1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     }
149     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
150       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
151       return true;
152     }
153   }
154 
155   auto *BV = dyn_cast<BuildVectorSDNode>(N);
156   if (!BV)
157     return false;
158 
159   APInt SplatUndef;
160   unsigned SplatBitSize;
161   bool HasUndefs;
162   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
163   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
164                              EltSize) &&
165          EltSize == SplatBitSize;
166 }
167 
168 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
169 // specializations of the more general isConstantSplatVector()?
170 
171 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
172   // Look through a bit convert.
173   while (N->getOpcode() == ISD::BITCAST)
174     N = N->getOperand(0).getNode();
175 
176   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
177     APInt SplatVal;
178     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
179   }
180 
181   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
182 
183   unsigned i = 0, e = N->getNumOperands();
184 
185   // Skip over all of the undef values.
186   while (i != e && N->getOperand(i).isUndef())
187     ++i;
188 
189   // Do not accept an all-undef vector.
190   if (i == e) return false;
191 
192   // Do not accept build_vectors that aren't all constants or which have non-~0
193   // elements. We have to be a bit careful here, as the type of the constant
194   // may not be the same as the type of the vector elements due to type
195   // legalization (the elements are promoted to a legal type for the target and
196   // a vector of a type may be legal when the base element type is not).
197   // We only want to check enough bits to cover the vector elements, because
198   // we care if the resultant vector is all ones, not whether the individual
199   // constants are.
200   SDValue NotZero = N->getOperand(i);
201   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
202   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
203     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
204       return false;
205   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
206     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
207       return false;
208   } else
209     return false;
210 
211   // Okay, we have at least one ~0 value, check to see if the rest match or are
212   // undefs. Even with the above element type twiddling, this should be OK, as
213   // the same type legalization should have applied to all the elements.
214   for (++i; i != e; ++i)
215     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
216       return false;
217   return true;
218 }
219 
220 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
221   // Look through a bit convert.
222   while (N->getOpcode() == ISD::BITCAST)
223     N = N->getOperand(0).getNode();
224 
225   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
226     APInt SplatVal;
227     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
228   }
229 
230   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
231 
232   bool IsAllUndef = true;
233   for (const SDValue &Op : N->op_values()) {
234     if (Op.isUndef())
235       continue;
236     IsAllUndef = false;
237     // Do not accept build_vectors that aren't all constants or which have non-0
238     // elements. We have to be a bit careful here, as the type of the constant
239     // may not be the same as the type of the vector elements due to type
240     // legalization (the elements are promoted to a legal type for the target
241     // and a vector of a type may be legal when the base element type is not).
242     // We only want to check enough bits to cover the vector elements, because
243     // we care if the resultant vector is all zeros, not whether the individual
244     // constants are.
245     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
246     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
247       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
248         return false;
249     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
250       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
251         return false;
252     } else
253       return false;
254   }
255 
256   // Do not accept an all-undef vector.
257   if (IsAllUndef)
258     return false;
259   return true;
260 }
261 
262 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
263   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
264 }
265 
266 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
267   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
268 }
269 
270 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
271   if (N->getOpcode() != ISD::BUILD_VECTOR)
272     return false;
273 
274   for (const SDValue &Op : N->op_values()) {
275     if (Op.isUndef())
276       continue;
277     if (!isa<ConstantSDNode>(Op))
278       return false;
279   }
280   return true;
281 }
282 
283 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
284   if (N->getOpcode() != ISD::BUILD_VECTOR)
285     return false;
286 
287   for (const SDValue &Op : N->op_values()) {
288     if (Op.isUndef())
289       continue;
290     if (!isa<ConstantFPSDNode>(Op))
291       return false;
292   }
293   return true;
294 }
295 
296 bool ISD::allOperandsUndef(const SDNode *N) {
297   // Return false if the node has no operands.
298   // This is "logically inconsistent" with the definition of "all" but
299   // is probably the desired behavior.
300   if (N->getNumOperands() == 0)
301     return false;
302   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
303 }
304 
305 bool ISD::matchUnaryPredicate(SDValue Op,
306                               std::function<bool(ConstantSDNode *)> Match,
307                               bool AllowUndefs) {
308   // FIXME: Add support for scalar UNDEF cases?
309   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
310     return Match(Cst);
311 
312   // FIXME: Add support for vector UNDEF cases?
313   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
314       ISD::SPLAT_VECTOR != Op.getOpcode())
315     return false;
316 
317   EVT SVT = Op.getValueType().getScalarType();
318   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
319     if (AllowUndefs && Op.getOperand(i).isUndef()) {
320       if (!Match(nullptr))
321         return false;
322       continue;
323     }
324 
325     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
326     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
327       return false;
328   }
329   return true;
330 }
331 
332 bool ISD::matchBinaryPredicate(
333     SDValue LHS, SDValue RHS,
334     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
335     bool AllowUndefs, bool AllowTypeMismatch) {
336   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
337     return false;
338 
339   // TODO: Add support for scalar UNDEF cases?
340   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
341     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
342       return Match(LHSCst, RHSCst);
343 
344   // TODO: Add support for vector UNDEF cases?
345   if (LHS.getOpcode() != RHS.getOpcode() ||
346       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
347        LHS.getOpcode() != ISD::SPLAT_VECTOR))
348     return false;
349 
350   EVT SVT = LHS.getValueType().getScalarType();
351   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
352     SDValue LHSOp = LHS.getOperand(i);
353     SDValue RHSOp = RHS.getOperand(i);
354     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
355     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
356     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
357     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
358     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
359       return false;
360     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
361                                LHSOp.getValueType() != RHSOp.getValueType()))
362       return false;
363     if (!Match(LHSCst, RHSCst))
364       return false;
365   }
366   return true;
367 }
368 
369 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
370   switch (VecReduceOpcode) {
371   default:
372     llvm_unreachable("Expected VECREDUCE opcode");
373   case ISD::VECREDUCE_FADD:
374   case ISD::VECREDUCE_SEQ_FADD:
375     return ISD::FADD;
376   case ISD::VECREDUCE_FMUL:
377   case ISD::VECREDUCE_SEQ_FMUL:
378     return ISD::FMUL;
379   case ISD::VECREDUCE_ADD:
380     return ISD::ADD;
381   case ISD::VECREDUCE_MUL:
382     return ISD::MUL;
383   case ISD::VECREDUCE_AND:
384     return ISD::AND;
385   case ISD::VECREDUCE_OR:
386     return ISD::OR;
387   case ISD::VECREDUCE_XOR:
388     return ISD::XOR;
389   case ISD::VECREDUCE_SMAX:
390     return ISD::SMAX;
391   case ISD::VECREDUCE_SMIN:
392     return ISD::SMIN;
393   case ISD::VECREDUCE_UMAX:
394     return ISD::UMAX;
395   case ISD::VECREDUCE_UMIN:
396     return ISD::UMIN;
397   case ISD::VECREDUCE_FMAX:
398     return ISD::FMAXNUM;
399   case ISD::VECREDUCE_FMIN:
400     return ISD::FMINNUM;
401   }
402 }
403 
404 bool ISD::isVPOpcode(unsigned Opcode) {
405   switch (Opcode) {
406   default:
407     return false;
408 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
409   case ISD::SDOPC:                                                             \
410     return true;
411 #include "llvm/IR/VPIntrinsics.def"
412   }
413 }
414 
415 bool ISD::isVPBinaryOp(unsigned Opcode) {
416   switch (Opcode) {
417   default:
418     return false;
419 #define PROPERTY_VP_BINARYOP_SDNODE(SDOPC)                                     \
420   case ISD::SDOPC:                                                             \
421     return true;
422 #include "llvm/IR/VPIntrinsics.def"
423   }
424 }
425 
426 bool ISD::isVPReduction(unsigned Opcode) {
427   switch (Opcode) {
428   default:
429     return false;
430 #define PROPERTY_VP_REDUCTION_SDNODE(SDOPC)                                    \
431   case ISD::SDOPC:                                                             \
432     return true;
433 #include "llvm/IR/VPIntrinsics.def"
434   }
435 }
436 
437 /// The operand position of the vector mask.
438 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
439   switch (Opcode) {
440   default:
441     return None;
442 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...)        \
443   case ISD::SDOPC:                                                             \
444     return MASKPOS;
445 #include "llvm/IR/VPIntrinsics.def"
446   }
447 }
448 
449 /// The operand position of the explicit vector length parameter.
450 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
451   switch (Opcode) {
452   default:
453     return None;
454 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS)     \
455   case ISD::SDOPC:                                                             \
456     return EVLPOS;
457 #include "llvm/IR/VPIntrinsics.def"
458   }
459 }
460 
461 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
462   switch (ExtType) {
463   case ISD::EXTLOAD:
464     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
465   case ISD::SEXTLOAD:
466     return ISD::SIGN_EXTEND;
467   case ISD::ZEXTLOAD:
468     return ISD::ZERO_EXTEND;
469   default:
470     break;
471   }
472 
473   llvm_unreachable("Invalid LoadExtType");
474 }
475 
476 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
477   // To perform this operation, we just need to swap the L and G bits of the
478   // operation.
479   unsigned OldL = (Operation >> 2) & 1;
480   unsigned OldG = (Operation >> 1) & 1;
481   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
482                        (OldL << 1) |       // New G bit
483                        (OldG << 2));       // New L bit.
484 }
485 
486 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
487   unsigned Operation = Op;
488   if (isIntegerLike)
489     Operation ^= 7;   // Flip L, G, E bits, but not U.
490   else
491     Operation ^= 15;  // Flip all of the condition bits.
492 
493   if (Operation > ISD::SETTRUE2)
494     Operation &= ~8;  // Don't let N and U bits get set.
495 
496   return ISD::CondCode(Operation);
497 }
498 
499 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
500   return getSetCCInverseImpl(Op, Type.isInteger());
501 }
502 
503 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
504                                                bool isIntegerLike) {
505   return getSetCCInverseImpl(Op, isIntegerLike);
506 }
507 
508 /// For an integer comparison, return 1 if the comparison is a signed operation
509 /// and 2 if the result is an unsigned comparison. Return zero if the operation
510 /// does not depend on the sign of the input (setne and seteq).
511 static int isSignedOp(ISD::CondCode Opcode) {
512   switch (Opcode) {
513   default: llvm_unreachable("Illegal integer setcc operation!");
514   case ISD::SETEQ:
515   case ISD::SETNE: return 0;
516   case ISD::SETLT:
517   case ISD::SETLE:
518   case ISD::SETGT:
519   case ISD::SETGE: return 1;
520   case ISD::SETULT:
521   case ISD::SETULE:
522   case ISD::SETUGT:
523   case ISD::SETUGE: return 2;
524   }
525 }
526 
527 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
528                                        EVT Type) {
529   bool IsInteger = Type.isInteger();
530   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
531     // Cannot fold a signed integer setcc with an unsigned integer setcc.
532     return ISD::SETCC_INVALID;
533 
534   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
535 
536   // If the N and U bits get set, then the resultant comparison DOES suddenly
537   // care about orderedness, and it is true when ordered.
538   if (Op > ISD::SETTRUE2)
539     Op &= ~16;     // Clear the U bit if the N bit is set.
540 
541   // Canonicalize illegal integer setcc's.
542   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
543     Op = ISD::SETNE;
544 
545   return ISD::CondCode(Op);
546 }
547 
548 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
549                                         EVT Type) {
550   bool IsInteger = Type.isInteger();
551   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
552     // Cannot fold a signed setcc with an unsigned setcc.
553     return ISD::SETCC_INVALID;
554 
555   // Combine all of the condition bits.
556   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
557 
558   // Canonicalize illegal integer setcc's.
559   if (IsInteger) {
560     switch (Result) {
561     default: break;
562     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
563     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
564     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
565     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
566     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
567     }
568   }
569 
570   return Result;
571 }
572 
573 //===----------------------------------------------------------------------===//
574 //                           SDNode Profile Support
575 //===----------------------------------------------------------------------===//
576 
577 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
578 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
579   ID.AddInteger(OpC);
580 }
581 
582 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
583 /// solely with their pointer.
584 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
585   ID.AddPointer(VTList.VTs);
586 }
587 
588 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
589 static void AddNodeIDOperands(FoldingSetNodeID &ID,
590                               ArrayRef<SDValue> Ops) {
591   for (auto& Op : Ops) {
592     ID.AddPointer(Op.getNode());
593     ID.AddInteger(Op.getResNo());
594   }
595 }
596 
597 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
598 static void AddNodeIDOperands(FoldingSetNodeID &ID,
599                               ArrayRef<SDUse> Ops) {
600   for (auto& Op : Ops) {
601     ID.AddPointer(Op.getNode());
602     ID.AddInteger(Op.getResNo());
603   }
604 }
605 
606 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
607                           SDVTList VTList, ArrayRef<SDValue> OpList) {
608   AddNodeIDOpcode(ID, OpC);
609   AddNodeIDValueTypes(ID, VTList);
610   AddNodeIDOperands(ID, OpList);
611 }
612 
613 /// If this is an SDNode with special info, add this info to the NodeID data.
614 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
615   switch (N->getOpcode()) {
616   case ISD::TargetExternalSymbol:
617   case ISD::ExternalSymbol:
618   case ISD::MCSymbol:
619     llvm_unreachable("Should only be used on nodes with operands");
620   default: break;  // Normal nodes don't need extra info.
621   case ISD::TargetConstant:
622   case ISD::Constant: {
623     const ConstantSDNode *C = cast<ConstantSDNode>(N);
624     ID.AddPointer(C->getConstantIntValue());
625     ID.AddBoolean(C->isOpaque());
626     break;
627   }
628   case ISD::TargetConstantFP:
629   case ISD::ConstantFP:
630     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
631     break;
632   case ISD::TargetGlobalAddress:
633   case ISD::GlobalAddress:
634   case ISD::TargetGlobalTLSAddress:
635   case ISD::GlobalTLSAddress: {
636     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
637     ID.AddPointer(GA->getGlobal());
638     ID.AddInteger(GA->getOffset());
639     ID.AddInteger(GA->getTargetFlags());
640     break;
641   }
642   case ISD::BasicBlock:
643     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
644     break;
645   case ISD::Register:
646     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
647     break;
648   case ISD::RegisterMask:
649     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
650     break;
651   case ISD::SRCVALUE:
652     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
653     break;
654   case ISD::FrameIndex:
655   case ISD::TargetFrameIndex:
656     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
657     break;
658   case ISD::LIFETIME_START:
659   case ISD::LIFETIME_END:
660     if (cast<LifetimeSDNode>(N)->hasOffset()) {
661       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
662       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
663     }
664     break;
665   case ISD::PSEUDO_PROBE:
666     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
667     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
668     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
669     break;
670   case ISD::JumpTable:
671   case ISD::TargetJumpTable:
672     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
673     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
674     break;
675   case ISD::ConstantPool:
676   case ISD::TargetConstantPool: {
677     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
678     ID.AddInteger(CP->getAlign().value());
679     ID.AddInteger(CP->getOffset());
680     if (CP->isMachineConstantPoolEntry())
681       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
682     else
683       ID.AddPointer(CP->getConstVal());
684     ID.AddInteger(CP->getTargetFlags());
685     break;
686   }
687   case ISD::TargetIndex: {
688     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
689     ID.AddInteger(TI->getIndex());
690     ID.AddInteger(TI->getOffset());
691     ID.AddInteger(TI->getTargetFlags());
692     break;
693   }
694   case ISD::LOAD: {
695     const LoadSDNode *LD = cast<LoadSDNode>(N);
696     ID.AddInteger(LD->getMemoryVT().getRawBits());
697     ID.AddInteger(LD->getRawSubclassData());
698     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
699     break;
700   }
701   case ISD::STORE: {
702     const StoreSDNode *ST = cast<StoreSDNode>(N);
703     ID.AddInteger(ST->getMemoryVT().getRawBits());
704     ID.AddInteger(ST->getRawSubclassData());
705     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
706     break;
707   }
708   case ISD::VP_LOAD: {
709     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
710     ID.AddInteger(ELD->getMemoryVT().getRawBits());
711     ID.AddInteger(ELD->getRawSubclassData());
712     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
713     break;
714   }
715   case ISD::VP_STORE: {
716     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
717     ID.AddInteger(EST->getMemoryVT().getRawBits());
718     ID.AddInteger(EST->getRawSubclassData());
719     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
720     break;
721   }
722   case ISD::VP_GATHER: {
723     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
724     ID.AddInteger(EG->getMemoryVT().getRawBits());
725     ID.AddInteger(EG->getRawSubclassData());
726     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
727     break;
728   }
729   case ISD::VP_SCATTER: {
730     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
731     ID.AddInteger(ES->getMemoryVT().getRawBits());
732     ID.AddInteger(ES->getRawSubclassData());
733     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
734     break;
735   }
736   case ISD::MLOAD: {
737     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
738     ID.AddInteger(MLD->getMemoryVT().getRawBits());
739     ID.AddInteger(MLD->getRawSubclassData());
740     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
741     break;
742   }
743   case ISD::MSTORE: {
744     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
745     ID.AddInteger(MST->getMemoryVT().getRawBits());
746     ID.AddInteger(MST->getRawSubclassData());
747     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
748     break;
749   }
750   case ISD::MGATHER: {
751     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
752     ID.AddInteger(MG->getMemoryVT().getRawBits());
753     ID.AddInteger(MG->getRawSubclassData());
754     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
755     break;
756   }
757   case ISD::MSCATTER: {
758     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
759     ID.AddInteger(MS->getMemoryVT().getRawBits());
760     ID.AddInteger(MS->getRawSubclassData());
761     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
762     break;
763   }
764   case ISD::ATOMIC_CMP_SWAP:
765   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
766   case ISD::ATOMIC_SWAP:
767   case ISD::ATOMIC_LOAD_ADD:
768   case ISD::ATOMIC_LOAD_SUB:
769   case ISD::ATOMIC_LOAD_AND:
770   case ISD::ATOMIC_LOAD_CLR:
771   case ISD::ATOMIC_LOAD_OR:
772   case ISD::ATOMIC_LOAD_XOR:
773   case ISD::ATOMIC_LOAD_NAND:
774   case ISD::ATOMIC_LOAD_MIN:
775   case ISD::ATOMIC_LOAD_MAX:
776   case ISD::ATOMIC_LOAD_UMIN:
777   case ISD::ATOMIC_LOAD_UMAX:
778   case ISD::ATOMIC_LOAD:
779   case ISD::ATOMIC_STORE: {
780     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
781     ID.AddInteger(AT->getMemoryVT().getRawBits());
782     ID.AddInteger(AT->getRawSubclassData());
783     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
784     break;
785   }
786   case ISD::PREFETCH: {
787     const MemSDNode *PF = cast<MemSDNode>(N);
788     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
789     break;
790   }
791   case ISD::VECTOR_SHUFFLE: {
792     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
793     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
794          i != e; ++i)
795       ID.AddInteger(SVN->getMaskElt(i));
796     break;
797   }
798   case ISD::TargetBlockAddress:
799   case ISD::BlockAddress: {
800     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
801     ID.AddPointer(BA->getBlockAddress());
802     ID.AddInteger(BA->getOffset());
803     ID.AddInteger(BA->getTargetFlags());
804     break;
805   }
806   } // end switch (N->getOpcode())
807 
808   // Target specific memory nodes could also have address spaces to check.
809   if (N->isTargetMemoryOpcode())
810     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
811 }
812 
813 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
814 /// data.
815 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
816   AddNodeIDOpcode(ID, N->getOpcode());
817   // Add the return value info.
818   AddNodeIDValueTypes(ID, N->getVTList());
819   // Add the operand info.
820   AddNodeIDOperands(ID, N->ops());
821 
822   // Handle SDNode leafs with special info.
823   AddNodeIDCustom(ID, N);
824 }
825 
826 //===----------------------------------------------------------------------===//
827 //                              SelectionDAG Class
828 //===----------------------------------------------------------------------===//
829 
830 /// doNotCSE - Return true if CSE should not be performed for this node.
831 static bool doNotCSE(SDNode *N) {
832   if (N->getValueType(0) == MVT::Glue)
833     return true; // Never CSE anything that produces a flag.
834 
835   switch (N->getOpcode()) {
836   default: break;
837   case ISD::HANDLENODE:
838   case ISD::EH_LABEL:
839     return true;   // Never CSE these nodes.
840   }
841 
842   // Check that remaining values produced are not flags.
843   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
844     if (N->getValueType(i) == MVT::Glue)
845       return true; // Never CSE anything that produces a flag.
846 
847   return false;
848 }
849 
850 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
851 /// SelectionDAG.
852 void SelectionDAG::RemoveDeadNodes() {
853   // Create a dummy node (which is not added to allnodes), that adds a reference
854   // to the root node, preventing it from being deleted.
855   HandleSDNode Dummy(getRoot());
856 
857   SmallVector<SDNode*, 128> DeadNodes;
858 
859   // Add all obviously-dead nodes to the DeadNodes worklist.
860   for (SDNode &Node : allnodes())
861     if (Node.use_empty())
862       DeadNodes.push_back(&Node);
863 
864   RemoveDeadNodes(DeadNodes);
865 
866   // If the root changed (e.g. it was a dead load, update the root).
867   setRoot(Dummy.getValue());
868 }
869 
870 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
871 /// given list, and any nodes that become unreachable as a result.
872 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
873 
874   // Process the worklist, deleting the nodes and adding their uses to the
875   // worklist.
876   while (!DeadNodes.empty()) {
877     SDNode *N = DeadNodes.pop_back_val();
878     // Skip to next node if we've already managed to delete the node. This could
879     // happen if replacing a node causes a node previously added to the node to
880     // be deleted.
881     if (N->getOpcode() == ISD::DELETED_NODE)
882       continue;
883 
884     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
885       DUL->NodeDeleted(N, nullptr);
886 
887     // Take the node out of the appropriate CSE map.
888     RemoveNodeFromCSEMaps(N);
889 
890     // Next, brutally remove the operand list.  This is safe to do, as there are
891     // no cycles in the graph.
892     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
893       SDUse &Use = *I++;
894       SDNode *Operand = Use.getNode();
895       Use.set(SDValue());
896 
897       // Now that we removed this operand, see if there are no uses of it left.
898       if (Operand->use_empty())
899         DeadNodes.push_back(Operand);
900     }
901 
902     DeallocateNode(N);
903   }
904 }
905 
906 void SelectionDAG::RemoveDeadNode(SDNode *N){
907   SmallVector<SDNode*, 16> DeadNodes(1, N);
908 
909   // Create a dummy node that adds a reference to the root node, preventing
910   // it from being deleted.  (This matters if the root is an operand of the
911   // dead node.)
912   HandleSDNode Dummy(getRoot());
913 
914   RemoveDeadNodes(DeadNodes);
915 }
916 
917 void SelectionDAG::DeleteNode(SDNode *N) {
918   // First take this out of the appropriate CSE map.
919   RemoveNodeFromCSEMaps(N);
920 
921   // Finally, remove uses due to operands of this node, remove from the
922   // AllNodes list, and delete the node.
923   DeleteNodeNotInCSEMaps(N);
924 }
925 
926 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
927   assert(N->getIterator() != AllNodes.begin() &&
928          "Cannot delete the entry node!");
929   assert(N->use_empty() && "Cannot delete a node that is not dead!");
930 
931   // Drop all of the operands and decrement used node's use counts.
932   N->DropOperands();
933 
934   DeallocateNode(N);
935 }
936 
937 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
938   assert(!(V->isVariadic() && isParameter));
939   if (isParameter)
940     ByvalParmDbgValues.push_back(V);
941   else
942     DbgValues.push_back(V);
943   for (const SDNode *Node : V->getSDNodes())
944     if (Node)
945       DbgValMap[Node].push_back(V);
946 }
947 
948 void SDDbgInfo::erase(const SDNode *Node) {
949   DbgValMapType::iterator I = DbgValMap.find(Node);
950   if (I == DbgValMap.end())
951     return;
952   for (auto &Val: I->second)
953     Val->setIsInvalidated();
954   DbgValMap.erase(I);
955 }
956 
957 void SelectionDAG::DeallocateNode(SDNode *N) {
958   // If we have operands, deallocate them.
959   removeOperands(N);
960 
961   NodeAllocator.Deallocate(AllNodes.remove(N));
962 
963   // Set the opcode to DELETED_NODE to help catch bugs when node
964   // memory is reallocated.
965   // FIXME: There are places in SDag that have grown a dependency on the opcode
966   // value in the released node.
967   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
968   N->NodeType = ISD::DELETED_NODE;
969 
970   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
971   // them and forget about that node.
972   DbgInfo->erase(N);
973 }
974 
975 #ifndef NDEBUG
976 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
977 static void VerifySDNode(SDNode *N) {
978   switch (N->getOpcode()) {
979   default:
980     break;
981   case ISD::BUILD_PAIR: {
982     EVT VT = N->getValueType(0);
983     assert(N->getNumValues() == 1 && "Too many results!");
984     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
985            "Wrong return type!");
986     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
987     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
988            "Mismatched operand types!");
989     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
990            "Wrong operand type!");
991     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
992            "Wrong return type size");
993     break;
994   }
995   case ISD::BUILD_VECTOR: {
996     assert(N->getNumValues() == 1 && "Too many results!");
997     assert(N->getValueType(0).isVector() && "Wrong return type!");
998     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
999            "Wrong number of operands!");
1000     EVT EltVT = N->getValueType(0).getVectorElementType();
1001     for (const SDUse &Op : N->ops()) {
1002       assert((Op.getValueType() == EltVT ||
1003               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1004                EltVT.bitsLE(Op.getValueType()))) &&
1005              "Wrong operand type!");
1006       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1007              "Operands must all have the same type");
1008     }
1009     break;
1010   }
1011   }
1012 }
1013 #endif // NDEBUG
1014 
1015 /// Insert a newly allocated node into the DAG.
1016 ///
1017 /// Handles insertion into the all nodes list and CSE map, as well as
1018 /// verification and other common operations when a new node is allocated.
1019 void SelectionDAG::InsertNode(SDNode *N) {
1020   AllNodes.push_back(N);
1021 #ifndef NDEBUG
1022   N->PersistentId = NextPersistentId++;
1023   VerifySDNode(N);
1024 #endif
1025   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1026     DUL->NodeInserted(N);
1027 }
1028 
1029 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1030 /// correspond to it.  This is useful when we're about to delete or repurpose
1031 /// the node.  We don't want future request for structurally identical nodes
1032 /// to return N anymore.
1033 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1034   bool Erased = false;
1035   switch (N->getOpcode()) {
1036   case ISD::HANDLENODE: return false;  // noop.
1037   case ISD::CONDCODE:
1038     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1039            "Cond code doesn't exist!");
1040     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1041     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1042     break;
1043   case ISD::ExternalSymbol:
1044     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1045     break;
1046   case ISD::TargetExternalSymbol: {
1047     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1048     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1049         ESN->getSymbol(), ESN->getTargetFlags()));
1050     break;
1051   }
1052   case ISD::MCSymbol: {
1053     auto *MCSN = cast<MCSymbolSDNode>(N);
1054     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1055     break;
1056   }
1057   case ISD::VALUETYPE: {
1058     EVT VT = cast<VTSDNode>(N)->getVT();
1059     if (VT.isExtended()) {
1060       Erased = ExtendedValueTypeNodes.erase(VT);
1061     } else {
1062       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1063       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1064     }
1065     break;
1066   }
1067   default:
1068     // Remove it from the CSE Map.
1069     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1070     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1071     Erased = CSEMap.RemoveNode(N);
1072     break;
1073   }
1074 #ifndef NDEBUG
1075   // Verify that the node was actually in one of the CSE maps, unless it has a
1076   // flag result (which cannot be CSE'd) or is one of the special cases that are
1077   // not subject to CSE.
1078   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1079       !N->isMachineOpcode() && !doNotCSE(N)) {
1080     N->dump(this);
1081     dbgs() << "\n";
1082     llvm_unreachable("Node is not in map!");
1083   }
1084 #endif
1085   return Erased;
1086 }
1087 
1088 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1089 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1090 /// node already exists, in which case transfer all its users to the existing
1091 /// node. This transfer can potentially trigger recursive merging.
1092 void
1093 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1094   // For node types that aren't CSE'd, just act as if no identical node
1095   // already exists.
1096   if (!doNotCSE(N)) {
1097     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1098     if (Existing != N) {
1099       // If there was already an existing matching node, use ReplaceAllUsesWith
1100       // to replace the dead one with the existing one.  This can cause
1101       // recursive merging of other unrelated nodes down the line.
1102       ReplaceAllUsesWith(N, Existing);
1103 
1104       // N is now dead. Inform the listeners and delete it.
1105       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1106         DUL->NodeDeleted(N, Existing);
1107       DeleteNodeNotInCSEMaps(N);
1108       return;
1109     }
1110   }
1111 
1112   // If the node doesn't already exist, we updated it.  Inform listeners.
1113   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1114     DUL->NodeUpdated(N);
1115 }
1116 
1117 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1118 /// were replaced with those specified.  If this node is never memoized,
1119 /// return null, otherwise return a pointer to the slot it would take.  If a
1120 /// node already exists with these operands, the slot will be non-null.
1121 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1122                                            void *&InsertPos) {
1123   if (doNotCSE(N))
1124     return nullptr;
1125 
1126   SDValue Ops[] = { Op };
1127   FoldingSetNodeID ID;
1128   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1129   AddNodeIDCustom(ID, N);
1130   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1131   if (Node)
1132     Node->intersectFlagsWith(N->getFlags());
1133   return Node;
1134 }
1135 
1136 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1137 /// were replaced with those specified.  If this node is never memoized,
1138 /// return null, otherwise return a pointer to the slot it would take.  If a
1139 /// node already exists with these operands, the slot will be non-null.
1140 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1141                                            SDValue Op1, SDValue Op2,
1142                                            void *&InsertPos) {
1143   if (doNotCSE(N))
1144     return nullptr;
1145 
1146   SDValue Ops[] = { Op1, Op2 };
1147   FoldingSetNodeID ID;
1148   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1149   AddNodeIDCustom(ID, N);
1150   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1151   if (Node)
1152     Node->intersectFlagsWith(N->getFlags());
1153   return Node;
1154 }
1155 
1156 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1157 /// were replaced with those specified.  If this node is never memoized,
1158 /// return null, otherwise return a pointer to the slot it would take.  If a
1159 /// node already exists with these operands, the slot will be non-null.
1160 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1161                                            void *&InsertPos) {
1162   if (doNotCSE(N))
1163     return nullptr;
1164 
1165   FoldingSetNodeID ID;
1166   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1167   AddNodeIDCustom(ID, N);
1168   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1169   if (Node)
1170     Node->intersectFlagsWith(N->getFlags());
1171   return Node;
1172 }
1173 
1174 Align SelectionDAG::getEVTAlign(EVT VT) const {
1175   Type *Ty = VT == MVT::iPTR ?
1176                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1177                    VT.getTypeForEVT(*getContext());
1178 
1179   return getDataLayout().getABITypeAlign(Ty);
1180 }
1181 
1182 // EntryNode could meaningfully have debug info if we can find it...
1183 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1184     : TM(tm), OptLevel(OL),
1185       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1186       Root(getEntryNode()) {
1187   InsertNode(&EntryNode);
1188   DbgInfo = new SDDbgInfo();
1189 }
1190 
1191 void SelectionDAG::init(MachineFunction &NewMF,
1192                         OptimizationRemarkEmitter &NewORE,
1193                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1194                         LegacyDivergenceAnalysis * Divergence,
1195                         ProfileSummaryInfo *PSIin,
1196                         BlockFrequencyInfo *BFIin) {
1197   MF = &NewMF;
1198   SDAGISelPass = PassPtr;
1199   ORE = &NewORE;
1200   TLI = getSubtarget().getTargetLowering();
1201   TSI = getSubtarget().getSelectionDAGInfo();
1202   LibInfo = LibraryInfo;
1203   Context = &MF->getFunction().getContext();
1204   DA = Divergence;
1205   PSI = PSIin;
1206   BFI = BFIin;
1207 }
1208 
1209 SelectionDAG::~SelectionDAG() {
1210   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1211   allnodes_clear();
1212   OperandRecycler.clear(OperandAllocator);
1213   delete DbgInfo;
1214 }
1215 
1216 bool SelectionDAG::shouldOptForSize() const {
1217   return MF->getFunction().hasOptSize() ||
1218       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1219 }
1220 
1221 void SelectionDAG::allnodes_clear() {
1222   assert(&*AllNodes.begin() == &EntryNode);
1223   AllNodes.remove(AllNodes.begin());
1224   while (!AllNodes.empty())
1225     DeallocateNode(&AllNodes.front());
1226 #ifndef NDEBUG
1227   NextPersistentId = 0;
1228 #endif
1229 }
1230 
1231 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1232                                           void *&InsertPos) {
1233   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1234   if (N) {
1235     switch (N->getOpcode()) {
1236     default: break;
1237     case ISD::Constant:
1238     case ISD::ConstantFP:
1239       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1240                        "debug location.  Use another overload.");
1241     }
1242   }
1243   return N;
1244 }
1245 
1246 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1247                                           const SDLoc &DL, void *&InsertPos) {
1248   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1249   if (N) {
1250     switch (N->getOpcode()) {
1251     case ISD::Constant:
1252     case ISD::ConstantFP:
1253       // Erase debug location from the node if the node is used at several
1254       // different places. Do not propagate one location to all uses as it
1255       // will cause a worse single stepping debugging experience.
1256       if (N->getDebugLoc() != DL.getDebugLoc())
1257         N->setDebugLoc(DebugLoc());
1258       break;
1259     default:
1260       // When the node's point of use is located earlier in the instruction
1261       // sequence than its prior point of use, update its debug info to the
1262       // earlier location.
1263       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1264         N->setDebugLoc(DL.getDebugLoc());
1265       break;
1266     }
1267   }
1268   return N;
1269 }
1270 
1271 void SelectionDAG::clear() {
1272   allnodes_clear();
1273   OperandRecycler.clear(OperandAllocator);
1274   OperandAllocator.Reset();
1275   CSEMap.clear();
1276 
1277   ExtendedValueTypeNodes.clear();
1278   ExternalSymbols.clear();
1279   TargetExternalSymbols.clear();
1280   MCSymbols.clear();
1281   SDCallSiteDbgInfo.clear();
1282   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1283             static_cast<CondCodeSDNode*>(nullptr));
1284   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1285             static_cast<SDNode*>(nullptr));
1286 
1287   EntryNode.UseList = nullptr;
1288   InsertNode(&EntryNode);
1289   Root = getEntryNode();
1290   DbgInfo->clear();
1291 }
1292 
1293 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1294   return VT.bitsGT(Op.getValueType())
1295              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1296              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1297 }
1298 
1299 std::pair<SDValue, SDValue>
1300 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1301                                        const SDLoc &DL, EVT VT) {
1302   assert(!VT.bitsEq(Op.getValueType()) &&
1303          "Strict no-op FP extend/round not allowed.");
1304   SDValue Res =
1305       VT.bitsGT(Op.getValueType())
1306           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1307           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1308                     {Chain, Op, getIntPtrConstant(0, DL)});
1309 
1310   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1311 }
1312 
1313 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1314   return VT.bitsGT(Op.getValueType()) ?
1315     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1316     getNode(ISD::TRUNCATE, DL, VT, Op);
1317 }
1318 
1319 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1320   return VT.bitsGT(Op.getValueType()) ?
1321     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1322     getNode(ISD::TRUNCATE, DL, VT, Op);
1323 }
1324 
1325 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1326   return VT.bitsGT(Op.getValueType()) ?
1327     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1328     getNode(ISD::TRUNCATE, DL, VT, Op);
1329 }
1330 
1331 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1332                                         EVT OpVT) {
1333   if (VT.bitsLE(Op.getValueType()))
1334     return getNode(ISD::TRUNCATE, SL, VT, Op);
1335 
1336   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1337   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1338 }
1339 
1340 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1341   EVT OpVT = Op.getValueType();
1342   assert(VT.isInteger() && OpVT.isInteger() &&
1343          "Cannot getZeroExtendInReg FP types");
1344   assert(VT.isVector() == OpVT.isVector() &&
1345          "getZeroExtendInReg type should be vector iff the operand "
1346          "type is vector!");
1347   assert((!VT.isVector() ||
1348           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1349          "Vector element counts must match in getZeroExtendInReg");
1350   assert(VT.bitsLE(OpVT) && "Not extending!");
1351   if (OpVT == VT)
1352     return Op;
1353   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1354                                    VT.getScalarSizeInBits());
1355   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1356 }
1357 
1358 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1359   // Only unsigned pointer semantics are supported right now. In the future this
1360   // might delegate to TLI to check pointer signedness.
1361   return getZExtOrTrunc(Op, DL, VT);
1362 }
1363 
1364 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1365   // Only unsigned pointer semantics are supported right now. In the future this
1366   // might delegate to TLI to check pointer signedness.
1367   return getZeroExtendInReg(Op, DL, VT);
1368 }
1369 
1370 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1371 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1372   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1373 }
1374 
1375 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1376   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1377   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1378 }
1379 
1380 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1381                                       EVT OpVT) {
1382   if (!V)
1383     return getConstant(0, DL, VT);
1384 
1385   switch (TLI->getBooleanContents(OpVT)) {
1386   case TargetLowering::ZeroOrOneBooleanContent:
1387   case TargetLowering::UndefinedBooleanContent:
1388     return getConstant(1, DL, VT);
1389   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1390     return getAllOnesConstant(DL, VT);
1391   }
1392   llvm_unreachable("Unexpected boolean content enum!");
1393 }
1394 
1395 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1396                                   bool isT, bool isO) {
1397   EVT EltVT = VT.getScalarType();
1398   assert((EltVT.getSizeInBits() >= 64 ||
1399           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1400          "getConstant with a uint64_t value that doesn't fit in the type!");
1401   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1402 }
1403 
1404 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1405                                   bool isT, bool isO) {
1406   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1407 }
1408 
1409 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1410                                   EVT VT, bool isT, bool isO) {
1411   assert(VT.isInteger() && "Cannot create FP integer constant!");
1412 
1413   EVT EltVT = VT.getScalarType();
1414   const ConstantInt *Elt = &Val;
1415 
1416   // In some cases the vector type is legal but the element type is illegal and
1417   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1418   // inserted value (the type does not need to match the vector element type).
1419   // Any extra bits introduced will be truncated away.
1420   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1421                            TargetLowering::TypePromoteInteger) {
1422     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1423     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1424     Elt = ConstantInt::get(*getContext(), NewVal);
1425   }
1426   // In other cases the element type is illegal and needs to be expanded, for
1427   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1428   // the value into n parts and use a vector type with n-times the elements.
1429   // Then bitcast to the type requested.
1430   // Legalizing constants too early makes the DAGCombiner's job harder so we
1431   // only legalize if the DAG tells us we must produce legal types.
1432   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1433            TLI->getTypeAction(*getContext(), EltVT) ==
1434                TargetLowering::TypeExpandInteger) {
1435     const APInt &NewVal = Elt->getValue();
1436     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1437     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1438 
1439     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1440     if (VT.isScalableVector()) {
1441       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1442              "Can only handle an even split!");
1443       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1444 
1445       SmallVector<SDValue, 2> ScalarParts;
1446       for (unsigned i = 0; i != Parts; ++i)
1447         ScalarParts.push_back(getConstant(
1448             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1449             ViaEltVT, isT, isO));
1450 
1451       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1452     }
1453 
1454     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1455     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1456 
1457     // Check the temporary vector is the correct size. If this fails then
1458     // getTypeToTransformTo() probably returned a type whose size (in bits)
1459     // isn't a power-of-2 factor of the requested type size.
1460     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1461 
1462     SmallVector<SDValue, 2> EltParts;
1463     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1464       EltParts.push_back(getConstant(
1465           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1466           ViaEltVT, isT, isO));
1467 
1468     // EltParts is currently in little endian order. If we actually want
1469     // big-endian order then reverse it now.
1470     if (getDataLayout().isBigEndian())
1471       std::reverse(EltParts.begin(), EltParts.end());
1472 
1473     // The elements must be reversed when the element order is different
1474     // to the endianness of the elements (because the BITCAST is itself a
1475     // vector shuffle in this situation). However, we do not need any code to
1476     // perform this reversal because getConstant() is producing a vector
1477     // splat.
1478     // This situation occurs in MIPS MSA.
1479 
1480     SmallVector<SDValue, 8> Ops;
1481     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1482       llvm::append_range(Ops, EltParts);
1483 
1484     SDValue V =
1485         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1486     return V;
1487   }
1488 
1489   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1490          "APInt size does not match type size!");
1491   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1492   FoldingSetNodeID ID;
1493   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1494   ID.AddPointer(Elt);
1495   ID.AddBoolean(isO);
1496   void *IP = nullptr;
1497   SDNode *N = nullptr;
1498   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1499     if (!VT.isVector())
1500       return SDValue(N, 0);
1501 
1502   if (!N) {
1503     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1504     CSEMap.InsertNode(N, IP);
1505     InsertNode(N);
1506     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1507   }
1508 
1509   SDValue Result(N, 0);
1510   if (VT.isScalableVector())
1511     Result = getSplatVector(VT, DL, Result);
1512   else if (VT.isVector())
1513     Result = getSplatBuildVector(VT, DL, Result);
1514 
1515   return Result;
1516 }
1517 
1518 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1519                                         bool isTarget) {
1520   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1521 }
1522 
1523 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1524                                              const SDLoc &DL, bool LegalTypes) {
1525   assert(VT.isInteger() && "Shift amount is not an integer type!");
1526   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1527   return getConstant(Val, DL, ShiftVT);
1528 }
1529 
1530 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1531                                            bool isTarget) {
1532   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1533 }
1534 
1535 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1536                                     bool isTarget) {
1537   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1538 }
1539 
1540 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1541                                     EVT VT, bool isTarget) {
1542   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1543 
1544   EVT EltVT = VT.getScalarType();
1545 
1546   // Do the map lookup using the actual bit pattern for the floating point
1547   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1548   // we don't have issues with SNANs.
1549   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1550   FoldingSetNodeID ID;
1551   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1552   ID.AddPointer(&V);
1553   void *IP = nullptr;
1554   SDNode *N = nullptr;
1555   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1556     if (!VT.isVector())
1557       return SDValue(N, 0);
1558 
1559   if (!N) {
1560     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1561     CSEMap.InsertNode(N, IP);
1562     InsertNode(N);
1563   }
1564 
1565   SDValue Result(N, 0);
1566   if (VT.isScalableVector())
1567     Result = getSplatVector(VT, DL, Result);
1568   else if (VT.isVector())
1569     Result = getSplatBuildVector(VT, DL, Result);
1570   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1571   return Result;
1572 }
1573 
1574 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1575                                     bool isTarget) {
1576   EVT EltVT = VT.getScalarType();
1577   if (EltVT == MVT::f32)
1578     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1579   if (EltVT == MVT::f64)
1580     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1581   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1582       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1583     bool Ignored;
1584     APFloat APF = APFloat(Val);
1585     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1586                 &Ignored);
1587     return getConstantFP(APF, DL, VT, isTarget);
1588   }
1589   llvm_unreachable("Unsupported type in getConstantFP");
1590 }
1591 
1592 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1593                                        EVT VT, int64_t Offset, bool isTargetGA,
1594                                        unsigned TargetFlags) {
1595   assert((TargetFlags == 0 || isTargetGA) &&
1596          "Cannot set target flags on target-independent globals");
1597 
1598   // Truncate (with sign-extension) the offset value to the pointer size.
1599   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1600   if (BitWidth < 64)
1601     Offset = SignExtend64(Offset, BitWidth);
1602 
1603   unsigned Opc;
1604   if (GV->isThreadLocal())
1605     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1606   else
1607     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1608 
1609   FoldingSetNodeID ID;
1610   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1611   ID.AddPointer(GV);
1612   ID.AddInteger(Offset);
1613   ID.AddInteger(TargetFlags);
1614   void *IP = nullptr;
1615   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1616     return SDValue(E, 0);
1617 
1618   auto *N = newSDNode<GlobalAddressSDNode>(
1619       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1620   CSEMap.InsertNode(N, IP);
1621     InsertNode(N);
1622   return SDValue(N, 0);
1623 }
1624 
1625 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1626   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1627   FoldingSetNodeID ID;
1628   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1629   ID.AddInteger(FI);
1630   void *IP = nullptr;
1631   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1632     return SDValue(E, 0);
1633 
1634   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1635   CSEMap.InsertNode(N, IP);
1636   InsertNode(N);
1637   return SDValue(N, 0);
1638 }
1639 
1640 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1641                                    unsigned TargetFlags) {
1642   assert((TargetFlags == 0 || isTarget) &&
1643          "Cannot set target flags on target-independent jump tables");
1644   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1645   FoldingSetNodeID ID;
1646   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1647   ID.AddInteger(JTI);
1648   ID.AddInteger(TargetFlags);
1649   void *IP = nullptr;
1650   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1651     return SDValue(E, 0);
1652 
1653   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1654   CSEMap.InsertNode(N, IP);
1655   InsertNode(N);
1656   return SDValue(N, 0);
1657 }
1658 
1659 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1660                                       MaybeAlign Alignment, int Offset,
1661                                       bool isTarget, unsigned TargetFlags) {
1662   assert((TargetFlags == 0 || isTarget) &&
1663          "Cannot set target flags on target-independent globals");
1664   if (!Alignment)
1665     Alignment = shouldOptForSize()
1666                     ? getDataLayout().getABITypeAlign(C->getType())
1667                     : getDataLayout().getPrefTypeAlign(C->getType());
1668   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1669   FoldingSetNodeID ID;
1670   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1671   ID.AddInteger(Alignment->value());
1672   ID.AddInteger(Offset);
1673   ID.AddPointer(C);
1674   ID.AddInteger(TargetFlags);
1675   void *IP = nullptr;
1676   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1677     return SDValue(E, 0);
1678 
1679   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1680                                           TargetFlags);
1681   CSEMap.InsertNode(N, IP);
1682   InsertNode(N);
1683   SDValue V = SDValue(N, 0);
1684   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1685   return V;
1686 }
1687 
1688 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1689                                       MaybeAlign Alignment, int Offset,
1690                                       bool isTarget, unsigned TargetFlags) {
1691   assert((TargetFlags == 0 || isTarget) &&
1692          "Cannot set target flags on target-independent globals");
1693   if (!Alignment)
1694     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1695   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1696   FoldingSetNodeID ID;
1697   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1698   ID.AddInteger(Alignment->value());
1699   ID.AddInteger(Offset);
1700   C->addSelectionDAGCSEId(ID);
1701   ID.AddInteger(TargetFlags);
1702   void *IP = nullptr;
1703   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1704     return SDValue(E, 0);
1705 
1706   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1707                                           TargetFlags);
1708   CSEMap.InsertNode(N, IP);
1709   InsertNode(N);
1710   return SDValue(N, 0);
1711 }
1712 
1713 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1714                                      unsigned TargetFlags) {
1715   FoldingSetNodeID ID;
1716   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1717   ID.AddInteger(Index);
1718   ID.AddInteger(Offset);
1719   ID.AddInteger(TargetFlags);
1720   void *IP = nullptr;
1721   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1722     return SDValue(E, 0);
1723 
1724   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1725   CSEMap.InsertNode(N, IP);
1726   InsertNode(N);
1727   return SDValue(N, 0);
1728 }
1729 
1730 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1731   FoldingSetNodeID ID;
1732   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1733   ID.AddPointer(MBB);
1734   void *IP = nullptr;
1735   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1736     return SDValue(E, 0);
1737 
1738   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1739   CSEMap.InsertNode(N, IP);
1740   InsertNode(N);
1741   return SDValue(N, 0);
1742 }
1743 
1744 SDValue SelectionDAG::getValueType(EVT VT) {
1745   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1746       ValueTypeNodes.size())
1747     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1748 
1749   SDNode *&N = VT.isExtended() ?
1750     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1751 
1752   if (N) return SDValue(N, 0);
1753   N = newSDNode<VTSDNode>(VT);
1754   InsertNode(N);
1755   return SDValue(N, 0);
1756 }
1757 
1758 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1759   SDNode *&N = ExternalSymbols[Sym];
1760   if (N) return SDValue(N, 0);
1761   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1762   InsertNode(N);
1763   return SDValue(N, 0);
1764 }
1765 
1766 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1767   SDNode *&N = MCSymbols[Sym];
1768   if (N)
1769     return SDValue(N, 0);
1770   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1771   InsertNode(N);
1772   return SDValue(N, 0);
1773 }
1774 
1775 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1776                                               unsigned TargetFlags) {
1777   SDNode *&N =
1778       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1779   if (N) return SDValue(N, 0);
1780   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1781   InsertNode(N);
1782   return SDValue(N, 0);
1783 }
1784 
1785 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1786   if ((unsigned)Cond >= CondCodeNodes.size())
1787     CondCodeNodes.resize(Cond+1);
1788 
1789   if (!CondCodeNodes[Cond]) {
1790     auto *N = newSDNode<CondCodeSDNode>(Cond);
1791     CondCodeNodes[Cond] = N;
1792     InsertNode(N);
1793   }
1794 
1795   return SDValue(CondCodeNodes[Cond], 0);
1796 }
1797 
1798 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1799   APInt One(ResVT.getScalarSizeInBits(), 1);
1800   return getStepVector(DL, ResVT, One);
1801 }
1802 
1803 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1804   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1805   if (ResVT.isScalableVector())
1806     return getNode(
1807         ISD::STEP_VECTOR, DL, ResVT,
1808         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1809 
1810   SmallVector<SDValue, 16> OpsStepConstants;
1811   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1812     OpsStepConstants.push_back(
1813         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1814   return getBuildVector(ResVT, DL, OpsStepConstants);
1815 }
1816 
1817 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1818 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1819 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1820   std::swap(N1, N2);
1821   ShuffleVectorSDNode::commuteMask(M);
1822 }
1823 
1824 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1825                                        SDValue N2, ArrayRef<int> Mask) {
1826   assert(VT.getVectorNumElements() == Mask.size() &&
1827          "Must have the same number of vector elements as mask elements!");
1828   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1829          "Invalid VECTOR_SHUFFLE");
1830 
1831   // Canonicalize shuffle undef, undef -> undef
1832   if (N1.isUndef() && N2.isUndef())
1833     return getUNDEF(VT);
1834 
1835   // Validate that all indices in Mask are within the range of the elements
1836   // input to the shuffle.
1837   int NElts = Mask.size();
1838   assert(llvm::all_of(Mask,
1839                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1840          "Index out of range");
1841 
1842   // Copy the mask so we can do any needed cleanup.
1843   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1844 
1845   // Canonicalize shuffle v, v -> v, undef
1846   if (N1 == N2) {
1847     N2 = getUNDEF(VT);
1848     for (int i = 0; i != NElts; ++i)
1849       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1850   }
1851 
1852   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1853   if (N1.isUndef())
1854     commuteShuffle(N1, N2, MaskVec);
1855 
1856   if (TLI->hasVectorBlend()) {
1857     // If shuffling a splat, try to blend the splat instead. We do this here so
1858     // that even when this arises during lowering we don't have to re-handle it.
1859     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1860       BitVector UndefElements;
1861       SDValue Splat = BV->getSplatValue(&UndefElements);
1862       if (!Splat)
1863         return;
1864 
1865       for (int i = 0; i < NElts; ++i) {
1866         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1867           continue;
1868 
1869         // If this input comes from undef, mark it as such.
1870         if (UndefElements[MaskVec[i] - Offset]) {
1871           MaskVec[i] = -1;
1872           continue;
1873         }
1874 
1875         // If we can blend a non-undef lane, use that instead.
1876         if (!UndefElements[i])
1877           MaskVec[i] = i + Offset;
1878       }
1879     };
1880     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1881       BlendSplat(N1BV, 0);
1882     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1883       BlendSplat(N2BV, NElts);
1884   }
1885 
1886   // Canonicalize all index into lhs, -> shuffle lhs, undef
1887   // Canonicalize all index into rhs, -> shuffle rhs, undef
1888   bool AllLHS = true, AllRHS = true;
1889   bool N2Undef = N2.isUndef();
1890   for (int i = 0; i != NElts; ++i) {
1891     if (MaskVec[i] >= NElts) {
1892       if (N2Undef)
1893         MaskVec[i] = -1;
1894       else
1895         AllLHS = false;
1896     } else if (MaskVec[i] >= 0) {
1897       AllRHS = false;
1898     }
1899   }
1900   if (AllLHS && AllRHS)
1901     return getUNDEF(VT);
1902   if (AllLHS && !N2Undef)
1903     N2 = getUNDEF(VT);
1904   if (AllRHS) {
1905     N1 = getUNDEF(VT);
1906     commuteShuffle(N1, N2, MaskVec);
1907   }
1908   // Reset our undef status after accounting for the mask.
1909   N2Undef = N2.isUndef();
1910   // Re-check whether both sides ended up undef.
1911   if (N1.isUndef() && N2Undef)
1912     return getUNDEF(VT);
1913 
1914   // If Identity shuffle return that node.
1915   bool Identity = true, AllSame = true;
1916   for (int i = 0; i != NElts; ++i) {
1917     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1918     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1919   }
1920   if (Identity && NElts)
1921     return N1;
1922 
1923   // Shuffling a constant splat doesn't change the result.
1924   if (N2Undef) {
1925     SDValue V = N1;
1926 
1927     // Look through any bitcasts. We check that these don't change the number
1928     // (and size) of elements and just changes their types.
1929     while (V.getOpcode() == ISD::BITCAST)
1930       V = V->getOperand(0);
1931 
1932     // A splat should always show up as a build vector node.
1933     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1934       BitVector UndefElements;
1935       SDValue Splat = BV->getSplatValue(&UndefElements);
1936       // If this is a splat of an undef, shuffling it is also undef.
1937       if (Splat && Splat.isUndef())
1938         return getUNDEF(VT);
1939 
1940       bool SameNumElts =
1941           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1942 
1943       // We only have a splat which can skip shuffles if there is a splatted
1944       // value and no undef lanes rearranged by the shuffle.
1945       if (Splat && UndefElements.none()) {
1946         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1947         // number of elements match or the value splatted is a zero constant.
1948         if (SameNumElts)
1949           return N1;
1950         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1951           if (C->isZero())
1952             return N1;
1953       }
1954 
1955       // If the shuffle itself creates a splat, build the vector directly.
1956       if (AllSame && SameNumElts) {
1957         EVT BuildVT = BV->getValueType(0);
1958         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1959         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1960 
1961         // We may have jumped through bitcasts, so the type of the
1962         // BUILD_VECTOR may not match the type of the shuffle.
1963         if (BuildVT != VT)
1964           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1965         return NewBV;
1966       }
1967     }
1968   }
1969 
1970   FoldingSetNodeID ID;
1971   SDValue Ops[2] = { N1, N2 };
1972   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1973   for (int i = 0; i != NElts; ++i)
1974     ID.AddInteger(MaskVec[i]);
1975 
1976   void* IP = nullptr;
1977   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1978     return SDValue(E, 0);
1979 
1980   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1981   // SDNode doesn't have access to it.  This memory will be "leaked" when
1982   // the node is deallocated, but recovered when the NodeAllocator is released.
1983   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1984   llvm::copy(MaskVec, MaskAlloc);
1985 
1986   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1987                                            dl.getDebugLoc(), MaskAlloc);
1988   createOperands(N, Ops);
1989 
1990   CSEMap.InsertNode(N, IP);
1991   InsertNode(N);
1992   SDValue V = SDValue(N, 0);
1993   NewSDValueDbgMsg(V, "Creating new node: ", this);
1994   return V;
1995 }
1996 
1997 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1998   EVT VT = SV.getValueType(0);
1999   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
2000   ShuffleVectorSDNode::commuteMask(MaskVec);
2001 
2002   SDValue Op0 = SV.getOperand(0);
2003   SDValue Op1 = SV.getOperand(1);
2004   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2005 }
2006 
2007 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2008   FoldingSetNodeID ID;
2009   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
2010   ID.AddInteger(RegNo);
2011   void *IP = nullptr;
2012   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2013     return SDValue(E, 0);
2014 
2015   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2016   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
2017   CSEMap.InsertNode(N, IP);
2018   InsertNode(N);
2019   return SDValue(N, 0);
2020 }
2021 
2022 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2023   FoldingSetNodeID ID;
2024   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2025   ID.AddPointer(RegMask);
2026   void *IP = nullptr;
2027   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2028     return SDValue(E, 0);
2029 
2030   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2031   CSEMap.InsertNode(N, IP);
2032   InsertNode(N);
2033   return SDValue(N, 0);
2034 }
2035 
2036 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2037                                  MCSymbol *Label) {
2038   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2039 }
2040 
2041 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2042                                    SDValue Root, MCSymbol *Label) {
2043   FoldingSetNodeID ID;
2044   SDValue Ops[] = { Root };
2045   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2046   ID.AddPointer(Label);
2047   void *IP = nullptr;
2048   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2049     return SDValue(E, 0);
2050 
2051   auto *N =
2052       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2053   createOperands(N, Ops);
2054 
2055   CSEMap.InsertNode(N, IP);
2056   InsertNode(N);
2057   return SDValue(N, 0);
2058 }
2059 
2060 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2061                                       int64_t Offset, bool isTarget,
2062                                       unsigned TargetFlags) {
2063   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2064 
2065   FoldingSetNodeID ID;
2066   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2067   ID.AddPointer(BA);
2068   ID.AddInteger(Offset);
2069   ID.AddInteger(TargetFlags);
2070   void *IP = nullptr;
2071   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2072     return SDValue(E, 0);
2073 
2074   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2075   CSEMap.InsertNode(N, IP);
2076   InsertNode(N);
2077   return SDValue(N, 0);
2078 }
2079 
2080 SDValue SelectionDAG::getSrcValue(const Value *V) {
2081   FoldingSetNodeID ID;
2082   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2083   ID.AddPointer(V);
2084 
2085   void *IP = nullptr;
2086   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2087     return SDValue(E, 0);
2088 
2089   auto *N = newSDNode<SrcValueSDNode>(V);
2090   CSEMap.InsertNode(N, IP);
2091   InsertNode(N);
2092   return SDValue(N, 0);
2093 }
2094 
2095 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2096   FoldingSetNodeID ID;
2097   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2098   ID.AddPointer(MD);
2099 
2100   void *IP = nullptr;
2101   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2102     return SDValue(E, 0);
2103 
2104   auto *N = newSDNode<MDNodeSDNode>(MD);
2105   CSEMap.InsertNode(N, IP);
2106   InsertNode(N);
2107   return SDValue(N, 0);
2108 }
2109 
2110 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2111   if (VT == V.getValueType())
2112     return V;
2113 
2114   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2115 }
2116 
2117 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2118                                        unsigned SrcAS, unsigned DestAS) {
2119   SDValue Ops[] = {Ptr};
2120   FoldingSetNodeID ID;
2121   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2122   ID.AddInteger(SrcAS);
2123   ID.AddInteger(DestAS);
2124 
2125   void *IP = nullptr;
2126   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2127     return SDValue(E, 0);
2128 
2129   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2130                                            VT, SrcAS, DestAS);
2131   createOperands(N, Ops);
2132 
2133   CSEMap.InsertNode(N, IP);
2134   InsertNode(N);
2135   return SDValue(N, 0);
2136 }
2137 
2138 SDValue SelectionDAG::getFreeze(SDValue V) {
2139   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2140 }
2141 
2142 /// getShiftAmountOperand - Return the specified value casted to
2143 /// the target's desired shift amount type.
2144 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2145   EVT OpTy = Op.getValueType();
2146   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2147   if (OpTy == ShTy || OpTy.isVector()) return Op;
2148 
2149   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2150 }
2151 
2152 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2153   SDLoc dl(Node);
2154   const TargetLowering &TLI = getTargetLoweringInfo();
2155   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2156   EVT VT = Node->getValueType(0);
2157   SDValue Tmp1 = Node->getOperand(0);
2158   SDValue Tmp2 = Node->getOperand(1);
2159   const MaybeAlign MA(Node->getConstantOperandVal(3));
2160 
2161   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2162                                Tmp2, MachinePointerInfo(V));
2163   SDValue VAList = VAListLoad;
2164 
2165   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2166     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2167                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2168 
2169     VAList =
2170         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2171                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2172   }
2173 
2174   // Increment the pointer, VAList, to the next vaarg
2175   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2176                  getConstant(getDataLayout().getTypeAllocSize(
2177                                                VT.getTypeForEVT(*getContext())),
2178                              dl, VAList.getValueType()));
2179   // Store the incremented VAList to the legalized pointer
2180   Tmp1 =
2181       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2182   // Load the actual argument out of the pointer VAList
2183   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2184 }
2185 
2186 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2187   SDLoc dl(Node);
2188   const TargetLowering &TLI = getTargetLoweringInfo();
2189   // This defaults to loading a pointer from the input and storing it to the
2190   // output, returning the chain.
2191   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2192   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2193   SDValue Tmp1 =
2194       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2195               Node->getOperand(2), MachinePointerInfo(VS));
2196   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2197                   MachinePointerInfo(VD));
2198 }
2199 
2200 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2201   const DataLayout &DL = getDataLayout();
2202   Type *Ty = VT.getTypeForEVT(*getContext());
2203   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2204 
2205   if (TLI->isTypeLegal(VT) || !VT.isVector())
2206     return RedAlign;
2207 
2208   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2209   const Align StackAlign = TFI->getStackAlign();
2210 
2211   // See if we can choose a smaller ABI alignment in cases where it's an
2212   // illegal vector type that will get broken down.
2213   if (RedAlign > StackAlign) {
2214     EVT IntermediateVT;
2215     MVT RegisterVT;
2216     unsigned NumIntermediates;
2217     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2218                                 NumIntermediates, RegisterVT);
2219     Ty = IntermediateVT.getTypeForEVT(*getContext());
2220     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2221     if (RedAlign2 < RedAlign)
2222       RedAlign = RedAlign2;
2223   }
2224 
2225   return RedAlign;
2226 }
2227 
2228 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2229   MachineFrameInfo &MFI = MF->getFrameInfo();
2230   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2231   int StackID = 0;
2232   if (Bytes.isScalable())
2233     StackID = TFI->getStackIDForScalableVectors();
2234   // The stack id gives an indication of whether the object is scalable or
2235   // not, so it's safe to pass in the minimum size here.
2236   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2237                                        false, nullptr, StackID);
2238   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2239 }
2240 
2241 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2242   Type *Ty = VT.getTypeForEVT(*getContext());
2243   Align StackAlign =
2244       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2245   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2246 }
2247 
2248 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2249   TypeSize VT1Size = VT1.getStoreSize();
2250   TypeSize VT2Size = VT2.getStoreSize();
2251   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2252          "Don't know how to choose the maximum size when creating a stack "
2253          "temporary");
2254   TypeSize Bytes =
2255       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2256 
2257   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2258   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2259   const DataLayout &DL = getDataLayout();
2260   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2261   return CreateStackTemporary(Bytes, Align);
2262 }
2263 
2264 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2265                                 ISD::CondCode Cond, const SDLoc &dl) {
2266   EVT OpVT = N1.getValueType();
2267 
2268   // These setcc operations always fold.
2269   switch (Cond) {
2270   default: break;
2271   case ISD::SETFALSE:
2272   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2273   case ISD::SETTRUE:
2274   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2275 
2276   case ISD::SETOEQ:
2277   case ISD::SETOGT:
2278   case ISD::SETOGE:
2279   case ISD::SETOLT:
2280   case ISD::SETOLE:
2281   case ISD::SETONE:
2282   case ISD::SETO:
2283   case ISD::SETUO:
2284   case ISD::SETUEQ:
2285   case ISD::SETUNE:
2286     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2287     break;
2288   }
2289 
2290   if (OpVT.isInteger()) {
2291     // For EQ and NE, we can always pick a value for the undef to make the
2292     // predicate pass or fail, so we can return undef.
2293     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2294     // icmp eq/ne X, undef -> undef.
2295     if ((N1.isUndef() || N2.isUndef()) &&
2296         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2297       return getUNDEF(VT);
2298 
2299     // If both operands are undef, we can return undef for int comparison.
2300     // icmp undef, undef -> undef.
2301     if (N1.isUndef() && N2.isUndef())
2302       return getUNDEF(VT);
2303 
2304     // icmp X, X -> true/false
2305     // icmp X, undef -> true/false because undef could be X.
2306     if (N1 == N2)
2307       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2308   }
2309 
2310   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2311     const APInt &C2 = N2C->getAPIntValue();
2312     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2313       const APInt &C1 = N1C->getAPIntValue();
2314 
2315       switch (Cond) {
2316       default: llvm_unreachable("Unknown integer setcc!");
2317       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2318       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2319       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2320       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2321       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2322       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2323       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2324       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2325       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2326       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2327       }
2328     }
2329   }
2330 
2331   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2332   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2333 
2334   if (N1CFP && N2CFP) {
2335     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2336     switch (Cond) {
2337     default: break;
2338     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2339                         return getUNDEF(VT);
2340                       LLVM_FALLTHROUGH;
2341     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2342                                              OpVT);
2343     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2344                         return getUNDEF(VT);
2345                       LLVM_FALLTHROUGH;
2346     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2347                                              R==APFloat::cmpLessThan, dl, VT,
2348                                              OpVT);
2349     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2350                         return getUNDEF(VT);
2351                       LLVM_FALLTHROUGH;
2352     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2353                                              OpVT);
2354     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2355                         return getUNDEF(VT);
2356                       LLVM_FALLTHROUGH;
2357     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2358                                              VT, OpVT);
2359     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2360                         return getUNDEF(VT);
2361                       LLVM_FALLTHROUGH;
2362     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2363                                              R==APFloat::cmpEqual, dl, VT,
2364                                              OpVT);
2365     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2366                         return getUNDEF(VT);
2367                       LLVM_FALLTHROUGH;
2368     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2369                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2370     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2371                                              OpVT);
2372     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2373                                              OpVT);
2374     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2375                                              R==APFloat::cmpEqual, dl, VT,
2376                                              OpVT);
2377     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2378                                              OpVT);
2379     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2380                                              R==APFloat::cmpLessThan, dl, VT,
2381                                              OpVT);
2382     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2383                                              R==APFloat::cmpUnordered, dl, VT,
2384                                              OpVT);
2385     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2386                                              VT, OpVT);
2387     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2388                                              OpVT);
2389     }
2390   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2391     // Ensure that the constant occurs on the RHS.
2392     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2393     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2394       return SDValue();
2395     return getSetCC(dl, VT, N2, N1, SwappedCond);
2396   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2397              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2398     // If an operand is known to be a nan (or undef that could be a nan), we can
2399     // fold it.
2400     // Choosing NaN for the undef will always make unordered comparison succeed
2401     // and ordered comparison fails.
2402     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2403     switch (ISD::getUnorderedFlavor(Cond)) {
2404     default:
2405       llvm_unreachable("Unknown flavor!");
2406     case 0: // Known false.
2407       return getBoolConstant(false, dl, VT, OpVT);
2408     case 1: // Known true.
2409       return getBoolConstant(true, dl, VT, OpVT);
2410     case 2: // Undefined.
2411       return getUNDEF(VT);
2412     }
2413   }
2414 
2415   // Could not fold it.
2416   return SDValue();
2417 }
2418 
2419 /// See if the specified operand can be simplified with the knowledge that only
2420 /// the bits specified by DemandedBits are used.
2421 /// TODO: really we should be making this into the DAG equivalent of
2422 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2423 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2424   EVT VT = V.getValueType();
2425 
2426   if (VT.isScalableVector())
2427     return SDValue();
2428 
2429   APInt DemandedElts = VT.isVector()
2430                            ? APInt::getAllOnes(VT.getVectorNumElements())
2431                            : APInt(1, 1);
2432   return GetDemandedBits(V, DemandedBits, DemandedElts);
2433 }
2434 
2435 /// See if the specified operand can be simplified with the knowledge that only
2436 /// the bits specified by DemandedBits are used in the elements specified by
2437 /// DemandedElts.
2438 /// TODO: really we should be making this into the DAG equivalent of
2439 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2440 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2441                                       const APInt &DemandedElts) {
2442   switch (V.getOpcode()) {
2443   default:
2444     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2445                                                 *this, 0);
2446   case ISD::Constant: {
2447     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2448     APInt NewVal = CVal & DemandedBits;
2449     if (NewVal != CVal)
2450       return getConstant(NewVal, SDLoc(V), V.getValueType());
2451     break;
2452   }
2453   case ISD::SRL:
2454     // Only look at single-use SRLs.
2455     if (!V.getNode()->hasOneUse())
2456       break;
2457     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2458       // See if we can recursively simplify the LHS.
2459       unsigned Amt = RHSC->getZExtValue();
2460 
2461       // Watch out for shift count overflow though.
2462       if (Amt >= DemandedBits.getBitWidth())
2463         break;
2464       APInt SrcDemandedBits = DemandedBits << Amt;
2465       if (SDValue SimplifyLHS =
2466               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2467         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2468                        V.getOperand(1));
2469     }
2470     break;
2471   }
2472   return SDValue();
2473 }
2474 
2475 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2476 /// use this predicate to simplify operations downstream.
2477 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2478   unsigned BitWidth = Op.getScalarValueSizeInBits();
2479   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2480 }
2481 
2482 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2483 /// this predicate to simplify operations downstream.  Mask is known to be zero
2484 /// for bits that V cannot have.
2485 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2486                                      unsigned Depth) const {
2487   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2488 }
2489 
2490 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2491 /// DemandedElts.  We use this predicate to simplify operations downstream.
2492 /// Mask is known to be zero for bits that V cannot have.
2493 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2494                                      const APInt &DemandedElts,
2495                                      unsigned Depth) const {
2496   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2497 }
2498 
2499 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2500 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2501                                         unsigned Depth) const {
2502   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2503 }
2504 
2505 /// isSplatValue - Return true if the vector V has the same value
2506 /// across all DemandedElts. For scalable vectors it does not make
2507 /// sense to specify which elements are demanded or undefined, therefore
2508 /// they are simply ignored.
2509 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2510                                 APInt &UndefElts, unsigned Depth) {
2511   EVT VT = V.getValueType();
2512   assert(VT.isVector() && "Vector type expected");
2513 
2514   if (!VT.isScalableVector() && !DemandedElts)
2515     return false; // No demanded elts, better to assume we don't know anything.
2516 
2517   if (Depth >= MaxRecursionDepth)
2518     return false; // Limit search depth.
2519 
2520   // Deal with some common cases here that work for both fixed and scalable
2521   // vector types.
2522   switch (V.getOpcode()) {
2523   case ISD::SPLAT_VECTOR:
2524     UndefElts = V.getOperand(0).isUndef()
2525                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2526                     : APInt(DemandedElts.getBitWidth(), 0);
2527     return true;
2528   case ISD::ADD:
2529   case ISD::SUB:
2530   case ISD::AND:
2531   case ISD::XOR:
2532   case ISD::OR: {
2533     APInt UndefLHS, UndefRHS;
2534     SDValue LHS = V.getOperand(0);
2535     SDValue RHS = V.getOperand(1);
2536     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2537         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2538       UndefElts = UndefLHS | UndefRHS;
2539       return true;
2540     }
2541     return false;
2542   }
2543   case ISD::ABS:
2544   case ISD::TRUNCATE:
2545   case ISD::SIGN_EXTEND:
2546   case ISD::ZERO_EXTEND:
2547     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2548   }
2549 
2550   // We don't support other cases than those above for scalable vectors at
2551   // the moment.
2552   if (VT.isScalableVector())
2553     return false;
2554 
2555   unsigned NumElts = VT.getVectorNumElements();
2556   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2557   UndefElts = APInt::getZero(NumElts);
2558 
2559   switch (V.getOpcode()) {
2560   case ISD::BUILD_VECTOR: {
2561     SDValue Scl;
2562     for (unsigned i = 0; i != NumElts; ++i) {
2563       SDValue Op = V.getOperand(i);
2564       if (Op.isUndef()) {
2565         UndefElts.setBit(i);
2566         continue;
2567       }
2568       if (!DemandedElts[i])
2569         continue;
2570       if (Scl && Scl != Op)
2571         return false;
2572       Scl = Op;
2573     }
2574     return true;
2575   }
2576   case ISD::VECTOR_SHUFFLE: {
2577     // Check if this is a shuffle node doing a splat.
2578     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2579     int SplatIndex = -1;
2580     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2581     for (int i = 0; i != (int)NumElts; ++i) {
2582       int M = Mask[i];
2583       if (M < 0) {
2584         UndefElts.setBit(i);
2585         continue;
2586       }
2587       if (!DemandedElts[i])
2588         continue;
2589       if (0 <= SplatIndex && SplatIndex != M)
2590         return false;
2591       SplatIndex = M;
2592     }
2593     return true;
2594   }
2595   case ISD::EXTRACT_SUBVECTOR: {
2596     // Offset the demanded elts by the subvector index.
2597     SDValue Src = V.getOperand(0);
2598     // We don't support scalable vectors at the moment.
2599     if (Src.getValueType().isScalableVector())
2600       return false;
2601     uint64_t Idx = V.getConstantOperandVal(1);
2602     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2603     APInt UndefSrcElts;
2604     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2605     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2606       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2607       return true;
2608     }
2609     break;
2610   }
2611   }
2612 
2613   return false;
2614 }
2615 
2616 /// Helper wrapper to main isSplatValue function.
2617 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2618   EVT VT = V.getValueType();
2619   assert(VT.isVector() && "Vector type expected");
2620 
2621   APInt UndefElts;
2622   APInt DemandedElts;
2623 
2624   // For now we don't support this with scalable vectors.
2625   if (!VT.isScalableVector())
2626     DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2627   return isSplatValue(V, DemandedElts, UndefElts) &&
2628          (AllowUndefs || !UndefElts);
2629 }
2630 
2631 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2632   V = peekThroughExtractSubvectors(V);
2633 
2634   EVT VT = V.getValueType();
2635   unsigned Opcode = V.getOpcode();
2636   switch (Opcode) {
2637   default: {
2638     APInt UndefElts;
2639     APInt DemandedElts;
2640 
2641     if (!VT.isScalableVector())
2642       DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2643 
2644     if (isSplatValue(V, DemandedElts, UndefElts)) {
2645       if (VT.isScalableVector()) {
2646         // DemandedElts and UndefElts are ignored for scalable vectors, since
2647         // the only supported cases are SPLAT_VECTOR nodes.
2648         SplatIdx = 0;
2649       } else {
2650         // Handle case where all demanded elements are UNDEF.
2651         if (DemandedElts.isSubsetOf(UndefElts)) {
2652           SplatIdx = 0;
2653           return getUNDEF(VT);
2654         }
2655         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2656       }
2657       return V;
2658     }
2659     break;
2660   }
2661   case ISD::SPLAT_VECTOR:
2662     SplatIdx = 0;
2663     return V;
2664   case ISD::VECTOR_SHUFFLE: {
2665     if (VT.isScalableVector())
2666       return SDValue();
2667 
2668     // Check if this is a shuffle node doing a splat.
2669     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2670     // getTargetVShiftNode currently struggles without the splat source.
2671     auto *SVN = cast<ShuffleVectorSDNode>(V);
2672     if (!SVN->isSplat())
2673       break;
2674     int Idx = SVN->getSplatIndex();
2675     int NumElts = V.getValueType().getVectorNumElements();
2676     SplatIdx = Idx % NumElts;
2677     return V.getOperand(Idx / NumElts);
2678   }
2679   }
2680 
2681   return SDValue();
2682 }
2683 
2684 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2685   int SplatIdx;
2686   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2687     EVT SVT = SrcVector.getValueType().getScalarType();
2688     EVT LegalSVT = SVT;
2689     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2690       if (!SVT.isInteger())
2691         return SDValue();
2692       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2693       if (LegalSVT.bitsLT(SVT))
2694         return SDValue();
2695     }
2696     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2697                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2698   }
2699   return SDValue();
2700 }
2701 
2702 const APInt *
2703 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2704                                           const APInt &DemandedElts) const {
2705   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2706           V.getOpcode() == ISD::SRA) &&
2707          "Unknown shift node");
2708   unsigned BitWidth = V.getScalarValueSizeInBits();
2709   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2710     // Shifting more than the bitwidth is not valid.
2711     const APInt &ShAmt = SA->getAPIntValue();
2712     if (ShAmt.ult(BitWidth))
2713       return &ShAmt;
2714   }
2715   return nullptr;
2716 }
2717 
2718 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2719     SDValue V, const APInt &DemandedElts) const {
2720   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2721           V.getOpcode() == ISD::SRA) &&
2722          "Unknown shift node");
2723   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2724     return ValidAmt;
2725   unsigned BitWidth = V.getScalarValueSizeInBits();
2726   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2727   if (!BV)
2728     return nullptr;
2729   const APInt *MinShAmt = nullptr;
2730   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2731     if (!DemandedElts[i])
2732       continue;
2733     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2734     if (!SA)
2735       return nullptr;
2736     // Shifting more than the bitwidth is not valid.
2737     const APInt &ShAmt = SA->getAPIntValue();
2738     if (ShAmt.uge(BitWidth))
2739       return nullptr;
2740     if (MinShAmt && MinShAmt->ule(ShAmt))
2741       continue;
2742     MinShAmt = &ShAmt;
2743   }
2744   return MinShAmt;
2745 }
2746 
2747 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2748     SDValue V, const APInt &DemandedElts) const {
2749   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2750           V.getOpcode() == ISD::SRA) &&
2751          "Unknown shift node");
2752   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2753     return ValidAmt;
2754   unsigned BitWidth = V.getScalarValueSizeInBits();
2755   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2756   if (!BV)
2757     return nullptr;
2758   const APInt *MaxShAmt = nullptr;
2759   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2760     if (!DemandedElts[i])
2761       continue;
2762     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2763     if (!SA)
2764       return nullptr;
2765     // Shifting more than the bitwidth is not valid.
2766     const APInt &ShAmt = SA->getAPIntValue();
2767     if (ShAmt.uge(BitWidth))
2768       return nullptr;
2769     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2770       continue;
2771     MaxShAmt = &ShAmt;
2772   }
2773   return MaxShAmt;
2774 }
2775 
2776 /// Determine which bits of Op are known to be either zero or one and return
2777 /// them in Known. For vectors, the known bits are those that are shared by
2778 /// every vector element.
2779 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2780   EVT VT = Op.getValueType();
2781 
2782   // TOOD: Until we have a plan for how to represent demanded elements for
2783   // scalable vectors, we can just bail out for now.
2784   if (Op.getValueType().isScalableVector()) {
2785     unsigned BitWidth = Op.getScalarValueSizeInBits();
2786     return KnownBits(BitWidth);
2787   }
2788 
2789   APInt DemandedElts = VT.isVector()
2790                            ? APInt::getAllOnes(VT.getVectorNumElements())
2791                            : APInt(1, 1);
2792   return computeKnownBits(Op, DemandedElts, Depth);
2793 }
2794 
2795 /// Determine which bits of Op are known to be either zero or one and return
2796 /// them in Known. The DemandedElts argument allows us to only collect the known
2797 /// bits that are shared by the requested vector elements.
2798 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2799                                          unsigned Depth) const {
2800   unsigned BitWidth = Op.getScalarValueSizeInBits();
2801 
2802   KnownBits Known(BitWidth);   // Don't know anything.
2803 
2804   // TOOD: Until we have a plan for how to represent demanded elements for
2805   // scalable vectors, we can just bail out for now.
2806   if (Op.getValueType().isScalableVector())
2807     return Known;
2808 
2809   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2810     // We know all of the bits for a constant!
2811     return KnownBits::makeConstant(C->getAPIntValue());
2812   }
2813   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2814     // We know all of the bits for a constant fp!
2815     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2816   }
2817 
2818   if (Depth >= MaxRecursionDepth)
2819     return Known;  // Limit search depth.
2820 
2821   KnownBits Known2;
2822   unsigned NumElts = DemandedElts.getBitWidth();
2823   assert((!Op.getValueType().isVector() ||
2824           NumElts == Op.getValueType().getVectorNumElements()) &&
2825          "Unexpected vector size");
2826 
2827   if (!DemandedElts)
2828     return Known;  // No demanded elts, better to assume we don't know anything.
2829 
2830   unsigned Opcode = Op.getOpcode();
2831   switch (Opcode) {
2832   case ISD::BUILD_VECTOR:
2833     // Collect the known bits that are shared by every demanded vector element.
2834     Known.Zero.setAllBits(); Known.One.setAllBits();
2835     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2836       if (!DemandedElts[i])
2837         continue;
2838 
2839       SDValue SrcOp = Op.getOperand(i);
2840       Known2 = computeKnownBits(SrcOp, Depth + 1);
2841 
2842       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2843       if (SrcOp.getValueSizeInBits() != BitWidth) {
2844         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2845                "Expected BUILD_VECTOR implicit truncation");
2846         Known2 = Known2.trunc(BitWidth);
2847       }
2848 
2849       // Known bits are the values that are shared by every demanded element.
2850       Known = KnownBits::commonBits(Known, Known2);
2851 
2852       // If we don't know any bits, early out.
2853       if (Known.isUnknown())
2854         break;
2855     }
2856     break;
2857   case ISD::VECTOR_SHUFFLE: {
2858     // Collect the known bits that are shared by every vector element referenced
2859     // by the shuffle.
2860     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2861     Known.Zero.setAllBits(); Known.One.setAllBits();
2862     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2863     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2864     for (unsigned i = 0; i != NumElts; ++i) {
2865       if (!DemandedElts[i])
2866         continue;
2867 
2868       int M = SVN->getMaskElt(i);
2869       if (M < 0) {
2870         // For UNDEF elements, we don't know anything about the common state of
2871         // the shuffle result.
2872         Known.resetAll();
2873         DemandedLHS.clearAllBits();
2874         DemandedRHS.clearAllBits();
2875         break;
2876       }
2877 
2878       if ((unsigned)M < NumElts)
2879         DemandedLHS.setBit((unsigned)M % NumElts);
2880       else
2881         DemandedRHS.setBit((unsigned)M % NumElts);
2882     }
2883     // Known bits are the values that are shared by every demanded element.
2884     if (!!DemandedLHS) {
2885       SDValue LHS = Op.getOperand(0);
2886       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2887       Known = KnownBits::commonBits(Known, Known2);
2888     }
2889     // If we don't know any bits, early out.
2890     if (Known.isUnknown())
2891       break;
2892     if (!!DemandedRHS) {
2893       SDValue RHS = Op.getOperand(1);
2894       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2895       Known = KnownBits::commonBits(Known, Known2);
2896     }
2897     break;
2898   }
2899   case ISD::CONCAT_VECTORS: {
2900     // Split DemandedElts and test each of the demanded subvectors.
2901     Known.Zero.setAllBits(); Known.One.setAllBits();
2902     EVT SubVectorVT = Op.getOperand(0).getValueType();
2903     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2904     unsigned NumSubVectors = Op.getNumOperands();
2905     for (unsigned i = 0; i != NumSubVectors; ++i) {
2906       APInt DemandedSub =
2907           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
2908       if (!!DemandedSub) {
2909         SDValue Sub = Op.getOperand(i);
2910         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2911         Known = KnownBits::commonBits(Known, Known2);
2912       }
2913       // If we don't know any bits, early out.
2914       if (Known.isUnknown())
2915         break;
2916     }
2917     break;
2918   }
2919   case ISD::INSERT_SUBVECTOR: {
2920     // Demand any elements from the subvector and the remainder from the src its
2921     // inserted into.
2922     SDValue Src = Op.getOperand(0);
2923     SDValue Sub = Op.getOperand(1);
2924     uint64_t Idx = Op.getConstantOperandVal(2);
2925     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2926     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2927     APInt DemandedSrcElts = DemandedElts;
2928     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2929 
2930     Known.One.setAllBits();
2931     Known.Zero.setAllBits();
2932     if (!!DemandedSubElts) {
2933       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2934       if (Known.isUnknown())
2935         break; // early-out.
2936     }
2937     if (!!DemandedSrcElts) {
2938       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2939       Known = KnownBits::commonBits(Known, Known2);
2940     }
2941     break;
2942   }
2943   case ISD::EXTRACT_SUBVECTOR: {
2944     // Offset the demanded elts by the subvector index.
2945     SDValue Src = Op.getOperand(0);
2946     // Bail until we can represent demanded elements for scalable vectors.
2947     if (Src.getValueType().isScalableVector())
2948       break;
2949     uint64_t Idx = Op.getConstantOperandVal(1);
2950     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2951     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2952     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2953     break;
2954   }
2955   case ISD::SCALAR_TO_VECTOR: {
2956     // We know about scalar_to_vector as much as we know about it source,
2957     // which becomes the first element of otherwise unknown vector.
2958     if (DemandedElts != 1)
2959       break;
2960 
2961     SDValue N0 = Op.getOperand(0);
2962     Known = computeKnownBits(N0, Depth + 1);
2963     if (N0.getValueSizeInBits() != BitWidth)
2964       Known = Known.trunc(BitWidth);
2965 
2966     break;
2967   }
2968   case ISD::BITCAST: {
2969     SDValue N0 = Op.getOperand(0);
2970     EVT SubVT = N0.getValueType();
2971     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2972 
2973     // Ignore bitcasts from unsupported types.
2974     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2975       break;
2976 
2977     // Fast handling of 'identity' bitcasts.
2978     if (BitWidth == SubBitWidth) {
2979       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2980       break;
2981     }
2982 
2983     bool IsLE = getDataLayout().isLittleEndian();
2984 
2985     // Bitcast 'small element' vector to 'large element' scalar/vector.
2986     if ((BitWidth % SubBitWidth) == 0) {
2987       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2988 
2989       // Collect known bits for the (larger) output by collecting the known
2990       // bits from each set of sub elements and shift these into place.
2991       // We need to separately call computeKnownBits for each set of
2992       // sub elements as the knownbits for each is likely to be different.
2993       unsigned SubScale = BitWidth / SubBitWidth;
2994       APInt SubDemandedElts(NumElts * SubScale, 0);
2995       for (unsigned i = 0; i != NumElts; ++i)
2996         if (DemandedElts[i])
2997           SubDemandedElts.setBit(i * SubScale);
2998 
2999       for (unsigned i = 0; i != SubScale; ++i) {
3000         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3001                          Depth + 1);
3002         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3003         Known.insertBits(Known2, SubBitWidth * Shifts);
3004       }
3005     }
3006 
3007     // Bitcast 'large element' scalar/vector to 'small element' vector.
3008     if ((SubBitWidth % BitWidth) == 0) {
3009       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3010 
3011       // Collect known bits for the (smaller) output by collecting the known
3012       // bits from the overlapping larger input elements and extracting the
3013       // sub sections we actually care about.
3014       unsigned SubScale = SubBitWidth / BitWidth;
3015       APInt SubDemandedElts =
3016           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3017       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3018 
3019       Known.Zero.setAllBits(); Known.One.setAllBits();
3020       for (unsigned i = 0; i != NumElts; ++i)
3021         if (DemandedElts[i]) {
3022           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3023           unsigned Offset = (Shifts % SubScale) * BitWidth;
3024           Known = KnownBits::commonBits(Known,
3025                                         Known2.extractBits(BitWidth, Offset));
3026           // If we don't know any bits, early out.
3027           if (Known.isUnknown())
3028             break;
3029         }
3030     }
3031     break;
3032   }
3033   case ISD::AND:
3034     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3035     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3036 
3037     Known &= Known2;
3038     break;
3039   case ISD::OR:
3040     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3041     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3042 
3043     Known |= Known2;
3044     break;
3045   case ISD::XOR:
3046     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3047     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3048 
3049     Known ^= Known2;
3050     break;
3051   case ISD::MUL: {
3052     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3053     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3054     Known = KnownBits::mul(Known, Known2);
3055     break;
3056   }
3057   case ISD::MULHU: {
3058     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3059     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3060     Known = KnownBits::mulhu(Known, Known2);
3061     break;
3062   }
3063   case ISD::MULHS: {
3064     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3065     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3066     Known = KnownBits::mulhs(Known, Known2);
3067     break;
3068   }
3069   case ISD::UMUL_LOHI: {
3070     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3071     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3072     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3073     if (Op.getResNo() == 0)
3074       Known = KnownBits::mul(Known, Known2);
3075     else
3076       Known = KnownBits::mulhu(Known, Known2);
3077     break;
3078   }
3079   case ISD::SMUL_LOHI: {
3080     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3081     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3082     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3083     if (Op.getResNo() == 0)
3084       Known = KnownBits::mul(Known, Known2);
3085     else
3086       Known = KnownBits::mulhs(Known, Known2);
3087     break;
3088   }
3089   case ISD::UDIV: {
3090     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3091     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3092     Known = KnownBits::udiv(Known, Known2);
3093     break;
3094   }
3095   case ISD::SELECT:
3096   case ISD::VSELECT:
3097     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3098     // If we don't know any bits, early out.
3099     if (Known.isUnknown())
3100       break;
3101     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3102 
3103     // Only known if known in both the LHS and RHS.
3104     Known = KnownBits::commonBits(Known, Known2);
3105     break;
3106   case ISD::SELECT_CC:
3107     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3108     // If we don't know any bits, early out.
3109     if (Known.isUnknown())
3110       break;
3111     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3112 
3113     // Only known if known in both the LHS and RHS.
3114     Known = KnownBits::commonBits(Known, Known2);
3115     break;
3116   case ISD::SMULO:
3117   case ISD::UMULO:
3118     if (Op.getResNo() != 1)
3119       break;
3120     // The boolean result conforms to getBooleanContents.
3121     // If we know the result of a setcc has the top bits zero, use this info.
3122     // We know that we have an integer-based boolean since these operations
3123     // are only available for integer.
3124     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3125             TargetLowering::ZeroOrOneBooleanContent &&
3126         BitWidth > 1)
3127       Known.Zero.setBitsFrom(1);
3128     break;
3129   case ISD::SETCC:
3130   case ISD::STRICT_FSETCC:
3131   case ISD::STRICT_FSETCCS: {
3132     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3133     // If we know the result of a setcc has the top bits zero, use this info.
3134     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3135             TargetLowering::ZeroOrOneBooleanContent &&
3136         BitWidth > 1)
3137       Known.Zero.setBitsFrom(1);
3138     break;
3139   }
3140   case ISD::SHL:
3141     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3142     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3143     Known = KnownBits::shl(Known, Known2);
3144 
3145     // Minimum shift low bits are known zero.
3146     if (const APInt *ShMinAmt =
3147             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3148       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3149     break;
3150   case ISD::SRL:
3151     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3152     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3153     Known = KnownBits::lshr(Known, Known2);
3154 
3155     // Minimum shift high bits are known zero.
3156     if (const APInt *ShMinAmt =
3157             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3158       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3159     break;
3160   case ISD::SRA:
3161     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3162     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3163     Known = KnownBits::ashr(Known, Known2);
3164     // TODO: Add minimum shift high known sign bits.
3165     break;
3166   case ISD::FSHL:
3167   case ISD::FSHR:
3168     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3169       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3170 
3171       // For fshl, 0-shift returns the 1st arg.
3172       // For fshr, 0-shift returns the 2nd arg.
3173       if (Amt == 0) {
3174         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3175                                  DemandedElts, Depth + 1);
3176         break;
3177       }
3178 
3179       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3180       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3181       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3182       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3183       if (Opcode == ISD::FSHL) {
3184         Known.One <<= Amt;
3185         Known.Zero <<= Amt;
3186         Known2.One.lshrInPlace(BitWidth - Amt);
3187         Known2.Zero.lshrInPlace(BitWidth - Amt);
3188       } else {
3189         Known.One <<= BitWidth - Amt;
3190         Known.Zero <<= BitWidth - Amt;
3191         Known2.One.lshrInPlace(Amt);
3192         Known2.Zero.lshrInPlace(Amt);
3193       }
3194       Known.One |= Known2.One;
3195       Known.Zero |= Known2.Zero;
3196     }
3197     break;
3198   case ISD::SIGN_EXTEND_INREG: {
3199     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3200     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3201     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3202     break;
3203   }
3204   case ISD::CTTZ:
3205   case ISD::CTTZ_ZERO_UNDEF: {
3206     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3207     // If we have a known 1, its position is our upper bound.
3208     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3209     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3210     Known.Zero.setBitsFrom(LowBits);
3211     break;
3212   }
3213   case ISD::CTLZ:
3214   case ISD::CTLZ_ZERO_UNDEF: {
3215     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3216     // If we have a known 1, its position is our upper bound.
3217     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3218     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3219     Known.Zero.setBitsFrom(LowBits);
3220     break;
3221   }
3222   case ISD::CTPOP: {
3223     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3224     // If we know some of the bits are zero, they can't be one.
3225     unsigned PossibleOnes = Known2.countMaxPopulation();
3226     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3227     break;
3228   }
3229   case ISD::PARITY: {
3230     // Parity returns 0 everywhere but the LSB.
3231     Known.Zero.setBitsFrom(1);
3232     break;
3233   }
3234   case ISD::LOAD: {
3235     LoadSDNode *LD = cast<LoadSDNode>(Op);
3236     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3237     if (ISD::isNON_EXTLoad(LD) && Cst) {
3238       // Determine any common known bits from the loaded constant pool value.
3239       Type *CstTy = Cst->getType();
3240       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3241         // If its a vector splat, then we can (quickly) reuse the scalar path.
3242         // NOTE: We assume all elements match and none are UNDEF.
3243         if (CstTy->isVectorTy()) {
3244           if (const Constant *Splat = Cst->getSplatValue()) {
3245             Cst = Splat;
3246             CstTy = Cst->getType();
3247           }
3248         }
3249         // TODO - do we need to handle different bitwidths?
3250         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3251           // Iterate across all vector elements finding common known bits.
3252           Known.One.setAllBits();
3253           Known.Zero.setAllBits();
3254           for (unsigned i = 0; i != NumElts; ++i) {
3255             if (!DemandedElts[i])
3256               continue;
3257             if (Constant *Elt = Cst->getAggregateElement(i)) {
3258               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3259                 const APInt &Value = CInt->getValue();
3260                 Known.One &= Value;
3261                 Known.Zero &= ~Value;
3262                 continue;
3263               }
3264               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3265                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3266                 Known.One &= Value;
3267                 Known.Zero &= ~Value;
3268                 continue;
3269               }
3270             }
3271             Known.One.clearAllBits();
3272             Known.Zero.clearAllBits();
3273             break;
3274           }
3275         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3276           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3277             Known = KnownBits::makeConstant(CInt->getValue());
3278           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3279             Known =
3280                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3281           }
3282         }
3283       }
3284     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3285       // If this is a ZEXTLoad and we are looking at the loaded value.
3286       EVT VT = LD->getMemoryVT();
3287       unsigned MemBits = VT.getScalarSizeInBits();
3288       Known.Zero.setBitsFrom(MemBits);
3289     } else if (const MDNode *Ranges = LD->getRanges()) {
3290       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3291         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3292     }
3293     break;
3294   }
3295   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3296     EVT InVT = Op.getOperand(0).getValueType();
3297     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3298     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3299     Known = Known.zext(BitWidth);
3300     break;
3301   }
3302   case ISD::ZERO_EXTEND: {
3303     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3304     Known = Known.zext(BitWidth);
3305     break;
3306   }
3307   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3308     EVT InVT = Op.getOperand(0).getValueType();
3309     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3310     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3311     // If the sign bit is known to be zero or one, then sext will extend
3312     // it to the top bits, else it will just zext.
3313     Known = Known.sext(BitWidth);
3314     break;
3315   }
3316   case ISD::SIGN_EXTEND: {
3317     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3318     // If the sign bit is known to be zero or one, then sext will extend
3319     // it to the top bits, else it will just zext.
3320     Known = Known.sext(BitWidth);
3321     break;
3322   }
3323   case ISD::ANY_EXTEND_VECTOR_INREG: {
3324     EVT InVT = Op.getOperand(0).getValueType();
3325     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3326     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3327     Known = Known.anyext(BitWidth);
3328     break;
3329   }
3330   case ISD::ANY_EXTEND: {
3331     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3332     Known = Known.anyext(BitWidth);
3333     break;
3334   }
3335   case ISD::TRUNCATE: {
3336     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3337     Known = Known.trunc(BitWidth);
3338     break;
3339   }
3340   case ISD::AssertZext: {
3341     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3342     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3343     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3344     Known.Zero |= (~InMask);
3345     Known.One  &= (~Known.Zero);
3346     break;
3347   }
3348   case ISD::AssertAlign: {
3349     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3350     assert(LogOfAlign != 0);
3351     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3352     // well as clearing one bits.
3353     Known.Zero.setLowBits(LogOfAlign);
3354     Known.One.clearLowBits(LogOfAlign);
3355     break;
3356   }
3357   case ISD::FGETSIGN:
3358     // All bits are zero except the low bit.
3359     Known.Zero.setBitsFrom(1);
3360     break;
3361   case ISD::USUBO:
3362   case ISD::SSUBO:
3363     if (Op.getResNo() == 1) {
3364       // If we know the result of a setcc has the top bits zero, use this info.
3365       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3366               TargetLowering::ZeroOrOneBooleanContent &&
3367           BitWidth > 1)
3368         Known.Zero.setBitsFrom(1);
3369       break;
3370     }
3371     LLVM_FALLTHROUGH;
3372   case ISD::SUB:
3373   case ISD::SUBC: {
3374     assert(Op.getResNo() == 0 &&
3375            "We only compute knownbits for the difference here.");
3376 
3377     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3378     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3379     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3380                                         Known, Known2);
3381     break;
3382   }
3383   case ISD::UADDO:
3384   case ISD::SADDO:
3385   case ISD::ADDCARRY:
3386     if (Op.getResNo() == 1) {
3387       // If we know the result of a setcc has the top bits zero, use this info.
3388       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3389               TargetLowering::ZeroOrOneBooleanContent &&
3390           BitWidth > 1)
3391         Known.Zero.setBitsFrom(1);
3392       break;
3393     }
3394     LLVM_FALLTHROUGH;
3395   case ISD::ADD:
3396   case ISD::ADDC:
3397   case ISD::ADDE: {
3398     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3399 
3400     // With ADDE and ADDCARRY, a carry bit may be added in.
3401     KnownBits Carry(1);
3402     if (Opcode == ISD::ADDE)
3403       // Can't track carry from glue, set carry to unknown.
3404       Carry.resetAll();
3405     else if (Opcode == ISD::ADDCARRY)
3406       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3407       // the trouble (how often will we find a known carry bit). And I haven't
3408       // tested this very much yet, but something like this might work:
3409       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3410       //   Carry = Carry.zextOrTrunc(1, false);
3411       Carry.resetAll();
3412     else
3413       Carry.setAllZero();
3414 
3415     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3416     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3417     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3418     break;
3419   }
3420   case ISD::SREM: {
3421     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3422     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3423     Known = KnownBits::srem(Known, Known2);
3424     break;
3425   }
3426   case ISD::UREM: {
3427     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3428     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3429     Known = KnownBits::urem(Known, Known2);
3430     break;
3431   }
3432   case ISD::EXTRACT_ELEMENT: {
3433     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3434     const unsigned Index = Op.getConstantOperandVal(1);
3435     const unsigned EltBitWidth = Op.getValueSizeInBits();
3436 
3437     // Remove low part of known bits mask
3438     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3439     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3440 
3441     // Remove high part of known bit mask
3442     Known = Known.trunc(EltBitWidth);
3443     break;
3444   }
3445   case ISD::EXTRACT_VECTOR_ELT: {
3446     SDValue InVec = Op.getOperand(0);
3447     SDValue EltNo = Op.getOperand(1);
3448     EVT VecVT = InVec.getValueType();
3449     // computeKnownBits not yet implemented for scalable vectors.
3450     if (VecVT.isScalableVector())
3451       break;
3452     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3453     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3454 
3455     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3456     // anything about the extended bits.
3457     if (BitWidth > EltBitWidth)
3458       Known = Known.trunc(EltBitWidth);
3459 
3460     // If we know the element index, just demand that vector element, else for
3461     // an unknown element index, ignore DemandedElts and demand them all.
3462     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3463     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3464     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3465       DemandedSrcElts =
3466           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3467 
3468     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3469     if (BitWidth > EltBitWidth)
3470       Known = Known.anyext(BitWidth);
3471     break;
3472   }
3473   case ISD::INSERT_VECTOR_ELT: {
3474     // If we know the element index, split the demand between the
3475     // source vector and the inserted element, otherwise assume we need
3476     // the original demanded vector elements and the value.
3477     SDValue InVec = Op.getOperand(0);
3478     SDValue InVal = Op.getOperand(1);
3479     SDValue EltNo = Op.getOperand(2);
3480     bool DemandedVal = true;
3481     APInt DemandedVecElts = DemandedElts;
3482     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3483     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3484       unsigned EltIdx = CEltNo->getZExtValue();
3485       DemandedVal = !!DemandedElts[EltIdx];
3486       DemandedVecElts.clearBit(EltIdx);
3487     }
3488     Known.One.setAllBits();
3489     Known.Zero.setAllBits();
3490     if (DemandedVal) {
3491       Known2 = computeKnownBits(InVal, Depth + 1);
3492       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3493     }
3494     if (!!DemandedVecElts) {
3495       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3496       Known = KnownBits::commonBits(Known, Known2);
3497     }
3498     break;
3499   }
3500   case ISD::BITREVERSE: {
3501     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3502     Known = Known2.reverseBits();
3503     break;
3504   }
3505   case ISD::BSWAP: {
3506     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3507     Known = Known2.byteSwap();
3508     break;
3509   }
3510   case ISD::ABS: {
3511     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3512     Known = Known2.abs();
3513     break;
3514   }
3515   case ISD::USUBSAT: {
3516     // The result of usubsat will never be larger than the LHS.
3517     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3518     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3519     break;
3520   }
3521   case ISD::UMIN: {
3522     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3523     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3524     Known = KnownBits::umin(Known, Known2);
3525     break;
3526   }
3527   case ISD::UMAX: {
3528     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3529     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3530     Known = KnownBits::umax(Known, Known2);
3531     break;
3532   }
3533   case ISD::SMIN:
3534   case ISD::SMAX: {
3535     // If we have a clamp pattern, we know that the number of sign bits will be
3536     // the minimum of the clamp min/max range.
3537     bool IsMax = (Opcode == ISD::SMAX);
3538     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3539     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3540       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3541         CstHigh =
3542             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3543     if (CstLow && CstHigh) {
3544       if (!IsMax)
3545         std::swap(CstLow, CstHigh);
3546 
3547       const APInt &ValueLow = CstLow->getAPIntValue();
3548       const APInt &ValueHigh = CstHigh->getAPIntValue();
3549       if (ValueLow.sle(ValueHigh)) {
3550         unsigned LowSignBits = ValueLow.getNumSignBits();
3551         unsigned HighSignBits = ValueHigh.getNumSignBits();
3552         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3553         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3554           Known.One.setHighBits(MinSignBits);
3555           break;
3556         }
3557         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3558           Known.Zero.setHighBits(MinSignBits);
3559           break;
3560         }
3561       }
3562     }
3563 
3564     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3565     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3566     if (IsMax)
3567       Known = KnownBits::smax(Known, Known2);
3568     else
3569       Known = KnownBits::smin(Known, Known2);
3570     break;
3571   }
3572   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3573     if (Op.getResNo() == 1) {
3574       // The boolean result conforms to getBooleanContents.
3575       // If we know the result of a setcc has the top bits zero, use this info.
3576       // We know that we have an integer-based boolean since these operations
3577       // are only available for integer.
3578       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3579               TargetLowering::ZeroOrOneBooleanContent &&
3580           BitWidth > 1)
3581         Known.Zero.setBitsFrom(1);
3582       break;
3583     }
3584     LLVM_FALLTHROUGH;
3585   case ISD::ATOMIC_CMP_SWAP:
3586   case ISD::ATOMIC_SWAP:
3587   case ISD::ATOMIC_LOAD_ADD:
3588   case ISD::ATOMIC_LOAD_SUB:
3589   case ISD::ATOMIC_LOAD_AND:
3590   case ISD::ATOMIC_LOAD_CLR:
3591   case ISD::ATOMIC_LOAD_OR:
3592   case ISD::ATOMIC_LOAD_XOR:
3593   case ISD::ATOMIC_LOAD_NAND:
3594   case ISD::ATOMIC_LOAD_MIN:
3595   case ISD::ATOMIC_LOAD_MAX:
3596   case ISD::ATOMIC_LOAD_UMIN:
3597   case ISD::ATOMIC_LOAD_UMAX:
3598   case ISD::ATOMIC_LOAD: {
3599     unsigned MemBits =
3600         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3601     // If we are looking at the loaded value.
3602     if (Op.getResNo() == 0) {
3603       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3604         Known.Zero.setBitsFrom(MemBits);
3605     }
3606     break;
3607   }
3608   case ISD::FrameIndex:
3609   case ISD::TargetFrameIndex:
3610     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3611                                        Known, getMachineFunction());
3612     break;
3613 
3614   default:
3615     if (Opcode < ISD::BUILTIN_OP_END)
3616       break;
3617     LLVM_FALLTHROUGH;
3618   case ISD::INTRINSIC_WO_CHAIN:
3619   case ISD::INTRINSIC_W_CHAIN:
3620   case ISD::INTRINSIC_VOID:
3621     // Allow the target to implement this method for its nodes.
3622     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3623     break;
3624   }
3625 
3626   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3627   return Known;
3628 }
3629 
3630 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3631                                                              SDValue N1) const {
3632   // X + 0 never overflow
3633   if (isNullConstant(N1))
3634     return OFK_Never;
3635 
3636   KnownBits N1Known = computeKnownBits(N1);
3637   if (N1Known.Zero.getBoolValue()) {
3638     KnownBits N0Known = computeKnownBits(N0);
3639 
3640     bool overflow;
3641     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3642     if (!overflow)
3643       return OFK_Never;
3644   }
3645 
3646   // mulhi + 1 never overflow
3647   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3648       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3649     return OFK_Never;
3650 
3651   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3652     KnownBits N0Known = computeKnownBits(N0);
3653 
3654     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3655       return OFK_Never;
3656   }
3657 
3658   return OFK_Sometime;
3659 }
3660 
3661 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3662   EVT OpVT = Val.getValueType();
3663   unsigned BitWidth = OpVT.getScalarSizeInBits();
3664 
3665   // Is the constant a known power of 2?
3666   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3667     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3668 
3669   // A left-shift of a constant one will have exactly one bit set because
3670   // shifting the bit off the end is undefined.
3671   if (Val.getOpcode() == ISD::SHL) {
3672     auto *C = isConstOrConstSplat(Val.getOperand(0));
3673     if (C && C->getAPIntValue() == 1)
3674       return true;
3675   }
3676 
3677   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3678   // one bit set.
3679   if (Val.getOpcode() == ISD::SRL) {
3680     auto *C = isConstOrConstSplat(Val.getOperand(0));
3681     if (C && C->getAPIntValue().isSignMask())
3682       return true;
3683   }
3684 
3685   // Are all operands of a build vector constant powers of two?
3686   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3687     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3688           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3689             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3690           return false;
3691         }))
3692       return true;
3693 
3694   // Is the operand of a splat vector a constant power of two?
3695   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3696     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3697       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3698         return true;
3699 
3700   // More could be done here, though the above checks are enough
3701   // to handle some common cases.
3702 
3703   // Fall back to computeKnownBits to catch other known cases.
3704   KnownBits Known = computeKnownBits(Val);
3705   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3706 }
3707 
3708 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3709   EVT VT = Op.getValueType();
3710 
3711   // TODO: Assume we don't know anything for now.
3712   if (VT.isScalableVector())
3713     return 1;
3714 
3715   APInt DemandedElts = VT.isVector()
3716                            ? APInt::getAllOnes(VT.getVectorNumElements())
3717                            : APInt(1, 1);
3718   return ComputeNumSignBits(Op, DemandedElts, Depth);
3719 }
3720 
3721 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3722                                           unsigned Depth) const {
3723   EVT VT = Op.getValueType();
3724   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3725   unsigned VTBits = VT.getScalarSizeInBits();
3726   unsigned NumElts = DemandedElts.getBitWidth();
3727   unsigned Tmp, Tmp2;
3728   unsigned FirstAnswer = 1;
3729 
3730   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3731     const APInt &Val = C->getAPIntValue();
3732     return Val.getNumSignBits();
3733   }
3734 
3735   if (Depth >= MaxRecursionDepth)
3736     return 1;  // Limit search depth.
3737 
3738   if (!DemandedElts || VT.isScalableVector())
3739     return 1;  // No demanded elts, better to assume we don't know anything.
3740 
3741   unsigned Opcode = Op.getOpcode();
3742   switch (Opcode) {
3743   default: break;
3744   case ISD::AssertSext:
3745     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3746     return VTBits-Tmp+1;
3747   case ISD::AssertZext:
3748     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3749     return VTBits-Tmp;
3750 
3751   case ISD::BUILD_VECTOR:
3752     Tmp = VTBits;
3753     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3754       if (!DemandedElts[i])
3755         continue;
3756 
3757       SDValue SrcOp = Op.getOperand(i);
3758       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3759 
3760       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3761       if (SrcOp.getValueSizeInBits() != VTBits) {
3762         assert(SrcOp.getValueSizeInBits() > VTBits &&
3763                "Expected BUILD_VECTOR implicit truncation");
3764         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3765         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3766       }
3767       Tmp = std::min(Tmp, Tmp2);
3768     }
3769     return Tmp;
3770 
3771   case ISD::VECTOR_SHUFFLE: {
3772     // Collect the minimum number of sign bits that are shared by every vector
3773     // element referenced by the shuffle.
3774     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3775     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3776     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3777     for (unsigned i = 0; i != NumElts; ++i) {
3778       int M = SVN->getMaskElt(i);
3779       if (!DemandedElts[i])
3780         continue;
3781       // For UNDEF elements, we don't know anything about the common state of
3782       // the shuffle result.
3783       if (M < 0)
3784         return 1;
3785       if ((unsigned)M < NumElts)
3786         DemandedLHS.setBit((unsigned)M % NumElts);
3787       else
3788         DemandedRHS.setBit((unsigned)M % NumElts);
3789     }
3790     Tmp = std::numeric_limits<unsigned>::max();
3791     if (!!DemandedLHS)
3792       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3793     if (!!DemandedRHS) {
3794       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3795       Tmp = std::min(Tmp, Tmp2);
3796     }
3797     // If we don't know anything, early out and try computeKnownBits fall-back.
3798     if (Tmp == 1)
3799       break;
3800     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3801     return Tmp;
3802   }
3803 
3804   case ISD::BITCAST: {
3805     SDValue N0 = Op.getOperand(0);
3806     EVT SrcVT = N0.getValueType();
3807     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3808 
3809     // Ignore bitcasts from unsupported types..
3810     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3811       break;
3812 
3813     // Fast handling of 'identity' bitcasts.
3814     if (VTBits == SrcBits)
3815       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3816 
3817     bool IsLE = getDataLayout().isLittleEndian();
3818 
3819     // Bitcast 'large element' scalar/vector to 'small element' vector.
3820     if ((SrcBits % VTBits) == 0) {
3821       assert(VT.isVector() && "Expected bitcast to vector");
3822 
3823       unsigned Scale = SrcBits / VTBits;
3824       APInt SrcDemandedElts =
3825           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
3826 
3827       // Fast case - sign splat can be simply split across the small elements.
3828       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3829       if (Tmp == SrcBits)
3830         return VTBits;
3831 
3832       // Slow case - determine how far the sign extends into each sub-element.
3833       Tmp2 = VTBits;
3834       for (unsigned i = 0; i != NumElts; ++i)
3835         if (DemandedElts[i]) {
3836           unsigned SubOffset = i % Scale;
3837           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3838           SubOffset = SubOffset * VTBits;
3839           if (Tmp <= SubOffset)
3840             return 1;
3841           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3842         }
3843       return Tmp2;
3844     }
3845     break;
3846   }
3847 
3848   case ISD::SIGN_EXTEND:
3849     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3850     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3851   case ISD::SIGN_EXTEND_INREG:
3852     // Max of the input and what this extends.
3853     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3854     Tmp = VTBits-Tmp+1;
3855     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3856     return std::max(Tmp, Tmp2);
3857   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3858     SDValue Src = Op.getOperand(0);
3859     EVT SrcVT = Src.getValueType();
3860     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3861     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3862     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3863   }
3864   case ISD::SRA:
3865     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3866     // SRA X, C -> adds C sign bits.
3867     if (const APInt *ShAmt =
3868             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3869       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3870     return Tmp;
3871   case ISD::SHL:
3872     if (const APInt *ShAmt =
3873             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3874       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3875       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3876       if (ShAmt->ult(Tmp))
3877         return Tmp - ShAmt->getZExtValue();
3878     }
3879     break;
3880   case ISD::AND:
3881   case ISD::OR:
3882   case ISD::XOR:    // NOT is handled here.
3883     // Logical binary ops preserve the number of sign bits at the worst.
3884     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3885     if (Tmp != 1) {
3886       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3887       FirstAnswer = std::min(Tmp, Tmp2);
3888       // We computed what we know about the sign bits as our first
3889       // answer. Now proceed to the generic code that uses
3890       // computeKnownBits, and pick whichever answer is better.
3891     }
3892     break;
3893 
3894   case ISD::SELECT:
3895   case ISD::VSELECT:
3896     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3897     if (Tmp == 1) return 1;  // Early out.
3898     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3899     return std::min(Tmp, Tmp2);
3900   case ISD::SELECT_CC:
3901     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3902     if (Tmp == 1) return 1;  // Early out.
3903     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3904     return std::min(Tmp, Tmp2);
3905 
3906   case ISD::SMIN:
3907   case ISD::SMAX: {
3908     // If we have a clamp pattern, we know that the number of sign bits will be
3909     // the minimum of the clamp min/max range.
3910     bool IsMax = (Opcode == ISD::SMAX);
3911     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3912     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3913       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3914         CstHigh =
3915             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3916     if (CstLow && CstHigh) {
3917       if (!IsMax)
3918         std::swap(CstLow, CstHigh);
3919       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3920         Tmp = CstLow->getAPIntValue().getNumSignBits();
3921         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3922         return std::min(Tmp, Tmp2);
3923       }
3924     }
3925 
3926     // Fallback - just get the minimum number of sign bits of the operands.
3927     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3928     if (Tmp == 1)
3929       return 1;  // Early out.
3930     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3931     return std::min(Tmp, Tmp2);
3932   }
3933   case ISD::UMIN:
3934   case ISD::UMAX:
3935     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3936     if (Tmp == 1)
3937       return 1;  // Early out.
3938     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3939     return std::min(Tmp, Tmp2);
3940   case ISD::SADDO:
3941   case ISD::UADDO:
3942   case ISD::SSUBO:
3943   case ISD::USUBO:
3944   case ISD::SMULO:
3945   case ISD::UMULO:
3946     if (Op.getResNo() != 1)
3947       break;
3948     // The boolean result conforms to getBooleanContents.  Fall through.
3949     // If setcc returns 0/-1, all bits are sign bits.
3950     // We know that we have an integer-based boolean since these operations
3951     // are only available for integer.
3952     if (TLI->getBooleanContents(VT.isVector(), false) ==
3953         TargetLowering::ZeroOrNegativeOneBooleanContent)
3954       return VTBits;
3955     break;
3956   case ISD::SETCC:
3957   case ISD::STRICT_FSETCC:
3958   case ISD::STRICT_FSETCCS: {
3959     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3960     // If setcc returns 0/-1, all bits are sign bits.
3961     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3962         TargetLowering::ZeroOrNegativeOneBooleanContent)
3963       return VTBits;
3964     break;
3965   }
3966   case ISD::ROTL:
3967   case ISD::ROTR:
3968     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3969 
3970     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3971     if (Tmp == VTBits)
3972       return VTBits;
3973 
3974     if (ConstantSDNode *C =
3975             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3976       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3977 
3978       // Handle rotate right by N like a rotate left by 32-N.
3979       if (Opcode == ISD::ROTR)
3980         RotAmt = (VTBits - RotAmt) % VTBits;
3981 
3982       // If we aren't rotating out all of the known-in sign bits, return the
3983       // number that are left.  This handles rotl(sext(x), 1) for example.
3984       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3985     }
3986     break;
3987   case ISD::ADD:
3988   case ISD::ADDC:
3989     // Add can have at most one carry bit.  Thus we know that the output
3990     // is, at worst, one more bit than the inputs.
3991     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3992     if (Tmp == 1) return 1; // Early out.
3993 
3994     // Special case decrementing a value (ADD X, -1):
3995     if (ConstantSDNode *CRHS =
3996             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3997       if (CRHS->isAllOnes()) {
3998         KnownBits Known =
3999             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4000 
4001         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4002         // sign bits set.
4003         if ((Known.Zero | 1).isAllOnes())
4004           return VTBits;
4005 
4006         // If we are subtracting one from a positive number, there is no carry
4007         // out of the result.
4008         if (Known.isNonNegative())
4009           return Tmp;
4010       }
4011 
4012     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4013     if (Tmp2 == 1) return 1; // Early out.
4014     return std::min(Tmp, Tmp2) - 1;
4015   case ISD::SUB:
4016     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4017     if (Tmp2 == 1) return 1; // Early out.
4018 
4019     // Handle NEG.
4020     if (ConstantSDNode *CLHS =
4021             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4022       if (CLHS->isZero()) {
4023         KnownBits Known =
4024             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4025         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4026         // sign bits set.
4027         if ((Known.Zero | 1).isAllOnes())
4028           return VTBits;
4029 
4030         // If the input is known to be positive (the sign bit is known clear),
4031         // the output of the NEG has the same number of sign bits as the input.
4032         if (Known.isNonNegative())
4033           return Tmp2;
4034 
4035         // Otherwise, we treat this like a SUB.
4036       }
4037 
4038     // Sub can have at most one carry bit.  Thus we know that the output
4039     // is, at worst, one more bit than the inputs.
4040     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4041     if (Tmp == 1) return 1; // Early out.
4042     return std::min(Tmp, Tmp2) - 1;
4043   case ISD::MUL: {
4044     // The output of the Mul can be at most twice the valid bits in the inputs.
4045     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4046     if (SignBitsOp0 == 1)
4047       break;
4048     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4049     if (SignBitsOp1 == 1)
4050       break;
4051     unsigned OutValidBits =
4052         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4053     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4054   }
4055   case ISD::SREM:
4056     // The sign bit is the LHS's sign bit, except when the result of the
4057     // remainder is zero. The magnitude of the result should be less than or
4058     // equal to the magnitude of the LHS. Therefore, the result should have
4059     // at least as many sign bits as the left hand side.
4060     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4061   case ISD::TRUNCATE: {
4062     // Check if the sign bits of source go down as far as the truncated value.
4063     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4064     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4065     if (NumSrcSignBits > (NumSrcBits - VTBits))
4066       return NumSrcSignBits - (NumSrcBits - VTBits);
4067     break;
4068   }
4069   case ISD::EXTRACT_ELEMENT: {
4070     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4071     const int BitWidth = Op.getValueSizeInBits();
4072     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4073 
4074     // Get reverse index (starting from 1), Op1 value indexes elements from
4075     // little end. Sign starts at big end.
4076     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4077 
4078     // If the sign portion ends in our element the subtraction gives correct
4079     // result. Otherwise it gives either negative or > bitwidth result
4080     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4081   }
4082   case ISD::INSERT_VECTOR_ELT: {
4083     // If we know the element index, split the demand between the
4084     // source vector and the inserted element, otherwise assume we need
4085     // the original demanded vector elements and the value.
4086     SDValue InVec = Op.getOperand(0);
4087     SDValue InVal = Op.getOperand(1);
4088     SDValue EltNo = Op.getOperand(2);
4089     bool DemandedVal = true;
4090     APInt DemandedVecElts = DemandedElts;
4091     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4092     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4093       unsigned EltIdx = CEltNo->getZExtValue();
4094       DemandedVal = !!DemandedElts[EltIdx];
4095       DemandedVecElts.clearBit(EltIdx);
4096     }
4097     Tmp = std::numeric_limits<unsigned>::max();
4098     if (DemandedVal) {
4099       // TODO - handle implicit truncation of inserted elements.
4100       if (InVal.getScalarValueSizeInBits() != VTBits)
4101         break;
4102       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4103       Tmp = std::min(Tmp, Tmp2);
4104     }
4105     if (!!DemandedVecElts) {
4106       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4107       Tmp = std::min(Tmp, Tmp2);
4108     }
4109     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4110     return Tmp;
4111   }
4112   case ISD::EXTRACT_VECTOR_ELT: {
4113     SDValue InVec = Op.getOperand(0);
4114     SDValue EltNo = Op.getOperand(1);
4115     EVT VecVT = InVec.getValueType();
4116     // ComputeNumSignBits not yet implemented for scalable vectors.
4117     if (VecVT.isScalableVector())
4118       break;
4119     const unsigned BitWidth = Op.getValueSizeInBits();
4120     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4121     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4122 
4123     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4124     // anything about sign bits. But if the sizes match we can derive knowledge
4125     // about sign bits from the vector operand.
4126     if (BitWidth != EltBitWidth)
4127       break;
4128 
4129     // If we know the element index, just demand that vector element, else for
4130     // an unknown element index, ignore DemandedElts and demand them all.
4131     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4132     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4133     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4134       DemandedSrcElts =
4135           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4136 
4137     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4138   }
4139   case ISD::EXTRACT_SUBVECTOR: {
4140     // Offset the demanded elts by the subvector index.
4141     SDValue Src = Op.getOperand(0);
4142     // Bail until we can represent demanded elements for scalable vectors.
4143     if (Src.getValueType().isScalableVector())
4144       break;
4145     uint64_t Idx = Op.getConstantOperandVal(1);
4146     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4147     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4148     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4149   }
4150   case ISD::CONCAT_VECTORS: {
4151     // Determine the minimum number of sign bits across all demanded
4152     // elts of the input vectors. Early out if the result is already 1.
4153     Tmp = std::numeric_limits<unsigned>::max();
4154     EVT SubVectorVT = Op.getOperand(0).getValueType();
4155     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4156     unsigned NumSubVectors = Op.getNumOperands();
4157     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4158       APInt DemandedSub =
4159           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4160       if (!DemandedSub)
4161         continue;
4162       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4163       Tmp = std::min(Tmp, Tmp2);
4164     }
4165     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4166     return Tmp;
4167   }
4168   case ISD::INSERT_SUBVECTOR: {
4169     // Demand any elements from the subvector and the remainder from the src its
4170     // inserted into.
4171     SDValue Src = Op.getOperand(0);
4172     SDValue Sub = Op.getOperand(1);
4173     uint64_t Idx = Op.getConstantOperandVal(2);
4174     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4175     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4176     APInt DemandedSrcElts = DemandedElts;
4177     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4178 
4179     Tmp = std::numeric_limits<unsigned>::max();
4180     if (!!DemandedSubElts) {
4181       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4182       if (Tmp == 1)
4183         return 1; // early-out
4184     }
4185     if (!!DemandedSrcElts) {
4186       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4187       Tmp = std::min(Tmp, Tmp2);
4188     }
4189     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4190     return Tmp;
4191   }
4192   case ISD::ATOMIC_CMP_SWAP:
4193   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4194   case ISD::ATOMIC_SWAP:
4195   case ISD::ATOMIC_LOAD_ADD:
4196   case ISD::ATOMIC_LOAD_SUB:
4197   case ISD::ATOMIC_LOAD_AND:
4198   case ISD::ATOMIC_LOAD_CLR:
4199   case ISD::ATOMIC_LOAD_OR:
4200   case ISD::ATOMIC_LOAD_XOR:
4201   case ISD::ATOMIC_LOAD_NAND:
4202   case ISD::ATOMIC_LOAD_MIN:
4203   case ISD::ATOMIC_LOAD_MAX:
4204   case ISD::ATOMIC_LOAD_UMIN:
4205   case ISD::ATOMIC_LOAD_UMAX:
4206   case ISD::ATOMIC_LOAD: {
4207     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4208     // If we are looking at the loaded value.
4209     if (Op.getResNo() == 0) {
4210       if (Tmp == VTBits)
4211         return 1; // early-out
4212       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4213         return VTBits - Tmp + 1;
4214       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4215         return VTBits - Tmp;
4216     }
4217     break;
4218   }
4219   }
4220 
4221   // If we are looking at the loaded value of the SDNode.
4222   if (Op.getResNo() == 0) {
4223     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4224     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4225       unsigned ExtType = LD->getExtensionType();
4226       switch (ExtType) {
4227       default: break;
4228       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4229         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4230         return VTBits - Tmp + 1;
4231       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4232         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4233         return VTBits - Tmp;
4234       case ISD::NON_EXTLOAD:
4235         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4236           // We only need to handle vectors - computeKnownBits should handle
4237           // scalar cases.
4238           Type *CstTy = Cst->getType();
4239           if (CstTy->isVectorTy() &&
4240               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4241             Tmp = VTBits;
4242             for (unsigned i = 0; i != NumElts; ++i) {
4243               if (!DemandedElts[i])
4244                 continue;
4245               if (Constant *Elt = Cst->getAggregateElement(i)) {
4246                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4247                   const APInt &Value = CInt->getValue();
4248                   Tmp = std::min(Tmp, Value.getNumSignBits());
4249                   continue;
4250                 }
4251                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4252                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4253                   Tmp = std::min(Tmp, Value.getNumSignBits());
4254                   continue;
4255                 }
4256               }
4257               // Unknown type. Conservatively assume no bits match sign bit.
4258               return 1;
4259             }
4260             return Tmp;
4261           }
4262         }
4263         break;
4264       }
4265     }
4266   }
4267 
4268   // Allow the target to implement this method for its nodes.
4269   if (Opcode >= ISD::BUILTIN_OP_END ||
4270       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4271       Opcode == ISD::INTRINSIC_W_CHAIN ||
4272       Opcode == ISD::INTRINSIC_VOID) {
4273     unsigned NumBits =
4274         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4275     if (NumBits > 1)
4276       FirstAnswer = std::max(FirstAnswer, NumBits);
4277   }
4278 
4279   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4280   // use this information.
4281   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4282 
4283   APInt Mask;
4284   if (Known.isNonNegative()) {        // sign bit is 0
4285     Mask = Known.Zero;
4286   } else if (Known.isNegative()) {  // sign bit is 1;
4287     Mask = Known.One;
4288   } else {
4289     // Nothing known.
4290     return FirstAnswer;
4291   }
4292 
4293   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4294   // the number of identical bits in the top of the input value.
4295   Mask <<= Mask.getBitWidth()-VTBits;
4296   return std::max(FirstAnswer, Mask.countLeadingOnes());
4297 }
4298 
4299 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4300                                                     unsigned Depth) const {
4301   // Early out for FREEZE.
4302   if (Op.getOpcode() == ISD::FREEZE)
4303     return true;
4304 
4305   // TODO: Assume we don't know anything for now.
4306   EVT VT = Op.getValueType();
4307   if (VT.isScalableVector())
4308     return false;
4309 
4310   APInt DemandedElts = VT.isVector()
4311                            ? APInt::getAllOnes(VT.getVectorNumElements())
4312                            : APInt(1, 1);
4313   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4314 }
4315 
4316 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4317                                                     const APInt &DemandedElts,
4318                                                     bool PoisonOnly,
4319                                                     unsigned Depth) const {
4320   unsigned Opcode = Op.getOpcode();
4321 
4322   // Early out for FREEZE.
4323   if (Opcode == ISD::FREEZE)
4324     return true;
4325 
4326   if (Depth >= MaxRecursionDepth)
4327     return false; // Limit search depth.
4328 
4329   if (isIntOrFPConstant(Op))
4330     return true;
4331 
4332   switch (Opcode) {
4333   case ISD::UNDEF:
4334     return PoisonOnly;
4335 
4336   case ISD::BUILD_VECTOR:
4337     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4338     // this shouldn't affect the result.
4339     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4340       if (!DemandedElts[i])
4341         continue;
4342       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4343                                             Depth + 1))
4344         return false;
4345     }
4346     return true;
4347 
4348   // TODO: Search for noundef attributes from library functions.
4349 
4350   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4351 
4352   default:
4353     // Allow the target to implement this method for its nodes.
4354     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4355         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4356       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4357           Op, DemandedElts, *this, PoisonOnly, Depth);
4358     break;
4359   }
4360 
4361   return false;
4362 }
4363 
4364 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4365   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4366       !isa<ConstantSDNode>(Op.getOperand(1)))
4367     return false;
4368 
4369   if (Op.getOpcode() == ISD::OR &&
4370       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4371     return false;
4372 
4373   return true;
4374 }
4375 
4376 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4377   // If we're told that NaNs won't happen, assume they won't.
4378   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4379     return true;
4380 
4381   if (Depth >= MaxRecursionDepth)
4382     return false; // Limit search depth.
4383 
4384   // TODO: Handle vectors.
4385   // If the value is a constant, we can obviously see if it is a NaN or not.
4386   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4387     return !C->getValueAPF().isNaN() ||
4388            (SNaN && !C->getValueAPF().isSignaling());
4389   }
4390 
4391   unsigned Opcode = Op.getOpcode();
4392   switch (Opcode) {
4393   case ISD::FADD:
4394   case ISD::FSUB:
4395   case ISD::FMUL:
4396   case ISD::FDIV:
4397   case ISD::FREM:
4398   case ISD::FSIN:
4399   case ISD::FCOS: {
4400     if (SNaN)
4401       return true;
4402     // TODO: Need isKnownNeverInfinity
4403     return false;
4404   }
4405   case ISD::FCANONICALIZE:
4406   case ISD::FEXP:
4407   case ISD::FEXP2:
4408   case ISD::FTRUNC:
4409   case ISD::FFLOOR:
4410   case ISD::FCEIL:
4411   case ISD::FROUND:
4412   case ISD::FROUNDEVEN:
4413   case ISD::FRINT:
4414   case ISD::FNEARBYINT: {
4415     if (SNaN)
4416       return true;
4417     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4418   }
4419   case ISD::FABS:
4420   case ISD::FNEG:
4421   case ISD::FCOPYSIGN: {
4422     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4423   }
4424   case ISD::SELECT:
4425     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4426            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4427   case ISD::FP_EXTEND:
4428   case ISD::FP_ROUND: {
4429     if (SNaN)
4430       return true;
4431     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4432   }
4433   case ISD::SINT_TO_FP:
4434   case ISD::UINT_TO_FP:
4435     return true;
4436   case ISD::FMA:
4437   case ISD::FMAD: {
4438     if (SNaN)
4439       return true;
4440     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4441            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4442            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4443   }
4444   case ISD::FSQRT: // Need is known positive
4445   case ISD::FLOG:
4446   case ISD::FLOG2:
4447   case ISD::FLOG10:
4448   case ISD::FPOWI:
4449   case ISD::FPOW: {
4450     if (SNaN)
4451       return true;
4452     // TODO: Refine on operand
4453     return false;
4454   }
4455   case ISD::FMINNUM:
4456   case ISD::FMAXNUM: {
4457     // Only one needs to be known not-nan, since it will be returned if the
4458     // other ends up being one.
4459     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4460            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4461   }
4462   case ISD::FMINNUM_IEEE:
4463   case ISD::FMAXNUM_IEEE: {
4464     if (SNaN)
4465       return true;
4466     // This can return a NaN if either operand is an sNaN, or if both operands
4467     // are NaN.
4468     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4469             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4470            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4471             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4472   }
4473   case ISD::FMINIMUM:
4474   case ISD::FMAXIMUM: {
4475     // TODO: Does this quiet or return the origina NaN as-is?
4476     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4477            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4478   }
4479   case ISD::EXTRACT_VECTOR_ELT: {
4480     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4481   }
4482   default:
4483     if (Opcode >= ISD::BUILTIN_OP_END ||
4484         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4485         Opcode == ISD::INTRINSIC_W_CHAIN ||
4486         Opcode == ISD::INTRINSIC_VOID) {
4487       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4488     }
4489 
4490     return false;
4491   }
4492 }
4493 
4494 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4495   assert(Op.getValueType().isFloatingPoint() &&
4496          "Floating point type expected");
4497 
4498   // If the value is a constant, we can obviously see if it is a zero or not.
4499   // TODO: Add BuildVector support.
4500   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4501     return !C->isZero();
4502   return false;
4503 }
4504 
4505 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4506   assert(!Op.getValueType().isFloatingPoint() &&
4507          "Floating point types unsupported - use isKnownNeverZeroFloat");
4508 
4509   // If the value is a constant, we can obviously see if it is a zero or not.
4510   if (ISD::matchUnaryPredicate(Op,
4511                                [](ConstantSDNode *C) { return !C->isZero(); }))
4512     return true;
4513 
4514   // TODO: Recognize more cases here.
4515   switch (Op.getOpcode()) {
4516   default: break;
4517   case ISD::OR:
4518     if (isKnownNeverZero(Op.getOperand(1)) ||
4519         isKnownNeverZero(Op.getOperand(0)))
4520       return true;
4521     break;
4522   }
4523 
4524   return false;
4525 }
4526 
4527 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4528   // Check the obvious case.
4529   if (A == B) return true;
4530 
4531   // For for negative and positive zero.
4532   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4533     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4534       if (CA->isZero() && CB->isZero()) return true;
4535 
4536   // Otherwise they may not be equal.
4537   return false;
4538 }
4539 
4540 // FIXME: unify with llvm::haveNoCommonBitsSet.
4541 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4542 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4543   assert(A.getValueType() == B.getValueType() &&
4544          "Values must have the same type");
4545   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4546                                         computeKnownBits(B));
4547 }
4548 
4549 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4550                                SelectionDAG &DAG) {
4551   if (cast<ConstantSDNode>(Step)->isZero())
4552     return DAG.getConstant(0, DL, VT);
4553 
4554   return SDValue();
4555 }
4556 
4557 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4558                                 ArrayRef<SDValue> Ops,
4559                                 SelectionDAG &DAG) {
4560   int NumOps = Ops.size();
4561   assert(NumOps != 0 && "Can't build an empty vector!");
4562   assert(!VT.isScalableVector() &&
4563          "BUILD_VECTOR cannot be used with scalable types");
4564   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4565          "Incorrect element count in BUILD_VECTOR!");
4566 
4567   // BUILD_VECTOR of UNDEFs is UNDEF.
4568   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4569     return DAG.getUNDEF(VT);
4570 
4571   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4572   SDValue IdentitySrc;
4573   bool IsIdentity = true;
4574   for (int i = 0; i != NumOps; ++i) {
4575     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4576         Ops[i].getOperand(0).getValueType() != VT ||
4577         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4578         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4579         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4580       IsIdentity = false;
4581       break;
4582     }
4583     IdentitySrc = Ops[i].getOperand(0);
4584   }
4585   if (IsIdentity)
4586     return IdentitySrc;
4587 
4588   return SDValue();
4589 }
4590 
4591 /// Try to simplify vector concatenation to an input value, undef, or build
4592 /// vector.
4593 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4594                                   ArrayRef<SDValue> Ops,
4595                                   SelectionDAG &DAG) {
4596   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4597   assert(llvm::all_of(Ops,
4598                       [Ops](SDValue Op) {
4599                         return Ops[0].getValueType() == Op.getValueType();
4600                       }) &&
4601          "Concatenation of vectors with inconsistent value types!");
4602   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4603              VT.getVectorElementCount() &&
4604          "Incorrect element count in vector concatenation!");
4605 
4606   if (Ops.size() == 1)
4607     return Ops[0];
4608 
4609   // Concat of UNDEFs is UNDEF.
4610   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4611     return DAG.getUNDEF(VT);
4612 
4613   // Scan the operands and look for extract operations from a single source
4614   // that correspond to insertion at the same location via this concatenation:
4615   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4616   SDValue IdentitySrc;
4617   bool IsIdentity = true;
4618   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4619     SDValue Op = Ops[i];
4620     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4621     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4622         Op.getOperand(0).getValueType() != VT ||
4623         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4624         Op.getConstantOperandVal(1) != IdentityIndex) {
4625       IsIdentity = false;
4626       break;
4627     }
4628     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4629            "Unexpected identity source vector for concat of extracts");
4630     IdentitySrc = Op.getOperand(0);
4631   }
4632   if (IsIdentity) {
4633     assert(IdentitySrc && "Failed to set source vector of extracts");
4634     return IdentitySrc;
4635   }
4636 
4637   // The code below this point is only designed to work for fixed width
4638   // vectors, so we bail out for now.
4639   if (VT.isScalableVector())
4640     return SDValue();
4641 
4642   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4643   // simplified to one big BUILD_VECTOR.
4644   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4645   EVT SVT = VT.getScalarType();
4646   SmallVector<SDValue, 16> Elts;
4647   for (SDValue Op : Ops) {
4648     EVT OpVT = Op.getValueType();
4649     if (Op.isUndef())
4650       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4651     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4652       Elts.append(Op->op_begin(), Op->op_end());
4653     else
4654       return SDValue();
4655   }
4656 
4657   // BUILD_VECTOR requires all inputs to be of the same type, find the
4658   // maximum type and extend them all.
4659   for (SDValue Op : Elts)
4660     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4661 
4662   if (SVT.bitsGT(VT.getScalarType())) {
4663     for (SDValue &Op : Elts) {
4664       if (Op.isUndef())
4665         Op = DAG.getUNDEF(SVT);
4666       else
4667         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4668                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4669                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4670     }
4671   }
4672 
4673   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4674   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4675   return V;
4676 }
4677 
4678 /// Gets or creates the specified node.
4679 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4680   FoldingSetNodeID ID;
4681   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4682   void *IP = nullptr;
4683   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4684     return SDValue(E, 0);
4685 
4686   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4687                               getVTList(VT));
4688   CSEMap.InsertNode(N, IP);
4689 
4690   InsertNode(N);
4691   SDValue V = SDValue(N, 0);
4692   NewSDValueDbgMsg(V, "Creating new node: ", this);
4693   return V;
4694 }
4695 
4696 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4697                               SDValue Operand) {
4698   SDNodeFlags Flags;
4699   if (Inserter)
4700     Flags = Inserter->getFlags();
4701   return getNode(Opcode, DL, VT, Operand, Flags);
4702 }
4703 
4704 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4705                               SDValue Operand, const SDNodeFlags Flags) {
4706   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4707          "Operand is DELETED_NODE!");
4708   // Constant fold unary operations with an integer constant operand. Even
4709   // opaque constant will be folded, because the folding of unary operations
4710   // doesn't create new constants with different values. Nevertheless, the
4711   // opaque flag is preserved during folding to prevent future folding with
4712   // other constants.
4713   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4714     const APInt &Val = C->getAPIntValue();
4715     switch (Opcode) {
4716     default: break;
4717     case ISD::SIGN_EXTEND:
4718       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4719                          C->isTargetOpcode(), C->isOpaque());
4720     case ISD::TRUNCATE:
4721       if (C->isOpaque())
4722         break;
4723       LLVM_FALLTHROUGH;
4724     case ISD::ZERO_EXTEND:
4725       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4726                          C->isTargetOpcode(), C->isOpaque());
4727     case ISD::ANY_EXTEND:
4728       // Some targets like RISCV prefer to sign extend some types.
4729       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4730         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4731                            C->isTargetOpcode(), C->isOpaque());
4732       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4733                          C->isTargetOpcode(), C->isOpaque());
4734     case ISD::UINT_TO_FP:
4735     case ISD::SINT_TO_FP: {
4736       APFloat apf(EVTToAPFloatSemantics(VT),
4737                   APInt::getZero(VT.getSizeInBits()));
4738       (void)apf.convertFromAPInt(Val,
4739                                  Opcode==ISD::SINT_TO_FP,
4740                                  APFloat::rmNearestTiesToEven);
4741       return getConstantFP(apf, DL, VT);
4742     }
4743     case ISD::BITCAST:
4744       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4745         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4746       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4747         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4748       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4749         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4750       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4751         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4752       break;
4753     case ISD::ABS:
4754       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4755                          C->isOpaque());
4756     case ISD::BITREVERSE:
4757       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4758                          C->isOpaque());
4759     case ISD::BSWAP:
4760       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4761                          C->isOpaque());
4762     case ISD::CTPOP:
4763       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4764                          C->isOpaque());
4765     case ISD::CTLZ:
4766     case ISD::CTLZ_ZERO_UNDEF:
4767       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4768                          C->isOpaque());
4769     case ISD::CTTZ:
4770     case ISD::CTTZ_ZERO_UNDEF:
4771       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4772                          C->isOpaque());
4773     case ISD::FP16_TO_FP: {
4774       bool Ignored;
4775       APFloat FPV(APFloat::IEEEhalf(),
4776                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4777 
4778       // This can return overflow, underflow, or inexact; we don't care.
4779       // FIXME need to be more flexible about rounding mode.
4780       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4781                         APFloat::rmNearestTiesToEven, &Ignored);
4782       return getConstantFP(FPV, DL, VT);
4783     }
4784     case ISD::STEP_VECTOR: {
4785       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4786         return V;
4787       break;
4788     }
4789     }
4790   }
4791 
4792   // Constant fold unary operations with a floating point constant operand.
4793   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4794     APFloat V = C->getValueAPF();    // make copy
4795     switch (Opcode) {
4796     case ISD::FNEG:
4797       V.changeSign();
4798       return getConstantFP(V, DL, VT);
4799     case ISD::FABS:
4800       V.clearSign();
4801       return getConstantFP(V, DL, VT);
4802     case ISD::FCEIL: {
4803       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4804       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4805         return getConstantFP(V, DL, VT);
4806       break;
4807     }
4808     case ISD::FTRUNC: {
4809       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4810       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4811         return getConstantFP(V, DL, VT);
4812       break;
4813     }
4814     case ISD::FFLOOR: {
4815       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4816       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4817         return getConstantFP(V, DL, VT);
4818       break;
4819     }
4820     case ISD::FP_EXTEND: {
4821       bool ignored;
4822       // This can return overflow, underflow, or inexact; we don't care.
4823       // FIXME need to be more flexible about rounding mode.
4824       (void)V.convert(EVTToAPFloatSemantics(VT),
4825                       APFloat::rmNearestTiesToEven, &ignored);
4826       return getConstantFP(V, DL, VT);
4827     }
4828     case ISD::FP_TO_SINT:
4829     case ISD::FP_TO_UINT: {
4830       bool ignored;
4831       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4832       // FIXME need to be more flexible about rounding mode.
4833       APFloat::opStatus s =
4834           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4835       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4836         break;
4837       return getConstant(IntVal, DL, VT);
4838     }
4839     case ISD::BITCAST:
4840       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4841         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4842       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4843         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4844       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4845         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4846       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4847         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4848       break;
4849     case ISD::FP_TO_FP16: {
4850       bool Ignored;
4851       // This can return overflow, underflow, or inexact; we don't care.
4852       // FIXME need to be more flexible about rounding mode.
4853       (void)V.convert(APFloat::IEEEhalf(),
4854                       APFloat::rmNearestTiesToEven, &Ignored);
4855       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4856     }
4857     }
4858   }
4859 
4860   // Constant fold unary operations with a vector integer or float operand.
4861   switch (Opcode) {
4862   default:
4863     // FIXME: Entirely reasonable to perform folding of other unary
4864     // operations here as the need arises.
4865     break;
4866   case ISD::FNEG:
4867   case ISD::FABS:
4868   case ISD::FCEIL:
4869   case ISD::FTRUNC:
4870   case ISD::FFLOOR:
4871   case ISD::FP_EXTEND:
4872   case ISD::FP_TO_SINT:
4873   case ISD::FP_TO_UINT:
4874   case ISD::TRUNCATE:
4875   case ISD::ANY_EXTEND:
4876   case ISD::ZERO_EXTEND:
4877   case ISD::SIGN_EXTEND:
4878   case ISD::UINT_TO_FP:
4879   case ISD::SINT_TO_FP:
4880   case ISD::ABS:
4881   case ISD::BITREVERSE:
4882   case ISD::BSWAP:
4883   case ISD::CTLZ:
4884   case ISD::CTLZ_ZERO_UNDEF:
4885   case ISD::CTTZ:
4886   case ISD::CTTZ_ZERO_UNDEF:
4887   case ISD::CTPOP: {
4888     SDValue Ops = {Operand};
4889     if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4890       return Fold;
4891   }
4892   }
4893 
4894   unsigned OpOpcode = Operand.getNode()->getOpcode();
4895   switch (Opcode) {
4896   case ISD::STEP_VECTOR:
4897     assert(VT.isScalableVector() &&
4898            "STEP_VECTOR can only be used with scalable types");
4899     assert(OpOpcode == ISD::TargetConstant &&
4900            VT.getVectorElementType() == Operand.getValueType() &&
4901            "Unexpected step operand");
4902     break;
4903   case ISD::FREEZE:
4904     assert(VT == Operand.getValueType() && "Unexpected VT!");
4905     break;
4906   case ISD::TokenFactor:
4907   case ISD::MERGE_VALUES:
4908   case ISD::CONCAT_VECTORS:
4909     return Operand;         // Factor, merge or concat of one node?  No need.
4910   case ISD::BUILD_VECTOR: {
4911     // Attempt to simplify BUILD_VECTOR.
4912     SDValue Ops[] = {Operand};
4913     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4914       return V;
4915     break;
4916   }
4917   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4918   case ISD::FP_EXTEND:
4919     assert(VT.isFloatingPoint() &&
4920            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4921     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4922     assert((!VT.isVector() ||
4923             VT.getVectorElementCount() ==
4924             Operand.getValueType().getVectorElementCount()) &&
4925            "Vector element count mismatch!");
4926     assert(Operand.getValueType().bitsLT(VT) &&
4927            "Invalid fpext node, dst < src!");
4928     if (Operand.isUndef())
4929       return getUNDEF(VT);
4930     break;
4931   case ISD::FP_TO_SINT:
4932   case ISD::FP_TO_UINT:
4933     if (Operand.isUndef())
4934       return getUNDEF(VT);
4935     break;
4936   case ISD::SINT_TO_FP:
4937   case ISD::UINT_TO_FP:
4938     // [us]itofp(undef) = 0, because the result value is bounded.
4939     if (Operand.isUndef())
4940       return getConstantFP(0.0, DL, VT);
4941     break;
4942   case ISD::SIGN_EXTEND:
4943     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4944            "Invalid SIGN_EXTEND!");
4945     assert(VT.isVector() == Operand.getValueType().isVector() &&
4946            "SIGN_EXTEND result type type should be vector iff the operand "
4947            "type is vector!");
4948     if (Operand.getValueType() == VT) return Operand;   // noop extension
4949     assert((!VT.isVector() ||
4950             VT.getVectorElementCount() ==
4951                 Operand.getValueType().getVectorElementCount()) &&
4952            "Vector element count mismatch!");
4953     assert(Operand.getValueType().bitsLT(VT) &&
4954            "Invalid sext node, dst < src!");
4955     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4956       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4957     if (OpOpcode == ISD::UNDEF)
4958       // sext(undef) = 0, because the top bits will all be the same.
4959       return getConstant(0, DL, VT);
4960     break;
4961   case ISD::ZERO_EXTEND:
4962     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4963            "Invalid ZERO_EXTEND!");
4964     assert(VT.isVector() == Operand.getValueType().isVector() &&
4965            "ZERO_EXTEND result type type should be vector iff the operand "
4966            "type is vector!");
4967     if (Operand.getValueType() == VT) return Operand;   // noop extension
4968     assert((!VT.isVector() ||
4969             VT.getVectorElementCount() ==
4970                 Operand.getValueType().getVectorElementCount()) &&
4971            "Vector element count mismatch!");
4972     assert(Operand.getValueType().bitsLT(VT) &&
4973            "Invalid zext node, dst < src!");
4974     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4975       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4976     if (OpOpcode == ISD::UNDEF)
4977       // zext(undef) = 0, because the top bits will be zero.
4978       return getConstant(0, DL, VT);
4979     break;
4980   case ISD::ANY_EXTEND:
4981     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4982            "Invalid ANY_EXTEND!");
4983     assert(VT.isVector() == Operand.getValueType().isVector() &&
4984            "ANY_EXTEND result type type should be vector iff the operand "
4985            "type is vector!");
4986     if (Operand.getValueType() == VT) return Operand;   // noop extension
4987     assert((!VT.isVector() ||
4988             VT.getVectorElementCount() ==
4989                 Operand.getValueType().getVectorElementCount()) &&
4990            "Vector element count mismatch!");
4991     assert(Operand.getValueType().bitsLT(VT) &&
4992            "Invalid anyext node, dst < src!");
4993 
4994     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4995         OpOpcode == ISD::ANY_EXTEND)
4996       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4997       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4998     if (OpOpcode == ISD::UNDEF)
4999       return getUNDEF(VT);
5000 
5001     // (ext (trunc x)) -> x
5002     if (OpOpcode == ISD::TRUNCATE) {
5003       SDValue OpOp = Operand.getOperand(0);
5004       if (OpOp.getValueType() == VT) {
5005         transferDbgValues(Operand, OpOp);
5006         return OpOp;
5007       }
5008     }
5009     break;
5010   case ISD::TRUNCATE:
5011     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5012            "Invalid TRUNCATE!");
5013     assert(VT.isVector() == Operand.getValueType().isVector() &&
5014            "TRUNCATE result type type should be vector iff the operand "
5015            "type is vector!");
5016     if (Operand.getValueType() == VT) return Operand;   // noop truncate
5017     assert((!VT.isVector() ||
5018             VT.getVectorElementCount() ==
5019                 Operand.getValueType().getVectorElementCount()) &&
5020            "Vector element count mismatch!");
5021     assert(Operand.getValueType().bitsGT(VT) &&
5022            "Invalid truncate node, src < dst!");
5023     if (OpOpcode == ISD::TRUNCATE)
5024       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5025     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5026         OpOpcode == ISD::ANY_EXTEND) {
5027       // If the source is smaller than the dest, we still need an extend.
5028       if (Operand.getOperand(0).getValueType().getScalarType()
5029             .bitsLT(VT.getScalarType()))
5030         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5031       if (Operand.getOperand(0).getValueType().bitsGT(VT))
5032         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5033       return Operand.getOperand(0);
5034     }
5035     if (OpOpcode == ISD::UNDEF)
5036       return getUNDEF(VT);
5037     break;
5038   case ISD::ANY_EXTEND_VECTOR_INREG:
5039   case ISD::ZERO_EXTEND_VECTOR_INREG:
5040   case ISD::SIGN_EXTEND_VECTOR_INREG:
5041     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5042     assert(Operand.getValueType().bitsLE(VT) &&
5043            "The input must be the same size or smaller than the result.");
5044     assert(VT.getVectorMinNumElements() <
5045                Operand.getValueType().getVectorMinNumElements() &&
5046            "The destination vector type must have fewer lanes than the input.");
5047     break;
5048   case ISD::ABS:
5049     assert(VT.isInteger() && VT == Operand.getValueType() &&
5050            "Invalid ABS!");
5051     if (OpOpcode == ISD::UNDEF)
5052       return getUNDEF(VT);
5053     break;
5054   case ISD::BSWAP:
5055     assert(VT.isInteger() && VT == Operand.getValueType() &&
5056            "Invalid BSWAP!");
5057     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5058            "BSWAP types must be a multiple of 16 bits!");
5059     if (OpOpcode == ISD::UNDEF)
5060       return getUNDEF(VT);
5061     break;
5062   case ISD::BITREVERSE:
5063     assert(VT.isInteger() && VT == Operand.getValueType() &&
5064            "Invalid BITREVERSE!");
5065     if (OpOpcode == ISD::UNDEF)
5066       return getUNDEF(VT);
5067     break;
5068   case ISD::BITCAST:
5069     // Basic sanity checking.
5070     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5071            "Cannot BITCAST between types of different sizes!");
5072     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5073     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5074       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5075     if (OpOpcode == ISD::UNDEF)
5076       return getUNDEF(VT);
5077     break;
5078   case ISD::SCALAR_TO_VECTOR:
5079     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5080            (VT.getVectorElementType() == Operand.getValueType() ||
5081             (VT.getVectorElementType().isInteger() &&
5082              Operand.getValueType().isInteger() &&
5083              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5084            "Illegal SCALAR_TO_VECTOR node!");
5085     if (OpOpcode == ISD::UNDEF)
5086       return getUNDEF(VT);
5087     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5088     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5089         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5090         Operand.getConstantOperandVal(1) == 0 &&
5091         Operand.getOperand(0).getValueType() == VT)
5092       return Operand.getOperand(0);
5093     break;
5094   case ISD::FNEG:
5095     // Negation of an unknown bag of bits is still completely undefined.
5096     if (OpOpcode == ISD::UNDEF)
5097       return getUNDEF(VT);
5098 
5099     if (OpOpcode == ISD::FNEG)  // --X -> X
5100       return Operand.getOperand(0);
5101     break;
5102   case ISD::FABS:
5103     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5104       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5105     break;
5106   case ISD::VSCALE:
5107     assert(VT == Operand.getValueType() && "Unexpected VT!");
5108     break;
5109   case ISD::CTPOP:
5110     if (Operand.getValueType().getScalarType() == MVT::i1)
5111       return Operand;
5112     break;
5113   case ISD::CTLZ:
5114   case ISD::CTTZ:
5115     if (Operand.getValueType().getScalarType() == MVT::i1)
5116       return getNOT(DL, Operand, Operand.getValueType());
5117     break;
5118   case ISD::VECREDUCE_SMIN:
5119   case ISD::VECREDUCE_UMAX:
5120     if (Operand.getValueType().getScalarType() == MVT::i1)
5121       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5122     break;
5123   case ISD::VECREDUCE_SMAX:
5124   case ISD::VECREDUCE_UMIN:
5125     if (Operand.getValueType().getScalarType() == MVT::i1)
5126       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5127     break;
5128   }
5129 
5130   SDNode *N;
5131   SDVTList VTs = getVTList(VT);
5132   SDValue Ops[] = {Operand};
5133   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5134     FoldingSetNodeID ID;
5135     AddNodeIDNode(ID, Opcode, VTs, Ops);
5136     void *IP = nullptr;
5137     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5138       E->intersectFlagsWith(Flags);
5139       return SDValue(E, 0);
5140     }
5141 
5142     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5143     N->setFlags(Flags);
5144     createOperands(N, Ops);
5145     CSEMap.InsertNode(N, IP);
5146   } else {
5147     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5148     createOperands(N, Ops);
5149   }
5150 
5151   InsertNode(N);
5152   SDValue V = SDValue(N, 0);
5153   NewSDValueDbgMsg(V, "Creating new node: ", this);
5154   return V;
5155 }
5156 
5157 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5158                                        const APInt &C2) {
5159   switch (Opcode) {
5160   case ISD::ADD:  return C1 + C2;
5161   case ISD::SUB:  return C1 - C2;
5162   case ISD::MUL:  return C1 * C2;
5163   case ISD::AND:  return C1 & C2;
5164   case ISD::OR:   return C1 | C2;
5165   case ISD::XOR:  return C1 ^ C2;
5166   case ISD::SHL:  return C1 << C2;
5167   case ISD::SRL:  return C1.lshr(C2);
5168   case ISD::SRA:  return C1.ashr(C2);
5169   case ISD::ROTL: return C1.rotl(C2);
5170   case ISD::ROTR: return C1.rotr(C2);
5171   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5172   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5173   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5174   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5175   case ISD::SADDSAT: return C1.sadd_sat(C2);
5176   case ISD::UADDSAT: return C1.uadd_sat(C2);
5177   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5178   case ISD::USUBSAT: return C1.usub_sat(C2);
5179   case ISD::UDIV:
5180     if (!C2.getBoolValue())
5181       break;
5182     return C1.udiv(C2);
5183   case ISD::UREM:
5184     if (!C2.getBoolValue())
5185       break;
5186     return C1.urem(C2);
5187   case ISD::SDIV:
5188     if (!C2.getBoolValue())
5189       break;
5190     return C1.sdiv(C2);
5191   case ISD::SREM:
5192     if (!C2.getBoolValue())
5193       break;
5194     return C1.srem(C2);
5195   case ISD::MULHS: {
5196     unsigned FullWidth = C1.getBitWidth() * 2;
5197     APInt C1Ext = C1.sext(FullWidth);
5198     APInt C2Ext = C2.sext(FullWidth);
5199     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5200   }
5201   case ISD::MULHU: {
5202     unsigned FullWidth = C1.getBitWidth() * 2;
5203     APInt C1Ext = C1.zext(FullWidth);
5204     APInt C2Ext = C2.zext(FullWidth);
5205     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5206   }
5207   }
5208   return llvm::None;
5209 }
5210 
5211 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5212                                        const GlobalAddressSDNode *GA,
5213                                        const SDNode *N2) {
5214   if (GA->getOpcode() != ISD::GlobalAddress)
5215     return SDValue();
5216   if (!TLI->isOffsetFoldingLegal(GA))
5217     return SDValue();
5218   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5219   if (!C2)
5220     return SDValue();
5221   int64_t Offset = C2->getSExtValue();
5222   switch (Opcode) {
5223   case ISD::ADD: break;
5224   case ISD::SUB: Offset = -uint64_t(Offset); break;
5225   default: return SDValue();
5226   }
5227   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5228                           GA->getOffset() + uint64_t(Offset));
5229 }
5230 
5231 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5232   switch (Opcode) {
5233   case ISD::SDIV:
5234   case ISD::UDIV:
5235   case ISD::SREM:
5236   case ISD::UREM: {
5237     // If a divisor is zero/undef or any element of a divisor vector is
5238     // zero/undef, the whole op is undef.
5239     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5240     SDValue Divisor = Ops[1];
5241     if (Divisor.isUndef() || isNullConstant(Divisor))
5242       return true;
5243 
5244     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5245            llvm::any_of(Divisor->op_values(),
5246                         [](SDValue V) { return V.isUndef() ||
5247                                         isNullConstant(V); });
5248     // TODO: Handle signed overflow.
5249   }
5250   // TODO: Handle oversized shifts.
5251   default:
5252     return false;
5253   }
5254 }
5255 
5256 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5257                                              EVT VT, ArrayRef<SDValue> Ops) {
5258   // If the opcode is a target-specific ISD node, there's nothing we can
5259   // do here and the operand rules may not line up with the below, so
5260   // bail early.
5261   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5262   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5263   // foldCONCAT_VECTORS in getNode before this is called.
5264   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5265     return SDValue();
5266 
5267   // For now, the array Ops should only contain two values.
5268   // This enforcement will be removed once this function is merged with
5269   // FoldConstantVectorArithmetic
5270   if (Ops.size() != 2)
5271     return SDValue();
5272 
5273   if (isUndef(Opcode, Ops))
5274     return getUNDEF(VT);
5275 
5276   SDNode *N1 = Ops[0].getNode();
5277   SDNode *N2 = Ops[1].getNode();
5278 
5279   // Handle the case of two scalars.
5280   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
5281     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
5282       if (C1->isOpaque() || C2->isOpaque())
5283         return SDValue();
5284 
5285       Optional<APInt> FoldAttempt =
5286           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5287       if (!FoldAttempt)
5288         return SDValue();
5289 
5290       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5291       assert((!Folded || !VT.isVector()) &&
5292              "Can't fold vectors ops with scalar operands");
5293       return Folded;
5294     }
5295   }
5296 
5297   // fold (add Sym, c) -> Sym+c
5298   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
5299     return FoldSymbolOffset(Opcode, VT, GA, N2);
5300   if (TLI->isCommutativeBinOp(Opcode))
5301     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
5302       return FoldSymbolOffset(Opcode, VT, GA, N1);
5303 
5304   // For fixed width vectors, extract each constant element and fold them
5305   // individually. Either input may be an undef value.
5306   bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR ||
5307                    N1->getOpcode() == ISD::SPLAT_VECTOR;
5308   if (!IsBVOrSV1 && !N1->isUndef())
5309     return SDValue();
5310   bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR ||
5311                    N2->getOpcode() == ISD::SPLAT_VECTOR;
5312   if (!IsBVOrSV2 && !N2->isUndef())
5313     return SDValue();
5314   // If both operands are undef, that's handled the same way as scalars.
5315   if (!IsBVOrSV1 && !IsBVOrSV2)
5316     return SDValue();
5317 
5318   EVT SVT = VT.getScalarType();
5319   EVT LegalSVT = SVT;
5320   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5321     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5322     if (LegalSVT.bitsLT(SVT))
5323       return SDValue();
5324   }
5325 
5326   SmallVector<SDValue, 4> Outputs;
5327   unsigned NumOps = 0;
5328   if (IsBVOrSV1)
5329     NumOps = std::max(NumOps, N1->getNumOperands());
5330   if (IsBVOrSV2)
5331     NumOps = std::max(NumOps, N2->getNumOperands());
5332   assert(NumOps != 0 && "Expected non-zero operands");
5333   // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need
5334   // one iteration for that.
5335   assert((!VT.isScalableVector() || NumOps == 1) &&
5336          "Scalable vector should only have one scalar");
5337 
5338   for (unsigned I = 0; I != NumOps; ++I) {
5339     // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need
5340     // to use operand 0 of the SPLAT_VECTOR for each fixed element.
5341     SDValue V1;
5342     if (N1->getOpcode() == ISD::BUILD_VECTOR)
5343       V1 = N1->getOperand(I);
5344     else if (N1->getOpcode() == ISD::SPLAT_VECTOR)
5345       V1 = N1->getOperand(0);
5346     else
5347       V1 = getUNDEF(SVT);
5348 
5349     SDValue V2;
5350     if (N2->getOpcode() == ISD::BUILD_VECTOR)
5351       V2 = N2->getOperand(I);
5352     else if (N2->getOpcode() == ISD::SPLAT_VECTOR)
5353       V2 = N2->getOperand(0);
5354     else
5355       V2 = getUNDEF(SVT);
5356 
5357     if (SVT.isInteger()) {
5358       if (V1.getValueType().bitsGT(SVT))
5359         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5360       if (V2.getValueType().bitsGT(SVT))
5361         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5362     }
5363 
5364     if (V1.getValueType() != SVT || V2.getValueType() != SVT)
5365       return SDValue();
5366 
5367     // Fold one vector element.
5368     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5369     if (LegalSVT != SVT)
5370       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5371 
5372     // Scalar folding only succeeded if the result is a constant or UNDEF.
5373     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5374         ScalarResult.getOpcode() != ISD::ConstantFP)
5375       return SDValue();
5376     Outputs.push_back(ScalarResult);
5377   }
5378 
5379   if (N1->getOpcode() == ISD::BUILD_VECTOR ||
5380       N2->getOpcode() == ISD::BUILD_VECTOR) {
5381     assert(VT.getVectorNumElements() == Outputs.size() &&
5382            "Vector size mismatch!");
5383 
5384     // Build a big vector out of the scalar elements we generated.
5385     return getBuildVector(VT, SDLoc(), Outputs);
5386   }
5387 
5388   assert((N1->getOpcode() == ISD::SPLAT_VECTOR ||
5389           N2->getOpcode() == ISD::SPLAT_VECTOR) &&
5390          "One operand should be a splat vector");
5391 
5392   assert(Outputs.size() == 1 && "Vector size mismatch!");
5393   return getSplatVector(VT, SDLoc(), Outputs[0]);
5394 }
5395 
5396 // TODO: Merge with FoldConstantArithmetic
5397 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5398                                                    const SDLoc &DL, EVT VT,
5399                                                    ArrayRef<SDValue> Ops,
5400                                                    const SDNodeFlags Flags) {
5401   // If the opcode is a target-specific ISD node, there's nothing we can
5402   // do here and the operand rules may not line up with the below, so
5403   // bail early.
5404   if (Opcode >= ISD::BUILTIN_OP_END)
5405     return SDValue();
5406 
5407   if (isUndef(Opcode, Ops))
5408     return getUNDEF(VT);
5409 
5410   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5411   if (!VT.isVector())
5412     return SDValue();
5413 
5414   ElementCount NumElts = VT.getVectorElementCount();
5415 
5416   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5417     return !Op.getValueType().isVector() ||
5418            Op.getValueType().getVectorElementCount() == NumElts;
5419   };
5420 
5421   auto IsConstantBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5422     APInt SplatVal;
5423     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5424     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5425            (BV && BV->isConstant()) ||
5426            (Op.getOpcode() == ISD::SPLAT_VECTOR &&
5427             ISD::isConstantSplatVector(Op.getNode(), SplatVal));
5428   };
5429 
5430   // All operands must be vector types with the same number of elements as
5431   // the result type and must be either UNDEF or a build vector of constant
5432   // or UNDEF scalars.
5433   if (!llvm::all_of(Ops, IsConstantBuildVectorSplatVectorOrUndef) ||
5434       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5435     return SDValue();
5436 
5437   // If we are comparing vectors, then the result needs to be a i1 boolean
5438   // that is then sign-extended back to the legal result type.
5439   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5440 
5441   // Find legal integer scalar type for constant promotion and
5442   // ensure that its scalar size is at least as large as source.
5443   EVT LegalSVT = VT.getScalarType();
5444   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5445     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5446     if (LegalSVT.bitsLT(VT.getScalarType()))
5447       return SDValue();
5448   }
5449 
5450   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5451   // only have one operand to check. For fixed-length vector types we may have
5452   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5453   unsigned NumOperands = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5454 
5455   // Constant fold each scalar lane separately.
5456   SmallVector<SDValue, 4> ScalarResults;
5457   for (unsigned I = 0; I != NumOperands; I++) {
5458     SmallVector<SDValue, 4> ScalarOps;
5459     for (SDValue Op : Ops) {
5460       EVT InSVT = Op.getValueType().getScalarType();
5461       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5462           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5463         // We've checked that this is UNDEF or a constant of some kind.
5464         if (Op.isUndef())
5465           ScalarOps.push_back(getUNDEF(InSVT));
5466         else
5467           ScalarOps.push_back(Op);
5468         continue;
5469       }
5470 
5471       SDValue ScalarOp =
5472           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5473       EVT ScalarVT = ScalarOp.getValueType();
5474 
5475       // Build vector (integer) scalar operands may need implicit
5476       // truncation - do this before constant folding.
5477       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5478         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5479 
5480       ScalarOps.push_back(ScalarOp);
5481     }
5482 
5483     // Constant fold the scalar operands.
5484     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5485 
5486     // Legalize the (integer) scalar constant if necessary.
5487     if (LegalSVT != SVT)
5488       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5489 
5490     // Scalar folding only succeeded if the result is a constant or UNDEF.
5491     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5492         ScalarResult.getOpcode() != ISD::ConstantFP)
5493       return SDValue();
5494     ScalarResults.push_back(ScalarResult);
5495   }
5496 
5497   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5498                                    : getBuildVector(VT, DL, ScalarResults);
5499   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5500   return V;
5501 }
5502 
5503 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5504                                          EVT VT, SDValue N1, SDValue N2) {
5505   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5506   //       should. That will require dealing with a potentially non-default
5507   //       rounding mode, checking the "opStatus" return value from the APFloat
5508   //       math calculations, and possibly other variations.
5509   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5510   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5511   if (N1CFP && N2CFP) {
5512     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5513     switch (Opcode) {
5514     case ISD::FADD:
5515       C1.add(C2, APFloat::rmNearestTiesToEven);
5516       return getConstantFP(C1, DL, VT);
5517     case ISD::FSUB:
5518       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5519       return getConstantFP(C1, DL, VT);
5520     case ISD::FMUL:
5521       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5522       return getConstantFP(C1, DL, VT);
5523     case ISD::FDIV:
5524       C1.divide(C2, APFloat::rmNearestTiesToEven);
5525       return getConstantFP(C1, DL, VT);
5526     case ISD::FREM:
5527       C1.mod(C2);
5528       return getConstantFP(C1, DL, VT);
5529     case ISD::FCOPYSIGN:
5530       C1.copySign(C2);
5531       return getConstantFP(C1, DL, VT);
5532     default: break;
5533     }
5534   }
5535   if (N1CFP && Opcode == ISD::FP_ROUND) {
5536     APFloat C1 = N1CFP->getValueAPF();    // make copy
5537     bool Unused;
5538     // This can return overflow, underflow, or inexact; we don't care.
5539     // FIXME need to be more flexible about rounding mode.
5540     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5541                       &Unused);
5542     return getConstantFP(C1, DL, VT);
5543   }
5544 
5545   switch (Opcode) {
5546   case ISD::FSUB:
5547     // -0.0 - undef --> undef (consistent with "fneg undef")
5548     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5549       return getUNDEF(VT);
5550     LLVM_FALLTHROUGH;
5551 
5552   case ISD::FADD:
5553   case ISD::FMUL:
5554   case ISD::FDIV:
5555   case ISD::FREM:
5556     // If both operands are undef, the result is undef. If 1 operand is undef,
5557     // the result is NaN. This should match the behavior of the IR optimizer.
5558     if (N1.isUndef() && N2.isUndef())
5559       return getUNDEF(VT);
5560     if (N1.isUndef() || N2.isUndef())
5561       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5562   }
5563   return SDValue();
5564 }
5565 
5566 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5567   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5568 
5569   // There's no need to assert on a byte-aligned pointer. All pointers are at
5570   // least byte aligned.
5571   if (A == Align(1))
5572     return Val;
5573 
5574   FoldingSetNodeID ID;
5575   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5576   ID.AddInteger(A.value());
5577 
5578   void *IP = nullptr;
5579   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5580     return SDValue(E, 0);
5581 
5582   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5583                                          Val.getValueType(), A);
5584   createOperands(N, {Val});
5585 
5586   CSEMap.InsertNode(N, IP);
5587   InsertNode(N);
5588 
5589   SDValue V(N, 0);
5590   NewSDValueDbgMsg(V, "Creating new node: ", this);
5591   return V;
5592 }
5593 
5594 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5595                               SDValue N1, SDValue N2) {
5596   SDNodeFlags Flags;
5597   if (Inserter)
5598     Flags = Inserter->getFlags();
5599   return getNode(Opcode, DL, VT, N1, N2, Flags);
5600 }
5601 
5602 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5603                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5604   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5605          N2.getOpcode() != ISD::DELETED_NODE &&
5606          "Operand is DELETED_NODE!");
5607   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5608   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5609   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5610   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5611 
5612   // Canonicalize constant to RHS if commutative.
5613   if (TLI->isCommutativeBinOp(Opcode)) {
5614     if (N1C && !N2C) {
5615       std::swap(N1C, N2C);
5616       std::swap(N1, N2);
5617     } else if (N1CFP && !N2CFP) {
5618       std::swap(N1CFP, N2CFP);
5619       std::swap(N1, N2);
5620     }
5621   }
5622 
5623   switch (Opcode) {
5624   default: break;
5625   case ISD::TokenFactor:
5626     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5627            N2.getValueType() == MVT::Other && "Invalid token factor!");
5628     // Fold trivial token factors.
5629     if (N1.getOpcode() == ISD::EntryToken) return N2;
5630     if (N2.getOpcode() == ISD::EntryToken) return N1;
5631     if (N1 == N2) return N1;
5632     break;
5633   case ISD::BUILD_VECTOR: {
5634     // Attempt to simplify BUILD_VECTOR.
5635     SDValue Ops[] = {N1, N2};
5636     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5637       return V;
5638     break;
5639   }
5640   case ISD::CONCAT_VECTORS: {
5641     SDValue Ops[] = {N1, N2};
5642     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5643       return V;
5644     break;
5645   }
5646   case ISD::AND:
5647     assert(VT.isInteger() && "This operator does not apply to FP types!");
5648     assert(N1.getValueType() == N2.getValueType() &&
5649            N1.getValueType() == VT && "Binary operator types must match!");
5650     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5651     // worth handling here.
5652     if (N2C && N2C->isZero())
5653       return N2;
5654     if (N2C && N2C->isAllOnes()) // X & -1 -> X
5655       return N1;
5656     break;
5657   case ISD::OR:
5658   case ISD::XOR:
5659   case ISD::ADD:
5660   case ISD::SUB:
5661     assert(VT.isInteger() && "This operator does not apply to FP types!");
5662     assert(N1.getValueType() == N2.getValueType() &&
5663            N1.getValueType() == VT && "Binary operator types must match!");
5664     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5665     // it's worth handling here.
5666     if (N2C && N2C->isZero())
5667       return N1;
5668     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5669         VT.getVectorElementType() == MVT::i1)
5670       return getNode(ISD::XOR, DL, VT, N1, N2);
5671     break;
5672   case ISD::MUL:
5673     assert(VT.isInteger() && "This operator does not apply to FP types!");
5674     assert(N1.getValueType() == N2.getValueType() &&
5675            N1.getValueType() == VT && "Binary operator types must match!");
5676     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5677       return getNode(ISD::AND, DL, VT, N1, N2);
5678     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5679       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5680       const APInt &N2CImm = N2C->getAPIntValue();
5681       return getVScale(DL, VT, MulImm * N2CImm);
5682     }
5683     break;
5684   case ISD::UDIV:
5685   case ISD::UREM:
5686   case ISD::MULHU:
5687   case ISD::MULHS:
5688   case ISD::SDIV:
5689   case ISD::SREM:
5690   case ISD::SADDSAT:
5691   case ISD::SSUBSAT:
5692   case ISD::UADDSAT:
5693   case ISD::USUBSAT:
5694     assert(VT.isInteger() && "This operator does not apply to FP types!");
5695     assert(N1.getValueType() == N2.getValueType() &&
5696            N1.getValueType() == VT && "Binary operator types must match!");
5697     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5698       // fold (add_sat x, y) -> (or x, y) for bool types.
5699       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5700         return getNode(ISD::OR, DL, VT, N1, N2);
5701       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5702       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5703         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5704     }
5705     break;
5706   case ISD::SMIN:
5707   case ISD::UMAX:
5708     assert(VT.isInteger() && "This operator does not apply to FP types!");
5709     assert(N1.getValueType() == N2.getValueType() &&
5710            N1.getValueType() == VT && "Binary operator types must match!");
5711     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5712       return getNode(ISD::OR, DL, VT, N1, N2);
5713     break;
5714   case ISD::SMAX:
5715   case ISD::UMIN:
5716     assert(VT.isInteger() && "This operator does not apply to FP types!");
5717     assert(N1.getValueType() == N2.getValueType() &&
5718            N1.getValueType() == VT && "Binary operator types must match!");
5719     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5720       return getNode(ISD::AND, DL, VT, N1, N2);
5721     break;
5722   case ISD::FADD:
5723   case ISD::FSUB:
5724   case ISD::FMUL:
5725   case ISD::FDIV:
5726   case ISD::FREM:
5727     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5728     assert(N1.getValueType() == N2.getValueType() &&
5729            N1.getValueType() == VT && "Binary operator types must match!");
5730     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5731       return V;
5732     break;
5733   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5734     assert(N1.getValueType() == VT &&
5735            N1.getValueType().isFloatingPoint() &&
5736            N2.getValueType().isFloatingPoint() &&
5737            "Invalid FCOPYSIGN!");
5738     break;
5739   case ISD::SHL:
5740     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5741       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5742       const APInt &ShiftImm = N2C->getAPIntValue();
5743       return getVScale(DL, VT, MulImm << ShiftImm);
5744     }
5745     LLVM_FALLTHROUGH;
5746   case ISD::SRA:
5747   case ISD::SRL:
5748     if (SDValue V = simplifyShift(N1, N2))
5749       return V;
5750     LLVM_FALLTHROUGH;
5751   case ISD::ROTL:
5752   case ISD::ROTR:
5753     assert(VT == N1.getValueType() &&
5754            "Shift operators return type must be the same as their first arg");
5755     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5756            "Shifts only work on integers");
5757     assert((!VT.isVector() || VT == N2.getValueType()) &&
5758            "Vector shift amounts must be in the same as their first arg");
5759     // Verify that the shift amount VT is big enough to hold valid shift
5760     // amounts.  This catches things like trying to shift an i1024 value by an
5761     // i8, which is easy to fall into in generic code that uses
5762     // TLI.getShiftAmount().
5763     assert(N2.getValueType().getScalarSizeInBits() >=
5764                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5765            "Invalid use of small shift amount with oversized value!");
5766 
5767     // Always fold shifts of i1 values so the code generator doesn't need to
5768     // handle them.  Since we know the size of the shift has to be less than the
5769     // size of the value, the shift/rotate count is guaranteed to be zero.
5770     if (VT == MVT::i1)
5771       return N1;
5772     if (N2C && N2C->isZero())
5773       return N1;
5774     break;
5775   case ISD::FP_ROUND:
5776     assert(VT.isFloatingPoint() &&
5777            N1.getValueType().isFloatingPoint() &&
5778            VT.bitsLE(N1.getValueType()) &&
5779            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5780            "Invalid FP_ROUND!");
5781     if (N1.getValueType() == VT) return N1;  // noop conversion.
5782     break;
5783   case ISD::AssertSext:
5784   case ISD::AssertZext: {
5785     EVT EVT = cast<VTSDNode>(N2)->getVT();
5786     assert(VT == N1.getValueType() && "Not an inreg extend!");
5787     assert(VT.isInteger() && EVT.isInteger() &&
5788            "Cannot *_EXTEND_INREG FP types");
5789     assert(!EVT.isVector() &&
5790            "AssertSExt/AssertZExt type should be the vector element type "
5791            "rather than the vector type!");
5792     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5793     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5794     break;
5795   }
5796   case ISD::SIGN_EXTEND_INREG: {
5797     EVT EVT = cast<VTSDNode>(N2)->getVT();
5798     assert(VT == N1.getValueType() && "Not an inreg extend!");
5799     assert(VT.isInteger() && EVT.isInteger() &&
5800            "Cannot *_EXTEND_INREG FP types");
5801     assert(EVT.isVector() == VT.isVector() &&
5802            "SIGN_EXTEND_INREG type should be vector iff the operand "
5803            "type is vector!");
5804     assert((!EVT.isVector() ||
5805             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5806            "Vector element counts must match in SIGN_EXTEND_INREG");
5807     assert(EVT.bitsLE(VT) && "Not extending!");
5808     if (EVT == VT) return N1;  // Not actually extending
5809 
5810     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5811       unsigned FromBits = EVT.getScalarSizeInBits();
5812       Val <<= Val.getBitWidth() - FromBits;
5813       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5814       return getConstant(Val, DL, ConstantVT);
5815     };
5816 
5817     if (N1C) {
5818       const APInt &Val = N1C->getAPIntValue();
5819       return SignExtendInReg(Val, VT);
5820     }
5821 
5822     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5823       SmallVector<SDValue, 8> Ops;
5824       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5825       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5826         SDValue Op = N1.getOperand(i);
5827         if (Op.isUndef()) {
5828           Ops.push_back(getUNDEF(OpVT));
5829           continue;
5830         }
5831         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5832         APInt Val = C->getAPIntValue();
5833         Ops.push_back(SignExtendInReg(Val, OpVT));
5834       }
5835       return getBuildVector(VT, DL, Ops);
5836     }
5837     break;
5838   }
5839   case ISD::FP_TO_SINT_SAT:
5840   case ISD::FP_TO_UINT_SAT: {
5841     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
5842            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
5843     assert(N1.getValueType().isVector() == VT.isVector() &&
5844            "FP_TO_*INT_SAT type should be vector iff the operand type is "
5845            "vector!");
5846     assert((!VT.isVector() || VT.getVectorNumElements() ==
5847                                   N1.getValueType().getVectorNumElements()) &&
5848            "Vector element counts must match in FP_TO_*INT_SAT");
5849     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
5850            "Type to saturate to must be a scalar.");
5851     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
5852            "Not extending!");
5853     break;
5854   }
5855   case ISD::EXTRACT_VECTOR_ELT:
5856     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5857            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5858              element type of the vector.");
5859 
5860     // Extract from an undefined value or using an undefined index is undefined.
5861     if (N1.isUndef() || N2.isUndef())
5862       return getUNDEF(VT);
5863 
5864     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5865     // vectors. For scalable vectors we will provide appropriate support for
5866     // dealing with arbitrary indices.
5867     if (N2C && N1.getValueType().isFixedLengthVector() &&
5868         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5869       return getUNDEF(VT);
5870 
5871     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5872     // expanding copies of large vectors from registers. This only works for
5873     // fixed length vectors, since we need to know the exact number of
5874     // elements.
5875     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5876         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5877       unsigned Factor =
5878         N1.getOperand(0).getValueType().getVectorNumElements();
5879       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5880                      N1.getOperand(N2C->getZExtValue() / Factor),
5881                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5882     }
5883 
5884     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5885     // lowering is expanding large vector constants.
5886     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5887                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5888       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5889               N1.getValueType().isFixedLengthVector()) &&
5890              "BUILD_VECTOR used for scalable vectors");
5891       unsigned Index =
5892           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5893       SDValue Elt = N1.getOperand(Index);
5894 
5895       if (VT != Elt.getValueType())
5896         // If the vector element type is not legal, the BUILD_VECTOR operands
5897         // are promoted and implicitly truncated, and the result implicitly
5898         // extended. Make that explicit here.
5899         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5900 
5901       return Elt;
5902     }
5903 
5904     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5905     // operations are lowered to scalars.
5906     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5907       // If the indices are the same, return the inserted element else
5908       // if the indices are known different, extract the element from
5909       // the original vector.
5910       SDValue N1Op2 = N1.getOperand(2);
5911       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5912 
5913       if (N1Op2C && N2C) {
5914         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5915           if (VT == N1.getOperand(1).getValueType())
5916             return N1.getOperand(1);
5917           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5918         }
5919         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5920       }
5921     }
5922 
5923     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5924     // when vector types are scalarized and v1iX is legal.
5925     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5926     // Here we are completely ignoring the extract element index (N2),
5927     // which is fine for fixed width vectors, since any index other than 0
5928     // is undefined anyway. However, this cannot be ignored for scalable
5929     // vectors - in theory we could support this, but we don't want to do this
5930     // without a profitability check.
5931     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5932         N1.getValueType().isFixedLengthVector() &&
5933         N1.getValueType().getVectorNumElements() == 1) {
5934       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5935                      N1.getOperand(1));
5936     }
5937     break;
5938   case ISD::EXTRACT_ELEMENT:
5939     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5940     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5941            (N1.getValueType().isInteger() == VT.isInteger()) &&
5942            N1.getValueType() != VT &&
5943            "Wrong types for EXTRACT_ELEMENT!");
5944 
5945     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5946     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5947     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5948     if (N1.getOpcode() == ISD::BUILD_PAIR)
5949       return N1.getOperand(N2C->getZExtValue());
5950 
5951     // EXTRACT_ELEMENT of a constant int is also very common.
5952     if (N1C) {
5953       unsigned ElementSize = VT.getSizeInBits();
5954       unsigned Shift = ElementSize * N2C->getZExtValue();
5955       const APInt &Val = N1C->getAPIntValue();
5956       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5957     }
5958     break;
5959   case ISD::EXTRACT_SUBVECTOR: {
5960     EVT N1VT = N1.getValueType();
5961     assert(VT.isVector() && N1VT.isVector() &&
5962            "Extract subvector VTs must be vectors!");
5963     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5964            "Extract subvector VTs must have the same element type!");
5965     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5966            "Cannot extract a scalable vector from a fixed length vector!");
5967     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5968             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5969            "Extract subvector must be from larger vector to smaller vector!");
5970     assert(N2C && "Extract subvector index must be a constant");
5971     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5972             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5973                 N1VT.getVectorMinNumElements()) &&
5974            "Extract subvector overflow!");
5975     assert(N2C->getAPIntValue().getBitWidth() ==
5976                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5977            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5978 
5979     // Trivial extraction.
5980     if (VT == N1VT)
5981       return N1;
5982 
5983     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5984     if (N1.isUndef())
5985       return getUNDEF(VT);
5986 
5987     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5988     // the concat have the same type as the extract.
5989     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5990         VT == N1.getOperand(0).getValueType()) {
5991       unsigned Factor = VT.getVectorMinNumElements();
5992       return N1.getOperand(N2C->getZExtValue() / Factor);
5993     }
5994 
5995     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5996     // during shuffle legalization.
5997     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5998         VT == N1.getOperand(1).getValueType())
5999       return N1.getOperand(1);
6000     break;
6001   }
6002   }
6003 
6004   // Perform trivial constant folding.
6005   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
6006     return SV;
6007 
6008   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
6009     return V;
6010 
6011   // Canonicalize an UNDEF to the RHS, even over a constant.
6012   if (N1.isUndef()) {
6013     if (TLI->isCommutativeBinOp(Opcode)) {
6014       std::swap(N1, N2);
6015     } else {
6016       switch (Opcode) {
6017       case ISD::SIGN_EXTEND_INREG:
6018       case ISD::SUB:
6019         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
6020       case ISD::UDIV:
6021       case ISD::SDIV:
6022       case ISD::UREM:
6023       case ISD::SREM:
6024       case ISD::SSUBSAT:
6025       case ISD::USUBSAT:
6026         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6027       }
6028     }
6029   }
6030 
6031   // Fold a bunch of operators when the RHS is undef.
6032   if (N2.isUndef()) {
6033     switch (Opcode) {
6034     case ISD::XOR:
6035       if (N1.isUndef())
6036         // Handle undef ^ undef -> 0 special case. This is a common
6037         // idiom (misuse).
6038         return getConstant(0, DL, VT);
6039       LLVM_FALLTHROUGH;
6040     case ISD::ADD:
6041     case ISD::SUB:
6042     case ISD::UDIV:
6043     case ISD::SDIV:
6044     case ISD::UREM:
6045     case ISD::SREM:
6046       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6047     case ISD::MUL:
6048     case ISD::AND:
6049     case ISD::SSUBSAT:
6050     case ISD::USUBSAT:
6051       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6052     case ISD::OR:
6053     case ISD::SADDSAT:
6054     case ISD::UADDSAT:
6055       return getAllOnesConstant(DL, VT);
6056     }
6057   }
6058 
6059   // Memoize this node if possible.
6060   SDNode *N;
6061   SDVTList VTs = getVTList(VT);
6062   SDValue Ops[] = {N1, N2};
6063   if (VT != MVT::Glue) {
6064     FoldingSetNodeID ID;
6065     AddNodeIDNode(ID, Opcode, VTs, Ops);
6066     void *IP = nullptr;
6067     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6068       E->intersectFlagsWith(Flags);
6069       return SDValue(E, 0);
6070     }
6071 
6072     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6073     N->setFlags(Flags);
6074     createOperands(N, Ops);
6075     CSEMap.InsertNode(N, IP);
6076   } else {
6077     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6078     createOperands(N, Ops);
6079   }
6080 
6081   InsertNode(N);
6082   SDValue V = SDValue(N, 0);
6083   NewSDValueDbgMsg(V, "Creating new node: ", this);
6084   return V;
6085 }
6086 
6087 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6088                               SDValue N1, SDValue N2, SDValue N3) {
6089   SDNodeFlags Flags;
6090   if (Inserter)
6091     Flags = Inserter->getFlags();
6092   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6093 }
6094 
6095 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6096                               SDValue N1, SDValue N2, SDValue N3,
6097                               const SDNodeFlags Flags) {
6098   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6099          N2.getOpcode() != ISD::DELETED_NODE &&
6100          N3.getOpcode() != ISD::DELETED_NODE &&
6101          "Operand is DELETED_NODE!");
6102   // Perform various simplifications.
6103   switch (Opcode) {
6104   case ISD::FMA: {
6105     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6106     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6107            N3.getValueType() == VT && "FMA types must match!");
6108     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6109     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6110     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6111     if (N1CFP && N2CFP && N3CFP) {
6112       APFloat  V1 = N1CFP->getValueAPF();
6113       const APFloat &V2 = N2CFP->getValueAPF();
6114       const APFloat &V3 = N3CFP->getValueAPF();
6115       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6116       return getConstantFP(V1, DL, VT);
6117     }
6118     break;
6119   }
6120   case ISD::BUILD_VECTOR: {
6121     // Attempt to simplify BUILD_VECTOR.
6122     SDValue Ops[] = {N1, N2, N3};
6123     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6124       return V;
6125     break;
6126   }
6127   case ISD::CONCAT_VECTORS: {
6128     SDValue Ops[] = {N1, N2, N3};
6129     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6130       return V;
6131     break;
6132   }
6133   case ISD::SETCC: {
6134     assert(VT.isInteger() && "SETCC result type must be an integer!");
6135     assert(N1.getValueType() == N2.getValueType() &&
6136            "SETCC operands must have the same type!");
6137     assert(VT.isVector() == N1.getValueType().isVector() &&
6138            "SETCC type should be vector iff the operand type is vector!");
6139     assert((!VT.isVector() || VT.getVectorElementCount() ==
6140                                   N1.getValueType().getVectorElementCount()) &&
6141            "SETCC vector element counts must match!");
6142     // Use FoldSetCC to simplify SETCC's.
6143     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6144       return V;
6145     // Vector constant folding.
6146     SDValue Ops[] = {N1, N2, N3};
6147     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
6148       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6149       return V;
6150     }
6151     break;
6152   }
6153   case ISD::SELECT:
6154   case ISD::VSELECT:
6155     if (SDValue V = simplifySelect(N1, N2, N3))
6156       return V;
6157     break;
6158   case ISD::VECTOR_SHUFFLE:
6159     llvm_unreachable("should use getVectorShuffle constructor!");
6160   case ISD::INSERT_VECTOR_ELT: {
6161     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6162     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6163     // for scalable vectors where we will generate appropriate code to
6164     // deal with out-of-bounds cases correctly.
6165     if (N3C && N1.getValueType().isFixedLengthVector() &&
6166         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6167       return getUNDEF(VT);
6168 
6169     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6170     if (N3.isUndef())
6171       return getUNDEF(VT);
6172 
6173     // If the inserted element is an UNDEF, just use the input vector.
6174     if (N2.isUndef())
6175       return N1;
6176 
6177     break;
6178   }
6179   case ISD::INSERT_SUBVECTOR: {
6180     // Inserting undef into undef is still undef.
6181     if (N1.isUndef() && N2.isUndef())
6182       return getUNDEF(VT);
6183 
6184     EVT N2VT = N2.getValueType();
6185     assert(VT == N1.getValueType() &&
6186            "Dest and insert subvector source types must match!");
6187     assert(VT.isVector() && N2VT.isVector() &&
6188            "Insert subvector VTs must be vectors!");
6189     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6190            "Cannot insert a scalable vector into a fixed length vector!");
6191     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6192             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6193            "Insert subvector must be from smaller vector to larger vector!");
6194     assert(isa<ConstantSDNode>(N3) &&
6195            "Insert subvector index must be constant");
6196     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6197             (N2VT.getVectorMinNumElements() +
6198              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6199                 VT.getVectorMinNumElements()) &&
6200            "Insert subvector overflow!");
6201     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6202                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6203            "Constant index for INSERT_SUBVECTOR has an invalid size");
6204 
6205     // Trivial insertion.
6206     if (VT == N2VT)
6207       return N2;
6208 
6209     // If this is an insert of an extracted vector into an undef vector, we
6210     // can just use the input to the extract.
6211     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6212         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6213       return N2.getOperand(0);
6214     break;
6215   }
6216   case ISD::BITCAST:
6217     // Fold bit_convert nodes from a type to themselves.
6218     if (N1.getValueType() == VT)
6219       return N1;
6220     break;
6221   }
6222 
6223   // Memoize node if it doesn't produce a flag.
6224   SDNode *N;
6225   SDVTList VTs = getVTList(VT);
6226   SDValue Ops[] = {N1, N2, N3};
6227   if (VT != MVT::Glue) {
6228     FoldingSetNodeID ID;
6229     AddNodeIDNode(ID, Opcode, VTs, Ops);
6230     void *IP = nullptr;
6231     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6232       E->intersectFlagsWith(Flags);
6233       return SDValue(E, 0);
6234     }
6235 
6236     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6237     N->setFlags(Flags);
6238     createOperands(N, Ops);
6239     CSEMap.InsertNode(N, IP);
6240   } else {
6241     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6242     createOperands(N, Ops);
6243   }
6244 
6245   InsertNode(N);
6246   SDValue V = SDValue(N, 0);
6247   NewSDValueDbgMsg(V, "Creating new node: ", this);
6248   return V;
6249 }
6250 
6251 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6252                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6253   SDValue Ops[] = { N1, N2, N3, N4 };
6254   return getNode(Opcode, DL, VT, Ops);
6255 }
6256 
6257 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6258                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6259                               SDValue N5) {
6260   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6261   return getNode(Opcode, DL, VT, Ops);
6262 }
6263 
6264 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6265 /// the incoming stack arguments to be loaded from the stack.
6266 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6267   SmallVector<SDValue, 8> ArgChains;
6268 
6269   // Include the original chain at the beginning of the list. When this is
6270   // used by target LowerCall hooks, this helps legalize find the
6271   // CALLSEQ_BEGIN node.
6272   ArgChains.push_back(Chain);
6273 
6274   // Add a chain value for each stack argument.
6275   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
6276        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
6277     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
6278       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6279         if (FI->getIndex() < 0)
6280           ArgChains.push_back(SDValue(L, 1));
6281 
6282   // Build a tokenfactor for all the chains.
6283   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6284 }
6285 
6286 /// getMemsetValue - Vectorized representation of the memset value
6287 /// operand.
6288 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6289                               const SDLoc &dl) {
6290   assert(!Value.isUndef());
6291 
6292   unsigned NumBits = VT.getScalarSizeInBits();
6293   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6294     assert(C->getAPIntValue().getBitWidth() == 8);
6295     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6296     if (VT.isInteger()) {
6297       bool IsOpaque = VT.getSizeInBits() > 64 ||
6298           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6299       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6300     }
6301     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6302                              VT);
6303   }
6304 
6305   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6306   EVT IntVT = VT.getScalarType();
6307   if (!IntVT.isInteger())
6308     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6309 
6310   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6311   if (NumBits > 8) {
6312     // Use a multiplication with 0x010101... to extend the input to the
6313     // required length.
6314     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6315     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6316                         DAG.getConstant(Magic, dl, IntVT));
6317   }
6318 
6319   if (VT != Value.getValueType() && !VT.isInteger())
6320     Value = DAG.getBitcast(VT.getScalarType(), Value);
6321   if (VT != Value.getValueType())
6322     Value = DAG.getSplatBuildVector(VT, dl, Value);
6323 
6324   return Value;
6325 }
6326 
6327 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6328 /// used when a memcpy is turned into a memset when the source is a constant
6329 /// string ptr.
6330 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6331                                   const TargetLowering &TLI,
6332                                   const ConstantDataArraySlice &Slice) {
6333   // Handle vector with all elements zero.
6334   if (Slice.Array == nullptr) {
6335     if (VT.isInteger())
6336       return DAG.getConstant(0, dl, VT);
6337     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6338       return DAG.getConstantFP(0.0, dl, VT);
6339     if (VT.isVector()) {
6340       unsigned NumElts = VT.getVectorNumElements();
6341       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6342       return DAG.getNode(ISD::BITCAST, dl, VT,
6343                          DAG.getConstant(0, dl,
6344                                          EVT::getVectorVT(*DAG.getContext(),
6345                                                           EltVT, NumElts)));
6346     }
6347     llvm_unreachable("Expected type!");
6348   }
6349 
6350   assert(!VT.isVector() && "Can't handle vector type here!");
6351   unsigned NumVTBits = VT.getSizeInBits();
6352   unsigned NumVTBytes = NumVTBits / 8;
6353   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6354 
6355   APInt Val(NumVTBits, 0);
6356   if (DAG.getDataLayout().isLittleEndian()) {
6357     for (unsigned i = 0; i != NumBytes; ++i)
6358       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6359   } else {
6360     for (unsigned i = 0; i != NumBytes; ++i)
6361       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6362   }
6363 
6364   // If the "cost" of materializing the integer immediate is less than the cost
6365   // of a load, then it is cost effective to turn the load into the immediate.
6366   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6367   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6368     return DAG.getConstant(Val, dl, VT);
6369   return SDValue(nullptr, 0);
6370 }
6371 
6372 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6373                                            const SDLoc &DL,
6374                                            const SDNodeFlags Flags) {
6375   EVT VT = Base.getValueType();
6376   SDValue Index;
6377 
6378   if (Offset.isScalable())
6379     Index = getVScale(DL, Base.getValueType(),
6380                       APInt(Base.getValueSizeInBits().getFixedSize(),
6381                             Offset.getKnownMinSize()));
6382   else
6383     Index = getConstant(Offset.getFixedSize(), DL, VT);
6384 
6385   return getMemBasePlusOffset(Base, Index, DL, Flags);
6386 }
6387 
6388 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6389                                            const SDLoc &DL,
6390                                            const SDNodeFlags Flags) {
6391   assert(Offset.getValueType().isInteger());
6392   EVT BasePtrVT = Ptr.getValueType();
6393   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6394 }
6395 
6396 /// Returns true if memcpy source is constant data.
6397 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6398   uint64_t SrcDelta = 0;
6399   GlobalAddressSDNode *G = nullptr;
6400   if (Src.getOpcode() == ISD::GlobalAddress)
6401     G = cast<GlobalAddressSDNode>(Src);
6402   else if (Src.getOpcode() == ISD::ADD &&
6403            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6404            Src.getOperand(1).getOpcode() == ISD::Constant) {
6405     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6406     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6407   }
6408   if (!G)
6409     return false;
6410 
6411   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6412                                   SrcDelta + G->getOffset());
6413 }
6414 
6415 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6416                                       SelectionDAG &DAG) {
6417   // On Darwin, -Os means optimize for size without hurting performance, so
6418   // only really optimize for size when -Oz (MinSize) is used.
6419   if (MF.getTarget().getTargetTriple().isOSDarwin())
6420     return MF.getFunction().hasMinSize();
6421   return DAG.shouldOptForSize();
6422 }
6423 
6424 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6425                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6426                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6427                           SmallVector<SDValue, 16> &OutStoreChains) {
6428   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6429   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6430   SmallVector<SDValue, 16> GluedLoadChains;
6431   for (unsigned i = From; i < To; ++i) {
6432     OutChains.push_back(OutLoadChains[i]);
6433     GluedLoadChains.push_back(OutLoadChains[i]);
6434   }
6435 
6436   // Chain for all loads.
6437   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6438                                   GluedLoadChains);
6439 
6440   for (unsigned i = From; i < To; ++i) {
6441     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6442     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6443                                   ST->getBasePtr(), ST->getMemoryVT(),
6444                                   ST->getMemOperand());
6445     OutChains.push_back(NewStore);
6446   }
6447 }
6448 
6449 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6450                                        SDValue Chain, SDValue Dst, SDValue Src,
6451                                        uint64_t Size, Align Alignment,
6452                                        bool isVol, bool AlwaysInline,
6453                                        MachinePointerInfo DstPtrInfo,
6454                                        MachinePointerInfo SrcPtrInfo,
6455                                        const AAMDNodes &AAInfo) {
6456   // Turn a memcpy of undef to nop.
6457   // FIXME: We need to honor volatile even is Src is undef.
6458   if (Src.isUndef())
6459     return Chain;
6460 
6461   // Expand memcpy to a series of load and store ops if the size operand falls
6462   // below a certain threshold.
6463   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6464   // rather than maybe a humongous number of loads and stores.
6465   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6466   const DataLayout &DL = DAG.getDataLayout();
6467   LLVMContext &C = *DAG.getContext();
6468   std::vector<EVT> MemOps;
6469   bool DstAlignCanChange = false;
6470   MachineFunction &MF = DAG.getMachineFunction();
6471   MachineFrameInfo &MFI = MF.getFrameInfo();
6472   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6473   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6474   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6475     DstAlignCanChange = true;
6476   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6477   if (!SrcAlign || Alignment > *SrcAlign)
6478     SrcAlign = Alignment;
6479   assert(SrcAlign && "SrcAlign must be set");
6480   ConstantDataArraySlice Slice;
6481   // If marked as volatile, perform a copy even when marked as constant.
6482   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6483   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6484   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6485   const MemOp Op = isZeroConstant
6486                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6487                                     /*IsZeroMemset*/ true, isVol)
6488                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6489                                      *SrcAlign, isVol, CopyFromConstant);
6490   if (!TLI.findOptimalMemOpLowering(
6491           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6492           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6493     return SDValue();
6494 
6495   if (DstAlignCanChange) {
6496     Type *Ty = MemOps[0].getTypeForEVT(C);
6497     Align NewAlign = DL.getABITypeAlign(Ty);
6498 
6499     // Don't promote to an alignment that would require dynamic stack
6500     // realignment.
6501     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6502     if (!TRI->hasStackRealignment(MF))
6503       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6504         NewAlign = NewAlign / 2;
6505 
6506     if (NewAlign > Alignment) {
6507       // Give the stack frame object a larger alignment if needed.
6508       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6509         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6510       Alignment = NewAlign;
6511     }
6512   }
6513 
6514   // Prepare AAInfo for loads/stores after lowering this memcpy.
6515   AAMDNodes NewAAInfo = AAInfo;
6516   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6517 
6518   MachineMemOperand::Flags MMOFlags =
6519       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6520   SmallVector<SDValue, 16> OutLoadChains;
6521   SmallVector<SDValue, 16> OutStoreChains;
6522   SmallVector<SDValue, 32> OutChains;
6523   unsigned NumMemOps = MemOps.size();
6524   uint64_t SrcOff = 0, DstOff = 0;
6525   for (unsigned i = 0; i != NumMemOps; ++i) {
6526     EVT VT = MemOps[i];
6527     unsigned VTSize = VT.getSizeInBits() / 8;
6528     SDValue Value, Store;
6529 
6530     if (VTSize > Size) {
6531       // Issuing an unaligned load / store pair  that overlaps with the previous
6532       // pair. Adjust the offset accordingly.
6533       assert(i == NumMemOps-1 && i != 0);
6534       SrcOff -= VTSize - Size;
6535       DstOff -= VTSize - Size;
6536     }
6537 
6538     if (CopyFromConstant &&
6539         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6540       // It's unlikely a store of a vector immediate can be done in a single
6541       // instruction. It would require a load from a constantpool first.
6542       // We only handle zero vectors here.
6543       // FIXME: Handle other cases where store of vector immediate is done in
6544       // a single instruction.
6545       ConstantDataArraySlice SubSlice;
6546       if (SrcOff < Slice.Length) {
6547         SubSlice = Slice;
6548         SubSlice.move(SrcOff);
6549       } else {
6550         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6551         SubSlice.Array = nullptr;
6552         SubSlice.Offset = 0;
6553         SubSlice.Length = VTSize;
6554       }
6555       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6556       if (Value.getNode()) {
6557         Store = DAG.getStore(
6558             Chain, dl, Value,
6559             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6560             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6561         OutChains.push_back(Store);
6562       }
6563     }
6564 
6565     if (!Store.getNode()) {
6566       // The type might not be legal for the target.  This should only happen
6567       // if the type is smaller than a legal type, as on PPC, so the right
6568       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6569       // to Load/Store if NVT==VT.
6570       // FIXME does the case above also need this?
6571       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6572       assert(NVT.bitsGE(VT));
6573 
6574       bool isDereferenceable =
6575         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6576       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6577       if (isDereferenceable)
6578         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6579 
6580       Value = DAG.getExtLoad(
6581           ISD::EXTLOAD, dl, NVT, Chain,
6582           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6583           SrcPtrInfo.getWithOffset(SrcOff), VT,
6584           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6585       OutLoadChains.push_back(Value.getValue(1));
6586 
6587       Store = DAG.getTruncStore(
6588           Chain, dl, Value,
6589           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6590           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6591       OutStoreChains.push_back(Store);
6592     }
6593     SrcOff += VTSize;
6594     DstOff += VTSize;
6595     Size -= VTSize;
6596   }
6597 
6598   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6599                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6600   unsigned NumLdStInMemcpy = OutStoreChains.size();
6601 
6602   if (NumLdStInMemcpy) {
6603     // It may be that memcpy might be converted to memset if it's memcpy
6604     // of constants. In such a case, we won't have loads and stores, but
6605     // just stores. In the absence of loads, there is nothing to gang up.
6606     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6607       // If target does not care, just leave as it.
6608       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6609         OutChains.push_back(OutLoadChains[i]);
6610         OutChains.push_back(OutStoreChains[i]);
6611       }
6612     } else {
6613       // Ld/St less than/equal limit set by target.
6614       if (NumLdStInMemcpy <= GluedLdStLimit) {
6615           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6616                                         NumLdStInMemcpy, OutLoadChains,
6617                                         OutStoreChains);
6618       } else {
6619         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6620         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6621         unsigned GlueIter = 0;
6622 
6623         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6624           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6625           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6626 
6627           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6628                                        OutLoadChains, OutStoreChains);
6629           GlueIter += GluedLdStLimit;
6630         }
6631 
6632         // Residual ld/st.
6633         if (RemainingLdStInMemcpy) {
6634           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6635                                         RemainingLdStInMemcpy, OutLoadChains,
6636                                         OutStoreChains);
6637         }
6638       }
6639     }
6640   }
6641   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6642 }
6643 
6644 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6645                                         SDValue Chain, SDValue Dst, SDValue Src,
6646                                         uint64_t Size, Align Alignment,
6647                                         bool isVol, bool AlwaysInline,
6648                                         MachinePointerInfo DstPtrInfo,
6649                                         MachinePointerInfo SrcPtrInfo,
6650                                         const AAMDNodes &AAInfo) {
6651   // Turn a memmove of undef to nop.
6652   // FIXME: We need to honor volatile even is Src is undef.
6653   if (Src.isUndef())
6654     return Chain;
6655 
6656   // Expand memmove to a series of load and store ops if the size operand falls
6657   // below a certain threshold.
6658   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6659   const DataLayout &DL = DAG.getDataLayout();
6660   LLVMContext &C = *DAG.getContext();
6661   std::vector<EVT> MemOps;
6662   bool DstAlignCanChange = false;
6663   MachineFunction &MF = DAG.getMachineFunction();
6664   MachineFrameInfo &MFI = MF.getFrameInfo();
6665   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6666   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6667   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6668     DstAlignCanChange = true;
6669   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6670   if (!SrcAlign || Alignment > *SrcAlign)
6671     SrcAlign = Alignment;
6672   assert(SrcAlign && "SrcAlign must be set");
6673   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6674   if (!TLI.findOptimalMemOpLowering(
6675           MemOps, Limit,
6676           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6677                       /*IsVolatile*/ true),
6678           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6679           MF.getFunction().getAttributes()))
6680     return SDValue();
6681 
6682   if (DstAlignCanChange) {
6683     Type *Ty = MemOps[0].getTypeForEVT(C);
6684     Align NewAlign = DL.getABITypeAlign(Ty);
6685     if (NewAlign > Alignment) {
6686       // Give the stack frame object a larger alignment if needed.
6687       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6688         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6689       Alignment = NewAlign;
6690     }
6691   }
6692 
6693   // Prepare AAInfo for loads/stores after lowering this memmove.
6694   AAMDNodes NewAAInfo = AAInfo;
6695   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6696 
6697   MachineMemOperand::Flags MMOFlags =
6698       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6699   uint64_t SrcOff = 0, DstOff = 0;
6700   SmallVector<SDValue, 8> LoadValues;
6701   SmallVector<SDValue, 8> LoadChains;
6702   SmallVector<SDValue, 8> OutChains;
6703   unsigned NumMemOps = MemOps.size();
6704   for (unsigned i = 0; i < NumMemOps; i++) {
6705     EVT VT = MemOps[i];
6706     unsigned VTSize = VT.getSizeInBits() / 8;
6707     SDValue Value;
6708 
6709     bool isDereferenceable =
6710       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6711     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6712     if (isDereferenceable)
6713       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6714 
6715     Value = DAG.getLoad(
6716         VT, dl, Chain,
6717         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6718         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6719     LoadValues.push_back(Value);
6720     LoadChains.push_back(Value.getValue(1));
6721     SrcOff += VTSize;
6722   }
6723   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6724   OutChains.clear();
6725   for (unsigned i = 0; i < NumMemOps; i++) {
6726     EVT VT = MemOps[i];
6727     unsigned VTSize = VT.getSizeInBits() / 8;
6728     SDValue Store;
6729 
6730     Store = DAG.getStore(
6731         Chain, dl, LoadValues[i],
6732         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6733         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6734     OutChains.push_back(Store);
6735     DstOff += VTSize;
6736   }
6737 
6738   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6739 }
6740 
6741 /// Lower the call to 'memset' intrinsic function into a series of store
6742 /// operations.
6743 ///
6744 /// \param DAG Selection DAG where lowered code is placed.
6745 /// \param dl Link to corresponding IR location.
6746 /// \param Chain Control flow dependency.
6747 /// \param Dst Pointer to destination memory location.
6748 /// \param Src Value of byte to write into the memory.
6749 /// \param Size Number of bytes to write.
6750 /// \param Alignment Alignment of the destination in bytes.
6751 /// \param isVol True if destination is volatile.
6752 /// \param DstPtrInfo IR information on the memory pointer.
6753 /// \returns New head in the control flow, if lowering was successful, empty
6754 /// SDValue otherwise.
6755 ///
6756 /// The function tries to replace 'llvm.memset' intrinsic with several store
6757 /// operations and value calculation code. This is usually profitable for small
6758 /// memory size.
6759 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6760                                SDValue Chain, SDValue Dst, SDValue Src,
6761                                uint64_t Size, Align Alignment, bool isVol,
6762                                MachinePointerInfo DstPtrInfo,
6763                                const AAMDNodes &AAInfo) {
6764   // Turn a memset of undef to nop.
6765   // FIXME: We need to honor volatile even is Src is undef.
6766   if (Src.isUndef())
6767     return Chain;
6768 
6769   // Expand memset to a series of load/store ops if the size operand
6770   // falls below a certain threshold.
6771   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6772   std::vector<EVT> MemOps;
6773   bool DstAlignCanChange = false;
6774   MachineFunction &MF = DAG.getMachineFunction();
6775   MachineFrameInfo &MFI = MF.getFrameInfo();
6776   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6777   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6778   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6779     DstAlignCanChange = true;
6780   bool IsZeroVal =
6781       isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
6782   if (!TLI.findOptimalMemOpLowering(
6783           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6784           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6785           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6786     return SDValue();
6787 
6788   if (DstAlignCanChange) {
6789     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6790     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6791     if (NewAlign > Alignment) {
6792       // Give the stack frame object a larger alignment if needed.
6793       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6794         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6795       Alignment = NewAlign;
6796     }
6797   }
6798 
6799   SmallVector<SDValue, 8> OutChains;
6800   uint64_t DstOff = 0;
6801   unsigned NumMemOps = MemOps.size();
6802 
6803   // Find the largest store and generate the bit pattern for it.
6804   EVT LargestVT = MemOps[0];
6805   for (unsigned i = 1; i < NumMemOps; i++)
6806     if (MemOps[i].bitsGT(LargestVT))
6807       LargestVT = MemOps[i];
6808   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6809 
6810   // Prepare AAInfo for loads/stores after lowering this memset.
6811   AAMDNodes NewAAInfo = AAInfo;
6812   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6813 
6814   for (unsigned i = 0; i < NumMemOps; i++) {
6815     EVT VT = MemOps[i];
6816     unsigned VTSize = VT.getSizeInBits() / 8;
6817     if (VTSize > Size) {
6818       // Issuing an unaligned load / store pair  that overlaps with the previous
6819       // pair. Adjust the offset accordingly.
6820       assert(i == NumMemOps-1 && i != 0);
6821       DstOff -= VTSize - Size;
6822     }
6823 
6824     // If this store is smaller than the largest store see whether we can get
6825     // the smaller value for free with a truncate.
6826     SDValue Value = MemSetValue;
6827     if (VT.bitsLT(LargestVT)) {
6828       if (!LargestVT.isVector() && !VT.isVector() &&
6829           TLI.isTruncateFree(LargestVT, VT))
6830         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6831       else
6832         Value = getMemsetValue(Src, VT, DAG, dl);
6833     }
6834     assert(Value.getValueType() == VT && "Value with wrong type.");
6835     SDValue Store = DAG.getStore(
6836         Chain, dl, Value,
6837         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6838         DstPtrInfo.getWithOffset(DstOff), Alignment,
6839         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
6840         NewAAInfo);
6841     OutChains.push_back(Store);
6842     DstOff += VT.getSizeInBits() / 8;
6843     Size -= VTSize;
6844   }
6845 
6846   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6847 }
6848 
6849 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6850                                             unsigned AS) {
6851   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6852   // pointer operands can be losslessly bitcasted to pointers of address space 0
6853   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6854     report_fatal_error("cannot lower memory intrinsic in address space " +
6855                        Twine(AS));
6856   }
6857 }
6858 
6859 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6860                                 SDValue Src, SDValue Size, Align Alignment,
6861                                 bool isVol, bool AlwaysInline, bool isTailCall,
6862                                 MachinePointerInfo DstPtrInfo,
6863                                 MachinePointerInfo SrcPtrInfo,
6864                                 const AAMDNodes &AAInfo) {
6865   // Check to see if we should lower the memcpy to loads and stores first.
6866   // For cases within the target-specified limits, this is the best choice.
6867   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6868   if (ConstantSize) {
6869     // Memcpy with size zero? Just return the original chain.
6870     if (ConstantSize->isZero())
6871       return Chain;
6872 
6873     SDValue Result = getMemcpyLoadsAndStores(
6874         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6875         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6876     if (Result.getNode())
6877       return Result;
6878   }
6879 
6880   // Then check to see if we should lower the memcpy with target-specific
6881   // code. If the target chooses to do this, this is the next best.
6882   if (TSI) {
6883     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6884         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6885         DstPtrInfo, SrcPtrInfo);
6886     if (Result.getNode())
6887       return Result;
6888   }
6889 
6890   // If we really need inline code and the target declined to provide it,
6891   // use a (potentially long) sequence of loads and stores.
6892   if (AlwaysInline) {
6893     assert(ConstantSize && "AlwaysInline requires a constant size!");
6894     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6895                                    ConstantSize->getZExtValue(), Alignment,
6896                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
6897   }
6898 
6899   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6900   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6901 
6902   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6903   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6904   // respect volatile, so they may do things like read or write memory
6905   // beyond the given memory regions. But fixing this isn't easy, and most
6906   // people don't care.
6907 
6908   // Emit a library call.
6909   TargetLowering::ArgListTy Args;
6910   TargetLowering::ArgListEntry Entry;
6911   Entry.Ty = Type::getInt8PtrTy(*getContext());
6912   Entry.Node = Dst; Args.push_back(Entry);
6913   Entry.Node = Src; Args.push_back(Entry);
6914 
6915   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6916   Entry.Node = Size; Args.push_back(Entry);
6917   // FIXME: pass in SDLoc
6918   TargetLowering::CallLoweringInfo CLI(*this);
6919   CLI.setDebugLoc(dl)
6920       .setChain(Chain)
6921       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6922                     Dst.getValueType().getTypeForEVT(*getContext()),
6923                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6924                                       TLI->getPointerTy(getDataLayout())),
6925                     std::move(Args))
6926       .setDiscardResult()
6927       .setTailCall(isTailCall);
6928 
6929   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6930   return CallResult.second;
6931 }
6932 
6933 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6934                                       SDValue Dst, unsigned DstAlign,
6935                                       SDValue Src, unsigned SrcAlign,
6936                                       SDValue Size, Type *SizeTy,
6937                                       unsigned ElemSz, bool isTailCall,
6938                                       MachinePointerInfo DstPtrInfo,
6939                                       MachinePointerInfo SrcPtrInfo) {
6940   // Emit a library call.
6941   TargetLowering::ArgListTy Args;
6942   TargetLowering::ArgListEntry Entry;
6943   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6944   Entry.Node = Dst;
6945   Args.push_back(Entry);
6946 
6947   Entry.Node = Src;
6948   Args.push_back(Entry);
6949 
6950   Entry.Ty = SizeTy;
6951   Entry.Node = Size;
6952   Args.push_back(Entry);
6953 
6954   RTLIB::Libcall LibraryCall =
6955       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6956   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6957     report_fatal_error("Unsupported element size");
6958 
6959   TargetLowering::CallLoweringInfo CLI(*this);
6960   CLI.setDebugLoc(dl)
6961       .setChain(Chain)
6962       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6963                     Type::getVoidTy(*getContext()),
6964                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6965                                       TLI->getPointerTy(getDataLayout())),
6966                     std::move(Args))
6967       .setDiscardResult()
6968       .setTailCall(isTailCall);
6969 
6970   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6971   return CallResult.second;
6972 }
6973 
6974 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6975                                  SDValue Src, SDValue Size, Align Alignment,
6976                                  bool isVol, bool isTailCall,
6977                                  MachinePointerInfo DstPtrInfo,
6978                                  MachinePointerInfo SrcPtrInfo,
6979                                  const AAMDNodes &AAInfo) {
6980   // Check to see if we should lower the memmove to loads and stores first.
6981   // For cases within the target-specified limits, this is the best choice.
6982   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6983   if (ConstantSize) {
6984     // Memmove with size zero? Just return the original chain.
6985     if (ConstantSize->isZero())
6986       return Chain;
6987 
6988     SDValue Result = getMemmoveLoadsAndStores(
6989         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6990         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6991     if (Result.getNode())
6992       return Result;
6993   }
6994 
6995   // Then check to see if we should lower the memmove with target-specific
6996   // code. If the target chooses to do this, this is the next best.
6997   if (TSI) {
6998     SDValue Result =
6999         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
7000                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
7001     if (Result.getNode())
7002       return Result;
7003   }
7004 
7005   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7006   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7007 
7008   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7009   // not be safe.  See memcpy above for more details.
7010 
7011   // Emit a library call.
7012   TargetLowering::ArgListTy Args;
7013   TargetLowering::ArgListEntry Entry;
7014   Entry.Ty = Type::getInt8PtrTy(*getContext());
7015   Entry.Node = Dst; Args.push_back(Entry);
7016   Entry.Node = Src; Args.push_back(Entry);
7017 
7018   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7019   Entry.Node = Size; Args.push_back(Entry);
7020   // FIXME:  pass in SDLoc
7021   TargetLowering::CallLoweringInfo CLI(*this);
7022   CLI.setDebugLoc(dl)
7023       .setChain(Chain)
7024       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7025                     Dst.getValueType().getTypeForEVT(*getContext()),
7026                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7027                                       TLI->getPointerTy(getDataLayout())),
7028                     std::move(Args))
7029       .setDiscardResult()
7030       .setTailCall(isTailCall);
7031 
7032   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7033   return CallResult.second;
7034 }
7035 
7036 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7037                                        SDValue Dst, unsigned DstAlign,
7038                                        SDValue Src, unsigned SrcAlign,
7039                                        SDValue Size, Type *SizeTy,
7040                                        unsigned ElemSz, bool isTailCall,
7041                                        MachinePointerInfo DstPtrInfo,
7042                                        MachinePointerInfo SrcPtrInfo) {
7043   // Emit a library call.
7044   TargetLowering::ArgListTy Args;
7045   TargetLowering::ArgListEntry Entry;
7046   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7047   Entry.Node = Dst;
7048   Args.push_back(Entry);
7049 
7050   Entry.Node = Src;
7051   Args.push_back(Entry);
7052 
7053   Entry.Ty = SizeTy;
7054   Entry.Node = Size;
7055   Args.push_back(Entry);
7056 
7057   RTLIB::Libcall LibraryCall =
7058       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7059   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7060     report_fatal_error("Unsupported element size");
7061 
7062   TargetLowering::CallLoweringInfo CLI(*this);
7063   CLI.setDebugLoc(dl)
7064       .setChain(Chain)
7065       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7066                     Type::getVoidTy(*getContext()),
7067                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7068                                       TLI->getPointerTy(getDataLayout())),
7069                     std::move(Args))
7070       .setDiscardResult()
7071       .setTailCall(isTailCall);
7072 
7073   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7074   return CallResult.second;
7075 }
7076 
7077 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7078                                 SDValue Src, SDValue Size, Align Alignment,
7079                                 bool isVol, bool isTailCall,
7080                                 MachinePointerInfo DstPtrInfo,
7081                                 const AAMDNodes &AAInfo) {
7082   // Check to see if we should lower the memset to stores first.
7083   // For cases within the target-specified limits, this is the best choice.
7084   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7085   if (ConstantSize) {
7086     // Memset with size zero? Just return the original chain.
7087     if (ConstantSize->isZero())
7088       return Chain;
7089 
7090     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7091                                      ConstantSize->getZExtValue(), Alignment,
7092                                      isVol, DstPtrInfo, AAInfo);
7093 
7094     if (Result.getNode())
7095       return Result;
7096   }
7097 
7098   // Then check to see if we should lower the memset with target-specific
7099   // code. If the target chooses to do this, this is the next best.
7100   if (TSI) {
7101     SDValue Result = TSI->EmitTargetCodeForMemset(
7102         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
7103     if (Result.getNode())
7104       return Result;
7105   }
7106 
7107   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7108 
7109   // Emit a library call.
7110   TargetLowering::ArgListTy Args;
7111   TargetLowering::ArgListEntry Entry;
7112   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
7113   Args.push_back(Entry);
7114   Entry.Node = Src;
7115   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
7116   Args.push_back(Entry);
7117   Entry.Node = Size;
7118   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7119   Args.push_back(Entry);
7120 
7121   // FIXME: pass in SDLoc
7122   TargetLowering::CallLoweringInfo CLI(*this);
7123   CLI.setDebugLoc(dl)
7124       .setChain(Chain)
7125       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7126                     Dst.getValueType().getTypeForEVT(*getContext()),
7127                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7128                                       TLI->getPointerTy(getDataLayout())),
7129                     std::move(Args))
7130       .setDiscardResult()
7131       .setTailCall(isTailCall);
7132 
7133   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7134   return CallResult.second;
7135 }
7136 
7137 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7138                                       SDValue Dst, unsigned DstAlign,
7139                                       SDValue Value, SDValue Size, Type *SizeTy,
7140                                       unsigned ElemSz, bool isTailCall,
7141                                       MachinePointerInfo DstPtrInfo) {
7142   // Emit a library call.
7143   TargetLowering::ArgListTy Args;
7144   TargetLowering::ArgListEntry Entry;
7145   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7146   Entry.Node = Dst;
7147   Args.push_back(Entry);
7148 
7149   Entry.Ty = Type::getInt8Ty(*getContext());
7150   Entry.Node = Value;
7151   Args.push_back(Entry);
7152 
7153   Entry.Ty = SizeTy;
7154   Entry.Node = Size;
7155   Args.push_back(Entry);
7156 
7157   RTLIB::Libcall LibraryCall =
7158       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7159   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7160     report_fatal_error("Unsupported element size");
7161 
7162   TargetLowering::CallLoweringInfo CLI(*this);
7163   CLI.setDebugLoc(dl)
7164       .setChain(Chain)
7165       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7166                     Type::getVoidTy(*getContext()),
7167                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7168                                       TLI->getPointerTy(getDataLayout())),
7169                     std::move(Args))
7170       .setDiscardResult()
7171       .setTailCall(isTailCall);
7172 
7173   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7174   return CallResult.second;
7175 }
7176 
7177 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7178                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7179                                 MachineMemOperand *MMO) {
7180   FoldingSetNodeID ID;
7181   ID.AddInteger(MemVT.getRawBits());
7182   AddNodeIDNode(ID, Opcode, VTList, Ops);
7183   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7184   void* IP = nullptr;
7185   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7186     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7187     return SDValue(E, 0);
7188   }
7189 
7190   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7191                                     VTList, MemVT, MMO);
7192   createOperands(N, Ops);
7193 
7194   CSEMap.InsertNode(N, IP);
7195   InsertNode(N);
7196   return SDValue(N, 0);
7197 }
7198 
7199 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7200                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7201                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7202                                        MachineMemOperand *MMO) {
7203   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7204          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7205   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7206 
7207   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7208   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7209 }
7210 
7211 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7212                                 SDValue Chain, SDValue Ptr, SDValue Val,
7213                                 MachineMemOperand *MMO) {
7214   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7215           Opcode == ISD::ATOMIC_LOAD_SUB ||
7216           Opcode == ISD::ATOMIC_LOAD_AND ||
7217           Opcode == ISD::ATOMIC_LOAD_CLR ||
7218           Opcode == ISD::ATOMIC_LOAD_OR ||
7219           Opcode == ISD::ATOMIC_LOAD_XOR ||
7220           Opcode == ISD::ATOMIC_LOAD_NAND ||
7221           Opcode == ISD::ATOMIC_LOAD_MIN ||
7222           Opcode == ISD::ATOMIC_LOAD_MAX ||
7223           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7224           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7225           Opcode == ISD::ATOMIC_LOAD_FADD ||
7226           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7227           Opcode == ISD::ATOMIC_SWAP ||
7228           Opcode == ISD::ATOMIC_STORE) &&
7229          "Invalid Atomic Op");
7230 
7231   EVT VT = Val.getValueType();
7232 
7233   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7234                                                getVTList(VT, MVT::Other);
7235   SDValue Ops[] = {Chain, Ptr, Val};
7236   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7237 }
7238 
7239 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7240                                 EVT VT, SDValue Chain, SDValue Ptr,
7241                                 MachineMemOperand *MMO) {
7242   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7243 
7244   SDVTList VTs = getVTList(VT, MVT::Other);
7245   SDValue Ops[] = {Chain, Ptr};
7246   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7247 }
7248 
7249 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7250 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7251   if (Ops.size() == 1)
7252     return Ops[0];
7253 
7254   SmallVector<EVT, 4> VTs;
7255   VTs.reserve(Ops.size());
7256   for (const SDValue &Op : Ops)
7257     VTs.push_back(Op.getValueType());
7258   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7259 }
7260 
7261 SDValue SelectionDAG::getMemIntrinsicNode(
7262     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7263     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7264     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7265   if (!Size && MemVT.isScalableVector())
7266     Size = MemoryLocation::UnknownSize;
7267   else if (!Size)
7268     Size = MemVT.getStoreSize();
7269 
7270   MachineFunction &MF = getMachineFunction();
7271   MachineMemOperand *MMO =
7272       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7273 
7274   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7275 }
7276 
7277 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7278                                           SDVTList VTList,
7279                                           ArrayRef<SDValue> Ops, EVT MemVT,
7280                                           MachineMemOperand *MMO) {
7281   assert((Opcode == ISD::INTRINSIC_VOID ||
7282           Opcode == ISD::INTRINSIC_W_CHAIN ||
7283           Opcode == ISD::PREFETCH ||
7284           ((int)Opcode <= std::numeric_limits<int>::max() &&
7285            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7286          "Opcode is not a memory-accessing opcode!");
7287 
7288   // Memoize the node unless it returns a flag.
7289   MemIntrinsicSDNode *N;
7290   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7291     FoldingSetNodeID ID;
7292     AddNodeIDNode(ID, Opcode, VTList, Ops);
7293     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7294         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7295     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7296     void *IP = nullptr;
7297     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7298       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7299       return SDValue(E, 0);
7300     }
7301 
7302     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7303                                       VTList, MemVT, MMO);
7304     createOperands(N, Ops);
7305 
7306   CSEMap.InsertNode(N, IP);
7307   } else {
7308     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7309                                       VTList, MemVT, MMO);
7310     createOperands(N, Ops);
7311   }
7312   InsertNode(N);
7313   SDValue V(N, 0);
7314   NewSDValueDbgMsg(V, "Creating new node: ", this);
7315   return V;
7316 }
7317 
7318 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7319                                       SDValue Chain, int FrameIndex,
7320                                       int64_t Size, int64_t Offset) {
7321   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7322   const auto VTs = getVTList(MVT::Other);
7323   SDValue Ops[2] = {
7324       Chain,
7325       getFrameIndex(FrameIndex,
7326                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7327                     true)};
7328 
7329   FoldingSetNodeID ID;
7330   AddNodeIDNode(ID, Opcode, VTs, Ops);
7331   ID.AddInteger(FrameIndex);
7332   ID.AddInteger(Size);
7333   ID.AddInteger(Offset);
7334   void *IP = nullptr;
7335   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7336     return SDValue(E, 0);
7337 
7338   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7339       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7340   createOperands(N, Ops);
7341   CSEMap.InsertNode(N, IP);
7342   InsertNode(N);
7343   SDValue V(N, 0);
7344   NewSDValueDbgMsg(V, "Creating new node: ", this);
7345   return V;
7346 }
7347 
7348 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7349                                          uint64_t Guid, uint64_t Index,
7350                                          uint32_t Attr) {
7351   const unsigned Opcode = ISD::PSEUDO_PROBE;
7352   const auto VTs = getVTList(MVT::Other);
7353   SDValue Ops[] = {Chain};
7354   FoldingSetNodeID ID;
7355   AddNodeIDNode(ID, Opcode, VTs, Ops);
7356   ID.AddInteger(Guid);
7357   ID.AddInteger(Index);
7358   void *IP = nullptr;
7359   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7360     return SDValue(E, 0);
7361 
7362   auto *N = newSDNode<PseudoProbeSDNode>(
7363       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7364   createOperands(N, Ops);
7365   CSEMap.InsertNode(N, IP);
7366   InsertNode(N);
7367   SDValue V(N, 0);
7368   NewSDValueDbgMsg(V, "Creating new node: ", this);
7369   return V;
7370 }
7371 
7372 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7373 /// MachinePointerInfo record from it.  This is particularly useful because the
7374 /// code generator has many cases where it doesn't bother passing in a
7375 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7376 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7377                                            SelectionDAG &DAG, SDValue Ptr,
7378                                            int64_t Offset = 0) {
7379   // If this is FI+Offset, we can model it.
7380   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7381     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7382                                              FI->getIndex(), Offset);
7383 
7384   // If this is (FI+Offset1)+Offset2, we can model it.
7385   if (Ptr.getOpcode() != ISD::ADD ||
7386       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7387       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7388     return Info;
7389 
7390   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7391   return MachinePointerInfo::getFixedStack(
7392       DAG.getMachineFunction(), FI,
7393       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7394 }
7395 
7396 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7397 /// MachinePointerInfo record from it.  This is particularly useful because the
7398 /// code generator has many cases where it doesn't bother passing in a
7399 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7400 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7401                                            SelectionDAG &DAG, SDValue Ptr,
7402                                            SDValue OffsetOp) {
7403   // If the 'Offset' value isn't a constant, we can't handle this.
7404   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7405     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7406   if (OffsetOp.isUndef())
7407     return InferPointerInfo(Info, DAG, Ptr);
7408   return Info;
7409 }
7410 
7411 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7412                               EVT VT, const SDLoc &dl, SDValue Chain,
7413                               SDValue Ptr, SDValue Offset,
7414                               MachinePointerInfo PtrInfo, EVT MemVT,
7415                               Align Alignment,
7416                               MachineMemOperand::Flags MMOFlags,
7417                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7418   assert(Chain.getValueType() == MVT::Other &&
7419         "Invalid chain type");
7420 
7421   MMOFlags |= MachineMemOperand::MOLoad;
7422   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7423   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7424   // clients.
7425   if (PtrInfo.V.isNull())
7426     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7427 
7428   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7429   MachineFunction &MF = getMachineFunction();
7430   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7431                                                    Alignment, AAInfo, Ranges);
7432   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7433 }
7434 
7435 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7436                               EVT VT, const SDLoc &dl, SDValue Chain,
7437                               SDValue Ptr, SDValue Offset, EVT MemVT,
7438                               MachineMemOperand *MMO) {
7439   if (VT == MemVT) {
7440     ExtType = ISD::NON_EXTLOAD;
7441   } else if (ExtType == ISD::NON_EXTLOAD) {
7442     assert(VT == MemVT && "Non-extending load from different memory type!");
7443   } else {
7444     // Extending load.
7445     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7446            "Should only be an extending load, not truncating!");
7447     assert(VT.isInteger() == MemVT.isInteger() &&
7448            "Cannot convert from FP to Int or Int -> FP!");
7449     assert(VT.isVector() == MemVT.isVector() &&
7450            "Cannot use an ext load to convert to or from a vector!");
7451     assert((!VT.isVector() ||
7452             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7453            "Cannot use an ext load to change the number of vector elements!");
7454   }
7455 
7456   bool Indexed = AM != ISD::UNINDEXED;
7457   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7458 
7459   SDVTList VTs = Indexed ?
7460     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7461   SDValue Ops[] = { Chain, Ptr, Offset };
7462   FoldingSetNodeID ID;
7463   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7464   ID.AddInteger(MemVT.getRawBits());
7465   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7466       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7467   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7468   void *IP = nullptr;
7469   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7470     cast<LoadSDNode>(E)->refineAlignment(MMO);
7471     return SDValue(E, 0);
7472   }
7473   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7474                                   ExtType, MemVT, MMO);
7475   createOperands(N, Ops);
7476 
7477   CSEMap.InsertNode(N, IP);
7478   InsertNode(N);
7479   SDValue V(N, 0);
7480   NewSDValueDbgMsg(V, "Creating new node: ", this);
7481   return V;
7482 }
7483 
7484 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7485                               SDValue Ptr, MachinePointerInfo PtrInfo,
7486                               MaybeAlign Alignment,
7487                               MachineMemOperand::Flags MMOFlags,
7488                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7489   SDValue Undef = getUNDEF(Ptr.getValueType());
7490   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7491                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7492 }
7493 
7494 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7495                               SDValue Ptr, MachineMemOperand *MMO) {
7496   SDValue Undef = getUNDEF(Ptr.getValueType());
7497   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7498                  VT, MMO);
7499 }
7500 
7501 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7502                                  EVT VT, SDValue Chain, SDValue Ptr,
7503                                  MachinePointerInfo PtrInfo, EVT MemVT,
7504                                  MaybeAlign Alignment,
7505                                  MachineMemOperand::Flags MMOFlags,
7506                                  const AAMDNodes &AAInfo) {
7507   SDValue Undef = getUNDEF(Ptr.getValueType());
7508   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7509                  MemVT, Alignment, MMOFlags, AAInfo);
7510 }
7511 
7512 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7513                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7514                                  MachineMemOperand *MMO) {
7515   SDValue Undef = getUNDEF(Ptr.getValueType());
7516   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7517                  MemVT, MMO);
7518 }
7519 
7520 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7521                                      SDValue Base, SDValue Offset,
7522                                      ISD::MemIndexedMode AM) {
7523   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7524   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7525   // Don't propagate the invariant or dereferenceable flags.
7526   auto MMOFlags =
7527       LD->getMemOperand()->getFlags() &
7528       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7529   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7530                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7531                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7532 }
7533 
7534 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7535                                SDValue Ptr, MachinePointerInfo PtrInfo,
7536                                Align Alignment,
7537                                MachineMemOperand::Flags MMOFlags,
7538                                const AAMDNodes &AAInfo) {
7539   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7540 
7541   MMOFlags |= MachineMemOperand::MOStore;
7542   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7543 
7544   if (PtrInfo.V.isNull())
7545     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7546 
7547   MachineFunction &MF = getMachineFunction();
7548   uint64_t Size =
7549       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7550   MachineMemOperand *MMO =
7551       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7552   return getStore(Chain, dl, Val, Ptr, MMO);
7553 }
7554 
7555 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7556                                SDValue Ptr, MachineMemOperand *MMO) {
7557   assert(Chain.getValueType() == MVT::Other &&
7558         "Invalid chain type");
7559   EVT VT = Val.getValueType();
7560   SDVTList VTs = getVTList(MVT::Other);
7561   SDValue Undef = getUNDEF(Ptr.getValueType());
7562   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7563   FoldingSetNodeID ID;
7564   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7565   ID.AddInteger(VT.getRawBits());
7566   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7567       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7568   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7569   void *IP = nullptr;
7570   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7571     cast<StoreSDNode>(E)->refineAlignment(MMO);
7572     return SDValue(E, 0);
7573   }
7574   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7575                                    ISD::UNINDEXED, false, VT, MMO);
7576   createOperands(N, Ops);
7577 
7578   CSEMap.InsertNode(N, IP);
7579   InsertNode(N);
7580   SDValue V(N, 0);
7581   NewSDValueDbgMsg(V, "Creating new node: ", this);
7582   return V;
7583 }
7584 
7585 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7586                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7587                                     EVT SVT, Align Alignment,
7588                                     MachineMemOperand::Flags MMOFlags,
7589                                     const AAMDNodes &AAInfo) {
7590   assert(Chain.getValueType() == MVT::Other &&
7591         "Invalid chain type");
7592 
7593   MMOFlags |= MachineMemOperand::MOStore;
7594   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7595 
7596   if (PtrInfo.V.isNull())
7597     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7598 
7599   MachineFunction &MF = getMachineFunction();
7600   MachineMemOperand *MMO = MF.getMachineMemOperand(
7601       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7602       Alignment, AAInfo);
7603   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7604 }
7605 
7606 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7607                                     SDValue Ptr, EVT SVT,
7608                                     MachineMemOperand *MMO) {
7609   EVT VT = Val.getValueType();
7610 
7611   assert(Chain.getValueType() == MVT::Other &&
7612         "Invalid chain type");
7613   if (VT == SVT)
7614     return getStore(Chain, dl, Val, Ptr, MMO);
7615 
7616   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7617          "Should only be a truncating store, not extending!");
7618   assert(VT.isInteger() == SVT.isInteger() &&
7619          "Can't do FP-INT conversion!");
7620   assert(VT.isVector() == SVT.isVector() &&
7621          "Cannot use trunc store to convert to or from a vector!");
7622   assert((!VT.isVector() ||
7623           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7624          "Cannot use trunc store to change the number of vector elements!");
7625 
7626   SDVTList VTs = getVTList(MVT::Other);
7627   SDValue Undef = getUNDEF(Ptr.getValueType());
7628   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7629   FoldingSetNodeID ID;
7630   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7631   ID.AddInteger(SVT.getRawBits());
7632   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7633       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7634   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7635   void *IP = nullptr;
7636   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7637     cast<StoreSDNode>(E)->refineAlignment(MMO);
7638     return SDValue(E, 0);
7639   }
7640   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7641                                    ISD::UNINDEXED, true, SVT, MMO);
7642   createOperands(N, Ops);
7643 
7644   CSEMap.InsertNode(N, IP);
7645   InsertNode(N);
7646   SDValue V(N, 0);
7647   NewSDValueDbgMsg(V, "Creating new node: ", this);
7648   return V;
7649 }
7650 
7651 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7652                                       SDValue Base, SDValue Offset,
7653                                       ISD::MemIndexedMode AM) {
7654   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7655   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7656   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7657   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7658   FoldingSetNodeID ID;
7659   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7660   ID.AddInteger(ST->getMemoryVT().getRawBits());
7661   ID.AddInteger(ST->getRawSubclassData());
7662   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7663   void *IP = nullptr;
7664   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7665     return SDValue(E, 0);
7666 
7667   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7668                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7669                                    ST->getMemOperand());
7670   createOperands(N, Ops);
7671 
7672   CSEMap.InsertNode(N, IP);
7673   InsertNode(N);
7674   SDValue V(N, 0);
7675   NewSDValueDbgMsg(V, "Creating new node: ", this);
7676   return V;
7677 }
7678 
7679 SDValue SelectionDAG::getLoadVP(
7680     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
7681     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
7682     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
7683     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
7684     const MDNode *Ranges, bool IsExpanding) {
7685   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7686 
7687   MMOFlags |= MachineMemOperand::MOLoad;
7688   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7689   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7690   // clients.
7691   if (PtrInfo.V.isNull())
7692     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7693 
7694   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7695   MachineFunction &MF = getMachineFunction();
7696   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7697                                                    Alignment, AAInfo, Ranges);
7698   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
7699                    MMO, IsExpanding);
7700 }
7701 
7702 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
7703                                 ISD::LoadExtType ExtType, EVT VT,
7704                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
7705                                 SDValue Offset, SDValue Mask, SDValue EVL,
7706                                 EVT MemVT, MachineMemOperand *MMO,
7707                                 bool IsExpanding) {
7708   if (VT == MemVT) {
7709     ExtType = ISD::NON_EXTLOAD;
7710   } else if (ExtType == ISD::NON_EXTLOAD) {
7711     assert(VT == MemVT && "Non-extending load from different memory type!");
7712   } else {
7713     // Extending load.
7714     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7715            "Should only be an extending load, not truncating!");
7716     assert(VT.isInteger() == MemVT.isInteger() &&
7717            "Cannot convert from FP to Int or Int -> FP!");
7718     assert(VT.isVector() == MemVT.isVector() &&
7719            "Cannot use an ext load to convert to or from a vector!");
7720     assert((!VT.isVector() ||
7721             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7722            "Cannot use an ext load to change the number of vector elements!");
7723   }
7724 
7725   bool Indexed = AM != ISD::UNINDEXED;
7726   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7727 
7728   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
7729                          : getVTList(VT, MVT::Other);
7730   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
7731   FoldingSetNodeID ID;
7732   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
7733   ID.AddInteger(VT.getRawBits());
7734   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
7735       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
7736   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7737   void *IP = nullptr;
7738   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7739     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
7740     return SDValue(E, 0);
7741   }
7742   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7743                                     ExtType, IsExpanding, MemVT, MMO);
7744   createOperands(N, Ops);
7745 
7746   CSEMap.InsertNode(N, IP);
7747   InsertNode(N);
7748   SDValue V(N, 0);
7749   NewSDValueDbgMsg(V, "Creating new node: ", this);
7750   return V;
7751 }
7752 
7753 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7754                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7755                                 MachinePointerInfo PtrInfo,
7756                                 MaybeAlign Alignment,
7757                                 MachineMemOperand::Flags MMOFlags,
7758                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
7759                                 bool IsExpanding) {
7760   SDValue Undef = getUNDEF(Ptr.getValueType());
7761   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7762                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
7763                    IsExpanding);
7764 }
7765 
7766 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7767                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7768                                 MachineMemOperand *MMO, bool IsExpanding) {
7769   SDValue Undef = getUNDEF(Ptr.getValueType());
7770   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7771                    Mask, EVL, VT, MMO, IsExpanding);
7772 }
7773 
7774 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7775                                    EVT VT, SDValue Chain, SDValue Ptr,
7776                                    SDValue Mask, SDValue EVL,
7777                                    MachinePointerInfo PtrInfo, EVT MemVT,
7778                                    MaybeAlign Alignment,
7779                                    MachineMemOperand::Flags MMOFlags,
7780                                    const AAMDNodes &AAInfo, bool IsExpanding) {
7781   SDValue Undef = getUNDEF(Ptr.getValueType());
7782   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7783                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
7784                    IsExpanding);
7785 }
7786 
7787 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7788                                    EVT VT, SDValue Chain, SDValue Ptr,
7789                                    SDValue Mask, SDValue EVL, EVT MemVT,
7790                                    MachineMemOperand *MMO, bool IsExpanding) {
7791   SDValue Undef = getUNDEF(Ptr.getValueType());
7792   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7793                    EVL, MemVT, MMO, IsExpanding);
7794 }
7795 
7796 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
7797                                        SDValue Base, SDValue Offset,
7798                                        ISD::MemIndexedMode AM) {
7799   auto *LD = cast<VPLoadSDNode>(OrigLoad);
7800   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7801   // Don't propagate the invariant or dereferenceable flags.
7802   auto MMOFlags =
7803       LD->getMemOperand()->getFlags() &
7804       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7805   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7806                    LD->getChain(), Base, Offset, LD->getMask(),
7807                    LD->getVectorLength(), LD->getPointerInfo(),
7808                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
7809                    nullptr, LD->isExpandingLoad());
7810 }
7811 
7812 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7813                                  SDValue Ptr, SDValue Mask, SDValue EVL,
7814                                  MachinePointerInfo PtrInfo, Align Alignment,
7815                                  MachineMemOperand::Flags MMOFlags,
7816                                  const AAMDNodes &AAInfo, bool IsCompressing) {
7817   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7818 
7819   MMOFlags |= MachineMemOperand::MOStore;
7820   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7821 
7822   if (PtrInfo.V.isNull())
7823     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7824 
7825   MachineFunction &MF = getMachineFunction();
7826   uint64_t Size =
7827       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7828   MachineMemOperand *MMO =
7829       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7830   return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing);
7831 }
7832 
7833 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7834                                  SDValue Ptr, SDValue Mask, SDValue EVL,
7835                                  MachineMemOperand *MMO, bool IsCompressing) {
7836   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7837   EVT VT = Val.getValueType();
7838   SDVTList VTs = getVTList(MVT::Other);
7839   SDValue Undef = getUNDEF(Ptr.getValueType());
7840   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
7841   FoldingSetNodeID ID;
7842   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7843   ID.AddInteger(VT.getRawBits());
7844   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7845       dl.getIROrder(), VTs, ISD::UNINDEXED, false, IsCompressing, VT, MMO));
7846   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7847   void *IP = nullptr;
7848   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7849     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7850     return SDValue(E, 0);
7851   }
7852   auto *N =
7853       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7854                                ISD::UNINDEXED, false, IsCompressing, VT, MMO);
7855   createOperands(N, Ops);
7856 
7857   CSEMap.InsertNode(N, IP);
7858   InsertNode(N);
7859   SDValue V(N, 0);
7860   NewSDValueDbgMsg(V, "Creating new node: ", this);
7861   return V;
7862 }
7863 
7864 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7865                                       SDValue Val, SDValue Ptr, SDValue Mask,
7866                                       SDValue EVL, MachinePointerInfo PtrInfo,
7867                                       EVT SVT, Align Alignment,
7868                                       MachineMemOperand::Flags MMOFlags,
7869                                       const AAMDNodes &AAInfo,
7870                                       bool IsCompressing) {
7871   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7872 
7873   MMOFlags |= MachineMemOperand::MOStore;
7874   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7875 
7876   if (PtrInfo.V.isNull())
7877     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7878 
7879   MachineFunction &MF = getMachineFunction();
7880   MachineMemOperand *MMO = MF.getMachineMemOperand(
7881       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7882       Alignment, AAInfo);
7883   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
7884                          IsCompressing);
7885 }
7886 
7887 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7888                                       SDValue Val, SDValue Ptr, SDValue Mask,
7889                                       SDValue EVL, EVT SVT,
7890                                       MachineMemOperand *MMO,
7891                                       bool IsCompressing) {
7892   EVT VT = Val.getValueType();
7893 
7894   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7895   if (VT == SVT)
7896     return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing);
7897 
7898   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7899          "Should only be a truncating store, not extending!");
7900   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
7901   assert(VT.isVector() == SVT.isVector() &&
7902          "Cannot use trunc store to convert to or from a vector!");
7903   assert((!VT.isVector() ||
7904           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7905          "Cannot use trunc store to change the number of vector elements!");
7906 
7907   SDVTList VTs = getVTList(MVT::Other);
7908   SDValue Undef = getUNDEF(Ptr.getValueType());
7909   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
7910   FoldingSetNodeID ID;
7911   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7912   ID.AddInteger(SVT.getRawBits());
7913   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7914       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
7915   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7916   void *IP = nullptr;
7917   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7918     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7919     return SDValue(E, 0);
7920   }
7921   auto *N =
7922       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7923                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
7924   createOperands(N, Ops);
7925 
7926   CSEMap.InsertNode(N, IP);
7927   InsertNode(N);
7928   SDValue V(N, 0);
7929   NewSDValueDbgMsg(V, "Creating new node: ", this);
7930   return V;
7931 }
7932 
7933 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
7934                                         SDValue Base, SDValue Offset,
7935                                         ISD::MemIndexedMode AM) {
7936   auto *ST = cast<VPStoreSDNode>(OrigStore);
7937   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
7938   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7939   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
7940                    Offset,         ST->getMask(),  ST->getVectorLength()};
7941   FoldingSetNodeID ID;
7942   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7943   ID.AddInteger(ST->getMemoryVT().getRawBits());
7944   ID.AddInteger(ST->getRawSubclassData());
7945   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7946   void *IP = nullptr;
7947   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7948     return SDValue(E, 0);
7949 
7950   auto *N = newSDNode<VPStoreSDNode>(
7951       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
7952       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
7953   createOperands(N, Ops);
7954 
7955   CSEMap.InsertNode(N, IP);
7956   InsertNode(N);
7957   SDValue V(N, 0);
7958   NewSDValueDbgMsg(V, "Creating new node: ", this);
7959   return V;
7960 }
7961 
7962 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
7963                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
7964                                   ISD::MemIndexType IndexType) {
7965   assert(Ops.size() == 6 && "Incompatible number of operands");
7966 
7967   FoldingSetNodeID ID;
7968   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
7969   ID.AddInteger(VT.getRawBits());
7970   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
7971       dl.getIROrder(), VTs, VT, MMO, IndexType));
7972   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7973   void *IP = nullptr;
7974   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7975     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
7976     return SDValue(E, 0);
7977   }
7978 
7979   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7980                                       VT, MMO, IndexType);
7981   createOperands(N, Ops);
7982 
7983   assert(N->getMask().getValueType().getVectorElementCount() ==
7984              N->getValueType(0).getVectorElementCount() &&
7985          "Vector width mismatch between mask and data");
7986   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7987              N->getValueType(0).getVectorElementCount().isScalable() &&
7988          "Scalable flags of index and data do not match");
7989   assert(ElementCount::isKnownGE(
7990              N->getIndex().getValueType().getVectorElementCount(),
7991              N->getValueType(0).getVectorElementCount()) &&
7992          "Vector width mismatch between index and data");
7993   assert(isa<ConstantSDNode>(N->getScale()) &&
7994          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7995          "Scale should be a constant power of 2");
7996 
7997   CSEMap.InsertNode(N, IP);
7998   InsertNode(N);
7999   SDValue V(N, 0);
8000   NewSDValueDbgMsg(V, "Creating new node: ", this);
8001   return V;
8002 }
8003 
8004 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8005                                    ArrayRef<SDValue> Ops,
8006                                    MachineMemOperand *MMO,
8007                                    ISD::MemIndexType IndexType) {
8008   assert(Ops.size() == 7 && "Incompatible number of operands");
8009 
8010   FoldingSetNodeID ID;
8011   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
8012   ID.AddInteger(VT.getRawBits());
8013   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
8014       dl.getIROrder(), VTs, VT, MMO, IndexType));
8015   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8016   void *IP = nullptr;
8017   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8018     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
8019     return SDValue(E, 0);
8020   }
8021   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8022                                        VT, MMO, IndexType);
8023   createOperands(N, Ops);
8024 
8025   assert(N->getMask().getValueType().getVectorElementCount() ==
8026              N->getValue().getValueType().getVectorElementCount() &&
8027          "Vector width mismatch between mask and data");
8028   assert(
8029       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8030           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8031       "Scalable flags of index and data do not match");
8032   assert(ElementCount::isKnownGE(
8033              N->getIndex().getValueType().getVectorElementCount(),
8034              N->getValue().getValueType().getVectorElementCount()) &&
8035          "Vector width mismatch between index and data");
8036   assert(isa<ConstantSDNode>(N->getScale()) &&
8037          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8038          "Scale should be a constant power of 2");
8039 
8040   CSEMap.InsertNode(N, IP);
8041   InsertNode(N);
8042   SDValue V(N, 0);
8043   NewSDValueDbgMsg(V, "Creating new node: ", this);
8044   return V;
8045 }
8046 
8047 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8048                                     SDValue Base, SDValue Offset, SDValue Mask,
8049                                     SDValue PassThru, EVT MemVT,
8050                                     MachineMemOperand *MMO,
8051                                     ISD::MemIndexedMode AM,
8052                                     ISD::LoadExtType ExtTy, bool isExpanding) {
8053   bool Indexed = AM != ISD::UNINDEXED;
8054   assert((Indexed || Offset.isUndef()) &&
8055          "Unindexed masked load with an offset!");
8056   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8057                          : getVTList(VT, MVT::Other);
8058   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8059   FoldingSetNodeID ID;
8060   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8061   ID.AddInteger(MemVT.getRawBits());
8062   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8063       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8064   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8065   void *IP = nullptr;
8066   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8067     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8068     return SDValue(E, 0);
8069   }
8070   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8071                                         AM, ExtTy, isExpanding, MemVT, MMO);
8072   createOperands(N, Ops);
8073 
8074   CSEMap.InsertNode(N, IP);
8075   InsertNode(N);
8076   SDValue V(N, 0);
8077   NewSDValueDbgMsg(V, "Creating new node: ", this);
8078   return V;
8079 }
8080 
8081 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8082                                            SDValue Base, SDValue Offset,
8083                                            ISD::MemIndexedMode AM) {
8084   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8085   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8086   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8087                        Offset, LD->getMask(), LD->getPassThru(),
8088                        LD->getMemoryVT(), LD->getMemOperand(), AM,
8089                        LD->getExtensionType(), LD->isExpandingLoad());
8090 }
8091 
8092 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8093                                      SDValue Val, SDValue Base, SDValue Offset,
8094                                      SDValue Mask, EVT MemVT,
8095                                      MachineMemOperand *MMO,
8096                                      ISD::MemIndexedMode AM, bool IsTruncating,
8097                                      bool IsCompressing) {
8098   assert(Chain.getValueType() == MVT::Other &&
8099         "Invalid chain type");
8100   bool Indexed = AM != ISD::UNINDEXED;
8101   assert((Indexed || Offset.isUndef()) &&
8102          "Unindexed masked store with an offset!");
8103   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8104                          : getVTList(MVT::Other);
8105   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8106   FoldingSetNodeID ID;
8107   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8108   ID.AddInteger(MemVT.getRawBits());
8109   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8110       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8111   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8112   void *IP = nullptr;
8113   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8114     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8115     return SDValue(E, 0);
8116   }
8117   auto *N =
8118       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8119                                    IsTruncating, IsCompressing, MemVT, MMO);
8120   createOperands(N, Ops);
8121 
8122   CSEMap.InsertNode(N, IP);
8123   InsertNode(N);
8124   SDValue V(N, 0);
8125   NewSDValueDbgMsg(V, "Creating new node: ", this);
8126   return V;
8127 }
8128 
8129 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8130                                             SDValue Base, SDValue Offset,
8131                                             ISD::MemIndexedMode AM) {
8132   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8133   assert(ST->getOffset().isUndef() &&
8134          "Masked store is already a indexed store!");
8135   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8136                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8137                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
8138 }
8139 
8140 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8141                                       ArrayRef<SDValue> Ops,
8142                                       MachineMemOperand *MMO,
8143                                       ISD::MemIndexType IndexType,
8144                                       ISD::LoadExtType ExtTy) {
8145   assert(Ops.size() == 6 && "Incompatible number of operands");
8146 
8147   FoldingSetNodeID ID;
8148   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8149   ID.AddInteger(MemVT.getRawBits());
8150   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8151       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8152   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8153   void *IP = nullptr;
8154   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8155     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8156     return SDValue(E, 0);
8157   }
8158 
8159   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8160   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8161                                           VTs, MemVT, MMO, IndexType, ExtTy);
8162   createOperands(N, Ops);
8163 
8164   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8165          "Incompatible type of the PassThru value in MaskedGatherSDNode");
8166   assert(N->getMask().getValueType().getVectorElementCount() ==
8167              N->getValueType(0).getVectorElementCount() &&
8168          "Vector width mismatch between mask and data");
8169   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8170              N->getValueType(0).getVectorElementCount().isScalable() &&
8171          "Scalable flags of index and data do not match");
8172   assert(ElementCount::isKnownGE(
8173              N->getIndex().getValueType().getVectorElementCount(),
8174              N->getValueType(0).getVectorElementCount()) &&
8175          "Vector width mismatch between index and data");
8176   assert(isa<ConstantSDNode>(N->getScale()) &&
8177          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8178          "Scale should be a constant power of 2");
8179 
8180   CSEMap.InsertNode(N, IP);
8181   InsertNode(N);
8182   SDValue V(N, 0);
8183   NewSDValueDbgMsg(V, "Creating new node: ", this);
8184   return V;
8185 }
8186 
8187 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8188                                        ArrayRef<SDValue> Ops,
8189                                        MachineMemOperand *MMO,
8190                                        ISD::MemIndexType IndexType,
8191                                        bool IsTrunc) {
8192   assert(Ops.size() == 6 && "Incompatible number of operands");
8193 
8194   FoldingSetNodeID ID;
8195   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8196   ID.AddInteger(MemVT.getRawBits());
8197   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8198       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8199   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8200   void *IP = nullptr;
8201   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8202     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8203     return SDValue(E, 0);
8204   }
8205 
8206   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8207   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8208                                            VTs, MemVT, MMO, IndexType, IsTrunc);
8209   createOperands(N, Ops);
8210 
8211   assert(N->getMask().getValueType().getVectorElementCount() ==
8212              N->getValue().getValueType().getVectorElementCount() &&
8213          "Vector width mismatch between mask and data");
8214   assert(
8215       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8216           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8217       "Scalable flags of index and data do not match");
8218   assert(ElementCount::isKnownGE(
8219              N->getIndex().getValueType().getVectorElementCount(),
8220              N->getValue().getValueType().getVectorElementCount()) &&
8221          "Vector width mismatch between index and data");
8222   assert(isa<ConstantSDNode>(N->getScale()) &&
8223          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8224          "Scale should be a constant power of 2");
8225 
8226   CSEMap.InsertNode(N, IP);
8227   InsertNode(N);
8228   SDValue V(N, 0);
8229   NewSDValueDbgMsg(V, "Creating new node: ", this);
8230   return V;
8231 }
8232 
8233 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8234   // select undef, T, F --> T (if T is a constant), otherwise F
8235   // select, ?, undef, F --> F
8236   // select, ?, T, undef --> T
8237   if (Cond.isUndef())
8238     return isConstantValueOfAnyType(T) ? T : F;
8239   if (T.isUndef())
8240     return F;
8241   if (F.isUndef())
8242     return T;
8243 
8244   // select true, T, F --> T
8245   // select false, T, F --> F
8246   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8247     return CondC->isZero() ? F : T;
8248 
8249   // TODO: This should simplify VSELECT with constant condition using something
8250   // like this (but check boolean contents to be complete?):
8251   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8252   //    return T;
8253   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8254   //    return F;
8255 
8256   // select ?, T, T --> T
8257   if (T == F)
8258     return T;
8259 
8260   return SDValue();
8261 }
8262 
8263 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8264   // shift undef, Y --> 0 (can always assume that the undef value is 0)
8265   if (X.isUndef())
8266     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8267   // shift X, undef --> undef (because it may shift by the bitwidth)
8268   if (Y.isUndef())
8269     return getUNDEF(X.getValueType());
8270 
8271   // shift 0, Y --> 0
8272   // shift X, 0 --> X
8273   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8274     return X;
8275 
8276   // shift X, C >= bitwidth(X) --> undef
8277   // All vector elements must be too big (or undef) to avoid partial undefs.
8278   auto isShiftTooBig = [X](ConstantSDNode *Val) {
8279     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8280   };
8281   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8282     return getUNDEF(X.getValueType());
8283 
8284   return SDValue();
8285 }
8286 
8287 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8288                                       SDNodeFlags Flags) {
8289   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8290   // (an undef operand can be chosen to be Nan/Inf), then the result of this
8291   // operation is poison. That result can be relaxed to undef.
8292   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8293   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8294   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8295                 (YC && YC->getValueAPF().isNaN());
8296   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8297                 (YC && YC->getValueAPF().isInfinity());
8298 
8299   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8300     return getUNDEF(X.getValueType());
8301 
8302   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8303     return getUNDEF(X.getValueType());
8304 
8305   if (!YC)
8306     return SDValue();
8307 
8308   // X + -0.0 --> X
8309   if (Opcode == ISD::FADD)
8310     if (YC->getValueAPF().isNegZero())
8311       return X;
8312 
8313   // X - +0.0 --> X
8314   if (Opcode == ISD::FSUB)
8315     if (YC->getValueAPF().isPosZero())
8316       return X;
8317 
8318   // X * 1.0 --> X
8319   // X / 1.0 --> X
8320   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8321     if (YC->getValueAPF().isExactlyValue(1.0))
8322       return X;
8323 
8324   // X * 0.0 --> 0.0
8325   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8326     if (YC->getValueAPF().isZero())
8327       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8328 
8329   return SDValue();
8330 }
8331 
8332 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8333                                SDValue Ptr, SDValue SV, unsigned Align) {
8334   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8335   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8336 }
8337 
8338 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8339                               ArrayRef<SDUse> Ops) {
8340   switch (Ops.size()) {
8341   case 0: return getNode(Opcode, DL, VT);
8342   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8343   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8344   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8345   default: break;
8346   }
8347 
8348   // Copy from an SDUse array into an SDValue array for use with
8349   // the regular getNode logic.
8350   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8351   return getNode(Opcode, DL, VT, NewOps);
8352 }
8353 
8354 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8355                               ArrayRef<SDValue> Ops) {
8356   SDNodeFlags Flags;
8357   if (Inserter)
8358     Flags = Inserter->getFlags();
8359   return getNode(Opcode, DL, VT, Ops, Flags);
8360 }
8361 
8362 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8363                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8364   unsigned NumOps = Ops.size();
8365   switch (NumOps) {
8366   case 0: return getNode(Opcode, DL, VT);
8367   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8368   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8369   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8370   default: break;
8371   }
8372 
8373 #ifndef NDEBUG
8374   for (auto &Op : Ops)
8375     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8376            "Operand is DELETED_NODE!");
8377 #endif
8378 
8379   switch (Opcode) {
8380   default: break;
8381   case ISD::BUILD_VECTOR:
8382     // Attempt to simplify BUILD_VECTOR.
8383     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8384       return V;
8385     break;
8386   case ISD::CONCAT_VECTORS:
8387     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8388       return V;
8389     break;
8390   case ISD::SELECT_CC:
8391     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8392     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8393            "LHS and RHS of condition must have same type!");
8394     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8395            "True and False arms of SelectCC must have same type!");
8396     assert(Ops[2].getValueType() == VT &&
8397            "select_cc node must be of same type as true and false value!");
8398     break;
8399   case ISD::BR_CC:
8400     assert(NumOps == 5 && "BR_CC takes 5 operands!");
8401     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8402            "LHS/RHS of comparison should match types!");
8403     break;
8404   }
8405 
8406   // Memoize nodes.
8407   SDNode *N;
8408   SDVTList VTs = getVTList(VT);
8409 
8410   if (VT != MVT::Glue) {
8411     FoldingSetNodeID ID;
8412     AddNodeIDNode(ID, Opcode, VTs, Ops);
8413     void *IP = nullptr;
8414 
8415     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8416       return SDValue(E, 0);
8417 
8418     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8419     createOperands(N, Ops);
8420 
8421     CSEMap.InsertNode(N, IP);
8422   } else {
8423     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8424     createOperands(N, Ops);
8425   }
8426 
8427   N->setFlags(Flags);
8428   InsertNode(N);
8429   SDValue V(N, 0);
8430   NewSDValueDbgMsg(V, "Creating new node: ", this);
8431   return V;
8432 }
8433 
8434 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8435                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8436   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8437 }
8438 
8439 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8440                               ArrayRef<SDValue> Ops) {
8441   SDNodeFlags Flags;
8442   if (Inserter)
8443     Flags = Inserter->getFlags();
8444   return getNode(Opcode, DL, VTList, Ops, Flags);
8445 }
8446 
8447 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8448                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8449   if (VTList.NumVTs == 1)
8450     return getNode(Opcode, DL, VTList.VTs[0], Ops);
8451 
8452 #ifndef NDEBUG
8453   for (auto &Op : Ops)
8454     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8455            "Operand is DELETED_NODE!");
8456 #endif
8457 
8458   switch (Opcode) {
8459   case ISD::STRICT_FP_EXTEND:
8460     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
8461            "Invalid STRICT_FP_EXTEND!");
8462     assert(VTList.VTs[0].isFloatingPoint() &&
8463            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8464     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8465            "STRICT_FP_EXTEND result type should be vector iff the operand "
8466            "type is vector!");
8467     assert((!VTList.VTs[0].isVector() ||
8468             VTList.VTs[0].getVectorNumElements() ==
8469             Ops[1].getValueType().getVectorNumElements()) &&
8470            "Vector element count mismatch!");
8471     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
8472            "Invalid fpext node, dst <= src!");
8473     break;
8474   case ISD::STRICT_FP_ROUND:
8475     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
8476     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8477            "STRICT_FP_ROUND result type should be vector iff the operand "
8478            "type is vector!");
8479     assert((!VTList.VTs[0].isVector() ||
8480             VTList.VTs[0].getVectorNumElements() ==
8481             Ops[1].getValueType().getVectorNumElements()) &&
8482            "Vector element count mismatch!");
8483     assert(VTList.VTs[0].isFloatingPoint() &&
8484            Ops[1].getValueType().isFloatingPoint() &&
8485            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
8486            isa<ConstantSDNode>(Ops[2]) &&
8487            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
8488             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
8489            "Invalid STRICT_FP_ROUND!");
8490     break;
8491 #if 0
8492   // FIXME: figure out how to safely handle things like
8493   // int foo(int x) { return 1 << (x & 255); }
8494   // int bar() { return foo(256); }
8495   case ISD::SRA_PARTS:
8496   case ISD::SRL_PARTS:
8497   case ISD::SHL_PARTS:
8498     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8499         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8500       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8501     else if (N3.getOpcode() == ISD::AND)
8502       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8503         // If the and is only masking out bits that cannot effect the shift,
8504         // eliminate the and.
8505         unsigned NumBits = VT.getScalarSizeInBits()*2;
8506         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8507           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8508       }
8509     break;
8510 #endif
8511   }
8512 
8513   // Memoize the node unless it returns a flag.
8514   SDNode *N;
8515   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8516     FoldingSetNodeID ID;
8517     AddNodeIDNode(ID, Opcode, VTList, Ops);
8518     void *IP = nullptr;
8519     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8520       return SDValue(E, 0);
8521 
8522     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8523     createOperands(N, Ops);
8524     CSEMap.InsertNode(N, IP);
8525   } else {
8526     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8527     createOperands(N, Ops);
8528   }
8529 
8530   N->setFlags(Flags);
8531   InsertNode(N);
8532   SDValue V(N, 0);
8533   NewSDValueDbgMsg(V, "Creating new node: ", this);
8534   return V;
8535 }
8536 
8537 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8538                               SDVTList VTList) {
8539   return getNode(Opcode, DL, VTList, None);
8540 }
8541 
8542 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8543                               SDValue N1) {
8544   SDValue Ops[] = { N1 };
8545   return getNode(Opcode, DL, VTList, Ops);
8546 }
8547 
8548 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8549                               SDValue N1, SDValue N2) {
8550   SDValue Ops[] = { N1, N2 };
8551   return getNode(Opcode, DL, VTList, Ops);
8552 }
8553 
8554 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8555                               SDValue N1, SDValue N2, SDValue N3) {
8556   SDValue Ops[] = { N1, N2, N3 };
8557   return getNode(Opcode, DL, VTList, Ops);
8558 }
8559 
8560 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8561                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8562   SDValue Ops[] = { N1, N2, N3, N4 };
8563   return getNode(Opcode, DL, VTList, Ops);
8564 }
8565 
8566 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8567                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8568                               SDValue N5) {
8569   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8570   return getNode(Opcode, DL, VTList, Ops);
8571 }
8572 
8573 SDVTList SelectionDAG::getVTList(EVT VT) {
8574   return makeVTList(SDNode::getValueTypeList(VT), 1);
8575 }
8576 
8577 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8578   FoldingSetNodeID ID;
8579   ID.AddInteger(2U);
8580   ID.AddInteger(VT1.getRawBits());
8581   ID.AddInteger(VT2.getRawBits());
8582 
8583   void *IP = nullptr;
8584   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8585   if (!Result) {
8586     EVT *Array = Allocator.Allocate<EVT>(2);
8587     Array[0] = VT1;
8588     Array[1] = VT2;
8589     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8590     VTListMap.InsertNode(Result, IP);
8591   }
8592   return Result->getSDVTList();
8593 }
8594 
8595 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8596   FoldingSetNodeID ID;
8597   ID.AddInteger(3U);
8598   ID.AddInteger(VT1.getRawBits());
8599   ID.AddInteger(VT2.getRawBits());
8600   ID.AddInteger(VT3.getRawBits());
8601 
8602   void *IP = nullptr;
8603   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8604   if (!Result) {
8605     EVT *Array = Allocator.Allocate<EVT>(3);
8606     Array[0] = VT1;
8607     Array[1] = VT2;
8608     Array[2] = VT3;
8609     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8610     VTListMap.InsertNode(Result, IP);
8611   }
8612   return Result->getSDVTList();
8613 }
8614 
8615 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8616   FoldingSetNodeID ID;
8617   ID.AddInteger(4U);
8618   ID.AddInteger(VT1.getRawBits());
8619   ID.AddInteger(VT2.getRawBits());
8620   ID.AddInteger(VT3.getRawBits());
8621   ID.AddInteger(VT4.getRawBits());
8622 
8623   void *IP = nullptr;
8624   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8625   if (!Result) {
8626     EVT *Array = Allocator.Allocate<EVT>(4);
8627     Array[0] = VT1;
8628     Array[1] = VT2;
8629     Array[2] = VT3;
8630     Array[3] = VT4;
8631     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8632     VTListMap.InsertNode(Result, IP);
8633   }
8634   return Result->getSDVTList();
8635 }
8636 
8637 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8638   unsigned NumVTs = VTs.size();
8639   FoldingSetNodeID ID;
8640   ID.AddInteger(NumVTs);
8641   for (unsigned index = 0; index < NumVTs; index++) {
8642     ID.AddInteger(VTs[index].getRawBits());
8643   }
8644 
8645   void *IP = nullptr;
8646   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8647   if (!Result) {
8648     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8649     llvm::copy(VTs, Array);
8650     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8651     VTListMap.InsertNode(Result, IP);
8652   }
8653   return Result->getSDVTList();
8654 }
8655 
8656 
8657 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8658 /// specified operands.  If the resultant node already exists in the DAG,
8659 /// this does not modify the specified node, instead it returns the node that
8660 /// already exists.  If the resultant node does not exist in the DAG, the
8661 /// input node is returned.  As a degenerate case, if you specify the same
8662 /// input operands as the node already has, the input node is returned.
8663 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8664   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8665 
8666   // Check to see if there is no change.
8667   if (Op == N->getOperand(0)) return N;
8668 
8669   // See if the modified node already exists.
8670   void *InsertPos = nullptr;
8671   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8672     return Existing;
8673 
8674   // Nope it doesn't.  Remove the node from its current place in the maps.
8675   if (InsertPos)
8676     if (!RemoveNodeFromCSEMaps(N))
8677       InsertPos = nullptr;
8678 
8679   // Now we update the operands.
8680   N->OperandList[0].set(Op);
8681 
8682   updateDivergence(N);
8683   // If this gets put into a CSE map, add it.
8684   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8685   return N;
8686 }
8687 
8688 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8689   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8690 
8691   // Check to see if there is no change.
8692   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8693     return N;   // No operands changed, just return the input node.
8694 
8695   // See if the modified node already exists.
8696   void *InsertPos = nullptr;
8697   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8698     return Existing;
8699 
8700   // Nope it doesn't.  Remove the node from its current place in the maps.
8701   if (InsertPos)
8702     if (!RemoveNodeFromCSEMaps(N))
8703       InsertPos = nullptr;
8704 
8705   // Now we update the operands.
8706   if (N->OperandList[0] != Op1)
8707     N->OperandList[0].set(Op1);
8708   if (N->OperandList[1] != Op2)
8709     N->OperandList[1].set(Op2);
8710 
8711   updateDivergence(N);
8712   // If this gets put into a CSE map, add it.
8713   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8714   return N;
8715 }
8716 
8717 SDNode *SelectionDAG::
8718 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8719   SDValue Ops[] = { Op1, Op2, Op3 };
8720   return UpdateNodeOperands(N, Ops);
8721 }
8722 
8723 SDNode *SelectionDAG::
8724 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8725                    SDValue Op3, SDValue Op4) {
8726   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8727   return UpdateNodeOperands(N, Ops);
8728 }
8729 
8730 SDNode *SelectionDAG::
8731 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8732                    SDValue Op3, SDValue Op4, SDValue Op5) {
8733   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8734   return UpdateNodeOperands(N, Ops);
8735 }
8736 
8737 SDNode *SelectionDAG::
8738 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8739   unsigned NumOps = Ops.size();
8740   assert(N->getNumOperands() == NumOps &&
8741          "Update with wrong number of operands");
8742 
8743   // If no operands changed just return the input node.
8744   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8745     return N;
8746 
8747   // See if the modified node already exists.
8748   void *InsertPos = nullptr;
8749   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8750     return Existing;
8751 
8752   // Nope it doesn't.  Remove the node from its current place in the maps.
8753   if (InsertPos)
8754     if (!RemoveNodeFromCSEMaps(N))
8755       InsertPos = nullptr;
8756 
8757   // Now we update the operands.
8758   for (unsigned i = 0; i != NumOps; ++i)
8759     if (N->OperandList[i] != Ops[i])
8760       N->OperandList[i].set(Ops[i]);
8761 
8762   updateDivergence(N);
8763   // If this gets put into a CSE map, add it.
8764   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8765   return N;
8766 }
8767 
8768 /// DropOperands - Release the operands and set this node to have
8769 /// zero operands.
8770 void SDNode::DropOperands() {
8771   // Unlike the code in MorphNodeTo that does this, we don't need to
8772   // watch for dead nodes here.
8773   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8774     SDUse &Use = *I++;
8775     Use.set(SDValue());
8776   }
8777 }
8778 
8779 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8780                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8781   if (NewMemRefs.empty()) {
8782     N->clearMemRefs();
8783     return;
8784   }
8785 
8786   // Check if we can avoid allocating by storing a single reference directly.
8787   if (NewMemRefs.size() == 1) {
8788     N->MemRefs = NewMemRefs[0];
8789     N->NumMemRefs = 1;
8790     return;
8791   }
8792 
8793   MachineMemOperand **MemRefsBuffer =
8794       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8795   llvm::copy(NewMemRefs, MemRefsBuffer);
8796   N->MemRefs = MemRefsBuffer;
8797   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8798 }
8799 
8800 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8801 /// machine opcode.
8802 ///
8803 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8804                                    EVT VT) {
8805   SDVTList VTs = getVTList(VT);
8806   return SelectNodeTo(N, MachineOpc, VTs, None);
8807 }
8808 
8809 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8810                                    EVT VT, SDValue Op1) {
8811   SDVTList VTs = getVTList(VT);
8812   SDValue Ops[] = { Op1 };
8813   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8814 }
8815 
8816 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8817                                    EVT VT, SDValue Op1,
8818                                    SDValue Op2) {
8819   SDVTList VTs = getVTList(VT);
8820   SDValue Ops[] = { Op1, Op2 };
8821   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8822 }
8823 
8824 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8825                                    EVT VT, SDValue Op1,
8826                                    SDValue Op2, SDValue Op3) {
8827   SDVTList VTs = getVTList(VT);
8828   SDValue Ops[] = { Op1, Op2, Op3 };
8829   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8830 }
8831 
8832 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8833                                    EVT VT, ArrayRef<SDValue> Ops) {
8834   SDVTList VTs = getVTList(VT);
8835   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8836 }
8837 
8838 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8839                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8840   SDVTList VTs = getVTList(VT1, VT2);
8841   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8842 }
8843 
8844 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8845                                    EVT VT1, EVT VT2) {
8846   SDVTList VTs = getVTList(VT1, VT2);
8847   return SelectNodeTo(N, MachineOpc, VTs, None);
8848 }
8849 
8850 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8851                                    EVT VT1, EVT VT2, EVT VT3,
8852                                    ArrayRef<SDValue> Ops) {
8853   SDVTList VTs = getVTList(VT1, VT2, VT3);
8854   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8855 }
8856 
8857 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8858                                    EVT VT1, EVT VT2,
8859                                    SDValue Op1, SDValue Op2) {
8860   SDVTList VTs = getVTList(VT1, VT2);
8861   SDValue Ops[] = { Op1, Op2 };
8862   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8863 }
8864 
8865 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8866                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8867   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8868   // Reset the NodeID to -1.
8869   New->setNodeId(-1);
8870   if (New != N) {
8871     ReplaceAllUsesWith(N, New);
8872     RemoveDeadNode(N);
8873   }
8874   return New;
8875 }
8876 
8877 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8878 /// the line number information on the merged node since it is not possible to
8879 /// preserve the information that operation is associated with multiple lines.
8880 /// This will make the debugger working better at -O0, were there is a higher
8881 /// probability having other instructions associated with that line.
8882 ///
8883 /// For IROrder, we keep the smaller of the two
8884 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8885   DebugLoc NLoc = N->getDebugLoc();
8886   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8887     N->setDebugLoc(DebugLoc());
8888   }
8889   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8890   N->setIROrder(Order);
8891   return N;
8892 }
8893 
8894 /// MorphNodeTo - This *mutates* the specified node to have the specified
8895 /// return type, opcode, and operands.
8896 ///
8897 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8898 /// node of the specified opcode and operands, it returns that node instead of
8899 /// the current one.  Note that the SDLoc need not be the same.
8900 ///
8901 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8902 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8903 /// node, and because it doesn't require CSE recalculation for any of
8904 /// the node's users.
8905 ///
8906 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8907 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8908 /// the legalizer which maintain worklists that would need to be updated when
8909 /// deleting things.
8910 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8911                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8912   // If an identical node already exists, use it.
8913   void *IP = nullptr;
8914   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8915     FoldingSetNodeID ID;
8916     AddNodeIDNode(ID, Opc, VTs, Ops);
8917     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8918       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8919   }
8920 
8921   if (!RemoveNodeFromCSEMaps(N))
8922     IP = nullptr;
8923 
8924   // Start the morphing.
8925   N->NodeType = Opc;
8926   N->ValueList = VTs.VTs;
8927   N->NumValues = VTs.NumVTs;
8928 
8929   // Clear the operands list, updating used nodes to remove this from their
8930   // use list.  Keep track of any operands that become dead as a result.
8931   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8932   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8933     SDUse &Use = *I++;
8934     SDNode *Used = Use.getNode();
8935     Use.set(SDValue());
8936     if (Used->use_empty())
8937       DeadNodeSet.insert(Used);
8938   }
8939 
8940   // For MachineNode, initialize the memory references information.
8941   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8942     MN->clearMemRefs();
8943 
8944   // Swap for an appropriately sized array from the recycler.
8945   removeOperands(N);
8946   createOperands(N, Ops);
8947 
8948   // Delete any nodes that are still dead after adding the uses for the
8949   // new operands.
8950   if (!DeadNodeSet.empty()) {
8951     SmallVector<SDNode *, 16> DeadNodes;
8952     for (SDNode *N : DeadNodeSet)
8953       if (N->use_empty())
8954         DeadNodes.push_back(N);
8955     RemoveDeadNodes(DeadNodes);
8956   }
8957 
8958   if (IP)
8959     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8960   return N;
8961 }
8962 
8963 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8964   unsigned OrigOpc = Node->getOpcode();
8965   unsigned NewOpc;
8966   switch (OrigOpc) {
8967   default:
8968     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8969 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8970   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8971 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8972   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8973 #include "llvm/IR/ConstrainedOps.def"
8974   }
8975 
8976   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8977 
8978   // We're taking this node out of the chain, so we need to re-link things.
8979   SDValue InputChain = Node->getOperand(0);
8980   SDValue OutputChain = SDValue(Node, 1);
8981   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8982 
8983   SmallVector<SDValue, 3> Ops;
8984   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8985     Ops.push_back(Node->getOperand(i));
8986 
8987   SDVTList VTs = getVTList(Node->getValueType(0));
8988   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8989 
8990   // MorphNodeTo can operate in two ways: if an existing node with the
8991   // specified operands exists, it can just return it.  Otherwise, it
8992   // updates the node in place to have the requested operands.
8993   if (Res == Node) {
8994     // If we updated the node in place, reset the node ID.  To the isel,
8995     // this should be just like a newly allocated machine node.
8996     Res->setNodeId(-1);
8997   } else {
8998     ReplaceAllUsesWith(Node, Res);
8999     RemoveDeadNode(Node);
9000   }
9001 
9002   return Res;
9003 }
9004 
9005 /// getMachineNode - These are used for target selectors to create a new node
9006 /// with specified return type(s), MachineInstr opcode, and operands.
9007 ///
9008 /// Note that getMachineNode returns the resultant node.  If there is already a
9009 /// node of the specified opcode and operands, it returns that node instead of
9010 /// the current one.
9011 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9012                                             EVT VT) {
9013   SDVTList VTs = getVTList(VT);
9014   return getMachineNode(Opcode, dl, VTs, None);
9015 }
9016 
9017 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9018                                             EVT VT, SDValue Op1) {
9019   SDVTList VTs = getVTList(VT);
9020   SDValue Ops[] = { Op1 };
9021   return getMachineNode(Opcode, dl, VTs, Ops);
9022 }
9023 
9024 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9025                                             EVT VT, SDValue Op1, SDValue Op2) {
9026   SDVTList VTs = getVTList(VT);
9027   SDValue Ops[] = { Op1, Op2 };
9028   return getMachineNode(Opcode, dl, VTs, Ops);
9029 }
9030 
9031 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9032                                             EVT VT, SDValue Op1, SDValue Op2,
9033                                             SDValue Op3) {
9034   SDVTList VTs = getVTList(VT);
9035   SDValue Ops[] = { Op1, Op2, Op3 };
9036   return getMachineNode(Opcode, dl, VTs, Ops);
9037 }
9038 
9039 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9040                                             EVT VT, ArrayRef<SDValue> Ops) {
9041   SDVTList VTs = getVTList(VT);
9042   return getMachineNode(Opcode, dl, VTs, Ops);
9043 }
9044 
9045 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9046                                             EVT VT1, EVT VT2, SDValue Op1,
9047                                             SDValue Op2) {
9048   SDVTList VTs = getVTList(VT1, VT2);
9049   SDValue Ops[] = { Op1, Op2 };
9050   return getMachineNode(Opcode, dl, VTs, Ops);
9051 }
9052 
9053 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9054                                             EVT VT1, EVT VT2, SDValue Op1,
9055                                             SDValue Op2, SDValue Op3) {
9056   SDVTList VTs = getVTList(VT1, VT2);
9057   SDValue Ops[] = { Op1, Op2, Op3 };
9058   return getMachineNode(Opcode, dl, VTs, Ops);
9059 }
9060 
9061 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9062                                             EVT VT1, EVT VT2,
9063                                             ArrayRef<SDValue> Ops) {
9064   SDVTList VTs = getVTList(VT1, VT2);
9065   return getMachineNode(Opcode, dl, VTs, Ops);
9066 }
9067 
9068 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9069                                             EVT VT1, EVT VT2, EVT VT3,
9070                                             SDValue Op1, SDValue Op2) {
9071   SDVTList VTs = getVTList(VT1, VT2, VT3);
9072   SDValue Ops[] = { Op1, Op2 };
9073   return getMachineNode(Opcode, dl, VTs, Ops);
9074 }
9075 
9076 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9077                                             EVT VT1, EVT VT2, EVT VT3,
9078                                             SDValue Op1, SDValue Op2,
9079                                             SDValue Op3) {
9080   SDVTList VTs = getVTList(VT1, VT2, VT3);
9081   SDValue Ops[] = { Op1, Op2, Op3 };
9082   return getMachineNode(Opcode, dl, VTs, Ops);
9083 }
9084 
9085 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9086                                             EVT VT1, EVT VT2, EVT VT3,
9087                                             ArrayRef<SDValue> Ops) {
9088   SDVTList VTs = getVTList(VT1, VT2, VT3);
9089   return getMachineNode(Opcode, dl, VTs, Ops);
9090 }
9091 
9092 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9093                                             ArrayRef<EVT> ResultTys,
9094                                             ArrayRef<SDValue> Ops) {
9095   SDVTList VTs = getVTList(ResultTys);
9096   return getMachineNode(Opcode, dl, VTs, Ops);
9097 }
9098 
9099 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9100                                             SDVTList VTs,
9101                                             ArrayRef<SDValue> Ops) {
9102   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9103   MachineSDNode *N;
9104   void *IP = nullptr;
9105 
9106   if (DoCSE) {
9107     FoldingSetNodeID ID;
9108     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9109     IP = nullptr;
9110     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9111       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9112     }
9113   }
9114 
9115   // Allocate a new MachineSDNode.
9116   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9117   createOperands(N, Ops);
9118 
9119   if (DoCSE)
9120     CSEMap.InsertNode(N, IP);
9121 
9122   InsertNode(N);
9123   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9124   return N;
9125 }
9126 
9127 /// getTargetExtractSubreg - A convenience function for creating
9128 /// TargetOpcode::EXTRACT_SUBREG nodes.
9129 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9130                                              SDValue Operand) {
9131   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9132   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9133                                   VT, Operand, SRIdxVal);
9134   return SDValue(Subreg, 0);
9135 }
9136 
9137 /// getTargetInsertSubreg - A convenience function for creating
9138 /// TargetOpcode::INSERT_SUBREG nodes.
9139 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9140                                             SDValue Operand, SDValue Subreg) {
9141   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9142   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9143                                   VT, Operand, Subreg, SRIdxVal);
9144   return SDValue(Result, 0);
9145 }
9146 
9147 /// getNodeIfExists - Get the specified node if it's already available, or
9148 /// else return NULL.
9149 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9150                                       ArrayRef<SDValue> Ops) {
9151   SDNodeFlags Flags;
9152   if (Inserter)
9153     Flags = Inserter->getFlags();
9154   return getNodeIfExists(Opcode, VTList, Ops, Flags);
9155 }
9156 
9157 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9158                                       ArrayRef<SDValue> Ops,
9159                                       const SDNodeFlags Flags) {
9160   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9161     FoldingSetNodeID ID;
9162     AddNodeIDNode(ID, Opcode, VTList, Ops);
9163     void *IP = nullptr;
9164     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9165       E->intersectFlagsWith(Flags);
9166       return E;
9167     }
9168   }
9169   return nullptr;
9170 }
9171 
9172 /// doesNodeExist - Check if a node exists without modifying its flags.
9173 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9174                                  ArrayRef<SDValue> Ops) {
9175   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9176     FoldingSetNodeID ID;
9177     AddNodeIDNode(ID, Opcode, VTList, Ops);
9178     void *IP = nullptr;
9179     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9180       return true;
9181   }
9182   return false;
9183 }
9184 
9185 /// getDbgValue - Creates a SDDbgValue node.
9186 ///
9187 /// SDNode
9188 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9189                                       SDNode *N, unsigned R, bool IsIndirect,
9190                                       const DebugLoc &DL, unsigned O) {
9191   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9192          "Expected inlined-at fields to agree");
9193   return new (DbgInfo->getAlloc())
9194       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9195                  {}, IsIndirect, DL, O,
9196                  /*IsVariadic=*/false);
9197 }
9198 
9199 /// Constant
9200 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9201                                               DIExpression *Expr,
9202                                               const Value *C,
9203                                               const DebugLoc &DL, unsigned O) {
9204   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9205          "Expected inlined-at fields to agree");
9206   return new (DbgInfo->getAlloc())
9207       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9208                  /*IsIndirect=*/false, DL, O,
9209                  /*IsVariadic=*/false);
9210 }
9211 
9212 /// FrameIndex
9213 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9214                                                 DIExpression *Expr, unsigned FI,
9215                                                 bool IsIndirect,
9216                                                 const DebugLoc &DL,
9217                                                 unsigned O) {
9218   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9219          "Expected inlined-at fields to agree");
9220   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9221 }
9222 
9223 /// FrameIndex with dependencies
9224 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9225                                                 DIExpression *Expr, unsigned FI,
9226                                                 ArrayRef<SDNode *> Dependencies,
9227                                                 bool IsIndirect,
9228                                                 const DebugLoc &DL,
9229                                                 unsigned O) {
9230   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9231          "Expected inlined-at fields to agree");
9232   return new (DbgInfo->getAlloc())
9233       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9234                  Dependencies, IsIndirect, DL, O,
9235                  /*IsVariadic=*/false);
9236 }
9237 
9238 /// VReg
9239 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9240                                           unsigned VReg, bool IsIndirect,
9241                                           const DebugLoc &DL, unsigned O) {
9242   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9243          "Expected inlined-at fields to agree");
9244   return new (DbgInfo->getAlloc())
9245       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9246                  {}, IsIndirect, DL, O,
9247                  /*IsVariadic=*/false);
9248 }
9249 
9250 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9251                                           ArrayRef<SDDbgOperand> Locs,
9252                                           ArrayRef<SDNode *> Dependencies,
9253                                           bool IsIndirect, const DebugLoc &DL,
9254                                           unsigned O, bool IsVariadic) {
9255   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9256          "Expected inlined-at fields to agree");
9257   return new (DbgInfo->getAlloc())
9258       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9259                  DL, O, IsVariadic);
9260 }
9261 
9262 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9263                                      unsigned OffsetInBits, unsigned SizeInBits,
9264                                      bool InvalidateDbg) {
9265   SDNode *FromNode = From.getNode();
9266   SDNode *ToNode = To.getNode();
9267   assert(FromNode && ToNode && "Can't modify dbg values");
9268 
9269   // PR35338
9270   // TODO: assert(From != To && "Redundant dbg value transfer");
9271   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9272   if (From == To || FromNode == ToNode)
9273     return;
9274 
9275   if (!FromNode->getHasDebugValue())
9276     return;
9277 
9278   SDDbgOperand FromLocOp =
9279       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9280   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9281 
9282   SmallVector<SDDbgValue *, 2> ClonedDVs;
9283   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9284     if (Dbg->isInvalidated())
9285       continue;
9286 
9287     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9288 
9289     // Create a new location ops vector that is equal to the old vector, but
9290     // with each instance of FromLocOp replaced with ToLocOp.
9291     bool Changed = false;
9292     auto NewLocOps = Dbg->copyLocationOps();
9293     std::replace_if(
9294         NewLocOps.begin(), NewLocOps.end(),
9295         [&Changed, FromLocOp](const SDDbgOperand &Op) {
9296           bool Match = Op == FromLocOp;
9297           Changed |= Match;
9298           return Match;
9299         },
9300         ToLocOp);
9301     // Ignore this SDDbgValue if we didn't find a matching location.
9302     if (!Changed)
9303       continue;
9304 
9305     DIVariable *Var = Dbg->getVariable();
9306     auto *Expr = Dbg->getExpression();
9307     // If a fragment is requested, update the expression.
9308     if (SizeInBits) {
9309       // When splitting a larger (e.g., sign-extended) value whose
9310       // lower bits are described with an SDDbgValue, do not attempt
9311       // to transfer the SDDbgValue to the upper bits.
9312       if (auto FI = Expr->getFragmentInfo())
9313         if (OffsetInBits + SizeInBits > FI->SizeInBits)
9314           continue;
9315       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9316                                                              SizeInBits);
9317       if (!Fragment)
9318         continue;
9319       Expr = *Fragment;
9320     }
9321 
9322     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9323     // Clone the SDDbgValue and move it to To.
9324     SDDbgValue *Clone = getDbgValueList(
9325         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9326         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9327         Dbg->isVariadic());
9328     ClonedDVs.push_back(Clone);
9329 
9330     if (InvalidateDbg) {
9331       // Invalidate value and indicate the SDDbgValue should not be emitted.
9332       Dbg->setIsInvalidated();
9333       Dbg->setIsEmitted();
9334     }
9335   }
9336 
9337   for (SDDbgValue *Dbg : ClonedDVs) {
9338     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9339            "Transferred DbgValues should depend on the new SDNode");
9340     AddDbgValue(Dbg, false);
9341   }
9342 }
9343 
9344 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9345   if (!N.getHasDebugValue())
9346     return;
9347 
9348   SmallVector<SDDbgValue *, 2> ClonedDVs;
9349   for (auto DV : GetDbgValues(&N)) {
9350     if (DV->isInvalidated())
9351       continue;
9352     switch (N.getOpcode()) {
9353     default:
9354       break;
9355     case ISD::ADD:
9356       SDValue N0 = N.getOperand(0);
9357       SDValue N1 = N.getOperand(1);
9358       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
9359           isConstantIntBuildVectorOrConstantInt(N1)) {
9360         uint64_t Offset = N.getConstantOperandVal(1);
9361 
9362         // Rewrite an ADD constant node into a DIExpression. Since we are
9363         // performing arithmetic to compute the variable's *value* in the
9364         // DIExpression, we need to mark the expression with a
9365         // DW_OP_stack_value.
9366         auto *DIExpr = DV->getExpression();
9367         auto NewLocOps = DV->copyLocationOps();
9368         bool Changed = false;
9369         for (size_t i = 0; i < NewLocOps.size(); ++i) {
9370           // We're not given a ResNo to compare against because the whole
9371           // node is going away. We know that any ISD::ADD only has one
9372           // result, so we can assume any node match is using the result.
9373           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
9374               NewLocOps[i].getSDNode() != &N)
9375             continue;
9376           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
9377           SmallVector<uint64_t, 3> ExprOps;
9378           DIExpression::appendOffset(ExprOps, Offset);
9379           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
9380           Changed = true;
9381         }
9382         (void)Changed;
9383         assert(Changed && "Salvage target doesn't use N");
9384 
9385         auto AdditionalDependencies = DV->getAdditionalDependencies();
9386         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
9387                                             NewLocOps, AdditionalDependencies,
9388                                             DV->isIndirect(), DV->getDebugLoc(),
9389                                             DV->getOrder(), DV->isVariadic());
9390         ClonedDVs.push_back(Clone);
9391         DV->setIsInvalidated();
9392         DV->setIsEmitted();
9393         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
9394                    N0.getNode()->dumprFull(this);
9395                    dbgs() << " into " << *DIExpr << '\n');
9396       }
9397     }
9398   }
9399 
9400   for (SDDbgValue *Dbg : ClonedDVs) {
9401     assert(!Dbg->getSDNodes().empty() &&
9402            "Salvaged DbgValue should depend on a new SDNode");
9403     AddDbgValue(Dbg, false);
9404   }
9405 }
9406 
9407 /// Creates a SDDbgLabel node.
9408 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
9409                                       const DebugLoc &DL, unsigned O) {
9410   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
9411          "Expected inlined-at fields to agree");
9412   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
9413 }
9414 
9415 namespace {
9416 
9417 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9418 /// pointed to by a use iterator is deleted, increment the use iterator
9419 /// so that it doesn't dangle.
9420 ///
9421 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
9422   SDNode::use_iterator &UI;
9423   SDNode::use_iterator &UE;
9424 
9425   void NodeDeleted(SDNode *N, SDNode *E) override {
9426     // Increment the iterator as needed.
9427     while (UI != UE && N == *UI)
9428       ++UI;
9429   }
9430 
9431 public:
9432   RAUWUpdateListener(SelectionDAG &d,
9433                      SDNode::use_iterator &ui,
9434                      SDNode::use_iterator &ue)
9435     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9436 };
9437 
9438 } // end anonymous namespace
9439 
9440 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9441 /// This can cause recursive merging of nodes in the DAG.
9442 ///
9443 /// This version assumes From has a single result value.
9444 ///
9445 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9446   SDNode *From = FromN.getNode();
9447   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9448          "Cannot replace with this method!");
9449   assert(From != To.getNode() && "Cannot replace uses of with self");
9450 
9451   // Preserve Debug Values
9452   transferDbgValues(FromN, To);
9453 
9454   // Iterate over all the existing uses of From. New uses will be added
9455   // to the beginning of the use list, which we avoid visiting.
9456   // This specifically avoids visiting uses of From that arise while the
9457   // replacement is happening, because any such uses would be the result
9458   // of CSE: If an existing node looks like From after one of its operands
9459   // is replaced by To, we don't want to replace of all its users with To
9460   // too. See PR3018 for more info.
9461   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9462   RAUWUpdateListener Listener(*this, UI, UE);
9463   while (UI != UE) {
9464     SDNode *User = *UI;
9465 
9466     // This node is about to morph, remove its old self from the CSE maps.
9467     RemoveNodeFromCSEMaps(User);
9468 
9469     // A user can appear in a use list multiple times, and when this
9470     // happens the uses are usually next to each other in the list.
9471     // To help reduce the number of CSE recomputations, process all
9472     // the uses of this user that we can find this way.
9473     do {
9474       SDUse &Use = UI.getUse();
9475       ++UI;
9476       Use.set(To);
9477       if (To->isDivergent() != From->isDivergent())
9478         updateDivergence(User);
9479     } while (UI != UE && *UI == User);
9480     // Now that we have modified User, add it back to the CSE maps.  If it
9481     // already exists there, recursively merge the results together.
9482     AddModifiedNodeToCSEMaps(User);
9483   }
9484 
9485   // If we just RAUW'd the root, take note.
9486   if (FromN == getRoot())
9487     setRoot(To);
9488 }
9489 
9490 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9491 /// This can cause recursive merging of nodes in the DAG.
9492 ///
9493 /// This version assumes that for each value of From, there is a
9494 /// corresponding value in To in the same position with the same type.
9495 ///
9496 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9497 #ifndef NDEBUG
9498   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9499     assert((!From->hasAnyUseOfValue(i) ||
9500             From->getValueType(i) == To->getValueType(i)) &&
9501            "Cannot use this version of ReplaceAllUsesWith!");
9502 #endif
9503 
9504   // Handle the trivial case.
9505   if (From == To)
9506     return;
9507 
9508   // Preserve Debug Info. Only do this if there's a use.
9509   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9510     if (From->hasAnyUseOfValue(i)) {
9511       assert((i < To->getNumValues()) && "Invalid To location");
9512       transferDbgValues(SDValue(From, i), SDValue(To, i));
9513     }
9514 
9515   // Iterate over just the existing users of From. See the comments in
9516   // the ReplaceAllUsesWith above.
9517   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9518   RAUWUpdateListener Listener(*this, UI, UE);
9519   while (UI != UE) {
9520     SDNode *User = *UI;
9521 
9522     // This node is about to morph, remove its old self from the CSE maps.
9523     RemoveNodeFromCSEMaps(User);
9524 
9525     // A user can appear in a use list multiple times, and when this
9526     // happens the uses are usually next to each other in the list.
9527     // To help reduce the number of CSE recomputations, process all
9528     // the uses of this user that we can find this way.
9529     do {
9530       SDUse &Use = UI.getUse();
9531       ++UI;
9532       Use.setNode(To);
9533       if (To->isDivergent() != From->isDivergent())
9534         updateDivergence(User);
9535     } while (UI != UE && *UI == User);
9536 
9537     // Now that we have modified User, add it back to the CSE maps.  If it
9538     // already exists there, recursively merge the results together.
9539     AddModifiedNodeToCSEMaps(User);
9540   }
9541 
9542   // If we just RAUW'd the root, take note.
9543   if (From == getRoot().getNode())
9544     setRoot(SDValue(To, getRoot().getResNo()));
9545 }
9546 
9547 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9548 /// This can cause recursive merging of nodes in the DAG.
9549 ///
9550 /// This version can replace From with any result values.  To must match the
9551 /// number and types of values returned by From.
9552 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9553   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9554     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9555 
9556   // Preserve Debug Info.
9557   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9558     transferDbgValues(SDValue(From, i), To[i]);
9559 
9560   // Iterate over just the existing users of From. See the comments in
9561   // the ReplaceAllUsesWith above.
9562   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9563   RAUWUpdateListener Listener(*this, UI, UE);
9564   while (UI != UE) {
9565     SDNode *User = *UI;
9566 
9567     // This node is about to morph, remove its old self from the CSE maps.
9568     RemoveNodeFromCSEMaps(User);
9569 
9570     // A user can appear in a use list multiple times, and when this happens the
9571     // uses are usually next to each other in the list.  To help reduce the
9572     // number of CSE and divergence recomputations, process all the uses of this
9573     // user that we can find this way.
9574     bool To_IsDivergent = false;
9575     do {
9576       SDUse &Use = UI.getUse();
9577       const SDValue &ToOp = To[Use.getResNo()];
9578       ++UI;
9579       Use.set(ToOp);
9580       To_IsDivergent |= ToOp->isDivergent();
9581     } while (UI != UE && *UI == User);
9582 
9583     if (To_IsDivergent != From->isDivergent())
9584       updateDivergence(User);
9585 
9586     // Now that we have modified User, add it back to the CSE maps.  If it
9587     // already exists there, recursively merge the results together.
9588     AddModifiedNodeToCSEMaps(User);
9589   }
9590 
9591   // If we just RAUW'd the root, take note.
9592   if (From == getRoot().getNode())
9593     setRoot(SDValue(To[getRoot().getResNo()]));
9594 }
9595 
9596 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9597 /// uses of other values produced by From.getNode() alone.  The Deleted
9598 /// vector is handled the same way as for ReplaceAllUsesWith.
9599 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9600   // Handle the really simple, really trivial case efficiently.
9601   if (From == To) return;
9602 
9603   // Handle the simple, trivial, case efficiently.
9604   if (From.getNode()->getNumValues() == 1) {
9605     ReplaceAllUsesWith(From, To);
9606     return;
9607   }
9608 
9609   // Preserve Debug Info.
9610   transferDbgValues(From, To);
9611 
9612   // Iterate over just the existing users of From. See the comments in
9613   // the ReplaceAllUsesWith above.
9614   SDNode::use_iterator UI = From.getNode()->use_begin(),
9615                        UE = From.getNode()->use_end();
9616   RAUWUpdateListener Listener(*this, UI, UE);
9617   while (UI != UE) {
9618     SDNode *User = *UI;
9619     bool UserRemovedFromCSEMaps = false;
9620 
9621     // A user can appear in a use list multiple times, and when this
9622     // happens the uses are usually next to each other in the list.
9623     // To help reduce the number of CSE recomputations, process all
9624     // the uses of this user that we can find this way.
9625     do {
9626       SDUse &Use = UI.getUse();
9627 
9628       // Skip uses of different values from the same node.
9629       if (Use.getResNo() != From.getResNo()) {
9630         ++UI;
9631         continue;
9632       }
9633 
9634       // If this node hasn't been modified yet, it's still in the CSE maps,
9635       // so remove its old self from the CSE maps.
9636       if (!UserRemovedFromCSEMaps) {
9637         RemoveNodeFromCSEMaps(User);
9638         UserRemovedFromCSEMaps = true;
9639       }
9640 
9641       ++UI;
9642       Use.set(To);
9643       if (To->isDivergent() != From->isDivergent())
9644         updateDivergence(User);
9645     } while (UI != UE && *UI == User);
9646     // We are iterating over all uses of the From node, so if a use
9647     // doesn't use the specific value, no changes are made.
9648     if (!UserRemovedFromCSEMaps)
9649       continue;
9650 
9651     // Now that we have modified User, add it back to the CSE maps.  If it
9652     // already exists there, recursively merge the results together.
9653     AddModifiedNodeToCSEMaps(User);
9654   }
9655 
9656   // If we just RAUW'd the root, take note.
9657   if (From == getRoot())
9658     setRoot(To);
9659 }
9660 
9661 namespace {
9662 
9663   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9664   /// to record information about a use.
9665   struct UseMemo {
9666     SDNode *User;
9667     unsigned Index;
9668     SDUse *Use;
9669   };
9670 
9671   /// operator< - Sort Memos by User.
9672   bool operator<(const UseMemo &L, const UseMemo &R) {
9673     return (intptr_t)L.User < (intptr_t)R.User;
9674   }
9675 
9676 } // end anonymous namespace
9677 
9678 bool SelectionDAG::calculateDivergence(SDNode *N) {
9679   if (TLI->isSDNodeAlwaysUniform(N)) {
9680     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9681            "Conflicting divergence information!");
9682     return false;
9683   }
9684   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9685     return true;
9686   for (auto &Op : N->ops()) {
9687     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9688       return true;
9689   }
9690   return false;
9691 }
9692 
9693 void SelectionDAG::updateDivergence(SDNode *N) {
9694   SmallVector<SDNode *, 16> Worklist(1, N);
9695   do {
9696     N = Worklist.pop_back_val();
9697     bool IsDivergent = calculateDivergence(N);
9698     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9699       N->SDNodeBits.IsDivergent = IsDivergent;
9700       llvm::append_range(Worklist, N->uses());
9701     }
9702   } while (!Worklist.empty());
9703 }
9704 
9705 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9706   DenseMap<SDNode *, unsigned> Degree;
9707   Order.reserve(AllNodes.size());
9708   for (auto &N : allnodes()) {
9709     unsigned NOps = N.getNumOperands();
9710     Degree[&N] = NOps;
9711     if (0 == NOps)
9712       Order.push_back(&N);
9713   }
9714   for (size_t I = 0; I != Order.size(); ++I) {
9715     SDNode *N = Order[I];
9716     for (auto U : N->uses()) {
9717       unsigned &UnsortedOps = Degree[U];
9718       if (0 == --UnsortedOps)
9719         Order.push_back(U);
9720     }
9721   }
9722 }
9723 
9724 #ifndef NDEBUG
9725 void SelectionDAG::VerifyDAGDivergence() {
9726   std::vector<SDNode *> TopoOrder;
9727   CreateTopologicalOrder(TopoOrder);
9728   for (auto *N : TopoOrder) {
9729     assert(calculateDivergence(N) == N->isDivergent() &&
9730            "Divergence bit inconsistency detected");
9731   }
9732 }
9733 #endif
9734 
9735 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9736 /// uses of other values produced by From.getNode() alone.  The same value
9737 /// may appear in both the From and To list.  The Deleted vector is
9738 /// handled the same way as for ReplaceAllUsesWith.
9739 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9740                                               const SDValue *To,
9741                                               unsigned Num){
9742   // Handle the simple, trivial case efficiently.
9743   if (Num == 1)
9744     return ReplaceAllUsesOfValueWith(*From, *To);
9745 
9746   transferDbgValues(*From, *To);
9747 
9748   // Read up all the uses and make records of them. This helps
9749   // processing new uses that are introduced during the
9750   // replacement process.
9751   SmallVector<UseMemo, 4> Uses;
9752   for (unsigned i = 0; i != Num; ++i) {
9753     unsigned FromResNo = From[i].getResNo();
9754     SDNode *FromNode = From[i].getNode();
9755     for (SDNode::use_iterator UI = FromNode->use_begin(),
9756          E = FromNode->use_end(); UI != E; ++UI) {
9757       SDUse &Use = UI.getUse();
9758       if (Use.getResNo() == FromResNo) {
9759         UseMemo Memo = { *UI, i, &Use };
9760         Uses.push_back(Memo);
9761       }
9762     }
9763   }
9764 
9765   // Sort the uses, so that all the uses from a given User are together.
9766   llvm::sort(Uses);
9767 
9768   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9769        UseIndex != UseIndexEnd; ) {
9770     // We know that this user uses some value of From.  If it is the right
9771     // value, update it.
9772     SDNode *User = Uses[UseIndex].User;
9773 
9774     // This node is about to morph, remove its old self from the CSE maps.
9775     RemoveNodeFromCSEMaps(User);
9776 
9777     // The Uses array is sorted, so all the uses for a given User
9778     // are next to each other in the list.
9779     // To help reduce the number of CSE recomputations, process all
9780     // the uses of this user that we can find this way.
9781     do {
9782       unsigned i = Uses[UseIndex].Index;
9783       SDUse &Use = *Uses[UseIndex].Use;
9784       ++UseIndex;
9785 
9786       Use.set(To[i]);
9787     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9788 
9789     // Now that we have modified User, add it back to the CSE maps.  If it
9790     // already exists there, recursively merge the results together.
9791     AddModifiedNodeToCSEMaps(User);
9792   }
9793 }
9794 
9795 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9796 /// based on their topological order. It returns the maximum id and a vector
9797 /// of the SDNodes* in assigned order by reference.
9798 unsigned SelectionDAG::AssignTopologicalOrder() {
9799   unsigned DAGSize = 0;
9800 
9801   // SortedPos tracks the progress of the algorithm. Nodes before it are
9802   // sorted, nodes after it are unsorted. When the algorithm completes
9803   // it is at the end of the list.
9804   allnodes_iterator SortedPos = allnodes_begin();
9805 
9806   // Visit all the nodes. Move nodes with no operands to the front of
9807   // the list immediately. Annotate nodes that do have operands with their
9808   // operand count. Before we do this, the Node Id fields of the nodes
9809   // may contain arbitrary values. After, the Node Id fields for nodes
9810   // before SortedPos will contain the topological sort index, and the
9811   // Node Id fields for nodes At SortedPos and after will contain the
9812   // count of outstanding operands.
9813   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
9814     SDNode *N = &*I++;
9815     checkForCycles(N, this);
9816     unsigned Degree = N->getNumOperands();
9817     if (Degree == 0) {
9818       // A node with no uses, add it to the result array immediately.
9819       N->setNodeId(DAGSize++);
9820       allnodes_iterator Q(N);
9821       if (Q != SortedPos)
9822         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9823       assert(SortedPos != AllNodes.end() && "Overran node list");
9824       ++SortedPos;
9825     } else {
9826       // Temporarily use the Node Id as scratch space for the degree count.
9827       N->setNodeId(Degree);
9828     }
9829   }
9830 
9831   // Visit all the nodes. As we iterate, move nodes into sorted order,
9832   // such that by the time the end is reached all nodes will be sorted.
9833   for (SDNode &Node : allnodes()) {
9834     SDNode *N = &Node;
9835     checkForCycles(N, this);
9836     // N is in sorted position, so all its uses have one less operand
9837     // that needs to be sorted.
9838     for (SDNode *P : N->uses()) {
9839       unsigned Degree = P->getNodeId();
9840       assert(Degree != 0 && "Invalid node degree");
9841       --Degree;
9842       if (Degree == 0) {
9843         // All of P's operands are sorted, so P may sorted now.
9844         P->setNodeId(DAGSize++);
9845         if (P->getIterator() != SortedPos)
9846           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9847         assert(SortedPos != AllNodes.end() && "Overran node list");
9848         ++SortedPos;
9849       } else {
9850         // Update P's outstanding operand count.
9851         P->setNodeId(Degree);
9852       }
9853     }
9854     if (Node.getIterator() == SortedPos) {
9855 #ifndef NDEBUG
9856       allnodes_iterator I(N);
9857       SDNode *S = &*++I;
9858       dbgs() << "Overran sorted position:\n";
9859       S->dumprFull(this); dbgs() << "\n";
9860       dbgs() << "Checking if this is due to cycles\n";
9861       checkForCycles(this, true);
9862 #endif
9863       llvm_unreachable(nullptr);
9864     }
9865   }
9866 
9867   assert(SortedPos == AllNodes.end() &&
9868          "Topological sort incomplete!");
9869   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9870          "First node in topological sort is not the entry token!");
9871   assert(AllNodes.front().getNodeId() == 0 &&
9872          "First node in topological sort has non-zero id!");
9873   assert(AllNodes.front().getNumOperands() == 0 &&
9874          "First node in topological sort has operands!");
9875   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9876          "Last node in topologic sort has unexpected id!");
9877   assert(AllNodes.back().use_empty() &&
9878          "Last node in topologic sort has users!");
9879   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9880   return DAGSize;
9881 }
9882 
9883 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9884 /// value is produced by SD.
9885 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9886   for (SDNode *SD : DB->getSDNodes()) {
9887     if (!SD)
9888       continue;
9889     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9890     SD->setHasDebugValue(true);
9891   }
9892   DbgInfo->add(DB, isParameter);
9893 }
9894 
9895 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9896 
9897 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9898                                                    SDValue NewMemOpChain) {
9899   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9900   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9901   // The new memory operation must have the same position as the old load in
9902   // terms of memory dependency. Create a TokenFactor for the old load and new
9903   // memory operation and update uses of the old load's output chain to use that
9904   // TokenFactor.
9905   if (OldChain == NewMemOpChain || OldChain.use_empty())
9906     return NewMemOpChain;
9907 
9908   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9909                                 OldChain, NewMemOpChain);
9910   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9911   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9912   return TokenFactor;
9913 }
9914 
9915 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9916                                                    SDValue NewMemOp) {
9917   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9918   SDValue OldChain = SDValue(OldLoad, 1);
9919   SDValue NewMemOpChain = NewMemOp.getValue(1);
9920   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9921 }
9922 
9923 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9924                                                      Function **OutFunction) {
9925   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9926 
9927   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9928   auto *Module = MF->getFunction().getParent();
9929   auto *Function = Module->getFunction(Symbol);
9930 
9931   if (OutFunction != nullptr)
9932       *OutFunction = Function;
9933 
9934   if (Function != nullptr) {
9935     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9936     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9937   }
9938 
9939   std::string ErrorStr;
9940   raw_string_ostream ErrorFormatter(ErrorStr);
9941   ErrorFormatter << "Undefined external symbol ";
9942   ErrorFormatter << '"' << Symbol << '"';
9943   report_fatal_error(Twine(ErrorFormatter.str()));
9944 }
9945 
9946 //===----------------------------------------------------------------------===//
9947 //                              SDNode Class
9948 //===----------------------------------------------------------------------===//
9949 
9950 bool llvm::isNullConstant(SDValue V) {
9951   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9952   return Const != nullptr && Const->isZero();
9953 }
9954 
9955 bool llvm::isNullFPConstant(SDValue V) {
9956   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9957   return Const != nullptr && Const->isZero() && !Const->isNegative();
9958 }
9959 
9960 bool llvm::isAllOnesConstant(SDValue V) {
9961   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9962   return Const != nullptr && Const->isAllOnes();
9963 }
9964 
9965 bool llvm::isOneConstant(SDValue V) {
9966   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9967   return Const != nullptr && Const->isOne();
9968 }
9969 
9970 SDValue llvm::peekThroughBitcasts(SDValue V) {
9971   while (V.getOpcode() == ISD::BITCAST)
9972     V = V.getOperand(0);
9973   return V;
9974 }
9975 
9976 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9977   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9978     V = V.getOperand(0);
9979   return V;
9980 }
9981 
9982 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9983   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9984     V = V.getOperand(0);
9985   return V;
9986 }
9987 
9988 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9989   if (V.getOpcode() != ISD::XOR)
9990     return false;
9991   V = peekThroughBitcasts(V.getOperand(1));
9992   unsigned NumBits = V.getScalarValueSizeInBits();
9993   ConstantSDNode *C =
9994       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9995   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9996 }
9997 
9998 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9999                                           bool AllowTruncation) {
10000   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10001     return CN;
10002 
10003   // SplatVectors can truncate their operands. Ignore that case here unless
10004   // AllowTruncation is set.
10005   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
10006     EVT VecEltVT = N->getValueType(0).getVectorElementType();
10007     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10008       EVT CVT = CN->getValueType(0);
10009       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
10010       if (AllowTruncation || CVT == VecEltVT)
10011         return CN;
10012     }
10013   }
10014 
10015   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10016     BitVector UndefElements;
10017     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
10018 
10019     // BuildVectors can truncate their operands. Ignore that case here unless
10020     // AllowTruncation is set.
10021     if (CN && (UndefElements.none() || AllowUndefs)) {
10022       EVT CVT = CN->getValueType(0);
10023       EVT NSVT = N.getValueType().getScalarType();
10024       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10025       if (AllowTruncation || (CVT == NSVT))
10026         return CN;
10027     }
10028   }
10029 
10030   return nullptr;
10031 }
10032 
10033 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10034                                           bool AllowUndefs,
10035                                           bool AllowTruncation) {
10036   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10037     return CN;
10038 
10039   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10040     BitVector UndefElements;
10041     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10042 
10043     // BuildVectors can truncate their operands. Ignore that case here unless
10044     // AllowTruncation is set.
10045     if (CN && (UndefElements.none() || AllowUndefs)) {
10046       EVT CVT = CN->getValueType(0);
10047       EVT NSVT = N.getValueType().getScalarType();
10048       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10049       if (AllowTruncation || (CVT == NSVT))
10050         return CN;
10051     }
10052   }
10053 
10054   return nullptr;
10055 }
10056 
10057 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10058   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10059     return CN;
10060 
10061   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10062     BitVector UndefElements;
10063     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10064     if (CN && (UndefElements.none() || AllowUndefs))
10065       return CN;
10066   }
10067 
10068   if (N.getOpcode() == ISD::SPLAT_VECTOR)
10069     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10070       return CN;
10071 
10072   return nullptr;
10073 }
10074 
10075 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10076                                               const APInt &DemandedElts,
10077                                               bool AllowUndefs) {
10078   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10079     return CN;
10080 
10081   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10082     BitVector UndefElements;
10083     ConstantFPSDNode *CN =
10084         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10085     if (CN && (UndefElements.none() || AllowUndefs))
10086       return CN;
10087   }
10088 
10089   return nullptr;
10090 }
10091 
10092 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10093   // TODO: may want to use peekThroughBitcast() here.
10094   ConstantSDNode *C =
10095       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10096   return C && C->isZero();
10097 }
10098 
10099 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10100   // TODO: may want to use peekThroughBitcast() here.
10101   unsigned BitWidth = N.getScalarValueSizeInBits();
10102   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10103   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
10104 }
10105 
10106 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10107   N = peekThroughBitcasts(N);
10108   unsigned BitWidth = N.getScalarValueSizeInBits();
10109   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10110   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
10111 }
10112 
10113 HandleSDNode::~HandleSDNode() {
10114   DropOperands();
10115 }
10116 
10117 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10118                                          const DebugLoc &DL,
10119                                          const GlobalValue *GA, EVT VT,
10120                                          int64_t o, unsigned TF)
10121     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10122   TheGlobal = GA;
10123 }
10124 
10125 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10126                                          EVT VT, unsigned SrcAS,
10127                                          unsigned DestAS)
10128     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10129       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10130 
10131 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10132                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10133     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10134   MemSDNodeBits.IsVolatile = MMO->isVolatile();
10135   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10136   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10137   MemSDNodeBits.IsInvariant = MMO->isInvariant();
10138 
10139   // We check here that the size of the memory operand fits within the size of
10140   // the MMO. This is because the MMO might indicate only a possible address
10141   // range instead of specifying the affected memory addresses precisely.
10142   // TODO: Make MachineMemOperands aware of scalable vectors.
10143   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10144          "Size mismatch!");
10145 }
10146 
10147 /// Profile - Gather unique data for the node.
10148 ///
10149 void SDNode::Profile(FoldingSetNodeID &ID) const {
10150   AddNodeIDNode(ID, this);
10151 }
10152 
10153 namespace {
10154 
10155   struct EVTArray {
10156     std::vector<EVT> VTs;
10157 
10158     EVTArray() {
10159       VTs.reserve(MVT::VALUETYPE_SIZE);
10160       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10161         VTs.push_back(MVT((MVT::SimpleValueType)i));
10162     }
10163   };
10164 
10165 } // end anonymous namespace
10166 
10167 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
10168 static ManagedStatic<EVTArray> SimpleVTArray;
10169 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
10170 
10171 /// getValueTypeList - Return a pointer to the specified value type.
10172 ///
10173 const EVT *SDNode::getValueTypeList(EVT VT) {
10174   if (VT.isExtended()) {
10175     sys::SmartScopedLock<true> Lock(*VTMutex);
10176     return &(*EVTs->insert(VT).first);
10177   }
10178   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10179   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
10180 }
10181 
10182 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10183 /// indicated value.  This method ignores uses of other values defined by this
10184 /// operation.
10185 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10186   assert(Value < getNumValues() && "Bad value!");
10187 
10188   // TODO: Only iterate over uses of a given value of the node
10189   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10190     if (UI.getUse().getResNo() == Value) {
10191       if (NUses == 0)
10192         return false;
10193       --NUses;
10194     }
10195   }
10196 
10197   // Found exactly the right number of uses?
10198   return NUses == 0;
10199 }
10200 
10201 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10202 /// value. This method ignores uses of other values defined by this operation.
10203 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10204   assert(Value < getNumValues() && "Bad value!");
10205 
10206   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10207     if (UI.getUse().getResNo() == Value)
10208       return true;
10209 
10210   return false;
10211 }
10212 
10213 /// isOnlyUserOf - Return true if this node is the only use of N.
10214 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10215   bool Seen = false;
10216   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
10217     SDNode *User = *I;
10218     if (User == this)
10219       Seen = true;
10220     else
10221       return false;
10222   }
10223 
10224   return Seen;
10225 }
10226 
10227 /// Return true if the only users of N are contained in Nodes.
10228 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10229   bool Seen = false;
10230   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
10231     SDNode *User = *I;
10232     if (llvm::is_contained(Nodes, User))
10233       Seen = true;
10234     else
10235       return false;
10236   }
10237 
10238   return Seen;
10239 }
10240 
10241 /// isOperand - Return true if this node is an operand of N.
10242 bool SDValue::isOperandOf(const SDNode *N) const {
10243   return is_contained(N->op_values(), *this);
10244 }
10245 
10246 bool SDNode::isOperandOf(const SDNode *N) const {
10247   return any_of(N->op_values(),
10248                 [this](SDValue Op) { return this == Op.getNode(); });
10249 }
10250 
10251 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10252 /// be a chain) reaches the specified operand without crossing any
10253 /// side-effecting instructions on any chain path.  In practice, this looks
10254 /// through token factors and non-volatile loads.  In order to remain efficient,
10255 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10256 ///
10257 /// Note that we only need to examine chains when we're searching for
10258 /// side-effects; SelectionDAG requires that all side-effects are represented
10259 /// by chains, even if another operand would force a specific ordering. This
10260 /// constraint is necessary to allow transformations like splitting loads.
10261 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10262                                              unsigned Depth) const {
10263   if (*this == Dest) return true;
10264 
10265   // Don't search too deeply, we just want to be able to see through
10266   // TokenFactor's etc.
10267   if (Depth == 0) return false;
10268 
10269   // If this is a token factor, all inputs to the TF happen in parallel.
10270   if (getOpcode() == ISD::TokenFactor) {
10271     // First, try a shallow search.
10272     if (is_contained((*this)->ops(), Dest)) {
10273       // We found the chain we want as an operand of this TokenFactor.
10274       // Essentially, we reach the chain without side-effects if we could
10275       // serialize the TokenFactor into a simple chain of operations with
10276       // Dest as the last operation. This is automatically true if the
10277       // chain has one use: there are no other ordering constraints.
10278       // If the chain has more than one use, we give up: some other
10279       // use of Dest might force a side-effect between Dest and the current
10280       // node.
10281       if (Dest.hasOneUse())
10282         return true;
10283     }
10284     // Next, try a deep search: check whether every operand of the TokenFactor
10285     // reaches Dest.
10286     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10287       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10288     });
10289   }
10290 
10291   // Loads don't have side effects, look through them.
10292   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10293     if (Ld->isUnordered())
10294       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10295   }
10296   return false;
10297 }
10298 
10299 bool SDNode::hasPredecessor(const SDNode *N) const {
10300   SmallPtrSet<const SDNode *, 32> Visited;
10301   SmallVector<const SDNode *, 16> Worklist;
10302   Worklist.push_back(this);
10303   return hasPredecessorHelper(N, Visited, Worklist);
10304 }
10305 
10306 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10307   this->Flags.intersectWith(Flags);
10308 }
10309 
10310 SDValue
10311 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10312                                   ArrayRef<ISD::NodeType> CandidateBinOps,
10313                                   bool AllowPartials) {
10314   // The pattern must end in an extract from index 0.
10315   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10316       !isNullConstant(Extract->getOperand(1)))
10317     return SDValue();
10318 
10319   // Match against one of the candidate binary ops.
10320   SDValue Op = Extract->getOperand(0);
10321   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10322         return Op.getOpcode() == unsigned(BinOp);
10323       }))
10324     return SDValue();
10325 
10326   // Floating-point reductions may require relaxed constraints on the final step
10327   // of the reduction because they may reorder intermediate operations.
10328   unsigned CandidateBinOp = Op.getOpcode();
10329   if (Op.getValueType().isFloatingPoint()) {
10330     SDNodeFlags Flags = Op->getFlags();
10331     switch (CandidateBinOp) {
10332     case ISD::FADD:
10333       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
10334         return SDValue();
10335       break;
10336     default:
10337       llvm_unreachable("Unhandled FP opcode for binop reduction");
10338     }
10339   }
10340 
10341   // Matching failed - attempt to see if we did enough stages that a partial
10342   // reduction from a subvector is possible.
10343   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
10344     if (!AllowPartials || !Op)
10345       return SDValue();
10346     EVT OpVT = Op.getValueType();
10347     EVT OpSVT = OpVT.getScalarType();
10348     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
10349     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
10350       return SDValue();
10351     BinOp = (ISD::NodeType)CandidateBinOp;
10352     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
10353                    getVectorIdxConstant(0, SDLoc(Op)));
10354   };
10355 
10356   // At each stage, we're looking for something that looks like:
10357   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
10358   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
10359   //                               i32 undef, i32 undef, i32 undef, i32 undef>
10360   // %a = binop <8 x i32> %op, %s
10361   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
10362   // we expect something like:
10363   // <4,5,6,7,u,u,u,u>
10364   // <2,3,u,u,u,u,u,u>
10365   // <1,u,u,u,u,u,u,u>
10366   // While a partial reduction match would be:
10367   // <2,3,u,u,u,u,u,u>
10368   // <1,u,u,u,u,u,u,u>
10369   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
10370   SDValue PrevOp;
10371   for (unsigned i = 0; i < Stages; ++i) {
10372     unsigned MaskEnd = (1 << i);
10373 
10374     if (Op.getOpcode() != CandidateBinOp)
10375       return PartialReduction(PrevOp, MaskEnd);
10376 
10377     SDValue Op0 = Op.getOperand(0);
10378     SDValue Op1 = Op.getOperand(1);
10379 
10380     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
10381     if (Shuffle) {
10382       Op = Op1;
10383     } else {
10384       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
10385       Op = Op0;
10386     }
10387 
10388     // The first operand of the shuffle should be the same as the other operand
10389     // of the binop.
10390     if (!Shuffle || Shuffle->getOperand(0) != Op)
10391       return PartialReduction(PrevOp, MaskEnd);
10392 
10393     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
10394     for (int Index = 0; Index < (int)MaskEnd; ++Index)
10395       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
10396         return PartialReduction(PrevOp, MaskEnd);
10397 
10398     PrevOp = Op;
10399   }
10400 
10401   // Handle subvector reductions, which tend to appear after the shuffle
10402   // reduction stages.
10403   while (Op.getOpcode() == CandidateBinOp) {
10404     unsigned NumElts = Op.getValueType().getVectorNumElements();
10405     SDValue Op0 = Op.getOperand(0);
10406     SDValue Op1 = Op.getOperand(1);
10407     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10408         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10409         Op0.getOperand(0) != Op1.getOperand(0))
10410       break;
10411     SDValue Src = Op0.getOperand(0);
10412     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
10413     if (NumSrcElts != (2 * NumElts))
10414       break;
10415     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
10416           Op1.getConstantOperandAPInt(1) == NumElts) &&
10417         !(Op1.getConstantOperandAPInt(1) == 0 &&
10418           Op0.getConstantOperandAPInt(1) == NumElts))
10419       break;
10420     Op = Src;
10421   }
10422 
10423   BinOp = (ISD::NodeType)CandidateBinOp;
10424   return Op;
10425 }
10426 
10427 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
10428   assert(N->getNumValues() == 1 &&
10429          "Can't unroll a vector with multiple results!");
10430 
10431   EVT VT = N->getValueType(0);
10432   unsigned NE = VT.getVectorNumElements();
10433   EVT EltVT = VT.getVectorElementType();
10434   SDLoc dl(N);
10435 
10436   SmallVector<SDValue, 8> Scalars;
10437   SmallVector<SDValue, 4> Operands(N->getNumOperands());
10438 
10439   // If ResNE is 0, fully unroll the vector op.
10440   if (ResNE == 0)
10441     ResNE = NE;
10442   else if (NE > ResNE)
10443     NE = ResNE;
10444 
10445   unsigned i;
10446   for (i= 0; i != NE; ++i) {
10447     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
10448       SDValue Operand = N->getOperand(j);
10449       EVT OperandVT = Operand.getValueType();
10450       if (OperandVT.isVector()) {
10451         // A vector operand; extract a single element.
10452         EVT OperandEltVT = OperandVT.getVectorElementType();
10453         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
10454                               Operand, getVectorIdxConstant(i, dl));
10455       } else {
10456         // A scalar operand; just use it as is.
10457         Operands[j] = Operand;
10458       }
10459     }
10460 
10461     switch (N->getOpcode()) {
10462     default: {
10463       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
10464                                 N->getFlags()));
10465       break;
10466     }
10467     case ISD::VSELECT:
10468       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
10469       break;
10470     case ISD::SHL:
10471     case ISD::SRA:
10472     case ISD::SRL:
10473     case ISD::ROTL:
10474     case ISD::ROTR:
10475       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
10476                                getShiftAmountOperand(Operands[0].getValueType(),
10477                                                      Operands[1])));
10478       break;
10479     case ISD::SIGN_EXTEND_INREG: {
10480       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
10481       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
10482                                 Operands[0],
10483                                 getValueType(ExtVT)));
10484     }
10485     }
10486   }
10487 
10488   for (; i < ResNE; ++i)
10489     Scalars.push_back(getUNDEF(EltVT));
10490 
10491   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
10492   return getBuildVector(VecVT, dl, Scalars);
10493 }
10494 
10495 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
10496     SDNode *N, unsigned ResNE) {
10497   unsigned Opcode = N->getOpcode();
10498   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
10499           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
10500           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
10501          "Expected an overflow opcode");
10502 
10503   EVT ResVT = N->getValueType(0);
10504   EVT OvVT = N->getValueType(1);
10505   EVT ResEltVT = ResVT.getVectorElementType();
10506   EVT OvEltVT = OvVT.getVectorElementType();
10507   SDLoc dl(N);
10508 
10509   // If ResNE is 0, fully unroll the vector op.
10510   unsigned NE = ResVT.getVectorNumElements();
10511   if (ResNE == 0)
10512     ResNE = NE;
10513   else if (NE > ResNE)
10514     NE = ResNE;
10515 
10516   SmallVector<SDValue, 8> LHSScalars;
10517   SmallVector<SDValue, 8> RHSScalars;
10518   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10519   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10520 
10521   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10522   SDVTList VTs = getVTList(ResEltVT, SVT);
10523   SmallVector<SDValue, 8> ResScalars;
10524   SmallVector<SDValue, 8> OvScalars;
10525   for (unsigned i = 0; i < NE; ++i) {
10526     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10527     SDValue Ov =
10528         getSelect(dl, OvEltVT, Res.getValue(1),
10529                   getBoolConstant(true, dl, OvEltVT, ResVT),
10530                   getConstant(0, dl, OvEltVT));
10531 
10532     ResScalars.push_back(Res);
10533     OvScalars.push_back(Ov);
10534   }
10535 
10536   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10537   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10538 
10539   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10540   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10541   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10542                         getBuildVector(NewOvVT, dl, OvScalars));
10543 }
10544 
10545 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10546                                                   LoadSDNode *Base,
10547                                                   unsigned Bytes,
10548                                                   int Dist) const {
10549   if (LD->isVolatile() || Base->isVolatile())
10550     return false;
10551   // TODO: probably too restrictive for atomics, revisit
10552   if (!LD->isSimple())
10553     return false;
10554   if (LD->isIndexed() || Base->isIndexed())
10555     return false;
10556   if (LD->getChain() != Base->getChain())
10557     return false;
10558   EVT VT = LD->getValueType(0);
10559   if (VT.getSizeInBits() / 8 != Bytes)
10560     return false;
10561 
10562   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
10563   auto LocDecomp = BaseIndexOffset::match(LD, *this);
10564 
10565   int64_t Offset = 0;
10566   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
10567     return (Dist * Bytes == Offset);
10568   return false;
10569 }
10570 
10571 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10572 /// if it cannot be inferred.
10573 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
10574   // If this is a GlobalAddress + cst, return the alignment.
10575   const GlobalValue *GV = nullptr;
10576   int64_t GVOffset = 0;
10577   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
10578     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
10579     KnownBits Known(PtrWidth);
10580     llvm::computeKnownBits(GV, Known, getDataLayout());
10581     unsigned AlignBits = Known.countMinTrailingZeros();
10582     if (AlignBits)
10583       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
10584   }
10585 
10586   // If this is a direct reference to a stack slot, use information about the
10587   // stack slot's alignment.
10588   int FrameIdx = INT_MIN;
10589   int64_t FrameOffset = 0;
10590   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
10591     FrameIdx = FI->getIndex();
10592   } else if (isBaseWithConstantOffset(Ptr) &&
10593              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
10594     // Handle FI+Cst
10595     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
10596     FrameOffset = Ptr.getConstantOperandVal(1);
10597   }
10598 
10599   if (FrameIdx != INT_MIN) {
10600     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
10601     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10602   }
10603 
10604   return None;
10605 }
10606 
10607 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10608 /// which is split (or expanded) into two not necessarily identical pieces.
10609 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10610   // Currently all types are split in half.
10611   EVT LoVT, HiVT;
10612   if (!VT.isVector())
10613     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10614   else
10615     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10616 
10617   return std::make_pair(LoVT, HiVT);
10618 }
10619 
10620 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10621 /// type, dependent on an enveloping VT that has been split into two identical
10622 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10623 std::pair<EVT, EVT>
10624 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10625                                        bool *HiIsEmpty) const {
10626   EVT EltTp = VT.getVectorElementType();
10627   // Examples:
10628   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10629   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10630   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10631   //   etc.
10632   ElementCount VTNumElts = VT.getVectorElementCount();
10633   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10634   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10635          "Mixing fixed width and scalable vectors when enveloping a type");
10636   EVT LoVT, HiVT;
10637   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10638     LoVT = EnvVT;
10639     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10640     *HiIsEmpty = false;
10641   } else {
10642     // Flag that hi type has zero storage size, but return split envelop type
10643     // (this would be easier if vector types with zero elements were allowed).
10644     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10645     HiVT = EnvVT;
10646     *HiIsEmpty = true;
10647   }
10648   return std::make_pair(LoVT, HiVT);
10649 }
10650 
10651 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10652 /// low/high part.
10653 std::pair<SDValue, SDValue>
10654 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10655                           const EVT &HiVT) {
10656   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10657          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10658          "Splitting vector with an invalid mixture of fixed and scalable "
10659          "vector types");
10660   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10661              N.getValueType().getVectorMinNumElements() &&
10662          "More vector elements requested than available!");
10663   SDValue Lo, Hi;
10664   Lo =
10665       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10666   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10667   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10668   // IDX with the runtime scaling factor of the result vector type. For
10669   // fixed-width result vectors, that runtime scaling factor is 1.
10670   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10671                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10672   return std::make_pair(Lo, Hi);
10673 }
10674 
10675 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10676 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10677   EVT VT = N.getValueType();
10678   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10679                                 NextPowerOf2(VT.getVectorNumElements()));
10680   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10681                  getVectorIdxConstant(0, DL));
10682 }
10683 
10684 void SelectionDAG::ExtractVectorElements(SDValue Op,
10685                                          SmallVectorImpl<SDValue> &Args,
10686                                          unsigned Start, unsigned Count,
10687                                          EVT EltVT) {
10688   EVT VT = Op.getValueType();
10689   if (Count == 0)
10690     Count = VT.getVectorNumElements();
10691   if (EltVT == EVT())
10692     EltVT = VT.getVectorElementType();
10693   SDLoc SL(Op);
10694   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10695     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10696                            getVectorIdxConstant(i, SL)));
10697   }
10698 }
10699 
10700 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10701 unsigned GlobalAddressSDNode::getAddressSpace() const {
10702   return getGlobal()->getType()->getAddressSpace();
10703 }
10704 
10705 Type *ConstantPoolSDNode::getType() const {
10706   if (isMachineConstantPoolEntry())
10707     return Val.MachineCPVal->getType();
10708   return Val.ConstVal->getType();
10709 }
10710 
10711 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10712                                         unsigned &SplatBitSize,
10713                                         bool &HasAnyUndefs,
10714                                         unsigned MinSplatBits,
10715                                         bool IsBigEndian) const {
10716   EVT VT = getValueType(0);
10717   assert(VT.isVector() && "Expected a vector type");
10718   unsigned VecWidth = VT.getSizeInBits();
10719   if (MinSplatBits > VecWidth)
10720     return false;
10721 
10722   // FIXME: The widths are based on this node's type, but build vectors can
10723   // truncate their operands.
10724   SplatValue = APInt(VecWidth, 0);
10725   SplatUndef = APInt(VecWidth, 0);
10726 
10727   // Get the bits. Bits with undefined values (when the corresponding element
10728   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10729   // in SplatValue. If any of the values are not constant, give up and return
10730   // false.
10731   unsigned int NumOps = getNumOperands();
10732   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10733   unsigned EltWidth = VT.getScalarSizeInBits();
10734 
10735   for (unsigned j = 0; j < NumOps; ++j) {
10736     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10737     SDValue OpVal = getOperand(i);
10738     unsigned BitPos = j * EltWidth;
10739 
10740     if (OpVal.isUndef())
10741       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10742     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10743       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10744     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10745       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10746     else
10747       return false;
10748   }
10749 
10750   // The build_vector is all constants or undefs. Find the smallest element
10751   // size that splats the vector.
10752   HasAnyUndefs = (SplatUndef != 0);
10753 
10754   // FIXME: This does not work for vectors with elements less than 8 bits.
10755   while (VecWidth > 8) {
10756     unsigned HalfSize = VecWidth / 2;
10757     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
10758     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
10759     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
10760     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
10761 
10762     // If the two halves do not match (ignoring undef bits), stop here.
10763     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10764         MinSplatBits > HalfSize)
10765       break;
10766 
10767     SplatValue = HighValue | LowValue;
10768     SplatUndef = HighUndef & LowUndef;
10769 
10770     VecWidth = HalfSize;
10771   }
10772 
10773   SplatBitSize = VecWidth;
10774   return true;
10775 }
10776 
10777 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10778                                          BitVector *UndefElements) const {
10779   unsigned NumOps = getNumOperands();
10780   if (UndefElements) {
10781     UndefElements->clear();
10782     UndefElements->resize(NumOps);
10783   }
10784   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10785   if (!DemandedElts)
10786     return SDValue();
10787   SDValue Splatted;
10788   for (unsigned i = 0; i != NumOps; ++i) {
10789     if (!DemandedElts[i])
10790       continue;
10791     SDValue Op = getOperand(i);
10792     if (Op.isUndef()) {
10793       if (UndefElements)
10794         (*UndefElements)[i] = true;
10795     } else if (!Splatted) {
10796       Splatted = Op;
10797     } else if (Splatted != Op) {
10798       return SDValue();
10799     }
10800   }
10801 
10802   if (!Splatted) {
10803     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10804     assert(getOperand(FirstDemandedIdx).isUndef() &&
10805            "Can only have a splat without a constant for all undefs.");
10806     return getOperand(FirstDemandedIdx);
10807   }
10808 
10809   return Splatted;
10810 }
10811 
10812 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10813   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10814   return getSplatValue(DemandedElts, UndefElements);
10815 }
10816 
10817 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10818                                             SmallVectorImpl<SDValue> &Sequence,
10819                                             BitVector *UndefElements) const {
10820   unsigned NumOps = getNumOperands();
10821   Sequence.clear();
10822   if (UndefElements) {
10823     UndefElements->clear();
10824     UndefElements->resize(NumOps);
10825   }
10826   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10827   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10828     return false;
10829 
10830   // Set the undefs even if we don't find a sequence (like getSplatValue).
10831   if (UndefElements)
10832     for (unsigned I = 0; I != NumOps; ++I)
10833       if (DemandedElts[I] && getOperand(I).isUndef())
10834         (*UndefElements)[I] = true;
10835 
10836   // Iteratively widen the sequence length looking for repetitions.
10837   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10838     Sequence.append(SeqLen, SDValue());
10839     for (unsigned I = 0; I != NumOps; ++I) {
10840       if (!DemandedElts[I])
10841         continue;
10842       SDValue &SeqOp = Sequence[I % SeqLen];
10843       SDValue Op = getOperand(I);
10844       if (Op.isUndef()) {
10845         if (!SeqOp)
10846           SeqOp = Op;
10847         continue;
10848       }
10849       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10850         Sequence.clear();
10851         break;
10852       }
10853       SeqOp = Op;
10854     }
10855     if (!Sequence.empty())
10856       return true;
10857   }
10858 
10859   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10860   return false;
10861 }
10862 
10863 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10864                                             BitVector *UndefElements) const {
10865   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10866   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10867 }
10868 
10869 ConstantSDNode *
10870 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10871                                         BitVector *UndefElements) const {
10872   return dyn_cast_or_null<ConstantSDNode>(
10873       getSplatValue(DemandedElts, UndefElements));
10874 }
10875 
10876 ConstantSDNode *
10877 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10878   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10879 }
10880 
10881 ConstantFPSDNode *
10882 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10883                                           BitVector *UndefElements) const {
10884   return dyn_cast_or_null<ConstantFPSDNode>(
10885       getSplatValue(DemandedElts, UndefElements));
10886 }
10887 
10888 ConstantFPSDNode *
10889 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10890   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10891 }
10892 
10893 int32_t
10894 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10895                                                    uint32_t BitWidth) const {
10896   if (ConstantFPSDNode *CN =
10897           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10898     bool IsExact;
10899     APSInt IntVal(BitWidth);
10900     const APFloat &APF = CN->getValueAPF();
10901     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10902             APFloat::opOK ||
10903         !IsExact)
10904       return -1;
10905 
10906     return IntVal.exactLogBase2();
10907   }
10908   return -1;
10909 }
10910 
10911 bool BuildVectorSDNode::isConstant() const {
10912   for (const SDValue &Op : op_values()) {
10913     unsigned Opc = Op.getOpcode();
10914     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10915       return false;
10916   }
10917   return true;
10918 }
10919 
10920 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10921   // Find the first non-undef value in the shuffle mask.
10922   unsigned i, e;
10923   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10924     /* search */;
10925 
10926   // If all elements are undefined, this shuffle can be considered a splat
10927   // (although it should eventually get simplified away completely).
10928   if (i == e)
10929     return true;
10930 
10931   // Make sure all remaining elements are either undef or the same as the first
10932   // non-undef value.
10933   for (int Idx = Mask[i]; i != e; ++i)
10934     if (Mask[i] >= 0 && Mask[i] != Idx)
10935       return false;
10936   return true;
10937 }
10938 
10939 // Returns the SDNode if it is a constant integer BuildVector
10940 // or constant integer.
10941 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
10942   if (isa<ConstantSDNode>(N))
10943     return N.getNode();
10944   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10945     return N.getNode();
10946   // Treat a GlobalAddress supporting constant offset folding as a
10947   // constant integer.
10948   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10949     if (GA->getOpcode() == ISD::GlobalAddress &&
10950         TLI->isOffsetFoldingLegal(GA))
10951       return GA;
10952   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10953       isa<ConstantSDNode>(N.getOperand(0)))
10954     return N.getNode();
10955   return nullptr;
10956 }
10957 
10958 // Returns the SDNode if it is a constant float BuildVector
10959 // or constant float.
10960 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
10961   if (isa<ConstantFPSDNode>(N))
10962     return N.getNode();
10963 
10964   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10965     return N.getNode();
10966 
10967   return nullptr;
10968 }
10969 
10970 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10971   assert(!Node->OperandList && "Node already has operands");
10972   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10973          "too many operands to fit into SDNode");
10974   SDUse *Ops = OperandRecycler.allocate(
10975       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10976 
10977   bool IsDivergent = false;
10978   for (unsigned I = 0; I != Vals.size(); ++I) {
10979     Ops[I].setUser(Node);
10980     Ops[I].setInitial(Vals[I]);
10981     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10982       IsDivergent |= Ops[I].getNode()->isDivergent();
10983   }
10984   Node->NumOperands = Vals.size();
10985   Node->OperandList = Ops;
10986   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10987     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10988     Node->SDNodeBits.IsDivergent = IsDivergent;
10989   }
10990   checkForCycles(Node);
10991 }
10992 
10993 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10994                                      SmallVectorImpl<SDValue> &Vals) {
10995   size_t Limit = SDNode::getMaxNumOperands();
10996   while (Vals.size() > Limit) {
10997     unsigned SliceIdx = Vals.size() - Limit;
10998     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10999     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
11000     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
11001     Vals.emplace_back(NewTF);
11002   }
11003   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
11004 }
11005 
11006 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
11007                                         EVT VT, SDNodeFlags Flags) {
11008   switch (Opcode) {
11009   default:
11010     return SDValue();
11011   case ISD::ADD:
11012   case ISD::OR:
11013   case ISD::XOR:
11014   case ISD::UMAX:
11015     return getConstant(0, DL, VT);
11016   case ISD::MUL:
11017     return getConstant(1, DL, VT);
11018   case ISD::AND:
11019   case ISD::UMIN:
11020     return getAllOnesConstant(DL, VT);
11021   case ISD::SMAX:
11022     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11023   case ISD::SMIN:
11024     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11025   case ISD::FADD:
11026     return getConstantFP(-0.0, DL, VT);
11027   case ISD::FMUL:
11028     return getConstantFP(1.0, DL, VT);
11029   case ISD::FMINNUM:
11030   case ISD::FMAXNUM: {
11031     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11032     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11033     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11034                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11035                         APFloat::getLargest(Semantics);
11036     if (Opcode == ISD::FMAXNUM)
11037       NeutralAF.changeSign();
11038 
11039     return getConstantFP(NeutralAF, DL, VT);
11040   }
11041   }
11042 }
11043 
11044 #ifndef NDEBUG
11045 static void checkForCyclesHelper(const SDNode *N,
11046                                  SmallPtrSetImpl<const SDNode*> &Visited,
11047                                  SmallPtrSetImpl<const SDNode*> &Checked,
11048                                  const llvm::SelectionDAG *DAG) {
11049   // If this node has already been checked, don't check it again.
11050   if (Checked.count(N))
11051     return;
11052 
11053   // If a node has already been visited on this depth-first walk, reject it as
11054   // a cycle.
11055   if (!Visited.insert(N).second) {
11056     errs() << "Detected cycle in SelectionDAG\n";
11057     dbgs() << "Offending node:\n";
11058     N->dumprFull(DAG); dbgs() << "\n";
11059     abort();
11060   }
11061 
11062   for (const SDValue &Op : N->op_values())
11063     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11064 
11065   Checked.insert(N);
11066   Visited.erase(N);
11067 }
11068 #endif
11069 
11070 void llvm::checkForCycles(const llvm::SDNode *N,
11071                           const llvm::SelectionDAG *DAG,
11072                           bool force) {
11073 #ifndef NDEBUG
11074   bool check = force;
11075 #ifdef EXPENSIVE_CHECKS
11076   check = true;
11077 #endif  // EXPENSIVE_CHECKS
11078   if (check) {
11079     assert(N && "Checking nonexistent SDNode");
11080     SmallPtrSet<const SDNode*, 32> visited;
11081     SmallPtrSet<const SDNode*, 32> checked;
11082     checkForCyclesHelper(N, visited, checked, DAG);
11083   }
11084 #endif  // !NDEBUG
11085 }
11086 
11087 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11088   checkForCycles(DAG->getRoot().getNode(), DAG, force);
11089 }
11090