiverence()
8038 {
8039   std::vector<SDNode*> TopoOrder;
8040   CreateTopologicalOrder(TopoOrder);
8041   const TargetLowering &TLI = getTargetLoweringInfo();
8042   DenseMap<const SDNode *, bool> DivergenceMap;
8043   for (auto &N : allnodes()) {
8044     DivergenceMap[&N] = false;
8045   }
8046   for (auto N : TopoOrder) {
8047     bool IsDivergent = DivergenceMap[N];
8048     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8049     for (auto &Op : N->ops()) {
8050       if (Op.Val.getValueType() != MVT::Other)
8051         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8052     }
8053     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8054       DivergenceMap[N] = true;
8055     }
8056   }
8057   for (auto &N : allnodes()) {
8058     (void)N;
8059     assert(DivergenceMap[&N] == N.isDivergent() &&
8060            "Divergence bit inconsistency detected\n");
8061   }
8062 }
8063 #endif
8064 
8065 
8066 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8067 /// uses of other values produced by From.getNode() alone.  The same value
8068 /// may appear in both the From and To list.  The Deleted vector is
8069 /// handled the same way as for ReplaceAllUsesWith.
8070 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8071                                               const SDValue *To,
8072                                               unsigned Num){
8073   // Handle the simple, trivial case efficiently.
8074   if (Num == 1)
8075     return ReplaceAllUsesOfValueWith(*From, *To);
8076 
8077   transferDbgValues(*From, *To);
8078 
8079   // Read up all the uses and make records of them. This helps
8080   // processing new uses that are introduced during the
8081   // replacement process.
8082   SmallVector<UseMemo, 4> Uses;
8083   for (unsigned i = 0; i != Num; ++i) {
8084     unsigned FromResNo = From[i].getResNo();
8085     SDNode *FromNode = From[i].getNode();
8086     for (SDNode::use_iterator UI = FromNode->use_begin(),
8087          E = FromNode->use_end(); UI != E; ++UI) {
8088       SDUse &Use = UI.getUse();
8089       if (Use.getResNo() == FromResNo) {
8090         UseMemo Memo = { *UI, i, &Use };
8091         Uses.push_back(Memo);
8092       }
8093     }
8094   }
8095 
8096   // Sort the uses, so that all the uses from a given User are together.
8097   llvm::sort(Uses);
8098 
8099   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8100        UseIndex != UseIndexEnd; ) {
8101     // We know that this user uses some value of From.  If it is the right
8102     // value, update it.
8103     SDNode *User = Uses[UseIndex].User;
8104 
8105     // This node is about to morph, remove its old self from the CSE maps.
8106     RemoveNodeFromCSEMaps(User);
8107 
8108     // The Uses array is sorted, so all the uses for a given User
8109     // are next to each other in the list.
8110     // To help reduce the number of CSE recomputations, process all
8111     // the uses of this user that we can find this way.
8112     do {
8113       unsigned i = Uses[UseIndex].Index;
8114       SDUse &Use = *Uses[UseIndex].Use;
8115       ++UseIndex;
8116 
8117       Use.set(To[i]);
8118     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8119 
8120     // Now that we have modified User, add it back to the CSE maps.  If it
8121     // already exists there, recursively merge the results together.
8122     AddModifiedNodeToCSEMaps(User);
8123   }
8124 }
8125 
8126 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8127 /// based on their topological order. It returns the maximum id and a vector
8128 /// of the SDNodes* in assigned order by reference.
8129 unsigned SelectionDAG::AssignTopologicalOrder() {
8130   unsigned DAGSize = 0;
8131 
8132   // SortedPos tracks the progress of the algorithm. Nodes before it are
8133   // sorted, nodes after it are unsorted. When the algorithm completes
8134   // it is at the end of the list.
8135   allnodes_iterator SortedPos = allnodes_begin();
8136 
8137   // Visit all the nodes. Move nodes with no operands to the front of
8138   // the list immediately. Annotate nodes that do have operands with their
8139   // operand count. Before we do this, the Node Id fields of the nodes
8140   // may contain arbitrary values. After, the Node Id fields for nodes
8141   // before SortedPos will contain the topological sort index, and the
8142   // Node Id fields for nodes At SortedPos and after will contain the
8143   // count of outstanding operands.
8144   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8145     SDNode *N = &*I++;
8146     checkForCycles(N, this);
8147     unsigned Degree = N->getNumOperands();
8148     if (Degree == 0) {
8149       // A node with no uses, add it to the result array immediately.
8150       N->setNodeId(DAGSize++);
8151       allnodes_iterator Q(N);
8152       if (Q != SortedPos)
8153         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8154       assert(SortedPos != AllNodes.end() && "Overran node list");
8155       ++SortedPos;
8156     } else {
8157       // Temporarily use the Node Id as scratch space for the degree count.
8158       N->setNodeId(Degree);
8159     }
8160   }
8161 
8162   // Visit all the nodes. As we iterate, move nodes into sorted order,
8163   // such that by the time the end is reached all nodes will be sorted.
8164   for (SDNode &Node : allnodes()) {
8165     SDNode *N = &Node;
8166     checkForCycles(N, this);
8167     // N is in sorted position, so all its uses have one less operand
8168     // that needs to be sorted.
8169     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8170          UI != UE; ++UI) {
8171       SDNode *P = *UI;
8172       unsigned Degree = P->getNodeId();
8173       assert(Degree != 0 && "Invalid node degree");
8174       --Degree;
8175       if (Degree == 0) {
8176         // All of P's operands are sorted, so P may sorted now.
8177         P->setNodeId(DAGSize++);
8178         if (P->getIterator() != SortedPos)
8179           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8180         assert(SortedPos != AllNodes.end() && "Overran node list");
8181         ++SortedPos;
8182       } else {
8183         // Update P's outstanding operand count.
8184         P->setNodeId(Degree);
8185       }
8186     }
8187     if (Node.getIterator() == SortedPos) {
8188 #ifndef NDEBUG
8189       allnodes_iterator I(N);
8190       SDNode *S = &*++I;
8191       dbgs() << "Overran sorted position:\n";
8192       S->dumprFull(this); dbgs() << "\n";
8193       dbgs() << "Checking if this is due to cycles\n";
8194       checkForCycles(this, true);
8195 #endif
8196       llvm_unreachable(nullptr);
8197     }
8198   }
8199 
8200   assert(SortedPos == AllNodes.end() &&
8201          "Topological sort incomplete!");
8202   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8203          "First node in topological sort is not the entry token!");
8204   assert(AllNodes.front().getNodeId() == 0 &&
8205          "First node in topological sort has non-zero id!");
8206   assert(AllNodes.front().getNumOperands() == 0 &&
8207          "First node in topological sort has operands!");
8208   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8209          "Last node in topologic sort has unexpected id!");
8210   assert(AllNodes.back().use_empty() &&
8211          "Last node in topologic sort has users!");
8212   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8213   return DAGSize;
8214 }
8215 
8216 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8217 /// value is produced by SD.
8218 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8219   if (SD) {
8220     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8221     SD->setHasDebugValue(true);
8222   }
8223   DbgInfo->add(DB, SD, isParameter);
8224 }
8225 
8226 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8227   DbgInfo->add(DB);
8228 }
8229 
8230 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8231                                                    SDValue NewMemOp) {
8232   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8233   // The new memory operation must have the same position as the old load in
8234   // terms of memory dependency. Create a TokenFactor for the old load and new
8235   // memory operation and update uses of the old load's output chain to use that
8236   // TokenFactor.
8237   SDValue OldChain = SDValue(OldLoad, 1);
8238   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8239   if (!OldLoad->hasAnyUseOfValue(1))
8240     return NewChain;
8241 
8242   SDValue TokenFactor =
8243       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8244   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8245   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8246   return TokenFactor;
8247 }
8248 
8249 //===----------------------------------------------------------------------===//
8250 //                              SDNode Class
8251 //===----------------------------------------------------------------------===//
8252 
8253 bool llvm::isNullConstant(SDValue V) {
8254   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8255   return Const != nullptr && Const->isNullValue();
8256 }
8257 
8258 bool llvm::isNullFPConstant(SDValue V) {
8259   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8260   return Const != nullptr && Const->isZero() && !Const->isNegative();
8261 }
8262 
8263 bool llvm::isAllOnesConstant(SDValue V) {
8264   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8265   return Const != nullptr && Const->isAllOnesValue();
8266 }
8267 
8268 bool llvm::isOneConstant(SDValue V) {
8269   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8270   return Const != nullptr && Const->isOne();
8271 }
8272 
8273 SDValue llvm::peekThroughBitcasts(SDValue V) {
8274   while (V.getOpcode() == ISD::BITCAST)
8275     V = V.getOperand(0);
8276   return V;
8277 }
8278 
8279 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8280   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8281     V = V.getOperand(0);
8282   return V;
8283 }
8284 
8285 bool llvm::isBitwiseNot(SDValue V) {
8286   if (V.getOpcode() != ISD::XOR)
8287     return false;
8288   ConstantSDNode *C = isConstOrConstSplat(peekThroughBitcasts(V.getOperand(1)));
8289   return C && C->isAllOnesValue();
8290 }
8291 
8292 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs) {
8293   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8294     return CN;
8295 
8296   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8297     BitVector UndefElements;
8298     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8299 
8300     // BuildVectors can truncate their operands. Ignore that case here.
8301     if (CN && (UndefElements.none() || AllowUndefs) &&
8302         CN->getValueType(0) == N.getValueType().getScalarType())
8303       return CN;
8304   }
8305 
8306   return nullptr;
8307 }
8308 
8309 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8310   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8311     return CN;
8312 
8313   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8314     BitVector UndefElements;
8315     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8316     if (CN && (UndefElements.none() || AllowUndefs))
8317       return CN;
8318   }
8319 
8320   return nullptr;
8321 }
8322 
8323 HandleSDNode::~HandleSDNode() {
8324   DropOperands();
8325 }
8326 
8327 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8328                                          const DebugLoc &DL,
8329                                          const GlobalValue *GA, EVT VT,
8330                                          int64_t o, unsigned char TF)
8331     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8332   TheGlobal = GA;
8333 }
8334 
8335 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8336                                          EVT VT, unsigned SrcAS,
8337                                          unsigned DestAS)
8338     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8339       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8340 
8341 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8342                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8343     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8344   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8345   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8346   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8347   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8348 
8349   // We check here that the size of the memory operand fits within the size of
8350   // the MMO. This is because the MMO might indicate only a possible address
8351   // range instead of specifying the affected memory addresses precisely.
8352   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
8353 }
8354 
8355 /// Profile - Gather unique data for the node.
8356 ///
8357 void SDNode::Profile(FoldingSetNodeID &ID) const {
8358   AddNodeIDNode(ID, this);
8359 }
8360 
8361 namespace {
8362 
8363   struct EVTArray {
8364     std::vector<EVT> VTs;
8365 
8366     EVTArray() {
8367       VTs.reserve(MVT::LAST_VALUETYPE);
8368       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
8369         VTs.push_back(MVT((MVT::SimpleValueType)i));
8370     }
8371   };
8372 
8373 } // end anonymous namespace
8374 
8375 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
8376 static ManagedStatic<EVTArray> SimpleVTArray;
8377 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
8378 
8379 /// getValueTypeList - Return a pointer to the specified value type.
8380 ///
8381 const EVT *SDNode::getValueTypeList(EVT VT) {
8382   if (VT.isExtended()) {
8383     sys::SmartScopedLock<true> Lock(*VTMutex);
8384     return &(*EVTs->insert(VT).first);
8385   } else {
8386     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
8387            "Value type out of range!");
8388     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
8389   }
8390 }
8391 
8392 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8393 /// indicated value.  This method ignores uses of other values defined by this
8394 /// operation.
8395 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
8396   assert(Value < getNumValues() && "Bad value!");
8397 
8398   // TODO: Only iterate over uses of a given value of the node
8399   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
8400     if (UI.getUse().getResNo() == Value) {
8401       if (NUses == 0)
8402         return false;
8403       --NUses;
8404     }
8405   }
8406 
8407   // Found exactly the right number of uses?
8408   return NUses == 0;
8409 }
8410 
8411 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8412 /// value. This method ignores uses of other values defined by this operation.
8413 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
8414   assert(Value < getNumValues() && "Bad value!");
8415 
8416   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
8417     if (UI.getUse().getResNo() == Value)
8418       return true;
8419 
8420   return false;
8421 }
8422 
8423 /// isOnlyUserOf - Return true if this node is the only use of N.
8424 bool SDNode::isOnlyUserOf(const SDNode *N) const {
8425   bool Seen = false;
8426   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8427     SDNode *User = *I;
8428     if (User == this)
8429       Seen = true;
8430     else
8431       return false;
8432   }
8433 
8434   return Seen;
8435 }
8436 
8437 /// Return true if the only users of N are contained in Nodes.
8438 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
8439   bool Seen = false;
8440   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8441     SDNode *User = *I;
8442     if (llvm::any_of(Nodes,
8443                      [&User](const SDNode *Node) { return User == Node; }))
8444       Seen = true;
8445     else
8446       return false;
8447   }
8448 
8449   return Seen;
8450 }
8451 
8452 /// isOperand - Return true if this node is an operand of N.
8453 bool SDValue::isOperandOf(const SDNode *N) const {
8454   for (const SDValue &Op : N->op_values())
8455     if (*this == Op)
8456       return true;
8457   return false;
8458 }
8459 
8460 bool SDNode::isOperandOf(const SDNode *N) const {
8461   for (const SDValue &Op : N->op_values())
8462     if (this == Op.getNode())
8463       return true;
8464   return false;
8465 }
8466 
8467 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8468 /// be a chain) reaches the specified operand without crossing any
8469 /// side-effecting instructions on any chain path.  In practice, this looks
8470 /// through token factors and non-volatile loads.  In order to remain efficient,
8471 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8472 ///
8473 /// Note that we only need to examine chains when we're searching for
8474 /// side-effects; SelectionDAG requires that all side-effects are represented
8475 /// by chains, even if another operand would force a specific ordering. This
8476 /// constraint is necessary to allow transformations like splitting loads.
8477 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
8478                                              unsigned Depth) const {
8479   if (*this == Dest) return true;
8480 
8481   // Don't search too deeply, we just want to be able to see through
8482   // TokenFactor's etc.
8483   if (Depth == 0) return false;
8484 
8485   // If this is a token factor, all inputs to the TF happen in parallel.
8486   if (getOpcode() == ISD::TokenFactor) {
8487     // First, try a shallow search.
8488     if (is_contained((*this)->ops(), Dest)) {
8489       // We found the chain we want as an operand of this TokenFactor.
8490       // Essentially, we reach the chain without side-effects if we could
8491       // serialize the TokenFactor into a simple chain of operations with
8492       // Dest as the last operation. This is automatically true if the
8493       // chain has one use: there are no other ordering constraints.
8494       // If the chain has more than one use, we give up: some other
8495       // use of Dest might force a side-effect between Dest and the current
8496       // node.
8497       if (Dest.hasOneUse())
8498         return true;
8499     }
8500     // Next, try a deep search: check whether every operand of the TokenFactor
8501     // reaches Dest.
8502     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
8503       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
8504     });
8505   }
8506 
8507   // Loads don't have side effects, look through them.
8508   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
8509     if (!Ld->isVolatile())
8510       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
8511   }
8512   return false;
8513 }
8514 
8515 bool SDNode::hasPredecessor(const SDNode *N) const {
8516   SmallPtrSet<const SDNode *, 32> Visited;
8517   SmallVector<const SDNode *, 16> Worklist;
8518   Worklist.push_back(this);
8519   return hasPredecessorHelper(N, Visited, Worklist);
8520 }
8521 
8522 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
8523   this->Flags.intersectWith(Flags);
8524 }
8525 
8526 SDValue
8527 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
8528                                   ArrayRef<ISD::NodeType> CandidateBinOps) {
8529   // The pattern must end in an extract from index 0.
8530   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8531       !isNullConstant(Extract->getOperand(1)))
8532     return SDValue();
8533 
8534   SDValue Op = Extract->getOperand(0);
8535   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
8536 
8537   // Match against one of the candidate binary ops.
8538   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
8539         return Op.getOpcode() == unsigned(BinOp);
8540       }))
8541     return SDValue();
8542 
8543   // At each stage, we're looking for something that looks like:
8544   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
8545   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
8546   //                               i32 undef, i32 undef, i32 undef, i32 undef>
8547   // %a = binop <8 x i32> %op, %s
8548   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
8549   // we expect something like:
8550   // <4,5,6,7,u,u,u,u>
8551   // <2,3,u,u,u,u,u,u>
8552   // <1,u,u,u,u,u,u,u>
8553   unsigned CandidateBinOp = Op.getOpcode();
8554   for (unsigned i = 0; i < Stages; ++i) {
8555     if (Op.getOpcode() != CandidateBinOp)
8556       return SDValue();
8557 
8558     SDValue Op0 = Op.getOperand(0);
8559     SDValue Op1 = Op.getOperand(1);
8560 
8561     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
8562     if (Shuffle) {
8563       Op = Op1;
8564     } else {
8565       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
8566       Op = Op0;
8567     }
8568 
8569     // The first operand of the shuffle should be the same as the other operand
8570     // of the binop.
8571     if (!Shuffle || Shuffle->getOperand(0) != Op)
8572       return SDValue();
8573 
8574     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
8575     for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index)
8576       if (Shuffle->getMaskElt(Index) != MaskEnd + Index)
8577         return SDValue();
8578   }
8579 
8580   BinOp = (ISD::NodeType)CandidateBinOp;
8581   return Op;
8582 }
8583 
8584 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
8585   assert(N->getNumValues() == 1 &&
8586          "Can't unroll a vector with multiple results!");
8587 
8588   EVT VT = N->getValueType(0);
8589   unsigned NE = VT.getVectorNumElements();
8590   EVT EltVT = VT.getVectorElementType();
8591   SDLoc dl(N);
8592 
8593   SmallVector<SDValue, 8> Scalars;
8594   SmallVector<SDValue, 4> Operands(N->getNumOperands());
8595 
8596   // If ResNE is 0, fully unroll the vector op.
8597   if (ResNE == 0)
8598     ResNE = NE;
8599   else if (NE > ResNE)
8600     NE = ResNE;
8601 
8602   unsigned i;
8603   for (i= 0; i != NE; ++i) {
8604     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
8605       SDValue Operand = N->getOperand(j);
8606       EVT OperandVT = Operand.getValueType();
8607       if (OperandVT.isVector()) {
8608         // A vector operand; extract a single element.
8609         EVT OperandEltVT = OperandVT.getVectorElementType();
8610         Operands[j] =
8611             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
8612                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
8613       } else {
8614         // A scalar operand; just use it as is.
8615         Operands[j] = Operand;
8616       }
8617     }
8618 
8619     switch (N->getOpcode()) {
8620     default: {
8621       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
8622                                 N->getFlags()));
8623       break;
8624     }
8625     case ISD::VSELECT:
8626       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
8627       break;
8628     case ISD::SHL:
8629     case ISD::SRA:
8630     case ISD::SRL:
8631     case ISD::ROTL:
8632     case ISD::ROTR:
8633       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
8634                                getShiftAmountOperand(Operands[0].getValueType(),
8635                                                      Operands[1])));
8636       break;
8637     case ISD::SIGN_EXTEND_INREG:
8638     case ISD::FP_ROUND_INREG: {
8639       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
8640       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
8641                                 Operands[0],
8642                                 getValueType(ExtVT)));
8643     }
8644     }
8645   }
8646 
8647   for (; i < ResNE; ++i)
8648     Scalars.push_back(getUNDEF(EltVT));
8649 
8650   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
8651   return getBuildVector(VecVT, dl, Scalars);
8652 }
8653 
8654 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
8655                                                   LoadSDNode *Base,
8656                                                   unsigned Bytes,
8657                                                   int Dist) const {
8658   if (LD->isVolatile() || Base->isVolatile())
8659     return false;
8660   if (LD->isIndexed() || Base->isIndexed())
8661     return false;
8662   if (LD->getChain() != Base->getChain())
8663     return false;
8664   EVT VT = LD->getValueType(0);
8665   if (VT.getSizeInBits() / 8 != Bytes)
8666     return false;
8667 
8668   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
8669   auto LocDecomp = BaseIndexOffset::match(LD, *this);
8670 
8671   int64_t Offset = 0;
8672   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
8673     return (Dist * Bytes == Offset);
8674   return false;
8675 }
8676 
8677 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
8678 /// it cannot be inferred.
8679 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
8680   // If this is a GlobalAddress + cst, return the alignment.
8681   const GlobalValue *GV;
8682   int64_t GVOffset = 0;
8683   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
8684     unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
8685     KnownBits Known(IdxWidth);
8686     llvm::computeKnownBits(GV, Known, getDataLayout());
8687     unsigned AlignBits = Known.countMinTrailingZeros();
8688     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
8689     if (Align)
8690       return MinAlign(Align, GVOffset);
8691   }
8692 
8693   // If this is a direct reference to a stack slot, use information about the
8694   // stack slot's alignment.
8695   int FrameIdx = 1 << 31;
8696   int64_t FrameOffset = 0;
8697   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
8698     FrameIdx = FI->getIndex();
8699   } else if (isBaseWithConstantOffset(Ptr) &&
8700              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
8701     // Handle FI+Cst
8702     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
8703     FrameOffset = Ptr.getConstantOperandVal(1);
8704   }
8705 
8706   if (FrameIdx != (1 << 31)) {
8707     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
8708     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
8709                                     FrameOffset);
8710     return FIInfoAlign;
8711   }
8712 
8713   return 0;
8714 }
8715 
8716 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
8717 /// which is split (or expanded) into two not necessarily identical pieces.
8718 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
8719   // Currently all types are split in half.
8720   EVT LoVT, HiVT;
8721   if (!VT.isVector())
8722     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
8723   else
8724     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
8725 
8726   return std::make_pair(LoVT, HiVT);
8727 }
8728 
8729 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
8730 /// low/high part.
8731 std::pair<SDValue, SDValue>
8732 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
8733                           const EVT &HiVT) {
8734   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
8735          N.getValueType().getVectorNumElements() &&
8736          "More vector elements requested than available!");
8737   SDValue Lo, Hi;
8738   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
8739                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
8740   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
8741                getConstant(LoVT.getVectorNumElements(), DL,
8742                            TLI->getVectorIdxTy(getDataLayout())));
8743   return std::make_pair(Lo, Hi);
8744 }
8745 
8746 void SelectionDAG::ExtractVectorElements(SDValue Op,
8747                                          SmallVectorImpl<SDValue> &Args,
8748                                          unsigned Start, unsigned Count) {
8749   EVT VT = Op.getValueType();
8750   if (Count == 0)
8751     Count = VT.getVectorNumElements();
8752 
8753   EVT EltVT = VT.getVectorElementType();
8754   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
8755   SDLoc SL(Op);
8756   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
8757     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
8758                            Op, getConstant(i, SL, IdxTy)));
8759   }
8760 }
8761 
8762 // getAddressSpace - Return the address space this GlobalAddress belongs to.
8763 unsigned GlobalAddressSDNode::getAddressSpace() const {
8764   return getGlobal()->getType()->getAddressSpace();
8765 }
8766 
8767 Type *ConstantPoolSDNode::getType() const {
8768   if (isMachineConstantPoolEntry())
8769     return Val.MachineCPVal->getType();
8770   return Val.ConstVal->getType();
8771 }
8772 
8773 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
8774                                         unsigned &SplatBitSize,
8775                                         bool &HasAnyUndefs,
8776                                         unsigned MinSplatBits,
8777                                         bool IsBigEndian) const {
8778   EVT VT = getValueType(0);
8779   assert(VT.isVector() && "Expected a vector type");
8780   unsigned VecWidth = VT.getSizeInBits();
8781   if (MinSplatBits > VecWidth)
8782     return false;
8783 
8784   // FIXME: The widths are based on this node's type, but build vectors can
8785   // truncate their operands.
8786   SplatValue = APInt(VecWidth, 0);
8787   SplatUndef = APInt(VecWidth, 0);
8788 
8789   // Get the bits. Bits with undefined values (when the corresponding element
8790   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
8791   // in SplatValue. If any of the values are not constant, give up and return
8792   // false.
8793   unsigned int NumOps = getNumOperands();
8794   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
8795   unsigned EltWidth = VT.getScalarSizeInBits();
8796 
8797   for (unsigned j = 0; j < NumOps; ++j) {
8798     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
8799     SDValue OpVal = getOperand(i);
8800     unsigned BitPos = j * EltWidth;
8801 
8802     if (OpVal.isUndef())
8803       SplatUndef.setBits(BitPos, BitPos + EltWidth);
8804     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
8805       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
8806     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
8807       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
8808     else
8809       return false;
8810   }
8811 
8812   // The build_vector is all constants or undefs. Find the smallest element
8813   // size that splats the vector.
8814   HasAnyUndefs = (SplatUndef != 0);
8815 
8816   // FIXME: This does not work for vectors with elements less than 8 bits.
8817   while (VecWidth > 8) {
8818     unsigned HalfSize = VecWidth / 2;
8819     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
8820     APInt LowValue = SplatValue.trunc(HalfSize);
8821     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
8822     APInt LowUndef = SplatUndef.trunc(HalfSize);
8823 
8824     // If the two halves do not match (ignoring undef bits), stop here.
8825     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
8826         MinSplatBits > HalfSize)
8827       break;
8828 
8829     SplatValue = HighValue | LowValue;
8830     SplatUndef = HighUndef & LowUndef;
8831 
8832     VecWidth = HalfSize;
8833   }
8834 
8835   SplatBitSize = VecWidth;
8836   return true;
8837 }
8838 
8839 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
8840   if (UndefElements) {
8841     UndefElements->clear();
8842     UndefElements->resize(getNumOperands());
8843   }
8844   SDValue Splatted;
8845   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
8846     SDValue Op = getOperand(i);
8847     if (Op.isUndef()) {
8848       if (UndefElements)
8849         (*UndefElements)[i] = true;
8850     } else if (!Splatted) {
8851       Splatted = Op;
8852     } else if (Splatted != Op) {
8853       return SDValue();
8854     }
8855   }
8856 
8857   if (!Splatted) {
8858     assert(getOperand(0).isUndef() &&
8859            "Can only have a splat without a constant for all undefs.");
8860     return getOperand(0);
8861   }
8862 
8863   return Splatted;
8864 }
8865 
8866 ConstantSDNode *
8867 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
8868   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
8869 }
8870 
8871 ConstantFPSDNode *
8872 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
8873   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
8874 }
8875 
8876 int32_t
8877 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
8878                                                    uint32_t BitWidth) const {
8879   if (ConstantFPSDNode *CN =
8880           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
8881     bool IsExact;
8882     APSInt IntVal(BitWidth);
8883     const APFloat &APF = CN->getValueAPF();
8884     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
8885             APFloat::opOK ||
8886         !IsExact)
8887       return -1;
8888 
8889     return IntVal.exactLogBase2();
8890   }
8891   return -1;
8892 }
8893 
8894 bool BuildVectorSDNode::isConstant() const {
8895   for (const SDValue &Op : op_values()) {
8896     unsigned Opc = Op.getOpcode();
8897     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
8898       return false;
8899   }
8900   return true;
8901 }
8902 
8903 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
8904   // Find the first non-undef value in the shuffle mask.
8905   unsigned i, e;
8906   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
8907     /* search */;
8908 
8909   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
8910 
8911   // Make sure all remaining elements are either undef or the same as the first
8912   // non-undef value.
8913   for (int Idx = Mask[i]; i != e; ++i)
8914     if (Mask[i] >= 0 && Mask[i] != Idx)
8915       return false;
8916   return true;
8917 }
8918 
8919 // Returns the SDNode if it is a constant integer BuildVector
8920 // or constant integer.
8921 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
8922   if (isa<ConstantSDNode>(N))
8923     return N.getNode();
8924   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
8925     return N.getNode();
8926   // Treat a GlobalAddress supporting constant offset folding as a
8927   // constant integer.
8928   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
8929     if (GA->getOpcode() == ISD::GlobalAddress &&
8930         TLI->isOffsetFoldingLegal(GA))
8931       return GA;
8932   return nullptr;
8933 }
8934 
8935 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
8936   if (isa<ConstantFPSDNode>(N))
8937     return N.getNode();
8938 
8939   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
8940     return N.getNode();
8941 
8942   return nullptr;
8943 }
8944 
8945 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
8946   assert(!Node->OperandList && "Node already has operands");
8947   SDUse *Ops = OperandRecycler.allocate(
8948     ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
8949 
8950   bool IsDivergent = false;
8951   for (unsigned I = 0; I != Vals.size(); ++I) {
8952     Ops[I].setUser(Node);
8953     Ops[I].setInitial(Vals[I]);
8954     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
8955       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
8956   }
8957   Node->NumOperands = Vals.size();
8958   Node->OperandList = Ops;
8959   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
8960   if (!TLI->isSDNodeAlwaysUniform(Node))
8961     Node->SDNodeBits.IsDivergent = IsDivergent;
8962   checkForCycles(Node);
8963 }
8964 
8965 #ifndef NDEBUG
8966 static void checkForCyclesHelper(const SDNode *N,
8967                                  SmallPtrSetImpl<const SDNode*> &Visited,
8968                                  SmallPtrSetImpl<const SDNode*> &Checked,
8969                                  const llvm::SelectionDAG *DAG) {
8970   // If this node has already been checked, don't check it again.
8971   if (Checked.count(N))
8972     return;
8973 
8974   // If a node has already been visited on this depth-first walk, reject it as
8975   // a cycle.
8976   if (!Visited.insert(N).second) {
8977     errs() << "Detected cycle in SelectionDAG\n";
8978     dbgs() << "Offending node:\n";
8979     N->dumprFull(DAG); dbgs() << "\n";
8980     abort();
8981   }
8982 
8983   for (const SDValue &Op : N->op_values())
8984     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
8985 
8986   Checked.insert(N);
8987   Visited.erase(N);
8988 }
8989 #endif
8990 
8991 void llvm::checkForCycles(const llvm::SDNode *N,
8992                           const llvm::SelectionDAG *DAG,
8993                           bool force) {
8994 #ifndef NDEBUG
8995   bool check = force;
8996 #ifdef EXPENSIVE_CHECKS
8997   check = true;
8998 #endif  // EXPENSIVE_CHECKS
8999   if (check) {
9000     assert(N && "Checking nonexistent SDNode");
9001     SmallPtrSet<const SDNode*, 32> visited;
9002     SmallPtrSet<const SDNode*, 32> checked;
9003     checkForCyclesHelper(N, visited, checked, DAG);
9004   }
9005 #endif  // !NDEBUG
9006 }
9007 
9008 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9009   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9010 }
9011