1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetFrameLowering.h"
42 #include "llvm/CodeGen/TargetLowering.h"
43 #include "llvm/CodeGen/TargetRegisterInfo.h"
44 #include "llvm/CodeGen/TargetSubtargetInfo.h"
45 #include "llvm/CodeGen/ValueTypes.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/Compiler.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/KnownBits.h"
63 #include "llvm/Support/MachineValueType.h"
64 #include "llvm/Support/ManagedStatic.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/Mutex.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetOptions.h"
70 #include "llvm/Transforms/Utils/SizeOpts.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstdint>
74 #include <cstdlib>
75 #include <limits>
76 #include <set>
77 #include <string>
78 #include <utility>
79 #include <vector>
80 
81 using namespace llvm;
82 
83 /// makeVTList - Return an instance of the SDVTList struct initialized with the
84 /// specified members.
85 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
86   SDVTList Res = {VTs, NumVTs};
87   return Res;
88 }
89 
90 // Default null implementations of the callbacks.
91 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
92 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
94 
95 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
96 
97 #define DEBUG_TYPE "selectiondag"
98 
99 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
100        cl::Hidden, cl::init(true),
101        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
102 
103 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
104        cl::desc("Number limit for gluing ld/st of memcpy."),
105        cl::Hidden, cl::init(0));
106 
107 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
108   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
109 }
110 
111 //===----------------------------------------------------------------------===//
112 //                              ConstantFPSDNode Class
113 //===----------------------------------------------------------------------===//
114 
115 /// isExactlyValue - We don't rely on operator== working on double values, as
116 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
117 /// As such, this method can be used to do an exact bit-for-bit comparison of
118 /// two floating point values.
119 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
120   return getValueAPF().bitwiseIsEqual(V);
121 }
122 
123 bool ConstantFPSDNode::isValueValidForType(EVT VT,
124                                            const APFloat& Val) {
125   assert(VT.isFloatingPoint() && "Can only convert between FP types");
126 
127   // convert modifies in place, so make a copy.
128   APFloat Val2 = APFloat(Val);
129   bool losesInfo;
130   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
131                       APFloat::rmNearestTiesToEven,
132                       &losesInfo);
133   return !losesInfo;
134 }
135 
136 //===----------------------------------------------------------------------===//
137 //                              ISD Namespace
138 //===----------------------------------------------------------------------===//
139 
140 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
141   auto *BV = dyn_cast<BuildVectorSDNode>(N);
142   if (!BV)
143     return false;
144 
145   APInt SplatUndef;
146   unsigned SplatBitSize;
147   bool HasUndefs;
148   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
149   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
150                              EltSize) &&
151          EltSize == SplatBitSize;
152 }
153 
154 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
155 // specializations of the more general isConstantSplatVector()?
156 
157 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
158   // Look through a bit convert.
159   while (N->getOpcode() == ISD::BITCAST)
160     N = N->getOperand(0).getNode();
161 
162   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
163 
164   unsigned i = 0, e = N->getNumOperands();
165 
166   // Skip over all of the undef values.
167   while (i != e && N->getOperand(i).isUndef())
168     ++i;
169 
170   // Do not accept an all-undef vector.
171   if (i == e) return false;
172 
173   // Do not accept build_vectors that aren't all constants or which have non-~0
174   // elements. We have to be a bit careful here, as the type of the constant
175   // may not be the same as the type of the vector elements due to type
176   // legalization (the elements are promoted to a legal type for the target and
177   // a vector of a type may be legal when the base element type is not).
178   // We only want to check enough bits to cover the vector elements, because
179   // we care if the resultant vector is all ones, not whether the individual
180   // constants are.
181   SDValue NotZero = N->getOperand(i);
182   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
183   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
184     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
185       return false;
186   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
187     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
188       return false;
189   } else
190     return false;
191 
192   // Okay, we have at least one ~0 value, check to see if the rest match or are
193   // undefs. Even with the above element type twiddling, this should be OK, as
194   // the same type legalization should have applied to all the elements.
195   for (++i; i != e; ++i)
196     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
197       return false;
198   return true;
199 }
200 
201 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
202   // Look through a bit convert.
203   while (N->getOpcode() == ISD::BITCAST)
204     N = N->getOperand(0).getNode();
205 
206   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
207 
208   bool IsAllUndef = true;
209   for (const SDValue &Op : N->op_values()) {
210     if (Op.isUndef())
211       continue;
212     IsAllUndef = false;
213     // Do not accept build_vectors that aren't all constants or which have non-0
214     // elements. We have to be a bit careful here, as the type of the constant
215     // may not be the same as the type of the vector elements due to type
216     // legalization (the elements are promoted to a legal type for the target
217     // and a vector of a type may be legal when the base element type is not).
218     // We only want to check enough bits to cover the vector elements, because
219     // we care if the resultant vector is all zeros, not whether the individual
220     // constants are.
221     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
222     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
223       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
224         return false;
225     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
226       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
227         return false;
228     } else
229       return false;
230   }
231 
232   // Do not accept an all-undef vector.
233   if (IsAllUndef)
234     return false;
235   return true;
236 }
237 
238 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
239   if (N->getOpcode() != ISD::BUILD_VECTOR)
240     return false;
241 
242   for (const SDValue &Op : N->op_values()) {
243     if (Op.isUndef())
244       continue;
245     if (!isa<ConstantSDNode>(Op))
246       return false;
247   }
248   return true;
249 }
250 
251 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
252   if (N->getOpcode() != ISD::BUILD_VECTOR)
253     return false;
254 
255   for (const SDValue &Op : N->op_values()) {
256     if (Op.isUndef())
257       continue;
258     if (!isa<ConstantFPSDNode>(Op))
259       return false;
260   }
261   return true;
262 }
263 
264 bool ISD::allOperandsUndef(const SDNode *N) {
265   // Return false if the node has no operands.
266   // This is "logically inconsistent" with the definition of "all" but
267   // is probably the desired behavior.
268   if (N->getNumOperands() == 0)
269     return false;
270   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
271 }
272 
273 bool ISD::matchUnaryPredicate(SDValue Op,
274                               std::function<bool(ConstantSDNode *)> Match,
275                               bool AllowUndefs) {
276   // FIXME: Add support for scalar UNDEF cases?
277   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
278     return Match(Cst);
279 
280   // FIXME: Add support for vector UNDEF cases?
281   if (ISD::BUILD_VECTOR != Op.getOpcode())
282     return false;
283 
284   EVT SVT = Op.getValueType().getScalarType();
285   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
286     if (AllowUndefs && Op.getOperand(i).isUndef()) {
287       if (!Match(nullptr))
288         return false;
289       continue;
290     }
291 
292     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
293     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
294       return false;
295   }
296   return true;
297 }
298 
299 bool ISD::matchBinaryPredicate(
300     SDValue LHS, SDValue RHS,
301     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
302     bool AllowUndefs, bool AllowTypeMismatch) {
303   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
304     return false;
305 
306   // TODO: Add support for scalar UNDEF cases?
307   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
308     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
309       return Match(LHSCst, RHSCst);
310 
311   // TODO: Add support for vector UNDEF cases?
312   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
313       ISD::BUILD_VECTOR != RHS.getOpcode())
314     return false;
315 
316   EVT SVT = LHS.getValueType().getScalarType();
317   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
318     SDValue LHSOp = LHS.getOperand(i);
319     SDValue RHSOp = RHS.getOperand(i);
320     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
321     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
322     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
323     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
324     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
325       return false;
326     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
327                                LHSOp.getValueType() != RHSOp.getValueType()))
328       return false;
329     if (!Match(LHSCst, RHSCst))
330       return false;
331   }
332   return true;
333 }
334 
335 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
336   switch (ExtType) {
337   case ISD::EXTLOAD:
338     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
339   case ISD::SEXTLOAD:
340     return ISD::SIGN_EXTEND;
341   case ISD::ZEXTLOAD:
342     return ISD::ZERO_EXTEND;
343   default:
344     break;
345   }
346 
347   llvm_unreachable("Invalid LoadExtType");
348 }
349 
350 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
351   // To perform this operation, we just need to swap the L and G bits of the
352   // operation.
353   unsigned OldL = (Operation >> 2) & 1;
354   unsigned OldG = (Operation >> 1) & 1;
355   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
356                        (OldL << 1) |       // New G bit
357                        (OldG << 2));       // New L bit.
358 }
359 
360 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
361   unsigned Operation = Op;
362   if (isIntegerLike)
363     Operation ^= 7;   // Flip L, G, E bits, but not U.
364   else
365     Operation ^= 15;  // Flip all of the condition bits.
366 
367   if (Operation > ISD::SETTRUE2)
368     Operation &= ~8;  // Don't let N and U bits get set.
369 
370   return ISD::CondCode(Operation);
371 }
372 
373 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
374   return getSetCCInverseImpl(Op, Type.isInteger());
375 }
376 
377 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
378                                                bool isIntegerLike) {
379   return getSetCCInverseImpl(Op, isIntegerLike);
380 }
381 
382 /// For an integer comparison, return 1 if the comparison is a signed operation
383 /// and 2 if the result is an unsigned comparison. Return zero if the operation
384 /// does not depend on the sign of the input (setne and seteq).
385 static int isSignedOp(ISD::CondCode Opcode) {
386   switch (Opcode) {
387   default: llvm_unreachable("Illegal integer setcc operation!");
388   case ISD::SETEQ:
389   case ISD::SETNE: return 0;
390   case ISD::SETLT:
391   case ISD::SETLE:
392   case ISD::SETGT:
393   case ISD::SETGE: return 1;
394   case ISD::SETULT:
395   case ISD::SETULE:
396   case ISD::SETUGT:
397   case ISD::SETUGE: return 2;
398   }
399 }
400 
401 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
402                                        EVT Type) {
403   bool IsInteger = Type.isInteger();
404   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
405     // Cannot fold a signed integer setcc with an unsigned integer setcc.
406     return ISD::SETCC_INVALID;
407 
408   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
409 
410   // If the N and U bits get set, then the resultant comparison DOES suddenly
411   // care about orderedness, and it is true when ordered.
412   if (Op > ISD::SETTRUE2)
413     Op &= ~16;     // Clear the U bit if the N bit is set.
414 
415   // Canonicalize illegal integer setcc's.
416   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
417     Op = ISD::SETNE;
418 
419   return ISD::CondCode(Op);
420 }
421 
422 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
423                                         EVT Type) {
424   bool IsInteger = Type.isInteger();
425   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
426     // Cannot fold a signed setcc with an unsigned setcc.
427     return ISD::SETCC_INVALID;
428 
429   // Combine all of the condition bits.
430   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
431 
432   // Canonicalize illegal integer setcc's.
433   if (IsInteger) {
434     switch (Result) {
435     default: break;
436     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
437     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
438     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
439     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
440     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
441     }
442   }
443 
444   return Result;
445 }
446 
447 //===----------------------------------------------------------------------===//
448 //                           SDNode Profile Support
449 //===----------------------------------------------------------------------===//
450 
451 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
452 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
453   ID.AddInteger(OpC);
454 }
455 
456 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
457 /// solely with their pointer.
458 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
459   ID.AddPointer(VTList.VTs);
460 }
461 
462 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
463 static void AddNodeIDOperands(FoldingSetNodeID &ID,
464                               ArrayRef<SDValue> Ops) {
465   for (auto& Op : Ops) {
466     ID.AddPointer(Op.getNode());
467     ID.AddInteger(Op.getResNo());
468   }
469 }
470 
471 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
472 static void AddNodeIDOperands(FoldingSetNodeID &ID,
473                               ArrayRef<SDUse> Ops) {
474   for (auto& Op : Ops) {
475     ID.AddPointer(Op.getNode());
476     ID.AddInteger(Op.getResNo());
477   }
478 }
479 
480 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
481                           SDVTList VTList, ArrayRef<SDValue> OpList) {
482   AddNodeIDOpcode(ID, OpC);
483   AddNodeIDValueTypes(ID, VTList);
484   AddNodeIDOperands(ID, OpList);
485 }
486 
487 /// If this is an SDNode with special info, add this info to the NodeID data.
488 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
489   switch (N->getOpcode()) {
490   case ISD::TargetExternalSymbol:
491   case ISD::ExternalSymbol:
492   case ISD::MCSymbol:
493     llvm_unreachable("Should only be used on nodes with operands");
494   default: break;  // Normal nodes don't need extra info.
495   case ISD::TargetConstant:
496   case ISD::Constant: {
497     const ConstantSDNode *C = cast<ConstantSDNode>(N);
498     ID.AddPointer(C->getConstantIntValue());
499     ID.AddBoolean(C->isOpaque());
500     break;
501   }
502   case ISD::TargetConstantFP:
503   case ISD::ConstantFP:
504     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
505     break;
506   case ISD::TargetGlobalAddress:
507   case ISD::GlobalAddress:
508   case ISD::TargetGlobalTLSAddress:
509   case ISD::GlobalTLSAddress: {
510     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
511     ID.AddPointer(GA->getGlobal());
512     ID.AddInteger(GA->getOffset());
513     ID.AddInteger(GA->getTargetFlags());
514     break;
515   }
516   case ISD::BasicBlock:
517     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
518     break;
519   case ISD::Register:
520     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
521     break;
522   case ISD::RegisterMask:
523     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
524     break;
525   case ISD::SRCVALUE:
526     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
527     break;
528   case ISD::FrameIndex:
529   case ISD::TargetFrameIndex:
530     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
531     break;
532   case ISD::LIFETIME_START:
533   case ISD::LIFETIME_END:
534     if (cast<LifetimeSDNode>(N)->hasOffset()) {
535       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
536       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
537     }
538     break;
539   case ISD::JumpTable:
540   case ISD::TargetJumpTable:
541     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
542     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
543     break;
544   case ISD::ConstantPool:
545   case ISD::TargetConstantPool: {
546     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
547     ID.AddInteger(CP->getAlign().value());
548     ID.AddInteger(CP->getOffset());
549     if (CP->isMachineConstantPoolEntry())
550       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
551     else
552       ID.AddPointer(CP->getConstVal());
553     ID.AddInteger(CP->getTargetFlags());
554     break;
555   }
556   case ISD::TargetIndex: {
557     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
558     ID.AddInteger(TI->getIndex());
559     ID.AddInteger(TI->getOffset());
560     ID.AddInteger(TI->getTargetFlags());
561     break;
562   }
563   case ISD::LOAD: {
564     const LoadSDNode *LD = cast<LoadSDNode>(N);
565     ID.AddInteger(LD->getMemoryVT().getRawBits());
566     ID.AddInteger(LD->getRawSubclassData());
567     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
568     break;
569   }
570   case ISD::STORE: {
571     const StoreSDNode *ST = cast<StoreSDNode>(N);
572     ID.AddInteger(ST->getMemoryVT().getRawBits());
573     ID.AddInteger(ST->getRawSubclassData());
574     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
575     break;
576   }
577   case ISD::MLOAD: {
578     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
579     ID.AddInteger(MLD->getMemoryVT().getRawBits());
580     ID.AddInteger(MLD->getRawSubclassData());
581     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
582     break;
583   }
584   case ISD::MSTORE: {
585     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
586     ID.AddInteger(MST->getMemoryVT().getRawBits());
587     ID.AddInteger(MST->getRawSubclassData());
588     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
589     break;
590   }
591   case ISD::MGATHER: {
592     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
593     ID.AddInteger(MG->getMemoryVT().getRawBits());
594     ID.AddInteger(MG->getRawSubclassData());
595     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
596     break;
597   }
598   case ISD::MSCATTER: {
599     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
600     ID.AddInteger(MS->getMemoryVT().getRawBits());
601     ID.AddInteger(MS->getRawSubclassData());
602     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
603     break;
604   }
605   case ISD::ATOMIC_CMP_SWAP:
606   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
607   case ISD::ATOMIC_SWAP:
608   case ISD::ATOMIC_LOAD_ADD:
609   case ISD::ATOMIC_LOAD_SUB:
610   case ISD::ATOMIC_LOAD_AND:
611   case ISD::ATOMIC_LOAD_CLR:
612   case ISD::ATOMIC_LOAD_OR:
613   case ISD::ATOMIC_LOAD_XOR:
614   case ISD::ATOMIC_LOAD_NAND:
615   case ISD::ATOMIC_LOAD_MIN:
616   case ISD::ATOMIC_LOAD_MAX:
617   case ISD::ATOMIC_LOAD_UMIN:
618   case ISD::ATOMIC_LOAD_UMAX:
619   case ISD::ATOMIC_LOAD:
620   case ISD::ATOMIC_STORE: {
621     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
622     ID.AddInteger(AT->getMemoryVT().getRawBits());
623     ID.AddInteger(AT->getRawSubclassData());
624     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
625     break;
626   }
627   case ISD::PREFETCH: {
628     const MemSDNode *PF = cast<MemSDNode>(N);
629     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
630     break;
631   }
632   case ISD::VECTOR_SHUFFLE: {
633     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
634     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
635          i != e; ++i)
636       ID.AddInteger(SVN->getMaskElt(i));
637     break;
638   }
639   case ISD::TargetBlockAddress:
640   case ISD::BlockAddress: {
641     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
642     ID.AddPointer(BA->getBlockAddress());
643     ID.AddInteger(BA->getOffset());
644     ID.AddInteger(BA->getTargetFlags());
645     break;
646   }
647   } // end switch (N->getOpcode())
648 
649   // Target specific memory nodes could also have address spaces to check.
650   if (N->isTargetMemoryOpcode())
651     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
652 }
653 
654 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
655 /// data.
656 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
657   AddNodeIDOpcode(ID, N->getOpcode());
658   // Add the return value info.
659   AddNodeIDValueTypes(ID, N->getVTList());
660   // Add the operand info.
661   AddNodeIDOperands(ID, N->ops());
662 
663   // Handle SDNode leafs with special info.
664   AddNodeIDCustom(ID, N);
665 }
666 
667 //===----------------------------------------------------------------------===//
668 //                              SelectionDAG Class
669 //===----------------------------------------------------------------------===//
670 
671 /// doNotCSE - Return true if CSE should not be performed for this node.
672 static bool doNotCSE(SDNode *N) {
673   if (N->getValueType(0) == MVT::Glue)
674     return true; // Never CSE anything that produces a flag.
675 
676   switch (N->getOpcode()) {
677   default: break;
678   case ISD::HANDLENODE:
679   case ISD::EH_LABEL:
680     return true;   // Never CSE these nodes.
681   }
682 
683   // Check that remaining values produced are not flags.
684   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
685     if (N->getValueType(i) == MVT::Glue)
686       return true; // Never CSE anything that produces a flag.
687 
688   return false;
689 }
690 
691 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
692 /// SelectionDAG.
693 void SelectionDAG::RemoveDeadNodes() {
694   // Create a dummy node (which is not added to allnodes), that adds a reference
695   // to the root node, preventing it from being deleted.
696   HandleSDNode Dummy(getRoot());
697 
698   SmallVector<SDNode*, 128> DeadNodes;
699 
700   // Add all obviously-dead nodes to the DeadNodes worklist.
701   for (SDNode &Node : allnodes())
702     if (Node.use_empty())
703       DeadNodes.push_back(&Node);
704 
705   RemoveDeadNodes(DeadNodes);
706 
707   // If the root changed (e.g. it was a dead load, update the root).
708   setRoot(Dummy.getValue());
709 }
710 
711 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
712 /// given list, and any nodes that become unreachable as a result.
713 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
714 
715   // Process the worklist, deleting the nodes and adding their uses to the
716   // worklist.
717   while (!DeadNodes.empty()) {
718     SDNode *N = DeadNodes.pop_back_val();
719     // Skip to next node if we've already managed to delete the node. This could
720     // happen if replacing a node causes a node previously added to the node to
721     // be deleted.
722     if (N->getOpcode() == ISD::DELETED_NODE)
723       continue;
724 
725     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
726       DUL->NodeDeleted(N, nullptr);
727 
728     // Take the node out of the appropriate CSE map.
729     RemoveNodeFromCSEMaps(N);
730 
731     // Next, brutally remove the operand list.  This is safe to do, as there are
732     // no cycles in the graph.
733     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
734       SDUse &Use = *I++;
735       SDNode *Operand = Use.getNode();
736       Use.set(SDValue());
737 
738       // Now that we removed this operand, see if there are no uses of it left.
739       if (Operand->use_empty())
740         DeadNodes.push_back(Operand);
741     }
742 
743     DeallocateNode(N);
744   }
745 }
746 
747 void SelectionDAG::RemoveDeadNode(SDNode *N){
748   SmallVector<SDNode*, 16> DeadNodes(1, N);
749 
750   // Create a dummy node that adds a reference to the root node, preventing
751   // it from being deleted.  (This matters if the root is an operand of the
752   // dead node.)
753   HandleSDNode Dummy(getRoot());
754 
755   RemoveDeadNodes(DeadNodes);
756 }
757 
758 void SelectionDAG::DeleteNode(SDNode *N) {
759   // First take this out of the appropriate CSE map.
760   RemoveNodeFromCSEMaps(N);
761 
762   // Finally, remove uses due to operands of this node, remove from the
763   // AllNodes list, and delete the node.
764   DeleteNodeNotInCSEMaps(N);
765 }
766 
767 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
768   assert(N->getIterator() != AllNodes.begin() &&
769          "Cannot delete the entry node!");
770   assert(N->use_empty() && "Cannot delete a node that is not dead!");
771 
772   // Drop all of the operands and decrement used node's use counts.
773   N->DropOperands();
774 
775   DeallocateNode(N);
776 }
777 
778 void SDDbgInfo::erase(const SDNode *Node) {
779   DbgValMapType::iterator I = DbgValMap.find(Node);
780   if (I == DbgValMap.end())
781     return;
782   for (auto &Val: I->second)
783     Val->setIsInvalidated();
784   DbgValMap.erase(I);
785 }
786 
787 void SelectionDAG::DeallocateNode(SDNode *N) {
788   // If we have operands, deallocate them.
789   removeOperands(N);
790 
791   NodeAllocator.Deallocate(AllNodes.remove(N));
792 
793   // Set the opcode to DELETED_NODE to help catch bugs when node
794   // memory is reallocated.
795   // FIXME: There are places in SDag that have grown a dependency on the opcode
796   // value in the released node.
797   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
798   N->NodeType = ISD::DELETED_NODE;
799 
800   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
801   // them and forget about that node.
802   DbgInfo->erase(N);
803 }
804 
805 #ifndef NDEBUG
806 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
807 static void VerifySDNode(SDNode *N) {
808   switch (N->getOpcode()) {
809   default:
810     break;
811   case ISD::BUILD_PAIR: {
812     EVT VT = N->getValueType(0);
813     assert(N->getNumValues() == 1 && "Too many results!");
814     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
815            "Wrong return type!");
816     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
817     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
818            "Mismatched operand types!");
819     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
820            "Wrong operand type!");
821     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
822            "Wrong return type size");
823     break;
824   }
825   case ISD::BUILD_VECTOR: {
826     assert(N->getNumValues() == 1 && "Too many results!");
827     assert(N->getValueType(0).isVector() && "Wrong return type!");
828     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
829            "Wrong number of operands!");
830     EVT EltVT = N->getValueType(0).getVectorElementType();
831     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
832       assert((I->getValueType() == EltVT ||
833              (EltVT.isInteger() && I->getValueType().isInteger() &&
834               EltVT.bitsLE(I->getValueType()))) &&
835             "Wrong operand type!");
836       assert(I->getValueType() == N->getOperand(0).getValueType() &&
837              "Operands must all have the same type");
838     }
839     break;
840   }
841   }
842 }
843 #endif // NDEBUG
844 
845 /// Insert a newly allocated node into the DAG.
846 ///
847 /// Handles insertion into the all nodes list and CSE map, as well as
848 /// verification and other common operations when a new node is allocated.
849 void SelectionDAG::InsertNode(SDNode *N) {
850   AllNodes.push_back(N);
851 #ifndef NDEBUG
852   N->PersistentId = NextPersistentId++;
853   VerifySDNode(N);
854 #endif
855   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
856     DUL->NodeInserted(N);
857 }
858 
859 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
860 /// correspond to it.  This is useful when we're about to delete or repurpose
861 /// the node.  We don't want future request for structurally identical nodes
862 /// to return N anymore.
863 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
864   bool Erased = false;
865   switch (N->getOpcode()) {
866   case ISD::HANDLENODE: return false;  // noop.
867   case ISD::CONDCODE:
868     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
869            "Cond code doesn't exist!");
870     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
871     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
872     break;
873   case ISD::ExternalSymbol:
874     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
875     break;
876   case ISD::TargetExternalSymbol: {
877     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
878     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
879         ESN->getSymbol(), ESN->getTargetFlags()));
880     break;
881   }
882   case ISD::MCSymbol: {
883     auto *MCSN = cast<MCSymbolSDNode>(N);
884     Erased = MCSymbols.erase(MCSN->getMCSymbol());
885     break;
886   }
887   case ISD::VALUETYPE: {
888     EVT VT = cast<VTSDNode>(N)->getVT();
889     if (VT.isExtended()) {
890       Erased = ExtendedValueTypeNodes.erase(VT);
891     } else {
892       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
893       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
894     }
895     break;
896   }
897   default:
898     // Remove it from the CSE Map.
899     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
900     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
901     Erased = CSEMap.RemoveNode(N);
902     break;
903   }
904 #ifndef NDEBUG
905   // Verify that the node was actually in one of the CSE maps, unless it has a
906   // flag result (which cannot be CSE'd) or is one of the special cases that are
907   // not subject to CSE.
908   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
909       !N->isMachineOpcode() && !doNotCSE(N)) {
910     N->dump(this);
911     dbgs() << "\n";
912     llvm_unreachable("Node is not in map!");
913   }
914 #endif
915   return Erased;
916 }
917 
918 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
919 /// maps and modified in place. Add it back to the CSE maps, unless an identical
920 /// node already exists, in which case transfer all its users to the existing
921 /// node. This transfer can potentially trigger recursive merging.
922 void
923 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
924   // For node types that aren't CSE'd, just act as if no identical node
925   // already exists.
926   if (!doNotCSE(N)) {
927     SDNode *Existing = CSEMap.GetOrInsertNode(N);
928     if (Existing != N) {
929       // If there was already an existing matching node, use ReplaceAllUsesWith
930       // to replace the dead one with the existing one.  This can cause
931       // recursive merging of other unrelated nodes down the line.
932       ReplaceAllUsesWith(N, Existing);
933 
934       // N is now dead. Inform the listeners and delete it.
935       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
936         DUL->NodeDeleted(N, Existing);
937       DeleteNodeNotInCSEMaps(N);
938       return;
939     }
940   }
941 
942   // If the node doesn't already exist, we updated it.  Inform listeners.
943   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
944     DUL->NodeUpdated(N);
945 }
946 
947 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
948 /// were replaced with those specified.  If this node is never memoized,
949 /// return null, otherwise return a pointer to the slot it would take.  If a
950 /// node already exists with these operands, the slot will be non-null.
951 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
952                                            void *&InsertPos) {
953   if (doNotCSE(N))
954     return nullptr;
955 
956   SDValue Ops[] = { Op };
957   FoldingSetNodeID ID;
958   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
959   AddNodeIDCustom(ID, N);
960   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
961   if (Node)
962     Node->intersectFlagsWith(N->getFlags());
963   return Node;
964 }
965 
966 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
967 /// were replaced with those specified.  If this node is never memoized,
968 /// return null, otherwise return a pointer to the slot it would take.  If a
969 /// node already exists with these operands, the slot will be non-null.
970 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
971                                            SDValue Op1, SDValue Op2,
972                                            void *&InsertPos) {
973   if (doNotCSE(N))
974     return nullptr;
975 
976   SDValue Ops[] = { Op1, Op2 };
977   FoldingSetNodeID ID;
978   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
979   AddNodeIDCustom(ID, N);
980   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
981   if (Node)
982     Node->intersectFlagsWith(N->getFlags());
983   return Node;
984 }
985 
986 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
987 /// were replaced with those specified.  If this node is never memoized,
988 /// return null, otherwise return a pointer to the slot it would take.  If a
989 /// node already exists with these operands, the slot will be non-null.
990 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
991                                            void *&InsertPos) {
992   if (doNotCSE(N))
993     return nullptr;
994 
995   FoldingSetNodeID ID;
996   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
997   AddNodeIDCustom(ID, N);
998   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
999   if (Node)
1000     Node->intersectFlagsWith(N->getFlags());
1001   return Node;
1002 }
1003 
1004 Align SelectionDAG::getEVTAlign(EVT VT) const {
1005   Type *Ty = VT == MVT::iPTR ?
1006                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1007                    VT.getTypeForEVT(*getContext());
1008 
1009   return getDataLayout().getABITypeAlign(Ty);
1010 }
1011 
1012 // EntryNode could meaningfully have debug info if we can find it...
1013 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1014     : TM(tm), OptLevel(OL),
1015       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1016       Root(getEntryNode()) {
1017   InsertNode(&EntryNode);
1018   DbgInfo = new SDDbgInfo();
1019 }
1020 
1021 void SelectionDAG::init(MachineFunction &NewMF,
1022                         OptimizationRemarkEmitter &NewORE,
1023                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1024                         LegacyDivergenceAnalysis * Divergence,
1025                         ProfileSummaryInfo *PSIin,
1026                         BlockFrequencyInfo *BFIin) {
1027   MF = &NewMF;
1028   SDAGISelPass = PassPtr;
1029   ORE = &NewORE;
1030   TLI = getSubtarget().getTargetLowering();
1031   TSI = getSubtarget().getSelectionDAGInfo();
1032   LibInfo = LibraryInfo;
1033   Context = &MF->getFunction().getContext();
1034   DA = Divergence;
1035   PSI = PSIin;
1036   BFI = BFIin;
1037 }
1038 
1039 SelectionDAG::~SelectionDAG() {
1040   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1041   allnodes_clear();
1042   OperandRecycler.clear(OperandAllocator);
1043   delete DbgInfo;
1044 }
1045 
1046 bool SelectionDAG::shouldOptForSize() const {
1047   return MF->getFunction().hasOptSize() ||
1048       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1049 }
1050 
1051 void SelectionDAG::allnodes_clear() {
1052   assert(&*AllNodes.begin() == &EntryNode);
1053   AllNodes.remove(AllNodes.begin());
1054   while (!AllNodes.empty())
1055     DeallocateNode(&AllNodes.front());
1056 #ifndef NDEBUG
1057   NextPersistentId = 0;
1058 #endif
1059 }
1060 
1061 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1062                                           void *&InsertPos) {
1063   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1064   if (N) {
1065     switch (N->getOpcode()) {
1066     default: break;
1067     case ISD::Constant:
1068     case ISD::ConstantFP:
1069       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1070                        "debug location.  Use another overload.");
1071     }
1072   }
1073   return N;
1074 }
1075 
1076 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1077                                           const SDLoc &DL, void *&InsertPos) {
1078   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1079   if (N) {
1080     switch (N->getOpcode()) {
1081     case ISD::Constant:
1082     case ISD::ConstantFP:
1083       // Erase debug location from the node if the node is used at several
1084       // different places. Do not propagate one location to all uses as it
1085       // will cause a worse single stepping debugging experience.
1086       if (N->getDebugLoc() != DL.getDebugLoc())
1087         N->setDebugLoc(DebugLoc());
1088       break;
1089     default:
1090       // When the node's point of use is located earlier in the instruction
1091       // sequence than its prior point of use, update its debug info to the
1092       // earlier location.
1093       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1094         N->setDebugLoc(DL.getDebugLoc());
1095       break;
1096     }
1097   }
1098   return N;
1099 }
1100 
1101 void SelectionDAG::clear() {
1102   allnodes_clear();
1103   OperandRecycler.clear(OperandAllocator);
1104   OperandAllocator.Reset();
1105   CSEMap.clear();
1106 
1107   ExtendedValueTypeNodes.clear();
1108   ExternalSymbols.clear();
1109   TargetExternalSymbols.clear();
1110   MCSymbols.clear();
1111   SDCallSiteDbgInfo.clear();
1112   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1113             static_cast<CondCodeSDNode*>(nullptr));
1114   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1115             static_cast<SDNode*>(nullptr));
1116 
1117   EntryNode.UseList = nullptr;
1118   InsertNode(&EntryNode);
1119   Root = getEntryNode();
1120   DbgInfo->clear();
1121 }
1122 
1123 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1124   return VT.bitsGT(Op.getValueType())
1125              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1126              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1127 }
1128 
1129 std::pair<SDValue, SDValue>
1130 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1131                                        const SDLoc &DL, EVT VT) {
1132   assert(!VT.bitsEq(Op.getValueType()) &&
1133          "Strict no-op FP extend/round not allowed.");
1134   SDValue Res =
1135       VT.bitsGT(Op.getValueType())
1136           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1137           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1138                     {Chain, Op, getIntPtrConstant(0, DL)});
1139 
1140   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1141 }
1142 
1143 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1144   return VT.bitsGT(Op.getValueType()) ?
1145     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1146     getNode(ISD::TRUNCATE, DL, VT, Op);
1147 }
1148 
1149 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1150   return VT.bitsGT(Op.getValueType()) ?
1151     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1152     getNode(ISD::TRUNCATE, DL, VT, Op);
1153 }
1154 
1155 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1156   return VT.bitsGT(Op.getValueType()) ?
1157     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1158     getNode(ISD::TRUNCATE, DL, VT, Op);
1159 }
1160 
1161 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1162                                         EVT OpVT) {
1163   if (VT.bitsLE(Op.getValueType()))
1164     return getNode(ISD::TRUNCATE, SL, VT, Op);
1165 
1166   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1167   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1168 }
1169 
1170 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1171   EVT OpVT = Op.getValueType();
1172   assert(VT.isInteger() && OpVT.isInteger() &&
1173          "Cannot getZeroExtendInReg FP types");
1174   assert(VT.isVector() == OpVT.isVector() &&
1175          "getZeroExtendInReg type should be vector iff the operand "
1176          "type is vector!");
1177   assert((!VT.isVector() ||
1178           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1179          "Vector element counts must match in getZeroExtendInReg");
1180   assert(VT.bitsLE(OpVT) && "Not extending!");
1181   if (OpVT == VT)
1182     return Op;
1183   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1184                                    VT.getScalarSizeInBits());
1185   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1186 }
1187 
1188 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1189   // Only unsigned pointer semantics are supported right now. In the future this
1190   // might delegate to TLI to check pointer signedness.
1191   return getZExtOrTrunc(Op, DL, VT);
1192 }
1193 
1194 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1195   // Only unsigned pointer semantics are supported right now. In the future this
1196   // might delegate to TLI to check pointer signedness.
1197   return getZeroExtendInReg(Op, DL, VT);
1198 }
1199 
1200 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1201 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1202   EVT EltVT = VT.getScalarType();
1203   SDValue NegOne =
1204     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1205   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1206 }
1207 
1208 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1209   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1210   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1211 }
1212 
1213 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1214                                       EVT OpVT) {
1215   if (!V)
1216     return getConstant(0, DL, VT);
1217 
1218   switch (TLI->getBooleanContents(OpVT)) {
1219   case TargetLowering::ZeroOrOneBooleanContent:
1220   case TargetLowering::UndefinedBooleanContent:
1221     return getConstant(1, DL, VT);
1222   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1223     return getAllOnesConstant(DL, VT);
1224   }
1225   llvm_unreachable("Unexpected boolean content enum!");
1226 }
1227 
1228 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1229                                   bool isT, bool isO) {
1230   EVT EltVT = VT.getScalarType();
1231   assert((EltVT.getSizeInBits() >= 64 ||
1232          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1233          "getConstant with a uint64_t value that doesn't fit in the type!");
1234   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1235 }
1236 
1237 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1238                                   bool isT, bool isO) {
1239   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1240 }
1241 
1242 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1243                                   EVT VT, bool isT, bool isO) {
1244   assert(VT.isInteger() && "Cannot create FP integer constant!");
1245 
1246   EVT EltVT = VT.getScalarType();
1247   const ConstantInt *Elt = &Val;
1248 
1249   // In some cases the vector type is legal but the element type is illegal and
1250   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1251   // inserted value (the type does not need to match the vector element type).
1252   // Any extra bits introduced will be truncated away.
1253   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1254       TargetLowering::TypePromoteInteger) {
1255    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1256    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1257    Elt = ConstantInt::get(*getContext(), NewVal);
1258   }
1259   // In other cases the element type is illegal and needs to be expanded, for
1260   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1261   // the value into n parts and use a vector type with n-times the elements.
1262   // Then bitcast to the type requested.
1263   // Legalizing constants too early makes the DAGCombiner's job harder so we
1264   // only legalize if the DAG tells us we must produce legal types.
1265   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1266            TLI->getTypeAction(*getContext(), EltVT) ==
1267            TargetLowering::TypeExpandInteger) {
1268     const APInt &NewVal = Elt->getValue();
1269     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1270     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1271     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1272     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1273 
1274     // Check the temporary vector is the correct size. If this fails then
1275     // getTypeToTransformTo() probably returned a type whose size (in bits)
1276     // isn't a power-of-2 factor of the requested type size.
1277     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1278 
1279     SmallVector<SDValue, 2> EltParts;
1280     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1281       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1282                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1283                                      ViaEltVT, isT, isO));
1284     }
1285 
1286     // EltParts is currently in little endian order. If we actually want
1287     // big-endian order then reverse it now.
1288     if (getDataLayout().isBigEndian())
1289       std::reverse(EltParts.begin(), EltParts.end());
1290 
1291     // The elements must be reversed when the element order is different
1292     // to the endianness of the elements (because the BITCAST is itself a
1293     // vector shuffle in this situation). However, we do not need any code to
1294     // perform this reversal because getConstant() is producing a vector
1295     // splat.
1296     // This situation occurs in MIPS MSA.
1297 
1298     SmallVector<SDValue, 8> Ops;
1299     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1300       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1301 
1302     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1303     return V;
1304   }
1305 
1306   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1307          "APInt size does not match type size!");
1308   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1309   FoldingSetNodeID ID;
1310   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1311   ID.AddPointer(Elt);
1312   ID.AddBoolean(isO);
1313   void *IP = nullptr;
1314   SDNode *N = nullptr;
1315   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1316     if (!VT.isVector())
1317       return SDValue(N, 0);
1318 
1319   if (!N) {
1320     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1321     CSEMap.InsertNode(N, IP);
1322     InsertNode(N);
1323     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1324   }
1325 
1326   SDValue Result(N, 0);
1327   if (VT.isScalableVector())
1328     Result = getSplatVector(VT, DL, Result);
1329   else if (VT.isVector())
1330     Result = getSplatBuildVector(VT, DL, Result);
1331 
1332   return Result;
1333 }
1334 
1335 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1336                                         bool isTarget) {
1337   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1338 }
1339 
1340 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1341                                              const SDLoc &DL, bool LegalTypes) {
1342   assert(VT.isInteger() && "Shift amount is not an integer type!");
1343   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1344   return getConstant(Val, DL, ShiftVT);
1345 }
1346 
1347 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1348                                            bool isTarget) {
1349   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1350 }
1351 
1352 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1353                                     bool isTarget) {
1354   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1355 }
1356 
1357 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1358                                     EVT VT, bool isTarget) {
1359   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1360 
1361   EVT EltVT = VT.getScalarType();
1362 
1363   // Do the map lookup using the actual bit pattern for the floating point
1364   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1365   // we don't have issues with SNANs.
1366   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1367   FoldingSetNodeID ID;
1368   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1369   ID.AddPointer(&V);
1370   void *IP = nullptr;
1371   SDNode *N = nullptr;
1372   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1373     if (!VT.isVector())
1374       return SDValue(N, 0);
1375 
1376   if (!N) {
1377     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1378     CSEMap.InsertNode(N, IP);
1379     InsertNode(N);
1380   }
1381 
1382   SDValue Result(N, 0);
1383   if (VT.isVector())
1384     Result = getSplatBuildVector(VT, DL, Result);
1385   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1386   return Result;
1387 }
1388 
1389 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1390                                     bool isTarget) {
1391   EVT EltVT = VT.getScalarType();
1392   if (EltVT == MVT::f32)
1393     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1394   else if (EltVT == MVT::f64)
1395     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1396   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1397            EltVT == MVT::f16 || EltVT == MVT::bf16) {
1398     bool Ignored;
1399     APFloat APF = APFloat(Val);
1400     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1401                 &Ignored);
1402     return getConstantFP(APF, DL, VT, isTarget);
1403   } else
1404     llvm_unreachable("Unsupported type in getConstantFP");
1405 }
1406 
1407 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1408                                        EVT VT, int64_t Offset, bool isTargetGA,
1409                                        unsigned TargetFlags) {
1410   assert((TargetFlags == 0 || isTargetGA) &&
1411          "Cannot set target flags on target-independent globals");
1412 
1413   // Truncate (with sign-extension) the offset value to the pointer size.
1414   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1415   if (BitWidth < 64)
1416     Offset = SignExtend64(Offset, BitWidth);
1417 
1418   unsigned Opc;
1419   if (GV->isThreadLocal())
1420     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1421   else
1422     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1423 
1424   FoldingSetNodeID ID;
1425   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1426   ID.AddPointer(GV);
1427   ID.AddInteger(Offset);
1428   ID.AddInteger(TargetFlags);
1429   void *IP = nullptr;
1430   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1431     return SDValue(E, 0);
1432 
1433   auto *N = newSDNode<GlobalAddressSDNode>(
1434       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1435   CSEMap.InsertNode(N, IP);
1436     InsertNode(N);
1437   return SDValue(N, 0);
1438 }
1439 
1440 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1441   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1442   FoldingSetNodeID ID;
1443   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1444   ID.AddInteger(FI);
1445   void *IP = nullptr;
1446   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1447     return SDValue(E, 0);
1448 
1449   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1450   CSEMap.InsertNode(N, IP);
1451   InsertNode(N);
1452   return SDValue(N, 0);
1453 }
1454 
1455 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1456                                    unsigned TargetFlags) {
1457   assert((TargetFlags == 0 || isTarget) &&
1458          "Cannot set target flags on target-independent jump tables");
1459   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1460   FoldingSetNodeID ID;
1461   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1462   ID.AddInteger(JTI);
1463   ID.AddInteger(TargetFlags);
1464   void *IP = nullptr;
1465   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1466     return SDValue(E, 0);
1467 
1468   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1469   CSEMap.InsertNode(N, IP);
1470   InsertNode(N);
1471   return SDValue(N, 0);
1472 }
1473 
1474 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1475                                       MaybeAlign Alignment, int Offset,
1476                                       bool isTarget, unsigned TargetFlags) {
1477   assert((TargetFlags == 0 || isTarget) &&
1478          "Cannot set target flags on target-independent globals");
1479   if (!Alignment)
1480     Alignment = shouldOptForSize()
1481                     ? getDataLayout().getABITypeAlign(C->getType())
1482                     : getDataLayout().getPrefTypeAlign(C->getType());
1483   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1484   FoldingSetNodeID ID;
1485   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1486   ID.AddInteger(Alignment->value());
1487   ID.AddInteger(Offset);
1488   ID.AddPointer(C);
1489   ID.AddInteger(TargetFlags);
1490   void *IP = nullptr;
1491   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1492     return SDValue(E, 0);
1493 
1494   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1495                                           TargetFlags);
1496   CSEMap.InsertNode(N, IP);
1497   InsertNode(N);
1498   SDValue V = SDValue(N, 0);
1499   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1500   return V;
1501 }
1502 
1503 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1504                                       MaybeAlign Alignment, int Offset,
1505                                       bool isTarget, unsigned TargetFlags) {
1506   assert((TargetFlags == 0 || isTarget) &&
1507          "Cannot set target flags on target-independent globals");
1508   if (!Alignment)
1509     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1510   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1511   FoldingSetNodeID ID;
1512   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1513   ID.AddInteger(Alignment->value());
1514   ID.AddInteger(Offset);
1515   C->addSelectionDAGCSEId(ID);
1516   ID.AddInteger(TargetFlags);
1517   void *IP = nullptr;
1518   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1519     return SDValue(E, 0);
1520 
1521   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1522                                           TargetFlags);
1523   CSEMap.InsertNode(N, IP);
1524   InsertNode(N);
1525   return SDValue(N, 0);
1526 }
1527 
1528 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1529                                      unsigned TargetFlags) {
1530   FoldingSetNodeID ID;
1531   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1532   ID.AddInteger(Index);
1533   ID.AddInteger(Offset);
1534   ID.AddInteger(TargetFlags);
1535   void *IP = nullptr;
1536   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1537     return SDValue(E, 0);
1538 
1539   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1540   CSEMap.InsertNode(N, IP);
1541   InsertNode(N);
1542   return SDValue(N, 0);
1543 }
1544 
1545 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1546   FoldingSetNodeID ID;
1547   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1548   ID.AddPointer(MBB);
1549   void *IP = nullptr;
1550   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1551     return SDValue(E, 0);
1552 
1553   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1554   CSEMap.InsertNode(N, IP);
1555   InsertNode(N);
1556   return SDValue(N, 0);
1557 }
1558 
1559 SDValue SelectionDAG::getValueType(EVT VT) {
1560   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1561       ValueTypeNodes.size())
1562     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1563 
1564   SDNode *&N = VT.isExtended() ?
1565     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1566 
1567   if (N) return SDValue(N, 0);
1568   N = newSDNode<VTSDNode>(VT);
1569   InsertNode(N);
1570   return SDValue(N, 0);
1571 }
1572 
1573 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1574   SDNode *&N = ExternalSymbols[Sym];
1575   if (N) return SDValue(N, 0);
1576   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1577   InsertNode(N);
1578   return SDValue(N, 0);
1579 }
1580 
1581 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1582   SDNode *&N = MCSymbols[Sym];
1583   if (N)
1584     return SDValue(N, 0);
1585   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1586   InsertNode(N);
1587   return SDValue(N, 0);
1588 }
1589 
1590 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1591                                               unsigned TargetFlags) {
1592   SDNode *&N =
1593       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1594   if (N) return SDValue(N, 0);
1595   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1596   InsertNode(N);
1597   return SDValue(N, 0);
1598 }
1599 
1600 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1601   if ((unsigned)Cond >= CondCodeNodes.size())
1602     CondCodeNodes.resize(Cond+1);
1603 
1604   if (!CondCodeNodes[Cond]) {
1605     auto *N = newSDNode<CondCodeSDNode>(Cond);
1606     CondCodeNodes[Cond] = N;
1607     InsertNode(N);
1608   }
1609 
1610   return SDValue(CondCodeNodes[Cond], 0);
1611 }
1612 
1613 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1614 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1615 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1616   std::swap(N1, N2);
1617   ShuffleVectorSDNode::commuteMask(M);
1618 }
1619 
1620 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1621                                        SDValue N2, ArrayRef<int> Mask) {
1622   assert(VT.getVectorNumElements() == Mask.size() &&
1623            "Must have the same number of vector elements as mask elements!");
1624   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1625          "Invalid VECTOR_SHUFFLE");
1626 
1627   // Canonicalize shuffle undef, undef -> undef
1628   if (N1.isUndef() && N2.isUndef())
1629     return getUNDEF(VT);
1630 
1631   // Validate that all indices in Mask are within the range of the elements
1632   // input to the shuffle.
1633   int NElts = Mask.size();
1634   assert(llvm::all_of(Mask,
1635                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1636          "Index out of range");
1637 
1638   // Copy the mask so we can do any needed cleanup.
1639   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1640 
1641   // Canonicalize shuffle v, v -> v, undef
1642   if (N1 == N2) {
1643     N2 = getUNDEF(VT);
1644     for (int i = 0; i != NElts; ++i)
1645       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1646   }
1647 
1648   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1649   if (N1.isUndef())
1650     commuteShuffle(N1, N2, MaskVec);
1651 
1652   if (TLI->hasVectorBlend()) {
1653     // If shuffling a splat, try to blend the splat instead. We do this here so
1654     // that even when this arises during lowering we don't have to re-handle it.
1655     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1656       BitVector UndefElements;
1657       SDValue Splat = BV->getSplatValue(&UndefElements);
1658       if (!Splat)
1659         return;
1660 
1661       for (int i = 0; i < NElts; ++i) {
1662         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1663           continue;
1664 
1665         // If this input comes from undef, mark it as such.
1666         if (UndefElements[MaskVec[i] - Offset]) {
1667           MaskVec[i] = -1;
1668           continue;
1669         }
1670 
1671         // If we can blend a non-undef lane, use that instead.
1672         if (!UndefElements[i])
1673           MaskVec[i] = i + Offset;
1674       }
1675     };
1676     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1677       BlendSplat(N1BV, 0);
1678     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1679       BlendSplat(N2BV, NElts);
1680   }
1681 
1682   // Canonicalize all index into lhs, -> shuffle lhs, undef
1683   // Canonicalize all index into rhs, -> shuffle rhs, undef
1684   bool AllLHS = true, AllRHS = true;
1685   bool N2Undef = N2.isUndef();
1686   for (int i = 0; i != NElts; ++i) {
1687     if (MaskVec[i] >= NElts) {
1688       if (N2Undef)
1689         MaskVec[i] = -1;
1690       else
1691         AllLHS = false;
1692     } else if (MaskVec[i] >= 0) {
1693       AllRHS = false;
1694     }
1695   }
1696   if (AllLHS && AllRHS)
1697     return getUNDEF(VT);
1698   if (AllLHS && !N2Undef)
1699     N2 = getUNDEF(VT);
1700   if (AllRHS) {
1701     N1 = getUNDEF(VT);
1702     commuteShuffle(N1, N2, MaskVec);
1703   }
1704   // Reset our undef status after accounting for the mask.
1705   N2Undef = N2.isUndef();
1706   // Re-check whether both sides ended up undef.
1707   if (N1.isUndef() && N2Undef)
1708     return getUNDEF(VT);
1709 
1710   // If Identity shuffle return that node.
1711   bool Identity = true, AllSame = true;
1712   for (int i = 0; i != NElts; ++i) {
1713     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1714     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1715   }
1716   if (Identity && NElts)
1717     return N1;
1718 
1719   // Shuffling a constant splat doesn't change the result.
1720   if (N2Undef) {
1721     SDValue V = N1;
1722 
1723     // Look through any bitcasts. We check that these don't change the number
1724     // (and size) of elements and just changes their types.
1725     while (V.getOpcode() == ISD::BITCAST)
1726       V = V->getOperand(0);
1727 
1728     // A splat should always show up as a build vector node.
1729     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1730       BitVector UndefElements;
1731       SDValue Splat = BV->getSplatValue(&UndefElements);
1732       // If this is a splat of an undef, shuffling it is also undef.
1733       if (Splat && Splat.isUndef())
1734         return getUNDEF(VT);
1735 
1736       bool SameNumElts =
1737           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1738 
1739       // We only have a splat which can skip shuffles if there is a splatted
1740       // value and no undef lanes rearranged by the shuffle.
1741       if (Splat && UndefElements.none()) {
1742         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1743         // number of elements match or the value splatted is a zero constant.
1744         if (SameNumElts)
1745           return N1;
1746         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1747           if (C->isNullValue())
1748             return N1;
1749       }
1750 
1751       // If the shuffle itself creates a splat, build the vector directly.
1752       if (AllSame && SameNumElts) {
1753         EVT BuildVT = BV->getValueType(0);
1754         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1755         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1756 
1757         // We may have jumped through bitcasts, so the type of the
1758         // BUILD_VECTOR may not match the type of the shuffle.
1759         if (BuildVT != VT)
1760           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1761         return NewBV;
1762       }
1763     }
1764   }
1765 
1766   FoldingSetNodeID ID;
1767   SDValue Ops[2] = { N1, N2 };
1768   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1769   for (int i = 0; i != NElts; ++i)
1770     ID.AddInteger(MaskVec[i]);
1771 
1772   void* IP = nullptr;
1773   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1774     return SDValue(E, 0);
1775 
1776   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1777   // SDNode doesn't have access to it.  This memory will be "leaked" when
1778   // the node is deallocated, but recovered when the NodeAllocator is released.
1779   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1780   llvm::copy(MaskVec, MaskAlloc);
1781 
1782   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1783                                            dl.getDebugLoc(), MaskAlloc);
1784   createOperands(N, Ops);
1785 
1786   CSEMap.InsertNode(N, IP);
1787   InsertNode(N);
1788   SDValue V = SDValue(N, 0);
1789   NewSDValueDbgMsg(V, "Creating new node: ", this);
1790   return V;
1791 }
1792 
1793 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1794   EVT VT = SV.getValueType(0);
1795   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1796   ShuffleVectorSDNode::commuteMask(MaskVec);
1797 
1798   SDValue Op0 = SV.getOperand(0);
1799   SDValue Op1 = SV.getOperand(1);
1800   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1801 }
1802 
1803 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1804   FoldingSetNodeID ID;
1805   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1806   ID.AddInteger(RegNo);
1807   void *IP = nullptr;
1808   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1809     return SDValue(E, 0);
1810 
1811   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1812   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1813   CSEMap.InsertNode(N, IP);
1814   InsertNode(N);
1815   return SDValue(N, 0);
1816 }
1817 
1818 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1819   FoldingSetNodeID ID;
1820   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1821   ID.AddPointer(RegMask);
1822   void *IP = nullptr;
1823   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1824     return SDValue(E, 0);
1825 
1826   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1827   CSEMap.InsertNode(N, IP);
1828   InsertNode(N);
1829   return SDValue(N, 0);
1830 }
1831 
1832 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1833                                  MCSymbol *Label) {
1834   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1835 }
1836 
1837 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1838                                    SDValue Root, MCSymbol *Label) {
1839   FoldingSetNodeID ID;
1840   SDValue Ops[] = { Root };
1841   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1842   ID.AddPointer(Label);
1843   void *IP = nullptr;
1844   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1845     return SDValue(E, 0);
1846 
1847   auto *N =
1848       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1849   createOperands(N, Ops);
1850 
1851   CSEMap.InsertNode(N, IP);
1852   InsertNode(N);
1853   return SDValue(N, 0);
1854 }
1855 
1856 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1857                                       int64_t Offset, bool isTarget,
1858                                       unsigned TargetFlags) {
1859   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1860 
1861   FoldingSetNodeID ID;
1862   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1863   ID.AddPointer(BA);
1864   ID.AddInteger(Offset);
1865   ID.AddInteger(TargetFlags);
1866   void *IP = nullptr;
1867   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1868     return SDValue(E, 0);
1869 
1870   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1871   CSEMap.InsertNode(N, IP);
1872   InsertNode(N);
1873   return SDValue(N, 0);
1874 }
1875 
1876 SDValue SelectionDAG::getSrcValue(const Value *V) {
1877   FoldingSetNodeID ID;
1878   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1879   ID.AddPointer(V);
1880 
1881   void *IP = nullptr;
1882   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1883     return SDValue(E, 0);
1884 
1885   auto *N = newSDNode<SrcValueSDNode>(V);
1886   CSEMap.InsertNode(N, IP);
1887   InsertNode(N);
1888   return SDValue(N, 0);
1889 }
1890 
1891 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1892   FoldingSetNodeID ID;
1893   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1894   ID.AddPointer(MD);
1895 
1896   void *IP = nullptr;
1897   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1898     return SDValue(E, 0);
1899 
1900   auto *N = newSDNode<MDNodeSDNode>(MD);
1901   CSEMap.InsertNode(N, IP);
1902   InsertNode(N);
1903   return SDValue(N, 0);
1904 }
1905 
1906 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1907   if (VT == V.getValueType())
1908     return V;
1909 
1910   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1911 }
1912 
1913 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1914                                        unsigned SrcAS, unsigned DestAS) {
1915   SDValue Ops[] = {Ptr};
1916   FoldingSetNodeID ID;
1917   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1918   ID.AddInteger(SrcAS);
1919   ID.AddInteger(DestAS);
1920 
1921   void *IP = nullptr;
1922   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1923     return SDValue(E, 0);
1924 
1925   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1926                                            VT, SrcAS, DestAS);
1927   createOperands(N, Ops);
1928 
1929   CSEMap.InsertNode(N, IP);
1930   InsertNode(N);
1931   return SDValue(N, 0);
1932 }
1933 
1934 SDValue SelectionDAG::getFreeze(SDValue V) {
1935   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
1936 }
1937 
1938 /// getShiftAmountOperand - Return the specified value casted to
1939 /// the target's desired shift amount type.
1940 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1941   EVT OpTy = Op.getValueType();
1942   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1943   if (OpTy == ShTy || OpTy.isVector()) return Op;
1944 
1945   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1946 }
1947 
1948 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1949   SDLoc dl(Node);
1950   const TargetLowering &TLI = getTargetLoweringInfo();
1951   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1952   EVT VT = Node->getValueType(0);
1953   SDValue Tmp1 = Node->getOperand(0);
1954   SDValue Tmp2 = Node->getOperand(1);
1955   const MaybeAlign MA(Node->getConstantOperandVal(3));
1956 
1957   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1958                                Tmp2, MachinePointerInfo(V));
1959   SDValue VAList = VAListLoad;
1960 
1961   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1962     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1963                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
1964 
1965     VAList =
1966         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1967                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
1968   }
1969 
1970   // Increment the pointer, VAList, to the next vaarg
1971   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1972                  getConstant(getDataLayout().getTypeAllocSize(
1973                                                VT.getTypeForEVT(*getContext())),
1974                              dl, VAList.getValueType()));
1975   // Store the incremented VAList to the legalized pointer
1976   Tmp1 =
1977       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1978   // Load the actual argument out of the pointer VAList
1979   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1980 }
1981 
1982 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1983   SDLoc dl(Node);
1984   const TargetLowering &TLI = getTargetLoweringInfo();
1985   // This defaults to loading a pointer from the input and storing it to the
1986   // output, returning the chain.
1987   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1988   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1989   SDValue Tmp1 =
1990       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1991               Node->getOperand(2), MachinePointerInfo(VS));
1992   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1993                   MachinePointerInfo(VD));
1994 }
1995 
1996 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
1997   const DataLayout &DL = getDataLayout();
1998   Type *Ty = VT.getTypeForEVT(*getContext());
1999   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2000 
2001   if (TLI->isTypeLegal(VT) || !VT.isVector())
2002     return RedAlign;
2003 
2004   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2005   const Align StackAlign = TFI->getStackAlign();
2006 
2007   // See if we can choose a smaller ABI alignment in cases where it's an
2008   // illegal vector type that will get broken down.
2009   if (RedAlign > StackAlign) {
2010     EVT IntermediateVT;
2011     MVT RegisterVT;
2012     unsigned NumIntermediates;
2013     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2014                                 NumIntermediates, RegisterVT);
2015     Ty = IntermediateVT.getTypeForEVT(*getContext());
2016     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2017     if (RedAlign2 < RedAlign)
2018       RedAlign = RedAlign2;
2019   }
2020 
2021   return RedAlign;
2022 }
2023 
2024 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2025   MachineFrameInfo &MFI = MF->getFrameInfo();
2026   int FrameIdx = MFI.CreateStackObject(Bytes, Alignment, false);
2027   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2028 }
2029 
2030 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2031   Type *Ty = VT.getTypeForEVT(*getContext());
2032   Align StackAlign =
2033       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2034   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2035 }
2036 
2037 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2038   TypeSize Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
2039   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2040   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2041   const DataLayout &DL = getDataLayout();
2042   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2043   return CreateStackTemporary(Bytes, Align);
2044 }
2045 
2046 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2047                                 ISD::CondCode Cond, const SDLoc &dl) {
2048   EVT OpVT = N1.getValueType();
2049 
2050   // These setcc operations always fold.
2051   switch (Cond) {
2052   default: break;
2053   case ISD::SETFALSE:
2054   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2055   case ISD::SETTRUE:
2056   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2057 
2058   case ISD::SETOEQ:
2059   case ISD::SETOGT:
2060   case ISD::SETOGE:
2061   case ISD::SETOLT:
2062   case ISD::SETOLE:
2063   case ISD::SETONE:
2064   case ISD::SETO:
2065   case ISD::SETUO:
2066   case ISD::SETUEQ:
2067   case ISD::SETUNE:
2068     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2069     break;
2070   }
2071 
2072   if (OpVT.isInteger()) {
2073     // For EQ and NE, we can always pick a value for the undef to make the
2074     // predicate pass or fail, so we can return undef.
2075     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2076     // icmp eq/ne X, undef -> undef.
2077     if ((N1.isUndef() || N2.isUndef()) &&
2078         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2079       return getUNDEF(VT);
2080 
2081     // If both operands are undef, we can return undef for int comparison.
2082     // icmp undef, undef -> undef.
2083     if (N1.isUndef() && N2.isUndef())
2084       return getUNDEF(VT);
2085 
2086     // icmp X, X -> true/false
2087     // icmp X, undef -> true/false because undef could be X.
2088     if (N1 == N2)
2089       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2090   }
2091 
2092   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2093     const APInt &C2 = N2C->getAPIntValue();
2094     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2095       const APInt &C1 = N1C->getAPIntValue();
2096 
2097       switch (Cond) {
2098       default: llvm_unreachable("Unknown integer setcc!");
2099       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2100       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2101       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2102       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2103       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2104       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2105       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2106       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2107       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2108       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2109       }
2110     }
2111   }
2112 
2113   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2114   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2115 
2116   if (N1CFP && N2CFP) {
2117     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2118     switch (Cond) {
2119     default: break;
2120     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2121                         return getUNDEF(VT);
2122                       LLVM_FALLTHROUGH;
2123     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2124                                              OpVT);
2125     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2126                         return getUNDEF(VT);
2127                       LLVM_FALLTHROUGH;
2128     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2129                                              R==APFloat::cmpLessThan, dl, VT,
2130                                              OpVT);
2131     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2132                         return getUNDEF(VT);
2133                       LLVM_FALLTHROUGH;
2134     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2135                                              OpVT);
2136     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2137                         return getUNDEF(VT);
2138                       LLVM_FALLTHROUGH;
2139     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2140                                              VT, OpVT);
2141     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2142                         return getUNDEF(VT);
2143                       LLVM_FALLTHROUGH;
2144     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2145                                              R==APFloat::cmpEqual, dl, VT,
2146                                              OpVT);
2147     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2148                         return getUNDEF(VT);
2149                       LLVM_FALLTHROUGH;
2150     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2151                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2152     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2153                                              OpVT);
2154     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2155                                              OpVT);
2156     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2157                                              R==APFloat::cmpEqual, dl, VT,
2158                                              OpVT);
2159     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2160                                              OpVT);
2161     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2162                                              R==APFloat::cmpLessThan, dl, VT,
2163                                              OpVT);
2164     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2165                                              R==APFloat::cmpUnordered, dl, VT,
2166                                              OpVT);
2167     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2168                                              VT, OpVT);
2169     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2170                                              OpVT);
2171     }
2172   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2173     // Ensure that the constant occurs on the RHS.
2174     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2175     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2176       return SDValue();
2177     return getSetCC(dl, VT, N2, N1, SwappedCond);
2178   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2179              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2180     // If an operand is known to be a nan (or undef that could be a nan), we can
2181     // fold it.
2182     // Choosing NaN for the undef will always make unordered comparison succeed
2183     // and ordered comparison fails.
2184     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2185     switch (ISD::getUnorderedFlavor(Cond)) {
2186     default:
2187       llvm_unreachable("Unknown flavor!");
2188     case 0: // Known false.
2189       return getBoolConstant(false, dl, VT, OpVT);
2190     case 1: // Known true.
2191       return getBoolConstant(true, dl, VT, OpVT);
2192     case 2: // Undefined.
2193       return getUNDEF(VT);
2194     }
2195   }
2196 
2197   // Could not fold it.
2198   return SDValue();
2199 }
2200 
2201 /// See if the specified operand can be simplified with the knowledge that only
2202 /// the bits specified by DemandedBits are used.
2203 /// TODO: really we should be making this into the DAG equivalent of
2204 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2205 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2206   EVT VT = V.getValueType();
2207   APInt DemandedElts = VT.isVector()
2208                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2209                            : APInt(1, 1);
2210   return GetDemandedBits(V, DemandedBits, DemandedElts);
2211 }
2212 
2213 /// See if the specified operand can be simplified with the knowledge that only
2214 /// the bits specified by DemandedBits are used in the elements specified by
2215 /// DemandedElts.
2216 /// TODO: really we should be making this into the DAG equivalent of
2217 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2218 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2219                                       const APInt &DemandedElts) {
2220   switch (V.getOpcode()) {
2221   default:
2222     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2223                                                 *this, 0);
2224     break;
2225   case ISD::Constant: {
2226     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2227     APInt NewVal = CVal & DemandedBits;
2228     if (NewVal != CVal)
2229       return getConstant(NewVal, SDLoc(V), V.getValueType());
2230     break;
2231   }
2232   case ISD::SRL:
2233     // Only look at single-use SRLs.
2234     if (!V.getNode()->hasOneUse())
2235       break;
2236     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2237       // See if we can recursively simplify the LHS.
2238       unsigned Amt = RHSC->getZExtValue();
2239 
2240       // Watch out for shift count overflow though.
2241       if (Amt >= DemandedBits.getBitWidth())
2242         break;
2243       APInt SrcDemandedBits = DemandedBits << Amt;
2244       if (SDValue SimplifyLHS =
2245               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2246         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2247                        V.getOperand(1));
2248     }
2249     break;
2250   case ISD::AND: {
2251     // X & -1 -> X (ignoring bits which aren't demanded).
2252     // Also handle the case where masked out bits in X are known to be zero.
2253     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2254       const APInt &AndVal = RHSC->getAPIntValue();
2255       if (DemandedBits.isSubsetOf(AndVal) ||
2256           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2257                                   AndVal))
2258         return V.getOperand(0);
2259     }
2260     break;
2261   }
2262   }
2263   return SDValue();
2264 }
2265 
2266 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2267 /// use this predicate to simplify operations downstream.
2268 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2269   unsigned BitWidth = Op.getScalarValueSizeInBits();
2270   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2271 }
2272 
2273 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2274 /// this predicate to simplify operations downstream.  Mask is known to be zero
2275 /// for bits that V cannot have.
2276 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2277                                      unsigned Depth) const {
2278   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2279 }
2280 
2281 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2282 /// DemandedElts.  We use this predicate to simplify operations downstream.
2283 /// Mask is known to be zero for bits that V cannot have.
2284 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2285                                      const APInt &DemandedElts,
2286                                      unsigned Depth) const {
2287   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2288 }
2289 
2290 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2291 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2292                                         unsigned Depth) const {
2293   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2294 }
2295 
2296 /// isSplatValue - Return true if the vector V has the same value
2297 /// across all DemandedElts. For scalable vectors it does not make
2298 /// sense to specify which elements are demanded or undefined, therefore
2299 /// they are simply ignored.
2300 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2301                                 APInt &UndefElts) {
2302   EVT VT = V.getValueType();
2303   assert(VT.isVector() && "Vector type expected");
2304 
2305   if (!VT.isScalableVector() && !DemandedElts)
2306     return false; // No demanded elts, better to assume we don't know anything.
2307 
2308   // Deal with some common cases here that work for both fixed and scalable
2309   // vector types.
2310   switch (V.getOpcode()) {
2311   case ISD::SPLAT_VECTOR:
2312     return true;
2313   case ISD::ADD:
2314   case ISD::SUB:
2315   case ISD::AND: {
2316     APInt UndefLHS, UndefRHS;
2317     SDValue LHS = V.getOperand(0);
2318     SDValue RHS = V.getOperand(1);
2319     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2320         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2321       UndefElts = UndefLHS | UndefRHS;
2322       return true;
2323     }
2324     break;
2325   }
2326   }
2327 
2328   // We don't support other cases than those above for scalable vectors at
2329   // the moment.
2330   if (VT.isScalableVector())
2331     return false;
2332 
2333   unsigned NumElts = VT.getVectorNumElements();
2334   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2335   UndefElts = APInt::getNullValue(NumElts);
2336 
2337   switch (V.getOpcode()) {
2338   case ISD::BUILD_VECTOR: {
2339     SDValue Scl;
2340     for (unsigned i = 0; i != NumElts; ++i) {
2341       SDValue Op = V.getOperand(i);
2342       if (Op.isUndef()) {
2343         UndefElts.setBit(i);
2344         continue;
2345       }
2346       if (!DemandedElts[i])
2347         continue;
2348       if (Scl && Scl != Op)
2349         return false;
2350       Scl = Op;
2351     }
2352     return true;
2353   }
2354   case ISD::VECTOR_SHUFFLE: {
2355     // Check if this is a shuffle node doing a splat.
2356     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2357     int SplatIndex = -1;
2358     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2359     for (int i = 0; i != (int)NumElts; ++i) {
2360       int M = Mask[i];
2361       if (M < 0) {
2362         UndefElts.setBit(i);
2363         continue;
2364       }
2365       if (!DemandedElts[i])
2366         continue;
2367       if (0 <= SplatIndex && SplatIndex != M)
2368         return false;
2369       SplatIndex = M;
2370     }
2371     return true;
2372   }
2373   case ISD::EXTRACT_SUBVECTOR: {
2374     // Offset the demanded elts by the subvector index.
2375     SDValue Src = V.getOperand(0);
2376     uint64_t Idx = V.getConstantOperandVal(1);
2377     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2378     APInt UndefSrcElts;
2379     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2380     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) {
2381       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2382       return true;
2383     }
2384     break;
2385   }
2386   }
2387 
2388   return false;
2389 }
2390 
2391 /// Helper wrapper to main isSplatValue function.
2392 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2393   EVT VT = V.getValueType();
2394   assert(VT.isVector() && "Vector type expected");
2395 
2396   APInt UndefElts;
2397   APInt DemandedElts;
2398 
2399   // For now we don't support this with scalable vectors.
2400   if (!VT.isScalableVector())
2401     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2402   return isSplatValue(V, DemandedElts, UndefElts) &&
2403          (AllowUndefs || !UndefElts);
2404 }
2405 
2406 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2407   V = peekThroughExtractSubvectors(V);
2408 
2409   EVT VT = V.getValueType();
2410   unsigned Opcode = V.getOpcode();
2411   switch (Opcode) {
2412   default: {
2413     APInt UndefElts;
2414     APInt DemandedElts;
2415 
2416     if (!VT.isScalableVector())
2417       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2418 
2419     if (isSplatValue(V, DemandedElts, UndefElts)) {
2420       if (VT.isScalableVector()) {
2421         // DemandedElts and UndefElts are ignored for scalable vectors, since
2422         // the only supported cases are SPLAT_VECTOR nodes.
2423         SplatIdx = 0;
2424       } else {
2425         // Handle case where all demanded elements are UNDEF.
2426         if (DemandedElts.isSubsetOf(UndefElts)) {
2427           SplatIdx = 0;
2428           return getUNDEF(VT);
2429         }
2430         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2431       }
2432       return V;
2433     }
2434     break;
2435   }
2436   case ISD::SPLAT_VECTOR:
2437     SplatIdx = 0;
2438     return V;
2439   case ISD::VECTOR_SHUFFLE: {
2440     if (VT.isScalableVector())
2441       return SDValue();
2442 
2443     // Check if this is a shuffle node doing a splat.
2444     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2445     // getTargetVShiftNode currently struggles without the splat source.
2446     auto *SVN = cast<ShuffleVectorSDNode>(V);
2447     if (!SVN->isSplat())
2448       break;
2449     int Idx = SVN->getSplatIndex();
2450     int NumElts = V.getValueType().getVectorNumElements();
2451     SplatIdx = Idx % NumElts;
2452     return V.getOperand(Idx / NumElts);
2453   }
2454   }
2455 
2456   return SDValue();
2457 }
2458 
2459 SDValue SelectionDAG::getSplatValue(SDValue V) {
2460   int SplatIdx;
2461   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2462     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2463                    SrcVector.getValueType().getScalarType(), SrcVector,
2464                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2465   return SDValue();
2466 }
2467 
2468 const APInt *
2469 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2470                                           const APInt &DemandedElts) const {
2471   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2472           V.getOpcode() == ISD::SRA) &&
2473          "Unknown shift node");
2474   unsigned BitWidth = V.getScalarValueSizeInBits();
2475   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2476     // Shifting more than the bitwidth is not valid.
2477     const APInt &ShAmt = SA->getAPIntValue();
2478     if (ShAmt.ult(BitWidth))
2479       return &ShAmt;
2480   }
2481   return nullptr;
2482 }
2483 
2484 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2485     SDValue V, const APInt &DemandedElts) const {
2486   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2487           V.getOpcode() == ISD::SRA) &&
2488          "Unknown shift node");
2489   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2490     return ValidAmt;
2491   unsigned BitWidth = V.getScalarValueSizeInBits();
2492   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2493   if (!BV)
2494     return nullptr;
2495   const APInt *MinShAmt = nullptr;
2496   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2497     if (!DemandedElts[i])
2498       continue;
2499     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2500     if (!SA)
2501       return nullptr;
2502     // Shifting more than the bitwidth is not valid.
2503     const APInt &ShAmt = SA->getAPIntValue();
2504     if (ShAmt.uge(BitWidth))
2505       return nullptr;
2506     if (MinShAmt && MinShAmt->ule(ShAmt))
2507       continue;
2508     MinShAmt = &ShAmt;
2509   }
2510   return MinShAmt;
2511 }
2512 
2513 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2514     SDValue V, const APInt &DemandedElts) const {
2515   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2516           V.getOpcode() == ISD::SRA) &&
2517          "Unknown shift node");
2518   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2519     return ValidAmt;
2520   unsigned BitWidth = V.getScalarValueSizeInBits();
2521   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2522   if (!BV)
2523     return nullptr;
2524   const APInt *MaxShAmt = nullptr;
2525   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2526     if (!DemandedElts[i])
2527       continue;
2528     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2529     if (!SA)
2530       return nullptr;
2531     // Shifting more than the bitwidth is not valid.
2532     const APInt &ShAmt = SA->getAPIntValue();
2533     if (ShAmt.uge(BitWidth))
2534       return nullptr;
2535     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2536       continue;
2537     MaxShAmt = &ShAmt;
2538   }
2539   return MaxShAmt;
2540 }
2541 
2542 /// Determine which bits of Op are known to be either zero or one and return
2543 /// them in Known. For vectors, the known bits are those that are shared by
2544 /// every vector element.
2545 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2546   EVT VT = Op.getValueType();
2547 
2548   // TOOD: Until we have a plan for how to represent demanded elements for
2549   // scalable vectors, we can just bail out for now.
2550   if (Op.getValueType().isScalableVector()) {
2551     unsigned BitWidth = Op.getScalarValueSizeInBits();
2552     return KnownBits(BitWidth);
2553   }
2554 
2555   APInt DemandedElts = VT.isVector()
2556                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2557                            : APInt(1, 1);
2558   return computeKnownBits(Op, DemandedElts, Depth);
2559 }
2560 
2561 /// Determine which bits of Op are known to be either zero or one and return
2562 /// them in Known. The DemandedElts argument allows us to only collect the known
2563 /// bits that are shared by the requested vector elements.
2564 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2565                                          unsigned Depth) const {
2566   unsigned BitWidth = Op.getScalarValueSizeInBits();
2567 
2568   KnownBits Known(BitWidth);   // Don't know anything.
2569 
2570   // TOOD: Until we have a plan for how to represent demanded elements for
2571   // scalable vectors, we can just bail out for now.
2572   if (Op.getValueType().isScalableVector())
2573     return Known;
2574 
2575   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2576     // We know all of the bits for a constant!
2577     Known.One = C->getAPIntValue();
2578     Known.Zero = ~Known.One;
2579     return Known;
2580   }
2581   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2582     // We know all of the bits for a constant fp!
2583     Known.One = C->getValueAPF().bitcastToAPInt();
2584     Known.Zero = ~Known.One;
2585     return Known;
2586   }
2587 
2588   if (Depth >= MaxRecursionDepth)
2589     return Known;  // Limit search depth.
2590 
2591   KnownBits Known2;
2592   unsigned NumElts = DemandedElts.getBitWidth();
2593   assert((!Op.getValueType().isVector() ||
2594           NumElts == Op.getValueType().getVectorNumElements()) &&
2595          "Unexpected vector size");
2596 
2597   if (!DemandedElts)
2598     return Known;  // No demanded elts, better to assume we don't know anything.
2599 
2600   unsigned Opcode = Op.getOpcode();
2601   switch (Opcode) {
2602   case ISD::BUILD_VECTOR:
2603     // Collect the known bits that are shared by every demanded vector element.
2604     Known.Zero.setAllBits(); Known.One.setAllBits();
2605     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2606       if (!DemandedElts[i])
2607         continue;
2608 
2609       SDValue SrcOp = Op.getOperand(i);
2610       Known2 = computeKnownBits(SrcOp, Depth + 1);
2611 
2612       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2613       if (SrcOp.getValueSizeInBits() != BitWidth) {
2614         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2615                "Expected BUILD_VECTOR implicit truncation");
2616         Known2 = Known2.trunc(BitWidth);
2617       }
2618 
2619       // Known bits are the values that are shared by every demanded element.
2620       Known.One &= Known2.One;
2621       Known.Zero &= Known2.Zero;
2622 
2623       // If we don't know any bits, early out.
2624       if (Known.isUnknown())
2625         break;
2626     }
2627     break;
2628   case ISD::VECTOR_SHUFFLE: {
2629     // Collect the known bits that are shared by every vector element referenced
2630     // by the shuffle.
2631     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2632     Known.Zero.setAllBits(); Known.One.setAllBits();
2633     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2634     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2635     for (unsigned i = 0; i != NumElts; ++i) {
2636       if (!DemandedElts[i])
2637         continue;
2638 
2639       int M = SVN->getMaskElt(i);
2640       if (M < 0) {
2641         // For UNDEF elements, we don't know anything about the common state of
2642         // the shuffle result.
2643         Known.resetAll();
2644         DemandedLHS.clearAllBits();
2645         DemandedRHS.clearAllBits();
2646         break;
2647       }
2648 
2649       if ((unsigned)M < NumElts)
2650         DemandedLHS.setBit((unsigned)M % NumElts);
2651       else
2652         DemandedRHS.setBit((unsigned)M % NumElts);
2653     }
2654     // Known bits are the values that are shared by every demanded element.
2655     if (!!DemandedLHS) {
2656       SDValue LHS = Op.getOperand(0);
2657       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2658       Known.One &= Known2.One;
2659       Known.Zero &= Known2.Zero;
2660     }
2661     // If we don't know any bits, early out.
2662     if (Known.isUnknown())
2663       break;
2664     if (!!DemandedRHS) {
2665       SDValue RHS = Op.getOperand(1);
2666       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2667       Known.One &= Known2.One;
2668       Known.Zero &= Known2.Zero;
2669     }
2670     break;
2671   }
2672   case ISD::CONCAT_VECTORS: {
2673     // Split DemandedElts and test each of the demanded subvectors.
2674     Known.Zero.setAllBits(); Known.One.setAllBits();
2675     EVT SubVectorVT = Op.getOperand(0).getValueType();
2676     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2677     unsigned NumSubVectors = Op.getNumOperands();
2678     for (unsigned i = 0; i != NumSubVectors; ++i) {
2679       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2680       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2681       if (!!DemandedSub) {
2682         SDValue Sub = Op.getOperand(i);
2683         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2684         Known.One &= Known2.One;
2685         Known.Zero &= Known2.Zero;
2686       }
2687       // If we don't know any bits, early out.
2688       if (Known.isUnknown())
2689         break;
2690     }
2691     break;
2692   }
2693   case ISD::INSERT_SUBVECTOR: {
2694     // Demand any elements from the subvector and the remainder from the src its
2695     // inserted into.
2696     SDValue Src = Op.getOperand(0);
2697     SDValue Sub = Op.getOperand(1);
2698     uint64_t Idx = Op.getConstantOperandVal(2);
2699     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2700     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2701     APInt DemandedSrcElts = DemandedElts;
2702     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2703 
2704     Known.One.setAllBits();
2705     Known.Zero.setAllBits();
2706     if (!!DemandedSubElts) {
2707       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2708       if (Known.isUnknown())
2709         break; // early-out.
2710     }
2711     if (!!DemandedSrcElts) {
2712       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2713       Known.One &= Known2.One;
2714       Known.Zero &= Known2.Zero;
2715     }
2716     break;
2717   }
2718   case ISD::EXTRACT_SUBVECTOR: {
2719     // Offset the demanded elts by the subvector index.
2720     SDValue Src = Op.getOperand(0);
2721     uint64_t Idx = Op.getConstantOperandVal(1);
2722     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2723     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2724     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2725     break;
2726   }
2727   case ISD::SCALAR_TO_VECTOR: {
2728     // We know about scalar_to_vector as much as we know about it source,
2729     // which becomes the first element of otherwise unknown vector.
2730     if (DemandedElts != 1)
2731       break;
2732 
2733     SDValue N0 = Op.getOperand(0);
2734     Known = computeKnownBits(N0, Depth + 1);
2735     if (N0.getValueSizeInBits() != BitWidth)
2736       Known = Known.trunc(BitWidth);
2737 
2738     break;
2739   }
2740   case ISD::BITCAST: {
2741     SDValue N0 = Op.getOperand(0);
2742     EVT SubVT = N0.getValueType();
2743     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2744 
2745     // Ignore bitcasts from unsupported types.
2746     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2747       break;
2748 
2749     // Fast handling of 'identity' bitcasts.
2750     if (BitWidth == SubBitWidth) {
2751       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2752       break;
2753     }
2754 
2755     bool IsLE = getDataLayout().isLittleEndian();
2756 
2757     // Bitcast 'small element' vector to 'large element' scalar/vector.
2758     if ((BitWidth % SubBitWidth) == 0) {
2759       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2760 
2761       // Collect known bits for the (larger) output by collecting the known
2762       // bits from each set of sub elements and shift these into place.
2763       // We need to separately call computeKnownBits for each set of
2764       // sub elements as the knownbits for each is likely to be different.
2765       unsigned SubScale = BitWidth / SubBitWidth;
2766       APInt SubDemandedElts(NumElts * SubScale, 0);
2767       for (unsigned i = 0; i != NumElts; ++i)
2768         if (DemandedElts[i])
2769           SubDemandedElts.setBit(i * SubScale);
2770 
2771       for (unsigned i = 0; i != SubScale; ++i) {
2772         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2773                          Depth + 1);
2774         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2775         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2776         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2777       }
2778     }
2779 
2780     // Bitcast 'large element' scalar/vector to 'small element' vector.
2781     if ((SubBitWidth % BitWidth) == 0) {
2782       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2783 
2784       // Collect known bits for the (smaller) output by collecting the known
2785       // bits from the overlapping larger input elements and extracting the
2786       // sub sections we actually care about.
2787       unsigned SubScale = SubBitWidth / BitWidth;
2788       APInt SubDemandedElts(NumElts / SubScale, 0);
2789       for (unsigned i = 0; i != NumElts; ++i)
2790         if (DemandedElts[i])
2791           SubDemandedElts.setBit(i / SubScale);
2792 
2793       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2794 
2795       Known.Zero.setAllBits(); Known.One.setAllBits();
2796       for (unsigned i = 0; i != NumElts; ++i)
2797         if (DemandedElts[i]) {
2798           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2799           unsigned Offset = (Shifts % SubScale) * BitWidth;
2800           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2801           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2802           // If we don't know any bits, early out.
2803           if (Known.isUnknown())
2804             break;
2805         }
2806     }
2807     break;
2808   }
2809   case ISD::AND:
2810     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2811     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2812 
2813     Known &= Known2;
2814     break;
2815   case ISD::OR:
2816     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2817     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2818 
2819     Known |= Known2;
2820     break;
2821   case ISD::XOR:
2822     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2823     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2824 
2825     Known ^= Known2;
2826     break;
2827   case ISD::MUL: {
2828     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2829     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2830 
2831     // If low bits are zero in either operand, output low known-0 bits.
2832     // Also compute a conservative estimate for high known-0 bits.
2833     // More trickiness is possible, but this is sufficient for the
2834     // interesting case of alignment computation.
2835     unsigned TrailZ = Known.countMinTrailingZeros() +
2836                       Known2.countMinTrailingZeros();
2837     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2838                                Known2.countMinLeadingZeros(),
2839                                BitWidth) - BitWidth;
2840 
2841     Known.resetAll();
2842     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2843     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2844     break;
2845   }
2846   case ISD::UDIV: {
2847     // For the purposes of computing leading zeros we can conservatively
2848     // treat a udiv as a logical right shift by the power of 2 known to
2849     // be less than the denominator.
2850     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2851     unsigned LeadZ = Known2.countMinLeadingZeros();
2852 
2853     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2854     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2855     if (RHSMaxLeadingZeros != BitWidth)
2856       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2857 
2858     Known.Zero.setHighBits(LeadZ);
2859     break;
2860   }
2861   case ISD::SELECT:
2862   case ISD::VSELECT:
2863     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2864     // If we don't know any bits, early out.
2865     if (Known.isUnknown())
2866       break;
2867     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2868 
2869     // Only known if known in both the LHS and RHS.
2870     Known.One &= Known2.One;
2871     Known.Zero &= Known2.Zero;
2872     break;
2873   case ISD::SELECT_CC:
2874     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2875     // If we don't know any bits, early out.
2876     if (Known.isUnknown())
2877       break;
2878     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2879 
2880     // Only known if known in both the LHS and RHS.
2881     Known.One &= Known2.One;
2882     Known.Zero &= Known2.Zero;
2883     break;
2884   case ISD::SMULO:
2885   case ISD::UMULO:
2886   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2887     if (Op.getResNo() != 1)
2888       break;
2889     // The boolean result conforms to getBooleanContents.
2890     // If we know the result of a setcc has the top bits zero, use this info.
2891     // We know that we have an integer-based boolean since these operations
2892     // are only available for integer.
2893     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2894             TargetLowering::ZeroOrOneBooleanContent &&
2895         BitWidth > 1)
2896       Known.Zero.setBitsFrom(1);
2897     break;
2898   case ISD::SETCC:
2899   case ISD::STRICT_FSETCC:
2900   case ISD::STRICT_FSETCCS: {
2901     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2902     // If we know the result of a setcc has the top bits zero, use this info.
2903     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2904             TargetLowering::ZeroOrOneBooleanContent &&
2905         BitWidth > 1)
2906       Known.Zero.setBitsFrom(1);
2907     break;
2908   }
2909   case ISD::SHL:
2910     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2911 
2912     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2913       unsigned Shift = ShAmt->getZExtValue();
2914       Known.Zero <<= Shift;
2915       Known.One <<= Shift;
2916       // Low bits are known zero.
2917       Known.Zero.setLowBits(Shift);
2918       break;
2919     }
2920 
2921     // No matter the shift amount, the trailing zeros will stay zero.
2922     Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros());
2923     Known.One.clearAllBits();
2924 
2925     // Minimum shift low bits are known zero.
2926     if (const APInt *ShMinAmt =
2927             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2928       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2929     break;
2930   case ISD::SRL:
2931     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2932 
2933     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2934       unsigned Shift = ShAmt->getZExtValue();
2935       Known.Zero.lshrInPlace(Shift);
2936       Known.One.lshrInPlace(Shift);
2937       // High bits are known zero.
2938       Known.Zero.setHighBits(Shift);
2939       break;
2940     }
2941 
2942     // No matter the shift amount, the leading zeros will stay zero.
2943     Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros());
2944     Known.One.clearAllBits();
2945 
2946     // Minimum shift high bits are known zero.
2947     if (const APInt *ShMinAmt =
2948             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2949       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2950     break;
2951   case ISD::SRA:
2952     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2953       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2954       unsigned Shift = ShAmt->getZExtValue();
2955       // Sign extend known zero/one bit (else is unknown).
2956       Known.Zero.ashrInPlace(Shift);
2957       Known.One.ashrInPlace(Shift);
2958     }
2959     break;
2960   case ISD::FSHL:
2961   case ISD::FSHR:
2962     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2963       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2964 
2965       // For fshl, 0-shift returns the 1st arg.
2966       // For fshr, 0-shift returns the 2nd arg.
2967       if (Amt == 0) {
2968         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2969                                  DemandedElts, Depth + 1);
2970         break;
2971       }
2972 
2973       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2974       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2975       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2976       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2977       if (Opcode == ISD::FSHL) {
2978         Known.One <<= Amt;
2979         Known.Zero <<= Amt;
2980         Known2.One.lshrInPlace(BitWidth - Amt);
2981         Known2.Zero.lshrInPlace(BitWidth - Amt);
2982       } else {
2983         Known.One <<= BitWidth - Amt;
2984         Known.Zero <<= BitWidth - Amt;
2985         Known2.One.lshrInPlace(Amt);
2986         Known2.Zero.lshrInPlace(Amt);
2987       }
2988       Known.One |= Known2.One;
2989       Known.Zero |= Known2.Zero;
2990     }
2991     break;
2992   case ISD::SIGN_EXTEND_INREG: {
2993     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2994     unsigned EBits = EVT.getScalarSizeInBits();
2995 
2996     // Sign extension.  Compute the demanded bits in the result that are not
2997     // present in the input.
2998     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2999 
3000     APInt InSignMask = APInt::getSignMask(EBits);
3001     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
3002 
3003     // If the sign extended bits are demanded, we know that the sign
3004     // bit is demanded.
3005     InSignMask = InSignMask.zext(BitWidth);
3006     if (NewBits.getBoolValue())
3007       InputDemandedBits |= InSignMask;
3008 
3009     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3010     Known.One &= InputDemandedBits;
3011     Known.Zero &= InputDemandedBits;
3012 
3013     // If the sign bit of the input is known set or clear, then we know the
3014     // top bits of the result.
3015     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
3016       Known.Zero |= NewBits;
3017       Known.One  &= ~NewBits;
3018     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
3019       Known.One  |= NewBits;
3020       Known.Zero &= ~NewBits;
3021     } else {                              // Input sign bit unknown
3022       Known.Zero &= ~NewBits;
3023       Known.One  &= ~NewBits;
3024     }
3025     break;
3026   }
3027   case ISD::CTTZ:
3028   case ISD::CTTZ_ZERO_UNDEF: {
3029     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3030     // If we have a known 1, its position is our upper bound.
3031     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3032     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3033     Known.Zero.setBitsFrom(LowBits);
3034     break;
3035   }
3036   case ISD::CTLZ:
3037   case ISD::CTLZ_ZERO_UNDEF: {
3038     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3039     // If we have a known 1, its position is our upper bound.
3040     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3041     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3042     Known.Zero.setBitsFrom(LowBits);
3043     break;
3044   }
3045   case ISD::CTPOP: {
3046     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3047     // If we know some of the bits are zero, they can't be one.
3048     unsigned PossibleOnes = Known2.countMaxPopulation();
3049     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3050     break;
3051   }
3052   case ISD::LOAD: {
3053     LoadSDNode *LD = cast<LoadSDNode>(Op);
3054     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3055     if (ISD::isNON_EXTLoad(LD) && Cst) {
3056       // Determine any common known bits from the loaded constant pool value.
3057       Type *CstTy = Cst->getType();
3058       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3059         // If its a vector splat, then we can (quickly) reuse the scalar path.
3060         // NOTE: We assume all elements match and none are UNDEF.
3061         if (CstTy->isVectorTy()) {
3062           if (const Constant *Splat = Cst->getSplatValue()) {
3063             Cst = Splat;
3064             CstTy = Cst->getType();
3065           }
3066         }
3067         // TODO - do we need to handle different bitwidths?
3068         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3069           // Iterate across all vector elements finding common known bits.
3070           Known.One.setAllBits();
3071           Known.Zero.setAllBits();
3072           for (unsigned i = 0; i != NumElts; ++i) {
3073             if (!DemandedElts[i])
3074               continue;
3075             if (Constant *Elt = Cst->getAggregateElement(i)) {
3076               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3077                 const APInt &Value = CInt->getValue();
3078                 Known.One &= Value;
3079                 Known.Zero &= ~Value;
3080                 continue;
3081               }
3082               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3083                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3084                 Known.One &= Value;
3085                 Known.Zero &= ~Value;
3086                 continue;
3087               }
3088             }
3089             Known.One.clearAllBits();
3090             Known.Zero.clearAllBits();
3091             break;
3092           }
3093         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3094           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3095             const APInt &Value = CInt->getValue();
3096             Known.One = Value;
3097             Known.Zero = ~Value;
3098           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3099             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3100             Known.One = Value;
3101             Known.Zero = ~Value;
3102           }
3103         }
3104       }
3105     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3106       // If this is a ZEXTLoad and we are looking at the loaded value.
3107       EVT VT = LD->getMemoryVT();
3108       unsigned MemBits = VT.getScalarSizeInBits();
3109       Known.Zero.setBitsFrom(MemBits);
3110     } else if (const MDNode *Ranges = LD->getRanges()) {
3111       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3112         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3113     }
3114     break;
3115   }
3116   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3117     EVT InVT = Op.getOperand(0).getValueType();
3118     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3119     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3120     Known = Known.zext(BitWidth);
3121     break;
3122   }
3123   case ISD::ZERO_EXTEND: {
3124     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3125     Known = Known.zext(BitWidth);
3126     break;
3127   }
3128   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3129     EVT InVT = Op.getOperand(0).getValueType();
3130     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3131     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3132     // If the sign bit is known to be zero or one, then sext will extend
3133     // it to the top bits, else it will just zext.
3134     Known = Known.sext(BitWidth);
3135     break;
3136   }
3137   case ISD::SIGN_EXTEND: {
3138     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3139     // If the sign bit is known to be zero or one, then sext will extend
3140     // it to the top bits, else it will just zext.
3141     Known = Known.sext(BitWidth);
3142     break;
3143   }
3144   case ISD::ANY_EXTEND_VECTOR_INREG: {
3145     EVT InVT = Op.getOperand(0).getValueType();
3146     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3147     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3148     Known = Known.anyext(BitWidth);
3149     break;
3150   }
3151   case ISD::ANY_EXTEND: {
3152     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3153     Known = Known.anyext(BitWidth);
3154     break;
3155   }
3156   case ISD::TRUNCATE: {
3157     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3158     Known = Known.trunc(BitWidth);
3159     break;
3160   }
3161   case ISD::AssertZext: {
3162     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3163     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3164     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3165     Known.Zero |= (~InMask);
3166     Known.One  &= (~Known.Zero);
3167     break;
3168   }
3169   case ISD::AssertAlign: {
3170     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3171     assert(LogOfAlign != 0);
3172     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3173     // well as clearing one bits.
3174     Known.Zero.setLowBits(LogOfAlign);
3175     Known.One.clearLowBits(LogOfAlign);
3176     break;
3177   }
3178   case ISD::FGETSIGN:
3179     // All bits are zero except the low bit.
3180     Known.Zero.setBitsFrom(1);
3181     break;
3182   case ISD::USUBO:
3183   case ISD::SSUBO:
3184     if (Op.getResNo() == 1) {
3185       // If we know the result of a setcc has the top bits zero, use this info.
3186       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3187               TargetLowering::ZeroOrOneBooleanContent &&
3188           BitWidth > 1)
3189         Known.Zero.setBitsFrom(1);
3190       break;
3191     }
3192     LLVM_FALLTHROUGH;
3193   case ISD::SUB:
3194   case ISD::SUBC: {
3195     assert(Op.getResNo() == 0 &&
3196            "We only compute knownbits for the difference here.");
3197 
3198     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3199     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3200     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3201                                         Known, Known2);
3202     break;
3203   }
3204   case ISD::UADDO:
3205   case ISD::SADDO:
3206   case ISD::ADDCARRY:
3207     if (Op.getResNo() == 1) {
3208       // If we know the result of a setcc has the top bits zero, use this info.
3209       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3210               TargetLowering::ZeroOrOneBooleanContent &&
3211           BitWidth > 1)
3212         Known.Zero.setBitsFrom(1);
3213       break;
3214     }
3215     LLVM_FALLTHROUGH;
3216   case ISD::ADD:
3217   case ISD::ADDC:
3218   case ISD::ADDE: {
3219     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3220 
3221     // With ADDE and ADDCARRY, a carry bit may be added in.
3222     KnownBits Carry(1);
3223     if (Opcode == ISD::ADDE)
3224       // Can't track carry from glue, set carry to unknown.
3225       Carry.resetAll();
3226     else if (Opcode == ISD::ADDCARRY)
3227       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3228       // the trouble (how often will we find a known carry bit). And I haven't
3229       // tested this very much yet, but something like this might work:
3230       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3231       //   Carry = Carry.zextOrTrunc(1, false);
3232       Carry.resetAll();
3233     else
3234       Carry.setAllZero();
3235 
3236     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3237     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3238     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3239     break;
3240   }
3241   case ISD::SREM:
3242     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3243       const APInt &RA = Rem->getAPIntValue().abs();
3244       if (RA.isPowerOf2()) {
3245         APInt LowBits = RA - 1;
3246         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3247 
3248         // The low bits of the first operand are unchanged by the srem.
3249         Known.Zero = Known2.Zero & LowBits;
3250         Known.One = Known2.One & LowBits;
3251 
3252         // If the first operand is non-negative or has all low bits zero, then
3253         // the upper bits are all zero.
3254         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3255           Known.Zero |= ~LowBits;
3256 
3257         // If the first operand is negative and not all low bits are zero, then
3258         // the upper bits are all one.
3259         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3260           Known.One |= ~LowBits;
3261         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3262       }
3263     }
3264     break;
3265   case ISD::UREM: {
3266     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3267       const APInt &RA = Rem->getAPIntValue();
3268       if (RA.isPowerOf2()) {
3269         APInt LowBits = (RA - 1);
3270         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3271 
3272         // The upper bits are all zero, the lower ones are unchanged.
3273         Known.Zero = Known2.Zero | ~LowBits;
3274         Known.One = Known2.One & LowBits;
3275         break;
3276       }
3277     }
3278 
3279     // Since the result is less than or equal to either operand, any leading
3280     // zero bits in either operand must also exist in the result.
3281     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3282     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3283 
3284     uint32_t Leaders =
3285         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3286     Known.resetAll();
3287     Known.Zero.setHighBits(Leaders);
3288     break;
3289   }
3290   case ISD::EXTRACT_ELEMENT: {
3291     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3292     const unsigned Index = Op.getConstantOperandVal(1);
3293     const unsigned EltBitWidth = Op.getValueSizeInBits();
3294 
3295     // Remove low part of known bits mask
3296     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3297     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3298 
3299     // Remove high part of known bit mask
3300     Known = Known.trunc(EltBitWidth);
3301     break;
3302   }
3303   case ISD::EXTRACT_VECTOR_ELT: {
3304     SDValue InVec = Op.getOperand(0);
3305     SDValue EltNo = Op.getOperand(1);
3306     EVT VecVT = InVec.getValueType();
3307     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3308     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3309 
3310     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3311     // anything about the extended bits.
3312     if (BitWidth > EltBitWidth)
3313       Known = Known.trunc(EltBitWidth);
3314 
3315     // If we know the element index, just demand that vector element, else for
3316     // an unknown element index, ignore DemandedElts and demand them all.
3317     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3318     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3319     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3320       DemandedSrcElts =
3321           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3322 
3323     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3324     if (BitWidth > EltBitWidth)
3325       Known = Known.anyext(BitWidth);
3326     break;
3327   }
3328   case ISD::INSERT_VECTOR_ELT: {
3329     // If we know the element index, split the demand between the
3330     // source vector and the inserted element, otherwise assume we need
3331     // the original demanded vector elements and the value.
3332     SDValue InVec = Op.getOperand(0);
3333     SDValue InVal = Op.getOperand(1);
3334     SDValue EltNo = Op.getOperand(2);
3335     bool DemandedVal = true;
3336     APInt DemandedVecElts = DemandedElts;
3337     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3338     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3339       unsigned EltIdx = CEltNo->getZExtValue();
3340       DemandedVal = !!DemandedElts[EltIdx];
3341       DemandedVecElts.clearBit(EltIdx);
3342     }
3343     Known.One.setAllBits();
3344     Known.Zero.setAllBits();
3345     if (DemandedVal) {
3346       Known2 = computeKnownBits(InVal, Depth + 1);
3347       Known.One &= Known2.One.zextOrTrunc(BitWidth);
3348       Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth);
3349     }
3350     if (!!DemandedVecElts) {
3351       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3352       Known.One &= Known2.One;
3353       Known.Zero &= Known2.Zero;
3354     }
3355     break;
3356   }
3357   case ISD::BITREVERSE: {
3358     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3359     Known.Zero = Known2.Zero.reverseBits();
3360     Known.One = Known2.One.reverseBits();
3361     break;
3362   }
3363   case ISD::BSWAP: {
3364     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3365     Known.Zero = Known2.Zero.byteSwap();
3366     Known.One = Known2.One.byteSwap();
3367     break;
3368   }
3369   case ISD::ABS: {
3370     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3371 
3372     // If the source's MSB is zero then we know the rest of the bits already.
3373     if (Known2.isNonNegative()) {
3374       Known.Zero = Known2.Zero;
3375       Known.One = Known2.One;
3376       break;
3377     }
3378 
3379     // We only know that the absolute values's MSB will be zero iff there is
3380     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3381     Known2.One.clearSignBit();
3382     if (Known2.One.getBoolValue()) {
3383       Known.Zero = APInt::getSignMask(BitWidth);
3384       break;
3385     }
3386     break;
3387   }
3388   case ISD::UMIN: {
3389     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3390     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3391 
3392     // UMIN - we know that the result will have the maximum of the
3393     // known zero leading bits of the inputs.
3394     unsigned LeadZero = Known.countMinLeadingZeros();
3395     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3396 
3397     Known.Zero &= Known2.Zero;
3398     Known.One &= Known2.One;
3399     Known.Zero.setHighBits(LeadZero);
3400     break;
3401   }
3402   case ISD::UMAX: {
3403     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3404     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3405 
3406     // UMAX - we know that the result will have the maximum of the
3407     // known one leading bits of the inputs.
3408     unsigned LeadOne = Known.countMinLeadingOnes();
3409     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3410 
3411     Known.Zero &= Known2.Zero;
3412     Known.One &= Known2.One;
3413     Known.One.setHighBits(LeadOne);
3414     break;
3415   }
3416   case ISD::SMIN:
3417   case ISD::SMAX: {
3418     // If we have a clamp pattern, we know that the number of sign bits will be
3419     // the minimum of the clamp min/max range.
3420     bool IsMax = (Opcode == ISD::SMAX);
3421     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3422     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3423       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3424         CstHigh =
3425             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3426     if (CstLow && CstHigh) {
3427       if (!IsMax)
3428         std::swap(CstLow, CstHigh);
3429 
3430       const APInt &ValueLow = CstLow->getAPIntValue();
3431       const APInt &ValueHigh = CstHigh->getAPIntValue();
3432       if (ValueLow.sle(ValueHigh)) {
3433         unsigned LowSignBits = ValueLow.getNumSignBits();
3434         unsigned HighSignBits = ValueHigh.getNumSignBits();
3435         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3436         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3437           Known.One.setHighBits(MinSignBits);
3438           break;
3439         }
3440         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3441           Known.Zero.setHighBits(MinSignBits);
3442           break;
3443         }
3444       }
3445     }
3446 
3447     // Fallback - just get the shared known bits of the operands.
3448     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3449     if (Known.isUnknown()) break; // Early-out
3450     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3451     Known.Zero &= Known2.Zero;
3452     Known.One &= Known2.One;
3453     break;
3454   }
3455   case ISD::FrameIndex:
3456   case ISD::TargetFrameIndex:
3457     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3458                                        Known, getMachineFunction());
3459     break;
3460 
3461   default:
3462     if (Opcode < ISD::BUILTIN_OP_END)
3463       break;
3464     LLVM_FALLTHROUGH;
3465   case ISD::INTRINSIC_WO_CHAIN:
3466   case ISD::INTRINSIC_W_CHAIN:
3467   case ISD::INTRINSIC_VOID:
3468     // Allow the target to implement this method for its nodes.
3469     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3470     break;
3471   }
3472 
3473   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3474   return Known;
3475 }
3476 
3477 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3478                                                              SDValue N1) const {
3479   // X + 0 never overflow
3480   if (isNullConstant(N1))
3481     return OFK_Never;
3482 
3483   KnownBits N1Known = computeKnownBits(N1);
3484   if (N1Known.Zero.getBoolValue()) {
3485     KnownBits N0Known = computeKnownBits(N0);
3486 
3487     bool overflow;
3488     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3489     if (!overflow)
3490       return OFK_Never;
3491   }
3492 
3493   // mulhi + 1 never overflow
3494   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3495       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3496     return OFK_Never;
3497 
3498   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3499     KnownBits N0Known = computeKnownBits(N0);
3500 
3501     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3502       return OFK_Never;
3503   }
3504 
3505   return OFK_Sometime;
3506 }
3507 
3508 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3509   EVT OpVT = Val.getValueType();
3510   unsigned BitWidth = OpVT.getScalarSizeInBits();
3511 
3512   // Is the constant a known power of 2?
3513   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3514     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3515 
3516   // A left-shift of a constant one will have exactly one bit set because
3517   // shifting the bit off the end is undefined.
3518   if (Val.getOpcode() == ISD::SHL) {
3519     auto *C = isConstOrConstSplat(Val.getOperand(0));
3520     if (C && C->getAPIntValue() == 1)
3521       return true;
3522   }
3523 
3524   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3525   // one bit set.
3526   if (Val.getOpcode() == ISD::SRL) {
3527     auto *C = isConstOrConstSplat(Val.getOperand(0));
3528     if (C && C->getAPIntValue().isSignMask())
3529       return true;
3530   }
3531 
3532   // Are all operands of a build vector constant powers of two?
3533   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3534     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3535           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3536             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3537           return false;
3538         }))
3539       return true;
3540 
3541   // More could be done here, though the above checks are enough
3542   // to handle some common cases.
3543 
3544   // Fall back to computeKnownBits to catch other known cases.
3545   KnownBits Known = computeKnownBits(Val);
3546   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3547 }
3548 
3549 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3550   EVT VT = Op.getValueType();
3551 
3552   // TODO: Assume we don't know anything for now.
3553   if (VT.isScalableVector())
3554     return 1;
3555 
3556   APInt DemandedElts = VT.isVector()
3557                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3558                            : APInt(1, 1);
3559   return ComputeNumSignBits(Op, DemandedElts, Depth);
3560 }
3561 
3562 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3563                                           unsigned Depth) const {
3564   EVT VT = Op.getValueType();
3565   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3566   unsigned VTBits = VT.getScalarSizeInBits();
3567   unsigned NumElts = DemandedElts.getBitWidth();
3568   unsigned Tmp, Tmp2;
3569   unsigned FirstAnswer = 1;
3570 
3571   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3572     const APInt &Val = C->getAPIntValue();
3573     return Val.getNumSignBits();
3574   }
3575 
3576   if (Depth >= MaxRecursionDepth)
3577     return 1;  // Limit search depth.
3578 
3579   if (!DemandedElts || VT.isScalableVector())
3580     return 1;  // No demanded elts, better to assume we don't know anything.
3581 
3582   unsigned Opcode = Op.getOpcode();
3583   switch (Opcode) {
3584   default: break;
3585   case ISD::AssertSext:
3586     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3587     return VTBits-Tmp+1;
3588   case ISD::AssertZext:
3589     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3590     return VTBits-Tmp;
3591 
3592   case ISD::BUILD_VECTOR:
3593     Tmp = VTBits;
3594     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3595       if (!DemandedElts[i])
3596         continue;
3597 
3598       SDValue SrcOp = Op.getOperand(i);
3599       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3600 
3601       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3602       if (SrcOp.getValueSizeInBits() != VTBits) {
3603         assert(SrcOp.getValueSizeInBits() > VTBits &&
3604                "Expected BUILD_VECTOR implicit truncation");
3605         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3606         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3607       }
3608       Tmp = std::min(Tmp, Tmp2);
3609     }
3610     return Tmp;
3611 
3612   case ISD::VECTOR_SHUFFLE: {
3613     // Collect the minimum number of sign bits that are shared by every vector
3614     // element referenced by the shuffle.
3615     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3616     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3617     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3618     for (unsigned i = 0; i != NumElts; ++i) {
3619       int M = SVN->getMaskElt(i);
3620       if (!DemandedElts[i])
3621         continue;
3622       // For UNDEF elements, we don't know anything about the common state of
3623       // the shuffle result.
3624       if (M < 0)
3625         return 1;
3626       if ((unsigned)M < NumElts)
3627         DemandedLHS.setBit((unsigned)M % NumElts);
3628       else
3629         DemandedRHS.setBit((unsigned)M % NumElts);
3630     }
3631     Tmp = std::numeric_limits<unsigned>::max();
3632     if (!!DemandedLHS)
3633       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3634     if (!!DemandedRHS) {
3635       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3636       Tmp = std::min(Tmp, Tmp2);
3637     }
3638     // If we don't know anything, early out and try computeKnownBits fall-back.
3639     if (Tmp == 1)
3640       break;
3641     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3642     return Tmp;
3643   }
3644 
3645   case ISD::BITCAST: {
3646     SDValue N0 = Op.getOperand(0);
3647     EVT SrcVT = N0.getValueType();
3648     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3649 
3650     // Ignore bitcasts from unsupported types..
3651     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3652       break;
3653 
3654     // Fast handling of 'identity' bitcasts.
3655     if (VTBits == SrcBits)
3656       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3657 
3658     bool IsLE = getDataLayout().isLittleEndian();
3659 
3660     // Bitcast 'large element' scalar/vector to 'small element' vector.
3661     if ((SrcBits % VTBits) == 0) {
3662       assert(VT.isVector() && "Expected bitcast to vector");
3663 
3664       unsigned Scale = SrcBits / VTBits;
3665       APInt SrcDemandedElts(NumElts / Scale, 0);
3666       for (unsigned i = 0; i != NumElts; ++i)
3667         if (DemandedElts[i])
3668           SrcDemandedElts.setBit(i / Scale);
3669 
3670       // Fast case - sign splat can be simply split across the small elements.
3671       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3672       if (Tmp == SrcBits)
3673         return VTBits;
3674 
3675       // Slow case - determine how far the sign extends into each sub-element.
3676       Tmp2 = VTBits;
3677       for (unsigned i = 0; i != NumElts; ++i)
3678         if (DemandedElts[i]) {
3679           unsigned SubOffset = i % Scale;
3680           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3681           SubOffset = SubOffset * VTBits;
3682           if (Tmp <= SubOffset)
3683             return 1;
3684           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3685         }
3686       return Tmp2;
3687     }
3688     break;
3689   }
3690 
3691   case ISD::SIGN_EXTEND:
3692     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3693     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3694   case ISD::SIGN_EXTEND_INREG:
3695     // Max of the input and what this extends.
3696     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3697     Tmp = VTBits-Tmp+1;
3698     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3699     return std::max(Tmp, Tmp2);
3700   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3701     SDValue Src = Op.getOperand(0);
3702     EVT SrcVT = Src.getValueType();
3703     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3704     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3705     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3706   }
3707   case ISD::SRA:
3708     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3709     // SRA X, C -> adds C sign bits.
3710     if (const APInt *ShAmt =
3711             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3712       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3713     return Tmp;
3714   case ISD::SHL:
3715     if (const APInt *ShAmt =
3716             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3717       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3718       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3719       if (ShAmt->ult(Tmp))
3720         return Tmp - ShAmt->getZExtValue();
3721     }
3722     break;
3723   case ISD::AND:
3724   case ISD::OR:
3725   case ISD::XOR:    // NOT is handled here.
3726     // Logical binary ops preserve the number of sign bits at the worst.
3727     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3728     if (Tmp != 1) {
3729       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3730       FirstAnswer = std::min(Tmp, Tmp2);
3731       // We computed what we know about the sign bits as our first
3732       // answer. Now proceed to the generic code that uses
3733       // computeKnownBits, and pick whichever answer is better.
3734     }
3735     break;
3736 
3737   case ISD::SELECT:
3738   case ISD::VSELECT:
3739     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3740     if (Tmp == 1) return 1;  // Early out.
3741     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3742     return std::min(Tmp, Tmp2);
3743   case ISD::SELECT_CC:
3744     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3745     if (Tmp == 1) return 1;  // Early out.
3746     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3747     return std::min(Tmp, Tmp2);
3748 
3749   case ISD::SMIN:
3750   case ISD::SMAX: {
3751     // If we have a clamp pattern, we know that the number of sign bits will be
3752     // the minimum of the clamp min/max range.
3753     bool IsMax = (Opcode == ISD::SMAX);
3754     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3755     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3756       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3757         CstHigh =
3758             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3759     if (CstLow && CstHigh) {
3760       if (!IsMax)
3761         std::swap(CstLow, CstHigh);
3762       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3763         Tmp = CstLow->getAPIntValue().getNumSignBits();
3764         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3765         return std::min(Tmp, Tmp2);
3766       }
3767     }
3768 
3769     // Fallback - just get the minimum number of sign bits of the operands.
3770     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3771     if (Tmp == 1)
3772       return 1;  // Early out.
3773     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3774     return std::min(Tmp, Tmp2);
3775   }
3776   case ISD::UMIN:
3777   case ISD::UMAX:
3778     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3779     if (Tmp == 1)
3780       return 1;  // Early out.
3781     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3782     return std::min(Tmp, Tmp2);
3783   case ISD::SADDO:
3784   case ISD::UADDO:
3785   case ISD::SSUBO:
3786   case ISD::USUBO:
3787   case ISD::SMULO:
3788   case ISD::UMULO:
3789     if (Op.getResNo() != 1)
3790       break;
3791     // The boolean result conforms to getBooleanContents.  Fall through.
3792     // If setcc returns 0/-1, all bits are sign bits.
3793     // We know that we have an integer-based boolean since these operations
3794     // are only available for integer.
3795     if (TLI->getBooleanContents(VT.isVector(), false) ==
3796         TargetLowering::ZeroOrNegativeOneBooleanContent)
3797       return VTBits;
3798     break;
3799   case ISD::SETCC:
3800   case ISD::STRICT_FSETCC:
3801   case ISD::STRICT_FSETCCS: {
3802     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3803     // If setcc returns 0/-1, all bits are sign bits.
3804     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3805         TargetLowering::ZeroOrNegativeOneBooleanContent)
3806       return VTBits;
3807     break;
3808   }
3809   case ISD::ROTL:
3810   case ISD::ROTR:
3811     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3812 
3813     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3814     if (Tmp == VTBits)
3815       return VTBits;
3816 
3817     if (ConstantSDNode *C =
3818             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3819       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3820 
3821       // Handle rotate right by N like a rotate left by 32-N.
3822       if (Opcode == ISD::ROTR)
3823         RotAmt = (VTBits - RotAmt) % VTBits;
3824 
3825       // If we aren't rotating out all of the known-in sign bits, return the
3826       // number that are left.  This handles rotl(sext(x), 1) for example.
3827       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3828     }
3829     break;
3830   case ISD::ADD:
3831   case ISD::ADDC:
3832     // Add can have at most one carry bit.  Thus we know that the output
3833     // is, at worst, one more bit than the inputs.
3834     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3835     if (Tmp == 1) return 1; // Early out.
3836 
3837     // Special case decrementing a value (ADD X, -1):
3838     if (ConstantSDNode *CRHS =
3839             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3840       if (CRHS->isAllOnesValue()) {
3841         KnownBits Known =
3842             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3843 
3844         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3845         // sign bits set.
3846         if ((Known.Zero | 1).isAllOnesValue())
3847           return VTBits;
3848 
3849         // If we are subtracting one from a positive number, there is no carry
3850         // out of the result.
3851         if (Known.isNonNegative())
3852           return Tmp;
3853       }
3854 
3855     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3856     if (Tmp2 == 1) return 1; // Early out.
3857     return std::min(Tmp, Tmp2) - 1;
3858   case ISD::SUB:
3859     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3860     if (Tmp2 == 1) return 1; // Early out.
3861 
3862     // Handle NEG.
3863     if (ConstantSDNode *CLHS =
3864             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3865       if (CLHS->isNullValue()) {
3866         KnownBits Known =
3867             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3868         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3869         // sign bits set.
3870         if ((Known.Zero | 1).isAllOnesValue())
3871           return VTBits;
3872 
3873         // If the input is known to be positive (the sign bit is known clear),
3874         // the output of the NEG has the same number of sign bits as the input.
3875         if (Known.isNonNegative())
3876           return Tmp2;
3877 
3878         // Otherwise, we treat this like a SUB.
3879       }
3880 
3881     // Sub can have at most one carry bit.  Thus we know that the output
3882     // is, at worst, one more bit than the inputs.
3883     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3884     if (Tmp == 1) return 1; // Early out.
3885     return std::min(Tmp, Tmp2) - 1;
3886   case ISD::MUL: {
3887     // The output of the Mul can be at most twice the valid bits in the inputs.
3888     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3889     if (SignBitsOp0 == 1)
3890       break;
3891     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3892     if (SignBitsOp1 == 1)
3893       break;
3894     unsigned OutValidBits =
3895         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3896     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3897   }
3898   case ISD::TRUNCATE: {
3899     // Check if the sign bits of source go down as far as the truncated value.
3900     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3901     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3902     if (NumSrcSignBits > (NumSrcBits - VTBits))
3903       return NumSrcSignBits - (NumSrcBits - VTBits);
3904     break;
3905   }
3906   case ISD::EXTRACT_ELEMENT: {
3907     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3908     const int BitWidth = Op.getValueSizeInBits();
3909     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3910 
3911     // Get reverse index (starting from 1), Op1 value indexes elements from
3912     // little end. Sign starts at big end.
3913     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3914 
3915     // If the sign portion ends in our element the subtraction gives correct
3916     // result. Otherwise it gives either negative or > bitwidth result
3917     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3918   }
3919   case ISD::INSERT_VECTOR_ELT: {
3920     // If we know the element index, split the demand between the
3921     // source vector and the inserted element, otherwise assume we need
3922     // the original demanded vector elements and the value.
3923     SDValue InVec = Op.getOperand(0);
3924     SDValue InVal = Op.getOperand(1);
3925     SDValue EltNo = Op.getOperand(2);
3926     bool DemandedVal = true;
3927     APInt DemandedVecElts = DemandedElts;
3928     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3929     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3930       unsigned EltIdx = CEltNo->getZExtValue();
3931       DemandedVal = !!DemandedElts[EltIdx];
3932       DemandedVecElts.clearBit(EltIdx);
3933     }
3934     Tmp = std::numeric_limits<unsigned>::max();
3935     if (DemandedVal) {
3936       // TODO - handle implicit truncation of inserted elements.
3937       if (InVal.getScalarValueSizeInBits() != VTBits)
3938         break;
3939       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3940       Tmp = std::min(Tmp, Tmp2);
3941     }
3942     if (!!DemandedVecElts) {
3943       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3944       Tmp = std::min(Tmp, Tmp2);
3945     }
3946     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3947     return Tmp;
3948   }
3949   case ISD::EXTRACT_VECTOR_ELT: {
3950     SDValue InVec = Op.getOperand(0);
3951     SDValue EltNo = Op.getOperand(1);
3952     EVT VecVT = InVec.getValueType();
3953     const unsigned BitWidth = Op.getValueSizeInBits();
3954     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3955     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3956 
3957     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3958     // anything about sign bits. But if the sizes match we can derive knowledge
3959     // about sign bits from the vector operand.
3960     if (BitWidth != EltBitWidth)
3961       break;
3962 
3963     // If we know the element index, just demand that vector element, else for
3964     // an unknown element index, ignore DemandedElts and demand them all.
3965     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3966     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3967     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3968       DemandedSrcElts =
3969           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3970 
3971     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3972   }
3973   case ISD::EXTRACT_SUBVECTOR: {
3974     // Offset the demanded elts by the subvector index.
3975     SDValue Src = Op.getOperand(0);
3976     uint64_t Idx = Op.getConstantOperandVal(1);
3977     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3978     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3979     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3980   }
3981   case ISD::CONCAT_VECTORS: {
3982     // Determine the minimum number of sign bits across all demanded
3983     // elts of the input vectors. Early out if the result is already 1.
3984     Tmp = std::numeric_limits<unsigned>::max();
3985     EVT SubVectorVT = Op.getOperand(0).getValueType();
3986     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3987     unsigned NumSubVectors = Op.getNumOperands();
3988     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3989       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3990       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3991       if (!DemandedSub)
3992         continue;
3993       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3994       Tmp = std::min(Tmp, Tmp2);
3995     }
3996     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3997     return Tmp;
3998   }
3999   case ISD::INSERT_SUBVECTOR: {
4000     // Demand any elements from the subvector and the remainder from the src its
4001     // inserted into.
4002     SDValue Src = Op.getOperand(0);
4003     SDValue Sub = Op.getOperand(1);
4004     uint64_t Idx = Op.getConstantOperandVal(2);
4005     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4006     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4007     APInt DemandedSrcElts = DemandedElts;
4008     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4009 
4010     Tmp = std::numeric_limits<unsigned>::max();
4011     if (!!DemandedSubElts) {
4012       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4013       if (Tmp == 1)
4014         return 1; // early-out
4015     }
4016     if (!!DemandedSrcElts) {
4017       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4018       Tmp = std::min(Tmp, Tmp2);
4019     }
4020     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4021     return Tmp;
4022   }
4023   }
4024 
4025   // If we are looking at the loaded value of the SDNode.
4026   if (Op.getResNo() == 0) {
4027     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4028     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4029       unsigned ExtType = LD->getExtensionType();
4030       switch (ExtType) {
4031       default: break;
4032       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4033         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4034         return VTBits - Tmp + 1;
4035       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4036         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4037         return VTBits - Tmp;
4038       case ISD::NON_EXTLOAD:
4039         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4040           // We only need to handle vectors - computeKnownBits should handle
4041           // scalar cases.
4042           Type *CstTy = Cst->getType();
4043           if (CstTy->isVectorTy() &&
4044               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4045             Tmp = VTBits;
4046             for (unsigned i = 0; i != NumElts; ++i) {
4047               if (!DemandedElts[i])
4048                 continue;
4049               if (Constant *Elt = Cst->getAggregateElement(i)) {
4050                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4051                   const APInt &Value = CInt->getValue();
4052                   Tmp = std::min(Tmp, Value.getNumSignBits());
4053                   continue;
4054                 }
4055                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4056                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4057                   Tmp = std::min(Tmp, Value.getNumSignBits());
4058                   continue;
4059                 }
4060               }
4061               // Unknown type. Conservatively assume no bits match sign bit.
4062               return 1;
4063             }
4064             return Tmp;
4065           }
4066         }
4067         break;
4068       }
4069     }
4070   }
4071 
4072   // Allow the target to implement this method for its nodes.
4073   if (Opcode >= ISD::BUILTIN_OP_END ||
4074       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4075       Opcode == ISD::INTRINSIC_W_CHAIN ||
4076       Opcode == ISD::INTRINSIC_VOID) {
4077     unsigned NumBits =
4078         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4079     if (NumBits > 1)
4080       FirstAnswer = std::max(FirstAnswer, NumBits);
4081   }
4082 
4083   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4084   // use this information.
4085   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4086 
4087   APInt Mask;
4088   if (Known.isNonNegative()) {        // sign bit is 0
4089     Mask = Known.Zero;
4090   } else if (Known.isNegative()) {  // sign bit is 1;
4091     Mask = Known.One;
4092   } else {
4093     // Nothing known.
4094     return FirstAnswer;
4095   }
4096 
4097   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4098   // the number of identical bits in the top of the input value.
4099   Mask <<= Mask.getBitWidth()-VTBits;
4100   return std::max(FirstAnswer, Mask.countLeadingOnes());
4101 }
4102 
4103 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4104   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4105       !isa<ConstantSDNode>(Op.getOperand(1)))
4106     return false;
4107 
4108   if (Op.getOpcode() == ISD::OR &&
4109       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4110     return false;
4111 
4112   return true;
4113 }
4114 
4115 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4116   // If we're told that NaNs won't happen, assume they won't.
4117   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4118     return true;
4119 
4120   if (Depth >= MaxRecursionDepth)
4121     return false; // Limit search depth.
4122 
4123   // TODO: Handle vectors.
4124   // If the value is a constant, we can obviously see if it is a NaN or not.
4125   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4126     return !C->getValueAPF().isNaN() ||
4127            (SNaN && !C->getValueAPF().isSignaling());
4128   }
4129 
4130   unsigned Opcode = Op.getOpcode();
4131   switch (Opcode) {
4132   case ISD::FADD:
4133   case ISD::FSUB:
4134   case ISD::FMUL:
4135   case ISD::FDIV:
4136   case ISD::FREM:
4137   case ISD::FSIN:
4138   case ISD::FCOS: {
4139     if (SNaN)
4140       return true;
4141     // TODO: Need isKnownNeverInfinity
4142     return false;
4143   }
4144   case ISD::FCANONICALIZE:
4145   case ISD::FEXP:
4146   case ISD::FEXP2:
4147   case ISD::FTRUNC:
4148   case ISD::FFLOOR:
4149   case ISD::FCEIL:
4150   case ISD::FROUND:
4151   case ISD::FROUNDEVEN:
4152   case ISD::FRINT:
4153   case ISD::FNEARBYINT: {
4154     if (SNaN)
4155       return true;
4156     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4157   }
4158   case ISD::FABS:
4159   case ISD::FNEG:
4160   case ISD::FCOPYSIGN: {
4161     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4162   }
4163   case ISD::SELECT:
4164     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4165            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4166   case ISD::FP_EXTEND:
4167   case ISD::FP_ROUND: {
4168     if (SNaN)
4169       return true;
4170     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4171   }
4172   case ISD::SINT_TO_FP:
4173   case ISD::UINT_TO_FP:
4174     return true;
4175   case ISD::FMA:
4176   case ISD::FMAD: {
4177     if (SNaN)
4178       return true;
4179     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4180            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4181            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4182   }
4183   case ISD::FSQRT: // Need is known positive
4184   case ISD::FLOG:
4185   case ISD::FLOG2:
4186   case ISD::FLOG10:
4187   case ISD::FPOWI:
4188   case ISD::FPOW: {
4189     if (SNaN)
4190       return true;
4191     // TODO: Refine on operand
4192     return false;
4193   }
4194   case ISD::FMINNUM:
4195   case ISD::FMAXNUM: {
4196     // Only one needs to be known not-nan, since it will be returned if the
4197     // other ends up being one.
4198     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4199            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4200   }
4201   case ISD::FMINNUM_IEEE:
4202   case ISD::FMAXNUM_IEEE: {
4203     if (SNaN)
4204       return true;
4205     // This can return a NaN if either operand is an sNaN, or if both operands
4206     // are NaN.
4207     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4208             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4209            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4210             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4211   }
4212   case ISD::FMINIMUM:
4213   case ISD::FMAXIMUM: {
4214     // TODO: Does this quiet or return the origina NaN as-is?
4215     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4216            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4217   }
4218   case ISD::EXTRACT_VECTOR_ELT: {
4219     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4220   }
4221   default:
4222     if (Opcode >= ISD::BUILTIN_OP_END ||
4223         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4224         Opcode == ISD::INTRINSIC_W_CHAIN ||
4225         Opcode == ISD::INTRINSIC_VOID) {
4226       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4227     }
4228 
4229     return false;
4230   }
4231 }
4232 
4233 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4234   assert(Op.getValueType().isFloatingPoint() &&
4235          "Floating point type expected");
4236 
4237   // If the value is a constant, we can obviously see if it is a zero or not.
4238   // TODO: Add BuildVector support.
4239   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4240     return !C->isZero();
4241   return false;
4242 }
4243 
4244 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4245   assert(!Op.getValueType().isFloatingPoint() &&
4246          "Floating point types unsupported - use isKnownNeverZeroFloat");
4247 
4248   // If the value is a constant, we can obviously see if it is a zero or not.
4249   if (ISD::matchUnaryPredicate(
4250           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4251     return true;
4252 
4253   // TODO: Recognize more cases here.
4254   switch (Op.getOpcode()) {
4255   default: break;
4256   case ISD::OR:
4257     if (isKnownNeverZero(Op.getOperand(1)) ||
4258         isKnownNeverZero(Op.getOperand(0)))
4259       return true;
4260     break;
4261   }
4262 
4263   return false;
4264 }
4265 
4266 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4267   // Check the obvious case.
4268   if (A == B) return true;
4269 
4270   // For for negative and positive zero.
4271   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4272     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4273       if (CA->isZero() && CB->isZero()) return true;
4274 
4275   // Otherwise they may not be equal.
4276   return false;
4277 }
4278 
4279 // FIXME: unify with llvm::haveNoCommonBitsSet.
4280 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4281 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4282   assert(A.getValueType() == B.getValueType() &&
4283          "Values must have the same type");
4284   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4285 }
4286 
4287 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4288                                 ArrayRef<SDValue> Ops,
4289                                 SelectionDAG &DAG) {
4290   int NumOps = Ops.size();
4291   assert(NumOps != 0 && "Can't build an empty vector!");
4292   assert(!VT.isScalableVector() &&
4293          "BUILD_VECTOR cannot be used with scalable types");
4294   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4295          "Incorrect element count in BUILD_VECTOR!");
4296 
4297   // BUILD_VECTOR of UNDEFs is UNDEF.
4298   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4299     return DAG.getUNDEF(VT);
4300 
4301   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4302   SDValue IdentitySrc;
4303   bool IsIdentity = true;
4304   for (int i = 0; i != NumOps; ++i) {
4305     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4306         Ops[i].getOperand(0).getValueType() != VT ||
4307         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4308         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4309         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4310       IsIdentity = false;
4311       break;
4312     }
4313     IdentitySrc = Ops[i].getOperand(0);
4314   }
4315   if (IsIdentity)
4316     return IdentitySrc;
4317 
4318   return SDValue();
4319 }
4320 
4321 /// Try to simplify vector concatenation to an input value, undef, or build
4322 /// vector.
4323 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4324                                   ArrayRef<SDValue> Ops,
4325                                   SelectionDAG &DAG) {
4326   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4327   assert(llvm::all_of(Ops,
4328                       [Ops](SDValue Op) {
4329                         return Ops[0].getValueType() == Op.getValueType();
4330                       }) &&
4331          "Concatenation of vectors with inconsistent value types!");
4332   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4333              VT.getVectorElementCount() &&
4334          "Incorrect element count in vector concatenation!");
4335 
4336   if (Ops.size() == 1)
4337     return Ops[0];
4338 
4339   // Concat of UNDEFs is UNDEF.
4340   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4341     return DAG.getUNDEF(VT);
4342 
4343   // Scan the operands and look for extract operations from a single source
4344   // that correspond to insertion at the same location via this concatenation:
4345   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4346   SDValue IdentitySrc;
4347   bool IsIdentity = true;
4348   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4349     SDValue Op = Ops[i];
4350     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4351     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4352         Op.getOperand(0).getValueType() != VT ||
4353         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4354         Op.getConstantOperandVal(1) != IdentityIndex) {
4355       IsIdentity = false;
4356       break;
4357     }
4358     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4359            "Unexpected identity source vector for concat of extracts");
4360     IdentitySrc = Op.getOperand(0);
4361   }
4362   if (IsIdentity) {
4363     assert(IdentitySrc && "Failed to set source vector of extracts");
4364     return IdentitySrc;
4365   }
4366 
4367   // The code below this point is only designed to work for fixed width
4368   // vectors, so we bail out for now.
4369   if (VT.isScalableVector())
4370     return SDValue();
4371 
4372   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4373   // simplified to one big BUILD_VECTOR.
4374   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4375   EVT SVT = VT.getScalarType();
4376   SmallVector<SDValue, 16> Elts;
4377   for (SDValue Op : Ops) {
4378     EVT OpVT = Op.getValueType();
4379     if (Op.isUndef())
4380       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4381     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4382       Elts.append(Op->op_begin(), Op->op_end());
4383     else
4384       return SDValue();
4385   }
4386 
4387   // BUILD_VECTOR requires all inputs to be of the same type, find the
4388   // maximum type and extend them all.
4389   for (SDValue Op : Elts)
4390     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4391 
4392   if (SVT.bitsGT(VT.getScalarType()))
4393     for (SDValue &Op : Elts)
4394       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4395                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4396                : DAG.getSExtOrTrunc(Op, DL, SVT);
4397 
4398   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4399   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4400   return V;
4401 }
4402 
4403 /// Gets or creates the specified node.
4404 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4405   FoldingSetNodeID ID;
4406   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4407   void *IP = nullptr;
4408   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4409     return SDValue(E, 0);
4410 
4411   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4412                               getVTList(VT));
4413   CSEMap.InsertNode(N, IP);
4414 
4415   InsertNode(N);
4416   SDValue V = SDValue(N, 0);
4417   NewSDValueDbgMsg(V, "Creating new node: ", this);
4418   return V;
4419 }
4420 
4421 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4422                               SDValue Operand, const SDNodeFlags Flags) {
4423   // Constant fold unary operations with an integer constant operand. Even
4424   // opaque constant will be folded, because the folding of unary operations
4425   // doesn't create new constants with different values. Nevertheless, the
4426   // opaque flag is preserved during folding to prevent future folding with
4427   // other constants.
4428   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4429     const APInt &Val = C->getAPIntValue();
4430     switch (Opcode) {
4431     default: break;
4432     case ISD::SIGN_EXTEND:
4433       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4434                          C->isTargetOpcode(), C->isOpaque());
4435     case ISD::TRUNCATE:
4436       if (C->isOpaque())
4437         break;
4438       LLVM_FALLTHROUGH;
4439     case ISD::ANY_EXTEND:
4440     case ISD::ZERO_EXTEND:
4441       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4442                          C->isTargetOpcode(), C->isOpaque());
4443     case ISD::UINT_TO_FP:
4444     case ISD::SINT_TO_FP: {
4445       APFloat apf(EVTToAPFloatSemantics(VT),
4446                   APInt::getNullValue(VT.getSizeInBits()));
4447       (void)apf.convertFromAPInt(Val,
4448                                  Opcode==ISD::SINT_TO_FP,
4449                                  APFloat::rmNearestTiesToEven);
4450       return getConstantFP(apf, DL, VT);
4451     }
4452     case ISD::BITCAST:
4453       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4454         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4455       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4456         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4457       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4458         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4459       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4460         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4461       break;
4462     case ISD::ABS:
4463       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4464                          C->isOpaque());
4465     case ISD::BITREVERSE:
4466       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4467                          C->isOpaque());
4468     case ISD::BSWAP:
4469       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4470                          C->isOpaque());
4471     case ISD::CTPOP:
4472       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4473                          C->isOpaque());
4474     case ISD::CTLZ:
4475     case ISD::CTLZ_ZERO_UNDEF:
4476       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4477                          C->isOpaque());
4478     case ISD::CTTZ:
4479     case ISD::CTTZ_ZERO_UNDEF:
4480       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4481                          C->isOpaque());
4482     case ISD::FP16_TO_FP: {
4483       bool Ignored;
4484       APFloat FPV(APFloat::IEEEhalf(),
4485                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4486 
4487       // This can return overflow, underflow, or inexact; we don't care.
4488       // FIXME need to be more flexible about rounding mode.
4489       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4490                         APFloat::rmNearestTiesToEven, &Ignored);
4491       return getConstantFP(FPV, DL, VT);
4492     }
4493     }
4494   }
4495 
4496   // Constant fold unary operations with a floating point constant operand.
4497   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4498     APFloat V = C->getValueAPF();    // make copy
4499     switch (Opcode) {
4500     case ISD::FNEG:
4501       V.changeSign();
4502       return getConstantFP(V, DL, VT);
4503     case ISD::FABS:
4504       V.clearSign();
4505       return getConstantFP(V, DL, VT);
4506     case ISD::FCEIL: {
4507       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4508       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4509         return getConstantFP(V, DL, VT);
4510       break;
4511     }
4512     case ISD::FTRUNC: {
4513       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4514       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4515         return getConstantFP(V, DL, VT);
4516       break;
4517     }
4518     case ISD::FFLOOR: {
4519       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4520       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4521         return getConstantFP(V, DL, VT);
4522       break;
4523     }
4524     case ISD::FP_EXTEND: {
4525       bool ignored;
4526       // This can return overflow, underflow, or inexact; we don't care.
4527       // FIXME need to be more flexible about rounding mode.
4528       (void)V.convert(EVTToAPFloatSemantics(VT),
4529                       APFloat::rmNearestTiesToEven, &ignored);
4530       return getConstantFP(V, DL, VT);
4531     }
4532     case ISD::FP_TO_SINT:
4533     case ISD::FP_TO_UINT: {
4534       bool ignored;
4535       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4536       // FIXME need to be more flexible about rounding mode.
4537       APFloat::opStatus s =
4538           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4539       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4540         break;
4541       return getConstant(IntVal, DL, VT);
4542     }
4543     case ISD::BITCAST:
4544       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4545         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4546       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4547         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4548       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4549         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4550       break;
4551     case ISD::FP_TO_FP16: {
4552       bool Ignored;
4553       // This can return overflow, underflow, or inexact; we don't care.
4554       // FIXME need to be more flexible about rounding mode.
4555       (void)V.convert(APFloat::IEEEhalf(),
4556                       APFloat::rmNearestTiesToEven, &Ignored);
4557       return getConstant(V.bitcastToAPInt(), DL, VT);
4558     }
4559     }
4560   }
4561 
4562   // Constant fold unary operations with a vector integer or float operand.
4563   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4564     if (BV->isConstant()) {
4565       switch (Opcode) {
4566       default:
4567         // FIXME: Entirely reasonable to perform folding of other unary
4568         // operations here as the need arises.
4569         break;
4570       case ISD::FNEG:
4571       case ISD::FABS:
4572       case ISD::FCEIL:
4573       case ISD::FTRUNC:
4574       case ISD::FFLOOR:
4575       case ISD::FP_EXTEND:
4576       case ISD::FP_TO_SINT:
4577       case ISD::FP_TO_UINT:
4578       case ISD::TRUNCATE:
4579       case ISD::ANY_EXTEND:
4580       case ISD::ZERO_EXTEND:
4581       case ISD::SIGN_EXTEND:
4582       case ISD::UINT_TO_FP:
4583       case ISD::SINT_TO_FP:
4584       case ISD::ABS:
4585       case ISD::BITREVERSE:
4586       case ISD::BSWAP:
4587       case ISD::CTLZ:
4588       case ISD::CTLZ_ZERO_UNDEF:
4589       case ISD::CTTZ:
4590       case ISD::CTTZ_ZERO_UNDEF:
4591       case ISD::CTPOP: {
4592         SDValue Ops = { Operand };
4593         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4594           return Fold;
4595       }
4596       }
4597     }
4598   }
4599 
4600   unsigned OpOpcode = Operand.getNode()->getOpcode();
4601   switch (Opcode) {
4602   case ISD::FREEZE:
4603     assert(VT == Operand.getValueType() && "Unexpected VT!");
4604     break;
4605   case ISD::TokenFactor:
4606   case ISD::MERGE_VALUES:
4607   case ISD::CONCAT_VECTORS:
4608     return Operand;         // Factor, merge or concat of one node?  No need.
4609   case ISD::BUILD_VECTOR: {
4610     // Attempt to simplify BUILD_VECTOR.
4611     SDValue Ops[] = {Operand};
4612     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4613       return V;
4614     break;
4615   }
4616   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4617   case ISD::FP_EXTEND:
4618     assert(VT.isFloatingPoint() &&
4619            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4620     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4621     assert((!VT.isVector() ||
4622             VT.getVectorNumElements() ==
4623             Operand.getValueType().getVectorNumElements()) &&
4624            "Vector element count mismatch!");
4625     assert(Operand.getValueType().bitsLT(VT) &&
4626            "Invalid fpext node, dst < src!");
4627     if (Operand.isUndef())
4628       return getUNDEF(VT);
4629     break;
4630   case ISD::FP_TO_SINT:
4631   case ISD::FP_TO_UINT:
4632     if (Operand.isUndef())
4633       return getUNDEF(VT);
4634     break;
4635   case ISD::SINT_TO_FP:
4636   case ISD::UINT_TO_FP:
4637     // [us]itofp(undef) = 0, because the result value is bounded.
4638     if (Operand.isUndef())
4639       return getConstantFP(0.0, DL, VT);
4640     break;
4641   case ISD::SIGN_EXTEND:
4642     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4643            "Invalid SIGN_EXTEND!");
4644     assert(VT.isVector() == Operand.getValueType().isVector() &&
4645            "SIGN_EXTEND result type type should be vector iff the operand "
4646            "type is vector!");
4647     if (Operand.getValueType() == VT) return Operand;   // noop extension
4648     assert((!VT.isVector() ||
4649             VT.getVectorElementCount() ==
4650                 Operand.getValueType().getVectorElementCount()) &&
4651            "Vector element count mismatch!");
4652     assert(Operand.getValueType().bitsLT(VT) &&
4653            "Invalid sext node, dst < src!");
4654     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4655       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4656     else if (OpOpcode == ISD::UNDEF)
4657       // sext(undef) = 0, because the top bits will all be the same.
4658       return getConstant(0, DL, VT);
4659     break;
4660   case ISD::ZERO_EXTEND:
4661     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4662            "Invalid ZERO_EXTEND!");
4663     assert(VT.isVector() == Operand.getValueType().isVector() &&
4664            "ZERO_EXTEND result type type should be vector iff the operand "
4665            "type is vector!");
4666     if (Operand.getValueType() == VT) return Operand;   // noop extension
4667     assert((!VT.isVector() ||
4668             VT.getVectorElementCount() ==
4669                 Operand.getValueType().getVectorElementCount()) &&
4670            "Vector element count mismatch!");
4671     assert(Operand.getValueType().bitsLT(VT) &&
4672            "Invalid zext node, dst < src!");
4673     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4674       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4675     else if (OpOpcode == ISD::UNDEF)
4676       // zext(undef) = 0, because the top bits will be zero.
4677       return getConstant(0, DL, VT);
4678     break;
4679   case ISD::ANY_EXTEND:
4680     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4681            "Invalid ANY_EXTEND!");
4682     assert(VT.isVector() == Operand.getValueType().isVector() &&
4683            "ANY_EXTEND result type type should be vector iff the operand "
4684            "type is vector!");
4685     if (Operand.getValueType() == VT) return Operand;   // noop extension
4686     assert((!VT.isVector() ||
4687             VT.getVectorElementCount() ==
4688                 Operand.getValueType().getVectorElementCount()) &&
4689            "Vector element count mismatch!");
4690     assert(Operand.getValueType().bitsLT(VT) &&
4691            "Invalid anyext node, dst < src!");
4692 
4693     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4694         OpOpcode == ISD::ANY_EXTEND)
4695       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4696       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4697     else if (OpOpcode == ISD::UNDEF)
4698       return getUNDEF(VT);
4699 
4700     // (ext (trunc x)) -> x
4701     if (OpOpcode == ISD::TRUNCATE) {
4702       SDValue OpOp = Operand.getOperand(0);
4703       if (OpOp.getValueType() == VT) {
4704         transferDbgValues(Operand, OpOp);
4705         return OpOp;
4706       }
4707     }
4708     break;
4709   case ISD::TRUNCATE:
4710     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4711            "Invalid TRUNCATE!");
4712     assert(VT.isVector() == Operand.getValueType().isVector() &&
4713            "TRUNCATE result type type should be vector iff the operand "
4714            "type is vector!");
4715     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4716     assert((!VT.isVector() ||
4717             VT.getVectorElementCount() ==
4718                 Operand.getValueType().getVectorElementCount()) &&
4719            "Vector element count mismatch!");
4720     assert(Operand.getValueType().bitsGT(VT) &&
4721            "Invalid truncate node, src < dst!");
4722     if (OpOpcode == ISD::TRUNCATE)
4723       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4724     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4725         OpOpcode == ISD::ANY_EXTEND) {
4726       // If the source is smaller than the dest, we still need an extend.
4727       if (Operand.getOperand(0).getValueType().getScalarType()
4728             .bitsLT(VT.getScalarType()))
4729         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4730       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4731         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4732       return Operand.getOperand(0);
4733     }
4734     if (OpOpcode == ISD::UNDEF)
4735       return getUNDEF(VT);
4736     break;
4737   case ISD::ANY_EXTEND_VECTOR_INREG:
4738   case ISD::ZERO_EXTEND_VECTOR_INREG:
4739   case ISD::SIGN_EXTEND_VECTOR_INREG:
4740     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4741     assert(Operand.getValueType().bitsLE(VT) &&
4742            "The input must be the same size or smaller than the result.");
4743     assert(VT.getVectorNumElements() <
4744              Operand.getValueType().getVectorNumElements() &&
4745            "The destination vector type must have fewer lanes than the input.");
4746     break;
4747   case ISD::ABS:
4748     assert(VT.isInteger() && VT == Operand.getValueType() &&
4749            "Invalid ABS!");
4750     if (OpOpcode == ISD::UNDEF)
4751       return getUNDEF(VT);
4752     break;
4753   case ISD::BSWAP:
4754     assert(VT.isInteger() && VT == Operand.getValueType() &&
4755            "Invalid BSWAP!");
4756     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4757            "BSWAP types must be a multiple of 16 bits!");
4758     if (OpOpcode == ISD::UNDEF)
4759       return getUNDEF(VT);
4760     break;
4761   case ISD::BITREVERSE:
4762     assert(VT.isInteger() && VT == Operand.getValueType() &&
4763            "Invalid BITREVERSE!");
4764     if (OpOpcode == ISD::UNDEF)
4765       return getUNDEF(VT);
4766     break;
4767   case ISD::BITCAST:
4768     // Basic sanity checking.
4769     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4770            "Cannot BITCAST between types of different sizes!");
4771     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4772     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4773       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4774     if (OpOpcode == ISD::UNDEF)
4775       return getUNDEF(VT);
4776     break;
4777   case ISD::SCALAR_TO_VECTOR:
4778     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4779            (VT.getVectorElementType() == Operand.getValueType() ||
4780             (VT.getVectorElementType().isInteger() &&
4781              Operand.getValueType().isInteger() &&
4782              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4783            "Illegal SCALAR_TO_VECTOR node!");
4784     if (OpOpcode == ISD::UNDEF)
4785       return getUNDEF(VT);
4786     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4787     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4788         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4789         Operand.getConstantOperandVal(1) == 0 &&
4790         Operand.getOperand(0).getValueType() == VT)
4791       return Operand.getOperand(0);
4792     break;
4793   case ISD::FNEG:
4794     // Negation of an unknown bag of bits is still completely undefined.
4795     if (OpOpcode == ISD::UNDEF)
4796       return getUNDEF(VT);
4797 
4798     if (OpOpcode == ISD::FNEG)  // --X -> X
4799       return Operand.getOperand(0);
4800     break;
4801   case ISD::FABS:
4802     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4803       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4804     break;
4805   }
4806 
4807   SDNode *N;
4808   SDVTList VTs = getVTList(VT);
4809   SDValue Ops[] = {Operand};
4810   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4811     FoldingSetNodeID ID;
4812     AddNodeIDNode(ID, Opcode, VTs, Ops);
4813     void *IP = nullptr;
4814     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4815       E->intersectFlagsWith(Flags);
4816       return SDValue(E, 0);
4817     }
4818 
4819     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4820     N->setFlags(Flags);
4821     createOperands(N, Ops);
4822     CSEMap.InsertNode(N, IP);
4823   } else {
4824     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4825     createOperands(N, Ops);
4826   }
4827 
4828   InsertNode(N);
4829   SDValue V = SDValue(N, 0);
4830   NewSDValueDbgMsg(V, "Creating new node: ", this);
4831   return V;
4832 }
4833 
4834 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4835                                        const APInt &C2) {
4836   switch (Opcode) {
4837   case ISD::ADD:  return C1 + C2;
4838   case ISD::SUB:  return C1 - C2;
4839   case ISD::MUL:  return C1 * C2;
4840   case ISD::AND:  return C1 & C2;
4841   case ISD::OR:   return C1 | C2;
4842   case ISD::XOR:  return C1 ^ C2;
4843   case ISD::SHL:  return C1 << C2;
4844   case ISD::SRL:  return C1.lshr(C2);
4845   case ISD::SRA:  return C1.ashr(C2);
4846   case ISD::ROTL: return C1.rotl(C2);
4847   case ISD::ROTR: return C1.rotr(C2);
4848   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4849   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4850   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4851   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4852   case ISD::SADDSAT: return C1.sadd_sat(C2);
4853   case ISD::UADDSAT: return C1.uadd_sat(C2);
4854   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4855   case ISD::USUBSAT: return C1.usub_sat(C2);
4856   case ISD::UDIV:
4857     if (!C2.getBoolValue())
4858       break;
4859     return C1.udiv(C2);
4860   case ISD::UREM:
4861     if (!C2.getBoolValue())
4862       break;
4863     return C1.urem(C2);
4864   case ISD::SDIV:
4865     if (!C2.getBoolValue())
4866       break;
4867     return C1.sdiv(C2);
4868   case ISD::SREM:
4869     if (!C2.getBoolValue())
4870       break;
4871     return C1.srem(C2);
4872   }
4873   return llvm::None;
4874 }
4875 
4876 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4877                                        const GlobalAddressSDNode *GA,
4878                                        const SDNode *N2) {
4879   if (GA->getOpcode() != ISD::GlobalAddress)
4880     return SDValue();
4881   if (!TLI->isOffsetFoldingLegal(GA))
4882     return SDValue();
4883   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4884   if (!C2)
4885     return SDValue();
4886   int64_t Offset = C2->getSExtValue();
4887   switch (Opcode) {
4888   case ISD::ADD: break;
4889   case ISD::SUB: Offset = -uint64_t(Offset); break;
4890   default: return SDValue();
4891   }
4892   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4893                           GA->getOffset() + uint64_t(Offset));
4894 }
4895 
4896 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4897   switch (Opcode) {
4898   case ISD::SDIV:
4899   case ISD::UDIV:
4900   case ISD::SREM:
4901   case ISD::UREM: {
4902     // If a divisor is zero/undef or any element of a divisor vector is
4903     // zero/undef, the whole op is undef.
4904     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4905     SDValue Divisor = Ops[1];
4906     if (Divisor.isUndef() || isNullConstant(Divisor))
4907       return true;
4908 
4909     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4910            llvm::any_of(Divisor->op_values(),
4911                         [](SDValue V) { return V.isUndef() ||
4912                                         isNullConstant(V); });
4913     // TODO: Handle signed overflow.
4914   }
4915   // TODO: Handle oversized shifts.
4916   default:
4917     return false;
4918   }
4919 }
4920 
4921 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4922                                              EVT VT, ArrayRef<SDValue> Ops) {
4923   // If the opcode is a target-specific ISD node, there's nothing we can
4924   // do here and the operand rules may not line up with the below, so
4925   // bail early.
4926   if (Opcode >= ISD::BUILTIN_OP_END)
4927     return SDValue();
4928 
4929   // For now, the array Ops should only contain two values.
4930   // This enforcement will be removed once this function is merged with
4931   // FoldConstantVectorArithmetic
4932   if (Ops.size() != 2)
4933     return SDValue();
4934 
4935   if (isUndef(Opcode, Ops))
4936     return getUNDEF(VT);
4937 
4938   SDNode *N1 = Ops[0].getNode();
4939   SDNode *N2 = Ops[1].getNode();
4940 
4941   // Handle the case of two scalars.
4942   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4943     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4944       if (C1->isOpaque() || C2->isOpaque())
4945         return SDValue();
4946 
4947       Optional<APInt> FoldAttempt =
4948           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
4949       if (!FoldAttempt)
4950         return SDValue();
4951 
4952       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
4953       assert((!Folded || !VT.isVector()) &&
4954              "Can't fold vectors ops with scalar operands");
4955       return Folded;
4956     }
4957   }
4958 
4959   // fold (add Sym, c) -> Sym+c
4960   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4961     return FoldSymbolOffset(Opcode, VT, GA, N2);
4962   if (TLI->isCommutativeBinOp(Opcode))
4963     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4964       return FoldSymbolOffset(Opcode, VT, GA, N1);
4965 
4966   // TODO: All the folds below are performed lane-by-lane and assume a fixed
4967   // vector width, however we should be able to do constant folds involving
4968   // splat vector nodes too.
4969   if (VT.isScalableVector())
4970     return SDValue();
4971 
4972   // For fixed width vectors, extract each constant element and fold them
4973   // individually. Either input may be an undef value.
4974   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4975   if (!BV1 && !N1->isUndef())
4976     return SDValue();
4977   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4978   if (!BV2 && !N2->isUndef())
4979     return SDValue();
4980   // If both operands are undef, that's handled the same way as scalars.
4981   if (!BV1 && !BV2)
4982     return SDValue();
4983 
4984   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4985          "Vector binop with different number of elements in operands?");
4986 
4987   EVT SVT = VT.getScalarType();
4988   EVT LegalSVT = SVT;
4989   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4990     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4991     if (LegalSVT.bitsLT(SVT))
4992       return SDValue();
4993   }
4994   SmallVector<SDValue, 4> Outputs;
4995   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4996   for (unsigned I = 0; I != NumOps; ++I) {
4997     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4998     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4999     if (SVT.isInteger()) {
5000       if (V1->getValueType(0).bitsGT(SVT))
5001         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5002       if (V2->getValueType(0).bitsGT(SVT))
5003         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5004     }
5005 
5006     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
5007       return SDValue();
5008 
5009     // Fold one vector element.
5010     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5011     if (LegalSVT != SVT)
5012       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5013 
5014     // Scalar folding only succeeded if the result is a constant or UNDEF.
5015     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5016         ScalarResult.getOpcode() != ISD::ConstantFP)
5017       return SDValue();
5018     Outputs.push_back(ScalarResult);
5019   }
5020 
5021   assert(VT.getVectorNumElements() == Outputs.size() &&
5022          "Vector size mismatch!");
5023 
5024   // We may have a vector type but a scalar result. Create a splat.
5025   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
5026 
5027   // Build a big vector out of the scalar elements we generated.
5028   return getBuildVector(VT, SDLoc(), Outputs);
5029 }
5030 
5031 // TODO: Merge with FoldConstantArithmetic
5032 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5033                                                    const SDLoc &DL, EVT VT,
5034                                                    ArrayRef<SDValue> Ops,
5035                                                    const SDNodeFlags Flags) {
5036   // If the opcode is a target-specific ISD node, there's nothing we can
5037   // do here and the operand rules may not line up with the below, so
5038   // bail early.
5039   if (Opcode >= ISD::BUILTIN_OP_END)
5040     return SDValue();
5041 
5042   if (isUndef(Opcode, Ops))
5043     return getUNDEF(VT);
5044 
5045   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5046   if (!VT.isVector())
5047     return SDValue();
5048 
5049   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5050   // vector width, however we should be able to do constant folds involving
5051   // splat vector nodes too.
5052   if (VT.isScalableVector())
5053     return SDValue();
5054 
5055   // From this point onwards all vectors are assumed to be fixed width.
5056   unsigned NumElts = VT.getVectorNumElements();
5057 
5058   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5059     return !Op.getValueType().isVector() ||
5060            Op.getValueType().getVectorNumElements() == NumElts;
5061   };
5062 
5063   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5064     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5065     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5066            (BV && BV->isConstant());
5067   };
5068 
5069   // All operands must be vector types with the same number of elements as
5070   // the result type and must be either UNDEF or a build vector of constant
5071   // or UNDEF scalars.
5072   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5073       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5074     return SDValue();
5075 
5076   // If we are comparing vectors, then the result needs to be a i1 boolean
5077   // that is then sign-extended back to the legal result type.
5078   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5079 
5080   // Find legal integer scalar type for constant promotion and
5081   // ensure that its scalar size is at least as large as source.
5082   EVT LegalSVT = VT.getScalarType();
5083   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5084     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5085     if (LegalSVT.bitsLT(VT.getScalarType()))
5086       return SDValue();
5087   }
5088 
5089   // Constant fold each scalar lane separately.
5090   SmallVector<SDValue, 4> ScalarResults;
5091   for (unsigned i = 0; i != NumElts; i++) {
5092     SmallVector<SDValue, 4> ScalarOps;
5093     for (SDValue Op : Ops) {
5094       EVT InSVT = Op.getValueType().getScalarType();
5095       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5096       if (!InBV) {
5097         // We've checked that this is UNDEF or a constant of some kind.
5098         if (Op.isUndef())
5099           ScalarOps.push_back(getUNDEF(InSVT));
5100         else
5101           ScalarOps.push_back(Op);
5102         continue;
5103       }
5104 
5105       SDValue ScalarOp = InBV->getOperand(i);
5106       EVT ScalarVT = ScalarOp.getValueType();
5107 
5108       // Build vector (integer) scalar operands may need implicit
5109       // truncation - do this before constant folding.
5110       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5111         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5112 
5113       ScalarOps.push_back(ScalarOp);
5114     }
5115 
5116     // Constant fold the scalar operands.
5117     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5118 
5119     // Legalize the (integer) scalar constant if necessary.
5120     if (LegalSVT != SVT)
5121       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5122 
5123     // Scalar folding only succeeded if the result is a constant or UNDEF.
5124     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5125         ScalarResult.getOpcode() != ISD::ConstantFP)
5126       return SDValue();
5127     ScalarResults.push_back(ScalarResult);
5128   }
5129 
5130   SDValue V = getBuildVector(VT, DL, ScalarResults);
5131   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5132   return V;
5133 }
5134 
5135 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5136                                          EVT VT, SDValue N1, SDValue N2) {
5137   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5138   //       should. That will require dealing with a potentially non-default
5139   //       rounding mode, checking the "opStatus" return value from the APFloat
5140   //       math calculations, and possibly other variations.
5141   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5142   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5143   if (N1CFP && N2CFP) {
5144     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5145     switch (Opcode) {
5146     case ISD::FADD:
5147       C1.add(C2, APFloat::rmNearestTiesToEven);
5148       return getConstantFP(C1, DL, VT);
5149     case ISD::FSUB:
5150       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5151       return getConstantFP(C1, DL, VT);
5152     case ISD::FMUL:
5153       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5154       return getConstantFP(C1, DL, VT);
5155     case ISD::FDIV:
5156       C1.divide(C2, APFloat::rmNearestTiesToEven);
5157       return getConstantFP(C1, DL, VT);
5158     case ISD::FREM:
5159       C1.mod(C2);
5160       return getConstantFP(C1, DL, VT);
5161     case ISD::FCOPYSIGN:
5162       C1.copySign(C2);
5163       return getConstantFP(C1, DL, VT);
5164     default: break;
5165     }
5166   }
5167   if (N1CFP && Opcode == ISD::FP_ROUND) {
5168     APFloat C1 = N1CFP->getValueAPF();    // make copy
5169     bool Unused;
5170     // This can return overflow, underflow, or inexact; we don't care.
5171     // FIXME need to be more flexible about rounding mode.
5172     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5173                       &Unused);
5174     return getConstantFP(C1, DL, VT);
5175   }
5176 
5177   switch (Opcode) {
5178   case ISD::FSUB:
5179     // -0.0 - undef --> undef (consistent with "fneg undef")
5180     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5181       return getUNDEF(VT);
5182     LLVM_FALLTHROUGH;
5183 
5184   case ISD::FADD:
5185   case ISD::FMUL:
5186   case ISD::FDIV:
5187   case ISD::FREM:
5188     // If both operands are undef, the result is undef. If 1 operand is undef,
5189     // the result is NaN. This should match the behavior of the IR optimizer.
5190     if (N1.isUndef() && N2.isUndef())
5191       return getUNDEF(VT);
5192     if (N1.isUndef() || N2.isUndef())
5193       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5194   }
5195   return SDValue();
5196 }
5197 
5198 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5199   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5200 
5201   // There's no need to assert on a byte-aligned pointer. All pointers are at
5202   // least byte aligned.
5203   if (A == Align(1))
5204     return Val;
5205 
5206   FoldingSetNodeID ID;
5207   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5208   ID.AddInteger(A.value());
5209 
5210   void *IP = nullptr;
5211   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5212     return SDValue(E, 0);
5213 
5214   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5215                                          Val.getValueType(), A);
5216   createOperands(N, {Val});
5217 
5218   CSEMap.InsertNode(N, IP);
5219   InsertNode(N);
5220 
5221   SDValue V(N, 0);
5222   NewSDValueDbgMsg(V, "Creating new node: ", this);
5223   return V;
5224 }
5225 
5226 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5227                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5228   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5229   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5230   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5231   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5232 
5233   // Canonicalize constant to RHS if commutative.
5234   if (TLI->isCommutativeBinOp(Opcode)) {
5235     if (N1C && !N2C) {
5236       std::swap(N1C, N2C);
5237       std::swap(N1, N2);
5238     } else if (N1CFP && !N2CFP) {
5239       std::swap(N1CFP, N2CFP);
5240       std::swap(N1, N2);
5241     }
5242   }
5243 
5244   switch (Opcode) {
5245   default: break;
5246   case ISD::TokenFactor:
5247     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5248            N2.getValueType() == MVT::Other && "Invalid token factor!");
5249     // Fold trivial token factors.
5250     if (N1.getOpcode() == ISD::EntryToken) return N2;
5251     if (N2.getOpcode() == ISD::EntryToken) return N1;
5252     if (N1 == N2) return N1;
5253     break;
5254   case ISD::BUILD_VECTOR: {
5255     // Attempt to simplify BUILD_VECTOR.
5256     SDValue Ops[] = {N1, N2};
5257     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5258       return V;
5259     break;
5260   }
5261   case ISD::CONCAT_VECTORS: {
5262     SDValue Ops[] = {N1, N2};
5263     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5264       return V;
5265     break;
5266   }
5267   case ISD::AND:
5268     assert(VT.isInteger() && "This operator does not apply to FP types!");
5269     assert(N1.getValueType() == N2.getValueType() &&
5270            N1.getValueType() == VT && "Binary operator types must match!");
5271     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5272     // worth handling here.
5273     if (N2C && N2C->isNullValue())
5274       return N2;
5275     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5276       return N1;
5277     break;
5278   case ISD::OR:
5279   case ISD::XOR:
5280   case ISD::ADD:
5281   case ISD::SUB:
5282     assert(VT.isInteger() && "This operator does not apply to FP types!");
5283     assert(N1.getValueType() == N2.getValueType() &&
5284            N1.getValueType() == VT && "Binary operator types must match!");
5285     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5286     // it's worth handling here.
5287     if (N2C && N2C->isNullValue())
5288       return N1;
5289     break;
5290   case ISD::MUL:
5291     assert(VT.isInteger() && "This operator does not apply to FP types!");
5292     assert(N1.getValueType() == N2.getValueType() &&
5293            N1.getValueType() == VT && "Binary operator types must match!");
5294     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5295       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5296       APInt N2CImm = N2C->getAPIntValue();
5297       return getVScale(DL, VT, MulImm * N2CImm);
5298     }
5299     break;
5300   case ISD::UDIV:
5301   case ISD::UREM:
5302   case ISD::MULHU:
5303   case ISD::MULHS:
5304   case ISD::SDIV:
5305   case ISD::SREM:
5306   case ISD::SMIN:
5307   case ISD::SMAX:
5308   case ISD::UMIN:
5309   case ISD::UMAX:
5310   case ISD::SADDSAT:
5311   case ISD::SSUBSAT:
5312   case ISD::UADDSAT:
5313   case ISD::USUBSAT:
5314     assert(VT.isInteger() && "This operator does not apply to FP types!");
5315     assert(N1.getValueType() == N2.getValueType() &&
5316            N1.getValueType() == VT && "Binary operator types must match!");
5317     break;
5318   case ISD::FADD:
5319   case ISD::FSUB:
5320   case ISD::FMUL:
5321   case ISD::FDIV:
5322   case ISD::FREM:
5323     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5324     assert(N1.getValueType() == N2.getValueType() &&
5325            N1.getValueType() == VT && "Binary operator types must match!");
5326     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5327       return V;
5328     break;
5329   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5330     assert(N1.getValueType() == VT &&
5331            N1.getValueType().isFloatingPoint() &&
5332            N2.getValueType().isFloatingPoint() &&
5333            "Invalid FCOPYSIGN!");
5334     break;
5335   case ISD::SHL:
5336     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5337       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5338       APInt ShiftImm = N2C->getAPIntValue();
5339       return getVScale(DL, VT, MulImm << ShiftImm);
5340     }
5341     LLVM_FALLTHROUGH;
5342   case ISD::SRA:
5343   case ISD::SRL:
5344     if (SDValue V = simplifyShift(N1, N2))
5345       return V;
5346     LLVM_FALLTHROUGH;
5347   case ISD::ROTL:
5348   case ISD::ROTR:
5349     assert(VT == N1.getValueType() &&
5350            "Shift operators return type must be the same as their first arg");
5351     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5352            "Shifts only work on integers");
5353     assert((!VT.isVector() || VT == N2.getValueType()) &&
5354            "Vector shift amounts must be in the same as their first arg");
5355     // Verify that the shift amount VT is big enough to hold valid shift
5356     // amounts.  This catches things like trying to shift an i1024 value by an
5357     // i8, which is easy to fall into in generic code that uses
5358     // TLI.getShiftAmount().
5359     assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >=
5360                Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) &&
5361            "Invalid use of small shift amount with oversized value!");
5362 
5363     // Always fold shifts of i1 values so the code generator doesn't need to
5364     // handle them.  Since we know the size of the shift has to be less than the
5365     // size of the value, the shift/rotate count is guaranteed to be zero.
5366     if (VT == MVT::i1)
5367       return N1;
5368     if (N2C && N2C->isNullValue())
5369       return N1;
5370     break;
5371   case ISD::FP_ROUND:
5372     assert(VT.isFloatingPoint() &&
5373            N1.getValueType().isFloatingPoint() &&
5374            VT.bitsLE(N1.getValueType()) &&
5375            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5376            "Invalid FP_ROUND!");
5377     if (N1.getValueType() == VT) return N1;  // noop conversion.
5378     break;
5379   case ISD::AssertSext:
5380   case ISD::AssertZext: {
5381     EVT EVT = cast<VTSDNode>(N2)->getVT();
5382     assert(VT == N1.getValueType() && "Not an inreg extend!");
5383     assert(VT.isInteger() && EVT.isInteger() &&
5384            "Cannot *_EXTEND_INREG FP types");
5385     assert(!EVT.isVector() &&
5386            "AssertSExt/AssertZExt type should be the vector element type "
5387            "rather than the vector type!");
5388     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5389     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5390     break;
5391   }
5392   case ISD::SIGN_EXTEND_INREG: {
5393     EVT EVT = cast<VTSDNode>(N2)->getVT();
5394     assert(VT == N1.getValueType() && "Not an inreg extend!");
5395     assert(VT.isInteger() && EVT.isInteger() &&
5396            "Cannot *_EXTEND_INREG FP types");
5397     assert(EVT.isVector() == VT.isVector() &&
5398            "SIGN_EXTEND_INREG type should be vector iff the operand "
5399            "type is vector!");
5400     assert((!EVT.isVector() ||
5401             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5402            "Vector element counts must match in SIGN_EXTEND_INREG");
5403     assert(EVT.bitsLE(VT) && "Not extending!");
5404     if (EVT == VT) return N1;  // Not actually extending
5405 
5406     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5407       unsigned FromBits = EVT.getScalarSizeInBits();
5408       Val <<= Val.getBitWidth() - FromBits;
5409       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5410       return getConstant(Val, DL, ConstantVT);
5411     };
5412 
5413     if (N1C) {
5414       const APInt &Val = N1C->getAPIntValue();
5415       return SignExtendInReg(Val, VT);
5416     }
5417     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5418       SmallVector<SDValue, 8> Ops;
5419       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5420       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5421         SDValue Op = N1.getOperand(i);
5422         if (Op.isUndef()) {
5423           Ops.push_back(getUNDEF(OpVT));
5424           continue;
5425         }
5426         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5427         APInt Val = C->getAPIntValue();
5428         Ops.push_back(SignExtendInReg(Val, OpVT));
5429       }
5430       return getBuildVector(VT, DL, Ops);
5431     }
5432     break;
5433   }
5434   case ISD::EXTRACT_VECTOR_ELT:
5435     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5436            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5437              element type of the vector.");
5438 
5439     // Extract from an undefined value or using an undefined index is undefined.
5440     if (N1.isUndef() || N2.isUndef())
5441       return getUNDEF(VT);
5442 
5443     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5444     // vectors. For scalable vectors we will provide appropriate support for
5445     // dealing with arbitrary indices.
5446     if (N2C && N1.getValueType().isFixedLengthVector() &&
5447         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5448       return getUNDEF(VT);
5449 
5450     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5451     // expanding copies of large vectors from registers. This only works for
5452     // fixed length vectors, since we need to know the exact number of
5453     // elements.
5454     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5455         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5456       unsigned Factor =
5457         N1.getOperand(0).getValueType().getVectorNumElements();
5458       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5459                      N1.getOperand(N2C->getZExtValue() / Factor),
5460                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5461     }
5462 
5463     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5464     // lowering is expanding large vector constants.
5465     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5466                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5467       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5468               N1.getValueType().isFixedLengthVector()) &&
5469              "BUILD_VECTOR used for scalable vectors");
5470       unsigned Index =
5471           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5472       SDValue Elt = N1.getOperand(Index);
5473 
5474       if (VT != Elt.getValueType())
5475         // If the vector element type is not legal, the BUILD_VECTOR operands
5476         // are promoted and implicitly truncated, and the result implicitly
5477         // extended. Make that explicit here.
5478         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5479 
5480       return Elt;
5481     }
5482 
5483     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5484     // operations are lowered to scalars.
5485     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5486       // If the indices are the same, return the inserted element else
5487       // if the indices are known different, extract the element from
5488       // the original vector.
5489       SDValue N1Op2 = N1.getOperand(2);
5490       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5491 
5492       if (N1Op2C && N2C) {
5493         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5494           if (VT == N1.getOperand(1).getValueType())
5495             return N1.getOperand(1);
5496           else
5497             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5498         }
5499 
5500         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5501       }
5502     }
5503 
5504     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5505     // when vector types are scalarized and v1iX is legal.
5506     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5507     // Here we are completely ignoring the extract element index (N2),
5508     // which is fine for fixed width vectors, since any index other than 0
5509     // is undefined anyway. However, this cannot be ignored for scalable
5510     // vectors - in theory we could support this, but we don't want to do this
5511     // without a profitability check.
5512     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5513         N1.getValueType().isFixedLengthVector() &&
5514         N1.getValueType().getVectorNumElements() == 1) {
5515       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5516                      N1.getOperand(1));
5517     }
5518     break;
5519   case ISD::EXTRACT_ELEMENT:
5520     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5521     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5522            (N1.getValueType().isInteger() == VT.isInteger()) &&
5523            N1.getValueType() != VT &&
5524            "Wrong types for EXTRACT_ELEMENT!");
5525 
5526     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5527     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5528     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5529     if (N1.getOpcode() == ISD::BUILD_PAIR)
5530       return N1.getOperand(N2C->getZExtValue());
5531 
5532     // EXTRACT_ELEMENT of a constant int is also very common.
5533     if (N1C) {
5534       unsigned ElementSize = VT.getSizeInBits();
5535       unsigned Shift = ElementSize * N2C->getZExtValue();
5536       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5537       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5538     }
5539     break;
5540   case ISD::EXTRACT_SUBVECTOR:
5541     EVT N1VT = N1.getValueType();
5542     assert(VT.isVector() && N1VT.isVector() &&
5543            "Extract subvector VTs must be vectors!");
5544     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5545            "Extract subvector VTs must have the same element type!");
5546     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5547            "Cannot extract a scalable vector from a fixed length vector!");
5548     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5549             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5550            "Extract subvector must be from larger vector to smaller vector!");
5551     assert(N2C && "Extract subvector index must be a constant");
5552     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5553             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5554                 N1VT.getVectorMinNumElements()) &&
5555            "Extract subvector overflow!");
5556 
5557     // Trivial extraction.
5558     if (VT == N1VT)
5559       return N1;
5560 
5561     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5562     if (N1.isUndef())
5563       return getUNDEF(VT);
5564 
5565     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5566     // the concat have the same type as the extract.
5567     if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5568         N1.getNumOperands() > 0 && VT == N1.getOperand(0).getValueType()) {
5569       unsigned Factor = VT.getVectorNumElements();
5570       return N1.getOperand(N2C->getZExtValue() / Factor);
5571     }
5572 
5573     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5574     // during shuffle legalization.
5575     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5576         VT == N1.getOperand(1).getValueType())
5577       return N1.getOperand(1);
5578     break;
5579   }
5580 
5581   // Perform trivial constant folding.
5582   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5583     return SV;
5584 
5585   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5586     return V;
5587 
5588   // Canonicalize an UNDEF to the RHS, even over a constant.
5589   if (N1.isUndef()) {
5590     if (TLI->isCommutativeBinOp(Opcode)) {
5591       std::swap(N1, N2);
5592     } else {
5593       switch (Opcode) {
5594       case ISD::SIGN_EXTEND_INREG:
5595       case ISD::SUB:
5596         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5597       case ISD::UDIV:
5598       case ISD::SDIV:
5599       case ISD::UREM:
5600       case ISD::SREM:
5601       case ISD::SSUBSAT:
5602       case ISD::USUBSAT:
5603         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5604       }
5605     }
5606   }
5607 
5608   // Fold a bunch of operators when the RHS is undef.
5609   if (N2.isUndef()) {
5610     switch (Opcode) {
5611     case ISD::XOR:
5612       if (N1.isUndef())
5613         // Handle undef ^ undef -> 0 special case. This is a common
5614         // idiom (misuse).
5615         return getConstant(0, DL, VT);
5616       LLVM_FALLTHROUGH;
5617     case ISD::ADD:
5618     case ISD::SUB:
5619     case ISD::UDIV:
5620     case ISD::SDIV:
5621     case ISD::UREM:
5622     case ISD::SREM:
5623       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5624     case ISD::MUL:
5625     case ISD::AND:
5626     case ISD::SSUBSAT:
5627     case ISD::USUBSAT:
5628       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5629     case ISD::OR:
5630     case ISD::SADDSAT:
5631     case ISD::UADDSAT:
5632       return getAllOnesConstant(DL, VT);
5633     }
5634   }
5635 
5636   // Memoize this node if possible.
5637   SDNode *N;
5638   SDVTList VTs = getVTList(VT);
5639   SDValue Ops[] = {N1, N2};
5640   if (VT != MVT::Glue) {
5641     FoldingSetNodeID ID;
5642     AddNodeIDNode(ID, Opcode, VTs, Ops);
5643     void *IP = nullptr;
5644     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5645       E->intersectFlagsWith(Flags);
5646       return SDValue(E, 0);
5647     }
5648 
5649     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5650     N->setFlags(Flags);
5651     createOperands(N, Ops);
5652     CSEMap.InsertNode(N, IP);
5653   } else {
5654     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5655     createOperands(N, Ops);
5656   }
5657 
5658   InsertNode(N);
5659   SDValue V = SDValue(N, 0);
5660   NewSDValueDbgMsg(V, "Creating new node: ", this);
5661   return V;
5662 }
5663 
5664 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5665                               SDValue N1, SDValue N2, SDValue N3,
5666                               const SDNodeFlags Flags) {
5667   // Perform various simplifications.
5668   switch (Opcode) {
5669   case ISD::FMA: {
5670     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5671     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5672            N3.getValueType() == VT && "FMA types must match!");
5673     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5674     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5675     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5676     if (N1CFP && N2CFP && N3CFP) {
5677       APFloat  V1 = N1CFP->getValueAPF();
5678       const APFloat &V2 = N2CFP->getValueAPF();
5679       const APFloat &V3 = N3CFP->getValueAPF();
5680       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5681       return getConstantFP(V1, DL, VT);
5682     }
5683     break;
5684   }
5685   case ISD::BUILD_VECTOR: {
5686     // Attempt to simplify BUILD_VECTOR.
5687     SDValue Ops[] = {N1, N2, N3};
5688     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5689       return V;
5690     break;
5691   }
5692   case ISD::CONCAT_VECTORS: {
5693     SDValue Ops[] = {N1, N2, N3};
5694     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5695       return V;
5696     break;
5697   }
5698   case ISD::SETCC: {
5699     assert(VT.isInteger() && "SETCC result type must be an integer!");
5700     assert(N1.getValueType() == N2.getValueType() &&
5701            "SETCC operands must have the same type!");
5702     assert(VT.isVector() == N1.getValueType().isVector() &&
5703            "SETCC type should be vector iff the operand type is vector!");
5704     assert((!VT.isVector() || VT.getVectorElementCount() ==
5705                                   N1.getValueType().getVectorElementCount()) &&
5706            "SETCC vector element counts must match!");
5707     // Use FoldSetCC to simplify SETCC's.
5708     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5709       return V;
5710     // Vector constant folding.
5711     SDValue Ops[] = {N1, N2, N3};
5712     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5713       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5714       return V;
5715     }
5716     break;
5717   }
5718   case ISD::SELECT:
5719   case ISD::VSELECT:
5720     if (SDValue V = simplifySelect(N1, N2, N3))
5721       return V;
5722     break;
5723   case ISD::VECTOR_SHUFFLE:
5724     llvm_unreachable("should use getVectorShuffle constructor!");
5725   case ISD::INSERT_VECTOR_ELT: {
5726     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5727     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5728     // for scalable vectors where we will generate appropriate code to
5729     // deal with out-of-bounds cases correctly.
5730     if (N3C && N1.getValueType().isFixedLengthVector() &&
5731         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5732       return getUNDEF(VT);
5733 
5734     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5735     if (N3.isUndef())
5736       return getUNDEF(VT);
5737 
5738     // If the inserted element is an UNDEF, just use the input vector.
5739     if (N2.isUndef())
5740       return N1;
5741 
5742     break;
5743   }
5744   case ISD::INSERT_SUBVECTOR: {
5745     // Inserting undef into undef is still undef.
5746     if (N1.isUndef() && N2.isUndef())
5747       return getUNDEF(VT);
5748 
5749     EVT N2VT = N2.getValueType();
5750     assert(VT == N1.getValueType() &&
5751            "Dest and insert subvector source types must match!");
5752     assert(VT.isVector() && N2VT.isVector() &&
5753            "Insert subvector VTs must be vectors!");
5754     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5755            "Cannot insert a scalable vector into a fixed length vector!");
5756     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5757             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5758            "Insert subvector must be from smaller vector to larger vector!");
5759     assert(isa<ConstantSDNode>(N3) &&
5760            "Insert subvector index must be constant");
5761     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5762             (N2VT.getVectorMinNumElements() +
5763              cast<ConstantSDNode>(N3)->getZExtValue()) <=
5764                 VT.getVectorMinNumElements()) &&
5765            "Insert subvector overflow!");
5766 
5767     // Trivial insertion.
5768     if (VT == N2VT)
5769       return N2;
5770 
5771     // If this is an insert of an extracted vector into an undef vector, we
5772     // can just use the input to the extract.
5773     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5774         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5775       return N2.getOperand(0);
5776     break;
5777   }
5778   case ISD::BITCAST:
5779     // Fold bit_convert nodes from a type to themselves.
5780     if (N1.getValueType() == VT)
5781       return N1;
5782     break;
5783   }
5784 
5785   // Memoize node if it doesn't produce a flag.
5786   SDNode *N;
5787   SDVTList VTs = getVTList(VT);
5788   SDValue Ops[] = {N1, N2, N3};
5789   if (VT != MVT::Glue) {
5790     FoldingSetNodeID ID;
5791     AddNodeIDNode(ID, Opcode, VTs, Ops);
5792     void *IP = nullptr;
5793     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5794       E->intersectFlagsWith(Flags);
5795       return SDValue(E, 0);
5796     }
5797 
5798     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5799     N->setFlags(Flags);
5800     createOperands(N, Ops);
5801     CSEMap.InsertNode(N, IP);
5802   } else {
5803     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5804     createOperands(N, Ops);
5805   }
5806 
5807   InsertNode(N);
5808   SDValue V = SDValue(N, 0);
5809   NewSDValueDbgMsg(V, "Creating new node: ", this);
5810   return V;
5811 }
5812 
5813 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5814                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5815   SDValue Ops[] = { N1, N2, N3, N4 };
5816   return getNode(Opcode, DL, VT, Ops);
5817 }
5818 
5819 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5820                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5821                               SDValue N5) {
5822   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5823   return getNode(Opcode, DL, VT, Ops);
5824 }
5825 
5826 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5827 /// the incoming stack arguments to be loaded from the stack.
5828 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5829   SmallVector<SDValue, 8> ArgChains;
5830 
5831   // Include the original chain at the beginning of the list. When this is
5832   // used by target LowerCall hooks, this helps legalize find the
5833   // CALLSEQ_BEGIN node.
5834   ArgChains.push_back(Chain);
5835 
5836   // Add a chain value for each stack argument.
5837   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5838        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5839     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5840       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5841         if (FI->getIndex() < 0)
5842           ArgChains.push_back(SDValue(L, 1));
5843 
5844   // Build a tokenfactor for all the chains.
5845   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5846 }
5847 
5848 /// getMemsetValue - Vectorized representation of the memset value
5849 /// operand.
5850 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5851                               const SDLoc &dl) {
5852   assert(!Value.isUndef());
5853 
5854   unsigned NumBits = VT.getScalarSizeInBits();
5855   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5856     assert(C->getAPIntValue().getBitWidth() == 8);
5857     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5858     if (VT.isInteger()) {
5859       bool IsOpaque = VT.getSizeInBits() > 64 ||
5860           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5861       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5862     }
5863     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5864                              VT);
5865   }
5866 
5867   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5868   EVT IntVT = VT.getScalarType();
5869   if (!IntVT.isInteger())
5870     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5871 
5872   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5873   if (NumBits > 8) {
5874     // Use a multiplication with 0x010101... to extend the input to the
5875     // required length.
5876     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5877     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5878                         DAG.getConstant(Magic, dl, IntVT));
5879   }
5880 
5881   if (VT != Value.getValueType() && !VT.isInteger())
5882     Value = DAG.getBitcast(VT.getScalarType(), Value);
5883   if (VT != Value.getValueType())
5884     Value = DAG.getSplatBuildVector(VT, dl, Value);
5885 
5886   return Value;
5887 }
5888 
5889 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5890 /// used when a memcpy is turned into a memset when the source is a constant
5891 /// string ptr.
5892 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5893                                   const TargetLowering &TLI,
5894                                   const ConstantDataArraySlice &Slice) {
5895   // Handle vector with all elements zero.
5896   if (Slice.Array == nullptr) {
5897     if (VT.isInteger())
5898       return DAG.getConstant(0, dl, VT);
5899     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5900       return DAG.getConstantFP(0.0, dl, VT);
5901     else if (VT.isVector()) {
5902       unsigned NumElts = VT.getVectorNumElements();
5903       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5904       return DAG.getNode(ISD::BITCAST, dl, VT,
5905                          DAG.getConstant(0, dl,
5906                                          EVT::getVectorVT(*DAG.getContext(),
5907                                                           EltVT, NumElts)));
5908     } else
5909       llvm_unreachable("Expected type!");
5910   }
5911 
5912   assert(!VT.isVector() && "Can't handle vector type here!");
5913   unsigned NumVTBits = VT.getSizeInBits();
5914   unsigned NumVTBytes = NumVTBits / 8;
5915   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5916 
5917   APInt Val(NumVTBits, 0);
5918   if (DAG.getDataLayout().isLittleEndian()) {
5919     for (unsigned i = 0; i != NumBytes; ++i)
5920       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5921   } else {
5922     for (unsigned i = 0; i != NumBytes; ++i)
5923       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5924   }
5925 
5926   // If the "cost" of materializing the integer immediate is less than the cost
5927   // of a load, then it is cost effective to turn the load into the immediate.
5928   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5929   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5930     return DAG.getConstant(Val, dl, VT);
5931   return SDValue(nullptr, 0);
5932 }
5933 
5934 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset,
5935                                            const SDLoc &DL,
5936                                            const SDNodeFlags Flags) {
5937   EVT VT = Base.getValueType();
5938   return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags);
5939 }
5940 
5941 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5942                                            const SDLoc &DL,
5943                                            const SDNodeFlags Flags) {
5944   assert(Offset.getValueType().isInteger());
5945   EVT BasePtrVT = Ptr.getValueType();
5946   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5947 }
5948 
5949 /// Returns true if memcpy source is constant data.
5950 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5951   uint64_t SrcDelta = 0;
5952   GlobalAddressSDNode *G = nullptr;
5953   if (Src.getOpcode() == ISD::GlobalAddress)
5954     G = cast<GlobalAddressSDNode>(Src);
5955   else if (Src.getOpcode() == ISD::ADD &&
5956            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5957            Src.getOperand(1).getOpcode() == ISD::Constant) {
5958     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5959     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5960   }
5961   if (!G)
5962     return false;
5963 
5964   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5965                                   SrcDelta + G->getOffset());
5966 }
5967 
5968 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
5969                                       SelectionDAG &DAG) {
5970   // On Darwin, -Os means optimize for size without hurting performance, so
5971   // only really optimize for size when -Oz (MinSize) is used.
5972   if (MF.getTarget().getTargetTriple().isOSDarwin())
5973     return MF.getFunction().hasMinSize();
5974   return DAG.shouldOptForSize();
5975 }
5976 
5977 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5978                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5979                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5980                           SmallVector<SDValue, 16> &OutStoreChains) {
5981   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5982   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5983   SmallVector<SDValue, 16> GluedLoadChains;
5984   for (unsigned i = From; i < To; ++i) {
5985     OutChains.push_back(OutLoadChains[i]);
5986     GluedLoadChains.push_back(OutLoadChains[i]);
5987   }
5988 
5989   // Chain for all loads.
5990   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5991                                   GluedLoadChains);
5992 
5993   for (unsigned i = From; i < To; ++i) {
5994     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5995     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5996                                   ST->getBasePtr(), ST->getMemoryVT(),
5997                                   ST->getMemOperand());
5998     OutChains.push_back(NewStore);
5999   }
6000 }
6001 
6002 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6003                                        SDValue Chain, SDValue Dst, SDValue Src,
6004                                        uint64_t Size, Align Alignment,
6005                                        bool isVol, bool AlwaysInline,
6006                                        MachinePointerInfo DstPtrInfo,
6007                                        MachinePointerInfo SrcPtrInfo) {
6008   // Turn a memcpy of undef to nop.
6009   // FIXME: We need to honor volatile even is Src is undef.
6010   if (Src.isUndef())
6011     return Chain;
6012 
6013   // Expand memcpy to a series of load and store ops if the size operand falls
6014   // below a certain threshold.
6015   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6016   // rather than maybe a humongous number of loads and stores.
6017   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6018   const DataLayout &DL = DAG.getDataLayout();
6019   LLVMContext &C = *DAG.getContext();
6020   std::vector<EVT> MemOps;
6021   bool DstAlignCanChange = false;
6022   MachineFunction &MF = DAG.getMachineFunction();
6023   MachineFrameInfo &MFI = MF.getFrameInfo();
6024   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6025   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6026   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6027     DstAlignCanChange = true;
6028   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6029   if (!SrcAlign || Alignment > *SrcAlign)
6030     SrcAlign = Alignment;
6031   assert(SrcAlign && "SrcAlign must be set");
6032   ConstantDataArraySlice Slice;
6033   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
6034   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6035   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6036   const MemOp Op = isZeroConstant
6037                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6038                                     /*IsZeroMemset*/ true, isVol)
6039                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6040                                      *SrcAlign, isVol, CopyFromConstant);
6041   if (!TLI.findOptimalMemOpLowering(
6042           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6043           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6044     return SDValue();
6045 
6046   if (DstAlignCanChange) {
6047     Type *Ty = MemOps[0].getTypeForEVT(C);
6048     Align NewAlign = DL.getABITypeAlign(Ty);
6049 
6050     // Don't promote to an alignment that would require dynamic stack
6051     // realignment.
6052     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6053     if (!TRI->needsStackRealignment(MF))
6054       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6055         NewAlign = NewAlign / 2;
6056 
6057     if (NewAlign > Alignment) {
6058       // Give the stack frame object a larger alignment if needed.
6059       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6060         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6061       Alignment = NewAlign;
6062     }
6063   }
6064 
6065   MachineMemOperand::Flags MMOFlags =
6066       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6067   SmallVector<SDValue, 16> OutLoadChains;
6068   SmallVector<SDValue, 16> OutStoreChains;
6069   SmallVector<SDValue, 32> OutChains;
6070   unsigned NumMemOps = MemOps.size();
6071   uint64_t SrcOff = 0, DstOff = 0;
6072   for (unsigned i = 0; i != NumMemOps; ++i) {
6073     EVT VT = MemOps[i];
6074     unsigned VTSize = VT.getSizeInBits() / 8;
6075     SDValue Value, Store;
6076 
6077     if (VTSize > Size) {
6078       // Issuing an unaligned load / store pair  that overlaps with the previous
6079       // pair. Adjust the offset accordingly.
6080       assert(i == NumMemOps-1 && i != 0);
6081       SrcOff -= VTSize - Size;
6082       DstOff -= VTSize - Size;
6083     }
6084 
6085     if (CopyFromConstant &&
6086         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6087       // It's unlikely a store of a vector immediate can be done in a single
6088       // instruction. It would require a load from a constantpool first.
6089       // We only handle zero vectors here.
6090       // FIXME: Handle other cases where store of vector immediate is done in
6091       // a single instruction.
6092       ConstantDataArraySlice SubSlice;
6093       if (SrcOff < Slice.Length) {
6094         SubSlice = Slice;
6095         SubSlice.move(SrcOff);
6096       } else {
6097         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6098         SubSlice.Array = nullptr;
6099         SubSlice.Offset = 0;
6100         SubSlice.Length = VTSize;
6101       }
6102       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6103       if (Value.getNode()) {
6104         Store = DAG.getStore(
6105             Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6106             DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
6107         OutChains.push_back(Store);
6108       }
6109     }
6110 
6111     if (!Store.getNode()) {
6112       // The type might not be legal for the target.  This should only happen
6113       // if the type is smaller than a legal type, as on PPC, so the right
6114       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6115       // to Load/Store if NVT==VT.
6116       // FIXME does the case above also need this?
6117       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6118       assert(NVT.bitsGE(VT));
6119 
6120       bool isDereferenceable =
6121         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6122       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6123       if (isDereferenceable)
6124         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6125 
6126       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
6127                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6128                              SrcPtrInfo.getWithOffset(SrcOff), VT,
6129                              commonAlignment(*SrcAlign, SrcOff).value(),
6130                              SrcMMOFlags);
6131       OutLoadChains.push_back(Value.getValue(1));
6132 
6133       Store = DAG.getTruncStore(
6134           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6135           DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags);
6136       OutStoreChains.push_back(Store);
6137     }
6138     SrcOff += VTSize;
6139     DstOff += VTSize;
6140     Size -= VTSize;
6141   }
6142 
6143   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6144                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6145   unsigned NumLdStInMemcpy = OutStoreChains.size();
6146 
6147   if (NumLdStInMemcpy) {
6148     // It may be that memcpy might be converted to memset if it's memcpy
6149     // of constants. In such a case, we won't have loads and stores, but
6150     // just stores. In the absence of loads, there is nothing to gang up.
6151     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6152       // If target does not care, just leave as it.
6153       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6154         OutChains.push_back(OutLoadChains[i]);
6155         OutChains.push_back(OutStoreChains[i]);
6156       }
6157     } else {
6158       // Ld/St less than/equal limit set by target.
6159       if (NumLdStInMemcpy <= GluedLdStLimit) {
6160           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6161                                         NumLdStInMemcpy, OutLoadChains,
6162                                         OutStoreChains);
6163       } else {
6164         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6165         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6166         unsigned GlueIter = 0;
6167 
6168         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6169           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6170           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6171 
6172           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6173                                        OutLoadChains, OutStoreChains);
6174           GlueIter += GluedLdStLimit;
6175         }
6176 
6177         // Residual ld/st.
6178         if (RemainingLdStInMemcpy) {
6179           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6180                                         RemainingLdStInMemcpy, OutLoadChains,
6181                                         OutStoreChains);
6182         }
6183       }
6184     }
6185   }
6186   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6187 }
6188 
6189 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6190                                         SDValue Chain, SDValue Dst, SDValue Src,
6191                                         uint64_t Size, Align Alignment,
6192                                         bool isVol, bool AlwaysInline,
6193                                         MachinePointerInfo DstPtrInfo,
6194                                         MachinePointerInfo SrcPtrInfo) {
6195   // Turn a memmove of undef to nop.
6196   // FIXME: We need to honor volatile even is Src is undef.
6197   if (Src.isUndef())
6198     return Chain;
6199 
6200   // Expand memmove to a series of load and store ops if the size operand falls
6201   // below a certain threshold.
6202   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6203   const DataLayout &DL = DAG.getDataLayout();
6204   LLVMContext &C = *DAG.getContext();
6205   std::vector<EVT> MemOps;
6206   bool DstAlignCanChange = false;
6207   MachineFunction &MF = DAG.getMachineFunction();
6208   MachineFrameInfo &MFI = MF.getFrameInfo();
6209   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6210   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6211   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6212     DstAlignCanChange = true;
6213   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6214   if (!SrcAlign || Alignment > *SrcAlign)
6215     SrcAlign = Alignment;
6216   assert(SrcAlign && "SrcAlign must be set");
6217   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6218   if (!TLI.findOptimalMemOpLowering(
6219           MemOps, Limit,
6220           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6221                       /*IsVolatile*/ true),
6222           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6223           MF.getFunction().getAttributes()))
6224     return SDValue();
6225 
6226   if (DstAlignCanChange) {
6227     Type *Ty = MemOps[0].getTypeForEVT(C);
6228     Align NewAlign = DL.getABITypeAlign(Ty);
6229     if (NewAlign > Alignment) {
6230       // Give the stack frame object a larger alignment if needed.
6231       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6232         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6233       Alignment = NewAlign;
6234     }
6235   }
6236 
6237   MachineMemOperand::Flags MMOFlags =
6238       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6239   uint64_t SrcOff = 0, DstOff = 0;
6240   SmallVector<SDValue, 8> LoadValues;
6241   SmallVector<SDValue, 8> LoadChains;
6242   SmallVector<SDValue, 8> OutChains;
6243   unsigned NumMemOps = MemOps.size();
6244   for (unsigned i = 0; i < NumMemOps; i++) {
6245     EVT VT = MemOps[i];
6246     unsigned VTSize = VT.getSizeInBits() / 8;
6247     SDValue Value;
6248 
6249     bool isDereferenceable =
6250       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6251     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6252     if (isDereferenceable)
6253       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6254 
6255     Value = DAG.getLoad(
6256         VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6257         SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags);
6258     LoadValues.push_back(Value);
6259     LoadChains.push_back(Value.getValue(1));
6260     SrcOff += VTSize;
6261   }
6262   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6263   OutChains.clear();
6264   for (unsigned i = 0; i < NumMemOps; i++) {
6265     EVT VT = MemOps[i];
6266     unsigned VTSize = VT.getSizeInBits() / 8;
6267     SDValue Store;
6268 
6269     Store = DAG.getStore(
6270         Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6271         DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
6272     OutChains.push_back(Store);
6273     DstOff += VTSize;
6274   }
6275 
6276   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6277 }
6278 
6279 /// Lower the call to 'memset' intrinsic function into a series of store
6280 /// operations.
6281 ///
6282 /// \param DAG Selection DAG where lowered code is placed.
6283 /// \param dl Link to corresponding IR location.
6284 /// \param Chain Control flow dependency.
6285 /// \param Dst Pointer to destination memory location.
6286 /// \param Src Value of byte to write into the memory.
6287 /// \param Size Number of bytes to write.
6288 /// \param Alignment Alignment of the destination in bytes.
6289 /// \param isVol True if destination is volatile.
6290 /// \param DstPtrInfo IR information on the memory pointer.
6291 /// \returns New head in the control flow, if lowering was successful, empty
6292 /// SDValue otherwise.
6293 ///
6294 /// The function tries to replace 'llvm.memset' intrinsic with several store
6295 /// operations and value calculation code. This is usually profitable for small
6296 /// memory size.
6297 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6298                                SDValue Chain, SDValue Dst, SDValue Src,
6299                                uint64_t Size, Align Alignment, bool isVol,
6300                                MachinePointerInfo DstPtrInfo) {
6301   // Turn a memset of undef to nop.
6302   // FIXME: We need to honor volatile even is Src is undef.
6303   if (Src.isUndef())
6304     return Chain;
6305 
6306   // Expand memset to a series of load/store ops if the size operand
6307   // falls below a certain threshold.
6308   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6309   std::vector<EVT> MemOps;
6310   bool DstAlignCanChange = false;
6311   MachineFunction &MF = DAG.getMachineFunction();
6312   MachineFrameInfo &MFI = MF.getFrameInfo();
6313   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6314   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6315   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6316     DstAlignCanChange = true;
6317   bool IsZeroVal =
6318     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6319   if (!TLI.findOptimalMemOpLowering(
6320           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6321           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6322           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6323     return SDValue();
6324 
6325   if (DstAlignCanChange) {
6326     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6327     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6328     if (NewAlign > Alignment) {
6329       // Give the stack frame object a larger alignment if needed.
6330       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6331         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6332       Alignment = NewAlign;
6333     }
6334   }
6335 
6336   SmallVector<SDValue, 8> OutChains;
6337   uint64_t DstOff = 0;
6338   unsigned NumMemOps = MemOps.size();
6339 
6340   // Find the largest store and generate the bit pattern for it.
6341   EVT LargestVT = MemOps[0];
6342   for (unsigned i = 1; i < NumMemOps; i++)
6343     if (MemOps[i].bitsGT(LargestVT))
6344       LargestVT = MemOps[i];
6345   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6346 
6347   for (unsigned i = 0; i < NumMemOps; i++) {
6348     EVT VT = MemOps[i];
6349     unsigned VTSize = VT.getSizeInBits() / 8;
6350     if (VTSize > Size) {
6351       // Issuing an unaligned load / store pair  that overlaps with the previous
6352       // pair. Adjust the offset accordingly.
6353       assert(i == NumMemOps-1 && i != 0);
6354       DstOff -= VTSize - Size;
6355     }
6356 
6357     // If this store is smaller than the largest store see whether we can get
6358     // the smaller value for free with a truncate.
6359     SDValue Value = MemSetValue;
6360     if (VT.bitsLT(LargestVT)) {
6361       if (!LargestVT.isVector() && !VT.isVector() &&
6362           TLI.isTruncateFree(LargestVT, VT))
6363         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6364       else
6365         Value = getMemsetValue(Src, VT, DAG, dl);
6366     }
6367     assert(Value.getValueType() == VT && "Value with wrong type.");
6368     SDValue Store = DAG.getStore(
6369         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6370         DstPtrInfo.getWithOffset(DstOff), Alignment.value(),
6371         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6372     OutChains.push_back(Store);
6373     DstOff += VT.getSizeInBits() / 8;
6374     Size -= VTSize;
6375   }
6376 
6377   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6378 }
6379 
6380 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6381                                             unsigned AS) {
6382   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6383   // pointer operands can be losslessly bitcasted to pointers of address space 0
6384   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6385     report_fatal_error("cannot lower memory intrinsic in address space " +
6386                        Twine(AS));
6387   }
6388 }
6389 
6390 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6391                                 SDValue Src, SDValue Size, Align Alignment,
6392                                 bool isVol, bool AlwaysInline, bool isTailCall,
6393                                 MachinePointerInfo DstPtrInfo,
6394                                 MachinePointerInfo SrcPtrInfo) {
6395   // Check to see if we should lower the memcpy to loads and stores first.
6396   // For cases within the target-specified limits, this is the best choice.
6397   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6398   if (ConstantSize) {
6399     // Memcpy with size zero? Just return the original chain.
6400     if (ConstantSize->isNullValue())
6401       return Chain;
6402 
6403     SDValue Result = getMemcpyLoadsAndStores(
6404         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6405         isVol, false, DstPtrInfo, SrcPtrInfo);
6406     if (Result.getNode())
6407       return Result;
6408   }
6409 
6410   // Then check to see if we should lower the memcpy with target-specific
6411   // code. If the target chooses to do this, this is the next best.
6412   if (TSI) {
6413     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6414         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol,
6415         AlwaysInline, DstPtrInfo, SrcPtrInfo);
6416     if (Result.getNode())
6417       return Result;
6418   }
6419 
6420   // If we really need inline code and the target declined to provide it,
6421   // use a (potentially long) sequence of loads and stores.
6422   if (AlwaysInline) {
6423     assert(ConstantSize && "AlwaysInline requires a constant size!");
6424     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6425                                    ConstantSize->getZExtValue(), Alignment,
6426                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6427   }
6428 
6429   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6430   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6431 
6432   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6433   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6434   // respect volatile, so they may do things like read or write memory
6435   // beyond the given memory regions. But fixing this isn't easy, and most
6436   // people don't care.
6437 
6438   // Emit a library call.
6439   TargetLowering::ArgListTy Args;
6440   TargetLowering::ArgListEntry Entry;
6441   Entry.Ty = Type::getInt8PtrTy(*getContext());
6442   Entry.Node = Dst; Args.push_back(Entry);
6443   Entry.Node = Src; Args.push_back(Entry);
6444 
6445   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6446   Entry.Node = Size; Args.push_back(Entry);
6447   // FIXME: pass in SDLoc
6448   TargetLowering::CallLoweringInfo CLI(*this);
6449   CLI.setDebugLoc(dl)
6450       .setChain(Chain)
6451       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6452                     Dst.getValueType().getTypeForEVT(*getContext()),
6453                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6454                                       TLI->getPointerTy(getDataLayout())),
6455                     std::move(Args))
6456       .setDiscardResult()
6457       .setTailCall(isTailCall);
6458 
6459   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6460   return CallResult.second;
6461 }
6462 
6463 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6464                                       SDValue Dst, unsigned DstAlign,
6465                                       SDValue Src, unsigned SrcAlign,
6466                                       SDValue Size, Type *SizeTy,
6467                                       unsigned ElemSz, bool isTailCall,
6468                                       MachinePointerInfo DstPtrInfo,
6469                                       MachinePointerInfo SrcPtrInfo) {
6470   // Emit a library call.
6471   TargetLowering::ArgListTy Args;
6472   TargetLowering::ArgListEntry Entry;
6473   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6474   Entry.Node = Dst;
6475   Args.push_back(Entry);
6476 
6477   Entry.Node = Src;
6478   Args.push_back(Entry);
6479 
6480   Entry.Ty = SizeTy;
6481   Entry.Node = Size;
6482   Args.push_back(Entry);
6483 
6484   RTLIB::Libcall LibraryCall =
6485       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6486   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6487     report_fatal_error("Unsupported element size");
6488 
6489   TargetLowering::CallLoweringInfo CLI(*this);
6490   CLI.setDebugLoc(dl)
6491       .setChain(Chain)
6492       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6493                     Type::getVoidTy(*getContext()),
6494                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6495                                       TLI->getPointerTy(getDataLayout())),
6496                     std::move(Args))
6497       .setDiscardResult()
6498       .setTailCall(isTailCall);
6499 
6500   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6501   return CallResult.second;
6502 }
6503 
6504 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6505                                  SDValue Src, SDValue Size, Align Alignment,
6506                                  bool isVol, bool isTailCall,
6507                                  MachinePointerInfo DstPtrInfo,
6508                                  MachinePointerInfo SrcPtrInfo) {
6509   // Check to see if we should lower the memmove to loads and stores first.
6510   // For cases within the target-specified limits, this is the best choice.
6511   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6512   if (ConstantSize) {
6513     // Memmove with size zero? Just return the original chain.
6514     if (ConstantSize->isNullValue())
6515       return Chain;
6516 
6517     SDValue Result = getMemmoveLoadsAndStores(
6518         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6519         isVol, false, DstPtrInfo, SrcPtrInfo);
6520     if (Result.getNode())
6521       return Result;
6522   }
6523 
6524   // Then check to see if we should lower the memmove with target-specific
6525   // code. If the target chooses to do this, this is the next best.
6526   if (TSI) {
6527     SDValue Result = TSI->EmitTargetCodeForMemmove(
6528         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo,
6529         SrcPtrInfo);
6530     if (Result.getNode())
6531       return Result;
6532   }
6533 
6534   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6535   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6536 
6537   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6538   // not be safe.  See memcpy above for more details.
6539 
6540   // Emit a library call.
6541   TargetLowering::ArgListTy Args;
6542   TargetLowering::ArgListEntry Entry;
6543   Entry.Ty = Type::getInt8PtrTy(*getContext());
6544   Entry.Node = Dst; Args.push_back(Entry);
6545   Entry.Node = Src; Args.push_back(Entry);
6546 
6547   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6548   Entry.Node = Size; Args.push_back(Entry);
6549   // FIXME:  pass in SDLoc
6550   TargetLowering::CallLoweringInfo CLI(*this);
6551   CLI.setDebugLoc(dl)
6552       .setChain(Chain)
6553       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6554                     Dst.getValueType().getTypeForEVT(*getContext()),
6555                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6556                                       TLI->getPointerTy(getDataLayout())),
6557                     std::move(Args))
6558       .setDiscardResult()
6559       .setTailCall(isTailCall);
6560 
6561   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6562   return CallResult.second;
6563 }
6564 
6565 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6566                                        SDValue Dst, unsigned DstAlign,
6567                                        SDValue Src, unsigned SrcAlign,
6568                                        SDValue Size, Type *SizeTy,
6569                                        unsigned ElemSz, bool isTailCall,
6570                                        MachinePointerInfo DstPtrInfo,
6571                                        MachinePointerInfo SrcPtrInfo) {
6572   // Emit a library call.
6573   TargetLowering::ArgListTy Args;
6574   TargetLowering::ArgListEntry Entry;
6575   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6576   Entry.Node = Dst;
6577   Args.push_back(Entry);
6578 
6579   Entry.Node = Src;
6580   Args.push_back(Entry);
6581 
6582   Entry.Ty = SizeTy;
6583   Entry.Node = Size;
6584   Args.push_back(Entry);
6585 
6586   RTLIB::Libcall LibraryCall =
6587       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6588   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6589     report_fatal_error("Unsupported element size");
6590 
6591   TargetLowering::CallLoweringInfo CLI(*this);
6592   CLI.setDebugLoc(dl)
6593       .setChain(Chain)
6594       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6595                     Type::getVoidTy(*getContext()),
6596                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6597                                       TLI->getPointerTy(getDataLayout())),
6598                     std::move(Args))
6599       .setDiscardResult()
6600       .setTailCall(isTailCall);
6601 
6602   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6603   return CallResult.second;
6604 }
6605 
6606 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6607                                 SDValue Src, SDValue Size, Align Alignment,
6608                                 bool isVol, bool isTailCall,
6609                                 MachinePointerInfo DstPtrInfo) {
6610   // Check to see if we should lower the memset to stores first.
6611   // For cases within the target-specified limits, this is the best choice.
6612   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6613   if (ConstantSize) {
6614     // Memset with size zero? Just return the original chain.
6615     if (ConstantSize->isNullValue())
6616       return Chain;
6617 
6618     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6619                                      ConstantSize->getZExtValue(), Alignment,
6620                                      isVol, DstPtrInfo);
6621 
6622     if (Result.getNode())
6623       return Result;
6624   }
6625 
6626   // Then check to see if we should lower the memset with target-specific
6627   // code. If the target chooses to do this, this is the next best.
6628   if (TSI) {
6629     SDValue Result = TSI->EmitTargetCodeForMemset(
6630         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo);
6631     if (Result.getNode())
6632       return Result;
6633   }
6634 
6635   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6636 
6637   // Emit a library call.
6638   TargetLowering::ArgListTy Args;
6639   TargetLowering::ArgListEntry Entry;
6640   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6641   Args.push_back(Entry);
6642   Entry.Node = Src;
6643   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6644   Args.push_back(Entry);
6645   Entry.Node = Size;
6646   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6647   Args.push_back(Entry);
6648 
6649   // FIXME: pass in SDLoc
6650   TargetLowering::CallLoweringInfo CLI(*this);
6651   CLI.setDebugLoc(dl)
6652       .setChain(Chain)
6653       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6654                     Dst.getValueType().getTypeForEVT(*getContext()),
6655                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6656                                       TLI->getPointerTy(getDataLayout())),
6657                     std::move(Args))
6658       .setDiscardResult()
6659       .setTailCall(isTailCall);
6660 
6661   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6662   return CallResult.second;
6663 }
6664 
6665 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6666                                       SDValue Dst, unsigned DstAlign,
6667                                       SDValue Value, SDValue Size, Type *SizeTy,
6668                                       unsigned ElemSz, bool isTailCall,
6669                                       MachinePointerInfo DstPtrInfo) {
6670   // Emit a library call.
6671   TargetLowering::ArgListTy Args;
6672   TargetLowering::ArgListEntry Entry;
6673   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6674   Entry.Node = Dst;
6675   Args.push_back(Entry);
6676 
6677   Entry.Ty = Type::getInt8Ty(*getContext());
6678   Entry.Node = Value;
6679   Args.push_back(Entry);
6680 
6681   Entry.Ty = SizeTy;
6682   Entry.Node = Size;
6683   Args.push_back(Entry);
6684 
6685   RTLIB::Libcall LibraryCall =
6686       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6687   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6688     report_fatal_error("Unsupported element size");
6689 
6690   TargetLowering::CallLoweringInfo CLI(*this);
6691   CLI.setDebugLoc(dl)
6692       .setChain(Chain)
6693       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6694                     Type::getVoidTy(*getContext()),
6695                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6696                                       TLI->getPointerTy(getDataLayout())),
6697                     std::move(Args))
6698       .setDiscardResult()
6699       .setTailCall(isTailCall);
6700 
6701   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6702   return CallResult.second;
6703 }
6704 
6705 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6706                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6707                                 MachineMemOperand *MMO) {
6708   FoldingSetNodeID ID;
6709   ID.AddInteger(MemVT.getRawBits());
6710   AddNodeIDNode(ID, Opcode, VTList, Ops);
6711   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6712   void* IP = nullptr;
6713   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6714     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6715     return SDValue(E, 0);
6716   }
6717 
6718   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6719                                     VTList, MemVT, MMO);
6720   createOperands(N, Ops);
6721 
6722   CSEMap.InsertNode(N, IP);
6723   InsertNode(N);
6724   return SDValue(N, 0);
6725 }
6726 
6727 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6728                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6729                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6730                                        MachineMemOperand *MMO) {
6731   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6732          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6733   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6734 
6735   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6736   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6737 }
6738 
6739 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6740                                 SDValue Chain, SDValue Ptr, SDValue Val,
6741                                 MachineMemOperand *MMO) {
6742   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6743           Opcode == ISD::ATOMIC_LOAD_SUB ||
6744           Opcode == ISD::ATOMIC_LOAD_AND ||
6745           Opcode == ISD::ATOMIC_LOAD_CLR ||
6746           Opcode == ISD::ATOMIC_LOAD_OR ||
6747           Opcode == ISD::ATOMIC_LOAD_XOR ||
6748           Opcode == ISD::ATOMIC_LOAD_NAND ||
6749           Opcode == ISD::ATOMIC_LOAD_MIN ||
6750           Opcode == ISD::ATOMIC_LOAD_MAX ||
6751           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6752           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6753           Opcode == ISD::ATOMIC_LOAD_FADD ||
6754           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6755           Opcode == ISD::ATOMIC_SWAP ||
6756           Opcode == ISD::ATOMIC_STORE) &&
6757          "Invalid Atomic Op");
6758 
6759   EVT VT = Val.getValueType();
6760 
6761   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6762                                                getVTList(VT, MVT::Other);
6763   SDValue Ops[] = {Chain, Ptr, Val};
6764   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6765 }
6766 
6767 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6768                                 EVT VT, SDValue Chain, SDValue Ptr,
6769                                 MachineMemOperand *MMO) {
6770   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6771 
6772   SDVTList VTs = getVTList(VT, MVT::Other);
6773   SDValue Ops[] = {Chain, Ptr};
6774   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6775 }
6776 
6777 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6778 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6779   if (Ops.size() == 1)
6780     return Ops[0];
6781 
6782   SmallVector<EVT, 4> VTs;
6783   VTs.reserve(Ops.size());
6784   for (unsigned i = 0; i < Ops.size(); ++i)
6785     VTs.push_back(Ops[i].getValueType());
6786   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6787 }
6788 
6789 SDValue SelectionDAG::getMemIntrinsicNode(
6790     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6791     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
6792     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6793   if (!Size && MemVT.isScalableVector())
6794     Size = MemoryLocation::UnknownSize;
6795   else if (!Size)
6796     Size = MemVT.getStoreSize();
6797 
6798   MachineFunction &MF = getMachineFunction();
6799   MachineMemOperand *MMO =
6800       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
6801 
6802   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6803 }
6804 
6805 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6806                                           SDVTList VTList,
6807                                           ArrayRef<SDValue> Ops, EVT MemVT,
6808                                           MachineMemOperand *MMO) {
6809   assert((Opcode == ISD::INTRINSIC_VOID ||
6810           Opcode == ISD::INTRINSIC_W_CHAIN ||
6811           Opcode == ISD::PREFETCH ||
6812           ((int)Opcode <= std::numeric_limits<int>::max() &&
6813            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6814          "Opcode is not a memory-accessing opcode!");
6815 
6816   // Memoize the node unless it returns a flag.
6817   MemIntrinsicSDNode *N;
6818   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6819     FoldingSetNodeID ID;
6820     AddNodeIDNode(ID, Opcode, VTList, Ops);
6821     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6822         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6823     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6824     void *IP = nullptr;
6825     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6826       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6827       return SDValue(E, 0);
6828     }
6829 
6830     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6831                                       VTList, MemVT, MMO);
6832     createOperands(N, Ops);
6833 
6834   CSEMap.InsertNode(N, IP);
6835   } else {
6836     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6837                                       VTList, MemVT, MMO);
6838     createOperands(N, Ops);
6839   }
6840   InsertNode(N);
6841   SDValue V(N, 0);
6842   NewSDValueDbgMsg(V, "Creating new node: ", this);
6843   return V;
6844 }
6845 
6846 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6847                                       SDValue Chain, int FrameIndex,
6848                                       int64_t Size, int64_t Offset) {
6849   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6850   const auto VTs = getVTList(MVT::Other);
6851   SDValue Ops[2] = {
6852       Chain,
6853       getFrameIndex(FrameIndex,
6854                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6855                     true)};
6856 
6857   FoldingSetNodeID ID;
6858   AddNodeIDNode(ID, Opcode, VTs, Ops);
6859   ID.AddInteger(FrameIndex);
6860   ID.AddInteger(Size);
6861   ID.AddInteger(Offset);
6862   void *IP = nullptr;
6863   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6864     return SDValue(E, 0);
6865 
6866   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6867       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6868   createOperands(N, Ops);
6869   CSEMap.InsertNode(N, IP);
6870   InsertNode(N);
6871   SDValue V(N, 0);
6872   NewSDValueDbgMsg(V, "Creating new node: ", this);
6873   return V;
6874 }
6875 
6876 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6877 /// MachinePointerInfo record from it.  This is particularly useful because the
6878 /// code generator has many cases where it doesn't bother passing in a
6879 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6880 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6881                                            SelectionDAG &DAG, SDValue Ptr,
6882                                            int64_t Offset = 0) {
6883   // If this is FI+Offset, we can model it.
6884   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6885     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6886                                              FI->getIndex(), Offset);
6887 
6888   // If this is (FI+Offset1)+Offset2, we can model it.
6889   if (Ptr.getOpcode() != ISD::ADD ||
6890       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6891       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6892     return Info;
6893 
6894   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6895   return MachinePointerInfo::getFixedStack(
6896       DAG.getMachineFunction(), FI,
6897       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6898 }
6899 
6900 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6901 /// MachinePointerInfo record from it.  This is particularly useful because the
6902 /// code generator has many cases where it doesn't bother passing in a
6903 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6904 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6905                                            SelectionDAG &DAG, SDValue Ptr,
6906                                            SDValue OffsetOp) {
6907   // If the 'Offset' value isn't a constant, we can't handle this.
6908   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6909     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6910   if (OffsetOp.isUndef())
6911     return InferPointerInfo(Info, DAG, Ptr);
6912   return Info;
6913 }
6914 
6915 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6916                               EVT VT, const SDLoc &dl, SDValue Chain,
6917                               SDValue Ptr, SDValue Offset,
6918                               MachinePointerInfo PtrInfo, EVT MemVT,
6919                               Align Alignment,
6920                               MachineMemOperand::Flags MMOFlags,
6921                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6922   assert(Chain.getValueType() == MVT::Other &&
6923         "Invalid chain type");
6924 
6925   MMOFlags |= MachineMemOperand::MOLoad;
6926   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6927   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6928   // clients.
6929   if (PtrInfo.V.isNull())
6930     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6931 
6932   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
6933   MachineFunction &MF = getMachineFunction();
6934   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
6935                                                    Alignment, AAInfo, Ranges);
6936   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6937 }
6938 
6939 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6940                               EVT VT, const SDLoc &dl, SDValue Chain,
6941                               SDValue Ptr, SDValue Offset, EVT MemVT,
6942                               MachineMemOperand *MMO) {
6943   if (VT == MemVT) {
6944     ExtType = ISD::NON_EXTLOAD;
6945   } else if (ExtType == ISD::NON_EXTLOAD) {
6946     assert(VT == MemVT && "Non-extending load from different memory type!");
6947   } else {
6948     // Extending load.
6949     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6950            "Should only be an extending load, not truncating!");
6951     assert(VT.isInteger() == MemVT.isInteger() &&
6952            "Cannot convert from FP to Int or Int -> FP!");
6953     assert(VT.isVector() == MemVT.isVector() &&
6954            "Cannot use an ext load to convert to or from a vector!");
6955     assert((!VT.isVector() ||
6956             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6957            "Cannot use an ext load to change the number of vector elements!");
6958   }
6959 
6960   bool Indexed = AM != ISD::UNINDEXED;
6961   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6962 
6963   SDVTList VTs = Indexed ?
6964     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6965   SDValue Ops[] = { Chain, Ptr, Offset };
6966   FoldingSetNodeID ID;
6967   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6968   ID.AddInteger(MemVT.getRawBits());
6969   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6970       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6971   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6972   void *IP = nullptr;
6973   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6974     cast<LoadSDNode>(E)->refineAlignment(MMO);
6975     return SDValue(E, 0);
6976   }
6977   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6978                                   ExtType, MemVT, MMO);
6979   createOperands(N, Ops);
6980 
6981   CSEMap.InsertNode(N, IP);
6982   InsertNode(N);
6983   SDValue V(N, 0);
6984   NewSDValueDbgMsg(V, "Creating new node: ", this);
6985   return V;
6986 }
6987 
6988 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6989                               SDValue Ptr, MachinePointerInfo PtrInfo,
6990                               MaybeAlign Alignment,
6991                               MachineMemOperand::Flags MMOFlags,
6992                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6993   SDValue Undef = getUNDEF(Ptr.getValueType());
6994   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6995                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6996 }
6997 
6998 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6999                               SDValue Ptr, MachineMemOperand *MMO) {
7000   SDValue Undef = getUNDEF(Ptr.getValueType());
7001   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7002                  VT, MMO);
7003 }
7004 
7005 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7006                                  EVT VT, SDValue Chain, SDValue Ptr,
7007                                  MachinePointerInfo PtrInfo, EVT MemVT,
7008                                  MaybeAlign Alignment,
7009                                  MachineMemOperand::Flags MMOFlags,
7010                                  const AAMDNodes &AAInfo) {
7011   SDValue Undef = getUNDEF(Ptr.getValueType());
7012   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7013                  MemVT, Alignment, MMOFlags, AAInfo);
7014 }
7015 
7016 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7017                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7018                                  MachineMemOperand *MMO) {
7019   SDValue Undef = getUNDEF(Ptr.getValueType());
7020   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7021                  MemVT, MMO);
7022 }
7023 
7024 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7025                                      SDValue Base, SDValue Offset,
7026                                      ISD::MemIndexedMode AM) {
7027   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7028   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7029   // Don't propagate the invariant or dereferenceable flags.
7030   auto MMOFlags =
7031       LD->getMemOperand()->getFlags() &
7032       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7033   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7034                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7035                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
7036                  LD->getAAInfo());
7037 }
7038 
7039 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7040                                SDValue Ptr, MachinePointerInfo PtrInfo,
7041                                Align Alignment,
7042                                MachineMemOperand::Flags MMOFlags,
7043                                const AAMDNodes &AAInfo) {
7044   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7045 
7046   MMOFlags |= MachineMemOperand::MOStore;
7047   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7048 
7049   if (PtrInfo.V.isNull())
7050     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7051 
7052   MachineFunction &MF = getMachineFunction();
7053   uint64_t Size =
7054       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7055   MachineMemOperand *MMO =
7056       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7057   return getStore(Chain, dl, Val, Ptr, MMO);
7058 }
7059 
7060 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7061                                SDValue Ptr, MachineMemOperand *MMO) {
7062   assert(Chain.getValueType() == MVT::Other &&
7063         "Invalid chain type");
7064   EVT VT = Val.getValueType();
7065   SDVTList VTs = getVTList(MVT::Other);
7066   SDValue Undef = getUNDEF(Ptr.getValueType());
7067   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7068   FoldingSetNodeID ID;
7069   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7070   ID.AddInteger(VT.getRawBits());
7071   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7072       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7073   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7074   void *IP = nullptr;
7075   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7076     cast<StoreSDNode>(E)->refineAlignment(MMO);
7077     return SDValue(E, 0);
7078   }
7079   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7080                                    ISD::UNINDEXED, false, VT, MMO);
7081   createOperands(N, Ops);
7082 
7083   CSEMap.InsertNode(N, IP);
7084   InsertNode(N);
7085   SDValue V(N, 0);
7086   NewSDValueDbgMsg(V, "Creating new node: ", this);
7087   return V;
7088 }
7089 
7090 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7091                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7092                                     EVT SVT, Align Alignment,
7093                                     MachineMemOperand::Flags MMOFlags,
7094                                     const AAMDNodes &AAInfo) {
7095   assert(Chain.getValueType() == MVT::Other &&
7096         "Invalid chain type");
7097 
7098   MMOFlags |= MachineMemOperand::MOStore;
7099   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7100 
7101   if (PtrInfo.V.isNull())
7102     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7103 
7104   MachineFunction &MF = getMachineFunction();
7105   MachineMemOperand *MMO = MF.getMachineMemOperand(
7106       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
7107   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7108 }
7109 
7110 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7111                                     SDValue Ptr, EVT SVT,
7112                                     MachineMemOperand *MMO) {
7113   EVT VT = Val.getValueType();
7114 
7115   assert(Chain.getValueType() == MVT::Other &&
7116         "Invalid chain type");
7117   if (VT == SVT)
7118     return getStore(Chain, dl, Val, Ptr, MMO);
7119 
7120   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7121          "Should only be a truncating store, not extending!");
7122   assert(VT.isInteger() == SVT.isInteger() &&
7123          "Can't do FP-INT conversion!");
7124   assert(VT.isVector() == SVT.isVector() &&
7125          "Cannot use trunc store to convert to or from a vector!");
7126   assert((!VT.isVector() ||
7127           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
7128          "Cannot use trunc store to change the number of vector elements!");
7129 
7130   SDVTList VTs = getVTList(MVT::Other);
7131   SDValue Undef = getUNDEF(Ptr.getValueType());
7132   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7133   FoldingSetNodeID ID;
7134   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7135   ID.AddInteger(SVT.getRawBits());
7136   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7137       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7138   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7139   void *IP = nullptr;
7140   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7141     cast<StoreSDNode>(E)->refineAlignment(MMO);
7142     return SDValue(E, 0);
7143   }
7144   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7145                                    ISD::UNINDEXED, true, SVT, MMO);
7146   createOperands(N, Ops);
7147 
7148   CSEMap.InsertNode(N, IP);
7149   InsertNode(N);
7150   SDValue V(N, 0);
7151   NewSDValueDbgMsg(V, "Creating new node: ", this);
7152   return V;
7153 }
7154 
7155 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7156                                       SDValue Base, SDValue Offset,
7157                                       ISD::MemIndexedMode AM) {
7158   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7159   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7160   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7161   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7162   FoldingSetNodeID ID;
7163   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7164   ID.AddInteger(ST->getMemoryVT().getRawBits());
7165   ID.AddInteger(ST->getRawSubclassData());
7166   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7167   void *IP = nullptr;
7168   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7169     return SDValue(E, 0);
7170 
7171   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7172                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7173                                    ST->getMemOperand());
7174   createOperands(N, Ops);
7175 
7176   CSEMap.InsertNode(N, IP);
7177   InsertNode(N);
7178   SDValue V(N, 0);
7179   NewSDValueDbgMsg(V, "Creating new node: ", this);
7180   return V;
7181 }
7182 
7183 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7184                                     SDValue Base, SDValue Offset, SDValue Mask,
7185                                     SDValue PassThru, EVT MemVT,
7186                                     MachineMemOperand *MMO,
7187                                     ISD::MemIndexedMode AM,
7188                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7189   bool Indexed = AM != ISD::UNINDEXED;
7190   assert((Indexed || Offset.isUndef()) &&
7191          "Unindexed masked load with an offset!");
7192   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7193                          : getVTList(VT, MVT::Other);
7194   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7195   FoldingSetNodeID ID;
7196   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7197   ID.AddInteger(MemVT.getRawBits());
7198   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7199       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7200   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7201   void *IP = nullptr;
7202   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7203     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7204     return SDValue(E, 0);
7205   }
7206   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7207                                         AM, ExtTy, isExpanding, MemVT, MMO);
7208   createOperands(N, Ops);
7209 
7210   CSEMap.InsertNode(N, IP);
7211   InsertNode(N);
7212   SDValue V(N, 0);
7213   NewSDValueDbgMsg(V, "Creating new node: ", this);
7214   return V;
7215 }
7216 
7217 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7218                                            SDValue Base, SDValue Offset,
7219                                            ISD::MemIndexedMode AM) {
7220   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7221   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7222   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7223                        Offset, LD->getMask(), LD->getPassThru(),
7224                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7225                        LD->getExtensionType(), LD->isExpandingLoad());
7226 }
7227 
7228 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7229                                      SDValue Val, SDValue Base, SDValue Offset,
7230                                      SDValue Mask, EVT MemVT,
7231                                      MachineMemOperand *MMO,
7232                                      ISD::MemIndexedMode AM, bool IsTruncating,
7233                                      bool IsCompressing) {
7234   assert(Chain.getValueType() == MVT::Other &&
7235         "Invalid chain type");
7236   bool Indexed = AM != ISD::UNINDEXED;
7237   assert((Indexed || Offset.isUndef()) &&
7238          "Unindexed masked store with an offset!");
7239   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7240                          : getVTList(MVT::Other);
7241   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7242   FoldingSetNodeID ID;
7243   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7244   ID.AddInteger(MemVT.getRawBits());
7245   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7246       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7247   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7248   void *IP = nullptr;
7249   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7250     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7251     return SDValue(E, 0);
7252   }
7253   auto *N =
7254       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7255                                    IsTruncating, IsCompressing, MemVT, MMO);
7256   createOperands(N, Ops);
7257 
7258   CSEMap.InsertNode(N, IP);
7259   InsertNode(N);
7260   SDValue V(N, 0);
7261   NewSDValueDbgMsg(V, "Creating new node: ", this);
7262   return V;
7263 }
7264 
7265 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7266                                             SDValue Base, SDValue Offset,
7267                                             ISD::MemIndexedMode AM) {
7268   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7269   assert(ST->getOffset().isUndef() &&
7270          "Masked store is already a indexed store!");
7271   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7272                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7273                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7274 }
7275 
7276 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7277                                       ArrayRef<SDValue> Ops,
7278                                       MachineMemOperand *MMO,
7279                                       ISD::MemIndexType IndexType) {
7280   assert(Ops.size() == 6 && "Incompatible number of operands");
7281 
7282   FoldingSetNodeID ID;
7283   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7284   ID.AddInteger(VT.getRawBits());
7285   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7286       dl.getIROrder(), VTs, VT, MMO, IndexType));
7287   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7288   void *IP = nullptr;
7289   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7290     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7291     return SDValue(E, 0);
7292   }
7293 
7294   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7295                                           VTs, VT, MMO, IndexType);
7296   createOperands(N, Ops);
7297 
7298   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7299          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7300   assert(N->getMask().getValueType().getVectorNumElements() ==
7301              N->getValueType(0).getVectorNumElements() &&
7302          "Vector width mismatch between mask and data");
7303   assert(N->getIndex().getValueType().getVectorNumElements() >=
7304              N->getValueType(0).getVectorNumElements() &&
7305          "Vector width mismatch between index and data");
7306   assert(isa<ConstantSDNode>(N->getScale()) &&
7307          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7308          "Scale should be a constant power of 2");
7309 
7310   CSEMap.InsertNode(N, IP);
7311   InsertNode(N);
7312   SDValue V(N, 0);
7313   NewSDValueDbgMsg(V, "Creating new node: ", this);
7314   return V;
7315 }
7316 
7317 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7318                                        ArrayRef<SDValue> Ops,
7319                                        MachineMemOperand *MMO,
7320                                        ISD::MemIndexType IndexType) {
7321   assert(Ops.size() == 6 && "Incompatible number of operands");
7322 
7323   FoldingSetNodeID ID;
7324   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7325   ID.AddInteger(VT.getRawBits());
7326   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7327       dl.getIROrder(), VTs, VT, MMO, IndexType));
7328   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7329   void *IP = nullptr;
7330   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7331     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7332     return SDValue(E, 0);
7333   }
7334   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7335                                            VTs, VT, MMO, IndexType);
7336   createOperands(N, Ops);
7337 
7338   assert(N->getMask().getValueType().getVectorNumElements() ==
7339              N->getValue().getValueType().getVectorNumElements() &&
7340          "Vector width mismatch between mask and data");
7341   assert(N->getIndex().getValueType().getVectorNumElements() >=
7342              N->getValue().getValueType().getVectorNumElements() &&
7343          "Vector width mismatch between index and data");
7344   assert(isa<ConstantSDNode>(N->getScale()) &&
7345          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7346          "Scale should be a constant power of 2");
7347 
7348   CSEMap.InsertNode(N, IP);
7349   InsertNode(N);
7350   SDValue V(N, 0);
7351   NewSDValueDbgMsg(V, "Creating new node: ", this);
7352   return V;
7353 }
7354 
7355 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7356   // select undef, T, F --> T (if T is a constant), otherwise F
7357   // select, ?, undef, F --> F
7358   // select, ?, T, undef --> T
7359   if (Cond.isUndef())
7360     return isConstantValueOfAnyType(T) ? T : F;
7361   if (T.isUndef())
7362     return F;
7363   if (F.isUndef())
7364     return T;
7365 
7366   // select true, T, F --> T
7367   // select false, T, F --> F
7368   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7369     return CondC->isNullValue() ? F : T;
7370 
7371   // TODO: This should simplify VSELECT with constant condition using something
7372   // like this (but check boolean contents to be complete?):
7373   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7374   //    return T;
7375   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7376   //    return F;
7377 
7378   // select ?, T, T --> T
7379   if (T == F)
7380     return T;
7381 
7382   return SDValue();
7383 }
7384 
7385 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7386   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7387   if (X.isUndef())
7388     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7389   // shift X, undef --> undef (because it may shift by the bitwidth)
7390   if (Y.isUndef())
7391     return getUNDEF(X.getValueType());
7392 
7393   // shift 0, Y --> 0
7394   // shift X, 0 --> X
7395   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7396     return X;
7397 
7398   // shift X, C >= bitwidth(X) --> undef
7399   // All vector elements must be too big (or undef) to avoid partial undefs.
7400   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7401     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7402   };
7403   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7404     return getUNDEF(X.getValueType());
7405 
7406   return SDValue();
7407 }
7408 
7409 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7410                                       SDNodeFlags Flags) {
7411   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7412   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7413   // operation is poison. That result can be relaxed to undef.
7414   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7415   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7416   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7417                 (YC && YC->getValueAPF().isNaN());
7418   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7419                 (YC && YC->getValueAPF().isInfinity());
7420 
7421   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7422     return getUNDEF(X.getValueType());
7423 
7424   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7425     return getUNDEF(X.getValueType());
7426 
7427   if (!YC)
7428     return SDValue();
7429 
7430   // X + -0.0 --> X
7431   if (Opcode == ISD::FADD)
7432     if (YC->getValueAPF().isNegZero())
7433       return X;
7434 
7435   // X - +0.0 --> X
7436   if (Opcode == ISD::FSUB)
7437     if (YC->getValueAPF().isPosZero())
7438       return X;
7439 
7440   // X * 1.0 --> X
7441   // X / 1.0 --> X
7442   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7443     if (YC->getValueAPF().isExactlyValue(1.0))
7444       return X;
7445 
7446   return SDValue();
7447 }
7448 
7449 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7450                                SDValue Ptr, SDValue SV, unsigned Align) {
7451   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7452   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7453 }
7454 
7455 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7456                               ArrayRef<SDUse> Ops) {
7457   switch (Ops.size()) {
7458   case 0: return getNode(Opcode, DL, VT);
7459   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7460   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7461   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7462   default: break;
7463   }
7464 
7465   // Copy from an SDUse array into an SDValue array for use with
7466   // the regular getNode logic.
7467   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7468   return getNode(Opcode, DL, VT, NewOps);
7469 }
7470 
7471 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7472                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7473   unsigned NumOps = Ops.size();
7474   switch (NumOps) {
7475   case 0: return getNode(Opcode, DL, VT);
7476   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7477   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7478   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7479   default: break;
7480   }
7481 
7482   switch (Opcode) {
7483   default: break;
7484   case ISD::BUILD_VECTOR:
7485     // Attempt to simplify BUILD_VECTOR.
7486     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7487       return V;
7488     break;
7489   case ISD::CONCAT_VECTORS:
7490     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7491       return V;
7492     break;
7493   case ISD::SELECT_CC:
7494     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7495     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7496            "LHS and RHS of condition must have same type!");
7497     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7498            "True and False arms of SelectCC must have same type!");
7499     assert(Ops[2].getValueType() == VT &&
7500            "select_cc node must be of same type as true and false value!");
7501     break;
7502   case ISD::BR_CC:
7503     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7504     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7505            "LHS/RHS of comparison should match types!");
7506     break;
7507   }
7508 
7509   // Memoize nodes.
7510   SDNode *N;
7511   SDVTList VTs = getVTList(VT);
7512 
7513   if (VT != MVT::Glue) {
7514     FoldingSetNodeID ID;
7515     AddNodeIDNode(ID, Opcode, VTs, Ops);
7516     void *IP = nullptr;
7517 
7518     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7519       return SDValue(E, 0);
7520 
7521     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7522     createOperands(N, Ops);
7523 
7524     CSEMap.InsertNode(N, IP);
7525   } else {
7526     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7527     createOperands(N, Ops);
7528   }
7529 
7530   N->setFlags(Flags);
7531   InsertNode(N);
7532   SDValue V(N, 0);
7533   NewSDValueDbgMsg(V, "Creating new node: ", this);
7534   return V;
7535 }
7536 
7537 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7538                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7539   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7540 }
7541 
7542 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7543                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7544   if (VTList.NumVTs == 1)
7545     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7546 
7547   switch (Opcode) {
7548   case ISD::STRICT_FP_EXTEND:
7549     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7550            "Invalid STRICT_FP_EXTEND!");
7551     assert(VTList.VTs[0].isFloatingPoint() &&
7552            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7553     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7554            "STRICT_FP_EXTEND result type should be vector iff the operand "
7555            "type is vector!");
7556     assert((!VTList.VTs[0].isVector() ||
7557             VTList.VTs[0].getVectorNumElements() ==
7558             Ops[1].getValueType().getVectorNumElements()) &&
7559            "Vector element count mismatch!");
7560     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7561            "Invalid fpext node, dst <= src!");
7562     break;
7563   case ISD::STRICT_FP_ROUND:
7564     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7565     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7566            "STRICT_FP_ROUND result type should be vector iff the operand "
7567            "type is vector!");
7568     assert((!VTList.VTs[0].isVector() ||
7569             VTList.VTs[0].getVectorNumElements() ==
7570             Ops[1].getValueType().getVectorNumElements()) &&
7571            "Vector element count mismatch!");
7572     assert(VTList.VTs[0].isFloatingPoint() &&
7573            Ops[1].getValueType().isFloatingPoint() &&
7574            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7575            isa<ConstantSDNode>(Ops[2]) &&
7576            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7577             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7578            "Invalid STRICT_FP_ROUND!");
7579     break;
7580 #if 0
7581   // FIXME: figure out how to safely handle things like
7582   // int foo(int x) { return 1 << (x & 255); }
7583   // int bar() { return foo(256); }
7584   case ISD::SRA_PARTS:
7585   case ISD::SRL_PARTS:
7586   case ISD::SHL_PARTS:
7587     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7588         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7589       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7590     else if (N3.getOpcode() == ISD::AND)
7591       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7592         // If the and is only masking out bits that cannot effect the shift,
7593         // eliminate the and.
7594         unsigned NumBits = VT.getScalarSizeInBits()*2;
7595         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7596           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7597       }
7598     break;
7599 #endif
7600   }
7601 
7602   // Memoize the node unless it returns a flag.
7603   SDNode *N;
7604   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7605     FoldingSetNodeID ID;
7606     AddNodeIDNode(ID, Opcode, VTList, Ops);
7607     void *IP = nullptr;
7608     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7609       return SDValue(E, 0);
7610 
7611     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7612     createOperands(N, Ops);
7613     CSEMap.InsertNode(N, IP);
7614   } else {
7615     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7616     createOperands(N, Ops);
7617   }
7618 
7619   N->setFlags(Flags);
7620   InsertNode(N);
7621   SDValue V(N, 0);
7622   NewSDValueDbgMsg(V, "Creating new node: ", this);
7623   return V;
7624 }
7625 
7626 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7627                               SDVTList VTList) {
7628   return getNode(Opcode, DL, VTList, None);
7629 }
7630 
7631 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7632                               SDValue N1) {
7633   SDValue Ops[] = { N1 };
7634   return getNode(Opcode, DL, VTList, Ops);
7635 }
7636 
7637 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7638                               SDValue N1, SDValue N2) {
7639   SDValue Ops[] = { N1, N2 };
7640   return getNode(Opcode, DL, VTList, Ops);
7641 }
7642 
7643 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7644                               SDValue N1, SDValue N2, SDValue N3) {
7645   SDValue Ops[] = { N1, N2, N3 };
7646   return getNode(Opcode, DL, VTList, Ops);
7647 }
7648 
7649 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7650                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7651   SDValue Ops[] = { N1, N2, N3, N4 };
7652   return getNode(Opcode, DL, VTList, Ops);
7653 }
7654 
7655 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7656                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7657                               SDValue N5) {
7658   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7659   return getNode(Opcode, DL, VTList, Ops);
7660 }
7661 
7662 SDVTList SelectionDAG::getVTList(EVT VT) {
7663   return makeVTList(SDNode::getValueTypeList(VT), 1);
7664 }
7665 
7666 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7667   FoldingSetNodeID ID;
7668   ID.AddInteger(2U);
7669   ID.AddInteger(VT1.getRawBits());
7670   ID.AddInteger(VT2.getRawBits());
7671 
7672   void *IP = nullptr;
7673   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7674   if (!Result) {
7675     EVT *Array = Allocator.Allocate<EVT>(2);
7676     Array[0] = VT1;
7677     Array[1] = VT2;
7678     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7679     VTListMap.InsertNode(Result, IP);
7680   }
7681   return Result->getSDVTList();
7682 }
7683 
7684 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7685   FoldingSetNodeID ID;
7686   ID.AddInteger(3U);
7687   ID.AddInteger(VT1.getRawBits());
7688   ID.AddInteger(VT2.getRawBits());
7689   ID.AddInteger(VT3.getRawBits());
7690 
7691   void *IP = nullptr;
7692   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7693   if (!Result) {
7694     EVT *Array = Allocator.Allocate<EVT>(3);
7695     Array[0] = VT1;
7696     Array[1] = VT2;
7697     Array[2] = VT3;
7698     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7699     VTListMap.InsertNode(Result, IP);
7700   }
7701   return Result->getSDVTList();
7702 }
7703 
7704 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7705   FoldingSetNodeID ID;
7706   ID.AddInteger(4U);
7707   ID.AddInteger(VT1.getRawBits());
7708   ID.AddInteger(VT2.getRawBits());
7709   ID.AddInteger(VT3.getRawBits());
7710   ID.AddInteger(VT4.getRawBits());
7711 
7712   void *IP = nullptr;
7713   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7714   if (!Result) {
7715     EVT *Array = Allocator.Allocate<EVT>(4);
7716     Array[0] = VT1;
7717     Array[1] = VT2;
7718     Array[2] = VT3;
7719     Array[3] = VT4;
7720     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7721     VTListMap.InsertNode(Result, IP);
7722   }
7723   return Result->getSDVTList();
7724 }
7725 
7726 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7727   unsigned NumVTs = VTs.size();
7728   FoldingSetNodeID ID;
7729   ID.AddInteger(NumVTs);
7730   for (unsigned index = 0; index < NumVTs; index++) {
7731     ID.AddInteger(VTs[index].getRawBits());
7732   }
7733 
7734   void *IP = nullptr;
7735   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7736   if (!Result) {
7737     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7738     llvm::copy(VTs, Array);
7739     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7740     VTListMap.InsertNode(Result, IP);
7741   }
7742   return Result->getSDVTList();
7743 }
7744 
7745 
7746 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7747 /// specified operands.  If the resultant node already exists in the DAG,
7748 /// this does not modify the specified node, instead it returns the node that
7749 /// already exists.  If the resultant node does not exist in the DAG, the
7750 /// input node is returned.  As a degenerate case, if you specify the same
7751 /// input operands as the node already has, the input node is returned.
7752 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7753   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7754 
7755   // Check to see if there is no change.
7756   if (Op == N->getOperand(0)) return N;
7757 
7758   // See if the modified node already exists.
7759   void *InsertPos = nullptr;
7760   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7761     return Existing;
7762 
7763   // Nope it doesn't.  Remove the node from its current place in the maps.
7764   if (InsertPos)
7765     if (!RemoveNodeFromCSEMaps(N))
7766       InsertPos = nullptr;
7767 
7768   // Now we update the operands.
7769   N->OperandList[0].set(Op);
7770 
7771   updateDivergence(N);
7772   // If this gets put into a CSE map, add it.
7773   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7774   return N;
7775 }
7776 
7777 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7778   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7779 
7780   // Check to see if there is no change.
7781   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7782     return N;   // No operands changed, just return the input node.
7783 
7784   // See if the modified node already exists.
7785   void *InsertPos = nullptr;
7786   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7787     return Existing;
7788 
7789   // Nope it doesn't.  Remove the node from its current place in the maps.
7790   if (InsertPos)
7791     if (!RemoveNodeFromCSEMaps(N))
7792       InsertPos = nullptr;
7793 
7794   // Now we update the operands.
7795   if (N->OperandList[0] != Op1)
7796     N->OperandList[0].set(Op1);
7797   if (N->OperandList[1] != Op2)
7798     N->OperandList[1].set(Op2);
7799 
7800   updateDivergence(N);
7801   // If this gets put into a CSE map, add it.
7802   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7803   return N;
7804 }
7805 
7806 SDNode *SelectionDAG::
7807 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7808   SDValue Ops[] = { Op1, Op2, Op3 };
7809   return UpdateNodeOperands(N, Ops);
7810 }
7811 
7812 SDNode *SelectionDAG::
7813 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7814                    SDValue Op3, SDValue Op4) {
7815   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7816   return UpdateNodeOperands(N, Ops);
7817 }
7818 
7819 SDNode *SelectionDAG::
7820 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7821                    SDValue Op3, SDValue Op4, SDValue Op5) {
7822   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7823   return UpdateNodeOperands(N, Ops);
7824 }
7825 
7826 SDNode *SelectionDAG::
7827 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7828   unsigned NumOps = Ops.size();
7829   assert(N->getNumOperands() == NumOps &&
7830          "Update with wrong number of operands");
7831 
7832   // If no operands changed just return the input node.
7833   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7834     return N;
7835 
7836   // See if the modified node already exists.
7837   void *InsertPos = nullptr;
7838   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7839     return Existing;
7840 
7841   // Nope it doesn't.  Remove the node from its current place in the maps.
7842   if (InsertPos)
7843     if (!RemoveNodeFromCSEMaps(N))
7844       InsertPos = nullptr;
7845 
7846   // Now we update the operands.
7847   for (unsigned i = 0; i != NumOps; ++i)
7848     if (N->OperandList[i] != Ops[i])
7849       N->OperandList[i].set(Ops[i]);
7850 
7851   updateDivergence(N);
7852   // If this gets put into a CSE map, add it.
7853   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7854   return N;
7855 }
7856 
7857 /// DropOperands - Release the operands and set this node to have
7858 /// zero operands.
7859 void SDNode::DropOperands() {
7860   // Unlike the code in MorphNodeTo that does this, we don't need to
7861   // watch for dead nodes here.
7862   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7863     SDUse &Use = *I++;
7864     Use.set(SDValue());
7865   }
7866 }
7867 
7868 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7869                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7870   if (NewMemRefs.empty()) {
7871     N->clearMemRefs();
7872     return;
7873   }
7874 
7875   // Check if we can avoid allocating by storing a single reference directly.
7876   if (NewMemRefs.size() == 1) {
7877     N->MemRefs = NewMemRefs[0];
7878     N->NumMemRefs = 1;
7879     return;
7880   }
7881 
7882   MachineMemOperand **MemRefsBuffer =
7883       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7884   llvm::copy(NewMemRefs, MemRefsBuffer);
7885   N->MemRefs = MemRefsBuffer;
7886   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7887 }
7888 
7889 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7890 /// machine opcode.
7891 ///
7892 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7893                                    EVT VT) {
7894   SDVTList VTs = getVTList(VT);
7895   return SelectNodeTo(N, MachineOpc, VTs, None);
7896 }
7897 
7898 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7899                                    EVT VT, SDValue Op1) {
7900   SDVTList VTs = getVTList(VT);
7901   SDValue Ops[] = { Op1 };
7902   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7903 }
7904 
7905 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7906                                    EVT VT, SDValue Op1,
7907                                    SDValue Op2) {
7908   SDVTList VTs = getVTList(VT);
7909   SDValue Ops[] = { Op1, Op2 };
7910   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7911 }
7912 
7913 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7914                                    EVT VT, SDValue Op1,
7915                                    SDValue Op2, SDValue Op3) {
7916   SDVTList VTs = getVTList(VT);
7917   SDValue Ops[] = { Op1, Op2, Op3 };
7918   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7919 }
7920 
7921 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7922                                    EVT VT, ArrayRef<SDValue> Ops) {
7923   SDVTList VTs = getVTList(VT);
7924   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7925 }
7926 
7927 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7928                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7929   SDVTList VTs = getVTList(VT1, VT2);
7930   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7931 }
7932 
7933 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7934                                    EVT VT1, EVT VT2) {
7935   SDVTList VTs = getVTList(VT1, VT2);
7936   return SelectNodeTo(N, MachineOpc, VTs, None);
7937 }
7938 
7939 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7940                                    EVT VT1, EVT VT2, EVT VT3,
7941                                    ArrayRef<SDValue> Ops) {
7942   SDVTList VTs = getVTList(VT1, VT2, VT3);
7943   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7944 }
7945 
7946 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7947                                    EVT VT1, EVT VT2,
7948                                    SDValue Op1, SDValue Op2) {
7949   SDVTList VTs = getVTList(VT1, VT2);
7950   SDValue Ops[] = { Op1, Op2 };
7951   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7952 }
7953 
7954 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7955                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7956   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7957   // Reset the NodeID to -1.
7958   New->setNodeId(-1);
7959   if (New != N) {
7960     ReplaceAllUsesWith(N, New);
7961     RemoveDeadNode(N);
7962   }
7963   return New;
7964 }
7965 
7966 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7967 /// the line number information on the merged node since it is not possible to
7968 /// preserve the information that operation is associated with multiple lines.
7969 /// This will make the debugger working better at -O0, were there is a higher
7970 /// probability having other instructions associated with that line.
7971 ///
7972 /// For IROrder, we keep the smaller of the two
7973 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7974   DebugLoc NLoc = N->getDebugLoc();
7975   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7976     N->setDebugLoc(DebugLoc());
7977   }
7978   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7979   N->setIROrder(Order);
7980   return N;
7981 }
7982 
7983 /// MorphNodeTo - This *mutates* the specified node to have the specified
7984 /// return type, opcode, and operands.
7985 ///
7986 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7987 /// node of the specified opcode and operands, it returns that node instead of
7988 /// the current one.  Note that the SDLoc need not be the same.
7989 ///
7990 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7991 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7992 /// node, and because it doesn't require CSE recalculation for any of
7993 /// the node's users.
7994 ///
7995 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7996 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7997 /// the legalizer which maintain worklists that would need to be updated when
7998 /// deleting things.
7999 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8000                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8001   // If an identical node already exists, use it.
8002   void *IP = nullptr;
8003   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8004     FoldingSetNodeID ID;
8005     AddNodeIDNode(ID, Opc, VTs, Ops);
8006     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8007       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8008   }
8009 
8010   if (!RemoveNodeFromCSEMaps(N))
8011     IP = nullptr;
8012 
8013   // Start the morphing.
8014   N->NodeType = Opc;
8015   N->ValueList = VTs.VTs;
8016   N->NumValues = VTs.NumVTs;
8017 
8018   // Clear the operands list, updating used nodes to remove this from their
8019   // use list.  Keep track of any operands that become dead as a result.
8020   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8021   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8022     SDUse &Use = *I++;
8023     SDNode *Used = Use.getNode();
8024     Use.set(SDValue());
8025     if (Used->use_empty())
8026       DeadNodeSet.insert(Used);
8027   }
8028 
8029   // For MachineNode, initialize the memory references information.
8030   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8031     MN->clearMemRefs();
8032 
8033   // Swap for an appropriately sized array from the recycler.
8034   removeOperands(N);
8035   createOperands(N, Ops);
8036 
8037   // Delete any nodes that are still dead after adding the uses for the
8038   // new operands.
8039   if (!DeadNodeSet.empty()) {
8040     SmallVector<SDNode *, 16> DeadNodes;
8041     for (SDNode *N : DeadNodeSet)
8042       if (N->use_empty())
8043         DeadNodes.push_back(N);
8044     RemoveDeadNodes(DeadNodes);
8045   }
8046 
8047   if (IP)
8048     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8049   return N;
8050 }
8051 
8052 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8053   unsigned OrigOpc = Node->getOpcode();
8054   unsigned NewOpc;
8055   switch (OrigOpc) {
8056   default:
8057     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8058 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8059   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8060 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8061   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8062 #include "llvm/IR/ConstrainedOps.def"
8063   }
8064 
8065   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8066 
8067   // We're taking this node out of the chain, so we need to re-link things.
8068   SDValue InputChain = Node->getOperand(0);
8069   SDValue OutputChain = SDValue(Node, 1);
8070   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8071 
8072   SmallVector<SDValue, 3> Ops;
8073   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8074     Ops.push_back(Node->getOperand(i));
8075 
8076   SDVTList VTs = getVTList(Node->getValueType(0));
8077   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8078 
8079   // MorphNodeTo can operate in two ways: if an existing node with the
8080   // specified operands exists, it can just return it.  Otherwise, it
8081   // updates the node in place to have the requested operands.
8082   if (Res == Node) {
8083     // If we updated the node in place, reset the node ID.  To the isel,
8084     // this should be just like a newly allocated machine node.
8085     Res->setNodeId(-1);
8086   } else {
8087     ReplaceAllUsesWith(Node, Res);
8088     RemoveDeadNode(Node);
8089   }
8090 
8091   return Res;
8092 }
8093 
8094 /// getMachineNode - These are used for target selectors to create a new node
8095 /// with specified return type(s), MachineInstr opcode, and operands.
8096 ///
8097 /// Note that getMachineNode returns the resultant node.  If there is already a
8098 /// node of the specified opcode and operands, it returns that node instead of
8099 /// the current one.
8100 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8101                                             EVT VT) {
8102   SDVTList VTs = getVTList(VT);
8103   return getMachineNode(Opcode, dl, VTs, None);
8104 }
8105 
8106 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8107                                             EVT VT, SDValue Op1) {
8108   SDVTList VTs = getVTList(VT);
8109   SDValue Ops[] = { Op1 };
8110   return getMachineNode(Opcode, dl, VTs, Ops);
8111 }
8112 
8113 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8114                                             EVT VT, SDValue Op1, SDValue Op2) {
8115   SDVTList VTs = getVTList(VT);
8116   SDValue Ops[] = { Op1, Op2 };
8117   return getMachineNode(Opcode, dl, VTs, Ops);
8118 }
8119 
8120 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8121                                             EVT VT, SDValue Op1, SDValue Op2,
8122                                             SDValue Op3) {
8123   SDVTList VTs = getVTList(VT);
8124   SDValue Ops[] = { Op1, Op2, Op3 };
8125   return getMachineNode(Opcode, dl, VTs, Ops);
8126 }
8127 
8128 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8129                                             EVT VT, ArrayRef<SDValue> Ops) {
8130   SDVTList VTs = getVTList(VT);
8131   return getMachineNode(Opcode, dl, VTs, Ops);
8132 }
8133 
8134 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8135                                             EVT VT1, EVT VT2, SDValue Op1,
8136                                             SDValue Op2) {
8137   SDVTList VTs = getVTList(VT1, VT2);
8138   SDValue Ops[] = { Op1, Op2 };
8139   return getMachineNode(Opcode, dl, VTs, Ops);
8140 }
8141 
8142 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8143                                             EVT VT1, EVT VT2, SDValue Op1,
8144                                             SDValue Op2, SDValue Op3) {
8145   SDVTList VTs = getVTList(VT1, VT2);
8146   SDValue Ops[] = { Op1, Op2, Op3 };
8147   return getMachineNode(Opcode, dl, VTs, Ops);
8148 }
8149 
8150 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8151                                             EVT VT1, EVT VT2,
8152                                             ArrayRef<SDValue> Ops) {
8153   SDVTList VTs = getVTList(VT1, VT2);
8154   return getMachineNode(Opcode, dl, VTs, Ops);
8155 }
8156 
8157 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8158                                             EVT VT1, EVT VT2, EVT VT3,
8159                                             SDValue Op1, SDValue Op2) {
8160   SDVTList VTs = getVTList(VT1, VT2, VT3);
8161   SDValue Ops[] = { Op1, Op2 };
8162   return getMachineNode(Opcode, dl, VTs, Ops);
8163 }
8164 
8165 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8166                                             EVT VT1, EVT VT2, EVT VT3,
8167                                             SDValue Op1, SDValue Op2,
8168                                             SDValue Op3) {
8169   SDVTList VTs = getVTList(VT1, VT2, VT3);
8170   SDValue Ops[] = { Op1, Op2, Op3 };
8171   return getMachineNode(Opcode, dl, VTs, Ops);
8172 }
8173 
8174 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8175                                             EVT VT1, EVT VT2, EVT VT3,
8176                                             ArrayRef<SDValue> Ops) {
8177   SDVTList VTs = getVTList(VT1, VT2, VT3);
8178   return getMachineNode(Opcode, dl, VTs, Ops);
8179 }
8180 
8181 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8182                                             ArrayRef<EVT> ResultTys,
8183                                             ArrayRef<SDValue> Ops) {
8184   SDVTList VTs = getVTList(ResultTys);
8185   return getMachineNode(Opcode, dl, VTs, Ops);
8186 }
8187 
8188 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8189                                             SDVTList VTs,
8190                                             ArrayRef<SDValue> Ops) {
8191   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8192   MachineSDNode *N;
8193   void *IP = nullptr;
8194 
8195   if (DoCSE) {
8196     FoldingSetNodeID ID;
8197     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8198     IP = nullptr;
8199     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8200       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8201     }
8202   }
8203 
8204   // Allocate a new MachineSDNode.
8205   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8206   createOperands(N, Ops);
8207 
8208   if (DoCSE)
8209     CSEMap.InsertNode(N, IP);
8210 
8211   InsertNode(N);
8212   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8213   return N;
8214 }
8215 
8216 /// getTargetExtractSubreg - A convenience function for creating
8217 /// TargetOpcode::EXTRACT_SUBREG nodes.
8218 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8219                                              SDValue Operand) {
8220   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8221   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8222                                   VT, Operand, SRIdxVal);
8223   return SDValue(Subreg, 0);
8224 }
8225 
8226 /// getTargetInsertSubreg - A convenience function for creating
8227 /// TargetOpcode::INSERT_SUBREG nodes.
8228 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8229                                             SDValue Operand, SDValue Subreg) {
8230   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8231   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8232                                   VT, Operand, Subreg, SRIdxVal);
8233   return SDValue(Result, 0);
8234 }
8235 
8236 /// getNodeIfExists - Get the specified node if it's already available, or
8237 /// else return NULL.
8238 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8239                                       ArrayRef<SDValue> Ops,
8240                                       const SDNodeFlags Flags) {
8241   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8242     FoldingSetNodeID ID;
8243     AddNodeIDNode(ID, Opcode, VTList, Ops);
8244     void *IP = nullptr;
8245     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8246       E->intersectFlagsWith(Flags);
8247       return E;
8248     }
8249   }
8250   return nullptr;
8251 }
8252 
8253 /// getDbgValue - Creates a SDDbgValue node.
8254 ///
8255 /// SDNode
8256 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8257                                       SDNode *N, unsigned R, bool IsIndirect,
8258                                       const DebugLoc &DL, unsigned O) {
8259   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8260          "Expected inlined-at fields to agree");
8261   return new (DbgInfo->getAlloc())
8262       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8263 }
8264 
8265 /// Constant
8266 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8267                                               DIExpression *Expr,
8268                                               const Value *C,
8269                                               const DebugLoc &DL, unsigned O) {
8270   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8271          "Expected inlined-at fields to agree");
8272   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8273 }
8274 
8275 /// FrameIndex
8276 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8277                                                 DIExpression *Expr, unsigned FI,
8278                                                 bool IsIndirect,
8279                                                 const DebugLoc &DL,
8280                                                 unsigned O) {
8281   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8282          "Expected inlined-at fields to agree");
8283   return new (DbgInfo->getAlloc())
8284       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8285 }
8286 
8287 /// VReg
8288 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8289                                           DIExpression *Expr,
8290                                           unsigned VReg, bool IsIndirect,
8291                                           const DebugLoc &DL, unsigned O) {
8292   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8293          "Expected inlined-at fields to agree");
8294   return new (DbgInfo->getAlloc())
8295       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8296 }
8297 
8298 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8299                                      unsigned OffsetInBits, unsigned SizeInBits,
8300                                      bool InvalidateDbg) {
8301   SDNode *FromNode = From.getNode();
8302   SDNode *ToNode = To.getNode();
8303   assert(FromNode && ToNode && "Can't modify dbg values");
8304 
8305   // PR35338
8306   // TODO: assert(From != To && "Redundant dbg value transfer");
8307   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8308   if (From == To || FromNode == ToNode)
8309     return;
8310 
8311   if (!FromNode->getHasDebugValue())
8312     return;
8313 
8314   SmallVector<SDDbgValue *, 2> ClonedDVs;
8315   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8316     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8317       continue;
8318 
8319     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8320 
8321     // Just transfer the dbg value attached to From.
8322     if (Dbg->getResNo() != From.getResNo())
8323       continue;
8324 
8325     DIVariable *Var = Dbg->getVariable();
8326     auto *Expr = Dbg->getExpression();
8327     // If a fragment is requested, update the expression.
8328     if (SizeInBits) {
8329       // When splitting a larger (e.g., sign-extended) value whose
8330       // lower bits are described with an SDDbgValue, do not attempt
8331       // to transfer the SDDbgValue to the upper bits.
8332       if (auto FI = Expr->getFragmentInfo())
8333         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8334           continue;
8335       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8336                                                              SizeInBits);
8337       if (!Fragment)
8338         continue;
8339       Expr = *Fragment;
8340     }
8341     // Clone the SDDbgValue and move it to To.
8342     SDDbgValue *Clone = getDbgValue(
8343         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8344         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8345     ClonedDVs.push_back(Clone);
8346 
8347     if (InvalidateDbg) {
8348       // Invalidate value and indicate the SDDbgValue should not be emitted.
8349       Dbg->setIsInvalidated();
8350       Dbg->setIsEmitted();
8351     }
8352   }
8353 
8354   for (SDDbgValue *Dbg : ClonedDVs)
8355     AddDbgValue(Dbg, ToNode, false);
8356 }
8357 
8358 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8359   if (!N.getHasDebugValue())
8360     return;
8361 
8362   SmallVector<SDDbgValue *, 2> ClonedDVs;
8363   for (auto DV : GetDbgValues(&N)) {
8364     if (DV->isInvalidated())
8365       continue;
8366     switch (N.getOpcode()) {
8367     default:
8368       break;
8369     case ISD::ADD:
8370       SDValue N0 = N.getOperand(0);
8371       SDValue N1 = N.getOperand(1);
8372       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8373           isConstantIntBuildVectorOrConstantInt(N1)) {
8374         uint64_t Offset = N.getConstantOperandVal(1);
8375         // Rewrite an ADD constant node into a DIExpression. Since we are
8376         // performing arithmetic to compute the variable's *value* in the
8377         // DIExpression, we need to mark the expression with a
8378         // DW_OP_stack_value.
8379         auto *DIExpr = DV->getExpression();
8380         DIExpr =
8381             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8382         SDDbgValue *Clone =
8383             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8384                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8385         ClonedDVs.push_back(Clone);
8386         DV->setIsInvalidated();
8387         DV->setIsEmitted();
8388         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8389                    N0.getNode()->dumprFull(this);
8390                    dbgs() << " into " << *DIExpr << '\n');
8391       }
8392     }
8393   }
8394 
8395   for (SDDbgValue *Dbg : ClonedDVs)
8396     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8397 }
8398 
8399 /// Creates a SDDbgLabel node.
8400 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8401                                       const DebugLoc &DL, unsigned O) {
8402   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8403          "Expected inlined-at fields to agree");
8404   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8405 }
8406 
8407 namespace {
8408 
8409 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8410 /// pointed to by a use iterator is deleted, increment the use iterator
8411 /// so that it doesn't dangle.
8412 ///
8413 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8414   SDNode::use_iterator &UI;
8415   SDNode::use_iterator &UE;
8416 
8417   void NodeDeleted(SDNode *N, SDNode *E) override {
8418     // Increment the iterator as needed.
8419     while (UI != UE && N == *UI)
8420       ++UI;
8421   }
8422 
8423 public:
8424   RAUWUpdateListener(SelectionDAG &d,
8425                      SDNode::use_iterator &ui,
8426                      SDNode::use_iterator &ue)
8427     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8428 };
8429 
8430 } // end anonymous namespace
8431 
8432 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8433 /// This can cause recursive merging of nodes in the DAG.
8434 ///
8435 /// This version assumes From has a single result value.
8436 ///
8437 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8438   SDNode *From = FromN.getNode();
8439   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8440          "Cannot replace with this method!");
8441   assert(From != To.getNode() && "Cannot replace uses of with self");
8442 
8443   // Preserve Debug Values
8444   transferDbgValues(FromN, To);
8445 
8446   // Iterate over all the existing uses of From. New uses will be added
8447   // to the beginning of the use list, which we avoid visiting.
8448   // This specifically avoids visiting uses of From that arise while the
8449   // replacement is happening, because any such uses would be the result
8450   // of CSE: If an existing node looks like From after one of its operands
8451   // is replaced by To, we don't want to replace of all its users with To
8452   // too. See PR3018 for more info.
8453   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8454   RAUWUpdateListener Listener(*this, UI, UE);
8455   while (UI != UE) {
8456     SDNode *User = *UI;
8457 
8458     // This node is about to morph, remove its old self from the CSE maps.
8459     RemoveNodeFromCSEMaps(User);
8460 
8461     // A user can appear in a use list multiple times, and when this
8462     // happens the uses are usually next to each other in the list.
8463     // To help reduce the number of CSE recomputations, process all
8464     // the uses of this user that we can find this way.
8465     do {
8466       SDUse &Use = UI.getUse();
8467       ++UI;
8468       Use.set(To);
8469       if (To->isDivergent() != From->isDivergent())
8470         updateDivergence(User);
8471     } while (UI != UE && *UI == User);
8472     // Now that we have modified User, add it back to the CSE maps.  If it
8473     // already exists there, recursively merge the results together.
8474     AddModifiedNodeToCSEMaps(User);
8475   }
8476 
8477   // If we just RAUW'd the root, take note.
8478   if (FromN == getRoot())
8479     setRoot(To);
8480 }
8481 
8482 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8483 /// This can cause recursive merging of nodes in the DAG.
8484 ///
8485 /// This version assumes that for each value of From, there is a
8486 /// corresponding value in To in the same position with the same type.
8487 ///
8488 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8489 #ifndef NDEBUG
8490   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8491     assert((!From->hasAnyUseOfValue(i) ||
8492             From->getValueType(i) == To->getValueType(i)) &&
8493            "Cannot use this version of ReplaceAllUsesWith!");
8494 #endif
8495 
8496   // Handle the trivial case.
8497   if (From == To)
8498     return;
8499 
8500   // Preserve Debug Info. Only do this if there's a use.
8501   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8502     if (From->hasAnyUseOfValue(i)) {
8503       assert((i < To->getNumValues()) && "Invalid To location");
8504       transferDbgValues(SDValue(From, i), SDValue(To, i));
8505     }
8506 
8507   // Iterate over just the existing users of From. See the comments in
8508   // the ReplaceAllUsesWith above.
8509   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8510   RAUWUpdateListener Listener(*this, UI, UE);
8511   while (UI != UE) {
8512     SDNode *User = *UI;
8513 
8514     // This node is about to morph, remove its old self from the CSE maps.
8515     RemoveNodeFromCSEMaps(User);
8516 
8517     // A user can appear in a use list multiple times, and when this
8518     // happens the uses are usually next to each other in the list.
8519     // To help reduce the number of CSE recomputations, process all
8520     // the uses of this user that we can find this way.
8521     do {
8522       SDUse &Use = UI.getUse();
8523       ++UI;
8524       Use.setNode(To);
8525       if (To->isDivergent() != From->isDivergent())
8526         updateDivergence(User);
8527     } while (UI != UE && *UI == User);
8528 
8529     // Now that we have modified User, add it back to the CSE maps.  If it
8530     // already exists there, recursively merge the results together.
8531     AddModifiedNodeToCSEMaps(User);
8532   }
8533 
8534   // If we just RAUW'd the root, take note.
8535   if (From == getRoot().getNode())
8536     setRoot(SDValue(To, getRoot().getResNo()));
8537 }
8538 
8539 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8540 /// This can cause recursive merging of nodes in the DAG.
8541 ///
8542 /// This version can replace From with any result values.  To must match the
8543 /// number and types of values returned by From.
8544 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8545   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8546     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8547 
8548   // Preserve Debug Info.
8549   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8550     transferDbgValues(SDValue(From, i), To[i]);
8551 
8552   // Iterate over just the existing users of From. See the comments in
8553   // the ReplaceAllUsesWith above.
8554   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8555   RAUWUpdateListener Listener(*this, UI, UE);
8556   while (UI != UE) {
8557     SDNode *User = *UI;
8558 
8559     // This node is about to morph, remove its old self from the CSE maps.
8560     RemoveNodeFromCSEMaps(User);
8561 
8562     // A user can appear in a use list multiple times, and when this happens the
8563     // uses are usually next to each other in the list.  To help reduce the
8564     // number of CSE and divergence recomputations, process all the uses of this
8565     // user that we can find this way.
8566     bool To_IsDivergent = false;
8567     do {
8568       SDUse &Use = UI.getUse();
8569       const SDValue &ToOp = To[Use.getResNo()];
8570       ++UI;
8571       Use.set(ToOp);
8572       To_IsDivergent |= ToOp->isDivergent();
8573     } while (UI != UE && *UI == User);
8574 
8575     if (To_IsDivergent != From->isDivergent())
8576       updateDivergence(User);
8577 
8578     // Now that we have modified User, add it back to the CSE maps.  If it
8579     // already exists there, recursively merge the results together.
8580     AddModifiedNodeToCSEMaps(User);
8581   }
8582 
8583   // If we just RAUW'd the root, take note.
8584   if (From == getRoot().getNode())
8585     setRoot(SDValue(To[getRoot().getResNo()]));
8586 }
8587 
8588 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8589 /// uses of other values produced by From.getNode() alone.  The Deleted
8590 /// vector is handled the same way as for ReplaceAllUsesWith.
8591 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8592   // Handle the really simple, really trivial case efficiently.
8593   if (From == To) return;
8594 
8595   // Handle the simple, trivial, case efficiently.
8596   if (From.getNode()->getNumValues() == 1) {
8597     ReplaceAllUsesWith(From, To);
8598     return;
8599   }
8600 
8601   // Preserve Debug Info.
8602   transferDbgValues(From, To);
8603 
8604   // Iterate over just the existing users of From. See the comments in
8605   // the ReplaceAllUsesWith above.
8606   SDNode::use_iterator UI = From.getNode()->use_begin(),
8607                        UE = From.getNode()->use_end();
8608   RAUWUpdateListener Listener(*this, UI, UE);
8609   while (UI != UE) {
8610     SDNode *User = *UI;
8611     bool UserRemovedFromCSEMaps = false;
8612 
8613     // A user can appear in a use list multiple times, and when this
8614     // happens the uses are usually next to each other in the list.
8615     // To help reduce the number of CSE recomputations, process all
8616     // the uses of this user that we can find this way.
8617     do {
8618       SDUse &Use = UI.getUse();
8619 
8620       // Skip uses of different values from the same node.
8621       if (Use.getResNo() != From.getResNo()) {
8622         ++UI;
8623         continue;
8624       }
8625 
8626       // If this node hasn't been modified yet, it's still in the CSE maps,
8627       // so remove its old self from the CSE maps.
8628       if (!UserRemovedFromCSEMaps) {
8629         RemoveNodeFromCSEMaps(User);
8630         UserRemovedFromCSEMaps = true;
8631       }
8632 
8633       ++UI;
8634       Use.set(To);
8635       if (To->isDivergent() != From->isDivergent())
8636         updateDivergence(User);
8637     } while (UI != UE && *UI == User);
8638     // We are iterating over all uses of the From node, so if a use
8639     // doesn't use the specific value, no changes are made.
8640     if (!UserRemovedFromCSEMaps)
8641       continue;
8642 
8643     // Now that we have modified User, add it back to the CSE maps.  If it
8644     // already exists there, recursively merge the results together.
8645     AddModifiedNodeToCSEMaps(User);
8646   }
8647 
8648   // If we just RAUW'd the root, take note.
8649   if (From == getRoot())
8650     setRoot(To);
8651 }
8652 
8653 namespace {
8654 
8655   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8656   /// to record information about a use.
8657   struct UseMemo {
8658     SDNode *User;
8659     unsigned Index;
8660     SDUse *Use;
8661   };
8662 
8663   /// operator< - Sort Memos by User.
8664   bool operator<(const UseMemo &L, const UseMemo &R) {
8665     return (intptr_t)L.User < (intptr_t)R.User;
8666   }
8667 
8668 } // end anonymous namespace
8669 
8670 void SelectionDAG::updateDivergence(SDNode * N)
8671 {
8672   if (TLI->isSDNodeAlwaysUniform(N))
8673     return;
8674   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8675   for (auto &Op : N->ops()) {
8676     if (Op.Val.getValueType() != MVT::Other)
8677       IsDivergent |= Op.getNode()->isDivergent();
8678   }
8679   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8680     N->SDNodeBits.IsDivergent = IsDivergent;
8681     for (auto U : N->uses()) {
8682       updateDivergence(U);
8683     }
8684   }
8685 }
8686 
8687 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8688   DenseMap<SDNode *, unsigned> Degree;
8689   Order.reserve(AllNodes.size());
8690   for (auto &N : allnodes()) {
8691     unsigned NOps = N.getNumOperands();
8692     Degree[&N] = NOps;
8693     if (0 == NOps)
8694       Order.push_back(&N);
8695   }
8696   for (size_t I = 0; I != Order.size(); ++I) {
8697     SDNode *N = Order[I];
8698     for (auto U : N->uses()) {
8699       unsigned &UnsortedOps = Degree[U];
8700       if (0 == --UnsortedOps)
8701         Order.push_back(U);
8702     }
8703   }
8704 }
8705 
8706 #ifndef NDEBUG
8707 void SelectionDAG::VerifyDAGDiverence() {
8708   std::vector<SDNode *> TopoOrder;
8709   CreateTopologicalOrder(TopoOrder);
8710   const TargetLowering &TLI = getTargetLoweringInfo();
8711   DenseMap<const SDNode *, bool> DivergenceMap;
8712   for (auto &N : allnodes()) {
8713     DivergenceMap[&N] = false;
8714   }
8715   for (auto N : TopoOrder) {
8716     bool IsDivergent = DivergenceMap[N];
8717     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8718     for (auto &Op : N->ops()) {
8719       if (Op.Val.getValueType() != MVT::Other)
8720         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8721     }
8722     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8723       DivergenceMap[N] = true;
8724     }
8725   }
8726   for (auto &N : allnodes()) {
8727     (void)N;
8728     assert(DivergenceMap[&N] == N.isDivergent() &&
8729            "Divergence bit inconsistency detected\n");
8730   }
8731 }
8732 #endif
8733 
8734 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8735 /// uses of other values produced by From.getNode() alone.  The same value
8736 /// may appear in both the From and To list.  The Deleted vector is
8737 /// handled the same way as for ReplaceAllUsesWith.
8738 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8739                                               const SDValue *To,
8740                                               unsigned Num){
8741   // Handle the simple, trivial case efficiently.
8742   if (Num == 1)
8743     return ReplaceAllUsesOfValueWith(*From, *To);
8744 
8745   transferDbgValues(*From, *To);
8746 
8747   // Read up all the uses and make records of them. This helps
8748   // processing new uses that are introduced during the
8749   // replacement process.
8750   SmallVector<UseMemo, 4> Uses;
8751   for (unsigned i = 0; i != Num; ++i) {
8752     unsigned FromResNo = From[i].getResNo();
8753     SDNode *FromNode = From[i].getNode();
8754     for (SDNode::use_iterator UI = FromNode->use_begin(),
8755          E = FromNode->use_end(); UI != E; ++UI) {
8756       SDUse &Use = UI.getUse();
8757       if (Use.getResNo() == FromResNo) {
8758         UseMemo Memo = { *UI, i, &Use };
8759         Uses.push_back(Memo);
8760       }
8761     }
8762   }
8763 
8764   // Sort the uses, so that all the uses from a given User are together.
8765   llvm::sort(Uses);
8766 
8767   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8768        UseIndex != UseIndexEnd; ) {
8769     // We know that this user uses some value of From.  If it is the right
8770     // value, update it.
8771     SDNode *User = Uses[UseIndex].User;
8772 
8773     // This node is about to morph, remove its old self from the CSE maps.
8774     RemoveNodeFromCSEMaps(User);
8775 
8776     // The Uses array is sorted, so all the uses for a given User
8777     // are next to each other in the list.
8778     // To help reduce the number of CSE recomputations, process all
8779     // the uses of this user that we can find this way.
8780     do {
8781       unsigned i = Uses[UseIndex].Index;
8782       SDUse &Use = *Uses[UseIndex].Use;
8783       ++UseIndex;
8784 
8785       Use.set(To[i]);
8786     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8787 
8788     // Now that we have modified User, add it back to the CSE maps.  If it
8789     // already exists there, recursively merge the results together.
8790     AddModifiedNodeToCSEMaps(User);
8791   }
8792 }
8793 
8794 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8795 /// based on their topological order. It returns the maximum id and a vector
8796 /// of the SDNodes* in assigned order by reference.
8797 unsigned SelectionDAG::AssignTopologicalOrder() {
8798   unsigned DAGSize = 0;
8799 
8800   // SortedPos tracks the progress of the algorithm. Nodes before it are
8801   // sorted, nodes after it are unsorted. When the algorithm completes
8802   // it is at the end of the list.
8803   allnodes_iterator SortedPos = allnodes_begin();
8804 
8805   // Visit all the nodes. Move nodes with no operands to the front of
8806   // the list immediately. Annotate nodes that do have operands with their
8807   // operand count. Before we do this, the Node Id fields of the nodes
8808   // may contain arbitrary values. After, the Node Id fields for nodes
8809   // before SortedPos will contain the topological sort index, and the
8810   // Node Id fields for nodes At SortedPos and after will contain the
8811   // count of outstanding operands.
8812   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8813     SDNode *N = &*I++;
8814     checkForCycles(N, this);
8815     unsigned Degree = N->getNumOperands();
8816     if (Degree == 0) {
8817       // A node with no uses, add it to the result array immediately.
8818       N->setNodeId(DAGSize++);
8819       allnodes_iterator Q(N);
8820       if (Q != SortedPos)
8821         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8822       assert(SortedPos != AllNodes.end() && "Overran node list");
8823       ++SortedPos;
8824     } else {
8825       // Temporarily use the Node Id as scratch space for the degree count.
8826       N->setNodeId(Degree);
8827     }
8828   }
8829 
8830   // Visit all the nodes. As we iterate, move nodes into sorted order,
8831   // such that by the time the end is reached all nodes will be sorted.
8832   for (SDNode &Node : allnodes()) {
8833     SDNode *N = &Node;
8834     checkForCycles(N, this);
8835     // N is in sorted position, so all its uses have one less operand
8836     // that needs to be sorted.
8837     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8838          UI != UE; ++UI) {
8839       SDNode *P = *UI;
8840       unsigned Degree = P->getNodeId();
8841       assert(Degree != 0 && "Invalid node degree");
8842       --Degree;
8843       if (Degree == 0) {
8844         // All of P's operands are sorted, so P may sorted now.
8845         P->setNodeId(DAGSize++);
8846         if (P->getIterator() != SortedPos)
8847           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8848         assert(SortedPos != AllNodes.end() && "Overran node list");
8849         ++SortedPos;
8850       } else {
8851         // Update P's outstanding operand count.
8852         P->setNodeId(Degree);
8853       }
8854     }
8855     if (Node.getIterator() == SortedPos) {
8856 #ifndef NDEBUG
8857       allnodes_iterator I(N);
8858       SDNode *S = &*++I;
8859       dbgs() << "Overran sorted position:\n";
8860       S->dumprFull(this); dbgs() << "\n";
8861       dbgs() << "Checking if this is due to cycles\n";
8862       checkForCycles(this, true);
8863 #endif
8864       llvm_unreachable(nullptr);
8865     }
8866   }
8867 
8868   assert(SortedPos == AllNodes.end() &&
8869          "Topological sort incomplete!");
8870   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8871          "First node in topological sort is not the entry token!");
8872   assert(AllNodes.front().getNodeId() == 0 &&
8873          "First node in topological sort has non-zero id!");
8874   assert(AllNodes.front().getNumOperands() == 0 &&
8875          "First node in topological sort has operands!");
8876   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8877          "Last node in topologic sort has unexpected id!");
8878   assert(AllNodes.back().use_empty() &&
8879          "Last node in topologic sort has users!");
8880   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8881   return DAGSize;
8882 }
8883 
8884 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8885 /// value is produced by SD.
8886 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8887   if (SD) {
8888     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8889     SD->setHasDebugValue(true);
8890   }
8891   DbgInfo->add(DB, SD, isParameter);
8892 }
8893 
8894 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8895   DbgInfo->add(DB);
8896 }
8897 
8898 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8899                                                    SDValue NewMemOp) {
8900   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8901   // The new memory operation must have the same position as the old load in
8902   // terms of memory dependency. Create a TokenFactor for the old load and new
8903   // memory operation and update uses of the old load's output chain to use that
8904   // TokenFactor.
8905   SDValue OldChain = SDValue(OldLoad, 1);
8906   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8907   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8908     return NewChain;
8909 
8910   SDValue TokenFactor =
8911       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8912   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8913   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8914   return TokenFactor;
8915 }
8916 
8917 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8918                                                      Function **OutFunction) {
8919   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8920 
8921   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8922   auto *Module = MF->getFunction().getParent();
8923   auto *Function = Module->getFunction(Symbol);
8924 
8925   if (OutFunction != nullptr)
8926       *OutFunction = Function;
8927 
8928   if (Function != nullptr) {
8929     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8930     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8931   }
8932 
8933   std::string ErrorStr;
8934   raw_string_ostream ErrorFormatter(ErrorStr);
8935 
8936   ErrorFormatter << "Undefined external symbol ";
8937   ErrorFormatter << '"' << Symbol << '"';
8938   ErrorFormatter.flush();
8939 
8940   report_fatal_error(ErrorStr);
8941 }
8942 
8943 //===----------------------------------------------------------------------===//
8944 //                              SDNode Class
8945 //===----------------------------------------------------------------------===//
8946 
8947 bool llvm::isNullConstant(SDValue V) {
8948   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8949   return Const != nullptr && Const->isNullValue();
8950 }
8951 
8952 bool llvm::isNullFPConstant(SDValue V) {
8953   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8954   return Const != nullptr && Const->isZero() && !Const->isNegative();
8955 }
8956 
8957 bool llvm::isAllOnesConstant(SDValue V) {
8958   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8959   return Const != nullptr && Const->isAllOnesValue();
8960 }
8961 
8962 bool llvm::isOneConstant(SDValue V) {
8963   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8964   return Const != nullptr && Const->isOne();
8965 }
8966 
8967 SDValue llvm::peekThroughBitcasts(SDValue V) {
8968   while (V.getOpcode() == ISD::BITCAST)
8969     V = V.getOperand(0);
8970   return V;
8971 }
8972 
8973 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8974   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8975     V = V.getOperand(0);
8976   return V;
8977 }
8978 
8979 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8980   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8981     V = V.getOperand(0);
8982   return V;
8983 }
8984 
8985 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8986   if (V.getOpcode() != ISD::XOR)
8987     return false;
8988   V = peekThroughBitcasts(V.getOperand(1));
8989   unsigned NumBits = V.getScalarValueSizeInBits();
8990   ConstantSDNode *C =
8991       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
8992   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
8993 }
8994 
8995 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
8996                                           bool AllowTruncation) {
8997   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8998     return CN;
8999 
9000   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9001     BitVector UndefElements;
9002     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9003 
9004     // BuildVectors can truncate their operands. Ignore that case here unless
9005     // AllowTruncation is set.
9006     if (CN && (UndefElements.none() || AllowUndefs)) {
9007       EVT CVT = CN->getValueType(0);
9008       EVT NSVT = N.getValueType().getScalarType();
9009       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9010       if (AllowTruncation || (CVT == NSVT))
9011         return CN;
9012     }
9013   }
9014 
9015   return nullptr;
9016 }
9017 
9018 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9019                                           bool AllowUndefs,
9020                                           bool AllowTruncation) {
9021   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9022     return CN;
9023 
9024   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9025     BitVector UndefElements;
9026     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9027 
9028     // BuildVectors can truncate their operands. Ignore that case here unless
9029     // AllowTruncation is set.
9030     if (CN && (UndefElements.none() || AllowUndefs)) {
9031       EVT CVT = CN->getValueType(0);
9032       EVT NSVT = N.getValueType().getScalarType();
9033       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9034       if (AllowTruncation || (CVT == NSVT))
9035         return CN;
9036     }
9037   }
9038 
9039   return nullptr;
9040 }
9041 
9042 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9043   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9044     return CN;
9045 
9046   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9047     BitVector UndefElements;
9048     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9049     if (CN && (UndefElements.none() || AllowUndefs))
9050       return CN;
9051   }
9052 
9053   return nullptr;
9054 }
9055 
9056 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9057                                               const APInt &DemandedElts,
9058                                               bool AllowUndefs) {
9059   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9060     return CN;
9061 
9062   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9063     BitVector UndefElements;
9064     ConstantFPSDNode *CN =
9065         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9066     if (CN && (UndefElements.none() || AllowUndefs))
9067       return CN;
9068   }
9069 
9070   return nullptr;
9071 }
9072 
9073 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9074   // TODO: may want to use peekThroughBitcast() here.
9075   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9076   return C && C->isNullValue();
9077 }
9078 
9079 bool llvm::isOneOrOneSplat(SDValue N) {
9080   // TODO: may want to use peekThroughBitcast() here.
9081   unsigned BitWidth = N.getScalarValueSizeInBits();
9082   ConstantSDNode *C = isConstOrConstSplat(N);
9083   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9084 }
9085 
9086 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
9087   N = peekThroughBitcasts(N);
9088   unsigned BitWidth = N.getScalarValueSizeInBits();
9089   ConstantSDNode *C = isConstOrConstSplat(N);
9090   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9091 }
9092 
9093 HandleSDNode::~HandleSDNode() {
9094   DropOperands();
9095 }
9096 
9097 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9098                                          const DebugLoc &DL,
9099                                          const GlobalValue *GA, EVT VT,
9100                                          int64_t o, unsigned TF)
9101     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9102   TheGlobal = GA;
9103 }
9104 
9105 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9106                                          EVT VT, unsigned SrcAS,
9107                                          unsigned DestAS)
9108     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9109       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9110 
9111 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9112                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9113     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9114   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9115   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9116   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9117   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9118 
9119   // We check here that the size of the memory operand fits within the size of
9120   // the MMO. This is because the MMO might indicate only a possible address
9121   // range instead of specifying the affected memory addresses precisely.
9122   // TODO: Make MachineMemOperands aware of scalable vectors.
9123   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9124          "Size mismatch!");
9125 }
9126 
9127 /// Profile - Gather unique data for the node.
9128 ///
9129 void SDNode::Profile(FoldingSetNodeID &ID) const {
9130   AddNodeIDNode(ID, this);
9131 }
9132 
9133 namespace {
9134 
9135   struct EVTArray {
9136     std::vector<EVT> VTs;
9137 
9138     EVTArray() {
9139       VTs.reserve(MVT::LAST_VALUETYPE);
9140       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9141         VTs.push_back(MVT((MVT::SimpleValueType)i));
9142     }
9143   };
9144 
9145 } // end anonymous namespace
9146 
9147 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9148 static ManagedStatic<EVTArray> SimpleVTArray;
9149 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9150 
9151 /// getValueTypeList - Return a pointer to the specified value type.
9152 ///
9153 const EVT *SDNode::getValueTypeList(EVT VT) {
9154   if (VT.isExtended()) {
9155     sys::SmartScopedLock<true> Lock(*VTMutex);
9156     return &(*EVTs->insert(VT).first);
9157   } else {
9158     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9159            "Value type out of range!");
9160     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9161   }
9162 }
9163 
9164 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9165 /// indicated value.  This method ignores uses of other values defined by this
9166 /// operation.
9167 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9168   assert(Value < getNumValues() && "Bad value!");
9169 
9170   // TODO: Only iterate over uses of a given value of the node
9171   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9172     if (UI.getUse().getResNo() == Value) {
9173       if (NUses == 0)
9174         return false;
9175       --NUses;
9176     }
9177   }
9178 
9179   // Found exactly the right number of uses?
9180   return NUses == 0;
9181 }
9182 
9183 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9184 /// value. This method ignores uses of other values defined by this operation.
9185 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9186   assert(Value < getNumValues() && "Bad value!");
9187 
9188   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9189     if (UI.getUse().getResNo() == Value)
9190       return true;
9191 
9192   return false;
9193 }
9194 
9195 /// isOnlyUserOf - Return true if this node is the only use of N.
9196 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9197   bool Seen = false;
9198   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9199     SDNode *User = *I;
9200     if (User == this)
9201       Seen = true;
9202     else
9203       return false;
9204   }
9205 
9206   return Seen;
9207 }
9208 
9209 /// Return true if the only users of N are contained in Nodes.
9210 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9211   bool Seen = false;
9212   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9213     SDNode *User = *I;
9214     if (llvm::any_of(Nodes,
9215                      [&User](const SDNode *Node) { return User == Node; }))
9216       Seen = true;
9217     else
9218       return false;
9219   }
9220 
9221   return Seen;
9222 }
9223 
9224 /// isOperand - Return true if this node is an operand of N.
9225 bool SDValue::isOperandOf(const SDNode *N) const {
9226   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9227 }
9228 
9229 bool SDNode::isOperandOf(const SDNode *N) const {
9230   return any_of(N->op_values(),
9231                 [this](SDValue Op) { return this == Op.getNode(); });
9232 }
9233 
9234 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9235 /// be a chain) reaches the specified operand without crossing any
9236 /// side-effecting instructions on any chain path.  In practice, this looks
9237 /// through token factors and non-volatile loads.  In order to remain efficient,
9238 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9239 ///
9240 /// Note that we only need to examine chains when we're searching for
9241 /// side-effects; SelectionDAG requires that all side-effects are represented
9242 /// by chains, even if another operand would force a specific ordering. This
9243 /// constraint is necessary to allow transformations like splitting loads.
9244 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9245                                              unsigned Depth) const {
9246   if (*this == Dest) return true;
9247 
9248   // Don't search too deeply, we just want to be able to see through
9249   // TokenFactor's etc.
9250   if (Depth == 0) return false;
9251 
9252   // If this is a token factor, all inputs to the TF happen in parallel.
9253   if (getOpcode() == ISD::TokenFactor) {
9254     // First, try a shallow search.
9255     if (is_contained((*this)->ops(), Dest)) {
9256       // We found the chain we want as an operand of this TokenFactor.
9257       // Essentially, we reach the chain without side-effects if we could
9258       // serialize the TokenFactor into a simple chain of operations with
9259       // Dest as the last operation. This is automatically true if the
9260       // chain has one use: there are no other ordering constraints.
9261       // If the chain has more than one use, we give up: some other
9262       // use of Dest might force a side-effect between Dest and the current
9263       // node.
9264       if (Dest.hasOneUse())
9265         return true;
9266     }
9267     // Next, try a deep search: check whether every operand of the TokenFactor
9268     // reaches Dest.
9269     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9270       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9271     });
9272   }
9273 
9274   // Loads don't have side effects, look through them.
9275   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9276     if (Ld->isUnordered())
9277       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9278   }
9279   return false;
9280 }
9281 
9282 bool SDNode::hasPredecessor(const SDNode *N) const {
9283   SmallPtrSet<const SDNode *, 32> Visited;
9284   SmallVector<const SDNode *, 16> Worklist;
9285   Worklist.push_back(this);
9286   return hasPredecessorHelper(N, Visited, Worklist);
9287 }
9288 
9289 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9290   this->Flags.intersectWith(Flags);
9291 }
9292 
9293 SDValue
9294 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9295                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9296                                   bool AllowPartials) {
9297   // The pattern must end in an extract from index 0.
9298   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9299       !isNullConstant(Extract->getOperand(1)))
9300     return SDValue();
9301 
9302   // Match against one of the candidate binary ops.
9303   SDValue Op = Extract->getOperand(0);
9304   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9305         return Op.getOpcode() == unsigned(BinOp);
9306       }))
9307     return SDValue();
9308 
9309   // Floating-point reductions may require relaxed constraints on the final step
9310   // of the reduction because they may reorder intermediate operations.
9311   unsigned CandidateBinOp = Op.getOpcode();
9312   if (Op.getValueType().isFloatingPoint()) {
9313     SDNodeFlags Flags = Op->getFlags();
9314     switch (CandidateBinOp) {
9315     case ISD::FADD:
9316       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9317         return SDValue();
9318       break;
9319     default:
9320       llvm_unreachable("Unhandled FP opcode for binop reduction");
9321     }
9322   }
9323 
9324   // Matching failed - attempt to see if we did enough stages that a partial
9325   // reduction from a subvector is possible.
9326   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9327     if (!AllowPartials || !Op)
9328       return SDValue();
9329     EVT OpVT = Op.getValueType();
9330     EVT OpSVT = OpVT.getScalarType();
9331     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9332     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9333       return SDValue();
9334     BinOp = (ISD::NodeType)CandidateBinOp;
9335     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9336                    getVectorIdxConstant(0, SDLoc(Op)));
9337   };
9338 
9339   // At each stage, we're looking for something that looks like:
9340   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9341   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9342   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9343   // %a = binop <8 x i32> %op, %s
9344   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9345   // we expect something like:
9346   // <4,5,6,7,u,u,u,u>
9347   // <2,3,u,u,u,u,u,u>
9348   // <1,u,u,u,u,u,u,u>
9349   // While a partial reduction match would be:
9350   // <2,3,u,u,u,u,u,u>
9351   // <1,u,u,u,u,u,u,u>
9352   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9353   SDValue PrevOp;
9354   for (unsigned i = 0; i < Stages; ++i) {
9355     unsigned MaskEnd = (1 << i);
9356 
9357     if (Op.getOpcode() != CandidateBinOp)
9358       return PartialReduction(PrevOp, MaskEnd);
9359 
9360     SDValue Op0 = Op.getOperand(0);
9361     SDValue Op1 = Op.getOperand(1);
9362 
9363     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9364     if (Shuffle) {
9365       Op = Op1;
9366     } else {
9367       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9368       Op = Op0;
9369     }
9370 
9371     // The first operand of the shuffle should be the same as the other operand
9372     // of the binop.
9373     if (!Shuffle || Shuffle->getOperand(0) != Op)
9374       return PartialReduction(PrevOp, MaskEnd);
9375 
9376     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9377     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9378       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9379         return PartialReduction(PrevOp, MaskEnd);
9380 
9381     PrevOp = Op;
9382   }
9383 
9384   BinOp = (ISD::NodeType)CandidateBinOp;
9385   return Op;
9386 }
9387 
9388 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9389   assert(N->getNumValues() == 1 &&
9390          "Can't unroll a vector with multiple results!");
9391 
9392   EVT VT = N->getValueType(0);
9393   unsigned NE = VT.getVectorNumElements();
9394   EVT EltVT = VT.getVectorElementType();
9395   SDLoc dl(N);
9396 
9397   SmallVector<SDValue, 8> Scalars;
9398   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9399 
9400   // If ResNE is 0, fully unroll the vector op.
9401   if (ResNE == 0)
9402     ResNE = NE;
9403   else if (NE > ResNE)
9404     NE = ResNE;
9405 
9406   unsigned i;
9407   for (i= 0; i != NE; ++i) {
9408     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9409       SDValue Operand = N->getOperand(j);
9410       EVT OperandVT = Operand.getValueType();
9411       if (OperandVT.isVector()) {
9412         // A vector operand; extract a single element.
9413         EVT OperandEltVT = OperandVT.getVectorElementType();
9414         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9415                               Operand, getVectorIdxConstant(i, dl));
9416       } else {
9417         // A scalar operand; just use it as is.
9418         Operands[j] = Operand;
9419       }
9420     }
9421 
9422     switch (N->getOpcode()) {
9423     default: {
9424       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9425                                 N->getFlags()));
9426       break;
9427     }
9428     case ISD::VSELECT:
9429       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9430       break;
9431     case ISD::SHL:
9432     case ISD::SRA:
9433     case ISD::SRL:
9434     case ISD::ROTL:
9435     case ISD::ROTR:
9436       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9437                                getShiftAmountOperand(Operands[0].getValueType(),
9438                                                      Operands[1])));
9439       break;
9440     case ISD::SIGN_EXTEND_INREG: {
9441       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9442       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9443                                 Operands[0],
9444                                 getValueType(ExtVT)));
9445     }
9446     }
9447   }
9448 
9449   for (; i < ResNE; ++i)
9450     Scalars.push_back(getUNDEF(EltVT));
9451 
9452   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9453   return getBuildVector(VecVT, dl, Scalars);
9454 }
9455 
9456 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9457     SDNode *N, unsigned ResNE) {
9458   unsigned Opcode = N->getOpcode();
9459   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9460           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9461           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9462          "Expected an overflow opcode");
9463 
9464   EVT ResVT = N->getValueType(0);
9465   EVT OvVT = N->getValueType(1);
9466   EVT ResEltVT = ResVT.getVectorElementType();
9467   EVT OvEltVT = OvVT.getVectorElementType();
9468   SDLoc dl(N);
9469 
9470   // If ResNE is 0, fully unroll the vector op.
9471   unsigned NE = ResVT.getVectorNumElements();
9472   if (ResNE == 0)
9473     ResNE = NE;
9474   else if (NE > ResNE)
9475     NE = ResNE;
9476 
9477   SmallVector<SDValue, 8> LHSScalars;
9478   SmallVector<SDValue, 8> RHSScalars;
9479   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9480   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9481 
9482   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9483   SDVTList VTs = getVTList(ResEltVT, SVT);
9484   SmallVector<SDValue, 8> ResScalars;
9485   SmallVector<SDValue, 8> OvScalars;
9486   for (unsigned i = 0; i < NE; ++i) {
9487     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9488     SDValue Ov =
9489         getSelect(dl, OvEltVT, Res.getValue(1),
9490                   getBoolConstant(true, dl, OvEltVT, ResVT),
9491                   getConstant(0, dl, OvEltVT));
9492 
9493     ResScalars.push_back(Res);
9494     OvScalars.push_back(Ov);
9495   }
9496 
9497   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9498   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9499 
9500   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9501   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9502   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9503                         getBuildVector(NewOvVT, dl, OvScalars));
9504 }
9505 
9506 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9507                                                   LoadSDNode *Base,
9508                                                   unsigned Bytes,
9509                                                   int Dist) const {
9510   if (LD->isVolatile() || Base->isVolatile())
9511     return false;
9512   // TODO: probably too restrictive for atomics, revisit
9513   if (!LD->isSimple())
9514     return false;
9515   if (LD->isIndexed() || Base->isIndexed())
9516     return false;
9517   if (LD->getChain() != Base->getChain())
9518     return false;
9519   EVT VT = LD->getValueType(0);
9520   if (VT.getSizeInBits() / 8 != Bytes)
9521     return false;
9522 
9523   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9524   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9525 
9526   int64_t Offset = 0;
9527   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9528     return (Dist * Bytes == Offset);
9529   return false;
9530 }
9531 
9532 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9533 /// if it cannot be inferred.
9534 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9535   // If this is a GlobalAddress + cst, return the alignment.
9536   const GlobalValue *GV = nullptr;
9537   int64_t GVOffset = 0;
9538   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9539     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9540     KnownBits Known(PtrWidth);
9541     llvm::computeKnownBits(GV, Known, getDataLayout());
9542     unsigned AlignBits = Known.countMinTrailingZeros();
9543     if (AlignBits)
9544       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9545   }
9546 
9547   // If this is a direct reference to a stack slot, use information about the
9548   // stack slot's alignment.
9549   int FrameIdx = INT_MIN;
9550   int64_t FrameOffset = 0;
9551   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9552     FrameIdx = FI->getIndex();
9553   } else if (isBaseWithConstantOffset(Ptr) &&
9554              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9555     // Handle FI+Cst
9556     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9557     FrameOffset = Ptr.getConstantOperandVal(1);
9558   }
9559 
9560   if (FrameIdx != INT_MIN) {
9561     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9562     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
9563   }
9564 
9565   return None;
9566 }
9567 
9568 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9569 /// which is split (or expanded) into two not necessarily identical pieces.
9570 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9571   // Currently all types are split in half.
9572   EVT LoVT, HiVT;
9573   if (!VT.isVector())
9574     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9575   else
9576     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9577 
9578   return std::make_pair(LoVT, HiVT);
9579 }
9580 
9581 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
9582 /// type, dependent on an enveloping VT that has been split into two identical
9583 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
9584 std::pair<EVT, EVT>
9585 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
9586                                        bool *HiIsEmpty) const {
9587   EVT EltTp = VT.getVectorElementType();
9588   bool IsScalable = VT.isScalableVector();
9589   // Examples:
9590   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
9591   //   custom VL=9  with enveloping VL=8/8 yields 8/1
9592   //   custom VL=10 with enveloping VL=8/8 yields 8/2
9593   //   etc.
9594   unsigned VTNumElts = VT.getVectorNumElements();
9595   unsigned EnvNumElts = EnvVT.getVectorNumElements();
9596   EVT LoVT, HiVT;
9597   if (VTNumElts > EnvNumElts) {
9598     LoVT = EnvVT;
9599     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts,
9600                             IsScalable);
9601     *HiIsEmpty = false;
9602   } else {
9603     // Flag that hi type has zero storage size, but return split envelop type
9604     // (this would be easier if vector types with zero elements were allowed).
9605     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts, IsScalable);
9606     HiVT = EnvVT;
9607     *HiIsEmpty = true;
9608   }
9609   return std::make_pair(LoVT, HiVT);
9610 }
9611 
9612 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9613 /// low/high part.
9614 std::pair<SDValue, SDValue>
9615 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9616                           const EVT &HiVT) {
9617   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9618          N.getValueType().getVectorNumElements() &&
9619          "More vector elements requested than available!");
9620   SDValue Lo, Hi;
9621   Lo =
9622       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9623   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9624                getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
9625   return std::make_pair(Lo, Hi);
9626 }
9627 
9628 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9629 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9630   EVT VT = N.getValueType();
9631   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9632                                 NextPowerOf2(VT.getVectorNumElements()));
9633   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9634                  getVectorIdxConstant(0, DL));
9635 }
9636 
9637 void SelectionDAG::ExtractVectorElements(SDValue Op,
9638                                          SmallVectorImpl<SDValue> &Args,
9639                                          unsigned Start, unsigned Count,
9640                                          EVT EltVT) {
9641   EVT VT = Op.getValueType();
9642   if (Count == 0)
9643     Count = VT.getVectorNumElements();
9644   if (EltVT == EVT())
9645     EltVT = VT.getVectorElementType();
9646   SDLoc SL(Op);
9647   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9648     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9649                            getVectorIdxConstant(i, SL)));
9650   }
9651 }
9652 
9653 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9654 unsigned GlobalAddressSDNode::getAddressSpace() const {
9655   return getGlobal()->getType()->getAddressSpace();
9656 }
9657 
9658 Type *ConstantPoolSDNode::getType() const {
9659   if (isMachineConstantPoolEntry())
9660     return Val.MachineCPVal->getType();
9661   return Val.ConstVal->getType();
9662 }
9663 
9664 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9665                                         unsigned &SplatBitSize,
9666                                         bool &HasAnyUndefs,
9667                                         unsigned MinSplatBits,
9668                                         bool IsBigEndian) const {
9669   EVT VT = getValueType(0);
9670   assert(VT.isVector() && "Expected a vector type");
9671   unsigned VecWidth = VT.getSizeInBits();
9672   if (MinSplatBits > VecWidth)
9673     return false;
9674 
9675   // FIXME: The widths are based on this node's type, but build vectors can
9676   // truncate their operands.
9677   SplatValue = APInt(VecWidth, 0);
9678   SplatUndef = APInt(VecWidth, 0);
9679 
9680   // Get the bits. Bits with undefined values (when the corresponding element
9681   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9682   // in SplatValue. If any of the values are not constant, give up and return
9683   // false.
9684   unsigned int NumOps = getNumOperands();
9685   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9686   unsigned EltWidth = VT.getScalarSizeInBits();
9687 
9688   for (unsigned j = 0; j < NumOps; ++j) {
9689     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9690     SDValue OpVal = getOperand(i);
9691     unsigned BitPos = j * EltWidth;
9692 
9693     if (OpVal.isUndef())
9694       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9695     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9696       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9697     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9698       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9699     else
9700       return false;
9701   }
9702 
9703   // The build_vector is all constants or undefs. Find the smallest element
9704   // size that splats the vector.
9705   HasAnyUndefs = (SplatUndef != 0);
9706 
9707   // FIXME: This does not work for vectors with elements less than 8 bits.
9708   while (VecWidth > 8) {
9709     unsigned HalfSize = VecWidth / 2;
9710     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9711     APInt LowValue = SplatValue.trunc(HalfSize);
9712     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9713     APInt LowUndef = SplatUndef.trunc(HalfSize);
9714 
9715     // If the two halves do not match (ignoring undef bits), stop here.
9716     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9717         MinSplatBits > HalfSize)
9718       break;
9719 
9720     SplatValue = HighValue | LowValue;
9721     SplatUndef = HighUndef & LowUndef;
9722 
9723     VecWidth = HalfSize;
9724   }
9725 
9726   SplatBitSize = VecWidth;
9727   return true;
9728 }
9729 
9730 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9731                                          BitVector *UndefElements) const {
9732   if (UndefElements) {
9733     UndefElements->clear();
9734     UndefElements->resize(getNumOperands());
9735   }
9736   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9737          "Unexpected vector size");
9738   if (!DemandedElts)
9739     return SDValue();
9740   SDValue Splatted;
9741   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9742     if (!DemandedElts[i])
9743       continue;
9744     SDValue Op = getOperand(i);
9745     if (Op.isUndef()) {
9746       if (UndefElements)
9747         (*UndefElements)[i] = true;
9748     } else if (!Splatted) {
9749       Splatted = Op;
9750     } else if (Splatted != Op) {
9751       return SDValue();
9752     }
9753   }
9754 
9755   if (!Splatted) {
9756     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9757     assert(getOperand(FirstDemandedIdx).isUndef() &&
9758            "Can only have a splat without a constant for all undefs.");
9759     return getOperand(FirstDemandedIdx);
9760   }
9761 
9762   return Splatted;
9763 }
9764 
9765 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9766   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9767   return getSplatValue(DemandedElts, UndefElements);
9768 }
9769 
9770 ConstantSDNode *
9771 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9772                                         BitVector *UndefElements) const {
9773   return dyn_cast_or_null<ConstantSDNode>(
9774       getSplatValue(DemandedElts, UndefElements));
9775 }
9776 
9777 ConstantSDNode *
9778 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9779   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9780 }
9781 
9782 ConstantFPSDNode *
9783 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9784                                           BitVector *UndefElements) const {
9785   return dyn_cast_or_null<ConstantFPSDNode>(
9786       getSplatValue(DemandedElts, UndefElements));
9787 }
9788 
9789 ConstantFPSDNode *
9790 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9791   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9792 }
9793 
9794 int32_t
9795 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9796                                                    uint32_t BitWidth) const {
9797   if (ConstantFPSDNode *CN =
9798           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9799     bool IsExact;
9800     APSInt IntVal(BitWidth);
9801     const APFloat &APF = CN->getValueAPF();
9802     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9803             APFloat::opOK ||
9804         !IsExact)
9805       return -1;
9806 
9807     return IntVal.exactLogBase2();
9808   }
9809   return -1;
9810 }
9811 
9812 bool BuildVectorSDNode::isConstant() const {
9813   for (const SDValue &Op : op_values()) {
9814     unsigned Opc = Op.getOpcode();
9815     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9816       return false;
9817   }
9818   return true;
9819 }
9820 
9821 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9822   // Find the first non-undef value in the shuffle mask.
9823   unsigned i, e;
9824   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9825     /* search */;
9826 
9827   // If all elements are undefined, this shuffle can be considered a splat
9828   // (although it should eventually get simplified away completely).
9829   if (i == e)
9830     return true;
9831 
9832   // Make sure all remaining elements are either undef or the same as the first
9833   // non-undef value.
9834   for (int Idx = Mask[i]; i != e; ++i)
9835     if (Mask[i] >= 0 && Mask[i] != Idx)
9836       return false;
9837   return true;
9838 }
9839 
9840 // Returns the SDNode if it is a constant integer BuildVector
9841 // or constant integer.
9842 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9843   if (isa<ConstantSDNode>(N))
9844     return N.getNode();
9845   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9846     return N.getNode();
9847   // Treat a GlobalAddress supporting constant offset folding as a
9848   // constant integer.
9849   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9850     if (GA->getOpcode() == ISD::GlobalAddress &&
9851         TLI->isOffsetFoldingLegal(GA))
9852       return GA;
9853   return nullptr;
9854 }
9855 
9856 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9857   if (isa<ConstantFPSDNode>(N))
9858     return N.getNode();
9859 
9860   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9861     return N.getNode();
9862 
9863   return nullptr;
9864 }
9865 
9866 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9867   assert(!Node->OperandList && "Node already has operands");
9868   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9869          "too many operands to fit into SDNode");
9870   SDUse *Ops = OperandRecycler.allocate(
9871       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9872 
9873   bool IsDivergent = false;
9874   for (unsigned I = 0; I != Vals.size(); ++I) {
9875     Ops[I].setUser(Node);
9876     Ops[I].setInitial(Vals[I]);
9877     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9878       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9879   }
9880   Node->NumOperands = Vals.size();
9881   Node->OperandList = Ops;
9882   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9883   if (!TLI->isSDNodeAlwaysUniform(Node))
9884     Node->SDNodeBits.IsDivergent = IsDivergent;
9885   checkForCycles(Node);
9886 }
9887 
9888 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9889                                      SmallVectorImpl<SDValue> &Vals) {
9890   size_t Limit = SDNode::getMaxNumOperands();
9891   while (Vals.size() > Limit) {
9892     unsigned SliceIdx = Vals.size() - Limit;
9893     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9894     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9895     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9896     Vals.emplace_back(NewTF);
9897   }
9898   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9899 }
9900 
9901 #ifndef NDEBUG
9902 static void checkForCyclesHelper(const SDNode *N,
9903                                  SmallPtrSetImpl<const SDNode*> &Visited,
9904                                  SmallPtrSetImpl<const SDNode*> &Checked,
9905                                  const llvm::SelectionDAG *DAG) {
9906   // If this node has already been checked, don't check it again.
9907   if (Checked.count(N))
9908     return;
9909 
9910   // If a node has already been visited on this depth-first walk, reject it as
9911   // a cycle.
9912   if (!Visited.insert(N).second) {
9913     errs() << "Detected cycle in SelectionDAG\n";
9914     dbgs() << "Offending node:\n";
9915     N->dumprFull(DAG); dbgs() << "\n";
9916     abort();
9917   }
9918 
9919   for (const SDValue &Op : N->op_values())
9920     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9921 
9922   Checked.insert(N);
9923   Visited.erase(N);
9924 }
9925 #endif
9926 
9927 void llvm::checkForCycles(const llvm::SDNode *N,
9928                           const llvm::SelectionDAG *DAG,
9929                           bool force) {
9930 #ifndef NDEBUG
9931   bool check = force;
9932 #ifdef EXPENSIVE_CHECKS
9933   check = true;
9934 #endif  // EXPENSIVE_CHECKS
9935   if (check) {
9936     assert(N && "Checking nonexistent SDNode");
9937     SmallPtrSet<const SDNode*, 32> visited;
9938     SmallPtrSet<const SDNode*, 32> checked;
9939     checkForCyclesHelper(N, visited, checked, DAG);
9940   }
9941 #endif  // !NDEBUG
9942 }
9943 
9944 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9945   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9946 }
9947