1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/CodeGen/Analysis.h"
30 #include "llvm/CodeGen/FunctionLoweringInfo.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetFrameLowering.h"
42 #include "llvm/CodeGen/TargetLowering.h"
43 #include "llvm/CodeGen/TargetRegisterInfo.h"
44 #include "llvm/CodeGen/TargetSubtargetInfo.h"
45 #include "llvm/CodeGen/ValueTypes.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/KnownBits.h"
62 #include "llvm/Support/MachineValueType.h"
63 #include "llvm/Support/ManagedStatic.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/Mutex.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Transforms/Utils/SizeOpts.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstdint>
73 #include <cstdlib>
74 #include <limits>
75 #include <set>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 using namespace llvm;
81 
82 /// makeVTList - Return an instance of the SDVTList struct initialized with the
83 /// specified members.
84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
85   SDVTList Res = {VTs, NumVTs};
86   return Res;
87 }
88 
89 // Default null implementations of the callbacks.
90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
93 
94 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
95 
96 #define DEBUG_TYPE "selectiondag"
97 
98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
99        cl::Hidden, cl::init(true),
100        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
101 
102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
103        cl::desc("Number limit for gluing ld/st of memcpy."),
104        cl::Hidden, cl::init(0));
105 
106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
107   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
108 }
109 
110 //===----------------------------------------------------------------------===//
111 //                              ConstantFPSDNode Class
112 //===----------------------------------------------------------------------===//
113 
114 /// isExactlyValue - We don't rely on operator== working on double values, as
115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
116 /// As such, this method can be used to do an exact bit-for-bit comparison of
117 /// two floating point values.
118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
119   return getValueAPF().bitwiseIsEqual(V);
120 }
121 
122 bool ConstantFPSDNode::isValueValidForType(EVT VT,
123                                            const APFloat& Val) {
124   assert(VT.isFloatingPoint() && "Can only convert between FP types");
125 
126   // convert modifies in place, so make a copy.
127   APFloat Val2 = APFloat(Val);
128   bool losesInfo;
129   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
130                       APFloat::rmNearestTiesToEven,
131                       &losesInfo);
132   return !losesInfo;
133 }
134 
135 //===----------------------------------------------------------------------===//
136 //                              ISD Namespace
137 //===----------------------------------------------------------------------===//
138 
139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
140   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
141     unsigned EltSize =
142         N->getValueType(0).getVectorElementType().getSizeInBits();
143     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
144       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
145       return true;
146     }
147     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
148       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
149       return true;
150     }
151   }
152 
153   auto *BV = dyn_cast<BuildVectorSDNode>(N);
154   if (!BV)
155     return false;
156 
157   APInt SplatUndef;
158   unsigned SplatBitSize;
159   bool HasUndefs;
160   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
161   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
162                              EltSize) &&
163          EltSize == SplatBitSize;
164 }
165 
166 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
167 // specializations of the more general isConstantSplatVector()?
168 
169 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
170   // Look through a bit convert.
171   while (N->getOpcode() == ISD::BITCAST)
172     N = N->getOperand(0).getNode();
173 
174   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
175     APInt SplatVal;
176     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
177   }
178 
179   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
180 
181   unsigned i = 0, e = N->getNumOperands();
182 
183   // Skip over all of the undef values.
184   while (i != e && N->getOperand(i).isUndef())
185     ++i;
186 
187   // Do not accept an all-undef vector.
188   if (i == e) return false;
189 
190   // Do not accept build_vectors that aren't all constants or which have non-~0
191   // elements. We have to be a bit careful here, as the type of the constant
192   // may not be the same as the type of the vector elements due to type
193   // legalization (the elements are promoted to a legal type for the target and
194   // a vector of a type may be legal when the base element type is not).
195   // We only want to check enough bits to cover the vector elements, because
196   // we care if the resultant vector is all ones, not whether the individual
197   // constants are.
198   SDValue NotZero = N->getOperand(i);
199   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
200   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
201     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
202       return false;
203   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
204     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
205       return false;
206   } else
207     return false;
208 
209   // Okay, we have at least one ~0 value, check to see if the rest match or are
210   // undefs. Even with the above element type twiddling, this should be OK, as
211   // the same type legalization should have applied to all the elements.
212   for (++i; i != e; ++i)
213     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
214       return false;
215   return true;
216 }
217 
218 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
219   // Look through a bit convert.
220   while (N->getOpcode() == ISD::BITCAST)
221     N = N->getOperand(0).getNode();
222 
223   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
224     APInt SplatVal;
225     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
226   }
227 
228   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
229 
230   bool IsAllUndef = true;
231   for (const SDValue &Op : N->op_values()) {
232     if (Op.isUndef())
233       continue;
234     IsAllUndef = false;
235     // Do not accept build_vectors that aren't all constants or which have non-0
236     // elements. We have to be a bit careful here, as the type of the constant
237     // may not be the same as the type of the vector elements due to type
238     // legalization (the elements are promoted to a legal type for the target
239     // and a vector of a type may be legal when the base element type is not).
240     // We only want to check enough bits to cover the vector elements, because
241     // we care if the resultant vector is all zeros, not whether the individual
242     // constants are.
243     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
244     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
245       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
246         return false;
247     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
248       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
249         return false;
250     } else
251       return false;
252   }
253 
254   // Do not accept an all-undef vector.
255   if (IsAllUndef)
256     return false;
257   return true;
258 }
259 
260 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
261   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
262 }
263 
264 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
265   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
266 }
267 
268 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
269   if (N->getOpcode() != ISD::BUILD_VECTOR)
270     return false;
271 
272   for (const SDValue &Op : N->op_values()) {
273     if (Op.isUndef())
274       continue;
275     if (!isa<ConstantSDNode>(Op))
276       return false;
277   }
278   return true;
279 }
280 
281 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
282   if (N->getOpcode() != ISD::BUILD_VECTOR)
283     return false;
284 
285   for (const SDValue &Op : N->op_values()) {
286     if (Op.isUndef())
287       continue;
288     if (!isa<ConstantFPSDNode>(Op))
289       return false;
290   }
291   return true;
292 }
293 
294 bool ISD::allOperandsUndef(const SDNode *N) {
295   // Return false if the node has no operands.
296   // This is "logically inconsistent" with the definition of "all" but
297   // is probably the desired behavior.
298   if (N->getNumOperands() == 0)
299     return false;
300   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
301 }
302 
303 bool ISD::matchUnaryPredicate(SDValue Op,
304                               std::function<bool(ConstantSDNode *)> Match,
305                               bool AllowUndefs) {
306   // FIXME: Add support for scalar UNDEF cases?
307   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
308     return Match(Cst);
309 
310   // FIXME: Add support for vector UNDEF cases?
311   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
312       ISD::SPLAT_VECTOR != Op.getOpcode())
313     return false;
314 
315   EVT SVT = Op.getValueType().getScalarType();
316   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
317     if (AllowUndefs && Op.getOperand(i).isUndef()) {
318       if (!Match(nullptr))
319         return false;
320       continue;
321     }
322 
323     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
324     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
325       return false;
326   }
327   return true;
328 }
329 
330 bool ISD::matchBinaryPredicate(
331     SDValue LHS, SDValue RHS,
332     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
333     bool AllowUndefs, bool AllowTypeMismatch) {
334   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
335     return false;
336 
337   // TODO: Add support for scalar UNDEF cases?
338   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
339     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
340       return Match(LHSCst, RHSCst);
341 
342   // TODO: Add support for vector UNDEF cases?
343   if (LHS.getOpcode() != RHS.getOpcode() ||
344       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
345        LHS.getOpcode() != ISD::SPLAT_VECTOR))
346     return false;
347 
348   EVT SVT = LHS.getValueType().getScalarType();
349   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
350     SDValue LHSOp = LHS.getOperand(i);
351     SDValue RHSOp = RHS.getOperand(i);
352     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
353     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
354     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
355     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
356     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
357       return false;
358     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
359                                LHSOp.getValueType() != RHSOp.getValueType()))
360       return false;
361     if (!Match(LHSCst, RHSCst))
362       return false;
363   }
364   return true;
365 }
366 
367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
368   switch (VecReduceOpcode) {
369   default:
370     llvm_unreachable("Expected VECREDUCE opcode");
371   case ISD::VECREDUCE_FADD:
372   case ISD::VECREDUCE_SEQ_FADD:
373   case ISD::VP_REDUCE_FADD:
374   case ISD::VP_REDUCE_SEQ_FADD:
375     return ISD::FADD;
376   case ISD::VECREDUCE_FMUL:
377   case ISD::VECREDUCE_SEQ_FMUL:
378   case ISD::VP_REDUCE_FMUL:
379   case ISD::VP_REDUCE_SEQ_FMUL:
380     return ISD::FMUL;
381   case ISD::VECREDUCE_ADD:
382   case ISD::VP_REDUCE_ADD:
383     return ISD::ADD;
384   case ISD::VECREDUCE_MUL:
385   case ISD::VP_REDUCE_MUL:
386     return ISD::MUL;
387   case ISD::VECREDUCE_AND:
388   case ISD::VP_REDUCE_AND:
389     return ISD::AND;
390   case ISD::VECREDUCE_OR:
391   case ISD::VP_REDUCE_OR:
392     return ISD::OR;
393   case ISD::VECREDUCE_XOR:
394   case ISD::VP_REDUCE_XOR:
395     return ISD::XOR;
396   case ISD::VECREDUCE_SMAX:
397   case ISD::VP_REDUCE_SMAX:
398     return ISD::SMAX;
399   case ISD::VECREDUCE_SMIN:
400   case ISD::VP_REDUCE_SMIN:
401     return ISD::SMIN;
402   case ISD::VECREDUCE_UMAX:
403   case ISD::VP_REDUCE_UMAX:
404     return ISD::UMAX;
405   case ISD::VECREDUCE_UMIN:
406   case ISD::VP_REDUCE_UMIN:
407     return ISD::UMIN;
408   case ISD::VECREDUCE_FMAX:
409   case ISD::VP_REDUCE_FMAX:
410     return ISD::FMAXNUM;
411   case ISD::VECREDUCE_FMIN:
412   case ISD::VP_REDUCE_FMIN:
413     return ISD::FMINNUM;
414   }
415 }
416 
417 bool ISD::isVPOpcode(unsigned Opcode) {
418   switch (Opcode) {
419   default:
420     return false;
421 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...)                                    \
422   case ISD::VPSD:                                                              \
423     return true;
424 #include "llvm/IR/VPIntrinsics.def"
425   }
426 }
427 
428 bool ISD::isVPBinaryOp(unsigned Opcode) {
429   switch (Opcode) {
430   default:
431     break;
432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
433 #define VP_PROPERTY_BINARYOP return true;
434 #define END_REGISTER_VP_SDNODE(VPSD) break;
435 #include "llvm/IR/VPIntrinsics.def"
436   }
437   return false;
438 }
439 
440 bool ISD::isVPReduction(unsigned Opcode) {
441   switch (Opcode) {
442   default:
443     break;
444 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
445 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
446 #define END_REGISTER_VP_SDNODE(VPSD) break;
447 #include "llvm/IR/VPIntrinsics.def"
448   }
449   return false;
450 }
451 
452 /// The operand position of the vector mask.
453 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
454   switch (Opcode) {
455   default:
456     return None;
457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...)         \
458   case ISD::VPSD:                                                              \
459     return MASKPOS;
460 #include "llvm/IR/VPIntrinsics.def"
461   }
462 }
463 
464 /// The operand position of the explicit vector length parameter.
465 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
466   switch (Opcode) {
467   default:
468     return None;
469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS)      \
470   case ISD::VPSD:                                                              \
471     return EVLPOS;
472 #include "llvm/IR/VPIntrinsics.def"
473   }
474 }
475 
476 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
477   switch (ExtType) {
478   case ISD::EXTLOAD:
479     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
480   case ISD::SEXTLOAD:
481     return ISD::SIGN_EXTEND;
482   case ISD::ZEXTLOAD:
483     return ISD::ZERO_EXTEND;
484   default:
485     break;
486   }
487 
488   llvm_unreachable("Invalid LoadExtType");
489 }
490 
491 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
492   // To perform this operation, we just need to swap the L and G bits of the
493   // operation.
494   unsigned OldL = (Operation >> 2) & 1;
495   unsigned OldG = (Operation >> 1) & 1;
496   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
497                        (OldL << 1) |       // New G bit
498                        (OldG << 2));       // New L bit.
499 }
500 
501 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
502   unsigned Operation = Op;
503   if (isIntegerLike)
504     Operation ^= 7;   // Flip L, G, E bits, but not U.
505   else
506     Operation ^= 15;  // Flip all of the condition bits.
507 
508   if (Operation > ISD::SETTRUE2)
509     Operation &= ~8;  // Don't let N and U bits get set.
510 
511   return ISD::CondCode(Operation);
512 }
513 
514 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
515   return getSetCCInverseImpl(Op, Type.isInteger());
516 }
517 
518 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
519                                                bool isIntegerLike) {
520   return getSetCCInverseImpl(Op, isIntegerLike);
521 }
522 
523 /// For an integer comparison, return 1 if the comparison is a signed operation
524 /// and 2 if the result is an unsigned comparison. Return zero if the operation
525 /// does not depend on the sign of the input (setne and seteq).
526 static int isSignedOp(ISD::CondCode Opcode) {
527   switch (Opcode) {
528   default: llvm_unreachable("Illegal integer setcc operation!");
529   case ISD::SETEQ:
530   case ISD::SETNE: return 0;
531   case ISD::SETLT:
532   case ISD::SETLE:
533   case ISD::SETGT:
534   case ISD::SETGE: return 1;
535   case ISD::SETULT:
536   case ISD::SETULE:
537   case ISD::SETUGT:
538   case ISD::SETUGE: return 2;
539   }
540 }
541 
542 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
543                                        EVT Type) {
544   bool IsInteger = Type.isInteger();
545   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
546     // Cannot fold a signed integer setcc with an unsigned integer setcc.
547     return ISD::SETCC_INVALID;
548 
549   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
550 
551   // If the N and U bits get set, then the resultant comparison DOES suddenly
552   // care about orderedness, and it is true when ordered.
553   if (Op > ISD::SETTRUE2)
554     Op &= ~16;     // Clear the U bit if the N bit is set.
555 
556   // Canonicalize illegal integer setcc's.
557   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
558     Op = ISD::SETNE;
559 
560   return ISD::CondCode(Op);
561 }
562 
563 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
564                                         EVT Type) {
565   bool IsInteger = Type.isInteger();
566   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
567     // Cannot fold a signed setcc with an unsigned setcc.
568     return ISD::SETCC_INVALID;
569 
570   // Combine all of the condition bits.
571   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
572 
573   // Canonicalize illegal integer setcc's.
574   if (IsInteger) {
575     switch (Result) {
576     default: break;
577     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
578     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
579     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
580     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
581     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
582     }
583   }
584 
585   return Result;
586 }
587 
588 //===----------------------------------------------------------------------===//
589 //                           SDNode Profile Support
590 //===----------------------------------------------------------------------===//
591 
592 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
593 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
594   ID.AddInteger(OpC);
595 }
596 
597 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
598 /// solely with their pointer.
599 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
600   ID.AddPointer(VTList.VTs);
601 }
602 
603 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
604 static void AddNodeIDOperands(FoldingSetNodeID &ID,
605                               ArrayRef<SDValue> Ops) {
606   for (auto& Op : Ops) {
607     ID.AddPointer(Op.getNode());
608     ID.AddInteger(Op.getResNo());
609   }
610 }
611 
612 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
613 static void AddNodeIDOperands(FoldingSetNodeID &ID,
614                               ArrayRef<SDUse> Ops) {
615   for (auto& Op : Ops) {
616     ID.AddPointer(Op.getNode());
617     ID.AddInteger(Op.getResNo());
618   }
619 }
620 
621 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
622                           SDVTList VTList, ArrayRef<SDValue> OpList) {
623   AddNodeIDOpcode(ID, OpC);
624   AddNodeIDValueTypes(ID, VTList);
625   AddNodeIDOperands(ID, OpList);
626 }
627 
628 /// If this is an SDNode with special info, add this info to the NodeID data.
629 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
630   switch (N->getOpcode()) {
631   case ISD::TargetExternalSymbol:
632   case ISD::ExternalSymbol:
633   case ISD::MCSymbol:
634     llvm_unreachable("Should only be used on nodes with operands");
635   default: break;  // Normal nodes don't need extra info.
636   case ISD::TargetConstant:
637   case ISD::Constant: {
638     const ConstantSDNode *C = cast<ConstantSDNode>(N);
639     ID.AddPointer(C->getConstantIntValue());
640     ID.AddBoolean(C->isOpaque());
641     break;
642   }
643   case ISD::TargetConstantFP:
644   case ISD::ConstantFP:
645     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
646     break;
647   case ISD::TargetGlobalAddress:
648   case ISD::GlobalAddress:
649   case ISD::TargetGlobalTLSAddress:
650   case ISD::GlobalTLSAddress: {
651     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
652     ID.AddPointer(GA->getGlobal());
653     ID.AddInteger(GA->getOffset());
654     ID.AddInteger(GA->getTargetFlags());
655     break;
656   }
657   case ISD::BasicBlock:
658     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
659     break;
660   case ISD::Register:
661     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
662     break;
663   case ISD::RegisterMask:
664     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
665     break;
666   case ISD::SRCVALUE:
667     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
668     break;
669   case ISD::FrameIndex:
670   case ISD::TargetFrameIndex:
671     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
672     break;
673   case ISD::LIFETIME_START:
674   case ISD::LIFETIME_END:
675     if (cast<LifetimeSDNode>(N)->hasOffset()) {
676       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
677       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
678     }
679     break;
680   case ISD::PSEUDO_PROBE:
681     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
682     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
683     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
684     break;
685   case ISD::JumpTable:
686   case ISD::TargetJumpTable:
687     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
688     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
689     break;
690   case ISD::ConstantPool:
691   case ISD::TargetConstantPool: {
692     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
693     ID.AddInteger(CP->getAlign().value());
694     ID.AddInteger(CP->getOffset());
695     if (CP->isMachineConstantPoolEntry())
696       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
697     else
698       ID.AddPointer(CP->getConstVal());
699     ID.AddInteger(CP->getTargetFlags());
700     break;
701   }
702   case ISD::TargetIndex: {
703     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
704     ID.AddInteger(TI->getIndex());
705     ID.AddInteger(TI->getOffset());
706     ID.AddInteger(TI->getTargetFlags());
707     break;
708   }
709   case ISD::LOAD: {
710     const LoadSDNode *LD = cast<LoadSDNode>(N);
711     ID.AddInteger(LD->getMemoryVT().getRawBits());
712     ID.AddInteger(LD->getRawSubclassData());
713     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
714     ID.AddInteger(LD->getMemOperand()->getFlags());
715     break;
716   }
717   case ISD::STORE: {
718     const StoreSDNode *ST = cast<StoreSDNode>(N);
719     ID.AddInteger(ST->getMemoryVT().getRawBits());
720     ID.AddInteger(ST->getRawSubclassData());
721     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
722     ID.AddInteger(ST->getMemOperand()->getFlags());
723     break;
724   }
725   case ISD::VP_LOAD: {
726     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
727     ID.AddInteger(ELD->getMemoryVT().getRawBits());
728     ID.AddInteger(ELD->getRawSubclassData());
729     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
730     ID.AddInteger(ELD->getMemOperand()->getFlags());
731     break;
732   }
733   case ISD::VP_STORE: {
734     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
735     ID.AddInteger(EST->getMemoryVT().getRawBits());
736     ID.AddInteger(EST->getRawSubclassData());
737     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
738     ID.AddInteger(EST->getMemOperand()->getFlags());
739     break;
740   }
741   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
742     const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N);
743     ID.AddInteger(SLD->getMemoryVT().getRawBits());
744     ID.AddInteger(SLD->getRawSubclassData());
745     ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
746     break;
747   }
748   case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
749     const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N);
750     ID.AddInteger(SST->getMemoryVT().getRawBits());
751     ID.AddInteger(SST->getRawSubclassData());
752     ID.AddInteger(SST->getPointerInfo().getAddrSpace());
753     break;
754   }
755   case ISD::VP_GATHER: {
756     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
757     ID.AddInteger(EG->getMemoryVT().getRawBits());
758     ID.AddInteger(EG->getRawSubclassData());
759     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
760     ID.AddInteger(EG->getMemOperand()->getFlags());
761     break;
762   }
763   case ISD::VP_SCATTER: {
764     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
765     ID.AddInteger(ES->getMemoryVT().getRawBits());
766     ID.AddInteger(ES->getRawSubclassData());
767     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
768     ID.AddInteger(ES->getMemOperand()->getFlags());
769     break;
770   }
771   case ISD::MLOAD: {
772     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
773     ID.AddInteger(MLD->getMemoryVT().getRawBits());
774     ID.AddInteger(MLD->getRawSubclassData());
775     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
776     ID.AddInteger(MLD->getMemOperand()->getFlags());
777     break;
778   }
779   case ISD::MSTORE: {
780     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
781     ID.AddInteger(MST->getMemoryVT().getRawBits());
782     ID.AddInteger(MST->getRawSubclassData());
783     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
784     ID.AddInteger(MST->getMemOperand()->getFlags());
785     break;
786   }
787   case ISD::MGATHER: {
788     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
789     ID.AddInteger(MG->getMemoryVT().getRawBits());
790     ID.AddInteger(MG->getRawSubclassData());
791     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
792     ID.AddInteger(MG->getMemOperand()->getFlags());
793     break;
794   }
795   case ISD::MSCATTER: {
796     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
797     ID.AddInteger(MS->getMemoryVT().getRawBits());
798     ID.AddInteger(MS->getRawSubclassData());
799     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
800     ID.AddInteger(MS->getMemOperand()->getFlags());
801     break;
802   }
803   case ISD::ATOMIC_CMP_SWAP:
804   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
805   case ISD::ATOMIC_SWAP:
806   case ISD::ATOMIC_LOAD_ADD:
807   case ISD::ATOMIC_LOAD_SUB:
808   case ISD::ATOMIC_LOAD_AND:
809   case ISD::ATOMIC_LOAD_CLR:
810   case ISD::ATOMIC_LOAD_OR:
811   case ISD::ATOMIC_LOAD_XOR:
812   case ISD::ATOMIC_LOAD_NAND:
813   case ISD::ATOMIC_LOAD_MIN:
814   case ISD::ATOMIC_LOAD_MAX:
815   case ISD::ATOMIC_LOAD_UMIN:
816   case ISD::ATOMIC_LOAD_UMAX:
817   case ISD::ATOMIC_LOAD:
818   case ISD::ATOMIC_STORE: {
819     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
820     ID.AddInteger(AT->getMemoryVT().getRawBits());
821     ID.AddInteger(AT->getRawSubclassData());
822     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
823     ID.AddInteger(AT->getMemOperand()->getFlags());
824     break;
825   }
826   case ISD::PREFETCH: {
827     const MemSDNode *PF = cast<MemSDNode>(N);
828     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
829     ID.AddInteger(PF->getMemOperand()->getFlags());
830     break;
831   }
832   case ISD::VECTOR_SHUFFLE: {
833     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
834     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
835          i != e; ++i)
836       ID.AddInteger(SVN->getMaskElt(i));
837     break;
838   }
839   case ISD::TargetBlockAddress:
840   case ISD::BlockAddress: {
841     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
842     ID.AddPointer(BA->getBlockAddress());
843     ID.AddInteger(BA->getOffset());
844     ID.AddInteger(BA->getTargetFlags());
845     break;
846   }
847   case ISD::AssertAlign:
848     ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
849     break;
850   } // end switch (N->getOpcode())
851 
852   // Target specific memory nodes could also have address spaces and flags
853   // to check.
854   if (N->isTargetMemoryOpcode()) {
855     const MemSDNode *MN = cast<MemSDNode>(N);
856     ID.AddInteger(MN->getPointerInfo().getAddrSpace());
857     ID.AddInteger(MN->getMemOperand()->getFlags());
858   }
859 }
860 
861 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
862 /// data.
863 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
864   AddNodeIDOpcode(ID, N->getOpcode());
865   // Add the return value info.
866   AddNodeIDValueTypes(ID, N->getVTList());
867   // Add the operand info.
868   AddNodeIDOperands(ID, N->ops());
869 
870   // Handle SDNode leafs with special info.
871   AddNodeIDCustom(ID, N);
872 }
873 
874 //===----------------------------------------------------------------------===//
875 //                              SelectionDAG Class
876 //===----------------------------------------------------------------------===//
877 
878 /// doNotCSE - Return true if CSE should not be performed for this node.
879 static bool doNotCSE(SDNode *N) {
880   if (N->getValueType(0) == MVT::Glue)
881     return true; // Never CSE anything that produces a flag.
882 
883   switch (N->getOpcode()) {
884   default: break;
885   case ISD::HANDLENODE:
886   case ISD::EH_LABEL:
887     return true;   // Never CSE these nodes.
888   }
889 
890   // Check that remaining values produced are not flags.
891   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
892     if (N->getValueType(i) == MVT::Glue)
893       return true; // Never CSE anything that produces a flag.
894 
895   return false;
896 }
897 
898 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
899 /// SelectionDAG.
900 void SelectionDAG::RemoveDeadNodes() {
901   // Create a dummy node (which is not added to allnodes), that adds a reference
902   // to the root node, preventing it from being deleted.
903   HandleSDNode Dummy(getRoot());
904 
905   SmallVector<SDNode*, 128> DeadNodes;
906 
907   // Add all obviously-dead nodes to the DeadNodes worklist.
908   for (SDNode &Node : allnodes())
909     if (Node.use_empty())
910       DeadNodes.push_back(&Node);
911 
912   RemoveDeadNodes(DeadNodes);
913 
914   // If the root changed (e.g. it was a dead load, update the root).
915   setRoot(Dummy.getValue());
916 }
917 
918 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
919 /// given list, and any nodes that become unreachable as a result.
920 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
921 
922   // Process the worklist, deleting the nodes and adding their uses to the
923   // worklist.
924   while (!DeadNodes.empty()) {
925     SDNode *N = DeadNodes.pop_back_val();
926     // Skip to next node if we've already managed to delete the node. This could
927     // happen if replacing a node causes a node previously added to the node to
928     // be deleted.
929     if (N->getOpcode() == ISD::DELETED_NODE)
930       continue;
931 
932     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
933       DUL->NodeDeleted(N, nullptr);
934 
935     // Take the node out of the appropriate CSE map.
936     RemoveNodeFromCSEMaps(N);
937 
938     // Next, brutally remove the operand list.  This is safe to do, as there are
939     // no cycles in the graph.
940     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
941       SDUse &Use = *I++;
942       SDNode *Operand = Use.getNode();
943       Use.set(SDValue());
944 
945       // Now that we removed this operand, see if there are no uses of it left.
946       if (Operand->use_empty())
947         DeadNodes.push_back(Operand);
948     }
949 
950     DeallocateNode(N);
951   }
952 }
953 
954 void SelectionDAG::RemoveDeadNode(SDNode *N){
955   SmallVector<SDNode*, 16> DeadNodes(1, N);
956 
957   // Create a dummy node that adds a reference to the root node, preventing
958   // it from being deleted.  (This matters if the root is an operand of the
959   // dead node.)
960   HandleSDNode Dummy(getRoot());
961 
962   RemoveDeadNodes(DeadNodes);
963 }
964 
965 void SelectionDAG::DeleteNode(SDNode *N) {
966   // First take this out of the appropriate CSE map.
967   RemoveNodeFromCSEMaps(N);
968 
969   // Finally, remove uses due to operands of this node, remove from the
970   // AllNodes list, and delete the node.
971   DeleteNodeNotInCSEMaps(N);
972 }
973 
974 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
975   assert(N->getIterator() != AllNodes.begin() &&
976          "Cannot delete the entry node!");
977   assert(N->use_empty() && "Cannot delete a node that is not dead!");
978 
979   // Drop all of the operands and decrement used node's use counts.
980   N->DropOperands();
981 
982   DeallocateNode(N);
983 }
984 
985 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
986   assert(!(V->isVariadic() && isParameter));
987   if (isParameter)
988     ByvalParmDbgValues.push_back(V);
989   else
990     DbgValues.push_back(V);
991   for (const SDNode *Node : V->getSDNodes())
992     if (Node)
993       DbgValMap[Node].push_back(V);
994 }
995 
996 void SDDbgInfo::erase(const SDNode *Node) {
997   DbgValMapType::iterator I = DbgValMap.find(Node);
998   if (I == DbgValMap.end())
999     return;
1000   for (auto &Val: I->second)
1001     Val->setIsInvalidated();
1002   DbgValMap.erase(I);
1003 }
1004 
1005 void SelectionDAG::DeallocateNode(SDNode *N) {
1006   // If we have operands, deallocate them.
1007   removeOperands(N);
1008 
1009   NodeAllocator.Deallocate(AllNodes.remove(N));
1010 
1011   // Set the opcode to DELETED_NODE to help catch bugs when node
1012   // memory is reallocated.
1013   // FIXME: There are places in SDag that have grown a dependency on the opcode
1014   // value in the released node.
1015   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1016   N->NodeType = ISD::DELETED_NODE;
1017 
1018   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1019   // them and forget about that node.
1020   DbgInfo->erase(N);
1021 }
1022 
1023 #ifndef NDEBUG
1024 /// VerifySDNode - Check the given SDNode.  Aborts if it is invalid.
1025 static void VerifySDNode(SDNode *N) {
1026   switch (N->getOpcode()) {
1027   default:
1028     break;
1029   case ISD::BUILD_PAIR: {
1030     EVT VT = N->getValueType(0);
1031     assert(N->getNumValues() == 1 && "Too many results!");
1032     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1033            "Wrong return type!");
1034     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1035     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1036            "Mismatched operand types!");
1037     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1038            "Wrong operand type!");
1039     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1040            "Wrong return type size");
1041     break;
1042   }
1043   case ISD::BUILD_VECTOR: {
1044     assert(N->getNumValues() == 1 && "Too many results!");
1045     assert(N->getValueType(0).isVector() && "Wrong return type!");
1046     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1047            "Wrong number of operands!");
1048     EVT EltVT = N->getValueType(0).getVectorElementType();
1049     for (const SDUse &Op : N->ops()) {
1050       assert((Op.getValueType() == EltVT ||
1051               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1052                EltVT.bitsLE(Op.getValueType()))) &&
1053              "Wrong operand type!");
1054       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1055              "Operands must all have the same type");
1056     }
1057     break;
1058   }
1059   }
1060 }
1061 #endif // NDEBUG
1062 
1063 /// Insert a newly allocated node into the DAG.
1064 ///
1065 /// Handles insertion into the all nodes list and CSE map, as well as
1066 /// verification and other common operations when a new node is allocated.
1067 void SelectionDAG::InsertNode(SDNode *N) {
1068   AllNodes.push_back(N);
1069 #ifndef NDEBUG
1070   N->PersistentId = NextPersistentId++;
1071   VerifySDNode(N);
1072 #endif
1073   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1074     DUL->NodeInserted(N);
1075 }
1076 
1077 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1078 /// correspond to it.  This is useful when we're about to delete or repurpose
1079 /// the node.  We don't want future request for structurally identical nodes
1080 /// to return N anymore.
1081 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1082   bool Erased = false;
1083   switch (N->getOpcode()) {
1084   case ISD::HANDLENODE: return false;  // noop.
1085   case ISD::CONDCODE:
1086     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1087            "Cond code doesn't exist!");
1088     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1089     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1090     break;
1091   case ISD::ExternalSymbol:
1092     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1093     break;
1094   case ISD::TargetExternalSymbol: {
1095     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1096     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1097         ESN->getSymbol(), ESN->getTargetFlags()));
1098     break;
1099   }
1100   case ISD::MCSymbol: {
1101     auto *MCSN = cast<MCSymbolSDNode>(N);
1102     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1103     break;
1104   }
1105   case ISD::VALUETYPE: {
1106     EVT VT = cast<VTSDNode>(N)->getVT();
1107     if (VT.isExtended()) {
1108       Erased = ExtendedValueTypeNodes.erase(VT);
1109     } else {
1110       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1111       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1112     }
1113     break;
1114   }
1115   default:
1116     // Remove it from the CSE Map.
1117     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1118     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1119     Erased = CSEMap.RemoveNode(N);
1120     break;
1121   }
1122 #ifndef NDEBUG
1123   // Verify that the node was actually in one of the CSE maps, unless it has a
1124   // flag result (which cannot be CSE'd) or is one of the special cases that are
1125   // not subject to CSE.
1126   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1127       !N->isMachineOpcode() && !doNotCSE(N)) {
1128     N->dump(this);
1129     dbgs() << "\n";
1130     llvm_unreachable("Node is not in map!");
1131   }
1132 #endif
1133   return Erased;
1134 }
1135 
1136 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1137 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1138 /// node already exists, in which case transfer all its users to the existing
1139 /// node. This transfer can potentially trigger recursive merging.
1140 void
1141 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1142   // For node types that aren't CSE'd, just act as if no identical node
1143   // already exists.
1144   if (!doNotCSE(N)) {
1145     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1146     if (Existing != N) {
1147       // If there was already an existing matching node, use ReplaceAllUsesWith
1148       // to replace the dead one with the existing one.  This can cause
1149       // recursive merging of other unrelated nodes down the line.
1150       ReplaceAllUsesWith(N, Existing);
1151 
1152       // N is now dead. Inform the listeners and delete it.
1153       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1154         DUL->NodeDeleted(N, Existing);
1155       DeleteNodeNotInCSEMaps(N);
1156       return;
1157     }
1158   }
1159 
1160   // If the node doesn't already exist, we updated it.  Inform listeners.
1161   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1162     DUL->NodeUpdated(N);
1163 }
1164 
1165 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1166 /// were replaced with those specified.  If this node is never memoized,
1167 /// return null, otherwise return a pointer to the slot it would take.  If a
1168 /// node already exists with these operands, the slot will be non-null.
1169 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1170                                            void *&InsertPos) {
1171   if (doNotCSE(N))
1172     return nullptr;
1173 
1174   SDValue Ops[] = { Op };
1175   FoldingSetNodeID ID;
1176   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1177   AddNodeIDCustom(ID, N);
1178   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1179   if (Node)
1180     Node->intersectFlagsWith(N->getFlags());
1181   return Node;
1182 }
1183 
1184 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1185 /// were replaced with those specified.  If this node is never memoized,
1186 /// return null, otherwise return a pointer to the slot it would take.  If a
1187 /// node already exists with these operands, the slot will be non-null.
1188 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1189                                            SDValue Op1, SDValue Op2,
1190                                            void *&InsertPos) {
1191   if (doNotCSE(N))
1192     return nullptr;
1193 
1194   SDValue Ops[] = { Op1, Op2 };
1195   FoldingSetNodeID ID;
1196   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1197   AddNodeIDCustom(ID, N);
1198   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1199   if (Node)
1200     Node->intersectFlagsWith(N->getFlags());
1201   return Node;
1202 }
1203 
1204 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1205 /// were replaced with those specified.  If this node is never memoized,
1206 /// return null, otherwise return a pointer to the slot it would take.  If a
1207 /// node already exists with these operands, the slot will be non-null.
1208 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1209                                            void *&InsertPos) {
1210   if (doNotCSE(N))
1211     return nullptr;
1212 
1213   FoldingSetNodeID ID;
1214   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1215   AddNodeIDCustom(ID, N);
1216   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1217   if (Node)
1218     Node->intersectFlagsWith(N->getFlags());
1219   return Node;
1220 }
1221 
1222 Align SelectionDAG::getEVTAlign(EVT VT) const {
1223   Type *Ty = VT == MVT::iPTR ?
1224                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1225                    VT.getTypeForEVT(*getContext());
1226 
1227   return getDataLayout().getABITypeAlign(Ty);
1228 }
1229 
1230 // EntryNode could meaningfully have debug info if we can find it...
1231 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1232     : TM(tm), OptLevel(OL),
1233       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1234       Root(getEntryNode()) {
1235   InsertNode(&EntryNode);
1236   DbgInfo = new SDDbgInfo();
1237 }
1238 
1239 void SelectionDAG::init(MachineFunction &NewMF,
1240                         OptimizationRemarkEmitter &NewORE,
1241                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1242                         LegacyDivergenceAnalysis * Divergence,
1243                         ProfileSummaryInfo *PSIin,
1244                         BlockFrequencyInfo *BFIin) {
1245   MF = &NewMF;
1246   SDAGISelPass = PassPtr;
1247   ORE = &NewORE;
1248   TLI = getSubtarget().getTargetLowering();
1249   TSI = getSubtarget().getSelectionDAGInfo();
1250   LibInfo = LibraryInfo;
1251   Context = &MF->getFunction().getContext();
1252   DA = Divergence;
1253   PSI = PSIin;
1254   BFI = BFIin;
1255 }
1256 
1257 SelectionDAG::~SelectionDAG() {
1258   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1259   allnodes_clear();
1260   OperandRecycler.clear(OperandAllocator);
1261   delete DbgInfo;
1262 }
1263 
1264 bool SelectionDAG::shouldOptForSize() const {
1265   return MF->getFunction().hasOptSize() ||
1266       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1267 }
1268 
1269 void SelectionDAG::allnodes_clear() {
1270   assert(&*AllNodes.begin() == &EntryNode);
1271   AllNodes.remove(AllNodes.begin());
1272   while (!AllNodes.empty())
1273     DeallocateNode(&AllNodes.front());
1274 #ifndef NDEBUG
1275   NextPersistentId = 0;
1276 #endif
1277 }
1278 
1279 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1280                                           void *&InsertPos) {
1281   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1282   if (N) {
1283     switch (N->getOpcode()) {
1284     default: break;
1285     case ISD::Constant:
1286     case ISD::ConstantFP:
1287       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1288                        "debug location.  Use another overload.");
1289     }
1290   }
1291   return N;
1292 }
1293 
1294 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1295                                           const SDLoc &DL, void *&InsertPos) {
1296   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1297   if (N) {
1298     switch (N->getOpcode()) {
1299     case ISD::Constant:
1300     case ISD::ConstantFP:
1301       // Erase debug location from the node if the node is used at several
1302       // different places. Do not propagate one location to all uses as it
1303       // will cause a worse single stepping debugging experience.
1304       if (N->getDebugLoc() != DL.getDebugLoc())
1305         N->setDebugLoc(DebugLoc());
1306       break;
1307     default:
1308       // When the node's point of use is located earlier in the instruction
1309       // sequence than its prior point of use, update its debug info to the
1310       // earlier location.
1311       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1312         N->setDebugLoc(DL.getDebugLoc());
1313       break;
1314     }
1315   }
1316   return N;
1317 }
1318 
1319 void SelectionDAG::clear() {
1320   allnodes_clear();
1321   OperandRecycler.clear(OperandAllocator);
1322   OperandAllocator.Reset();
1323   CSEMap.clear();
1324 
1325   ExtendedValueTypeNodes.clear();
1326   ExternalSymbols.clear();
1327   TargetExternalSymbols.clear();
1328   MCSymbols.clear();
1329   SDCallSiteDbgInfo.clear();
1330   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1331             static_cast<CondCodeSDNode*>(nullptr));
1332   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1333             static_cast<SDNode*>(nullptr));
1334 
1335   EntryNode.UseList = nullptr;
1336   InsertNode(&EntryNode);
1337   Root = getEntryNode();
1338   DbgInfo->clear();
1339 }
1340 
1341 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1342   return VT.bitsGT(Op.getValueType())
1343              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1344              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1345 }
1346 
1347 std::pair<SDValue, SDValue>
1348 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1349                                        const SDLoc &DL, EVT VT) {
1350   assert(!VT.bitsEq(Op.getValueType()) &&
1351          "Strict no-op FP extend/round not allowed.");
1352   SDValue Res =
1353       VT.bitsGT(Op.getValueType())
1354           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1355           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1356                     {Chain, Op, getIntPtrConstant(0, DL)});
1357 
1358   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1359 }
1360 
1361 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1362   return VT.bitsGT(Op.getValueType()) ?
1363     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1364     getNode(ISD::TRUNCATE, DL, VT, Op);
1365 }
1366 
1367 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1368   return VT.bitsGT(Op.getValueType()) ?
1369     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1370     getNode(ISD::TRUNCATE, DL, VT, Op);
1371 }
1372 
1373 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1374   return VT.bitsGT(Op.getValueType()) ?
1375     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1376     getNode(ISD::TRUNCATE, DL, VT, Op);
1377 }
1378 
1379 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1380                                         EVT OpVT) {
1381   if (VT.bitsLE(Op.getValueType()))
1382     return getNode(ISD::TRUNCATE, SL, VT, Op);
1383 
1384   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1385   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1386 }
1387 
1388 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1389   EVT OpVT = Op.getValueType();
1390   assert(VT.isInteger() && OpVT.isInteger() &&
1391          "Cannot getZeroExtendInReg FP types");
1392   assert(VT.isVector() == OpVT.isVector() &&
1393          "getZeroExtendInReg type should be vector iff the operand "
1394          "type is vector!");
1395   assert((!VT.isVector() ||
1396           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1397          "Vector element counts must match in getZeroExtendInReg");
1398   assert(VT.bitsLE(OpVT) && "Not extending!");
1399   if (OpVT == VT)
1400     return Op;
1401   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1402                                    VT.getScalarSizeInBits());
1403   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1404 }
1405 
1406 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1407   // Only unsigned pointer semantics are supported right now. In the future this
1408   // might delegate to TLI to check pointer signedness.
1409   return getZExtOrTrunc(Op, DL, VT);
1410 }
1411 
1412 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1413   // Only unsigned pointer semantics are supported right now. In the future this
1414   // might delegate to TLI to check pointer signedness.
1415   return getZeroExtendInReg(Op, DL, VT);
1416 }
1417 
1418 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1419 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1420   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1421 }
1422 
1423 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1424   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1425   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1426 }
1427 
1428 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val,
1429                                       SDValue Mask, SDValue EVL, EVT VT) {
1430   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1431   return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL);
1432 }
1433 
1434 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1435                                       EVT OpVT) {
1436   if (!V)
1437     return getConstant(0, DL, VT);
1438 
1439   switch (TLI->getBooleanContents(OpVT)) {
1440   case TargetLowering::ZeroOrOneBooleanContent:
1441   case TargetLowering::UndefinedBooleanContent:
1442     return getConstant(1, DL, VT);
1443   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1444     return getAllOnesConstant(DL, VT);
1445   }
1446   llvm_unreachable("Unexpected boolean content enum!");
1447 }
1448 
1449 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1450                                   bool isT, bool isO) {
1451   EVT EltVT = VT.getScalarType();
1452   assert((EltVT.getSizeInBits() >= 64 ||
1453           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1454          "getConstant with a uint64_t value that doesn't fit in the type!");
1455   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1456 }
1457 
1458 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1459                                   bool isT, bool isO) {
1460   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1461 }
1462 
1463 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1464                                   EVT VT, bool isT, bool isO) {
1465   assert(VT.isInteger() && "Cannot create FP integer constant!");
1466 
1467   EVT EltVT = VT.getScalarType();
1468   const ConstantInt *Elt = &Val;
1469 
1470   // In some cases the vector type is legal but the element type is illegal and
1471   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1472   // inserted value (the type does not need to match the vector element type).
1473   // Any extra bits introduced will be truncated away.
1474   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1475                            TargetLowering::TypePromoteInteger) {
1476     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1477     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1478     Elt = ConstantInt::get(*getContext(), NewVal);
1479   }
1480   // In other cases the element type is illegal and needs to be expanded, for
1481   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1482   // the value into n parts and use a vector type with n-times the elements.
1483   // Then bitcast to the type requested.
1484   // Legalizing constants too early makes the DAGCombiner's job harder so we
1485   // only legalize if the DAG tells us we must produce legal types.
1486   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1487            TLI->getTypeAction(*getContext(), EltVT) ==
1488                TargetLowering::TypeExpandInteger) {
1489     const APInt &NewVal = Elt->getValue();
1490     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1491     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1492 
1493     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1494     if (VT.isScalableVector()) {
1495       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1496              "Can only handle an even split!");
1497       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1498 
1499       SmallVector<SDValue, 2> ScalarParts;
1500       for (unsigned i = 0; i != Parts; ++i)
1501         ScalarParts.push_back(getConstant(
1502             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1503             ViaEltVT, isT, isO));
1504 
1505       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1506     }
1507 
1508     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1509     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1510 
1511     // Check the temporary vector is the correct size. If this fails then
1512     // getTypeToTransformTo() probably returned a type whose size (in bits)
1513     // isn't a power-of-2 factor of the requested type size.
1514     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1515 
1516     SmallVector<SDValue, 2> EltParts;
1517     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1518       EltParts.push_back(getConstant(
1519           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1520           ViaEltVT, isT, isO));
1521 
1522     // EltParts is currently in little endian order. If we actually want
1523     // big-endian order then reverse it now.
1524     if (getDataLayout().isBigEndian())
1525       std::reverse(EltParts.begin(), EltParts.end());
1526 
1527     // The elements must be reversed when the element order is different
1528     // to the endianness of the elements (because the BITCAST is itself a
1529     // vector shuffle in this situation). However, we do not need any code to
1530     // perform this reversal because getConstant() is producing a vector
1531     // splat.
1532     // This situation occurs in MIPS MSA.
1533 
1534     SmallVector<SDValue, 8> Ops;
1535     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1536       llvm::append_range(Ops, EltParts);
1537 
1538     SDValue V =
1539         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1540     return V;
1541   }
1542 
1543   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1544          "APInt size does not match type size!");
1545   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1546   FoldingSetNodeID ID;
1547   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1548   ID.AddPointer(Elt);
1549   ID.AddBoolean(isO);
1550   void *IP = nullptr;
1551   SDNode *N = nullptr;
1552   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1553     if (!VT.isVector())
1554       return SDValue(N, 0);
1555 
1556   if (!N) {
1557     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1558     CSEMap.InsertNode(N, IP);
1559     InsertNode(N);
1560     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1561   }
1562 
1563   SDValue Result(N, 0);
1564   if (VT.isScalableVector())
1565     Result = getSplatVector(VT, DL, Result);
1566   else if (VT.isVector())
1567     Result = getSplatBuildVector(VT, DL, Result);
1568 
1569   return Result;
1570 }
1571 
1572 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1573                                         bool isTarget) {
1574   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1575 }
1576 
1577 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1578                                              const SDLoc &DL, bool LegalTypes) {
1579   assert(VT.isInteger() && "Shift amount is not an integer type!");
1580   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1581   return getConstant(Val, DL, ShiftVT);
1582 }
1583 
1584 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1585                                            bool isTarget) {
1586   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1587 }
1588 
1589 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1590                                     bool isTarget) {
1591   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1592 }
1593 
1594 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1595                                     EVT VT, bool isTarget) {
1596   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1597 
1598   EVT EltVT = VT.getScalarType();
1599 
1600   // Do the map lookup using the actual bit pattern for the floating point
1601   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1602   // we don't have issues with SNANs.
1603   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1604   FoldingSetNodeID ID;
1605   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1606   ID.AddPointer(&V);
1607   void *IP = nullptr;
1608   SDNode *N = nullptr;
1609   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1610     if (!VT.isVector())
1611       return SDValue(N, 0);
1612 
1613   if (!N) {
1614     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1615     CSEMap.InsertNode(N, IP);
1616     InsertNode(N);
1617   }
1618 
1619   SDValue Result(N, 0);
1620   if (VT.isScalableVector())
1621     Result = getSplatVector(VT, DL, Result);
1622   else if (VT.isVector())
1623     Result = getSplatBuildVector(VT, DL, Result);
1624   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1625   return Result;
1626 }
1627 
1628 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1629                                     bool isTarget) {
1630   EVT EltVT = VT.getScalarType();
1631   if (EltVT == MVT::f32)
1632     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1633   if (EltVT == MVT::f64)
1634     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1635   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1636       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1637     bool Ignored;
1638     APFloat APF = APFloat(Val);
1639     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1640                 &Ignored);
1641     return getConstantFP(APF, DL, VT, isTarget);
1642   }
1643   llvm_unreachable("Unsupported type in getConstantFP");
1644 }
1645 
1646 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1647                                        EVT VT, int64_t Offset, bool isTargetGA,
1648                                        unsigned TargetFlags) {
1649   assert((TargetFlags == 0 || isTargetGA) &&
1650          "Cannot set target flags on target-independent globals");
1651 
1652   // Truncate (with sign-extension) the offset value to the pointer size.
1653   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1654   if (BitWidth < 64)
1655     Offset = SignExtend64(Offset, BitWidth);
1656 
1657   unsigned Opc;
1658   if (GV->isThreadLocal())
1659     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1660   else
1661     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1662 
1663   FoldingSetNodeID ID;
1664   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1665   ID.AddPointer(GV);
1666   ID.AddInteger(Offset);
1667   ID.AddInteger(TargetFlags);
1668   void *IP = nullptr;
1669   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1670     return SDValue(E, 0);
1671 
1672   auto *N = newSDNode<GlobalAddressSDNode>(
1673       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1674   CSEMap.InsertNode(N, IP);
1675     InsertNode(N);
1676   return SDValue(N, 0);
1677 }
1678 
1679 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1680   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1681   FoldingSetNodeID ID;
1682   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1683   ID.AddInteger(FI);
1684   void *IP = nullptr;
1685   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1686     return SDValue(E, 0);
1687 
1688   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1689   CSEMap.InsertNode(N, IP);
1690   InsertNode(N);
1691   return SDValue(N, 0);
1692 }
1693 
1694 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1695                                    unsigned TargetFlags) {
1696   assert((TargetFlags == 0 || isTarget) &&
1697          "Cannot set target flags on target-independent jump tables");
1698   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1699   FoldingSetNodeID ID;
1700   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1701   ID.AddInteger(JTI);
1702   ID.AddInteger(TargetFlags);
1703   void *IP = nullptr;
1704   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1705     return SDValue(E, 0);
1706 
1707   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1708   CSEMap.InsertNode(N, IP);
1709   InsertNode(N);
1710   return SDValue(N, 0);
1711 }
1712 
1713 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1714                                       MaybeAlign Alignment, int Offset,
1715                                       bool isTarget, unsigned TargetFlags) {
1716   assert((TargetFlags == 0 || isTarget) &&
1717          "Cannot set target flags on target-independent globals");
1718   if (!Alignment)
1719     Alignment = shouldOptForSize()
1720                     ? getDataLayout().getABITypeAlign(C->getType())
1721                     : getDataLayout().getPrefTypeAlign(C->getType());
1722   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1723   FoldingSetNodeID ID;
1724   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1725   ID.AddInteger(Alignment->value());
1726   ID.AddInteger(Offset);
1727   ID.AddPointer(C);
1728   ID.AddInteger(TargetFlags);
1729   void *IP = nullptr;
1730   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1731     return SDValue(E, 0);
1732 
1733   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1734                                           TargetFlags);
1735   CSEMap.InsertNode(N, IP);
1736   InsertNode(N);
1737   SDValue V = SDValue(N, 0);
1738   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1739   return V;
1740 }
1741 
1742 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1743                                       MaybeAlign Alignment, int Offset,
1744                                       bool isTarget, unsigned TargetFlags) {
1745   assert((TargetFlags == 0 || isTarget) &&
1746          "Cannot set target flags on target-independent globals");
1747   if (!Alignment)
1748     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1749   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1750   FoldingSetNodeID ID;
1751   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1752   ID.AddInteger(Alignment->value());
1753   ID.AddInteger(Offset);
1754   C->addSelectionDAGCSEId(ID);
1755   ID.AddInteger(TargetFlags);
1756   void *IP = nullptr;
1757   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1758     return SDValue(E, 0);
1759 
1760   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1761                                           TargetFlags);
1762   CSEMap.InsertNode(N, IP);
1763   InsertNode(N);
1764   return SDValue(N, 0);
1765 }
1766 
1767 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1768                                      unsigned TargetFlags) {
1769   FoldingSetNodeID ID;
1770   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1771   ID.AddInteger(Index);
1772   ID.AddInteger(Offset);
1773   ID.AddInteger(TargetFlags);
1774   void *IP = nullptr;
1775   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1776     return SDValue(E, 0);
1777 
1778   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1779   CSEMap.InsertNode(N, IP);
1780   InsertNode(N);
1781   return SDValue(N, 0);
1782 }
1783 
1784 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1785   FoldingSetNodeID ID;
1786   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1787   ID.AddPointer(MBB);
1788   void *IP = nullptr;
1789   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1790     return SDValue(E, 0);
1791 
1792   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1793   CSEMap.InsertNode(N, IP);
1794   InsertNode(N);
1795   return SDValue(N, 0);
1796 }
1797 
1798 SDValue SelectionDAG::getValueType(EVT VT) {
1799   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1800       ValueTypeNodes.size())
1801     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1802 
1803   SDNode *&N = VT.isExtended() ?
1804     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1805 
1806   if (N) return SDValue(N, 0);
1807   N = newSDNode<VTSDNode>(VT);
1808   InsertNode(N);
1809   return SDValue(N, 0);
1810 }
1811 
1812 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1813   SDNode *&N = ExternalSymbols[Sym];
1814   if (N) return SDValue(N, 0);
1815   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1816   InsertNode(N);
1817   return SDValue(N, 0);
1818 }
1819 
1820 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1821   SDNode *&N = MCSymbols[Sym];
1822   if (N)
1823     return SDValue(N, 0);
1824   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1825   InsertNode(N);
1826   return SDValue(N, 0);
1827 }
1828 
1829 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1830                                               unsigned TargetFlags) {
1831   SDNode *&N =
1832       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1833   if (N) return SDValue(N, 0);
1834   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1835   InsertNode(N);
1836   return SDValue(N, 0);
1837 }
1838 
1839 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1840   if ((unsigned)Cond >= CondCodeNodes.size())
1841     CondCodeNodes.resize(Cond+1);
1842 
1843   if (!CondCodeNodes[Cond]) {
1844     auto *N = newSDNode<CondCodeSDNode>(Cond);
1845     CondCodeNodes[Cond] = N;
1846     InsertNode(N);
1847   }
1848 
1849   return SDValue(CondCodeNodes[Cond], 0);
1850 }
1851 
1852 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1853   APInt One(ResVT.getScalarSizeInBits(), 1);
1854   return getStepVector(DL, ResVT, One);
1855 }
1856 
1857 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1858   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1859   if (ResVT.isScalableVector())
1860     return getNode(
1861         ISD::STEP_VECTOR, DL, ResVT,
1862         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1863 
1864   SmallVector<SDValue, 16> OpsStepConstants;
1865   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1866     OpsStepConstants.push_back(
1867         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1868   return getBuildVector(ResVT, DL, OpsStepConstants);
1869 }
1870 
1871 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1872 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1873 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1874   std::swap(N1, N2);
1875   ShuffleVectorSDNode::commuteMask(M);
1876 }
1877 
1878 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1879                                        SDValue N2, ArrayRef<int> Mask) {
1880   assert(VT.getVectorNumElements() == Mask.size() &&
1881          "Must have the same number of vector elements as mask elements!");
1882   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1883          "Invalid VECTOR_SHUFFLE");
1884 
1885   // Canonicalize shuffle undef, undef -> undef
1886   if (N1.isUndef() && N2.isUndef())
1887     return getUNDEF(VT);
1888 
1889   // Validate that all indices in Mask are within the range of the elements
1890   // input to the shuffle.
1891   int NElts = Mask.size();
1892   assert(llvm::all_of(Mask,
1893                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1894          "Index out of range");
1895 
1896   // Copy the mask so we can do any needed cleanup.
1897   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1898 
1899   // Canonicalize shuffle v, v -> v, undef
1900   if (N1 == N2) {
1901     N2 = getUNDEF(VT);
1902     for (int i = 0; i != NElts; ++i)
1903       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1904   }
1905 
1906   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1907   if (N1.isUndef())
1908     commuteShuffle(N1, N2, MaskVec);
1909 
1910   if (TLI->hasVectorBlend()) {
1911     // If shuffling a splat, try to blend the splat instead. We do this here so
1912     // that even when this arises during lowering we don't have to re-handle it.
1913     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1914       BitVector UndefElements;
1915       SDValue Splat = BV->getSplatValue(&UndefElements);
1916       if (!Splat)
1917         return;
1918 
1919       for (int i = 0; i < NElts; ++i) {
1920         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1921           continue;
1922 
1923         // If this input comes from undef, mark it as such.
1924         if (UndefElements[MaskVec[i] - Offset]) {
1925           MaskVec[i] = -1;
1926           continue;
1927         }
1928 
1929         // If we can blend a non-undef lane, use that instead.
1930         if (!UndefElements[i])
1931           MaskVec[i] = i + Offset;
1932       }
1933     };
1934     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1935       BlendSplat(N1BV, 0);
1936     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1937       BlendSplat(N2BV, NElts);
1938   }
1939 
1940   // Canonicalize all index into lhs, -> shuffle lhs, undef
1941   // Canonicalize all index into rhs, -> shuffle rhs, undef
1942   bool AllLHS = true, AllRHS = true;
1943   bool N2Undef = N2.isUndef();
1944   for (int i = 0; i != NElts; ++i) {
1945     if (MaskVec[i] >= NElts) {
1946       if (N2Undef)
1947         MaskVec[i] = -1;
1948       else
1949         AllLHS = false;
1950     } else if (MaskVec[i] >= 0) {
1951       AllRHS = false;
1952     }
1953   }
1954   if (AllLHS && AllRHS)
1955     return getUNDEF(VT);
1956   if (AllLHS && !N2Undef)
1957     N2 = getUNDEF(VT);
1958   if (AllRHS) {
1959     N1 = getUNDEF(VT);
1960     commuteShuffle(N1, N2, MaskVec);
1961   }
1962   // Reset our undef status after accounting for the mask.
1963   N2Undef = N2.isUndef();
1964   // Re-check whether both sides ended up undef.
1965   if (N1.isUndef() && N2Undef)
1966     return getUNDEF(VT);
1967 
1968   // If Identity shuffle return that node.
1969   bool Identity = true, AllSame = true;
1970   for (int i = 0; i != NElts; ++i) {
1971     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1972     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1973   }
1974   if (Identity && NElts)
1975     return N1;
1976 
1977   // Shuffling a constant splat doesn't change the result.
1978   if (N2Undef) {
1979     SDValue V = N1;
1980 
1981     // Look through any bitcasts. We check that these don't change the number
1982     // (and size) of elements and just changes their types.
1983     while (V.getOpcode() == ISD::BITCAST)
1984       V = V->getOperand(0);
1985 
1986     // A splat should always show up as a build vector node.
1987     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1988       BitVector UndefElements;
1989       SDValue Splat = BV->getSplatValue(&UndefElements);
1990       // If this is a splat of an undef, shuffling it is also undef.
1991       if (Splat && Splat.isUndef())
1992         return getUNDEF(VT);
1993 
1994       bool SameNumElts =
1995           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1996 
1997       // We only have a splat which can skip shuffles if there is a splatted
1998       // value and no undef lanes rearranged by the shuffle.
1999       if (Splat && UndefElements.none()) {
2000         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
2001         // number of elements match or the value splatted is a zero constant.
2002         if (SameNumElts)
2003           return N1;
2004         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
2005           if (C->isZero())
2006             return N1;
2007       }
2008 
2009       // If the shuffle itself creates a splat, build the vector directly.
2010       if (AllSame && SameNumElts) {
2011         EVT BuildVT = BV->getValueType(0);
2012         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2013         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2014 
2015         // We may have jumped through bitcasts, so the type of the
2016         // BUILD_VECTOR may not match the type of the shuffle.
2017         if (BuildVT != VT)
2018           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2019         return NewBV;
2020       }
2021     }
2022   }
2023 
2024   FoldingSetNodeID ID;
2025   SDValue Ops[2] = { N1, N2 };
2026   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
2027   for (int i = 0; i != NElts; ++i)
2028     ID.AddInteger(MaskVec[i]);
2029 
2030   void* IP = nullptr;
2031   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2032     return SDValue(E, 0);
2033 
2034   // Allocate the mask array for the node out of the BumpPtrAllocator, since
2035   // SDNode doesn't have access to it.  This memory will be "leaked" when
2036   // the node is deallocated, but recovered when the NodeAllocator is released.
2037   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2038   llvm::copy(MaskVec, MaskAlloc);
2039 
2040   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
2041                                            dl.getDebugLoc(), MaskAlloc);
2042   createOperands(N, Ops);
2043 
2044   CSEMap.InsertNode(N, IP);
2045   InsertNode(N);
2046   SDValue V = SDValue(N, 0);
2047   NewSDValueDbgMsg(V, "Creating new node: ", this);
2048   return V;
2049 }
2050 
2051 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2052   EVT VT = SV.getValueType(0);
2053   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
2054   ShuffleVectorSDNode::commuteMask(MaskVec);
2055 
2056   SDValue Op0 = SV.getOperand(0);
2057   SDValue Op1 = SV.getOperand(1);
2058   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2059 }
2060 
2061 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2062   FoldingSetNodeID ID;
2063   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
2064   ID.AddInteger(RegNo);
2065   void *IP = nullptr;
2066   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2067     return SDValue(E, 0);
2068 
2069   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2070   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
2071   CSEMap.InsertNode(N, IP);
2072   InsertNode(N);
2073   return SDValue(N, 0);
2074 }
2075 
2076 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2077   FoldingSetNodeID ID;
2078   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2079   ID.AddPointer(RegMask);
2080   void *IP = nullptr;
2081   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2082     return SDValue(E, 0);
2083 
2084   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2085   CSEMap.InsertNode(N, IP);
2086   InsertNode(N);
2087   return SDValue(N, 0);
2088 }
2089 
2090 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2091                                  MCSymbol *Label) {
2092   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2093 }
2094 
2095 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2096                                    SDValue Root, MCSymbol *Label) {
2097   FoldingSetNodeID ID;
2098   SDValue Ops[] = { Root };
2099   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2100   ID.AddPointer(Label);
2101   void *IP = nullptr;
2102   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2103     return SDValue(E, 0);
2104 
2105   auto *N =
2106       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2107   createOperands(N, Ops);
2108 
2109   CSEMap.InsertNode(N, IP);
2110   InsertNode(N);
2111   return SDValue(N, 0);
2112 }
2113 
2114 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2115                                       int64_t Offset, bool isTarget,
2116                                       unsigned TargetFlags) {
2117   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2118 
2119   FoldingSetNodeID ID;
2120   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2121   ID.AddPointer(BA);
2122   ID.AddInteger(Offset);
2123   ID.AddInteger(TargetFlags);
2124   void *IP = nullptr;
2125   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2126     return SDValue(E, 0);
2127 
2128   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2129   CSEMap.InsertNode(N, IP);
2130   InsertNode(N);
2131   return SDValue(N, 0);
2132 }
2133 
2134 SDValue SelectionDAG::getSrcValue(const Value *V) {
2135   FoldingSetNodeID ID;
2136   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2137   ID.AddPointer(V);
2138 
2139   void *IP = nullptr;
2140   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2141     return SDValue(E, 0);
2142 
2143   auto *N = newSDNode<SrcValueSDNode>(V);
2144   CSEMap.InsertNode(N, IP);
2145   InsertNode(N);
2146   return SDValue(N, 0);
2147 }
2148 
2149 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2150   FoldingSetNodeID ID;
2151   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2152   ID.AddPointer(MD);
2153 
2154   void *IP = nullptr;
2155   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2156     return SDValue(E, 0);
2157 
2158   auto *N = newSDNode<MDNodeSDNode>(MD);
2159   CSEMap.InsertNode(N, IP);
2160   InsertNode(N);
2161   return SDValue(N, 0);
2162 }
2163 
2164 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2165   if (VT == V.getValueType())
2166     return V;
2167 
2168   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2169 }
2170 
2171 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2172                                        unsigned SrcAS, unsigned DestAS) {
2173   SDValue Ops[] = {Ptr};
2174   FoldingSetNodeID ID;
2175   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2176   ID.AddInteger(SrcAS);
2177   ID.AddInteger(DestAS);
2178 
2179   void *IP = nullptr;
2180   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2181     return SDValue(E, 0);
2182 
2183   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2184                                            VT, SrcAS, DestAS);
2185   createOperands(N, Ops);
2186 
2187   CSEMap.InsertNode(N, IP);
2188   InsertNode(N);
2189   return SDValue(N, 0);
2190 }
2191 
2192 SDValue SelectionDAG::getFreeze(SDValue V) {
2193   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2194 }
2195 
2196 /// getShiftAmountOperand - Return the specified value casted to
2197 /// the target's desired shift amount type.
2198 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2199   EVT OpTy = Op.getValueType();
2200   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2201   if (OpTy == ShTy || OpTy.isVector()) return Op;
2202 
2203   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2204 }
2205 
2206 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2207   SDLoc dl(Node);
2208   const TargetLowering &TLI = getTargetLoweringInfo();
2209   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2210   EVT VT = Node->getValueType(0);
2211   SDValue Tmp1 = Node->getOperand(0);
2212   SDValue Tmp2 = Node->getOperand(1);
2213   const MaybeAlign MA(Node->getConstantOperandVal(3));
2214 
2215   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2216                                Tmp2, MachinePointerInfo(V));
2217   SDValue VAList = VAListLoad;
2218 
2219   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2220     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2221                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2222 
2223     VAList =
2224         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2225                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2226   }
2227 
2228   // Increment the pointer, VAList, to the next vaarg
2229   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2230                  getConstant(getDataLayout().getTypeAllocSize(
2231                                                VT.getTypeForEVT(*getContext())),
2232                              dl, VAList.getValueType()));
2233   // Store the incremented VAList to the legalized pointer
2234   Tmp1 =
2235       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2236   // Load the actual argument out of the pointer VAList
2237   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2238 }
2239 
2240 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2241   SDLoc dl(Node);
2242   const TargetLowering &TLI = getTargetLoweringInfo();
2243   // This defaults to loading a pointer from the input and storing it to the
2244   // output, returning the chain.
2245   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2246   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2247   SDValue Tmp1 =
2248       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2249               Node->getOperand(2), MachinePointerInfo(VS));
2250   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2251                   MachinePointerInfo(VD));
2252 }
2253 
2254 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2255   const DataLayout &DL = getDataLayout();
2256   Type *Ty = VT.getTypeForEVT(*getContext());
2257   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2258 
2259   if (TLI->isTypeLegal(VT) || !VT.isVector())
2260     return RedAlign;
2261 
2262   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2263   const Align StackAlign = TFI->getStackAlign();
2264 
2265   // See if we can choose a smaller ABI alignment in cases where it's an
2266   // illegal vector type that will get broken down.
2267   if (RedAlign > StackAlign) {
2268     EVT IntermediateVT;
2269     MVT RegisterVT;
2270     unsigned NumIntermediates;
2271     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2272                                 NumIntermediates, RegisterVT);
2273     Ty = IntermediateVT.getTypeForEVT(*getContext());
2274     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2275     if (RedAlign2 < RedAlign)
2276       RedAlign = RedAlign2;
2277   }
2278 
2279   return RedAlign;
2280 }
2281 
2282 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2283   MachineFrameInfo &MFI = MF->getFrameInfo();
2284   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2285   int StackID = 0;
2286   if (Bytes.isScalable())
2287     StackID = TFI->getStackIDForScalableVectors();
2288   // The stack id gives an indication of whether the object is scalable or
2289   // not, so it's safe to pass in the minimum size here.
2290   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2291                                        false, nullptr, StackID);
2292   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2293 }
2294 
2295 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2296   Type *Ty = VT.getTypeForEVT(*getContext());
2297   Align StackAlign =
2298       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2299   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2300 }
2301 
2302 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2303   TypeSize VT1Size = VT1.getStoreSize();
2304   TypeSize VT2Size = VT2.getStoreSize();
2305   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2306          "Don't know how to choose the maximum size when creating a stack "
2307          "temporary");
2308   TypeSize Bytes =
2309       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2310 
2311   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2312   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2313   const DataLayout &DL = getDataLayout();
2314   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2315   return CreateStackTemporary(Bytes, Align);
2316 }
2317 
2318 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2319                                 ISD::CondCode Cond, const SDLoc &dl) {
2320   EVT OpVT = N1.getValueType();
2321 
2322   // These setcc operations always fold.
2323   switch (Cond) {
2324   default: break;
2325   case ISD::SETFALSE:
2326   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2327   case ISD::SETTRUE:
2328   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2329 
2330   case ISD::SETOEQ:
2331   case ISD::SETOGT:
2332   case ISD::SETOGE:
2333   case ISD::SETOLT:
2334   case ISD::SETOLE:
2335   case ISD::SETONE:
2336   case ISD::SETO:
2337   case ISD::SETUO:
2338   case ISD::SETUEQ:
2339   case ISD::SETUNE:
2340     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2341     break;
2342   }
2343 
2344   if (OpVT.isInteger()) {
2345     // For EQ and NE, we can always pick a value for the undef to make the
2346     // predicate pass or fail, so we can return undef.
2347     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2348     // icmp eq/ne X, undef -> undef.
2349     if ((N1.isUndef() || N2.isUndef()) &&
2350         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2351       return getUNDEF(VT);
2352 
2353     // If both operands are undef, we can return undef for int comparison.
2354     // icmp undef, undef -> undef.
2355     if (N1.isUndef() && N2.isUndef())
2356       return getUNDEF(VT);
2357 
2358     // icmp X, X -> true/false
2359     // icmp X, undef -> true/false because undef could be X.
2360     if (N1 == N2)
2361       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2362   }
2363 
2364   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2365     const APInt &C2 = N2C->getAPIntValue();
2366     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2367       const APInt &C1 = N1C->getAPIntValue();
2368 
2369       return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2370                              dl, VT, OpVT);
2371     }
2372   }
2373 
2374   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2375   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2376 
2377   if (N1CFP && N2CFP) {
2378     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2379     switch (Cond) {
2380     default: break;
2381     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2382                         return getUNDEF(VT);
2383                       LLVM_FALLTHROUGH;
2384     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2385                                              OpVT);
2386     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2387                         return getUNDEF(VT);
2388                       LLVM_FALLTHROUGH;
2389     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2390                                              R==APFloat::cmpLessThan, dl, VT,
2391                                              OpVT);
2392     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2393                         return getUNDEF(VT);
2394                       LLVM_FALLTHROUGH;
2395     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2396                                              OpVT);
2397     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2398                         return getUNDEF(VT);
2399                       LLVM_FALLTHROUGH;
2400     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2401                                              VT, OpVT);
2402     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2403                         return getUNDEF(VT);
2404                       LLVM_FALLTHROUGH;
2405     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2406                                              R==APFloat::cmpEqual, dl, VT,
2407                                              OpVT);
2408     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2409                         return getUNDEF(VT);
2410                       LLVM_FALLTHROUGH;
2411     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2412                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2413     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2414                                              OpVT);
2415     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2416                                              OpVT);
2417     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2418                                              R==APFloat::cmpEqual, dl, VT,
2419                                              OpVT);
2420     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2421                                              OpVT);
2422     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2423                                              R==APFloat::cmpLessThan, dl, VT,
2424                                              OpVT);
2425     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2426                                              R==APFloat::cmpUnordered, dl, VT,
2427                                              OpVT);
2428     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2429                                              VT, OpVT);
2430     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2431                                              OpVT);
2432     }
2433   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2434     // Ensure that the constant occurs on the RHS.
2435     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2436     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2437       return SDValue();
2438     return getSetCC(dl, VT, N2, N1, SwappedCond);
2439   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2440              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2441     // If an operand is known to be a nan (or undef that could be a nan), we can
2442     // fold it.
2443     // Choosing NaN for the undef will always make unordered comparison succeed
2444     // and ordered comparison fails.
2445     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2446     switch (ISD::getUnorderedFlavor(Cond)) {
2447     default:
2448       llvm_unreachable("Unknown flavor!");
2449     case 0: // Known false.
2450       return getBoolConstant(false, dl, VT, OpVT);
2451     case 1: // Known true.
2452       return getBoolConstant(true, dl, VT, OpVT);
2453     case 2: // Undefined.
2454       return getUNDEF(VT);
2455     }
2456   }
2457 
2458   // Could not fold it.
2459   return SDValue();
2460 }
2461 
2462 /// See if the specified operand can be simplified with the knowledge that only
2463 /// the bits specified by DemandedBits are used.
2464 /// TODO: really we should be making this into the DAG equivalent of
2465 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2466 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2467   EVT VT = V.getValueType();
2468 
2469   if (VT.isScalableVector())
2470     return SDValue();
2471 
2472   APInt DemandedElts = VT.isVector()
2473                            ? APInt::getAllOnes(VT.getVectorNumElements())
2474                            : APInt(1, 1);
2475   return GetDemandedBits(V, DemandedBits, DemandedElts);
2476 }
2477 
2478 /// See if the specified operand can be simplified with the knowledge that only
2479 /// the bits specified by DemandedBits are used in the elements specified by
2480 /// DemandedElts.
2481 /// TODO: really we should be making this into the DAG equivalent of
2482 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2483 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2484                                       const APInt &DemandedElts) {
2485   switch (V.getOpcode()) {
2486   default:
2487     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2488                                                 *this);
2489   case ISD::Constant: {
2490     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2491     APInt NewVal = CVal & DemandedBits;
2492     if (NewVal != CVal)
2493       return getConstant(NewVal, SDLoc(V), V.getValueType());
2494     break;
2495   }
2496   case ISD::SRL:
2497     // Only look at single-use SRLs.
2498     if (!V.getNode()->hasOneUse())
2499       break;
2500     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2501       // See if we can recursively simplify the LHS.
2502       unsigned Amt = RHSC->getZExtValue();
2503 
2504       // Watch out for shift count overflow though.
2505       if (Amt >= DemandedBits.getBitWidth())
2506         break;
2507       APInt SrcDemandedBits = DemandedBits << Amt;
2508       if (SDValue SimplifyLHS =
2509               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2510         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2511                        V.getOperand(1));
2512     }
2513     break;
2514   }
2515   return SDValue();
2516 }
2517 
2518 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2519 /// use this predicate to simplify operations downstream.
2520 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2521   unsigned BitWidth = Op.getScalarValueSizeInBits();
2522   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2523 }
2524 
2525 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2526 /// this predicate to simplify operations downstream.  Mask is known to be zero
2527 /// for bits that V cannot have.
2528 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2529                                      unsigned Depth) const {
2530   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2531 }
2532 
2533 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2534 /// DemandedElts.  We use this predicate to simplify operations downstream.
2535 /// Mask is known to be zero for bits that V cannot have.
2536 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2537                                      const APInt &DemandedElts,
2538                                      unsigned Depth) const {
2539   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2540 }
2541 
2542 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2543 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2544                                         unsigned Depth) const {
2545   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2546 }
2547 
2548 /// isSplatValue - Return true if the vector V has the same value
2549 /// across all DemandedElts. For scalable vectors it does not make
2550 /// sense to specify which elements are demanded or undefined, therefore
2551 /// they are simply ignored.
2552 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2553                                 APInt &UndefElts, unsigned Depth) const {
2554   unsigned Opcode = V.getOpcode();
2555   EVT VT = V.getValueType();
2556   assert(VT.isVector() && "Vector type expected");
2557 
2558   if (!VT.isScalableVector() && !DemandedElts)
2559     return false; // No demanded elts, better to assume we don't know anything.
2560 
2561   if (Depth >= MaxRecursionDepth)
2562     return false; // Limit search depth.
2563 
2564   // Deal with some common cases here that work for both fixed and scalable
2565   // vector types.
2566   switch (Opcode) {
2567   case ISD::SPLAT_VECTOR:
2568     UndefElts = V.getOperand(0).isUndef()
2569                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2570                     : APInt(DemandedElts.getBitWidth(), 0);
2571     return true;
2572   case ISD::ADD:
2573   case ISD::SUB:
2574   case ISD::AND:
2575   case ISD::XOR:
2576   case ISD::OR: {
2577     APInt UndefLHS, UndefRHS;
2578     SDValue LHS = V.getOperand(0);
2579     SDValue RHS = V.getOperand(1);
2580     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2581         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2582       UndefElts = UndefLHS | UndefRHS;
2583       return true;
2584     }
2585     return false;
2586   }
2587   case ISD::ABS:
2588   case ISD::TRUNCATE:
2589   case ISD::SIGN_EXTEND:
2590   case ISD::ZERO_EXTEND:
2591     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2592   default:
2593     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
2594         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
2595       return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth);
2596     break;
2597 }
2598 
2599   // We don't support other cases than those above for scalable vectors at
2600   // the moment.
2601   if (VT.isScalableVector())
2602     return false;
2603 
2604   unsigned NumElts = VT.getVectorNumElements();
2605   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2606   UndefElts = APInt::getZero(NumElts);
2607 
2608   switch (Opcode) {
2609   case ISD::BUILD_VECTOR: {
2610     SDValue Scl;
2611     for (unsigned i = 0; i != NumElts; ++i) {
2612       SDValue Op = V.getOperand(i);
2613       if (Op.isUndef()) {
2614         UndefElts.setBit(i);
2615         continue;
2616       }
2617       if (!DemandedElts[i])
2618         continue;
2619       if (Scl && Scl != Op)
2620         return false;
2621       Scl = Op;
2622     }
2623     return true;
2624   }
2625   case ISD::VECTOR_SHUFFLE: {
2626     // Check if this is a shuffle node doing a splat or a shuffle of a splat.
2627     APInt DemandedLHS = APInt::getNullValue(NumElts);
2628     APInt DemandedRHS = APInt::getNullValue(NumElts);
2629     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2630     for (int i = 0; i != (int)NumElts; ++i) {
2631       int M = Mask[i];
2632       if (M < 0) {
2633         UndefElts.setBit(i);
2634         continue;
2635       }
2636       if (!DemandedElts[i])
2637         continue;
2638       if (M < (int)NumElts)
2639         DemandedLHS.setBit(M);
2640       else
2641         DemandedRHS.setBit(M - NumElts);
2642     }
2643 
2644     // If we aren't demanding either op, assume there's no splat.
2645     // If we are demanding both ops, assume there's no splat.
2646     if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
2647         (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
2648       return false;
2649 
2650     // See if the demanded elts of the source op is a splat or we only demand
2651     // one element, which should always be a splat.
2652     // TODO: Handle source ops splats with undefs.
2653     auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
2654       APInt SrcUndefs;
2655       return (SrcElts.countPopulation() == 1) ||
2656              (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
2657               (SrcElts & SrcUndefs).isZero());
2658     };
2659     if (!DemandedLHS.isZero())
2660       return CheckSplatSrc(V.getOperand(0), DemandedLHS);
2661     return CheckSplatSrc(V.getOperand(1), DemandedRHS);
2662   }
2663   case ISD::EXTRACT_SUBVECTOR: {
2664     // Offset the demanded elts by the subvector index.
2665     SDValue Src = V.getOperand(0);
2666     // We don't support scalable vectors at the moment.
2667     if (Src.getValueType().isScalableVector())
2668       return false;
2669     uint64_t Idx = V.getConstantOperandVal(1);
2670     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2671     APInt UndefSrcElts;
2672     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2673     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2674       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2675       return true;
2676     }
2677     break;
2678   }
2679   case ISD::ANY_EXTEND_VECTOR_INREG:
2680   case ISD::SIGN_EXTEND_VECTOR_INREG:
2681   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2682     // Widen the demanded elts by the src element count.
2683     SDValue Src = V.getOperand(0);
2684     // We don't support scalable vectors at the moment.
2685     if (Src.getValueType().isScalableVector())
2686       return false;
2687     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2688     APInt UndefSrcElts;
2689     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2690     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2691       UndefElts = UndefSrcElts.truncOrSelf(NumElts);
2692       return true;
2693     }
2694     break;
2695   }
2696   case ISD::BITCAST: {
2697     SDValue Src = V.getOperand(0);
2698     EVT SrcVT = Src.getValueType();
2699     unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
2700     unsigned BitWidth = VT.getScalarSizeInBits();
2701 
2702     // Ignore bitcasts from unsupported types.
2703     // TODO: Add fp support?
2704     if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
2705       break;
2706 
2707     // Bitcast 'small element' vector to 'large element' vector.
2708     if ((BitWidth % SrcBitWidth) == 0) {
2709       // See if each sub element is a splat.
2710       unsigned Scale = BitWidth / SrcBitWidth;
2711       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2712       APInt ScaledDemandedElts =
2713           APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2714       for (unsigned I = 0; I != Scale; ++I) {
2715         APInt SubUndefElts;
2716         APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
2717         APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
2718         SubDemandedElts &= ScaledDemandedElts;
2719         if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
2720           return false;
2721         // TODO: Add support for merging sub undef elements.
2722         if (SubDemandedElts.isSubsetOf(SubUndefElts))
2723           return false;
2724       }
2725       return true;
2726     }
2727     break;
2728   }
2729   }
2730 
2731   return false;
2732 }
2733 
2734 /// Helper wrapper to main isSplatValue function.
2735 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
2736   EVT VT = V.getValueType();
2737   assert(VT.isVector() && "Vector type expected");
2738 
2739   APInt UndefElts;
2740   APInt DemandedElts;
2741 
2742   // For now we don't support this with scalable vectors.
2743   if (!VT.isScalableVector())
2744     DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2745   return isSplatValue(V, DemandedElts, UndefElts) &&
2746          (AllowUndefs || !UndefElts);
2747 }
2748 
2749 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2750   V = peekThroughExtractSubvectors(V);
2751 
2752   EVT VT = V.getValueType();
2753   unsigned Opcode = V.getOpcode();
2754   switch (Opcode) {
2755   default: {
2756     APInt UndefElts;
2757     APInt DemandedElts;
2758 
2759     if (!VT.isScalableVector())
2760       DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2761 
2762     if (isSplatValue(V, DemandedElts, UndefElts)) {
2763       if (VT.isScalableVector()) {
2764         // DemandedElts and UndefElts are ignored for scalable vectors, since
2765         // the only supported cases are SPLAT_VECTOR nodes.
2766         SplatIdx = 0;
2767       } else {
2768         // Handle case where all demanded elements are UNDEF.
2769         if (DemandedElts.isSubsetOf(UndefElts)) {
2770           SplatIdx = 0;
2771           return getUNDEF(VT);
2772         }
2773         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2774       }
2775       return V;
2776     }
2777     break;
2778   }
2779   case ISD::SPLAT_VECTOR:
2780     SplatIdx = 0;
2781     return V;
2782   case ISD::VECTOR_SHUFFLE: {
2783     if (VT.isScalableVector())
2784       return SDValue();
2785 
2786     // Check if this is a shuffle node doing a splat.
2787     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2788     // getTargetVShiftNode currently struggles without the splat source.
2789     auto *SVN = cast<ShuffleVectorSDNode>(V);
2790     if (!SVN->isSplat())
2791       break;
2792     int Idx = SVN->getSplatIndex();
2793     int NumElts = V.getValueType().getVectorNumElements();
2794     SplatIdx = Idx % NumElts;
2795     return V.getOperand(Idx / NumElts);
2796   }
2797   }
2798 
2799   return SDValue();
2800 }
2801 
2802 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2803   int SplatIdx;
2804   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2805     EVT SVT = SrcVector.getValueType().getScalarType();
2806     EVT LegalSVT = SVT;
2807     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2808       if (!SVT.isInteger())
2809         return SDValue();
2810       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2811       if (LegalSVT.bitsLT(SVT))
2812         return SDValue();
2813     }
2814     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2815                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2816   }
2817   return SDValue();
2818 }
2819 
2820 const APInt *
2821 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2822                                           const APInt &DemandedElts) const {
2823   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2824           V.getOpcode() == ISD::SRA) &&
2825          "Unknown shift node");
2826   unsigned BitWidth = V.getScalarValueSizeInBits();
2827   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2828     // Shifting more than the bitwidth is not valid.
2829     const APInt &ShAmt = SA->getAPIntValue();
2830     if (ShAmt.ult(BitWidth))
2831       return &ShAmt;
2832   }
2833   return nullptr;
2834 }
2835 
2836 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2837     SDValue V, const APInt &DemandedElts) const {
2838   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2839           V.getOpcode() == ISD::SRA) &&
2840          "Unknown shift node");
2841   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2842     return ValidAmt;
2843   unsigned BitWidth = V.getScalarValueSizeInBits();
2844   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2845   if (!BV)
2846     return nullptr;
2847   const APInt *MinShAmt = nullptr;
2848   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2849     if (!DemandedElts[i])
2850       continue;
2851     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2852     if (!SA)
2853       return nullptr;
2854     // Shifting more than the bitwidth is not valid.
2855     const APInt &ShAmt = SA->getAPIntValue();
2856     if (ShAmt.uge(BitWidth))
2857       return nullptr;
2858     if (MinShAmt && MinShAmt->ule(ShAmt))
2859       continue;
2860     MinShAmt = &ShAmt;
2861   }
2862   return MinShAmt;
2863 }
2864 
2865 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2866     SDValue V, const APInt &DemandedElts) const {
2867   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2868           V.getOpcode() == ISD::SRA) &&
2869          "Unknown shift node");
2870   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2871     return ValidAmt;
2872   unsigned BitWidth = V.getScalarValueSizeInBits();
2873   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2874   if (!BV)
2875     return nullptr;
2876   const APInt *MaxShAmt = nullptr;
2877   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2878     if (!DemandedElts[i])
2879       continue;
2880     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2881     if (!SA)
2882       return nullptr;
2883     // Shifting more than the bitwidth is not valid.
2884     const APInt &ShAmt = SA->getAPIntValue();
2885     if (ShAmt.uge(BitWidth))
2886       return nullptr;
2887     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2888       continue;
2889     MaxShAmt = &ShAmt;
2890   }
2891   return MaxShAmt;
2892 }
2893 
2894 /// Determine which bits of Op are known to be either zero or one and return
2895 /// them in Known. For vectors, the known bits are those that are shared by
2896 /// every vector element.
2897 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2898   EVT VT = Op.getValueType();
2899 
2900   // TOOD: Until we have a plan for how to represent demanded elements for
2901   // scalable vectors, we can just bail out for now.
2902   if (Op.getValueType().isScalableVector()) {
2903     unsigned BitWidth = Op.getScalarValueSizeInBits();
2904     return KnownBits(BitWidth);
2905   }
2906 
2907   APInt DemandedElts = VT.isVector()
2908                            ? APInt::getAllOnes(VT.getVectorNumElements())
2909                            : APInt(1, 1);
2910   return computeKnownBits(Op, DemandedElts, Depth);
2911 }
2912 
2913 /// Determine which bits of Op are known to be either zero or one and return
2914 /// them in Known. The DemandedElts argument allows us to only collect the known
2915 /// bits that are shared by the requested vector elements.
2916 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2917                                          unsigned Depth) const {
2918   unsigned BitWidth = Op.getScalarValueSizeInBits();
2919 
2920   KnownBits Known(BitWidth);   // Don't know anything.
2921 
2922   // TOOD: Until we have a plan for how to represent demanded elements for
2923   // scalable vectors, we can just bail out for now.
2924   if (Op.getValueType().isScalableVector())
2925     return Known;
2926 
2927   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2928     // We know all of the bits for a constant!
2929     return KnownBits::makeConstant(C->getAPIntValue());
2930   }
2931   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2932     // We know all of the bits for a constant fp!
2933     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2934   }
2935 
2936   if (Depth >= MaxRecursionDepth)
2937     return Known;  // Limit search depth.
2938 
2939   KnownBits Known2;
2940   unsigned NumElts = DemandedElts.getBitWidth();
2941   assert((!Op.getValueType().isVector() ||
2942           NumElts == Op.getValueType().getVectorNumElements()) &&
2943          "Unexpected vector size");
2944 
2945   if (!DemandedElts)
2946     return Known;  // No demanded elts, better to assume we don't know anything.
2947 
2948   unsigned Opcode = Op.getOpcode();
2949   switch (Opcode) {
2950   case ISD::BUILD_VECTOR:
2951     // Collect the known bits that are shared by every demanded vector element.
2952     Known.Zero.setAllBits(); Known.One.setAllBits();
2953     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2954       if (!DemandedElts[i])
2955         continue;
2956 
2957       SDValue SrcOp = Op.getOperand(i);
2958       Known2 = computeKnownBits(SrcOp, Depth + 1);
2959 
2960       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2961       if (SrcOp.getValueSizeInBits() != BitWidth) {
2962         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2963                "Expected BUILD_VECTOR implicit truncation");
2964         Known2 = Known2.trunc(BitWidth);
2965       }
2966 
2967       // Known bits are the values that are shared by every demanded element.
2968       Known = KnownBits::commonBits(Known, Known2);
2969 
2970       // If we don't know any bits, early out.
2971       if (Known.isUnknown())
2972         break;
2973     }
2974     break;
2975   case ISD::VECTOR_SHUFFLE: {
2976     // Collect the known bits that are shared by every vector element referenced
2977     // by the shuffle.
2978     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2979     Known.Zero.setAllBits(); Known.One.setAllBits();
2980     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2981     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2982     for (unsigned i = 0; i != NumElts; ++i) {
2983       if (!DemandedElts[i])
2984         continue;
2985 
2986       int M = SVN->getMaskElt(i);
2987       if (M < 0) {
2988         // For UNDEF elements, we don't know anything about the common state of
2989         // the shuffle result.
2990         Known.resetAll();
2991         DemandedLHS.clearAllBits();
2992         DemandedRHS.clearAllBits();
2993         break;
2994       }
2995 
2996       if ((unsigned)M < NumElts)
2997         DemandedLHS.setBit((unsigned)M % NumElts);
2998       else
2999         DemandedRHS.setBit((unsigned)M % NumElts);
3000     }
3001     // Known bits are the values that are shared by every demanded element.
3002     if (!!DemandedLHS) {
3003       SDValue LHS = Op.getOperand(0);
3004       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
3005       Known = KnownBits::commonBits(Known, Known2);
3006     }
3007     // If we don't know any bits, early out.
3008     if (Known.isUnknown())
3009       break;
3010     if (!!DemandedRHS) {
3011       SDValue RHS = Op.getOperand(1);
3012       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3013       Known = KnownBits::commonBits(Known, Known2);
3014     }
3015     break;
3016   }
3017   case ISD::CONCAT_VECTORS: {
3018     // Split DemandedElts and test each of the demanded subvectors.
3019     Known.Zero.setAllBits(); Known.One.setAllBits();
3020     EVT SubVectorVT = Op.getOperand(0).getValueType();
3021     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3022     unsigned NumSubVectors = Op.getNumOperands();
3023     for (unsigned i = 0; i != NumSubVectors; ++i) {
3024       APInt DemandedSub =
3025           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3026       if (!!DemandedSub) {
3027         SDValue Sub = Op.getOperand(i);
3028         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3029         Known = KnownBits::commonBits(Known, Known2);
3030       }
3031       // If we don't know any bits, early out.
3032       if (Known.isUnknown())
3033         break;
3034     }
3035     break;
3036   }
3037   case ISD::INSERT_SUBVECTOR: {
3038     // Demand any elements from the subvector and the remainder from the src its
3039     // inserted into.
3040     SDValue Src = Op.getOperand(0);
3041     SDValue Sub = Op.getOperand(1);
3042     uint64_t Idx = Op.getConstantOperandVal(2);
3043     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3044     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3045     APInt DemandedSrcElts = DemandedElts;
3046     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3047 
3048     Known.One.setAllBits();
3049     Known.Zero.setAllBits();
3050     if (!!DemandedSubElts) {
3051       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3052       if (Known.isUnknown())
3053         break; // early-out.
3054     }
3055     if (!!DemandedSrcElts) {
3056       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3057       Known = KnownBits::commonBits(Known, Known2);
3058     }
3059     break;
3060   }
3061   case ISD::EXTRACT_SUBVECTOR: {
3062     // Offset the demanded elts by the subvector index.
3063     SDValue Src = Op.getOperand(0);
3064     // Bail until we can represent demanded elements for scalable vectors.
3065     if (Src.getValueType().isScalableVector())
3066       break;
3067     uint64_t Idx = Op.getConstantOperandVal(1);
3068     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3069     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3070     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3071     break;
3072   }
3073   case ISD::SCALAR_TO_VECTOR: {
3074     // We know about scalar_to_vector as much as we know about it source,
3075     // which becomes the first element of otherwise unknown vector.
3076     if (DemandedElts != 1)
3077       break;
3078 
3079     SDValue N0 = Op.getOperand(0);
3080     Known = computeKnownBits(N0, Depth + 1);
3081     if (N0.getValueSizeInBits() != BitWidth)
3082       Known = Known.trunc(BitWidth);
3083 
3084     break;
3085   }
3086   case ISD::BITCAST: {
3087     SDValue N0 = Op.getOperand(0);
3088     EVT SubVT = N0.getValueType();
3089     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3090 
3091     // Ignore bitcasts from unsupported types.
3092     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3093       break;
3094 
3095     // Fast handling of 'identity' bitcasts.
3096     if (BitWidth == SubBitWidth) {
3097       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3098       break;
3099     }
3100 
3101     bool IsLE = getDataLayout().isLittleEndian();
3102 
3103     // Bitcast 'small element' vector to 'large element' scalar/vector.
3104     if ((BitWidth % SubBitWidth) == 0) {
3105       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3106 
3107       // Collect known bits for the (larger) output by collecting the known
3108       // bits from each set of sub elements and shift these into place.
3109       // We need to separately call computeKnownBits for each set of
3110       // sub elements as the knownbits for each is likely to be different.
3111       unsigned SubScale = BitWidth / SubBitWidth;
3112       APInt SubDemandedElts(NumElts * SubScale, 0);
3113       for (unsigned i = 0; i != NumElts; ++i)
3114         if (DemandedElts[i])
3115           SubDemandedElts.setBit(i * SubScale);
3116 
3117       for (unsigned i = 0; i != SubScale; ++i) {
3118         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3119                          Depth + 1);
3120         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3121         Known.insertBits(Known2, SubBitWidth * Shifts);
3122       }
3123     }
3124 
3125     // Bitcast 'large element' scalar/vector to 'small element' vector.
3126     if ((SubBitWidth % BitWidth) == 0) {
3127       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3128 
3129       // Collect known bits for the (smaller) output by collecting the known
3130       // bits from the overlapping larger input elements and extracting the
3131       // sub sections we actually care about.
3132       unsigned SubScale = SubBitWidth / BitWidth;
3133       APInt SubDemandedElts =
3134           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3135       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3136 
3137       Known.Zero.setAllBits(); Known.One.setAllBits();
3138       for (unsigned i = 0; i != NumElts; ++i)
3139         if (DemandedElts[i]) {
3140           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3141           unsigned Offset = (Shifts % SubScale) * BitWidth;
3142           Known = KnownBits::commonBits(Known,
3143                                         Known2.extractBits(BitWidth, Offset));
3144           // If we don't know any bits, early out.
3145           if (Known.isUnknown())
3146             break;
3147         }
3148     }
3149     break;
3150   }
3151   case ISD::AND:
3152     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3153     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3154 
3155     Known &= Known2;
3156     break;
3157   case ISD::OR:
3158     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3159     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3160 
3161     Known |= Known2;
3162     break;
3163   case ISD::XOR:
3164     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3165     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3166 
3167     Known ^= Known2;
3168     break;
3169   case ISD::MUL: {
3170     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3171     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3172     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3173     // TODO: SelfMultiply can be poison, but not undef.
3174     if (SelfMultiply)
3175       SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3176           Op.getOperand(0), DemandedElts, false, Depth + 1);
3177     Known = KnownBits::mul(Known, Known2, SelfMultiply);
3178     break;
3179   }
3180   case ISD::MULHU: {
3181     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3182     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3183     Known = KnownBits::mulhu(Known, Known2);
3184     break;
3185   }
3186   case ISD::MULHS: {
3187     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3188     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3189     Known = KnownBits::mulhs(Known, Known2);
3190     break;
3191   }
3192   case ISD::UMUL_LOHI: {
3193     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3194     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3195     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3196     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3197     if (Op.getResNo() == 0)
3198       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3199     else
3200       Known = KnownBits::mulhu(Known, Known2);
3201     break;
3202   }
3203   case ISD::SMUL_LOHI: {
3204     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3205     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3206     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3207     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3208     if (Op.getResNo() == 0)
3209       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3210     else
3211       Known = KnownBits::mulhs(Known, Known2);
3212     break;
3213   }
3214   case ISD::UDIV: {
3215     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3216     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3217     Known = KnownBits::udiv(Known, Known2);
3218     break;
3219   }
3220   case ISD::AVGCEILU: {
3221     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3222     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3223     Known = Known.zext(BitWidth + 1);
3224     Known2 = Known2.zext(BitWidth + 1);
3225     KnownBits One = KnownBits::makeConstant(APInt(1, 1));
3226     Known = KnownBits::computeForAddCarry(Known, Known2, One);
3227     Known = Known.extractBits(BitWidth, 1);
3228     break;
3229   }
3230   case ISD::SELECT:
3231   case ISD::VSELECT:
3232     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3233     // If we don't know any bits, early out.
3234     if (Known.isUnknown())
3235       break;
3236     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3237 
3238     // Only known if known in both the LHS and RHS.
3239     Known = KnownBits::commonBits(Known, Known2);
3240     break;
3241   case ISD::SELECT_CC:
3242     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3243     // If we don't know any bits, early out.
3244     if (Known.isUnknown())
3245       break;
3246     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3247 
3248     // Only known if known in both the LHS and RHS.
3249     Known = KnownBits::commonBits(Known, Known2);
3250     break;
3251   case ISD::SMULO:
3252   case ISD::UMULO:
3253     if (Op.getResNo() != 1)
3254       break;
3255     // The boolean result conforms to getBooleanContents.
3256     // If we know the result of a setcc has the top bits zero, use this info.
3257     // We know that we have an integer-based boolean since these operations
3258     // are only available for integer.
3259     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3260             TargetLowering::ZeroOrOneBooleanContent &&
3261         BitWidth > 1)
3262       Known.Zero.setBitsFrom(1);
3263     break;
3264   case ISD::SETCC:
3265   case ISD::STRICT_FSETCC:
3266   case ISD::STRICT_FSETCCS: {
3267     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3268     // If we know the result of a setcc has the top bits zero, use this info.
3269     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3270             TargetLowering::ZeroOrOneBooleanContent &&
3271         BitWidth > 1)
3272       Known.Zero.setBitsFrom(1);
3273     break;
3274   }
3275   case ISD::SHL:
3276     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3277     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3278     Known = KnownBits::shl(Known, Known2);
3279 
3280     // Minimum shift low bits are known zero.
3281     if (const APInt *ShMinAmt =
3282             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3283       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3284     break;
3285   case ISD::SRL:
3286     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3287     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3288     Known = KnownBits::lshr(Known, Known2);
3289 
3290     // Minimum shift high bits are known zero.
3291     if (const APInt *ShMinAmt =
3292             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3293       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3294     break;
3295   case ISD::SRA:
3296     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3297     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3298     Known = KnownBits::ashr(Known, Known2);
3299     // TODO: Add minimum shift high known sign bits.
3300     break;
3301   case ISD::FSHL:
3302   case ISD::FSHR:
3303     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3304       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3305 
3306       // For fshl, 0-shift returns the 1st arg.
3307       // For fshr, 0-shift returns the 2nd arg.
3308       if (Amt == 0) {
3309         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3310                                  DemandedElts, Depth + 1);
3311         break;
3312       }
3313 
3314       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3315       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3316       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3317       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3318       if (Opcode == ISD::FSHL) {
3319         Known.One <<= Amt;
3320         Known.Zero <<= Amt;
3321         Known2.One.lshrInPlace(BitWidth - Amt);
3322         Known2.Zero.lshrInPlace(BitWidth - Amt);
3323       } else {
3324         Known.One <<= BitWidth - Amt;
3325         Known.Zero <<= BitWidth - Amt;
3326         Known2.One.lshrInPlace(Amt);
3327         Known2.Zero.lshrInPlace(Amt);
3328       }
3329       Known.One |= Known2.One;
3330       Known.Zero |= Known2.Zero;
3331     }
3332     break;
3333   case ISD::SIGN_EXTEND_INREG: {
3334     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3335     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3336     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3337     break;
3338   }
3339   case ISD::CTTZ:
3340   case ISD::CTTZ_ZERO_UNDEF: {
3341     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3342     // If we have a known 1, its position is our upper bound.
3343     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3344     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3345     Known.Zero.setBitsFrom(LowBits);
3346     break;
3347   }
3348   case ISD::CTLZ:
3349   case ISD::CTLZ_ZERO_UNDEF: {
3350     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3351     // If we have a known 1, its position is our upper bound.
3352     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3353     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3354     Known.Zero.setBitsFrom(LowBits);
3355     break;
3356   }
3357   case ISD::CTPOP: {
3358     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3359     // If we know some of the bits are zero, they can't be one.
3360     unsigned PossibleOnes = Known2.countMaxPopulation();
3361     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3362     break;
3363   }
3364   case ISD::PARITY: {
3365     // Parity returns 0 everywhere but the LSB.
3366     Known.Zero.setBitsFrom(1);
3367     break;
3368   }
3369   case ISD::LOAD: {
3370     LoadSDNode *LD = cast<LoadSDNode>(Op);
3371     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3372     if (ISD::isNON_EXTLoad(LD) && Cst) {
3373       // Determine any common known bits from the loaded constant pool value.
3374       Type *CstTy = Cst->getType();
3375       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3376         // If its a vector splat, then we can (quickly) reuse the scalar path.
3377         // NOTE: We assume all elements match and none are UNDEF.
3378         if (CstTy->isVectorTy()) {
3379           if (const Constant *Splat = Cst->getSplatValue()) {
3380             Cst = Splat;
3381             CstTy = Cst->getType();
3382           }
3383         }
3384         // TODO - do we need to handle different bitwidths?
3385         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3386           // Iterate across all vector elements finding common known bits.
3387           Known.One.setAllBits();
3388           Known.Zero.setAllBits();
3389           for (unsigned i = 0; i != NumElts; ++i) {
3390             if (!DemandedElts[i])
3391               continue;
3392             if (Constant *Elt = Cst->getAggregateElement(i)) {
3393               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3394                 const APInt &Value = CInt->getValue();
3395                 Known.One &= Value;
3396                 Known.Zero &= ~Value;
3397                 continue;
3398               }
3399               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3400                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3401                 Known.One &= Value;
3402                 Known.Zero &= ~Value;
3403                 continue;
3404               }
3405             }
3406             Known.One.clearAllBits();
3407             Known.Zero.clearAllBits();
3408             break;
3409           }
3410         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3411           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3412             Known = KnownBits::makeConstant(CInt->getValue());
3413           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3414             Known =
3415                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3416           }
3417         }
3418       }
3419     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3420       // If this is a ZEXTLoad and we are looking at the loaded value.
3421       EVT VT = LD->getMemoryVT();
3422       unsigned MemBits = VT.getScalarSizeInBits();
3423       Known.Zero.setBitsFrom(MemBits);
3424     } else if (const MDNode *Ranges = LD->getRanges()) {
3425       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3426         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3427     }
3428     break;
3429   }
3430   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3431     EVT InVT = Op.getOperand(0).getValueType();
3432     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3433     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3434     Known = Known.zext(BitWidth);
3435     break;
3436   }
3437   case ISD::ZERO_EXTEND: {
3438     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3439     Known = Known.zext(BitWidth);
3440     break;
3441   }
3442   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3443     EVT InVT = Op.getOperand(0).getValueType();
3444     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3445     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3446     // If the sign bit is known to be zero or one, then sext will extend
3447     // it to the top bits, else it will just zext.
3448     Known = Known.sext(BitWidth);
3449     break;
3450   }
3451   case ISD::SIGN_EXTEND: {
3452     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3453     // If the sign bit is known to be zero or one, then sext will extend
3454     // it to the top bits, else it will just zext.
3455     Known = Known.sext(BitWidth);
3456     break;
3457   }
3458   case ISD::ANY_EXTEND_VECTOR_INREG: {
3459     EVT InVT = Op.getOperand(0).getValueType();
3460     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3461     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3462     Known = Known.anyext(BitWidth);
3463     break;
3464   }
3465   case ISD::ANY_EXTEND: {
3466     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3467     Known = Known.anyext(BitWidth);
3468     break;
3469   }
3470   case ISD::TRUNCATE: {
3471     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3472     Known = Known.trunc(BitWidth);
3473     break;
3474   }
3475   case ISD::AssertZext: {
3476     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3477     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3478     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3479     Known.Zero |= (~InMask);
3480     Known.One  &= (~Known.Zero);
3481     break;
3482   }
3483   case ISD::AssertAlign: {
3484     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3485     assert(LogOfAlign != 0);
3486 
3487     // TODO: Should use maximum with source
3488     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3489     // well as clearing one bits.
3490     Known.Zero.setLowBits(LogOfAlign);
3491     Known.One.clearLowBits(LogOfAlign);
3492     break;
3493   }
3494   case ISD::FGETSIGN:
3495     // All bits are zero except the low bit.
3496     Known.Zero.setBitsFrom(1);
3497     break;
3498   case ISD::USUBO:
3499   case ISD::SSUBO:
3500     if (Op.getResNo() == 1) {
3501       // If we know the result of a setcc has the top bits zero, use this info.
3502       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3503               TargetLowering::ZeroOrOneBooleanContent &&
3504           BitWidth > 1)
3505         Known.Zero.setBitsFrom(1);
3506       break;
3507     }
3508     LLVM_FALLTHROUGH;
3509   case ISD::SUB:
3510   case ISD::SUBC: {
3511     assert(Op.getResNo() == 0 &&
3512            "We only compute knownbits for the difference here.");
3513 
3514     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3515     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3516     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3517                                         Known, Known2);
3518     break;
3519   }
3520   case ISD::UADDO:
3521   case ISD::SADDO:
3522   case ISD::ADDCARRY:
3523     if (Op.getResNo() == 1) {
3524       // If we know the result of a setcc has the top bits zero, use this info.
3525       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3526               TargetLowering::ZeroOrOneBooleanContent &&
3527           BitWidth > 1)
3528         Known.Zero.setBitsFrom(1);
3529       break;
3530     }
3531     LLVM_FALLTHROUGH;
3532   case ISD::ADD:
3533   case ISD::ADDC:
3534   case ISD::ADDE: {
3535     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3536 
3537     // With ADDE and ADDCARRY, a carry bit may be added in.
3538     KnownBits Carry(1);
3539     if (Opcode == ISD::ADDE)
3540       // Can't track carry from glue, set carry to unknown.
3541       Carry.resetAll();
3542     else if (Opcode == ISD::ADDCARRY)
3543       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3544       // the trouble (how often will we find a known carry bit). And I haven't
3545       // tested this very much yet, but something like this might work:
3546       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3547       //   Carry = Carry.zextOrTrunc(1, false);
3548       Carry.resetAll();
3549     else
3550       Carry.setAllZero();
3551 
3552     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3553     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3554     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3555     break;
3556   }
3557   case ISD::SREM: {
3558     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3559     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3560     Known = KnownBits::srem(Known, Known2);
3561     break;
3562   }
3563   case ISD::UREM: {
3564     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3565     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3566     Known = KnownBits::urem(Known, Known2);
3567     break;
3568   }
3569   case ISD::EXTRACT_ELEMENT: {
3570     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3571     const unsigned Index = Op.getConstantOperandVal(1);
3572     const unsigned EltBitWidth = Op.getValueSizeInBits();
3573 
3574     // Remove low part of known bits mask
3575     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3576     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3577 
3578     // Remove high part of known bit mask
3579     Known = Known.trunc(EltBitWidth);
3580     break;
3581   }
3582   case ISD::EXTRACT_VECTOR_ELT: {
3583     SDValue InVec = Op.getOperand(0);
3584     SDValue EltNo = Op.getOperand(1);
3585     EVT VecVT = InVec.getValueType();
3586     // computeKnownBits not yet implemented for scalable vectors.
3587     if (VecVT.isScalableVector())
3588       break;
3589     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3590     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3591 
3592     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3593     // anything about the extended bits.
3594     if (BitWidth > EltBitWidth)
3595       Known = Known.trunc(EltBitWidth);
3596 
3597     // If we know the element index, just demand that vector element, else for
3598     // an unknown element index, ignore DemandedElts and demand them all.
3599     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3600     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3601     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3602       DemandedSrcElts =
3603           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3604 
3605     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3606     if (BitWidth > EltBitWidth)
3607       Known = Known.anyext(BitWidth);
3608     break;
3609   }
3610   case ISD::INSERT_VECTOR_ELT: {
3611     // If we know the element index, split the demand between the
3612     // source vector and the inserted element, otherwise assume we need
3613     // the original demanded vector elements and the value.
3614     SDValue InVec = Op.getOperand(0);
3615     SDValue InVal = Op.getOperand(1);
3616     SDValue EltNo = Op.getOperand(2);
3617     bool DemandedVal = true;
3618     APInt DemandedVecElts = DemandedElts;
3619     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3620     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3621       unsigned EltIdx = CEltNo->getZExtValue();
3622       DemandedVal = !!DemandedElts[EltIdx];
3623       DemandedVecElts.clearBit(EltIdx);
3624     }
3625     Known.One.setAllBits();
3626     Known.Zero.setAllBits();
3627     if (DemandedVal) {
3628       Known2 = computeKnownBits(InVal, Depth + 1);
3629       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3630     }
3631     if (!!DemandedVecElts) {
3632       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3633       Known = KnownBits::commonBits(Known, Known2);
3634     }
3635     break;
3636   }
3637   case ISD::BITREVERSE: {
3638     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3639     Known = Known2.reverseBits();
3640     break;
3641   }
3642   case ISD::BSWAP: {
3643     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3644     Known = Known2.byteSwap();
3645     break;
3646   }
3647   case ISD::ABS: {
3648     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3649     Known = Known2.abs();
3650     break;
3651   }
3652   case ISD::USUBSAT: {
3653     // The result of usubsat will never be larger than the LHS.
3654     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3655     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3656     break;
3657   }
3658   case ISD::UMIN: {
3659     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3660     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3661     Known = KnownBits::umin(Known, Known2);
3662     break;
3663   }
3664   case ISD::UMAX: {
3665     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3666     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3667     Known = KnownBits::umax(Known, Known2);
3668     break;
3669   }
3670   case ISD::SMIN:
3671   case ISD::SMAX: {
3672     // If we have a clamp pattern, we know that the number of sign bits will be
3673     // the minimum of the clamp min/max range.
3674     bool IsMax = (Opcode == ISD::SMAX);
3675     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3676     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3677       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3678         CstHigh =
3679             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3680     if (CstLow && CstHigh) {
3681       if (!IsMax)
3682         std::swap(CstLow, CstHigh);
3683 
3684       const APInt &ValueLow = CstLow->getAPIntValue();
3685       const APInt &ValueHigh = CstHigh->getAPIntValue();
3686       if (ValueLow.sle(ValueHigh)) {
3687         unsigned LowSignBits = ValueLow.getNumSignBits();
3688         unsigned HighSignBits = ValueHigh.getNumSignBits();
3689         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3690         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3691           Known.One.setHighBits(MinSignBits);
3692           break;
3693         }
3694         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3695           Known.Zero.setHighBits(MinSignBits);
3696           break;
3697         }
3698       }
3699     }
3700 
3701     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3702     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3703     if (IsMax)
3704       Known = KnownBits::smax(Known, Known2);
3705     else
3706       Known = KnownBits::smin(Known, Known2);
3707     break;
3708   }
3709   case ISD::FP_TO_UINT_SAT: {
3710     // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
3711     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3712     Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
3713     break;
3714   }
3715   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3716     if (Op.getResNo() == 1) {
3717       // The boolean result conforms to getBooleanContents.
3718       // If we know the result of a setcc has the top bits zero, use this info.
3719       // We know that we have an integer-based boolean since these operations
3720       // are only available for integer.
3721       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3722               TargetLowering::ZeroOrOneBooleanContent &&
3723           BitWidth > 1)
3724         Known.Zero.setBitsFrom(1);
3725       break;
3726     }
3727     LLVM_FALLTHROUGH;
3728   case ISD::ATOMIC_CMP_SWAP:
3729   case ISD::ATOMIC_SWAP:
3730   case ISD::ATOMIC_LOAD_ADD:
3731   case ISD::ATOMIC_LOAD_SUB:
3732   case ISD::ATOMIC_LOAD_AND:
3733   case ISD::ATOMIC_LOAD_CLR:
3734   case ISD::ATOMIC_LOAD_OR:
3735   case ISD::ATOMIC_LOAD_XOR:
3736   case ISD::ATOMIC_LOAD_NAND:
3737   case ISD::ATOMIC_LOAD_MIN:
3738   case ISD::ATOMIC_LOAD_MAX:
3739   case ISD::ATOMIC_LOAD_UMIN:
3740   case ISD::ATOMIC_LOAD_UMAX:
3741   case ISD::ATOMIC_LOAD: {
3742     unsigned MemBits =
3743         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3744     // If we are looking at the loaded value.
3745     if (Op.getResNo() == 0) {
3746       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3747         Known.Zero.setBitsFrom(MemBits);
3748     }
3749     break;
3750   }
3751   case ISD::FrameIndex:
3752   case ISD::TargetFrameIndex:
3753     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3754                                        Known, getMachineFunction());
3755     break;
3756 
3757   default:
3758     if (Opcode < ISD::BUILTIN_OP_END)
3759       break;
3760     LLVM_FALLTHROUGH;
3761   case ISD::INTRINSIC_WO_CHAIN:
3762   case ISD::INTRINSIC_W_CHAIN:
3763   case ISD::INTRINSIC_VOID:
3764     // Allow the target to implement this method for its nodes.
3765     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3766     break;
3767   }
3768 
3769   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3770   return Known;
3771 }
3772 
3773 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3774                                                              SDValue N1) const {
3775   // X + 0 never overflow
3776   if (isNullConstant(N1))
3777     return OFK_Never;
3778 
3779   KnownBits N1Known = computeKnownBits(N1);
3780   if (N1Known.Zero.getBoolValue()) {
3781     KnownBits N0Known = computeKnownBits(N0);
3782 
3783     bool overflow;
3784     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3785     if (!overflow)
3786       return OFK_Never;
3787   }
3788 
3789   // mulhi + 1 never overflow
3790   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3791       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3792     return OFK_Never;
3793 
3794   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3795     KnownBits N0Known = computeKnownBits(N0);
3796 
3797     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3798       return OFK_Never;
3799   }
3800 
3801   return OFK_Sometime;
3802 }
3803 
3804 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3805   EVT OpVT = Val.getValueType();
3806   unsigned BitWidth = OpVT.getScalarSizeInBits();
3807 
3808   // Is the constant a known power of 2?
3809   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3810     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3811 
3812   // A left-shift of a constant one will have exactly one bit set because
3813   // shifting the bit off the end is undefined.
3814   if (Val.getOpcode() == ISD::SHL) {
3815     auto *C = isConstOrConstSplat(Val.getOperand(0));
3816     if (C && C->getAPIntValue() == 1)
3817       return true;
3818   }
3819 
3820   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3821   // one bit set.
3822   if (Val.getOpcode() == ISD::SRL) {
3823     auto *C = isConstOrConstSplat(Val.getOperand(0));
3824     if (C && C->getAPIntValue().isSignMask())
3825       return true;
3826   }
3827 
3828   // Are all operands of a build vector constant powers of two?
3829   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3830     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3831           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3832             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3833           return false;
3834         }))
3835       return true;
3836 
3837   // Is the operand of a splat vector a constant power of two?
3838   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3839     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3840       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3841         return true;
3842 
3843   // More could be done here, though the above checks are enough
3844   // to handle some common cases.
3845 
3846   // Fall back to computeKnownBits to catch other known cases.
3847   KnownBits Known = computeKnownBits(Val);
3848   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3849 }
3850 
3851 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3852   EVT VT = Op.getValueType();
3853 
3854   // TODO: Assume we don't know anything for now.
3855   if (VT.isScalableVector())
3856     return 1;
3857 
3858   APInt DemandedElts = VT.isVector()
3859                            ? APInt::getAllOnes(VT.getVectorNumElements())
3860                            : APInt(1, 1);
3861   return ComputeNumSignBits(Op, DemandedElts, Depth);
3862 }
3863 
3864 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3865                                           unsigned Depth) const {
3866   EVT VT = Op.getValueType();
3867   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3868   unsigned VTBits = VT.getScalarSizeInBits();
3869   unsigned NumElts = DemandedElts.getBitWidth();
3870   unsigned Tmp, Tmp2;
3871   unsigned FirstAnswer = 1;
3872 
3873   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3874     const APInt &Val = C->getAPIntValue();
3875     return Val.getNumSignBits();
3876   }
3877 
3878   if (Depth >= MaxRecursionDepth)
3879     return 1;  // Limit search depth.
3880 
3881   if (!DemandedElts || VT.isScalableVector())
3882     return 1;  // No demanded elts, better to assume we don't know anything.
3883 
3884   unsigned Opcode = Op.getOpcode();
3885   switch (Opcode) {
3886   default: break;
3887   case ISD::AssertSext:
3888     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3889     return VTBits-Tmp+1;
3890   case ISD::AssertZext:
3891     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3892     return VTBits-Tmp;
3893 
3894   case ISD::BUILD_VECTOR:
3895     Tmp = VTBits;
3896     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3897       if (!DemandedElts[i])
3898         continue;
3899 
3900       SDValue SrcOp = Op.getOperand(i);
3901       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3902 
3903       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3904       if (SrcOp.getValueSizeInBits() != VTBits) {
3905         assert(SrcOp.getValueSizeInBits() > VTBits &&
3906                "Expected BUILD_VECTOR implicit truncation");
3907         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3908         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3909       }
3910       Tmp = std::min(Tmp, Tmp2);
3911     }
3912     return Tmp;
3913 
3914   case ISD::VECTOR_SHUFFLE: {
3915     // Collect the minimum number of sign bits that are shared by every vector
3916     // element referenced by the shuffle.
3917     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3918     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3919     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3920     for (unsigned i = 0; i != NumElts; ++i) {
3921       int M = SVN->getMaskElt(i);
3922       if (!DemandedElts[i])
3923         continue;
3924       // For UNDEF elements, we don't know anything about the common state of
3925       // the shuffle result.
3926       if (M < 0)
3927         return 1;
3928       if ((unsigned)M < NumElts)
3929         DemandedLHS.setBit((unsigned)M % NumElts);
3930       else
3931         DemandedRHS.setBit((unsigned)M % NumElts);
3932     }
3933     Tmp = std::numeric_limits<unsigned>::max();
3934     if (!!DemandedLHS)
3935       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3936     if (!!DemandedRHS) {
3937       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3938       Tmp = std::min(Tmp, Tmp2);
3939     }
3940     // If we don't know anything, early out and try computeKnownBits fall-back.
3941     if (Tmp == 1)
3942       break;
3943     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3944     return Tmp;
3945   }
3946 
3947   case ISD::BITCAST: {
3948     SDValue N0 = Op.getOperand(0);
3949     EVT SrcVT = N0.getValueType();
3950     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3951 
3952     // Ignore bitcasts from unsupported types..
3953     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3954       break;
3955 
3956     // Fast handling of 'identity' bitcasts.
3957     if (VTBits == SrcBits)
3958       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3959 
3960     bool IsLE = getDataLayout().isLittleEndian();
3961 
3962     // Bitcast 'large element' scalar/vector to 'small element' vector.
3963     if ((SrcBits % VTBits) == 0) {
3964       assert(VT.isVector() && "Expected bitcast to vector");
3965 
3966       unsigned Scale = SrcBits / VTBits;
3967       APInt SrcDemandedElts =
3968           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
3969 
3970       // Fast case - sign splat can be simply split across the small elements.
3971       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3972       if (Tmp == SrcBits)
3973         return VTBits;
3974 
3975       // Slow case - determine how far the sign extends into each sub-element.
3976       Tmp2 = VTBits;
3977       for (unsigned i = 0; i != NumElts; ++i)
3978         if (DemandedElts[i]) {
3979           unsigned SubOffset = i % Scale;
3980           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3981           SubOffset = SubOffset * VTBits;
3982           if (Tmp <= SubOffset)
3983             return 1;
3984           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3985         }
3986       return Tmp2;
3987     }
3988     break;
3989   }
3990 
3991   case ISD::FP_TO_SINT_SAT:
3992     // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
3993     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3994     return VTBits - Tmp + 1;
3995   case ISD::SIGN_EXTEND:
3996     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3997     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3998   case ISD::SIGN_EXTEND_INREG:
3999     // Max of the input and what this extends.
4000     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4001     Tmp = VTBits-Tmp+1;
4002     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4003     return std::max(Tmp, Tmp2);
4004   case ISD::SIGN_EXTEND_VECTOR_INREG: {
4005     SDValue Src = Op.getOperand(0);
4006     EVT SrcVT = Src.getValueType();
4007     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
4008     Tmp = VTBits - SrcVT.getScalarSizeInBits();
4009     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4010   }
4011   case ISD::SRA:
4012     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4013     // SRA X, C -> adds C sign bits.
4014     if (const APInt *ShAmt =
4015             getValidMinimumShiftAmountConstant(Op, DemandedElts))
4016       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
4017     return Tmp;
4018   case ISD::SHL:
4019     if (const APInt *ShAmt =
4020             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
4021       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4022       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4023       if (ShAmt->ult(Tmp))
4024         return Tmp - ShAmt->getZExtValue();
4025     }
4026     break;
4027   case ISD::AND:
4028   case ISD::OR:
4029   case ISD::XOR:    // NOT is handled here.
4030     // Logical binary ops preserve the number of sign bits at the worst.
4031     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4032     if (Tmp != 1) {
4033       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4034       FirstAnswer = std::min(Tmp, Tmp2);
4035       // We computed what we know about the sign bits as our first
4036       // answer. Now proceed to the generic code that uses
4037       // computeKnownBits, and pick whichever answer is better.
4038     }
4039     break;
4040 
4041   case ISD::SELECT:
4042   case ISD::VSELECT:
4043     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4044     if (Tmp == 1) return 1;  // Early out.
4045     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4046     return std::min(Tmp, Tmp2);
4047   case ISD::SELECT_CC:
4048     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4049     if (Tmp == 1) return 1;  // Early out.
4050     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4051     return std::min(Tmp, Tmp2);
4052 
4053   case ISD::SMIN:
4054   case ISD::SMAX: {
4055     // If we have a clamp pattern, we know that the number of sign bits will be
4056     // the minimum of the clamp min/max range.
4057     bool IsMax = (Opcode == ISD::SMAX);
4058     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4059     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4060       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4061         CstHigh =
4062             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4063     if (CstLow && CstHigh) {
4064       if (!IsMax)
4065         std::swap(CstLow, CstHigh);
4066       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4067         Tmp = CstLow->getAPIntValue().getNumSignBits();
4068         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4069         return std::min(Tmp, Tmp2);
4070       }
4071     }
4072 
4073     // Fallback - just get the minimum number of sign bits of the operands.
4074     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4075     if (Tmp == 1)
4076       return 1;  // Early out.
4077     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4078     return std::min(Tmp, Tmp2);
4079   }
4080   case ISD::UMIN:
4081   case ISD::UMAX:
4082     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4083     if (Tmp == 1)
4084       return 1;  // Early out.
4085     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4086     return std::min(Tmp, Tmp2);
4087   case ISD::SADDO:
4088   case ISD::UADDO:
4089   case ISD::SSUBO:
4090   case ISD::USUBO:
4091   case ISD::SMULO:
4092   case ISD::UMULO:
4093     if (Op.getResNo() != 1)
4094       break;
4095     // The boolean result conforms to getBooleanContents.  Fall through.
4096     // If setcc returns 0/-1, all bits are sign bits.
4097     // We know that we have an integer-based boolean since these operations
4098     // are only available for integer.
4099     if (TLI->getBooleanContents(VT.isVector(), false) ==
4100         TargetLowering::ZeroOrNegativeOneBooleanContent)
4101       return VTBits;
4102     break;
4103   case ISD::SETCC:
4104   case ISD::STRICT_FSETCC:
4105   case ISD::STRICT_FSETCCS: {
4106     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
4107     // If setcc returns 0/-1, all bits are sign bits.
4108     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
4109         TargetLowering::ZeroOrNegativeOneBooleanContent)
4110       return VTBits;
4111     break;
4112   }
4113   case ISD::ROTL:
4114   case ISD::ROTR:
4115     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4116 
4117     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
4118     if (Tmp == VTBits)
4119       return VTBits;
4120 
4121     if (ConstantSDNode *C =
4122             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
4123       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
4124 
4125       // Handle rotate right by N like a rotate left by 32-N.
4126       if (Opcode == ISD::ROTR)
4127         RotAmt = (VTBits - RotAmt) % VTBits;
4128 
4129       // If we aren't rotating out all of the known-in sign bits, return the
4130       // number that are left.  This handles rotl(sext(x), 1) for example.
4131       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
4132     }
4133     break;
4134   case ISD::ADD:
4135   case ISD::ADDC:
4136     // Add can have at most one carry bit.  Thus we know that the output
4137     // is, at worst, one more bit than the inputs.
4138     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4139     if (Tmp == 1) return 1; // Early out.
4140 
4141     // Special case decrementing a value (ADD X, -1):
4142     if (ConstantSDNode *CRHS =
4143             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
4144       if (CRHS->isAllOnes()) {
4145         KnownBits Known =
4146             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4147 
4148         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4149         // sign bits set.
4150         if ((Known.Zero | 1).isAllOnes())
4151           return VTBits;
4152 
4153         // If we are subtracting one from a positive number, there is no carry
4154         // out of the result.
4155         if (Known.isNonNegative())
4156           return Tmp;
4157       }
4158 
4159     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4160     if (Tmp2 == 1) return 1; // Early out.
4161     return std::min(Tmp, Tmp2) - 1;
4162   case ISD::SUB:
4163     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4164     if (Tmp2 == 1) return 1; // Early out.
4165 
4166     // Handle NEG.
4167     if (ConstantSDNode *CLHS =
4168             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4169       if (CLHS->isZero()) {
4170         KnownBits Known =
4171             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4172         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4173         // sign bits set.
4174         if ((Known.Zero | 1).isAllOnes())
4175           return VTBits;
4176 
4177         // If the input is known to be positive (the sign bit is known clear),
4178         // the output of the NEG has the same number of sign bits as the input.
4179         if (Known.isNonNegative())
4180           return Tmp2;
4181 
4182         // Otherwise, we treat this like a SUB.
4183       }
4184 
4185     // Sub can have at most one carry bit.  Thus we know that the output
4186     // is, at worst, one more bit than the inputs.
4187     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4188     if (Tmp == 1) return 1; // Early out.
4189     return std::min(Tmp, Tmp2) - 1;
4190   case ISD::MUL: {
4191     // The output of the Mul can be at most twice the valid bits in the inputs.
4192     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4193     if (SignBitsOp0 == 1)
4194       break;
4195     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4196     if (SignBitsOp1 == 1)
4197       break;
4198     unsigned OutValidBits =
4199         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4200     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4201   }
4202   case ISD::SREM:
4203     // The sign bit is the LHS's sign bit, except when the result of the
4204     // remainder is zero. The magnitude of the result should be less than or
4205     // equal to the magnitude of the LHS. Therefore, the result should have
4206     // at least as many sign bits as the left hand side.
4207     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4208   case ISD::TRUNCATE: {
4209     // Check if the sign bits of source go down as far as the truncated value.
4210     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4211     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4212     if (NumSrcSignBits > (NumSrcBits - VTBits))
4213       return NumSrcSignBits - (NumSrcBits - VTBits);
4214     break;
4215   }
4216   case ISD::EXTRACT_ELEMENT: {
4217     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4218     const int BitWidth = Op.getValueSizeInBits();
4219     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4220 
4221     // Get reverse index (starting from 1), Op1 value indexes elements from
4222     // little end. Sign starts at big end.
4223     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4224 
4225     // If the sign portion ends in our element the subtraction gives correct
4226     // result. Otherwise it gives either negative or > bitwidth result
4227     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4228   }
4229   case ISD::INSERT_VECTOR_ELT: {
4230     // If we know the element index, split the demand between the
4231     // source vector and the inserted element, otherwise assume we need
4232     // the original demanded vector elements and the value.
4233     SDValue InVec = Op.getOperand(0);
4234     SDValue InVal = Op.getOperand(1);
4235     SDValue EltNo = Op.getOperand(2);
4236     bool DemandedVal = true;
4237     APInt DemandedVecElts = DemandedElts;
4238     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4239     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4240       unsigned EltIdx = CEltNo->getZExtValue();
4241       DemandedVal = !!DemandedElts[EltIdx];
4242       DemandedVecElts.clearBit(EltIdx);
4243     }
4244     Tmp = std::numeric_limits<unsigned>::max();
4245     if (DemandedVal) {
4246       // TODO - handle implicit truncation of inserted elements.
4247       if (InVal.getScalarValueSizeInBits() != VTBits)
4248         break;
4249       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4250       Tmp = std::min(Tmp, Tmp2);
4251     }
4252     if (!!DemandedVecElts) {
4253       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4254       Tmp = std::min(Tmp, Tmp2);
4255     }
4256     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4257     return Tmp;
4258   }
4259   case ISD::EXTRACT_VECTOR_ELT: {
4260     SDValue InVec = Op.getOperand(0);
4261     SDValue EltNo = Op.getOperand(1);
4262     EVT VecVT = InVec.getValueType();
4263     // ComputeNumSignBits not yet implemented for scalable vectors.
4264     if (VecVT.isScalableVector())
4265       break;
4266     const unsigned BitWidth = Op.getValueSizeInBits();
4267     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4268     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4269 
4270     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4271     // anything about sign bits. But if the sizes match we can derive knowledge
4272     // about sign bits from the vector operand.
4273     if (BitWidth != EltBitWidth)
4274       break;
4275 
4276     // If we know the element index, just demand that vector element, else for
4277     // an unknown element index, ignore DemandedElts and demand them all.
4278     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4279     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4280     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4281       DemandedSrcElts =
4282           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4283 
4284     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4285   }
4286   case ISD::EXTRACT_SUBVECTOR: {
4287     // Offset the demanded elts by the subvector index.
4288     SDValue Src = Op.getOperand(0);
4289     // Bail until we can represent demanded elements for scalable vectors.
4290     if (Src.getValueType().isScalableVector())
4291       break;
4292     uint64_t Idx = Op.getConstantOperandVal(1);
4293     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4294     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4295     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4296   }
4297   case ISD::CONCAT_VECTORS: {
4298     // Determine the minimum number of sign bits across all demanded
4299     // elts of the input vectors. Early out if the result is already 1.
4300     Tmp = std::numeric_limits<unsigned>::max();
4301     EVT SubVectorVT = Op.getOperand(0).getValueType();
4302     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4303     unsigned NumSubVectors = Op.getNumOperands();
4304     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4305       APInt DemandedSub =
4306           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4307       if (!DemandedSub)
4308         continue;
4309       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4310       Tmp = std::min(Tmp, Tmp2);
4311     }
4312     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4313     return Tmp;
4314   }
4315   case ISD::INSERT_SUBVECTOR: {
4316     // Demand any elements from the subvector and the remainder from the src its
4317     // inserted into.
4318     SDValue Src = Op.getOperand(0);
4319     SDValue Sub = Op.getOperand(1);
4320     uint64_t Idx = Op.getConstantOperandVal(2);
4321     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4322     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4323     APInt DemandedSrcElts = DemandedElts;
4324     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4325 
4326     Tmp = std::numeric_limits<unsigned>::max();
4327     if (!!DemandedSubElts) {
4328       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4329       if (Tmp == 1)
4330         return 1; // early-out
4331     }
4332     if (!!DemandedSrcElts) {
4333       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4334       Tmp = std::min(Tmp, Tmp2);
4335     }
4336     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4337     return Tmp;
4338   }
4339   case ISD::ATOMIC_CMP_SWAP:
4340   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4341   case ISD::ATOMIC_SWAP:
4342   case ISD::ATOMIC_LOAD_ADD:
4343   case ISD::ATOMIC_LOAD_SUB:
4344   case ISD::ATOMIC_LOAD_AND:
4345   case ISD::ATOMIC_LOAD_CLR:
4346   case ISD::ATOMIC_LOAD_OR:
4347   case ISD::ATOMIC_LOAD_XOR:
4348   case ISD::ATOMIC_LOAD_NAND:
4349   case ISD::ATOMIC_LOAD_MIN:
4350   case ISD::ATOMIC_LOAD_MAX:
4351   case ISD::ATOMIC_LOAD_UMIN:
4352   case ISD::ATOMIC_LOAD_UMAX:
4353   case ISD::ATOMIC_LOAD: {
4354     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4355     // If we are looking at the loaded value.
4356     if (Op.getResNo() == 0) {
4357       if (Tmp == VTBits)
4358         return 1; // early-out
4359       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4360         return VTBits - Tmp + 1;
4361       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4362         return VTBits - Tmp;
4363     }
4364     break;
4365   }
4366   }
4367 
4368   // If we are looking at the loaded value of the SDNode.
4369   if (Op.getResNo() == 0) {
4370     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4371     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4372       unsigned ExtType = LD->getExtensionType();
4373       switch (ExtType) {
4374       default: break;
4375       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4376         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4377         return VTBits - Tmp + 1;
4378       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4379         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4380         return VTBits - Tmp;
4381       case ISD::NON_EXTLOAD:
4382         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4383           // We only need to handle vectors - computeKnownBits should handle
4384           // scalar cases.
4385           Type *CstTy = Cst->getType();
4386           if (CstTy->isVectorTy() &&
4387               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
4388               VTBits == CstTy->getScalarSizeInBits()) {
4389             Tmp = VTBits;
4390             for (unsigned i = 0; i != NumElts; ++i) {
4391               if (!DemandedElts[i])
4392                 continue;
4393               if (Constant *Elt = Cst->getAggregateElement(i)) {
4394                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4395                   const APInt &Value = CInt->getValue();
4396                   Tmp = std::min(Tmp, Value.getNumSignBits());
4397                   continue;
4398                 }
4399                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4400                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4401                   Tmp = std::min(Tmp, Value.getNumSignBits());
4402                   continue;
4403                 }
4404               }
4405               // Unknown type. Conservatively assume no bits match sign bit.
4406               return 1;
4407             }
4408             return Tmp;
4409           }
4410         }
4411         break;
4412       }
4413     }
4414   }
4415 
4416   // Allow the target to implement this method for its nodes.
4417   if (Opcode >= ISD::BUILTIN_OP_END ||
4418       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4419       Opcode == ISD::INTRINSIC_W_CHAIN ||
4420       Opcode == ISD::INTRINSIC_VOID) {
4421     unsigned NumBits =
4422         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4423     if (NumBits > 1)
4424       FirstAnswer = std::max(FirstAnswer, NumBits);
4425   }
4426 
4427   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4428   // use this information.
4429   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4430   return std::max(FirstAnswer, Known.countMinSignBits());
4431 }
4432 
4433 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4434                                                  unsigned Depth) const {
4435   unsigned SignBits = ComputeNumSignBits(Op, Depth);
4436   return Op.getScalarValueSizeInBits() - SignBits + 1;
4437 }
4438 
4439 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4440                                                  const APInt &DemandedElts,
4441                                                  unsigned Depth) const {
4442   unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
4443   return Op.getScalarValueSizeInBits() - SignBits + 1;
4444 }
4445 
4446 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4447                                                     unsigned Depth) const {
4448   // Early out for FREEZE.
4449   if (Op.getOpcode() == ISD::FREEZE)
4450     return true;
4451 
4452   // TODO: Assume we don't know anything for now.
4453   EVT VT = Op.getValueType();
4454   if (VT.isScalableVector())
4455     return false;
4456 
4457   APInt DemandedElts = VT.isVector()
4458                            ? APInt::getAllOnes(VT.getVectorNumElements())
4459                            : APInt(1, 1);
4460   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4461 }
4462 
4463 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4464                                                     const APInt &DemandedElts,
4465                                                     bool PoisonOnly,
4466                                                     unsigned Depth) const {
4467   unsigned Opcode = Op.getOpcode();
4468 
4469   // Early out for FREEZE.
4470   if (Opcode == ISD::FREEZE)
4471     return true;
4472 
4473   if (Depth >= MaxRecursionDepth)
4474     return false; // Limit search depth.
4475 
4476   if (isIntOrFPConstant(Op))
4477     return true;
4478 
4479   switch (Opcode) {
4480   case ISD::UNDEF:
4481     return PoisonOnly;
4482 
4483   case ISD::BUILD_VECTOR:
4484     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4485     // this shouldn't affect the result.
4486     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4487       if (!DemandedElts[i])
4488         continue;
4489       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4490                                             Depth + 1))
4491         return false;
4492     }
4493     return true;
4494 
4495   // TODO: Search for noundef attributes from library functions.
4496 
4497   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4498 
4499   default:
4500     // Allow the target to implement this method for its nodes.
4501     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4502         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4503       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4504           Op, DemandedElts, *this, PoisonOnly, Depth);
4505     break;
4506   }
4507 
4508   return false;
4509 }
4510 
4511 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4512   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4513       !isa<ConstantSDNode>(Op.getOperand(1)))
4514     return false;
4515 
4516   if (Op.getOpcode() == ISD::OR &&
4517       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4518     return false;
4519 
4520   return true;
4521 }
4522 
4523 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4524   // If we're told that NaNs won't happen, assume they won't.
4525   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4526     return true;
4527 
4528   if (Depth >= MaxRecursionDepth)
4529     return false; // Limit search depth.
4530 
4531   // TODO: Handle vectors.
4532   // If the value is a constant, we can obviously see if it is a NaN or not.
4533   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4534     return !C->getValueAPF().isNaN() ||
4535            (SNaN && !C->getValueAPF().isSignaling());
4536   }
4537 
4538   unsigned Opcode = Op.getOpcode();
4539   switch (Opcode) {
4540   case ISD::FADD:
4541   case ISD::FSUB:
4542   case ISD::FMUL:
4543   case ISD::FDIV:
4544   case ISD::FREM:
4545   case ISD::FSIN:
4546   case ISD::FCOS: {
4547     if (SNaN)
4548       return true;
4549     // TODO: Need isKnownNeverInfinity
4550     return false;
4551   }
4552   case ISD::FCANONICALIZE:
4553   case ISD::FEXP:
4554   case ISD::FEXP2:
4555   case ISD::FTRUNC:
4556   case ISD::FFLOOR:
4557   case ISD::FCEIL:
4558   case ISD::FROUND:
4559   case ISD::FROUNDEVEN:
4560   case ISD::FRINT:
4561   case ISD::FNEARBYINT: {
4562     if (SNaN)
4563       return true;
4564     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4565   }
4566   case ISD::FABS:
4567   case ISD::FNEG:
4568   case ISD::FCOPYSIGN: {
4569     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4570   }
4571   case ISD::SELECT:
4572     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4573            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4574   case ISD::FP_EXTEND:
4575   case ISD::FP_ROUND: {
4576     if (SNaN)
4577       return true;
4578     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4579   }
4580   case ISD::SINT_TO_FP:
4581   case ISD::UINT_TO_FP:
4582     return true;
4583   case ISD::FMA:
4584   case ISD::FMAD: {
4585     if (SNaN)
4586       return true;
4587     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4588            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4589            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4590   }
4591   case ISD::FSQRT: // Need is known positive
4592   case ISD::FLOG:
4593   case ISD::FLOG2:
4594   case ISD::FLOG10:
4595   case ISD::FPOWI:
4596   case ISD::FPOW: {
4597     if (SNaN)
4598       return true;
4599     // TODO: Refine on operand
4600     return false;
4601   }
4602   case ISD::FMINNUM:
4603   case ISD::FMAXNUM: {
4604     // Only one needs to be known not-nan, since it will be returned if the
4605     // other ends up being one.
4606     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4607            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4608   }
4609   case ISD::FMINNUM_IEEE:
4610   case ISD::FMAXNUM_IEEE: {
4611     if (SNaN)
4612       return true;
4613     // This can return a NaN if either operand is an sNaN, or if both operands
4614     // are NaN.
4615     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4616             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4617            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4618             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4619   }
4620   case ISD::FMINIMUM:
4621   case ISD::FMAXIMUM: {
4622     // TODO: Does this quiet or return the origina NaN as-is?
4623     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4624            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4625   }
4626   case ISD::EXTRACT_VECTOR_ELT: {
4627     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4628   }
4629   default:
4630     if (Opcode >= ISD::BUILTIN_OP_END ||
4631         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4632         Opcode == ISD::INTRINSIC_W_CHAIN ||
4633         Opcode == ISD::INTRINSIC_VOID) {
4634       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4635     }
4636 
4637     return false;
4638   }
4639 }
4640 
4641 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4642   assert(Op.getValueType().isFloatingPoint() &&
4643          "Floating point type expected");
4644 
4645   // If the value is a constant, we can obviously see if it is a zero or not.
4646   // TODO: Add BuildVector support.
4647   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4648     return !C->isZero();
4649   return false;
4650 }
4651 
4652 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4653   assert(!Op.getValueType().isFloatingPoint() &&
4654          "Floating point types unsupported - use isKnownNeverZeroFloat");
4655 
4656   // If the value is a constant, we can obviously see if it is a zero or not.
4657   if (ISD::matchUnaryPredicate(Op,
4658                                [](ConstantSDNode *C) { return !C->isZero(); }))
4659     return true;
4660 
4661   // TODO: Recognize more cases here.
4662   switch (Op.getOpcode()) {
4663   default: break;
4664   case ISD::OR:
4665     if (isKnownNeverZero(Op.getOperand(1)) ||
4666         isKnownNeverZero(Op.getOperand(0)))
4667       return true;
4668     break;
4669   }
4670 
4671   return false;
4672 }
4673 
4674 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4675   // Check the obvious case.
4676   if (A == B) return true;
4677 
4678   // For for negative and positive zero.
4679   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4680     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4681       if (CA->isZero() && CB->isZero()) return true;
4682 
4683   // Otherwise they may not be equal.
4684   return false;
4685 }
4686 
4687 // FIXME: unify with llvm::haveNoCommonBitsSet.
4688 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4689   assert(A.getValueType() == B.getValueType() &&
4690          "Values must have the same type");
4691   // Match masked merge pattern (X & ~M) op (Y & M)
4692   if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) {
4693     auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) {
4694       if (isBitwiseNot(NotM, true)) {
4695         SDValue NotOperand = NotM->getOperand(0);
4696         return NotOperand == And->getOperand(0) ||
4697                NotOperand == And->getOperand(1);
4698       }
4699       return false;
4700     };
4701     if (MatchNoCommonBitsPattern(A->getOperand(0), B) ||
4702         MatchNoCommonBitsPattern(A->getOperand(1), B) ||
4703         MatchNoCommonBitsPattern(B->getOperand(0), A) ||
4704         MatchNoCommonBitsPattern(B->getOperand(1), A))
4705       return true;
4706   }
4707   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4708                                         computeKnownBits(B));
4709 }
4710 
4711 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4712                                SelectionDAG &DAG) {
4713   if (cast<ConstantSDNode>(Step)->isZero())
4714     return DAG.getConstant(0, DL, VT);
4715 
4716   return SDValue();
4717 }
4718 
4719 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4720                                 ArrayRef<SDValue> Ops,
4721                                 SelectionDAG &DAG) {
4722   int NumOps = Ops.size();
4723   assert(NumOps != 0 && "Can't build an empty vector!");
4724   assert(!VT.isScalableVector() &&
4725          "BUILD_VECTOR cannot be used with scalable types");
4726   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4727          "Incorrect element count in BUILD_VECTOR!");
4728 
4729   // BUILD_VECTOR of UNDEFs is UNDEF.
4730   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4731     return DAG.getUNDEF(VT);
4732 
4733   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4734   SDValue IdentitySrc;
4735   bool IsIdentity = true;
4736   for (int i = 0; i != NumOps; ++i) {
4737     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4738         Ops[i].getOperand(0).getValueType() != VT ||
4739         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4740         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4741         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4742       IsIdentity = false;
4743       break;
4744     }
4745     IdentitySrc = Ops[i].getOperand(0);
4746   }
4747   if (IsIdentity)
4748     return IdentitySrc;
4749 
4750   return SDValue();
4751 }
4752 
4753 /// Try to simplify vector concatenation to an input value, undef, or build
4754 /// vector.
4755 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4756                                   ArrayRef<SDValue> Ops,
4757                                   SelectionDAG &DAG) {
4758   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4759   assert(llvm::all_of(Ops,
4760                       [Ops](SDValue Op) {
4761                         return Ops[0].getValueType() == Op.getValueType();
4762                       }) &&
4763          "Concatenation of vectors with inconsistent value types!");
4764   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4765              VT.getVectorElementCount() &&
4766          "Incorrect element count in vector concatenation!");
4767 
4768   if (Ops.size() == 1)
4769     return Ops[0];
4770 
4771   // Concat of UNDEFs is UNDEF.
4772   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4773     return DAG.getUNDEF(VT);
4774 
4775   // Scan the operands and look for extract operations from a single source
4776   // that correspond to insertion at the same location via this concatenation:
4777   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4778   SDValue IdentitySrc;
4779   bool IsIdentity = true;
4780   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4781     SDValue Op = Ops[i];
4782     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4783     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4784         Op.getOperand(0).getValueType() != VT ||
4785         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4786         Op.getConstantOperandVal(1) != IdentityIndex) {
4787       IsIdentity = false;
4788       break;
4789     }
4790     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4791            "Unexpected identity source vector for concat of extracts");
4792     IdentitySrc = Op.getOperand(0);
4793   }
4794   if (IsIdentity) {
4795     assert(IdentitySrc && "Failed to set source vector of extracts");
4796     return IdentitySrc;
4797   }
4798 
4799   // The code below this point is only designed to work for fixed width
4800   // vectors, so we bail out for now.
4801   if (VT.isScalableVector())
4802     return SDValue();
4803 
4804   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4805   // simplified to one big BUILD_VECTOR.
4806   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4807   EVT SVT = VT.getScalarType();
4808   SmallVector<SDValue, 16> Elts;
4809   for (SDValue Op : Ops) {
4810     EVT OpVT = Op.getValueType();
4811     if (Op.isUndef())
4812       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4813     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4814       Elts.append(Op->op_begin(), Op->op_end());
4815     else
4816       return SDValue();
4817   }
4818 
4819   // BUILD_VECTOR requires all inputs to be of the same type, find the
4820   // maximum type and extend them all.
4821   for (SDValue Op : Elts)
4822     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4823 
4824   if (SVT.bitsGT(VT.getScalarType())) {
4825     for (SDValue &Op : Elts) {
4826       if (Op.isUndef())
4827         Op = DAG.getUNDEF(SVT);
4828       else
4829         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4830                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4831                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4832     }
4833   }
4834 
4835   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4836   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4837   return V;
4838 }
4839 
4840 /// Gets or creates the specified node.
4841 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4842   FoldingSetNodeID ID;
4843   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4844   void *IP = nullptr;
4845   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4846     return SDValue(E, 0);
4847 
4848   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4849                               getVTList(VT));
4850   CSEMap.InsertNode(N, IP);
4851 
4852   InsertNode(N);
4853   SDValue V = SDValue(N, 0);
4854   NewSDValueDbgMsg(V, "Creating new node: ", this);
4855   return V;
4856 }
4857 
4858 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4859                               SDValue Operand) {
4860   SDNodeFlags Flags;
4861   if (Inserter)
4862     Flags = Inserter->getFlags();
4863   return getNode(Opcode, DL, VT, Operand, Flags);
4864 }
4865 
4866 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4867                               SDValue Operand, const SDNodeFlags Flags) {
4868   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4869          "Operand is DELETED_NODE!");
4870   // Constant fold unary operations with an integer constant operand. Even
4871   // opaque constant will be folded, because the folding of unary operations
4872   // doesn't create new constants with different values. Nevertheless, the
4873   // opaque flag is preserved during folding to prevent future folding with
4874   // other constants.
4875   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4876     const APInt &Val = C->getAPIntValue();
4877     switch (Opcode) {
4878     default: break;
4879     case ISD::SIGN_EXTEND:
4880       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4881                          C->isTargetOpcode(), C->isOpaque());
4882     case ISD::TRUNCATE:
4883       if (C->isOpaque())
4884         break;
4885       LLVM_FALLTHROUGH;
4886     case ISD::ZERO_EXTEND:
4887       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4888                          C->isTargetOpcode(), C->isOpaque());
4889     case ISD::ANY_EXTEND:
4890       // Some targets like RISCV prefer to sign extend some types.
4891       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4892         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4893                            C->isTargetOpcode(), C->isOpaque());
4894       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4895                          C->isTargetOpcode(), C->isOpaque());
4896     case ISD::UINT_TO_FP:
4897     case ISD::SINT_TO_FP: {
4898       APFloat apf(EVTToAPFloatSemantics(VT),
4899                   APInt::getZero(VT.getSizeInBits()));
4900       (void)apf.convertFromAPInt(Val,
4901                                  Opcode==ISD::SINT_TO_FP,
4902                                  APFloat::rmNearestTiesToEven);
4903       return getConstantFP(apf, DL, VT);
4904     }
4905     case ISD::BITCAST:
4906       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4907         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4908       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4909         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4910       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4911         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4912       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4913         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4914       break;
4915     case ISD::ABS:
4916       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4917                          C->isOpaque());
4918     case ISD::BITREVERSE:
4919       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4920                          C->isOpaque());
4921     case ISD::BSWAP:
4922       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4923                          C->isOpaque());
4924     case ISD::CTPOP:
4925       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4926                          C->isOpaque());
4927     case ISD::CTLZ:
4928     case ISD::CTLZ_ZERO_UNDEF:
4929       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4930                          C->isOpaque());
4931     case ISD::CTTZ:
4932     case ISD::CTTZ_ZERO_UNDEF:
4933       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4934                          C->isOpaque());
4935     case ISD::FP16_TO_FP: {
4936       bool Ignored;
4937       APFloat FPV(APFloat::IEEEhalf(),
4938                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4939 
4940       // This can return overflow, underflow, or inexact; we don't care.
4941       // FIXME need to be more flexible about rounding mode.
4942       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4943                         APFloat::rmNearestTiesToEven, &Ignored);
4944       return getConstantFP(FPV, DL, VT);
4945     }
4946     case ISD::STEP_VECTOR: {
4947       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4948         return V;
4949       break;
4950     }
4951     }
4952   }
4953 
4954   // Constant fold unary operations with a floating point constant operand.
4955   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4956     APFloat V = C->getValueAPF();    // make copy
4957     switch (Opcode) {
4958     case ISD::FNEG:
4959       V.changeSign();
4960       return getConstantFP(V, DL, VT);
4961     case ISD::FABS:
4962       V.clearSign();
4963       return getConstantFP(V, DL, VT);
4964     case ISD::FCEIL: {
4965       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4966       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4967         return getConstantFP(V, DL, VT);
4968       break;
4969     }
4970     case ISD::FTRUNC: {
4971       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4972       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4973         return getConstantFP(V, DL, VT);
4974       break;
4975     }
4976     case ISD::FFLOOR: {
4977       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4978       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4979         return getConstantFP(V, DL, VT);
4980       break;
4981     }
4982     case ISD::FP_EXTEND: {
4983       bool ignored;
4984       // This can return overflow, underflow, or inexact; we don't care.
4985       // FIXME need to be more flexible about rounding mode.
4986       (void)V.convert(EVTToAPFloatSemantics(VT),
4987                       APFloat::rmNearestTiesToEven, &ignored);
4988       return getConstantFP(V, DL, VT);
4989     }
4990     case ISD::FP_TO_SINT:
4991     case ISD::FP_TO_UINT: {
4992       bool ignored;
4993       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4994       // FIXME need to be more flexible about rounding mode.
4995       APFloat::opStatus s =
4996           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4997       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4998         break;
4999       return getConstant(IntVal, DL, VT);
5000     }
5001     case ISD::BITCAST:
5002       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
5003         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5004       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
5005         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5006       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
5007         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5008       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
5009         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
5010       break;
5011     case ISD::FP_TO_FP16: {
5012       bool Ignored;
5013       // This can return overflow, underflow, or inexact; we don't care.
5014       // FIXME need to be more flexible about rounding mode.
5015       (void)V.convert(APFloat::IEEEhalf(),
5016                       APFloat::rmNearestTiesToEven, &Ignored);
5017       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
5018     }
5019     }
5020   }
5021 
5022   // Constant fold unary operations with a vector integer or float operand.
5023   switch (Opcode) {
5024   default:
5025     // FIXME: Entirely reasonable to perform folding of other unary
5026     // operations here as the need arises.
5027     break;
5028   case ISD::FNEG:
5029   case ISD::FABS:
5030   case ISD::FCEIL:
5031   case ISD::FTRUNC:
5032   case ISD::FFLOOR:
5033   case ISD::FP_EXTEND:
5034   case ISD::FP_TO_SINT:
5035   case ISD::FP_TO_UINT:
5036   case ISD::TRUNCATE:
5037   case ISD::ANY_EXTEND:
5038   case ISD::ZERO_EXTEND:
5039   case ISD::SIGN_EXTEND:
5040   case ISD::UINT_TO_FP:
5041   case ISD::SINT_TO_FP:
5042   case ISD::ABS:
5043   case ISD::BITREVERSE:
5044   case ISD::BSWAP:
5045   case ISD::CTLZ:
5046   case ISD::CTLZ_ZERO_UNDEF:
5047   case ISD::CTTZ:
5048   case ISD::CTTZ_ZERO_UNDEF:
5049   case ISD::CTPOP: {
5050     SDValue Ops = {Operand};
5051     if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
5052       return Fold;
5053   }
5054   }
5055 
5056   unsigned OpOpcode = Operand.getNode()->getOpcode();
5057   switch (Opcode) {
5058   case ISD::STEP_VECTOR:
5059     assert(VT.isScalableVector() &&
5060            "STEP_VECTOR can only be used with scalable types");
5061     assert(OpOpcode == ISD::TargetConstant &&
5062            VT.getVectorElementType() == Operand.getValueType() &&
5063            "Unexpected step operand");
5064     break;
5065   case ISD::FREEZE:
5066     assert(VT == Operand.getValueType() && "Unexpected VT!");
5067     if (isGuaranteedNotToBeUndefOrPoison(Operand))
5068       return Operand;
5069     break;
5070   case ISD::TokenFactor:
5071   case ISD::MERGE_VALUES:
5072   case ISD::CONCAT_VECTORS:
5073     return Operand;         // Factor, merge or concat of one node?  No need.
5074   case ISD::BUILD_VECTOR: {
5075     // Attempt to simplify BUILD_VECTOR.
5076     SDValue Ops[] = {Operand};
5077     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5078       return V;
5079     break;
5080   }
5081   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
5082   case ISD::FP_EXTEND:
5083     assert(VT.isFloatingPoint() &&
5084            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
5085     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
5086     assert((!VT.isVector() ||
5087             VT.getVectorElementCount() ==
5088             Operand.getValueType().getVectorElementCount()) &&
5089            "Vector element count mismatch!");
5090     assert(Operand.getValueType().bitsLT(VT) &&
5091            "Invalid fpext node, dst < src!");
5092     if (Operand.isUndef())
5093       return getUNDEF(VT);
5094     break;
5095   case ISD::FP_TO_SINT:
5096   case ISD::FP_TO_UINT:
5097     if (Operand.isUndef())
5098       return getUNDEF(VT);
5099     break;
5100   case ISD::SINT_TO_FP:
5101   case ISD::UINT_TO_FP:
5102     // [us]itofp(undef) = 0, because the result value is bounded.
5103     if (Operand.isUndef())
5104       return getConstantFP(0.0, DL, VT);
5105     break;
5106   case ISD::SIGN_EXTEND:
5107     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5108            "Invalid SIGN_EXTEND!");
5109     assert(VT.isVector() == Operand.getValueType().isVector() &&
5110            "SIGN_EXTEND result type type should be vector iff the operand "
5111            "type is vector!");
5112     if (Operand.getValueType() == VT) return Operand;   // noop extension
5113     assert((!VT.isVector() ||
5114             VT.getVectorElementCount() ==
5115                 Operand.getValueType().getVectorElementCount()) &&
5116            "Vector element count mismatch!");
5117     assert(Operand.getValueType().bitsLT(VT) &&
5118            "Invalid sext node, dst < src!");
5119     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
5120       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5121     if (OpOpcode == ISD::UNDEF)
5122       // sext(undef) = 0, because the top bits will all be the same.
5123       return getConstant(0, DL, VT);
5124     break;
5125   case ISD::ZERO_EXTEND:
5126     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5127            "Invalid ZERO_EXTEND!");
5128     assert(VT.isVector() == Operand.getValueType().isVector() &&
5129            "ZERO_EXTEND result type type should be vector iff the operand "
5130            "type is vector!");
5131     if (Operand.getValueType() == VT) return Operand;   // noop extension
5132     assert((!VT.isVector() ||
5133             VT.getVectorElementCount() ==
5134                 Operand.getValueType().getVectorElementCount()) &&
5135            "Vector element count mismatch!");
5136     assert(Operand.getValueType().bitsLT(VT) &&
5137            "Invalid zext node, dst < src!");
5138     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
5139       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
5140     if (OpOpcode == ISD::UNDEF)
5141       // zext(undef) = 0, because the top bits will be zero.
5142       return getConstant(0, DL, VT);
5143     break;
5144   case ISD::ANY_EXTEND:
5145     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5146            "Invalid ANY_EXTEND!");
5147     assert(VT.isVector() == Operand.getValueType().isVector() &&
5148            "ANY_EXTEND result type type should be vector iff the operand "
5149            "type is vector!");
5150     if (Operand.getValueType() == VT) return Operand;   // noop extension
5151     assert((!VT.isVector() ||
5152             VT.getVectorElementCount() ==
5153                 Operand.getValueType().getVectorElementCount()) &&
5154            "Vector element count mismatch!");
5155     assert(Operand.getValueType().bitsLT(VT) &&
5156            "Invalid anyext node, dst < src!");
5157 
5158     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5159         OpOpcode == ISD::ANY_EXTEND)
5160       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
5161       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5162     if (OpOpcode == ISD::UNDEF)
5163       return getUNDEF(VT);
5164 
5165     // (ext (trunc x)) -> x
5166     if (OpOpcode == ISD::TRUNCATE) {
5167       SDValue OpOp = Operand.getOperand(0);
5168       if (OpOp.getValueType() == VT) {
5169         transferDbgValues(Operand, OpOp);
5170         return OpOp;
5171       }
5172     }
5173     break;
5174   case ISD::TRUNCATE:
5175     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5176            "Invalid TRUNCATE!");
5177     assert(VT.isVector() == Operand.getValueType().isVector() &&
5178            "TRUNCATE result type type should be vector iff the operand "
5179            "type is vector!");
5180     if (Operand.getValueType() == VT) return Operand;   // noop truncate
5181     assert((!VT.isVector() ||
5182             VT.getVectorElementCount() ==
5183                 Operand.getValueType().getVectorElementCount()) &&
5184            "Vector element count mismatch!");
5185     assert(Operand.getValueType().bitsGT(VT) &&
5186            "Invalid truncate node, src < dst!");
5187     if (OpOpcode == ISD::TRUNCATE)
5188       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5189     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5190         OpOpcode == ISD::ANY_EXTEND) {
5191       // If the source is smaller than the dest, we still need an extend.
5192       if (Operand.getOperand(0).getValueType().getScalarType()
5193             .bitsLT(VT.getScalarType()))
5194         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5195       if (Operand.getOperand(0).getValueType().bitsGT(VT))
5196         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5197       return Operand.getOperand(0);
5198     }
5199     if (OpOpcode == ISD::UNDEF)
5200       return getUNDEF(VT);
5201     if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
5202       return getVScale(DL, VT, Operand.getConstantOperandAPInt(0));
5203     break;
5204   case ISD::ANY_EXTEND_VECTOR_INREG:
5205   case ISD::ZERO_EXTEND_VECTOR_INREG:
5206   case ISD::SIGN_EXTEND_VECTOR_INREG:
5207     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5208     assert(Operand.getValueType().bitsLE(VT) &&
5209            "The input must be the same size or smaller than the result.");
5210     assert(VT.getVectorMinNumElements() <
5211                Operand.getValueType().getVectorMinNumElements() &&
5212            "The destination vector type must have fewer lanes than the input.");
5213     break;
5214   case ISD::ABS:
5215     assert(VT.isInteger() && VT == Operand.getValueType() &&
5216            "Invalid ABS!");
5217     if (OpOpcode == ISD::UNDEF)
5218       return getUNDEF(VT);
5219     break;
5220   case ISD::BSWAP:
5221     assert(VT.isInteger() && VT == Operand.getValueType() &&
5222            "Invalid BSWAP!");
5223     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5224            "BSWAP types must be a multiple of 16 bits!");
5225     if (OpOpcode == ISD::UNDEF)
5226       return getUNDEF(VT);
5227     // bswap(bswap(X)) -> X.
5228     if (OpOpcode == ISD::BSWAP)
5229       return Operand.getOperand(0);
5230     break;
5231   case ISD::BITREVERSE:
5232     assert(VT.isInteger() && VT == Operand.getValueType() &&
5233            "Invalid BITREVERSE!");
5234     if (OpOpcode == ISD::UNDEF)
5235       return getUNDEF(VT);
5236     break;
5237   case ISD::BITCAST:
5238     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5239            "Cannot BITCAST between types of different sizes!");
5240     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5241     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5242       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5243     if (OpOpcode == ISD::UNDEF)
5244       return getUNDEF(VT);
5245     break;
5246   case ISD::SCALAR_TO_VECTOR:
5247     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5248            (VT.getVectorElementType() == Operand.getValueType() ||
5249             (VT.getVectorElementType().isInteger() &&
5250              Operand.getValueType().isInteger() &&
5251              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5252            "Illegal SCALAR_TO_VECTOR node!");
5253     if (OpOpcode == ISD::UNDEF)
5254       return getUNDEF(VT);
5255     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5256     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5257         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5258         Operand.getConstantOperandVal(1) == 0 &&
5259         Operand.getOperand(0).getValueType() == VT)
5260       return Operand.getOperand(0);
5261     break;
5262   case ISD::FNEG:
5263     // Negation of an unknown bag of bits is still completely undefined.
5264     if (OpOpcode == ISD::UNDEF)
5265       return getUNDEF(VT);
5266 
5267     if (OpOpcode == ISD::FNEG)  // --X -> X
5268       return Operand.getOperand(0);
5269     break;
5270   case ISD::FABS:
5271     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5272       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5273     break;
5274   case ISD::VSCALE:
5275     assert(VT == Operand.getValueType() && "Unexpected VT!");
5276     break;
5277   case ISD::CTPOP:
5278     if (Operand.getValueType().getScalarType() == MVT::i1)
5279       return Operand;
5280     break;
5281   case ISD::CTLZ:
5282   case ISD::CTTZ:
5283     if (Operand.getValueType().getScalarType() == MVT::i1)
5284       return getNOT(DL, Operand, Operand.getValueType());
5285     break;
5286   case ISD::VECREDUCE_SMIN:
5287   case ISD::VECREDUCE_UMAX:
5288     if (Operand.getValueType().getScalarType() == MVT::i1)
5289       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5290     break;
5291   case ISD::VECREDUCE_SMAX:
5292   case ISD::VECREDUCE_UMIN:
5293     if (Operand.getValueType().getScalarType() == MVT::i1)
5294       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5295     break;
5296   }
5297 
5298   SDNode *N;
5299   SDVTList VTs = getVTList(VT);
5300   SDValue Ops[] = {Operand};
5301   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5302     FoldingSetNodeID ID;
5303     AddNodeIDNode(ID, Opcode, VTs, Ops);
5304     void *IP = nullptr;
5305     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5306       E->intersectFlagsWith(Flags);
5307       return SDValue(E, 0);
5308     }
5309 
5310     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5311     N->setFlags(Flags);
5312     createOperands(N, Ops);
5313     CSEMap.InsertNode(N, IP);
5314   } else {
5315     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5316     createOperands(N, Ops);
5317   }
5318 
5319   InsertNode(N);
5320   SDValue V = SDValue(N, 0);
5321   NewSDValueDbgMsg(V, "Creating new node: ", this);
5322   return V;
5323 }
5324 
5325 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5326                                        const APInt &C2) {
5327   switch (Opcode) {
5328   case ISD::ADD:  return C1 + C2;
5329   case ISD::SUB:  return C1 - C2;
5330   case ISD::MUL:  return C1 * C2;
5331   case ISD::AND:  return C1 & C2;
5332   case ISD::OR:   return C1 | C2;
5333   case ISD::XOR:  return C1 ^ C2;
5334   case ISD::SHL:  return C1 << C2;
5335   case ISD::SRL:  return C1.lshr(C2);
5336   case ISD::SRA:  return C1.ashr(C2);
5337   case ISD::ROTL: return C1.rotl(C2);
5338   case ISD::ROTR: return C1.rotr(C2);
5339   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5340   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5341   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5342   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5343   case ISD::SADDSAT: return C1.sadd_sat(C2);
5344   case ISD::UADDSAT: return C1.uadd_sat(C2);
5345   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5346   case ISD::USUBSAT: return C1.usub_sat(C2);
5347   case ISD::SSHLSAT: return C1.sshl_sat(C2);
5348   case ISD::USHLSAT: return C1.ushl_sat(C2);
5349   case ISD::UDIV:
5350     if (!C2.getBoolValue())
5351       break;
5352     return C1.udiv(C2);
5353   case ISD::UREM:
5354     if (!C2.getBoolValue())
5355       break;
5356     return C1.urem(C2);
5357   case ISD::SDIV:
5358     if (!C2.getBoolValue())
5359       break;
5360     return C1.sdiv(C2);
5361   case ISD::SREM:
5362     if (!C2.getBoolValue())
5363       break;
5364     return C1.srem(C2);
5365   case ISD::MULHS: {
5366     unsigned FullWidth = C1.getBitWidth() * 2;
5367     APInt C1Ext = C1.sext(FullWidth);
5368     APInt C2Ext = C2.sext(FullWidth);
5369     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5370   }
5371   case ISD::MULHU: {
5372     unsigned FullWidth = C1.getBitWidth() * 2;
5373     APInt C1Ext = C1.zext(FullWidth);
5374     APInt C2Ext = C2.zext(FullWidth);
5375     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5376   }
5377   case ISD::AVGFLOORS: {
5378     unsigned FullWidth = C1.getBitWidth() + 1;
5379     APInt C1Ext = C1.sext(FullWidth);
5380     APInt C2Ext = C2.sext(FullWidth);
5381     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5382   }
5383   case ISD::AVGFLOORU: {
5384     unsigned FullWidth = C1.getBitWidth() + 1;
5385     APInt C1Ext = C1.zext(FullWidth);
5386     APInt C2Ext = C2.zext(FullWidth);
5387     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5388   }
5389   case ISD::AVGCEILS: {
5390     unsigned FullWidth = C1.getBitWidth() + 1;
5391     APInt C1Ext = C1.sext(FullWidth);
5392     APInt C2Ext = C2.sext(FullWidth);
5393     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5394   }
5395   case ISD::AVGCEILU: {
5396     unsigned FullWidth = C1.getBitWidth() + 1;
5397     APInt C1Ext = C1.zext(FullWidth);
5398     APInt C2Ext = C2.zext(FullWidth);
5399     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5400   }
5401   }
5402   return llvm::None;
5403 }
5404 
5405 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5406                                        const GlobalAddressSDNode *GA,
5407                                        const SDNode *N2) {
5408   if (GA->getOpcode() != ISD::GlobalAddress)
5409     return SDValue();
5410   if (!TLI->isOffsetFoldingLegal(GA))
5411     return SDValue();
5412   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5413   if (!C2)
5414     return SDValue();
5415   int64_t Offset = C2->getSExtValue();
5416   switch (Opcode) {
5417   case ISD::ADD: break;
5418   case ISD::SUB: Offset = -uint64_t(Offset); break;
5419   default: return SDValue();
5420   }
5421   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5422                           GA->getOffset() + uint64_t(Offset));
5423 }
5424 
5425 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5426   switch (Opcode) {
5427   case ISD::SDIV:
5428   case ISD::UDIV:
5429   case ISD::SREM:
5430   case ISD::UREM: {
5431     // If a divisor is zero/undef or any element of a divisor vector is
5432     // zero/undef, the whole op is undef.
5433     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5434     SDValue Divisor = Ops[1];
5435     if (Divisor.isUndef() || isNullConstant(Divisor))
5436       return true;
5437 
5438     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5439            llvm::any_of(Divisor->op_values(),
5440                         [](SDValue V) { return V.isUndef() ||
5441                                         isNullConstant(V); });
5442     // TODO: Handle signed overflow.
5443   }
5444   // TODO: Handle oversized shifts.
5445   default:
5446     return false;
5447   }
5448 }
5449 
5450 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5451                                              EVT VT, ArrayRef<SDValue> Ops) {
5452   // If the opcode is a target-specific ISD node, there's nothing we can
5453   // do here and the operand rules may not line up with the below, so
5454   // bail early.
5455   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5456   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5457   // foldCONCAT_VECTORS in getNode before this is called.
5458   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5459     return SDValue();
5460 
5461   unsigned NumOps = Ops.size();
5462   if (NumOps == 0)
5463     return SDValue();
5464 
5465   if (isUndef(Opcode, Ops))
5466     return getUNDEF(VT);
5467 
5468   // Handle binops special cases.
5469   if (NumOps == 2) {
5470     if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1]))
5471       return CFP;
5472 
5473     if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
5474       if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
5475         if (C1->isOpaque() || C2->isOpaque())
5476           return SDValue();
5477 
5478         Optional<APInt> FoldAttempt =
5479             FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5480         if (!FoldAttempt)
5481           return SDValue();
5482 
5483         SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5484         assert((!Folded || !VT.isVector()) &&
5485                "Can't fold vectors ops with scalar operands");
5486         return Folded;
5487       }
5488     }
5489 
5490     // fold (add Sym, c) -> Sym+c
5491     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
5492       return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
5493     if (TLI->isCommutativeBinOp(Opcode))
5494       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
5495         return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
5496   }
5497 
5498   // This is for vector folding only from here on.
5499   if (!VT.isVector())
5500     return SDValue();
5501 
5502   ElementCount NumElts = VT.getVectorElementCount();
5503 
5504   // See if we can fold through bitcasted integer ops.
5505   // TODO: Can we handle undef elements?
5506   if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
5507       Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
5508       Ops[0].getOpcode() == ISD::BITCAST &&
5509       Ops[1].getOpcode() == ISD::BITCAST) {
5510     SDValue N1 = peekThroughBitcasts(Ops[0]);
5511     SDValue N2 = peekThroughBitcasts(Ops[1]);
5512     auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5513     auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5514     EVT BVVT = N1.getValueType();
5515     if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
5516       bool IsLE = getDataLayout().isLittleEndian();
5517       unsigned EltBits = VT.getScalarSizeInBits();
5518       SmallVector<APInt> RawBits1, RawBits2;
5519       BitVector UndefElts1, UndefElts2;
5520       if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
5521           BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) &&
5522           UndefElts1.none() && UndefElts2.none()) {
5523         SmallVector<APInt> RawBits;
5524         for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
5525           Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]);
5526           if (!Fold)
5527             break;
5528           RawBits.push_back(Fold.getValue());
5529         }
5530         if (RawBits.size() == NumElts.getFixedValue()) {
5531           // We have constant folded, but we need to cast this again back to
5532           // the original (possibly legalized) type.
5533           SmallVector<APInt> DstBits;
5534           BitVector DstUndefs;
5535           BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
5536                                            DstBits, RawBits, DstUndefs,
5537                                            BitVector(RawBits.size(), false));
5538           EVT BVEltVT = BV1->getOperand(0).getValueType();
5539           unsigned BVEltBits = BVEltVT.getSizeInBits();
5540           SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
5541           for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
5542             if (DstUndefs[I])
5543               continue;
5544             Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT);
5545           }
5546           return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
5547         }
5548       }
5549     }
5550   }
5551 
5552   // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
5553   //      (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
5554   if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
5555       Ops[0].getOpcode() == ISD::STEP_VECTOR) {
5556     APInt RHSVal;
5557     if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
5558       APInt NewStep = Opcode == ISD::MUL
5559                           ? Ops[0].getConstantOperandAPInt(0) * RHSVal
5560                           : Ops[0].getConstantOperandAPInt(0) << RHSVal;
5561       return getStepVector(DL, VT, NewStep);
5562     }
5563   }
5564 
5565   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5566     return !Op.getValueType().isVector() ||
5567            Op.getValueType().getVectorElementCount() == NumElts;
5568   };
5569 
5570   auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5571     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5572            Op.getOpcode() == ISD::BUILD_VECTOR ||
5573            Op.getOpcode() == ISD::SPLAT_VECTOR;
5574   };
5575 
5576   // All operands must be vector types with the same number of elements as
5577   // the result type and must be either UNDEF or a build/splat vector
5578   // or UNDEF scalars.
5579   if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
5580       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5581     return SDValue();
5582 
5583   // If we are comparing vectors, then the result needs to be a i1 boolean that
5584   // is then extended back to the legal result type depending on how booleans
5585   // are represented.
5586   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5587   ISD::NodeType ExtendCode =
5588       (Opcode == ISD::SETCC && SVT != VT.getScalarType())
5589           ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT))
5590           : ISD::SIGN_EXTEND;
5591 
5592   // Find legal integer scalar type for constant promotion and
5593   // ensure that its scalar size is at least as large as source.
5594   EVT LegalSVT = VT.getScalarType();
5595   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5596     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5597     if (LegalSVT.bitsLT(VT.getScalarType()))
5598       return SDValue();
5599   }
5600 
5601   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5602   // only have one operand to check. For fixed-length vector types we may have
5603   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5604   unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5605 
5606   // Constant fold each scalar lane separately.
5607   SmallVector<SDValue, 4> ScalarResults;
5608   for (unsigned I = 0; I != NumVectorElts; I++) {
5609     SmallVector<SDValue, 4> ScalarOps;
5610     for (SDValue Op : Ops) {
5611       EVT InSVT = Op.getValueType().getScalarType();
5612       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5613           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5614         if (Op.isUndef())
5615           ScalarOps.push_back(getUNDEF(InSVT));
5616         else
5617           ScalarOps.push_back(Op);
5618         continue;
5619       }
5620 
5621       SDValue ScalarOp =
5622           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5623       EVT ScalarVT = ScalarOp.getValueType();
5624 
5625       // Build vector (integer) scalar operands may need implicit
5626       // truncation - do this before constant folding.
5627       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
5628         // Don't create illegally-typed nodes unless they're constants or undef
5629         // - if we fail to constant fold we can't guarantee the (dead) nodes
5630         // we're creating will be cleaned up before being visited for
5631         // legalization.
5632         if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
5633             !isa<ConstantSDNode>(ScalarOp) &&
5634             TLI->getTypeAction(*getContext(), InSVT) !=
5635                 TargetLowering::TypeLegal)
5636           return SDValue();
5637         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5638       }
5639 
5640       ScalarOps.push_back(ScalarOp);
5641     }
5642 
5643     // Constant fold the scalar operands.
5644     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
5645 
5646     // Legalize the (integer) scalar constant if necessary.
5647     if (LegalSVT != SVT)
5648       ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult);
5649 
5650     // Scalar folding only succeeded if the result is a constant or UNDEF.
5651     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5652         ScalarResult.getOpcode() != ISD::ConstantFP)
5653       return SDValue();
5654     ScalarResults.push_back(ScalarResult);
5655   }
5656 
5657   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5658                                    : getBuildVector(VT, DL, ScalarResults);
5659   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5660   return V;
5661 }
5662 
5663 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5664                                          EVT VT, SDValue N1, SDValue N2) {
5665   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5666   //       should. That will require dealing with a potentially non-default
5667   //       rounding mode, checking the "opStatus" return value from the APFloat
5668   //       math calculations, and possibly other variations.
5669   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
5670   ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
5671   if (N1CFP && N2CFP) {
5672     APFloat C1 = N1CFP->getValueAPF(); // make copy
5673     const APFloat &C2 = N2CFP->getValueAPF();
5674     switch (Opcode) {
5675     case ISD::FADD:
5676       C1.add(C2, APFloat::rmNearestTiesToEven);
5677       return getConstantFP(C1, DL, VT);
5678     case ISD::FSUB:
5679       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5680       return getConstantFP(C1, DL, VT);
5681     case ISD::FMUL:
5682       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5683       return getConstantFP(C1, DL, VT);
5684     case ISD::FDIV:
5685       C1.divide(C2, APFloat::rmNearestTiesToEven);
5686       return getConstantFP(C1, DL, VT);
5687     case ISD::FREM:
5688       C1.mod(C2);
5689       return getConstantFP(C1, DL, VT);
5690     case ISD::FCOPYSIGN:
5691       C1.copySign(C2);
5692       return getConstantFP(C1, DL, VT);
5693     case ISD::FMINNUM:
5694       return getConstantFP(minnum(C1, C2), DL, VT);
5695     case ISD::FMAXNUM:
5696       return getConstantFP(maxnum(C1, C2), DL, VT);
5697     case ISD::FMINIMUM:
5698       return getConstantFP(minimum(C1, C2), DL, VT);
5699     case ISD::FMAXIMUM:
5700       return getConstantFP(maximum(C1, C2), DL, VT);
5701     default: break;
5702     }
5703   }
5704   if (N1CFP && Opcode == ISD::FP_ROUND) {
5705     APFloat C1 = N1CFP->getValueAPF();    // make copy
5706     bool Unused;
5707     // This can return overflow, underflow, or inexact; we don't care.
5708     // FIXME need to be more flexible about rounding mode.
5709     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5710                       &Unused);
5711     return getConstantFP(C1, DL, VT);
5712   }
5713 
5714   switch (Opcode) {
5715   case ISD::FSUB:
5716     // -0.0 - undef --> undef (consistent with "fneg undef")
5717     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
5718       if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
5719         return getUNDEF(VT);
5720     LLVM_FALLTHROUGH;
5721 
5722   case ISD::FADD:
5723   case ISD::FMUL:
5724   case ISD::FDIV:
5725   case ISD::FREM:
5726     // If both operands are undef, the result is undef. If 1 operand is undef,
5727     // the result is NaN. This should match the behavior of the IR optimizer.
5728     if (N1.isUndef() && N2.isUndef())
5729       return getUNDEF(VT);
5730     if (N1.isUndef() || N2.isUndef())
5731       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5732   }
5733   return SDValue();
5734 }
5735 
5736 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5737   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5738 
5739   // There's no need to assert on a byte-aligned pointer. All pointers are at
5740   // least byte aligned.
5741   if (A == Align(1))
5742     return Val;
5743 
5744   FoldingSetNodeID ID;
5745   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5746   ID.AddInteger(A.value());
5747 
5748   void *IP = nullptr;
5749   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5750     return SDValue(E, 0);
5751 
5752   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5753                                          Val.getValueType(), A);
5754   createOperands(N, {Val});
5755 
5756   CSEMap.InsertNode(N, IP);
5757   InsertNode(N);
5758 
5759   SDValue V(N, 0);
5760   NewSDValueDbgMsg(V, "Creating new node: ", this);
5761   return V;
5762 }
5763 
5764 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5765                               SDValue N1, SDValue N2) {
5766   SDNodeFlags Flags;
5767   if (Inserter)
5768     Flags = Inserter->getFlags();
5769   return getNode(Opcode, DL, VT, N1, N2, Flags);
5770 }
5771 
5772 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1,
5773                                                 SDValue &N2) const {
5774   if (!TLI->isCommutativeBinOp(Opcode))
5775     return;
5776 
5777   // Canonicalize:
5778   //   binop(const, nonconst) -> binop(nonconst, const)
5779   bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1);
5780   bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2);
5781   bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1);
5782   bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2);
5783   if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP))
5784     std::swap(N1, N2);
5785 
5786   // Canonicalize:
5787   //  binop(splat(x), step_vector) -> binop(step_vector, splat(x))
5788   else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
5789            N2.getOpcode() == ISD::STEP_VECTOR)
5790     std::swap(N1, N2);
5791 }
5792 
5793 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5794                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5795   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5796          N2.getOpcode() != ISD::DELETED_NODE &&
5797          "Operand is DELETED_NODE!");
5798 
5799   canonicalizeCommutativeBinop(Opcode, N1, N2);
5800 
5801   auto *N1C = dyn_cast<ConstantSDNode>(N1);
5802   auto *N2C = dyn_cast<ConstantSDNode>(N2);
5803 
5804   // Don't allow undefs in vector splats - we might be returning N2 when folding
5805   // to zero etc.
5806   ConstantSDNode *N2CV =
5807       isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
5808 
5809   switch (Opcode) {
5810   default: break;
5811   case ISD::TokenFactor:
5812     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5813            N2.getValueType() == MVT::Other && "Invalid token factor!");
5814     // Fold trivial token factors.
5815     if (N1.getOpcode() == ISD::EntryToken) return N2;
5816     if (N2.getOpcode() == ISD::EntryToken) return N1;
5817     if (N1 == N2) return N1;
5818     break;
5819   case ISD::BUILD_VECTOR: {
5820     // Attempt to simplify BUILD_VECTOR.
5821     SDValue Ops[] = {N1, N2};
5822     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5823       return V;
5824     break;
5825   }
5826   case ISD::CONCAT_VECTORS: {
5827     SDValue Ops[] = {N1, N2};
5828     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5829       return V;
5830     break;
5831   }
5832   case ISD::AND:
5833     assert(VT.isInteger() && "This operator does not apply to FP types!");
5834     assert(N1.getValueType() == N2.getValueType() &&
5835            N1.getValueType() == VT && "Binary operator types must match!");
5836     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5837     // worth handling here.
5838     if (N2CV && N2CV->isZero())
5839       return N2;
5840     if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
5841       return N1;
5842     break;
5843   case ISD::OR:
5844   case ISD::XOR:
5845   case ISD::ADD:
5846   case ISD::SUB:
5847     assert(VT.isInteger() && "This operator does not apply to FP types!");
5848     assert(N1.getValueType() == N2.getValueType() &&
5849            N1.getValueType() == VT && "Binary operator types must match!");
5850     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5851     // it's worth handling here.
5852     if (N2CV && N2CV->isZero())
5853       return N1;
5854     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5855         VT.getVectorElementType() == MVT::i1)
5856       return getNode(ISD::XOR, DL, VT, N1, N2);
5857     break;
5858   case ISD::MUL:
5859     assert(VT.isInteger() && "This operator does not apply to FP types!");
5860     assert(N1.getValueType() == N2.getValueType() &&
5861            N1.getValueType() == VT && "Binary operator types must match!");
5862     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5863       return getNode(ISD::AND, DL, VT, N1, N2);
5864     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5865       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5866       const APInt &N2CImm = N2C->getAPIntValue();
5867       return getVScale(DL, VT, MulImm * N2CImm);
5868     }
5869     break;
5870   case ISD::UDIV:
5871   case ISD::UREM:
5872   case ISD::MULHU:
5873   case ISD::MULHS:
5874   case ISD::SDIV:
5875   case ISD::SREM:
5876   case ISD::SADDSAT:
5877   case ISD::SSUBSAT:
5878   case ISD::UADDSAT:
5879   case ISD::USUBSAT:
5880     assert(VT.isInteger() && "This operator does not apply to FP types!");
5881     assert(N1.getValueType() == N2.getValueType() &&
5882            N1.getValueType() == VT && "Binary operator types must match!");
5883     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5884       // fold (add_sat x, y) -> (or x, y) for bool types.
5885       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5886         return getNode(ISD::OR, DL, VT, N1, N2);
5887       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5888       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5889         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5890     }
5891     break;
5892   case ISD::SMIN:
5893   case ISD::UMAX:
5894     assert(VT.isInteger() && "This operator does not apply to FP types!");
5895     assert(N1.getValueType() == N2.getValueType() &&
5896            N1.getValueType() == VT && "Binary operator types must match!");
5897     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5898       return getNode(ISD::OR, DL, VT, N1, N2);
5899     break;
5900   case ISD::SMAX:
5901   case ISD::UMIN:
5902     assert(VT.isInteger() && "This operator does not apply to FP types!");
5903     assert(N1.getValueType() == N2.getValueType() &&
5904            N1.getValueType() == VT && "Binary operator types must match!");
5905     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5906       return getNode(ISD::AND, DL, VT, N1, N2);
5907     break;
5908   case ISD::FADD:
5909   case ISD::FSUB:
5910   case ISD::FMUL:
5911   case ISD::FDIV:
5912   case ISD::FREM:
5913     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5914     assert(N1.getValueType() == N2.getValueType() &&
5915            N1.getValueType() == VT && "Binary operator types must match!");
5916     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5917       return V;
5918     break;
5919   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5920     assert(N1.getValueType() == VT &&
5921            N1.getValueType().isFloatingPoint() &&
5922            N2.getValueType().isFloatingPoint() &&
5923            "Invalid FCOPYSIGN!");
5924     break;
5925   case ISD::SHL:
5926     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5927       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5928       const APInt &ShiftImm = N2C->getAPIntValue();
5929       return getVScale(DL, VT, MulImm << ShiftImm);
5930     }
5931     LLVM_FALLTHROUGH;
5932   case ISD::SRA:
5933   case ISD::SRL:
5934     if (SDValue V = simplifyShift(N1, N2))
5935       return V;
5936     LLVM_FALLTHROUGH;
5937   case ISD::ROTL:
5938   case ISD::ROTR:
5939     assert(VT == N1.getValueType() &&
5940            "Shift operators return type must be the same as their first arg");
5941     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5942            "Shifts only work on integers");
5943     assert((!VT.isVector() || VT == N2.getValueType()) &&
5944            "Vector shift amounts must be in the same as their first arg");
5945     // Verify that the shift amount VT is big enough to hold valid shift
5946     // amounts.  This catches things like trying to shift an i1024 value by an
5947     // i8, which is easy to fall into in generic code that uses
5948     // TLI.getShiftAmount().
5949     assert(N2.getValueType().getScalarSizeInBits() >=
5950                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5951            "Invalid use of small shift amount with oversized value!");
5952 
5953     // Always fold shifts of i1 values so the code generator doesn't need to
5954     // handle them.  Since we know the size of the shift has to be less than the
5955     // size of the value, the shift/rotate count is guaranteed to be zero.
5956     if (VT == MVT::i1)
5957       return N1;
5958     if (N2CV && N2CV->isZero())
5959       return N1;
5960     break;
5961   case ISD::FP_ROUND:
5962     assert(VT.isFloatingPoint() &&
5963            N1.getValueType().isFloatingPoint() &&
5964            VT.bitsLE(N1.getValueType()) &&
5965            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5966            "Invalid FP_ROUND!");
5967     if (N1.getValueType() == VT) return N1;  // noop conversion.
5968     break;
5969   case ISD::AssertSext:
5970   case ISD::AssertZext: {
5971     EVT EVT = cast<VTSDNode>(N2)->getVT();
5972     assert(VT == N1.getValueType() && "Not an inreg extend!");
5973     assert(VT.isInteger() && EVT.isInteger() &&
5974            "Cannot *_EXTEND_INREG FP types");
5975     assert(!EVT.isVector() &&
5976            "AssertSExt/AssertZExt type should be the vector element type "
5977            "rather than the vector type!");
5978     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5979     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5980     break;
5981   }
5982   case ISD::SIGN_EXTEND_INREG: {
5983     EVT EVT = cast<VTSDNode>(N2)->getVT();
5984     assert(VT == N1.getValueType() && "Not an inreg extend!");
5985     assert(VT.isInteger() && EVT.isInteger() &&
5986            "Cannot *_EXTEND_INREG FP types");
5987     assert(EVT.isVector() == VT.isVector() &&
5988            "SIGN_EXTEND_INREG type should be vector iff the operand "
5989            "type is vector!");
5990     assert((!EVT.isVector() ||
5991             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5992            "Vector element counts must match in SIGN_EXTEND_INREG");
5993     assert(EVT.bitsLE(VT) && "Not extending!");
5994     if (EVT == VT) return N1;  // Not actually extending
5995 
5996     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5997       unsigned FromBits = EVT.getScalarSizeInBits();
5998       Val <<= Val.getBitWidth() - FromBits;
5999       Val.ashrInPlace(Val.getBitWidth() - FromBits);
6000       return getConstant(Val, DL, ConstantVT);
6001     };
6002 
6003     if (N1C) {
6004       const APInt &Val = N1C->getAPIntValue();
6005       return SignExtendInReg(Val, VT);
6006     }
6007 
6008     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
6009       SmallVector<SDValue, 8> Ops;
6010       llvm::EVT OpVT = N1.getOperand(0).getValueType();
6011       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
6012         SDValue Op = N1.getOperand(i);
6013         if (Op.isUndef()) {
6014           Ops.push_back(getUNDEF(OpVT));
6015           continue;
6016         }
6017         ConstantSDNode *C = cast<ConstantSDNode>(Op);
6018         APInt Val = C->getAPIntValue();
6019         Ops.push_back(SignExtendInReg(Val, OpVT));
6020       }
6021       return getBuildVector(VT, DL, Ops);
6022     }
6023     break;
6024   }
6025   case ISD::FP_TO_SINT_SAT:
6026   case ISD::FP_TO_UINT_SAT: {
6027     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
6028            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
6029     assert(N1.getValueType().isVector() == VT.isVector() &&
6030            "FP_TO_*INT_SAT type should be vector iff the operand type is "
6031            "vector!");
6032     assert((!VT.isVector() || VT.getVectorNumElements() ==
6033                                   N1.getValueType().getVectorNumElements()) &&
6034            "Vector element counts must match in FP_TO_*INT_SAT");
6035     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
6036            "Type to saturate to must be a scalar.");
6037     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
6038            "Not extending!");
6039     break;
6040   }
6041   case ISD::EXTRACT_VECTOR_ELT:
6042     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
6043            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
6044              element type of the vector.");
6045 
6046     // Extract from an undefined value or using an undefined index is undefined.
6047     if (N1.isUndef() || N2.isUndef())
6048       return getUNDEF(VT);
6049 
6050     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
6051     // vectors. For scalable vectors we will provide appropriate support for
6052     // dealing with arbitrary indices.
6053     if (N2C && N1.getValueType().isFixedLengthVector() &&
6054         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
6055       return getUNDEF(VT);
6056 
6057     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
6058     // expanding copies of large vectors from registers. This only works for
6059     // fixed length vectors, since we need to know the exact number of
6060     // elements.
6061     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
6062         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
6063       unsigned Factor =
6064         N1.getOperand(0).getValueType().getVectorNumElements();
6065       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
6066                      N1.getOperand(N2C->getZExtValue() / Factor),
6067                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
6068     }
6069 
6070     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
6071     // lowering is expanding large vector constants.
6072     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
6073                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
6074       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
6075               N1.getValueType().isFixedLengthVector()) &&
6076              "BUILD_VECTOR used for scalable vectors");
6077       unsigned Index =
6078           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
6079       SDValue Elt = N1.getOperand(Index);
6080 
6081       if (VT != Elt.getValueType())
6082         // If the vector element type is not legal, the BUILD_VECTOR operands
6083         // are promoted and implicitly truncated, and the result implicitly
6084         // extended. Make that explicit here.
6085         Elt = getAnyExtOrTrunc(Elt, DL, VT);
6086 
6087       return Elt;
6088     }
6089 
6090     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
6091     // operations are lowered to scalars.
6092     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
6093       // If the indices are the same, return the inserted element else
6094       // if the indices are known different, extract the element from
6095       // the original vector.
6096       SDValue N1Op2 = N1.getOperand(2);
6097       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
6098 
6099       if (N1Op2C && N2C) {
6100         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
6101           if (VT == N1.getOperand(1).getValueType())
6102             return N1.getOperand(1);
6103           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
6104         }
6105         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
6106       }
6107     }
6108 
6109     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
6110     // when vector types are scalarized and v1iX is legal.
6111     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
6112     // Here we are completely ignoring the extract element index (N2),
6113     // which is fine for fixed width vectors, since any index other than 0
6114     // is undefined anyway. However, this cannot be ignored for scalable
6115     // vectors - in theory we could support this, but we don't want to do this
6116     // without a profitability check.
6117     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6118         N1.getValueType().isFixedLengthVector() &&
6119         N1.getValueType().getVectorNumElements() == 1) {
6120       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
6121                      N1.getOperand(1));
6122     }
6123     break;
6124   case ISD::EXTRACT_ELEMENT:
6125     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
6126     assert(!N1.getValueType().isVector() && !VT.isVector() &&
6127            (N1.getValueType().isInteger() == VT.isInteger()) &&
6128            N1.getValueType() != VT &&
6129            "Wrong types for EXTRACT_ELEMENT!");
6130 
6131     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
6132     // 64-bit integers into 32-bit parts.  Instead of building the extract of
6133     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
6134     if (N1.getOpcode() == ISD::BUILD_PAIR)
6135       return N1.getOperand(N2C->getZExtValue());
6136 
6137     // EXTRACT_ELEMENT of a constant int is also very common.
6138     if (N1C) {
6139       unsigned ElementSize = VT.getSizeInBits();
6140       unsigned Shift = ElementSize * N2C->getZExtValue();
6141       const APInt &Val = N1C->getAPIntValue();
6142       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
6143     }
6144     break;
6145   case ISD::EXTRACT_SUBVECTOR: {
6146     EVT N1VT = N1.getValueType();
6147     assert(VT.isVector() && N1VT.isVector() &&
6148            "Extract subvector VTs must be vectors!");
6149     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
6150            "Extract subvector VTs must have the same element type!");
6151     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
6152            "Cannot extract a scalable vector from a fixed length vector!");
6153     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6154             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
6155            "Extract subvector must be from larger vector to smaller vector!");
6156     assert(N2C && "Extract subvector index must be a constant");
6157     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6158             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
6159                 N1VT.getVectorMinNumElements()) &&
6160            "Extract subvector overflow!");
6161     assert(N2C->getAPIntValue().getBitWidth() ==
6162                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6163            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
6164 
6165     // Trivial extraction.
6166     if (VT == N1VT)
6167       return N1;
6168 
6169     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
6170     if (N1.isUndef())
6171       return getUNDEF(VT);
6172 
6173     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
6174     // the concat have the same type as the extract.
6175     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
6176         VT == N1.getOperand(0).getValueType()) {
6177       unsigned Factor = VT.getVectorMinNumElements();
6178       return N1.getOperand(N2C->getZExtValue() / Factor);
6179     }
6180 
6181     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
6182     // during shuffle legalization.
6183     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
6184         VT == N1.getOperand(1).getValueType())
6185       return N1.getOperand(1);
6186     break;
6187   }
6188   }
6189 
6190   // Perform trivial constant folding.
6191   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
6192     return SV;
6193 
6194   // Canonicalize an UNDEF to the RHS, even over a constant.
6195   if (N1.isUndef()) {
6196     if (TLI->isCommutativeBinOp(Opcode)) {
6197       std::swap(N1, N2);
6198     } else {
6199       switch (Opcode) {
6200       case ISD::SIGN_EXTEND_INREG:
6201       case ISD::SUB:
6202         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
6203       case ISD::UDIV:
6204       case ISD::SDIV:
6205       case ISD::UREM:
6206       case ISD::SREM:
6207       case ISD::SSUBSAT:
6208       case ISD::USUBSAT:
6209         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6210       }
6211     }
6212   }
6213 
6214   // Fold a bunch of operators when the RHS is undef.
6215   if (N2.isUndef()) {
6216     switch (Opcode) {
6217     case ISD::XOR:
6218       if (N1.isUndef())
6219         // Handle undef ^ undef -> 0 special case. This is a common
6220         // idiom (misuse).
6221         return getConstant(0, DL, VT);
6222       LLVM_FALLTHROUGH;
6223     case ISD::ADD:
6224     case ISD::SUB:
6225     case ISD::UDIV:
6226     case ISD::SDIV:
6227     case ISD::UREM:
6228     case ISD::SREM:
6229       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6230     case ISD::MUL:
6231     case ISD::AND:
6232     case ISD::SSUBSAT:
6233     case ISD::USUBSAT:
6234       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6235     case ISD::OR:
6236     case ISD::SADDSAT:
6237     case ISD::UADDSAT:
6238       return getAllOnesConstant(DL, VT);
6239     }
6240   }
6241 
6242   // Memoize this node if possible.
6243   SDNode *N;
6244   SDVTList VTs = getVTList(VT);
6245   SDValue Ops[] = {N1, N2};
6246   if (VT != MVT::Glue) {
6247     FoldingSetNodeID ID;
6248     AddNodeIDNode(ID, Opcode, VTs, Ops);
6249     void *IP = nullptr;
6250     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6251       E->intersectFlagsWith(Flags);
6252       return SDValue(E, 0);
6253     }
6254 
6255     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6256     N->setFlags(Flags);
6257     createOperands(N, Ops);
6258     CSEMap.InsertNode(N, IP);
6259   } else {
6260     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6261     createOperands(N, Ops);
6262   }
6263 
6264   InsertNode(N);
6265   SDValue V = SDValue(N, 0);
6266   NewSDValueDbgMsg(V, "Creating new node: ", this);
6267   return V;
6268 }
6269 
6270 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6271                               SDValue N1, SDValue N2, SDValue N3) {
6272   SDNodeFlags Flags;
6273   if (Inserter)
6274     Flags = Inserter->getFlags();
6275   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6276 }
6277 
6278 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6279                               SDValue N1, SDValue N2, SDValue N3,
6280                               const SDNodeFlags Flags) {
6281   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6282          N2.getOpcode() != ISD::DELETED_NODE &&
6283          N3.getOpcode() != ISD::DELETED_NODE &&
6284          "Operand is DELETED_NODE!");
6285   // Perform various simplifications.
6286   switch (Opcode) {
6287   case ISD::FMA: {
6288     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6289     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6290            N3.getValueType() == VT && "FMA types must match!");
6291     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6292     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6293     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6294     if (N1CFP && N2CFP && N3CFP) {
6295       APFloat  V1 = N1CFP->getValueAPF();
6296       const APFloat &V2 = N2CFP->getValueAPF();
6297       const APFloat &V3 = N3CFP->getValueAPF();
6298       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6299       return getConstantFP(V1, DL, VT);
6300     }
6301     break;
6302   }
6303   case ISD::BUILD_VECTOR: {
6304     // Attempt to simplify BUILD_VECTOR.
6305     SDValue Ops[] = {N1, N2, N3};
6306     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6307       return V;
6308     break;
6309   }
6310   case ISD::CONCAT_VECTORS: {
6311     SDValue Ops[] = {N1, N2, N3};
6312     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6313       return V;
6314     break;
6315   }
6316   case ISD::SETCC: {
6317     assert(VT.isInteger() && "SETCC result type must be an integer!");
6318     assert(N1.getValueType() == N2.getValueType() &&
6319            "SETCC operands must have the same type!");
6320     assert(VT.isVector() == N1.getValueType().isVector() &&
6321            "SETCC type should be vector iff the operand type is vector!");
6322     assert((!VT.isVector() || VT.getVectorElementCount() ==
6323                                   N1.getValueType().getVectorElementCount()) &&
6324            "SETCC vector element counts must match!");
6325     // Use FoldSetCC to simplify SETCC's.
6326     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6327       return V;
6328     // Vector constant folding.
6329     SDValue Ops[] = {N1, N2, N3};
6330     if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
6331       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6332       return V;
6333     }
6334     break;
6335   }
6336   case ISD::SELECT:
6337   case ISD::VSELECT:
6338     if (SDValue V = simplifySelect(N1, N2, N3))
6339       return V;
6340     break;
6341   case ISD::VECTOR_SHUFFLE:
6342     llvm_unreachable("should use getVectorShuffle constructor!");
6343   case ISD::VECTOR_SPLICE: {
6344     if (cast<ConstantSDNode>(N3)->isNullValue())
6345       return N1;
6346     break;
6347   }
6348   case ISD::INSERT_VECTOR_ELT: {
6349     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6350     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6351     // for scalable vectors where we will generate appropriate code to
6352     // deal with out-of-bounds cases correctly.
6353     if (N3C && N1.getValueType().isFixedLengthVector() &&
6354         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6355       return getUNDEF(VT);
6356 
6357     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6358     if (N3.isUndef())
6359       return getUNDEF(VT);
6360 
6361     // If the inserted element is an UNDEF, just use the input vector.
6362     if (N2.isUndef())
6363       return N1;
6364 
6365     break;
6366   }
6367   case ISD::INSERT_SUBVECTOR: {
6368     // Inserting undef into undef is still undef.
6369     if (N1.isUndef() && N2.isUndef())
6370       return getUNDEF(VT);
6371 
6372     EVT N2VT = N2.getValueType();
6373     assert(VT == N1.getValueType() &&
6374            "Dest and insert subvector source types must match!");
6375     assert(VT.isVector() && N2VT.isVector() &&
6376            "Insert subvector VTs must be vectors!");
6377     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6378            "Cannot insert a scalable vector into a fixed length vector!");
6379     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6380             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6381            "Insert subvector must be from smaller vector to larger vector!");
6382     assert(isa<ConstantSDNode>(N3) &&
6383            "Insert subvector index must be constant");
6384     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6385             (N2VT.getVectorMinNumElements() +
6386              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6387                 VT.getVectorMinNumElements()) &&
6388            "Insert subvector overflow!");
6389     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6390                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6391            "Constant index for INSERT_SUBVECTOR has an invalid size");
6392 
6393     // Trivial insertion.
6394     if (VT == N2VT)
6395       return N2;
6396 
6397     // If this is an insert of an extracted vector into an undef vector, we
6398     // can just use the input to the extract.
6399     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6400         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6401       return N2.getOperand(0);
6402     break;
6403   }
6404   case ISD::BITCAST:
6405     // Fold bit_convert nodes from a type to themselves.
6406     if (N1.getValueType() == VT)
6407       return N1;
6408     break;
6409   }
6410 
6411   // Memoize node if it doesn't produce a flag.
6412   SDNode *N;
6413   SDVTList VTs = getVTList(VT);
6414   SDValue Ops[] = {N1, N2, N3};
6415   if (VT != MVT::Glue) {
6416     FoldingSetNodeID ID;
6417     AddNodeIDNode(ID, Opcode, VTs, Ops);
6418     void *IP = nullptr;
6419     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6420       E->intersectFlagsWith(Flags);
6421       return SDValue(E, 0);
6422     }
6423 
6424     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6425     N->setFlags(Flags);
6426     createOperands(N, Ops);
6427     CSEMap.InsertNode(N, IP);
6428   } else {
6429     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6430     createOperands(N, Ops);
6431   }
6432 
6433   InsertNode(N);
6434   SDValue V = SDValue(N, 0);
6435   NewSDValueDbgMsg(V, "Creating new node: ", this);
6436   return V;
6437 }
6438 
6439 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6440                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6441   SDValue Ops[] = { N1, N2, N3, N4 };
6442   return getNode(Opcode, DL, VT, Ops);
6443 }
6444 
6445 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6446                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6447                               SDValue N5) {
6448   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6449   return getNode(Opcode, DL, VT, Ops);
6450 }
6451 
6452 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6453 /// the incoming stack arguments to be loaded from the stack.
6454 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6455   SmallVector<SDValue, 8> ArgChains;
6456 
6457   // Include the original chain at the beginning of the list. When this is
6458   // used by target LowerCall hooks, this helps legalize find the
6459   // CALLSEQ_BEGIN node.
6460   ArgChains.push_back(Chain);
6461 
6462   // Add a chain value for each stack argument.
6463   for (SDNode *U : getEntryNode().getNode()->uses())
6464     if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
6465       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6466         if (FI->getIndex() < 0)
6467           ArgChains.push_back(SDValue(L, 1));
6468 
6469   // Build a tokenfactor for all the chains.
6470   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6471 }
6472 
6473 /// getMemsetValue - Vectorized representation of the memset value
6474 /// operand.
6475 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6476                               const SDLoc &dl) {
6477   assert(!Value.isUndef());
6478 
6479   unsigned NumBits = VT.getScalarSizeInBits();
6480   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6481     assert(C->getAPIntValue().getBitWidth() == 8);
6482     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6483     if (VT.isInteger()) {
6484       bool IsOpaque = VT.getSizeInBits() > 64 ||
6485           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6486       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6487     }
6488     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6489                              VT);
6490   }
6491 
6492   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6493   EVT IntVT = VT.getScalarType();
6494   if (!IntVT.isInteger())
6495     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6496 
6497   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6498   if (NumBits > 8) {
6499     // Use a multiplication with 0x010101... to extend the input to the
6500     // required length.
6501     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6502     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6503                         DAG.getConstant(Magic, dl, IntVT));
6504   }
6505 
6506   if (VT != Value.getValueType() && !VT.isInteger())
6507     Value = DAG.getBitcast(VT.getScalarType(), Value);
6508   if (VT != Value.getValueType())
6509     Value = DAG.getSplatBuildVector(VT, dl, Value);
6510 
6511   return Value;
6512 }
6513 
6514 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6515 /// used when a memcpy is turned into a memset when the source is a constant
6516 /// string ptr.
6517 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6518                                   const TargetLowering &TLI,
6519                                   const ConstantDataArraySlice &Slice) {
6520   // Handle vector with all elements zero.
6521   if (Slice.Array == nullptr) {
6522     if (VT.isInteger())
6523       return DAG.getConstant(0, dl, VT);
6524     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6525       return DAG.getConstantFP(0.0, dl, VT);
6526     if (VT.isVector()) {
6527       unsigned NumElts = VT.getVectorNumElements();
6528       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6529       return DAG.getNode(ISD::BITCAST, dl, VT,
6530                          DAG.getConstant(0, dl,
6531                                          EVT::getVectorVT(*DAG.getContext(),
6532                                                           EltVT, NumElts)));
6533     }
6534     llvm_unreachable("Expected type!");
6535   }
6536 
6537   assert(!VT.isVector() && "Can't handle vector type here!");
6538   unsigned NumVTBits = VT.getSizeInBits();
6539   unsigned NumVTBytes = NumVTBits / 8;
6540   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6541 
6542   APInt Val(NumVTBits, 0);
6543   if (DAG.getDataLayout().isLittleEndian()) {
6544     for (unsigned i = 0; i != NumBytes; ++i)
6545       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6546   } else {
6547     for (unsigned i = 0; i != NumBytes; ++i)
6548       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6549   }
6550 
6551   // If the "cost" of materializing the integer immediate is less than the cost
6552   // of a load, then it is cost effective to turn the load into the immediate.
6553   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6554   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6555     return DAG.getConstant(Val, dl, VT);
6556   return SDValue();
6557 }
6558 
6559 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6560                                            const SDLoc &DL,
6561                                            const SDNodeFlags Flags) {
6562   EVT VT = Base.getValueType();
6563   SDValue Index;
6564 
6565   if (Offset.isScalable())
6566     Index = getVScale(DL, Base.getValueType(),
6567                       APInt(Base.getValueSizeInBits().getFixedSize(),
6568                             Offset.getKnownMinSize()));
6569   else
6570     Index = getConstant(Offset.getFixedSize(), DL, VT);
6571 
6572   return getMemBasePlusOffset(Base, Index, DL, Flags);
6573 }
6574 
6575 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6576                                            const SDLoc &DL,
6577                                            const SDNodeFlags Flags) {
6578   assert(Offset.getValueType().isInteger());
6579   EVT BasePtrVT = Ptr.getValueType();
6580   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6581 }
6582 
6583 /// Returns true if memcpy source is constant data.
6584 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6585   uint64_t SrcDelta = 0;
6586   GlobalAddressSDNode *G = nullptr;
6587   if (Src.getOpcode() == ISD::GlobalAddress)
6588     G = cast<GlobalAddressSDNode>(Src);
6589   else if (Src.getOpcode() == ISD::ADD &&
6590            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6591            Src.getOperand(1).getOpcode() == ISD::Constant) {
6592     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6593     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6594   }
6595   if (!G)
6596     return false;
6597 
6598   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6599                                   SrcDelta + G->getOffset());
6600 }
6601 
6602 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6603                                       SelectionDAG &DAG) {
6604   // On Darwin, -Os means optimize for size without hurting performance, so
6605   // only really optimize for size when -Oz (MinSize) is used.
6606   if (MF.getTarget().getTargetTriple().isOSDarwin())
6607     return MF.getFunction().hasMinSize();
6608   return DAG.shouldOptForSize();
6609 }
6610 
6611 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6612                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6613                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6614                           SmallVector<SDValue, 16> &OutStoreChains) {
6615   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6616   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6617   SmallVector<SDValue, 16> GluedLoadChains;
6618   for (unsigned i = From; i < To; ++i) {
6619     OutChains.push_back(OutLoadChains[i]);
6620     GluedLoadChains.push_back(OutLoadChains[i]);
6621   }
6622 
6623   // Chain for all loads.
6624   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6625                                   GluedLoadChains);
6626 
6627   for (unsigned i = From; i < To; ++i) {
6628     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6629     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6630                                   ST->getBasePtr(), ST->getMemoryVT(),
6631                                   ST->getMemOperand());
6632     OutChains.push_back(NewStore);
6633   }
6634 }
6635 
6636 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6637                                        SDValue Chain, SDValue Dst, SDValue Src,
6638                                        uint64_t Size, Align Alignment,
6639                                        bool isVol, bool AlwaysInline,
6640                                        MachinePointerInfo DstPtrInfo,
6641                                        MachinePointerInfo SrcPtrInfo,
6642                                        const AAMDNodes &AAInfo) {
6643   // Turn a memcpy of undef to nop.
6644   // FIXME: We need to honor volatile even is Src is undef.
6645   if (Src.isUndef())
6646     return Chain;
6647 
6648   // Expand memcpy to a series of load and store ops if the size operand falls
6649   // below a certain threshold.
6650   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6651   // rather than maybe a humongous number of loads and stores.
6652   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6653   const DataLayout &DL = DAG.getDataLayout();
6654   LLVMContext &C = *DAG.getContext();
6655   std::vector<EVT> MemOps;
6656   bool DstAlignCanChange = false;
6657   MachineFunction &MF = DAG.getMachineFunction();
6658   MachineFrameInfo &MFI = MF.getFrameInfo();
6659   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6660   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6661   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6662     DstAlignCanChange = true;
6663   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6664   if (!SrcAlign || Alignment > *SrcAlign)
6665     SrcAlign = Alignment;
6666   assert(SrcAlign && "SrcAlign must be set");
6667   ConstantDataArraySlice Slice;
6668   // If marked as volatile, perform a copy even when marked as constant.
6669   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6670   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6671   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6672   const MemOp Op = isZeroConstant
6673                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6674                                     /*IsZeroMemset*/ true, isVol)
6675                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6676                                      *SrcAlign, isVol, CopyFromConstant);
6677   if (!TLI.findOptimalMemOpLowering(
6678           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6679           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6680     return SDValue();
6681 
6682   if (DstAlignCanChange) {
6683     Type *Ty = MemOps[0].getTypeForEVT(C);
6684     Align NewAlign = DL.getABITypeAlign(Ty);
6685 
6686     // Don't promote to an alignment that would require dynamic stack
6687     // realignment.
6688     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6689     if (!TRI->hasStackRealignment(MF))
6690       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6691         NewAlign = NewAlign / 2;
6692 
6693     if (NewAlign > Alignment) {
6694       // Give the stack frame object a larger alignment if needed.
6695       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6696         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6697       Alignment = NewAlign;
6698     }
6699   }
6700 
6701   // Prepare AAInfo for loads/stores after lowering this memcpy.
6702   AAMDNodes NewAAInfo = AAInfo;
6703   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6704 
6705   MachineMemOperand::Flags MMOFlags =
6706       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6707   SmallVector<SDValue, 16> OutLoadChains;
6708   SmallVector<SDValue, 16> OutStoreChains;
6709   SmallVector<SDValue, 32> OutChains;
6710   unsigned NumMemOps = MemOps.size();
6711   uint64_t SrcOff = 0, DstOff = 0;
6712   for (unsigned i = 0; i != NumMemOps; ++i) {
6713     EVT VT = MemOps[i];
6714     unsigned VTSize = VT.getSizeInBits() / 8;
6715     SDValue Value, Store;
6716 
6717     if (VTSize > Size) {
6718       // Issuing an unaligned load / store pair  that overlaps with the previous
6719       // pair. Adjust the offset accordingly.
6720       assert(i == NumMemOps-1 && i != 0);
6721       SrcOff -= VTSize - Size;
6722       DstOff -= VTSize - Size;
6723     }
6724 
6725     if (CopyFromConstant &&
6726         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6727       // It's unlikely a store of a vector immediate can be done in a single
6728       // instruction. It would require a load from a constantpool first.
6729       // We only handle zero vectors here.
6730       // FIXME: Handle other cases where store of vector immediate is done in
6731       // a single instruction.
6732       ConstantDataArraySlice SubSlice;
6733       if (SrcOff < Slice.Length) {
6734         SubSlice = Slice;
6735         SubSlice.move(SrcOff);
6736       } else {
6737         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6738         SubSlice.Array = nullptr;
6739         SubSlice.Offset = 0;
6740         SubSlice.Length = VTSize;
6741       }
6742       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6743       if (Value.getNode()) {
6744         Store = DAG.getStore(
6745             Chain, dl, Value,
6746             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6747             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6748         OutChains.push_back(Store);
6749       }
6750     }
6751 
6752     if (!Store.getNode()) {
6753       // The type might not be legal for the target.  This should only happen
6754       // if the type is smaller than a legal type, as on PPC, so the right
6755       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6756       // to Load/Store if NVT==VT.
6757       // FIXME does the case above also need this?
6758       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6759       assert(NVT.bitsGE(VT));
6760 
6761       bool isDereferenceable =
6762         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6763       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6764       if (isDereferenceable)
6765         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6766 
6767       Value = DAG.getExtLoad(
6768           ISD::EXTLOAD, dl, NVT, Chain,
6769           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6770           SrcPtrInfo.getWithOffset(SrcOff), VT,
6771           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6772       OutLoadChains.push_back(Value.getValue(1));
6773 
6774       Store = DAG.getTruncStore(
6775           Chain, dl, Value,
6776           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6777           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6778       OutStoreChains.push_back(Store);
6779     }
6780     SrcOff += VTSize;
6781     DstOff += VTSize;
6782     Size -= VTSize;
6783   }
6784 
6785   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6786                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6787   unsigned NumLdStInMemcpy = OutStoreChains.size();
6788 
6789   if (NumLdStInMemcpy) {
6790     // It may be that memcpy might be converted to memset if it's memcpy
6791     // of constants. In such a case, we won't have loads and stores, but
6792     // just stores. In the absence of loads, there is nothing to gang up.
6793     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6794       // If target does not care, just leave as it.
6795       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6796         OutChains.push_back(OutLoadChains[i]);
6797         OutChains.push_back(OutStoreChains[i]);
6798       }
6799     } else {
6800       // Ld/St less than/equal limit set by target.
6801       if (NumLdStInMemcpy <= GluedLdStLimit) {
6802           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6803                                         NumLdStInMemcpy, OutLoadChains,
6804                                         OutStoreChains);
6805       } else {
6806         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6807         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6808         unsigned GlueIter = 0;
6809 
6810         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6811           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6812           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6813 
6814           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6815                                        OutLoadChains, OutStoreChains);
6816           GlueIter += GluedLdStLimit;
6817         }
6818 
6819         // Residual ld/st.
6820         if (RemainingLdStInMemcpy) {
6821           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6822                                         RemainingLdStInMemcpy, OutLoadChains,
6823                                         OutStoreChains);
6824         }
6825       }
6826     }
6827   }
6828   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6829 }
6830 
6831 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6832                                         SDValue Chain, SDValue Dst, SDValue Src,
6833                                         uint64_t Size, Align Alignment,
6834                                         bool isVol, bool AlwaysInline,
6835                                         MachinePointerInfo DstPtrInfo,
6836                                         MachinePointerInfo SrcPtrInfo,
6837                                         const AAMDNodes &AAInfo) {
6838   // Turn a memmove of undef to nop.
6839   // FIXME: We need to honor volatile even is Src is undef.
6840   if (Src.isUndef())
6841     return Chain;
6842 
6843   // Expand memmove to a series of load and store ops if the size operand falls
6844   // below a certain threshold.
6845   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6846   const DataLayout &DL = DAG.getDataLayout();
6847   LLVMContext &C = *DAG.getContext();
6848   std::vector<EVT> MemOps;
6849   bool DstAlignCanChange = false;
6850   MachineFunction &MF = DAG.getMachineFunction();
6851   MachineFrameInfo &MFI = MF.getFrameInfo();
6852   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6853   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6854   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6855     DstAlignCanChange = true;
6856   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6857   if (!SrcAlign || Alignment > *SrcAlign)
6858     SrcAlign = Alignment;
6859   assert(SrcAlign && "SrcAlign must be set");
6860   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6861   if (!TLI.findOptimalMemOpLowering(
6862           MemOps, Limit,
6863           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6864                       /*IsVolatile*/ true),
6865           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6866           MF.getFunction().getAttributes()))
6867     return SDValue();
6868 
6869   if (DstAlignCanChange) {
6870     Type *Ty = MemOps[0].getTypeForEVT(C);
6871     Align NewAlign = DL.getABITypeAlign(Ty);
6872     if (NewAlign > Alignment) {
6873       // Give the stack frame object a larger alignment if needed.
6874       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6875         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6876       Alignment = NewAlign;
6877     }
6878   }
6879 
6880   // Prepare AAInfo for loads/stores after lowering this memmove.
6881   AAMDNodes NewAAInfo = AAInfo;
6882   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6883 
6884   MachineMemOperand::Flags MMOFlags =
6885       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6886   uint64_t SrcOff = 0, DstOff = 0;
6887   SmallVector<SDValue, 8> LoadValues;
6888   SmallVector<SDValue, 8> LoadChains;
6889   SmallVector<SDValue, 8> OutChains;
6890   unsigned NumMemOps = MemOps.size();
6891   for (unsigned i = 0; i < NumMemOps; i++) {
6892     EVT VT = MemOps[i];
6893     unsigned VTSize = VT.getSizeInBits() / 8;
6894     SDValue Value;
6895 
6896     bool isDereferenceable =
6897       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6898     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6899     if (isDereferenceable)
6900       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6901 
6902     Value = DAG.getLoad(
6903         VT, dl, Chain,
6904         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6905         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6906     LoadValues.push_back(Value);
6907     LoadChains.push_back(Value.getValue(1));
6908     SrcOff += VTSize;
6909   }
6910   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6911   OutChains.clear();
6912   for (unsigned i = 0; i < NumMemOps; i++) {
6913     EVT VT = MemOps[i];
6914     unsigned VTSize = VT.getSizeInBits() / 8;
6915     SDValue Store;
6916 
6917     Store = DAG.getStore(
6918         Chain, dl, LoadValues[i],
6919         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6920         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6921     OutChains.push_back(Store);
6922     DstOff += VTSize;
6923   }
6924 
6925   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6926 }
6927 
6928 /// Lower the call to 'memset' intrinsic function into a series of store
6929 /// operations.
6930 ///
6931 /// \param DAG Selection DAG where lowered code is placed.
6932 /// \param dl Link to corresponding IR location.
6933 /// \param Chain Control flow dependency.
6934 /// \param Dst Pointer to destination memory location.
6935 /// \param Src Value of byte to write into the memory.
6936 /// \param Size Number of bytes to write.
6937 /// \param Alignment Alignment of the destination in bytes.
6938 /// \param isVol True if destination is volatile.
6939 /// \param DstPtrInfo IR information on the memory pointer.
6940 /// \returns New head in the control flow, if lowering was successful, empty
6941 /// SDValue otherwise.
6942 ///
6943 /// The function tries to replace 'llvm.memset' intrinsic with several store
6944 /// operations and value calculation code. This is usually profitable for small
6945 /// memory size.
6946 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6947                                SDValue Chain, SDValue Dst, SDValue Src,
6948                                uint64_t Size, Align Alignment, bool isVol,
6949                                MachinePointerInfo DstPtrInfo,
6950                                const AAMDNodes &AAInfo) {
6951   // Turn a memset of undef to nop.
6952   // FIXME: We need to honor volatile even is Src is undef.
6953   if (Src.isUndef())
6954     return Chain;
6955 
6956   // Expand memset to a series of load/store ops if the size operand
6957   // falls below a certain threshold.
6958   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6959   std::vector<EVT> MemOps;
6960   bool DstAlignCanChange = false;
6961   MachineFunction &MF = DAG.getMachineFunction();
6962   MachineFrameInfo &MFI = MF.getFrameInfo();
6963   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6964   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6965   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6966     DstAlignCanChange = true;
6967   bool IsZeroVal =
6968       isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
6969   if (!TLI.findOptimalMemOpLowering(
6970           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6971           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6972           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6973     return SDValue();
6974 
6975   if (DstAlignCanChange) {
6976     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6977     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6978     if (NewAlign > Alignment) {
6979       // Give the stack frame object a larger alignment if needed.
6980       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6981         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6982       Alignment = NewAlign;
6983     }
6984   }
6985 
6986   SmallVector<SDValue, 8> OutChains;
6987   uint64_t DstOff = 0;
6988   unsigned NumMemOps = MemOps.size();
6989 
6990   // Find the largest store and generate the bit pattern for it.
6991   EVT LargestVT = MemOps[0];
6992   for (unsigned i = 1; i < NumMemOps; i++)
6993     if (MemOps[i].bitsGT(LargestVT))
6994       LargestVT = MemOps[i];
6995   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6996 
6997   // Prepare AAInfo for loads/stores after lowering this memset.
6998   AAMDNodes NewAAInfo = AAInfo;
6999   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
7000 
7001   for (unsigned i = 0; i < NumMemOps; i++) {
7002     EVT VT = MemOps[i];
7003     unsigned VTSize = VT.getSizeInBits() / 8;
7004     if (VTSize > Size) {
7005       // Issuing an unaligned load / store pair  that overlaps with the previous
7006       // pair. Adjust the offset accordingly.
7007       assert(i == NumMemOps-1 && i != 0);
7008       DstOff -= VTSize - Size;
7009     }
7010 
7011     // If this store is smaller than the largest store see whether we can get
7012     // the smaller value for free with a truncate.
7013     SDValue Value = MemSetValue;
7014     if (VT.bitsLT(LargestVT)) {
7015       if (!LargestVT.isVector() && !VT.isVector() &&
7016           TLI.isTruncateFree(LargestVT, VT))
7017         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
7018       else
7019         Value = getMemsetValue(Src, VT, DAG, dl);
7020     }
7021     assert(Value.getValueType() == VT && "Value with wrong type.");
7022     SDValue Store = DAG.getStore(
7023         Chain, dl, Value,
7024         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
7025         DstPtrInfo.getWithOffset(DstOff), Alignment,
7026         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
7027         NewAAInfo);
7028     OutChains.push_back(Store);
7029     DstOff += VT.getSizeInBits() / 8;
7030     Size -= VTSize;
7031   }
7032 
7033   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
7034 }
7035 
7036 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
7037                                             unsigned AS) {
7038   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
7039   // pointer operands can be losslessly bitcasted to pointers of address space 0
7040   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
7041     report_fatal_error("cannot lower memory intrinsic in address space " +
7042                        Twine(AS));
7043   }
7044 }
7045 
7046 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
7047                                 SDValue Src, SDValue Size, Align Alignment,
7048                                 bool isVol, bool AlwaysInline, bool isTailCall,
7049                                 MachinePointerInfo DstPtrInfo,
7050                                 MachinePointerInfo SrcPtrInfo,
7051                                 const AAMDNodes &AAInfo) {
7052   // Check to see if we should lower the memcpy to loads and stores first.
7053   // For cases within the target-specified limits, this is the best choice.
7054   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7055   if (ConstantSize) {
7056     // Memcpy with size zero? Just return the original chain.
7057     if (ConstantSize->isZero())
7058       return Chain;
7059 
7060     SDValue Result = getMemcpyLoadsAndStores(
7061         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7062         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7063     if (Result.getNode())
7064       return Result;
7065   }
7066 
7067   // Then check to see if we should lower the memcpy with target-specific
7068   // code. If the target chooses to do this, this is the next best.
7069   if (TSI) {
7070     SDValue Result = TSI->EmitTargetCodeForMemcpy(
7071         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
7072         DstPtrInfo, SrcPtrInfo);
7073     if (Result.getNode())
7074       return Result;
7075   }
7076 
7077   // If we really need inline code and the target declined to provide it,
7078   // use a (potentially long) sequence of loads and stores.
7079   if (AlwaysInline) {
7080     assert(ConstantSize && "AlwaysInline requires a constant size!");
7081     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
7082                                    ConstantSize->getZExtValue(), Alignment,
7083                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
7084   }
7085 
7086   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7087   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7088 
7089   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
7090   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
7091   // respect volatile, so they may do things like read or write memory
7092   // beyond the given memory regions. But fixing this isn't easy, and most
7093   // people don't care.
7094 
7095   // Emit a library call.
7096   TargetLowering::ArgListTy Args;
7097   TargetLowering::ArgListEntry Entry;
7098   Entry.Ty = Type::getInt8PtrTy(*getContext());
7099   Entry.Node = Dst; Args.push_back(Entry);
7100   Entry.Node = Src; Args.push_back(Entry);
7101 
7102   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7103   Entry.Node = Size; Args.push_back(Entry);
7104   // FIXME: pass in SDLoc
7105   TargetLowering::CallLoweringInfo CLI(*this);
7106   CLI.setDebugLoc(dl)
7107       .setChain(Chain)
7108       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
7109                     Dst.getValueType().getTypeForEVT(*getContext()),
7110                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
7111                                       TLI->getPointerTy(getDataLayout())),
7112                     std::move(Args))
7113       .setDiscardResult()
7114       .setTailCall(isTailCall);
7115 
7116   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7117   return CallResult.second;
7118 }
7119 
7120 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
7121                                       SDValue Dst, unsigned DstAlign,
7122                                       SDValue Src, unsigned SrcAlign,
7123                                       SDValue Size, Type *SizeTy,
7124                                       unsigned ElemSz, bool isTailCall,
7125                                       MachinePointerInfo DstPtrInfo,
7126                                       MachinePointerInfo SrcPtrInfo) {
7127   // Emit a library call.
7128   TargetLowering::ArgListTy Args;
7129   TargetLowering::ArgListEntry Entry;
7130   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7131   Entry.Node = Dst;
7132   Args.push_back(Entry);
7133 
7134   Entry.Node = Src;
7135   Args.push_back(Entry);
7136 
7137   Entry.Ty = SizeTy;
7138   Entry.Node = Size;
7139   Args.push_back(Entry);
7140 
7141   RTLIB::Libcall LibraryCall =
7142       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7143   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7144     report_fatal_error("Unsupported element size");
7145 
7146   TargetLowering::CallLoweringInfo CLI(*this);
7147   CLI.setDebugLoc(dl)
7148       .setChain(Chain)
7149       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7150                     Type::getVoidTy(*getContext()),
7151                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7152                                       TLI->getPointerTy(getDataLayout())),
7153                     std::move(Args))
7154       .setDiscardResult()
7155       .setTailCall(isTailCall);
7156 
7157   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7158   return CallResult.second;
7159 }
7160 
7161 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
7162                                  SDValue Src, SDValue Size, Align Alignment,
7163                                  bool isVol, bool isTailCall,
7164                                  MachinePointerInfo DstPtrInfo,
7165                                  MachinePointerInfo SrcPtrInfo,
7166                                  const AAMDNodes &AAInfo) {
7167   // Check to see if we should lower the memmove to loads and stores first.
7168   // For cases within the target-specified limits, this is the best choice.
7169   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7170   if (ConstantSize) {
7171     // Memmove with size zero? Just return the original chain.
7172     if (ConstantSize->isZero())
7173       return Chain;
7174 
7175     SDValue Result = getMemmoveLoadsAndStores(
7176         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7177         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7178     if (Result.getNode())
7179       return Result;
7180   }
7181 
7182   // Then check to see if we should lower the memmove with target-specific
7183   // code. If the target chooses to do this, this is the next best.
7184   if (TSI) {
7185     SDValue Result =
7186         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
7187                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
7188     if (Result.getNode())
7189       return Result;
7190   }
7191 
7192   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7193   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7194 
7195   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7196   // not be safe.  See memcpy above for more details.
7197 
7198   // Emit a library call.
7199   TargetLowering::ArgListTy Args;
7200   TargetLowering::ArgListEntry Entry;
7201   Entry.Ty = Type::getInt8PtrTy(*getContext());
7202   Entry.Node = Dst; Args.push_back(Entry);
7203   Entry.Node = Src; Args.push_back(Entry);
7204 
7205   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7206   Entry.Node = Size; Args.push_back(Entry);
7207   // FIXME:  pass in SDLoc
7208   TargetLowering::CallLoweringInfo CLI(*this);
7209   CLI.setDebugLoc(dl)
7210       .setChain(Chain)
7211       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7212                     Dst.getValueType().getTypeForEVT(*getContext()),
7213                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7214                                       TLI->getPointerTy(getDataLayout())),
7215                     std::move(Args))
7216       .setDiscardResult()
7217       .setTailCall(isTailCall);
7218 
7219   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7220   return CallResult.second;
7221 }
7222 
7223 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7224                                        SDValue Dst, unsigned DstAlign,
7225                                        SDValue Src, unsigned SrcAlign,
7226                                        SDValue Size, Type *SizeTy,
7227                                        unsigned ElemSz, bool isTailCall,
7228                                        MachinePointerInfo DstPtrInfo,
7229                                        MachinePointerInfo SrcPtrInfo) {
7230   // Emit a library call.
7231   TargetLowering::ArgListTy Args;
7232   TargetLowering::ArgListEntry Entry;
7233   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7234   Entry.Node = Dst;
7235   Args.push_back(Entry);
7236 
7237   Entry.Node = Src;
7238   Args.push_back(Entry);
7239 
7240   Entry.Ty = SizeTy;
7241   Entry.Node = Size;
7242   Args.push_back(Entry);
7243 
7244   RTLIB::Libcall LibraryCall =
7245       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7246   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7247     report_fatal_error("Unsupported element size");
7248 
7249   TargetLowering::CallLoweringInfo CLI(*this);
7250   CLI.setDebugLoc(dl)
7251       .setChain(Chain)
7252       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7253                     Type::getVoidTy(*getContext()),
7254                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7255                                       TLI->getPointerTy(getDataLayout())),
7256                     std::move(Args))
7257       .setDiscardResult()
7258       .setTailCall(isTailCall);
7259 
7260   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7261   return CallResult.second;
7262 }
7263 
7264 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7265                                 SDValue Src, SDValue Size, Align Alignment,
7266                                 bool isVol, bool isTailCall,
7267                                 MachinePointerInfo DstPtrInfo,
7268                                 const AAMDNodes &AAInfo) {
7269   // Check to see if we should lower the memset to stores first.
7270   // For cases within the target-specified limits, this is the best choice.
7271   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7272   if (ConstantSize) {
7273     // Memset with size zero? Just return the original chain.
7274     if (ConstantSize->isZero())
7275       return Chain;
7276 
7277     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7278                                      ConstantSize->getZExtValue(), Alignment,
7279                                      isVol, DstPtrInfo, AAInfo);
7280 
7281     if (Result.getNode())
7282       return Result;
7283   }
7284 
7285   // Then check to see if we should lower the memset with target-specific
7286   // code. If the target chooses to do this, this is the next best.
7287   if (TSI) {
7288     SDValue Result = TSI->EmitTargetCodeForMemset(
7289         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
7290     if (Result.getNode())
7291       return Result;
7292   }
7293 
7294   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7295 
7296   // Emit a library call.
7297   TargetLowering::ArgListTy Args;
7298   TargetLowering::ArgListEntry Entry;
7299   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
7300   Args.push_back(Entry);
7301   Entry.Node = Src;
7302   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
7303   Args.push_back(Entry);
7304   Entry.Node = Size;
7305   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7306   Args.push_back(Entry);
7307 
7308   // FIXME: pass in SDLoc
7309   TargetLowering::CallLoweringInfo CLI(*this);
7310   CLI.setDebugLoc(dl)
7311       .setChain(Chain)
7312       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7313                     Dst.getValueType().getTypeForEVT(*getContext()),
7314                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7315                                       TLI->getPointerTy(getDataLayout())),
7316                     std::move(Args))
7317       .setDiscardResult()
7318       .setTailCall(isTailCall);
7319 
7320   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7321   return CallResult.second;
7322 }
7323 
7324 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7325                                       SDValue Dst, unsigned DstAlign,
7326                                       SDValue Value, SDValue Size, Type *SizeTy,
7327                                       unsigned ElemSz, bool isTailCall,
7328                                       MachinePointerInfo DstPtrInfo) {
7329   // Emit a library call.
7330   TargetLowering::ArgListTy Args;
7331   TargetLowering::ArgListEntry Entry;
7332   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7333   Entry.Node = Dst;
7334   Args.push_back(Entry);
7335 
7336   Entry.Ty = Type::getInt8Ty(*getContext());
7337   Entry.Node = Value;
7338   Args.push_back(Entry);
7339 
7340   Entry.Ty = SizeTy;
7341   Entry.Node = Size;
7342   Args.push_back(Entry);
7343 
7344   RTLIB::Libcall LibraryCall =
7345       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7346   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7347     report_fatal_error("Unsupported element size");
7348 
7349   TargetLowering::CallLoweringInfo CLI(*this);
7350   CLI.setDebugLoc(dl)
7351       .setChain(Chain)
7352       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7353                     Type::getVoidTy(*getContext()),
7354                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7355                                       TLI->getPointerTy(getDataLayout())),
7356                     std::move(Args))
7357       .setDiscardResult()
7358       .setTailCall(isTailCall);
7359 
7360   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7361   return CallResult.second;
7362 }
7363 
7364 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7365                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7366                                 MachineMemOperand *MMO) {
7367   FoldingSetNodeID ID;
7368   ID.AddInteger(MemVT.getRawBits());
7369   AddNodeIDNode(ID, Opcode, VTList, Ops);
7370   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7371   ID.AddInteger(MMO->getFlags());
7372   void* IP = nullptr;
7373   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7374     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7375     return SDValue(E, 0);
7376   }
7377 
7378   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7379                                     VTList, MemVT, MMO);
7380   createOperands(N, Ops);
7381 
7382   CSEMap.InsertNode(N, IP);
7383   InsertNode(N);
7384   return SDValue(N, 0);
7385 }
7386 
7387 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7388                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7389                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7390                                        MachineMemOperand *MMO) {
7391   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7392          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7393   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7394 
7395   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7396   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7397 }
7398 
7399 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7400                                 SDValue Chain, SDValue Ptr, SDValue Val,
7401                                 MachineMemOperand *MMO) {
7402   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7403           Opcode == ISD::ATOMIC_LOAD_SUB ||
7404           Opcode == ISD::ATOMIC_LOAD_AND ||
7405           Opcode == ISD::ATOMIC_LOAD_CLR ||
7406           Opcode == ISD::ATOMIC_LOAD_OR ||
7407           Opcode == ISD::ATOMIC_LOAD_XOR ||
7408           Opcode == ISD::ATOMIC_LOAD_NAND ||
7409           Opcode == ISD::ATOMIC_LOAD_MIN ||
7410           Opcode == ISD::ATOMIC_LOAD_MAX ||
7411           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7412           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7413           Opcode == ISD::ATOMIC_LOAD_FADD ||
7414           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7415           Opcode == ISD::ATOMIC_SWAP ||
7416           Opcode == ISD::ATOMIC_STORE) &&
7417          "Invalid Atomic Op");
7418 
7419   EVT VT = Val.getValueType();
7420 
7421   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7422                                                getVTList(VT, MVT::Other);
7423   SDValue Ops[] = {Chain, Ptr, Val};
7424   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7425 }
7426 
7427 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7428                                 EVT VT, SDValue Chain, SDValue Ptr,
7429                                 MachineMemOperand *MMO) {
7430   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7431 
7432   SDVTList VTs = getVTList(VT, MVT::Other);
7433   SDValue Ops[] = {Chain, Ptr};
7434   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7435 }
7436 
7437 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7438 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7439   if (Ops.size() == 1)
7440     return Ops[0];
7441 
7442   SmallVector<EVT, 4> VTs;
7443   VTs.reserve(Ops.size());
7444   for (const SDValue &Op : Ops)
7445     VTs.push_back(Op.getValueType());
7446   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7447 }
7448 
7449 SDValue SelectionDAG::getMemIntrinsicNode(
7450     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7451     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7452     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7453   if (!Size && MemVT.isScalableVector())
7454     Size = MemoryLocation::UnknownSize;
7455   else if (!Size)
7456     Size = MemVT.getStoreSize();
7457 
7458   MachineFunction &MF = getMachineFunction();
7459   MachineMemOperand *MMO =
7460       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7461 
7462   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7463 }
7464 
7465 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7466                                           SDVTList VTList,
7467                                           ArrayRef<SDValue> Ops, EVT MemVT,
7468                                           MachineMemOperand *MMO) {
7469   assert((Opcode == ISD::INTRINSIC_VOID ||
7470           Opcode == ISD::INTRINSIC_W_CHAIN ||
7471           Opcode == ISD::PREFETCH ||
7472           ((int)Opcode <= std::numeric_limits<int>::max() &&
7473            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7474          "Opcode is not a memory-accessing opcode!");
7475 
7476   // Memoize the node unless it returns a flag.
7477   MemIntrinsicSDNode *N;
7478   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7479     FoldingSetNodeID ID;
7480     AddNodeIDNode(ID, Opcode, VTList, Ops);
7481     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7482         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7483     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7484     ID.AddInteger(MMO->getFlags());
7485     void *IP = nullptr;
7486     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7487       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7488       return SDValue(E, 0);
7489     }
7490 
7491     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7492                                       VTList, MemVT, MMO);
7493     createOperands(N, Ops);
7494 
7495   CSEMap.InsertNode(N, IP);
7496   } else {
7497     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7498                                       VTList, MemVT, MMO);
7499     createOperands(N, Ops);
7500   }
7501   InsertNode(N);
7502   SDValue V(N, 0);
7503   NewSDValueDbgMsg(V, "Creating new node: ", this);
7504   return V;
7505 }
7506 
7507 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7508                                       SDValue Chain, int FrameIndex,
7509                                       int64_t Size, int64_t Offset) {
7510   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7511   const auto VTs = getVTList(MVT::Other);
7512   SDValue Ops[2] = {
7513       Chain,
7514       getFrameIndex(FrameIndex,
7515                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7516                     true)};
7517 
7518   FoldingSetNodeID ID;
7519   AddNodeIDNode(ID, Opcode, VTs, Ops);
7520   ID.AddInteger(FrameIndex);
7521   ID.AddInteger(Size);
7522   ID.AddInteger(Offset);
7523   void *IP = nullptr;
7524   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7525     return SDValue(E, 0);
7526 
7527   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7528       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7529   createOperands(N, Ops);
7530   CSEMap.InsertNode(N, IP);
7531   InsertNode(N);
7532   SDValue V(N, 0);
7533   NewSDValueDbgMsg(V, "Creating new node: ", this);
7534   return V;
7535 }
7536 
7537 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7538                                          uint64_t Guid, uint64_t Index,
7539                                          uint32_t Attr) {
7540   const unsigned Opcode = ISD::PSEUDO_PROBE;
7541   const auto VTs = getVTList(MVT::Other);
7542   SDValue Ops[] = {Chain};
7543   FoldingSetNodeID ID;
7544   AddNodeIDNode(ID, Opcode, VTs, Ops);
7545   ID.AddInteger(Guid);
7546   ID.AddInteger(Index);
7547   void *IP = nullptr;
7548   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7549     return SDValue(E, 0);
7550 
7551   auto *N = newSDNode<PseudoProbeSDNode>(
7552       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7553   createOperands(N, Ops);
7554   CSEMap.InsertNode(N, IP);
7555   InsertNode(N);
7556   SDValue V(N, 0);
7557   NewSDValueDbgMsg(V, "Creating new node: ", this);
7558   return V;
7559 }
7560 
7561 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7562 /// MachinePointerInfo record from it.  This is particularly useful because the
7563 /// code generator has many cases where it doesn't bother passing in a
7564 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7565 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7566                                            SelectionDAG &DAG, SDValue Ptr,
7567                                            int64_t Offset = 0) {
7568   // If this is FI+Offset, we can model it.
7569   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7570     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7571                                              FI->getIndex(), Offset);
7572 
7573   // If this is (FI+Offset1)+Offset2, we can model it.
7574   if (Ptr.getOpcode() != ISD::ADD ||
7575       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7576       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7577     return Info;
7578 
7579   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7580   return MachinePointerInfo::getFixedStack(
7581       DAG.getMachineFunction(), FI,
7582       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7583 }
7584 
7585 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7586 /// MachinePointerInfo record from it.  This is particularly useful because the
7587 /// code generator has many cases where it doesn't bother passing in a
7588 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7589 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7590                                            SelectionDAG &DAG, SDValue Ptr,
7591                                            SDValue OffsetOp) {
7592   // If the 'Offset' value isn't a constant, we can't handle this.
7593   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7594     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7595   if (OffsetOp.isUndef())
7596     return InferPointerInfo(Info, DAG, Ptr);
7597   return Info;
7598 }
7599 
7600 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7601                               EVT VT, const SDLoc &dl, SDValue Chain,
7602                               SDValue Ptr, SDValue Offset,
7603                               MachinePointerInfo PtrInfo, EVT MemVT,
7604                               Align Alignment,
7605                               MachineMemOperand::Flags MMOFlags,
7606                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7607   assert(Chain.getValueType() == MVT::Other &&
7608         "Invalid chain type");
7609 
7610   MMOFlags |= MachineMemOperand::MOLoad;
7611   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7612   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7613   // clients.
7614   if (PtrInfo.V.isNull())
7615     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7616 
7617   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7618   MachineFunction &MF = getMachineFunction();
7619   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7620                                                    Alignment, AAInfo, Ranges);
7621   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7622 }
7623 
7624 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7625                               EVT VT, const SDLoc &dl, SDValue Chain,
7626                               SDValue Ptr, SDValue Offset, EVT MemVT,
7627                               MachineMemOperand *MMO) {
7628   if (VT == MemVT) {
7629     ExtType = ISD::NON_EXTLOAD;
7630   } else if (ExtType == ISD::NON_EXTLOAD) {
7631     assert(VT == MemVT && "Non-extending load from different memory type!");
7632   } else {
7633     // Extending load.
7634     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7635            "Should only be an extending load, not truncating!");
7636     assert(VT.isInteger() == MemVT.isInteger() &&
7637            "Cannot convert from FP to Int or Int -> FP!");
7638     assert(VT.isVector() == MemVT.isVector() &&
7639            "Cannot use an ext load to convert to or from a vector!");
7640     assert((!VT.isVector() ||
7641             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7642            "Cannot use an ext load to change the number of vector elements!");
7643   }
7644 
7645   bool Indexed = AM != ISD::UNINDEXED;
7646   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7647 
7648   SDVTList VTs = Indexed ?
7649     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7650   SDValue Ops[] = { Chain, Ptr, Offset };
7651   FoldingSetNodeID ID;
7652   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7653   ID.AddInteger(MemVT.getRawBits());
7654   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7655       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7656   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7657   ID.AddInteger(MMO->getFlags());
7658   void *IP = nullptr;
7659   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7660     cast<LoadSDNode>(E)->refineAlignment(MMO);
7661     return SDValue(E, 0);
7662   }
7663   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7664                                   ExtType, MemVT, MMO);
7665   createOperands(N, Ops);
7666 
7667   CSEMap.InsertNode(N, IP);
7668   InsertNode(N);
7669   SDValue V(N, 0);
7670   NewSDValueDbgMsg(V, "Creating new node: ", this);
7671   return V;
7672 }
7673 
7674 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7675                               SDValue Ptr, MachinePointerInfo PtrInfo,
7676                               MaybeAlign Alignment,
7677                               MachineMemOperand::Flags MMOFlags,
7678                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7679   SDValue Undef = getUNDEF(Ptr.getValueType());
7680   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7681                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7682 }
7683 
7684 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7685                               SDValue Ptr, MachineMemOperand *MMO) {
7686   SDValue Undef = getUNDEF(Ptr.getValueType());
7687   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7688                  VT, MMO);
7689 }
7690 
7691 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7692                                  EVT VT, SDValue Chain, SDValue Ptr,
7693                                  MachinePointerInfo PtrInfo, EVT MemVT,
7694                                  MaybeAlign Alignment,
7695                                  MachineMemOperand::Flags MMOFlags,
7696                                  const AAMDNodes &AAInfo) {
7697   SDValue Undef = getUNDEF(Ptr.getValueType());
7698   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7699                  MemVT, Alignment, MMOFlags, AAInfo);
7700 }
7701 
7702 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7703                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7704                                  MachineMemOperand *MMO) {
7705   SDValue Undef = getUNDEF(Ptr.getValueType());
7706   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7707                  MemVT, MMO);
7708 }
7709 
7710 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7711                                      SDValue Base, SDValue Offset,
7712                                      ISD::MemIndexedMode AM) {
7713   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7714   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7715   // Don't propagate the invariant or dereferenceable flags.
7716   auto MMOFlags =
7717       LD->getMemOperand()->getFlags() &
7718       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7719   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7720                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7721                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7722 }
7723 
7724 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7725                                SDValue Ptr, MachinePointerInfo PtrInfo,
7726                                Align Alignment,
7727                                MachineMemOperand::Flags MMOFlags,
7728                                const AAMDNodes &AAInfo) {
7729   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7730 
7731   MMOFlags |= MachineMemOperand::MOStore;
7732   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7733 
7734   if (PtrInfo.V.isNull())
7735     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7736 
7737   MachineFunction &MF = getMachineFunction();
7738   uint64_t Size =
7739       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7740   MachineMemOperand *MMO =
7741       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7742   return getStore(Chain, dl, Val, Ptr, MMO);
7743 }
7744 
7745 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7746                                SDValue Ptr, MachineMemOperand *MMO) {
7747   assert(Chain.getValueType() == MVT::Other &&
7748         "Invalid chain type");
7749   EVT VT = Val.getValueType();
7750   SDVTList VTs = getVTList(MVT::Other);
7751   SDValue Undef = getUNDEF(Ptr.getValueType());
7752   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7753   FoldingSetNodeID ID;
7754   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7755   ID.AddInteger(VT.getRawBits());
7756   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7757       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7758   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7759   ID.AddInteger(MMO->getFlags());
7760   void *IP = nullptr;
7761   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7762     cast<StoreSDNode>(E)->refineAlignment(MMO);
7763     return SDValue(E, 0);
7764   }
7765   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7766                                    ISD::UNINDEXED, false, VT, MMO);
7767   createOperands(N, Ops);
7768 
7769   CSEMap.InsertNode(N, IP);
7770   InsertNode(N);
7771   SDValue V(N, 0);
7772   NewSDValueDbgMsg(V, "Creating new node: ", this);
7773   return V;
7774 }
7775 
7776 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7777                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7778                                     EVT SVT, Align Alignment,
7779                                     MachineMemOperand::Flags MMOFlags,
7780                                     const AAMDNodes &AAInfo) {
7781   assert(Chain.getValueType() == MVT::Other &&
7782         "Invalid chain type");
7783 
7784   MMOFlags |= MachineMemOperand::MOStore;
7785   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7786 
7787   if (PtrInfo.V.isNull())
7788     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7789 
7790   MachineFunction &MF = getMachineFunction();
7791   MachineMemOperand *MMO = MF.getMachineMemOperand(
7792       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7793       Alignment, AAInfo);
7794   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7795 }
7796 
7797 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7798                                     SDValue Ptr, EVT SVT,
7799                                     MachineMemOperand *MMO) {
7800   EVT VT = Val.getValueType();
7801 
7802   assert(Chain.getValueType() == MVT::Other &&
7803         "Invalid chain type");
7804   if (VT == SVT)
7805     return getStore(Chain, dl, Val, Ptr, MMO);
7806 
7807   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7808          "Should only be a truncating store, not extending!");
7809   assert(VT.isInteger() == SVT.isInteger() &&
7810          "Can't do FP-INT conversion!");
7811   assert(VT.isVector() == SVT.isVector() &&
7812          "Cannot use trunc store to convert to or from a vector!");
7813   assert((!VT.isVector() ||
7814           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7815          "Cannot use trunc store to change the number of vector elements!");
7816 
7817   SDVTList VTs = getVTList(MVT::Other);
7818   SDValue Undef = getUNDEF(Ptr.getValueType());
7819   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7820   FoldingSetNodeID ID;
7821   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7822   ID.AddInteger(SVT.getRawBits());
7823   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7824       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7825   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7826   ID.AddInteger(MMO->getFlags());
7827   void *IP = nullptr;
7828   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7829     cast<StoreSDNode>(E)->refineAlignment(MMO);
7830     return SDValue(E, 0);
7831   }
7832   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7833                                    ISD::UNINDEXED, true, SVT, MMO);
7834   createOperands(N, Ops);
7835 
7836   CSEMap.InsertNode(N, IP);
7837   InsertNode(N);
7838   SDValue V(N, 0);
7839   NewSDValueDbgMsg(V, "Creating new node: ", this);
7840   return V;
7841 }
7842 
7843 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7844                                       SDValue Base, SDValue Offset,
7845                                       ISD::MemIndexedMode AM) {
7846   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7847   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7848   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7849   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7850   FoldingSetNodeID ID;
7851   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7852   ID.AddInteger(ST->getMemoryVT().getRawBits());
7853   ID.AddInteger(ST->getRawSubclassData());
7854   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7855   ID.AddInteger(ST->getMemOperand()->getFlags());
7856   void *IP = nullptr;
7857   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7858     return SDValue(E, 0);
7859 
7860   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7861                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7862                                    ST->getMemOperand());
7863   createOperands(N, Ops);
7864 
7865   CSEMap.InsertNode(N, IP);
7866   InsertNode(N);
7867   SDValue V(N, 0);
7868   NewSDValueDbgMsg(V, "Creating new node: ", this);
7869   return V;
7870 }
7871 
7872 SDValue SelectionDAG::getLoadVP(
7873     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
7874     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
7875     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
7876     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
7877     const MDNode *Ranges, bool IsExpanding) {
7878   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7879 
7880   MMOFlags |= MachineMemOperand::MOLoad;
7881   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7882   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7883   // clients.
7884   if (PtrInfo.V.isNull())
7885     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7886 
7887   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7888   MachineFunction &MF = getMachineFunction();
7889   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7890                                                    Alignment, AAInfo, Ranges);
7891   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
7892                    MMO, IsExpanding);
7893 }
7894 
7895 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
7896                                 ISD::LoadExtType ExtType, EVT VT,
7897                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
7898                                 SDValue Offset, SDValue Mask, SDValue EVL,
7899                                 EVT MemVT, MachineMemOperand *MMO,
7900                                 bool IsExpanding) {
7901   bool Indexed = AM != ISD::UNINDEXED;
7902   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7903 
7904   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
7905                          : getVTList(VT, MVT::Other);
7906   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
7907   FoldingSetNodeID ID;
7908   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
7909   ID.AddInteger(VT.getRawBits());
7910   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
7911       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
7912   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7913   ID.AddInteger(MMO->getFlags());
7914   void *IP = nullptr;
7915   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7916     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
7917     return SDValue(E, 0);
7918   }
7919   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7920                                     ExtType, IsExpanding, MemVT, MMO);
7921   createOperands(N, Ops);
7922 
7923   CSEMap.InsertNode(N, IP);
7924   InsertNode(N);
7925   SDValue V(N, 0);
7926   NewSDValueDbgMsg(V, "Creating new node: ", this);
7927   return V;
7928 }
7929 
7930 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7931                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7932                                 MachinePointerInfo PtrInfo,
7933                                 MaybeAlign Alignment,
7934                                 MachineMemOperand::Flags MMOFlags,
7935                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
7936                                 bool IsExpanding) {
7937   SDValue Undef = getUNDEF(Ptr.getValueType());
7938   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7939                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
7940                    IsExpanding);
7941 }
7942 
7943 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7944                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7945                                 MachineMemOperand *MMO, bool IsExpanding) {
7946   SDValue Undef = getUNDEF(Ptr.getValueType());
7947   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7948                    Mask, EVL, VT, MMO, IsExpanding);
7949 }
7950 
7951 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7952                                    EVT VT, SDValue Chain, SDValue Ptr,
7953                                    SDValue Mask, SDValue EVL,
7954                                    MachinePointerInfo PtrInfo, EVT MemVT,
7955                                    MaybeAlign Alignment,
7956                                    MachineMemOperand::Flags MMOFlags,
7957                                    const AAMDNodes &AAInfo, bool IsExpanding) {
7958   SDValue Undef = getUNDEF(Ptr.getValueType());
7959   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7960                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
7961                    IsExpanding);
7962 }
7963 
7964 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7965                                    EVT VT, SDValue Chain, SDValue Ptr,
7966                                    SDValue Mask, SDValue EVL, EVT MemVT,
7967                                    MachineMemOperand *MMO, bool IsExpanding) {
7968   SDValue Undef = getUNDEF(Ptr.getValueType());
7969   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7970                    EVL, MemVT, MMO, IsExpanding);
7971 }
7972 
7973 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
7974                                        SDValue Base, SDValue Offset,
7975                                        ISD::MemIndexedMode AM) {
7976   auto *LD = cast<VPLoadSDNode>(OrigLoad);
7977   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7978   // Don't propagate the invariant or dereferenceable flags.
7979   auto MMOFlags =
7980       LD->getMemOperand()->getFlags() &
7981       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7982   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7983                    LD->getChain(), Base, Offset, LD->getMask(),
7984                    LD->getVectorLength(), LD->getPointerInfo(),
7985                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
7986                    nullptr, LD->isExpandingLoad());
7987 }
7988 
7989 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7990                                  SDValue Ptr, SDValue Offset, SDValue Mask,
7991                                  SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
7992                                  ISD::MemIndexedMode AM, bool IsTruncating,
7993                                  bool IsCompressing) {
7994   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7995   bool Indexed = AM != ISD::UNINDEXED;
7996   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
7997   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
7998                          : getVTList(MVT::Other);
7999   SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
8000   FoldingSetNodeID ID;
8001   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8002   ID.AddInteger(MemVT.getRawBits());
8003   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
8004       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8005   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8006   ID.AddInteger(MMO->getFlags());
8007   void *IP = nullptr;
8008   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8009     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
8010     return SDValue(E, 0);
8011   }
8012   auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8013                                      IsTruncating, IsCompressing, MemVT, MMO);
8014   createOperands(N, Ops);
8015 
8016   CSEMap.InsertNode(N, IP);
8017   InsertNode(N);
8018   SDValue V(N, 0);
8019   NewSDValueDbgMsg(V, "Creating new node: ", this);
8020   return V;
8021 }
8022 
8023 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
8024                                       SDValue Val, SDValue Ptr, SDValue Mask,
8025                                       SDValue EVL, MachinePointerInfo PtrInfo,
8026                                       EVT SVT, Align Alignment,
8027                                       MachineMemOperand::Flags MMOFlags,
8028                                       const AAMDNodes &AAInfo,
8029                                       bool IsCompressing) {
8030   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8031 
8032   MMOFlags |= MachineMemOperand::MOStore;
8033   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8034 
8035   if (PtrInfo.V.isNull())
8036     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8037 
8038   MachineFunction &MF = getMachineFunction();
8039   MachineMemOperand *MMO = MF.getMachineMemOperand(
8040       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
8041       Alignment, AAInfo);
8042   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
8043                          IsCompressing);
8044 }
8045 
8046 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
8047                                       SDValue Val, SDValue Ptr, SDValue Mask,
8048                                       SDValue EVL, EVT SVT,
8049                                       MachineMemOperand *MMO,
8050                                       bool IsCompressing) {
8051   EVT VT = Val.getValueType();
8052 
8053   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8054   if (VT == SVT)
8055     return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
8056                       EVL, VT, MMO, ISD::UNINDEXED,
8057                       /*IsTruncating*/ false, IsCompressing);
8058 
8059   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8060          "Should only be a truncating store, not extending!");
8061   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
8062   assert(VT.isVector() == SVT.isVector() &&
8063          "Cannot use trunc store to convert to or from a vector!");
8064   assert((!VT.isVector() ||
8065           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8066          "Cannot use trunc store to change the number of vector elements!");
8067 
8068   SDVTList VTs = getVTList(MVT::Other);
8069   SDValue Undef = getUNDEF(Ptr.getValueType());
8070   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
8071   FoldingSetNodeID ID;
8072   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8073   ID.AddInteger(SVT.getRawBits());
8074   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
8075       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
8076   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8077   ID.AddInteger(MMO->getFlags());
8078   void *IP = nullptr;
8079   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8080     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
8081     return SDValue(E, 0);
8082   }
8083   auto *N =
8084       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8085                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
8086   createOperands(N, Ops);
8087 
8088   CSEMap.InsertNode(N, IP);
8089   InsertNode(N);
8090   SDValue V(N, 0);
8091   NewSDValueDbgMsg(V, "Creating new node: ", this);
8092   return V;
8093 }
8094 
8095 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
8096                                         SDValue Base, SDValue Offset,
8097                                         ISD::MemIndexedMode AM) {
8098   auto *ST = cast<VPStoreSDNode>(OrigStore);
8099   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
8100   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8101   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
8102                    Offset,         ST->getMask(),  ST->getVectorLength()};
8103   FoldingSetNodeID ID;
8104   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8105   ID.AddInteger(ST->getMemoryVT().getRawBits());
8106   ID.AddInteger(ST->getRawSubclassData());
8107   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
8108   ID.AddInteger(ST->getMemOperand()->getFlags());
8109   void *IP = nullptr;
8110   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
8111     return SDValue(E, 0);
8112 
8113   auto *N = newSDNode<VPStoreSDNode>(
8114       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
8115       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
8116   createOperands(N, Ops);
8117 
8118   CSEMap.InsertNode(N, IP);
8119   InsertNode(N);
8120   SDValue V(N, 0);
8121   NewSDValueDbgMsg(V, "Creating new node: ", this);
8122   return V;
8123 }
8124 
8125 SDValue SelectionDAG::getStridedLoadVP(
8126     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
8127     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
8128     SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
8129     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8130     const MDNode *Ranges, bool IsExpanding) {
8131   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8132 
8133   MMOFlags |= MachineMemOperand::MOLoad;
8134   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
8135   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
8136   // clients.
8137   if (PtrInfo.V.isNull())
8138     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
8139 
8140   uint64_t Size = MemoryLocation::UnknownSize;
8141   MachineFunction &MF = getMachineFunction();
8142   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
8143                                                    Alignment, AAInfo, Ranges);
8144   return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask,
8145                           EVL, MemVT, MMO, IsExpanding);
8146 }
8147 
8148 SDValue SelectionDAG::getStridedLoadVP(
8149     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
8150     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
8151     SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
8152   bool Indexed = AM != ISD::UNINDEXED;
8153   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
8154 
8155   SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
8156   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
8157                          : getVTList(VT, MVT::Other);
8158   FoldingSetNodeID ID;
8159   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
8160   ID.AddInteger(VT.getRawBits());
8161   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
8162       DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
8163   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8164 
8165   void *IP = nullptr;
8166   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8167     cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
8168     return SDValue(E, 0);
8169   }
8170 
8171   auto *N =
8172       newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
8173                                      ExtType, IsExpanding, MemVT, MMO);
8174   createOperands(N, Ops);
8175   CSEMap.InsertNode(N, IP);
8176   InsertNode(N);
8177   SDValue V(N, 0);
8178   NewSDValueDbgMsg(V, "Creating new node: ", this);
8179   return V;
8180 }
8181 
8182 SDValue SelectionDAG::getStridedLoadVP(
8183     EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride,
8184     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment,
8185     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8186     const MDNode *Ranges, bool IsExpanding) {
8187   SDValue Undef = getUNDEF(Ptr.getValueType());
8188   return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
8189                           Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment,
8190                           MMOFlags, AAInfo, Ranges, IsExpanding);
8191 }
8192 
8193 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain,
8194                                        SDValue Ptr, SDValue Stride,
8195                                        SDValue Mask, SDValue EVL,
8196                                        MachineMemOperand *MMO,
8197                                        bool IsExpanding) {
8198   SDValue Undef = getUNDEF(Ptr.getValueType());
8199   return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
8200                           Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
8201 }
8202 
8203 SDValue SelectionDAG::getExtStridedLoadVP(
8204     ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
8205     SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL,
8206     MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment,
8207     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8208     bool IsExpanding) {
8209   SDValue Undef = getUNDEF(Ptr.getValueType());
8210   return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
8211                           Stride, Mask, EVL, PtrInfo, MemVT, Alignment,
8212                           MMOFlags, AAInfo, nullptr, IsExpanding);
8213 }
8214 
8215 SDValue SelectionDAG::getExtStridedLoadVP(
8216     ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
8217     SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
8218     MachineMemOperand *MMO, bool IsExpanding) {
8219   SDValue Undef = getUNDEF(Ptr.getValueType());
8220   return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
8221                           Stride, Mask, EVL, MemVT, MMO, IsExpanding);
8222 }
8223 
8224 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL,
8225                                               SDValue Base, SDValue Offset,
8226                                               ISD::MemIndexedMode AM) {
8227   auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad);
8228   assert(SLD->getOffset().isUndef() &&
8229          "Strided load is already a indexed load!");
8230   // Don't propagate the invariant or dereferenceable flags.
8231   auto MMOFlags =
8232       SLD->getMemOperand()->getFlags() &
8233       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
8234   return getStridedLoadVP(
8235       AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(),
8236       Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(),
8237       SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags,
8238       SLD->getAAInfo(), nullptr, SLD->isExpandingLoad());
8239 }
8240 
8241 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL,
8242                                         SDValue Val, SDValue Ptr,
8243                                         SDValue Offset, SDValue Stride,
8244                                         SDValue Mask, SDValue EVL, EVT MemVT,
8245                                         MachineMemOperand *MMO,
8246                                         ISD::MemIndexedMode AM,
8247                                         bool IsTruncating, bool IsCompressing) {
8248   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8249   bool Indexed = AM != ISD::UNINDEXED;
8250   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
8251   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
8252                          : getVTList(MVT::Other);
8253   SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
8254   FoldingSetNodeID ID;
8255   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8256   ID.AddInteger(MemVT.getRawBits());
8257   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
8258       DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8259   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8260   void *IP = nullptr;
8261   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8262     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
8263     return SDValue(E, 0);
8264   }
8265   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
8266                                             VTs, AM, IsTruncating,
8267                                             IsCompressing, MemVT, MMO);
8268   createOperands(N, Ops);
8269 
8270   CSEMap.InsertNode(N, IP);
8271   InsertNode(N);
8272   SDValue V(N, 0);
8273   NewSDValueDbgMsg(V, "Creating new node: ", this);
8274   return V;
8275 }
8276 
8277 SDValue SelectionDAG::getTruncStridedStoreVP(
8278     SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride,
8279     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT,
8280     Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8281     bool IsCompressing) {
8282   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8283 
8284   MMOFlags |= MachineMemOperand::MOStore;
8285   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8286 
8287   if (PtrInfo.V.isNull())
8288     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8289 
8290   MachineFunction &MF = getMachineFunction();
8291   MachineMemOperand *MMO = MF.getMachineMemOperand(
8292       PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo);
8293   return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT,
8294                                 MMO, IsCompressing);
8295 }
8296 
8297 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL,
8298                                              SDValue Val, SDValue Ptr,
8299                                              SDValue Stride, SDValue Mask,
8300                                              SDValue EVL, EVT SVT,
8301                                              MachineMemOperand *MMO,
8302                                              bool IsCompressing) {
8303   EVT VT = Val.getValueType();
8304 
8305   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8306   if (VT == SVT)
8307     return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
8308                              Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
8309                              /*IsTruncating*/ false, IsCompressing);
8310 
8311   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8312          "Should only be a truncating store, not extending!");
8313   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
8314   assert(VT.isVector() == SVT.isVector() &&
8315          "Cannot use trunc store to convert to or from a vector!");
8316   assert((!VT.isVector() ||
8317           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8318          "Cannot use trunc store to change the number of vector elements!");
8319 
8320   SDVTList VTs = getVTList(MVT::Other);
8321   SDValue Undef = getUNDEF(Ptr.getValueType());
8322   SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
8323   FoldingSetNodeID ID;
8324   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8325   ID.AddInteger(SVT.getRawBits());
8326   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
8327       DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
8328   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8329   void *IP = nullptr;
8330   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8331     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
8332     return SDValue(E, 0);
8333   }
8334   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
8335                                             VTs, ISD::UNINDEXED, true,
8336                                             IsCompressing, SVT, MMO);
8337   createOperands(N, Ops);
8338 
8339   CSEMap.InsertNode(N, IP);
8340   InsertNode(N);
8341   SDValue V(N, 0);
8342   NewSDValueDbgMsg(V, "Creating new node: ", this);
8343   return V;
8344 }
8345 
8346 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore,
8347                                                const SDLoc &DL, SDValue Base,
8348                                                SDValue Offset,
8349                                                ISD::MemIndexedMode AM) {
8350   auto *SST = cast<VPStridedStoreSDNode>(OrigStore);
8351   assert(SST->getOffset().isUndef() &&
8352          "Strided store is already an indexed store!");
8353   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8354   SDValue Ops[] = {
8355       SST->getChain(), SST->getValue(),       Base, Offset, SST->getStride(),
8356       SST->getMask(),  SST->getVectorLength()};
8357   FoldingSetNodeID ID;
8358   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8359   ID.AddInteger(SST->getMemoryVT().getRawBits());
8360   ID.AddInteger(SST->getRawSubclassData());
8361   ID.AddInteger(SST->getPointerInfo().getAddrSpace());
8362   void *IP = nullptr;
8363   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8364     return SDValue(E, 0);
8365 
8366   auto *N = newSDNode<VPStridedStoreSDNode>(
8367       DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(),
8368       SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand());
8369   createOperands(N, Ops);
8370 
8371   CSEMap.InsertNode(N, IP);
8372   InsertNode(N);
8373   SDValue V(N, 0);
8374   NewSDValueDbgMsg(V, "Creating new node: ", this);
8375   return V;
8376 }
8377 
8378 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8379                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
8380                                   ISD::MemIndexType IndexType) {
8381   assert(Ops.size() == 6 && "Incompatible number of operands");
8382 
8383   FoldingSetNodeID ID;
8384   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
8385   ID.AddInteger(VT.getRawBits());
8386   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
8387       dl.getIROrder(), VTs, VT, MMO, IndexType));
8388   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8389   ID.AddInteger(MMO->getFlags());
8390   void *IP = nullptr;
8391   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8392     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
8393     return SDValue(E, 0);
8394   }
8395 
8396   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8397                                       VT, MMO, IndexType);
8398   createOperands(N, Ops);
8399 
8400   assert(N->getMask().getValueType().getVectorElementCount() ==
8401              N->getValueType(0).getVectorElementCount() &&
8402          "Vector width mismatch between mask and data");
8403   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8404              N->getValueType(0).getVectorElementCount().isScalable() &&
8405          "Scalable flags of index and data do not match");
8406   assert(ElementCount::isKnownGE(
8407              N->getIndex().getValueType().getVectorElementCount(),
8408              N->getValueType(0).getVectorElementCount()) &&
8409          "Vector width mismatch between index and data");
8410   assert(isa<ConstantSDNode>(N->getScale()) &&
8411          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8412          "Scale should be a constant power of 2");
8413 
8414   CSEMap.InsertNode(N, IP);
8415   InsertNode(N);
8416   SDValue V(N, 0);
8417   NewSDValueDbgMsg(V, "Creating new node: ", this);
8418   return V;
8419 }
8420 
8421 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8422                                    ArrayRef<SDValue> Ops,
8423                                    MachineMemOperand *MMO,
8424                                    ISD::MemIndexType IndexType) {
8425   assert(Ops.size() == 7 && "Incompatible number of operands");
8426 
8427   FoldingSetNodeID ID;
8428   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
8429   ID.AddInteger(VT.getRawBits());
8430   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
8431       dl.getIROrder(), VTs, VT, MMO, IndexType));
8432   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8433   ID.AddInteger(MMO->getFlags());
8434   void *IP = nullptr;
8435   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8436     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
8437     return SDValue(E, 0);
8438   }
8439   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8440                                        VT, MMO, IndexType);
8441   createOperands(N, Ops);
8442 
8443   assert(N->getMask().getValueType().getVectorElementCount() ==
8444              N->getValue().getValueType().getVectorElementCount() &&
8445          "Vector width mismatch between mask and data");
8446   assert(
8447       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8448           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8449       "Scalable flags of index and data do not match");
8450   assert(ElementCount::isKnownGE(
8451              N->getIndex().getValueType().getVectorElementCount(),
8452              N->getValue().getValueType().getVectorElementCount()) &&
8453          "Vector width mismatch between index and data");
8454   assert(isa<ConstantSDNode>(N->getScale()) &&
8455          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8456          "Scale should be a constant power of 2");
8457 
8458   CSEMap.InsertNode(N, IP);
8459   InsertNode(N);
8460   SDValue V(N, 0);
8461   NewSDValueDbgMsg(V, "Creating new node: ", this);
8462   return V;
8463 }
8464 
8465 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8466                                     SDValue Base, SDValue Offset, SDValue Mask,
8467                                     SDValue PassThru, EVT MemVT,
8468                                     MachineMemOperand *MMO,
8469                                     ISD::MemIndexedMode AM,
8470                                     ISD::LoadExtType ExtTy, bool isExpanding) {
8471   bool Indexed = AM != ISD::UNINDEXED;
8472   assert((Indexed || Offset.isUndef()) &&
8473          "Unindexed masked load with an offset!");
8474   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8475                          : getVTList(VT, MVT::Other);
8476   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8477   FoldingSetNodeID ID;
8478   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8479   ID.AddInteger(MemVT.getRawBits());
8480   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8481       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8482   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8483   ID.AddInteger(MMO->getFlags());
8484   void *IP = nullptr;
8485   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8486     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8487     return SDValue(E, 0);
8488   }
8489   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8490                                         AM, ExtTy, isExpanding, MemVT, MMO);
8491   createOperands(N, Ops);
8492 
8493   CSEMap.InsertNode(N, IP);
8494   InsertNode(N);
8495   SDValue V(N, 0);
8496   NewSDValueDbgMsg(V, "Creating new node: ", this);
8497   return V;
8498 }
8499 
8500 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8501                                            SDValue Base, SDValue Offset,
8502                                            ISD::MemIndexedMode AM) {
8503   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8504   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8505   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8506                        Offset, LD->getMask(), LD->getPassThru(),
8507                        LD->getMemoryVT(), LD->getMemOperand(), AM,
8508                        LD->getExtensionType(), LD->isExpandingLoad());
8509 }
8510 
8511 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8512                                      SDValue Val, SDValue Base, SDValue Offset,
8513                                      SDValue Mask, EVT MemVT,
8514                                      MachineMemOperand *MMO,
8515                                      ISD::MemIndexedMode AM, bool IsTruncating,
8516                                      bool IsCompressing) {
8517   assert(Chain.getValueType() == MVT::Other &&
8518         "Invalid chain type");
8519   bool Indexed = AM != ISD::UNINDEXED;
8520   assert((Indexed || Offset.isUndef()) &&
8521          "Unindexed masked store with an offset!");
8522   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8523                          : getVTList(MVT::Other);
8524   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8525   FoldingSetNodeID ID;
8526   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8527   ID.AddInteger(MemVT.getRawBits());
8528   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8529       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8530   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8531   ID.AddInteger(MMO->getFlags());
8532   void *IP = nullptr;
8533   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8534     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8535     return SDValue(E, 0);
8536   }
8537   auto *N =
8538       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8539                                    IsTruncating, IsCompressing, MemVT, MMO);
8540   createOperands(N, Ops);
8541 
8542   CSEMap.InsertNode(N, IP);
8543   InsertNode(N);
8544   SDValue V(N, 0);
8545   NewSDValueDbgMsg(V, "Creating new node: ", this);
8546   return V;
8547 }
8548 
8549 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8550                                             SDValue Base, SDValue Offset,
8551                                             ISD::MemIndexedMode AM) {
8552   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8553   assert(ST->getOffset().isUndef() &&
8554          "Masked store is already a indexed store!");
8555   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8556                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8557                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
8558 }
8559 
8560 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8561                                       ArrayRef<SDValue> Ops,
8562                                       MachineMemOperand *MMO,
8563                                       ISD::MemIndexType IndexType,
8564                                       ISD::LoadExtType ExtTy) {
8565   assert(Ops.size() == 6 && "Incompatible number of operands");
8566 
8567   FoldingSetNodeID ID;
8568   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8569   ID.AddInteger(MemVT.getRawBits());
8570   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8571       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8572   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8573   ID.AddInteger(MMO->getFlags());
8574   void *IP = nullptr;
8575   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8576     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8577     return SDValue(E, 0);
8578   }
8579 
8580   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8581   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8582                                           VTs, MemVT, MMO, IndexType, ExtTy);
8583   createOperands(N, Ops);
8584 
8585   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8586          "Incompatible type of the PassThru value in MaskedGatherSDNode");
8587   assert(N->getMask().getValueType().getVectorElementCount() ==
8588              N->getValueType(0).getVectorElementCount() &&
8589          "Vector width mismatch between mask and data");
8590   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8591              N->getValueType(0).getVectorElementCount().isScalable() &&
8592          "Scalable flags of index and data do not match");
8593   assert(ElementCount::isKnownGE(
8594              N->getIndex().getValueType().getVectorElementCount(),
8595              N->getValueType(0).getVectorElementCount()) &&
8596          "Vector width mismatch between index and data");
8597   assert(isa<ConstantSDNode>(N->getScale()) &&
8598          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8599          "Scale should be a constant power of 2");
8600 
8601   CSEMap.InsertNode(N, IP);
8602   InsertNode(N);
8603   SDValue V(N, 0);
8604   NewSDValueDbgMsg(V, "Creating new node: ", this);
8605   return V;
8606 }
8607 
8608 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8609                                        ArrayRef<SDValue> Ops,
8610                                        MachineMemOperand *MMO,
8611                                        ISD::MemIndexType IndexType,
8612                                        bool IsTrunc) {
8613   assert(Ops.size() == 6 && "Incompatible number of operands");
8614 
8615   FoldingSetNodeID ID;
8616   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8617   ID.AddInteger(MemVT.getRawBits());
8618   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8619       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8620   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8621   ID.AddInteger(MMO->getFlags());
8622   void *IP = nullptr;
8623   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8624     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8625     return SDValue(E, 0);
8626   }
8627 
8628   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8629   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8630                                            VTs, MemVT, MMO, IndexType, IsTrunc);
8631   createOperands(N, Ops);
8632 
8633   assert(N->getMask().getValueType().getVectorElementCount() ==
8634              N->getValue().getValueType().getVectorElementCount() &&
8635          "Vector width mismatch between mask and data");
8636   assert(
8637       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8638           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8639       "Scalable flags of index and data do not match");
8640   assert(ElementCount::isKnownGE(
8641              N->getIndex().getValueType().getVectorElementCount(),
8642              N->getValue().getValueType().getVectorElementCount()) &&
8643          "Vector width mismatch between index and data");
8644   assert(isa<ConstantSDNode>(N->getScale()) &&
8645          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8646          "Scale should be a constant power of 2");
8647 
8648   CSEMap.InsertNode(N, IP);
8649   InsertNode(N);
8650   SDValue V(N, 0);
8651   NewSDValueDbgMsg(V, "Creating new node: ", this);
8652   return V;
8653 }
8654 
8655 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8656   // select undef, T, F --> T (if T is a constant), otherwise F
8657   // select, ?, undef, F --> F
8658   // select, ?, T, undef --> T
8659   if (Cond.isUndef())
8660     return isConstantValueOfAnyType(T) ? T : F;
8661   if (T.isUndef())
8662     return F;
8663   if (F.isUndef())
8664     return T;
8665 
8666   // select true, T, F --> T
8667   // select false, T, F --> F
8668   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8669     return CondC->isZero() ? F : T;
8670 
8671   // TODO: This should simplify VSELECT with constant condition using something
8672   // like this (but check boolean contents to be complete?):
8673   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8674   //    return T;
8675   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8676   //    return F;
8677 
8678   // select ?, T, T --> T
8679   if (T == F)
8680     return T;
8681 
8682   return SDValue();
8683 }
8684 
8685 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8686   // shift undef, Y --> 0 (can always assume that the undef value is 0)
8687   if (X.isUndef())
8688     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8689   // shift X, undef --> undef (because it may shift by the bitwidth)
8690   if (Y.isUndef())
8691     return getUNDEF(X.getValueType());
8692 
8693   // shift 0, Y --> 0
8694   // shift X, 0 --> X
8695   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8696     return X;
8697 
8698   // shift X, C >= bitwidth(X) --> undef
8699   // All vector elements must be too big (or undef) to avoid partial undefs.
8700   auto isShiftTooBig = [X](ConstantSDNode *Val) {
8701     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8702   };
8703   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8704     return getUNDEF(X.getValueType());
8705 
8706   return SDValue();
8707 }
8708 
8709 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8710                                       SDNodeFlags Flags) {
8711   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8712   // (an undef operand can be chosen to be Nan/Inf), then the result of this
8713   // operation is poison. That result can be relaxed to undef.
8714   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8715   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8716   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8717                 (YC && YC->getValueAPF().isNaN());
8718   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8719                 (YC && YC->getValueAPF().isInfinity());
8720 
8721   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8722     return getUNDEF(X.getValueType());
8723 
8724   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8725     return getUNDEF(X.getValueType());
8726 
8727   if (!YC)
8728     return SDValue();
8729 
8730   // X + -0.0 --> X
8731   if (Opcode == ISD::FADD)
8732     if (YC->getValueAPF().isNegZero())
8733       return X;
8734 
8735   // X - +0.0 --> X
8736   if (Opcode == ISD::FSUB)
8737     if (YC->getValueAPF().isPosZero())
8738       return X;
8739 
8740   // X * 1.0 --> X
8741   // X / 1.0 --> X
8742   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8743     if (YC->getValueAPF().isExactlyValue(1.0))
8744       return X;
8745 
8746   // X * 0.0 --> 0.0
8747   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8748     if (YC->getValueAPF().isZero())
8749       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8750 
8751   return SDValue();
8752 }
8753 
8754 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8755                                SDValue Ptr, SDValue SV, unsigned Align) {
8756   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8757   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8758 }
8759 
8760 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8761                               ArrayRef<SDUse> Ops) {
8762   switch (Ops.size()) {
8763   case 0: return getNode(Opcode, DL, VT);
8764   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8765   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8766   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8767   default: break;
8768   }
8769 
8770   // Copy from an SDUse array into an SDValue array for use with
8771   // the regular getNode logic.
8772   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8773   return getNode(Opcode, DL, VT, NewOps);
8774 }
8775 
8776 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8777                               ArrayRef<SDValue> Ops) {
8778   SDNodeFlags Flags;
8779   if (Inserter)
8780     Flags = Inserter->getFlags();
8781   return getNode(Opcode, DL, VT, Ops, Flags);
8782 }
8783 
8784 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8785                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8786   unsigned NumOps = Ops.size();
8787   switch (NumOps) {
8788   case 0: return getNode(Opcode, DL, VT);
8789   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8790   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8791   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8792   default: break;
8793   }
8794 
8795 #ifndef NDEBUG
8796   for (auto &Op : Ops)
8797     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8798            "Operand is DELETED_NODE!");
8799 #endif
8800 
8801   switch (Opcode) {
8802   default: break;
8803   case ISD::BUILD_VECTOR:
8804     // Attempt to simplify BUILD_VECTOR.
8805     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8806       return V;
8807     break;
8808   case ISD::CONCAT_VECTORS:
8809     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8810       return V;
8811     break;
8812   case ISD::SELECT_CC:
8813     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8814     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8815            "LHS and RHS of condition must have same type!");
8816     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8817            "True and False arms of SelectCC must have same type!");
8818     assert(Ops[2].getValueType() == VT &&
8819            "select_cc node must be of same type as true and false value!");
8820     break;
8821   case ISD::BR_CC:
8822     assert(NumOps == 5 && "BR_CC takes 5 operands!");
8823     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8824            "LHS/RHS of comparison should match types!");
8825     break;
8826   case ISD::VP_ADD:
8827   case ISD::VP_SUB:
8828     // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR
8829     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
8830       Opcode = ISD::VP_XOR;
8831     break;
8832   case ISD::VP_MUL:
8833     // If it is VP_MUL mask operation then turn it to VP_AND
8834     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
8835       Opcode = ISD::VP_AND;
8836     break;
8837   }
8838 
8839   // Memoize nodes.
8840   SDNode *N;
8841   SDVTList VTs = getVTList(VT);
8842 
8843   if (VT != MVT::Glue) {
8844     FoldingSetNodeID ID;
8845     AddNodeIDNode(ID, Opcode, VTs, Ops);
8846     void *IP = nullptr;
8847 
8848     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8849       return SDValue(E, 0);
8850 
8851     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8852     createOperands(N, Ops);
8853 
8854     CSEMap.InsertNode(N, IP);
8855   } else {
8856     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8857     createOperands(N, Ops);
8858   }
8859 
8860   N->setFlags(Flags);
8861   InsertNode(N);
8862   SDValue V(N, 0);
8863   NewSDValueDbgMsg(V, "Creating new node: ", this);
8864   return V;
8865 }
8866 
8867 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8868                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8869   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8870 }
8871 
8872 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8873                               ArrayRef<SDValue> Ops) {
8874   SDNodeFlags Flags;
8875   if (Inserter)
8876     Flags = Inserter->getFlags();
8877   return getNode(Opcode, DL, VTList, Ops, Flags);
8878 }
8879 
8880 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8881                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8882   if (VTList.NumVTs == 1)
8883     return getNode(Opcode, DL, VTList.VTs[0], Ops);
8884 
8885 #ifndef NDEBUG
8886   for (auto &Op : Ops)
8887     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8888            "Operand is DELETED_NODE!");
8889 #endif
8890 
8891   switch (Opcode) {
8892   case ISD::STRICT_FP_EXTEND:
8893     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
8894            "Invalid STRICT_FP_EXTEND!");
8895     assert(VTList.VTs[0].isFloatingPoint() &&
8896            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8897     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8898            "STRICT_FP_EXTEND result type should be vector iff the operand "
8899            "type is vector!");
8900     assert((!VTList.VTs[0].isVector() ||
8901             VTList.VTs[0].getVectorNumElements() ==
8902             Ops[1].getValueType().getVectorNumElements()) &&
8903            "Vector element count mismatch!");
8904     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
8905            "Invalid fpext node, dst <= src!");
8906     break;
8907   case ISD::STRICT_FP_ROUND:
8908     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
8909     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8910            "STRICT_FP_ROUND result type should be vector iff the operand "
8911            "type is vector!");
8912     assert((!VTList.VTs[0].isVector() ||
8913             VTList.VTs[0].getVectorNumElements() ==
8914             Ops[1].getValueType().getVectorNumElements()) &&
8915            "Vector element count mismatch!");
8916     assert(VTList.VTs[0].isFloatingPoint() &&
8917            Ops[1].getValueType().isFloatingPoint() &&
8918            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
8919            isa<ConstantSDNode>(Ops[2]) &&
8920            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
8921             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
8922            "Invalid STRICT_FP_ROUND!");
8923     break;
8924 #if 0
8925   // FIXME: figure out how to safely handle things like
8926   // int foo(int x) { return 1 << (x & 255); }
8927   // int bar() { return foo(256); }
8928   case ISD::SRA_PARTS:
8929   case ISD::SRL_PARTS:
8930   case ISD::SHL_PARTS:
8931     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8932         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8933       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8934     else if (N3.getOpcode() == ISD::AND)
8935       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8936         // If the and is only masking out bits that cannot effect the shift,
8937         // eliminate the and.
8938         unsigned NumBits = VT.getScalarSizeInBits()*2;
8939         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8940           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8941       }
8942     break;
8943 #endif
8944   }
8945 
8946   // Memoize the node unless it returns a flag.
8947   SDNode *N;
8948   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8949     FoldingSetNodeID ID;
8950     AddNodeIDNode(ID, Opcode, VTList, Ops);
8951     void *IP = nullptr;
8952     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8953       return SDValue(E, 0);
8954 
8955     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8956     createOperands(N, Ops);
8957     CSEMap.InsertNode(N, IP);
8958   } else {
8959     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8960     createOperands(N, Ops);
8961   }
8962 
8963   N->setFlags(Flags);
8964   InsertNode(N);
8965   SDValue V(N, 0);
8966   NewSDValueDbgMsg(V, "Creating new node: ", this);
8967   return V;
8968 }
8969 
8970 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8971                               SDVTList VTList) {
8972   return getNode(Opcode, DL, VTList, None);
8973 }
8974 
8975 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8976                               SDValue N1) {
8977   SDValue Ops[] = { N1 };
8978   return getNode(Opcode, DL, VTList, Ops);
8979 }
8980 
8981 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8982                               SDValue N1, SDValue N2) {
8983   SDValue Ops[] = { N1, N2 };
8984   return getNode(Opcode, DL, VTList, Ops);
8985 }
8986 
8987 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8988                               SDValue N1, SDValue N2, SDValue N3) {
8989   SDValue Ops[] = { N1, N2, N3 };
8990   return getNode(Opcode, DL, VTList, Ops);
8991 }
8992 
8993 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8994                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8995   SDValue Ops[] = { N1, N2, N3, N4 };
8996   return getNode(Opcode, DL, VTList, Ops);
8997 }
8998 
8999 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9000                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
9001                               SDValue N5) {
9002   SDValue Ops[] = { N1, N2, N3, N4, N5 };
9003   return getNode(Opcode, DL, VTList, Ops);
9004 }
9005 
9006 SDVTList SelectionDAG::getVTList(EVT VT) {
9007   return makeVTList(SDNode::getValueTypeList(VT), 1);
9008 }
9009 
9010 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
9011   FoldingSetNodeID ID;
9012   ID.AddInteger(2U);
9013   ID.AddInteger(VT1.getRawBits());
9014   ID.AddInteger(VT2.getRawBits());
9015 
9016   void *IP = nullptr;
9017   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9018   if (!Result) {
9019     EVT *Array = Allocator.Allocate<EVT>(2);
9020     Array[0] = VT1;
9021     Array[1] = VT2;
9022     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
9023     VTListMap.InsertNode(Result, IP);
9024   }
9025   return Result->getSDVTList();
9026 }
9027 
9028 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
9029   FoldingSetNodeID ID;
9030   ID.AddInteger(3U);
9031   ID.AddInteger(VT1.getRawBits());
9032   ID.AddInteger(VT2.getRawBits());
9033   ID.AddInteger(VT3.getRawBits());
9034 
9035   void *IP = nullptr;
9036   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9037   if (!Result) {
9038     EVT *Array = Allocator.Allocate<EVT>(3);
9039     Array[0] = VT1;
9040     Array[1] = VT2;
9041     Array[2] = VT3;
9042     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
9043     VTListMap.InsertNode(Result, IP);
9044   }
9045   return Result->getSDVTList();
9046 }
9047 
9048 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
9049   FoldingSetNodeID ID;
9050   ID.AddInteger(4U);
9051   ID.AddInteger(VT1.getRawBits());
9052   ID.AddInteger(VT2.getRawBits());
9053   ID.AddInteger(VT3.getRawBits());
9054   ID.AddInteger(VT4.getRawBits());
9055 
9056   void *IP = nullptr;
9057   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9058   if (!Result) {
9059     EVT *Array = Allocator.Allocate<EVT>(4);
9060     Array[0] = VT1;
9061     Array[1] = VT2;
9062     Array[2] = VT3;
9063     Array[3] = VT4;
9064     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
9065     VTListMap.InsertNode(Result, IP);
9066   }
9067   return Result->getSDVTList();
9068 }
9069 
9070 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
9071   unsigned NumVTs = VTs.size();
9072   FoldingSetNodeID ID;
9073   ID.AddInteger(NumVTs);
9074   for (unsigned index = 0; index < NumVTs; index++) {
9075     ID.AddInteger(VTs[index].getRawBits());
9076   }
9077 
9078   void *IP = nullptr;
9079   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9080   if (!Result) {
9081     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
9082     llvm::copy(VTs, Array);
9083     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
9084     VTListMap.InsertNode(Result, IP);
9085   }
9086   return Result->getSDVTList();
9087 }
9088 
9089 
9090 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
9091 /// specified operands.  If the resultant node already exists in the DAG,
9092 /// this does not modify the specified node, instead it returns the node that
9093 /// already exists.  If the resultant node does not exist in the DAG, the
9094 /// input node is returned.  As a degenerate case, if you specify the same
9095 /// input operands as the node already has, the input node is returned.
9096 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
9097   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
9098 
9099   // Check to see if there is no change.
9100   if (Op == N->getOperand(0)) return N;
9101 
9102   // See if the modified node already exists.
9103   void *InsertPos = nullptr;
9104   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
9105     return Existing;
9106 
9107   // Nope it doesn't.  Remove the node from its current place in the maps.
9108   if (InsertPos)
9109     if (!RemoveNodeFromCSEMaps(N))
9110       InsertPos = nullptr;
9111 
9112   // Now we update the operands.
9113   N->OperandList[0].set(Op);
9114 
9115   updateDivergence(N);
9116   // If this gets put into a CSE map, add it.
9117   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9118   return N;
9119 }
9120 
9121 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
9122   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
9123 
9124   // Check to see if there is no change.
9125   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
9126     return N;   // No operands changed, just return the input node.
9127 
9128   // See if the modified node already exists.
9129   void *InsertPos = nullptr;
9130   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
9131     return Existing;
9132 
9133   // Nope it doesn't.  Remove the node from its current place in the maps.
9134   if (InsertPos)
9135     if (!RemoveNodeFromCSEMaps(N))
9136       InsertPos = nullptr;
9137 
9138   // Now we update the operands.
9139   if (N->OperandList[0] != Op1)
9140     N->OperandList[0].set(Op1);
9141   if (N->OperandList[1] != Op2)
9142     N->OperandList[1].set(Op2);
9143 
9144   updateDivergence(N);
9145   // If this gets put into a CSE map, add it.
9146   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9147   return N;
9148 }
9149 
9150 SDNode *SelectionDAG::
9151 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
9152   SDValue Ops[] = { Op1, Op2, Op3 };
9153   return UpdateNodeOperands(N, Ops);
9154 }
9155 
9156 SDNode *SelectionDAG::
9157 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
9158                    SDValue Op3, SDValue Op4) {
9159   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
9160   return UpdateNodeOperands(N, Ops);
9161 }
9162 
9163 SDNode *SelectionDAG::
9164 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
9165                    SDValue Op3, SDValue Op4, SDValue Op5) {
9166   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
9167   return UpdateNodeOperands(N, Ops);
9168 }
9169 
9170 SDNode *SelectionDAG::
9171 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
9172   unsigned NumOps = Ops.size();
9173   assert(N->getNumOperands() == NumOps &&
9174          "Update with wrong number of operands");
9175 
9176   // If no operands changed just return the input node.
9177   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
9178     return N;
9179 
9180   // See if the modified node already exists.
9181   void *InsertPos = nullptr;
9182   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
9183     return Existing;
9184 
9185   // Nope it doesn't.  Remove the node from its current place in the maps.
9186   if (InsertPos)
9187     if (!RemoveNodeFromCSEMaps(N))
9188       InsertPos = nullptr;
9189 
9190   // Now we update the operands.
9191   for (unsigned i = 0; i != NumOps; ++i)
9192     if (N->OperandList[i] != Ops[i])
9193       N->OperandList[i].set(Ops[i]);
9194 
9195   updateDivergence(N);
9196   // If this gets put into a CSE map, add it.
9197   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9198   return N;
9199 }
9200 
9201 /// DropOperands - Release the operands and set this node to have
9202 /// zero operands.
9203 void SDNode::DropOperands() {
9204   // Unlike the code in MorphNodeTo that does this, we don't need to
9205   // watch for dead nodes here.
9206   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
9207     SDUse &Use = *I++;
9208     Use.set(SDValue());
9209   }
9210 }
9211 
9212 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
9213                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
9214   if (NewMemRefs.empty()) {
9215     N->clearMemRefs();
9216     return;
9217   }
9218 
9219   // Check if we can avoid allocating by storing a single reference directly.
9220   if (NewMemRefs.size() == 1) {
9221     N->MemRefs = NewMemRefs[0];
9222     N->NumMemRefs = 1;
9223     return;
9224   }
9225 
9226   MachineMemOperand **MemRefsBuffer =
9227       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
9228   llvm::copy(NewMemRefs, MemRefsBuffer);
9229   N->MemRefs = MemRefsBuffer;
9230   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
9231 }
9232 
9233 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
9234 /// machine opcode.
9235 ///
9236 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9237                                    EVT VT) {
9238   SDVTList VTs = getVTList(VT);
9239   return SelectNodeTo(N, MachineOpc, VTs, None);
9240 }
9241 
9242 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9243                                    EVT VT, SDValue Op1) {
9244   SDVTList VTs = getVTList(VT);
9245   SDValue Ops[] = { Op1 };
9246   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9247 }
9248 
9249 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9250                                    EVT VT, SDValue Op1,
9251                                    SDValue Op2) {
9252   SDVTList VTs = getVTList(VT);
9253   SDValue Ops[] = { Op1, Op2 };
9254   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9255 }
9256 
9257 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9258                                    EVT VT, SDValue Op1,
9259                                    SDValue Op2, SDValue Op3) {
9260   SDVTList VTs = getVTList(VT);
9261   SDValue Ops[] = { Op1, Op2, Op3 };
9262   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9263 }
9264 
9265 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9266                                    EVT VT, ArrayRef<SDValue> Ops) {
9267   SDVTList VTs = getVTList(VT);
9268   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9269 }
9270 
9271 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9272                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
9273   SDVTList VTs = getVTList(VT1, VT2);
9274   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9275 }
9276 
9277 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9278                                    EVT VT1, EVT VT2) {
9279   SDVTList VTs = getVTList(VT1, VT2);
9280   return SelectNodeTo(N, MachineOpc, VTs, None);
9281 }
9282 
9283 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9284                                    EVT VT1, EVT VT2, EVT VT3,
9285                                    ArrayRef<SDValue> Ops) {
9286   SDVTList VTs = getVTList(VT1, VT2, VT3);
9287   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9288 }
9289 
9290 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9291                                    EVT VT1, EVT VT2,
9292                                    SDValue Op1, SDValue Op2) {
9293   SDVTList VTs = getVTList(VT1, VT2);
9294   SDValue Ops[] = { Op1, Op2 };
9295   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9296 }
9297 
9298 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9299                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
9300   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
9301   // Reset the NodeID to -1.
9302   New->setNodeId(-1);
9303   if (New != N) {
9304     ReplaceAllUsesWith(N, New);
9305     RemoveDeadNode(N);
9306   }
9307   return New;
9308 }
9309 
9310 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
9311 /// the line number information on the merged node since it is not possible to
9312 /// preserve the information that operation is associated with multiple lines.
9313 /// This will make the debugger working better at -O0, were there is a higher
9314 /// probability having other instructions associated with that line.
9315 ///
9316 /// For IROrder, we keep the smaller of the two
9317 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
9318   DebugLoc NLoc = N->getDebugLoc();
9319   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
9320     N->setDebugLoc(DebugLoc());
9321   }
9322   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
9323   N->setIROrder(Order);
9324   return N;
9325 }
9326 
9327 /// MorphNodeTo - This *mutates* the specified node to have the specified
9328 /// return type, opcode, and operands.
9329 ///
9330 /// Note that MorphNodeTo returns the resultant node.  If there is already a
9331 /// node of the specified opcode and operands, it returns that node instead of
9332 /// the current one.  Note that the SDLoc need not be the same.
9333 ///
9334 /// Using MorphNodeTo is faster than creating a new node and swapping it in
9335 /// with ReplaceAllUsesWith both because it often avoids allocating a new
9336 /// node, and because it doesn't require CSE recalculation for any of
9337 /// the node's users.
9338 ///
9339 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
9340 /// As a consequence it isn't appropriate to use from within the DAG combiner or
9341 /// the legalizer which maintain worklists that would need to be updated when
9342 /// deleting things.
9343 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
9344                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
9345   // If an identical node already exists, use it.
9346   void *IP = nullptr;
9347   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
9348     FoldingSetNodeID ID;
9349     AddNodeIDNode(ID, Opc, VTs, Ops);
9350     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
9351       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
9352   }
9353 
9354   if (!RemoveNodeFromCSEMaps(N))
9355     IP = nullptr;
9356 
9357   // Start the morphing.
9358   N->NodeType = Opc;
9359   N->ValueList = VTs.VTs;
9360   N->NumValues = VTs.NumVTs;
9361 
9362   // Clear the operands list, updating used nodes to remove this from their
9363   // use list.  Keep track of any operands that become dead as a result.
9364   SmallPtrSet<SDNode*, 16> DeadNodeSet;
9365   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
9366     SDUse &Use = *I++;
9367     SDNode *Used = Use.getNode();
9368     Use.set(SDValue());
9369     if (Used->use_empty())
9370       DeadNodeSet.insert(Used);
9371   }
9372 
9373   // For MachineNode, initialize the memory references information.
9374   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
9375     MN->clearMemRefs();
9376 
9377   // Swap for an appropriately sized array from the recycler.
9378   removeOperands(N);
9379   createOperands(N, Ops);
9380 
9381   // Delete any nodes that are still dead after adding the uses for the
9382   // new operands.
9383   if (!DeadNodeSet.empty()) {
9384     SmallVector<SDNode *, 16> DeadNodes;
9385     for (SDNode *N : DeadNodeSet)
9386       if (N->use_empty())
9387         DeadNodes.push_back(N);
9388     RemoveDeadNodes(DeadNodes);
9389   }
9390 
9391   if (IP)
9392     CSEMap.InsertNode(N, IP);   // Memoize the new node.
9393   return N;
9394 }
9395 
9396 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
9397   unsigned OrigOpc = Node->getOpcode();
9398   unsigned NewOpc;
9399   switch (OrigOpc) {
9400   default:
9401     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
9402 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
9403   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
9404 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
9405   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
9406 #include "llvm/IR/ConstrainedOps.def"
9407   }
9408 
9409   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
9410 
9411   // We're taking this node out of the chain, so we need to re-link things.
9412   SDValue InputChain = Node->getOperand(0);
9413   SDValue OutputChain = SDValue(Node, 1);
9414   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
9415 
9416   SmallVector<SDValue, 3> Ops;
9417   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
9418     Ops.push_back(Node->getOperand(i));
9419 
9420   SDVTList VTs = getVTList(Node->getValueType(0));
9421   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
9422 
9423   // MorphNodeTo can operate in two ways: if an existing node with the
9424   // specified operands exists, it can just return it.  Otherwise, it
9425   // updates the node in place to have the requested operands.
9426   if (Res == Node) {
9427     // If we updated the node in place, reset the node ID.  To the isel,
9428     // this should be just like a newly allocated machine node.
9429     Res->setNodeId(-1);
9430   } else {
9431     ReplaceAllUsesWith(Node, Res);
9432     RemoveDeadNode(Node);
9433   }
9434 
9435   return Res;
9436 }
9437 
9438 /// getMachineNode - These are used for target selectors to create a new node
9439 /// with specified return type(s), MachineInstr opcode, and operands.
9440 ///
9441 /// Note that getMachineNode returns the resultant node.  If there is already a
9442 /// node of the specified opcode and operands, it returns that node instead of
9443 /// the current one.
9444 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9445                                             EVT VT) {
9446   SDVTList VTs = getVTList(VT);
9447   return getMachineNode(Opcode, dl, VTs, None);
9448 }
9449 
9450 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9451                                             EVT VT, SDValue Op1) {
9452   SDVTList VTs = getVTList(VT);
9453   SDValue Ops[] = { Op1 };
9454   return getMachineNode(Opcode, dl, VTs, Ops);
9455 }
9456 
9457 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9458                                             EVT VT, SDValue Op1, SDValue Op2) {
9459   SDVTList VTs = getVTList(VT);
9460   SDValue Ops[] = { Op1, Op2 };
9461   return getMachineNode(Opcode, dl, VTs, Ops);
9462 }
9463 
9464 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9465                                             EVT VT, SDValue Op1, SDValue Op2,
9466                                             SDValue Op3) {
9467   SDVTList VTs = getVTList(VT);
9468   SDValue Ops[] = { Op1, Op2, Op3 };
9469   return getMachineNode(Opcode, dl, VTs, Ops);
9470 }
9471 
9472 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9473                                             EVT VT, ArrayRef<SDValue> Ops) {
9474   SDVTList VTs = getVTList(VT);
9475   return getMachineNode(Opcode, dl, VTs, Ops);
9476 }
9477 
9478 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9479                                             EVT VT1, EVT VT2, SDValue Op1,
9480                                             SDValue Op2) {
9481   SDVTList VTs = getVTList(VT1, VT2);
9482   SDValue Ops[] = { Op1, Op2 };
9483   return getMachineNode(Opcode, dl, VTs, Ops);
9484 }
9485 
9486 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9487                                             EVT VT1, EVT VT2, SDValue Op1,
9488                                             SDValue Op2, SDValue Op3) {
9489   SDVTList VTs = getVTList(VT1, VT2);
9490   SDValue Ops[] = { Op1, Op2, Op3 };
9491   return getMachineNode(Opcode, dl, VTs, Ops);
9492 }
9493 
9494 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9495                                             EVT VT1, EVT VT2,
9496                                             ArrayRef<SDValue> Ops) {
9497   SDVTList VTs = getVTList(VT1, VT2);
9498   return getMachineNode(Opcode, dl, VTs, Ops);
9499 }
9500 
9501 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9502                                             EVT VT1, EVT VT2, EVT VT3,
9503                                             SDValue Op1, SDValue Op2) {
9504   SDVTList VTs = getVTList(VT1, VT2, VT3);
9505   SDValue Ops[] = { Op1, Op2 };
9506   return getMachineNode(Opcode, dl, VTs, Ops);
9507 }
9508 
9509 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9510                                             EVT VT1, EVT VT2, EVT VT3,
9511                                             SDValue Op1, SDValue Op2,
9512                                             SDValue Op3) {
9513   SDVTList VTs = getVTList(VT1, VT2, VT3);
9514   SDValue Ops[] = { Op1, Op2, Op3 };
9515   return getMachineNode(Opcode, dl, VTs, Ops);
9516 }
9517 
9518 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9519                                             EVT VT1, EVT VT2, EVT VT3,
9520                                             ArrayRef<SDValue> Ops) {
9521   SDVTList VTs = getVTList(VT1, VT2, VT3);
9522   return getMachineNode(Opcode, dl, VTs, Ops);
9523 }
9524 
9525 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9526                                             ArrayRef<EVT> ResultTys,
9527                                             ArrayRef<SDValue> Ops) {
9528   SDVTList VTs = getVTList(ResultTys);
9529   return getMachineNode(Opcode, dl, VTs, Ops);
9530 }
9531 
9532 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9533                                             SDVTList VTs,
9534                                             ArrayRef<SDValue> Ops) {
9535   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9536   MachineSDNode *N;
9537   void *IP = nullptr;
9538 
9539   if (DoCSE) {
9540     FoldingSetNodeID ID;
9541     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9542     IP = nullptr;
9543     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9544       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9545     }
9546   }
9547 
9548   // Allocate a new MachineSDNode.
9549   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9550   createOperands(N, Ops);
9551 
9552   if (DoCSE)
9553     CSEMap.InsertNode(N, IP);
9554 
9555   InsertNode(N);
9556   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9557   return N;
9558 }
9559 
9560 /// getTargetExtractSubreg - A convenience function for creating
9561 /// TargetOpcode::EXTRACT_SUBREG nodes.
9562 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9563                                              SDValue Operand) {
9564   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9565   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9566                                   VT, Operand, SRIdxVal);
9567   return SDValue(Subreg, 0);
9568 }
9569 
9570 /// getTargetInsertSubreg - A convenience function for creating
9571 /// TargetOpcode::INSERT_SUBREG nodes.
9572 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9573                                             SDValue Operand, SDValue Subreg) {
9574   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9575   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9576                                   VT, Operand, Subreg, SRIdxVal);
9577   return SDValue(Result, 0);
9578 }
9579 
9580 /// getNodeIfExists - Get the specified node if it's already available, or
9581 /// else return NULL.
9582 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9583                                       ArrayRef<SDValue> Ops) {
9584   SDNodeFlags Flags;
9585   if (Inserter)
9586     Flags = Inserter->getFlags();
9587   return getNodeIfExists(Opcode, VTList, Ops, Flags);
9588 }
9589 
9590 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9591                                       ArrayRef<SDValue> Ops,
9592                                       const SDNodeFlags Flags) {
9593   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9594     FoldingSetNodeID ID;
9595     AddNodeIDNode(ID, Opcode, VTList, Ops);
9596     void *IP = nullptr;
9597     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9598       E->intersectFlagsWith(Flags);
9599       return E;
9600     }
9601   }
9602   return nullptr;
9603 }
9604 
9605 /// doesNodeExist - Check if a node exists without modifying its flags.
9606 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9607                                  ArrayRef<SDValue> Ops) {
9608   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9609     FoldingSetNodeID ID;
9610     AddNodeIDNode(ID, Opcode, VTList, Ops);
9611     void *IP = nullptr;
9612     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9613       return true;
9614   }
9615   return false;
9616 }
9617 
9618 /// getDbgValue - Creates a SDDbgValue node.
9619 ///
9620 /// SDNode
9621 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9622                                       SDNode *N, unsigned R, bool IsIndirect,
9623                                       const DebugLoc &DL, unsigned O) {
9624   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9625          "Expected inlined-at fields to agree");
9626   return new (DbgInfo->getAlloc())
9627       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9628                  {}, IsIndirect, DL, O,
9629                  /*IsVariadic=*/false);
9630 }
9631 
9632 /// Constant
9633 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9634                                               DIExpression *Expr,
9635                                               const Value *C,
9636                                               const DebugLoc &DL, unsigned O) {
9637   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9638          "Expected inlined-at fields to agree");
9639   return new (DbgInfo->getAlloc())
9640       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9641                  /*IsIndirect=*/false, DL, O,
9642                  /*IsVariadic=*/false);
9643 }
9644 
9645 /// FrameIndex
9646 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9647                                                 DIExpression *Expr, unsigned FI,
9648                                                 bool IsIndirect,
9649                                                 const DebugLoc &DL,
9650                                                 unsigned O) {
9651   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9652          "Expected inlined-at fields to agree");
9653   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9654 }
9655 
9656 /// FrameIndex with dependencies
9657 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9658                                                 DIExpression *Expr, unsigned FI,
9659                                                 ArrayRef<SDNode *> Dependencies,
9660                                                 bool IsIndirect,
9661                                                 const DebugLoc &DL,
9662                                                 unsigned O) {
9663   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9664          "Expected inlined-at fields to agree");
9665   return new (DbgInfo->getAlloc())
9666       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9667                  Dependencies, IsIndirect, DL, O,
9668                  /*IsVariadic=*/false);
9669 }
9670 
9671 /// VReg
9672 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9673                                           unsigned VReg, bool IsIndirect,
9674                                           const DebugLoc &DL, unsigned O) {
9675   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9676          "Expected inlined-at fields to agree");
9677   return new (DbgInfo->getAlloc())
9678       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9679                  {}, IsIndirect, DL, O,
9680                  /*IsVariadic=*/false);
9681 }
9682 
9683 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9684                                           ArrayRef<SDDbgOperand> Locs,
9685                                           ArrayRef<SDNode *> Dependencies,
9686                                           bool IsIndirect, const DebugLoc &DL,
9687                                           unsigned O, bool IsVariadic) {
9688   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9689          "Expected inlined-at fields to agree");
9690   return new (DbgInfo->getAlloc())
9691       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9692                  DL, O, IsVariadic);
9693 }
9694 
9695 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9696                                      unsigned OffsetInBits, unsigned SizeInBits,
9697                                      bool InvalidateDbg) {
9698   SDNode *FromNode = From.getNode();
9699   SDNode *ToNode = To.getNode();
9700   assert(FromNode && ToNode && "Can't modify dbg values");
9701 
9702   // PR35338
9703   // TODO: assert(From != To && "Redundant dbg value transfer");
9704   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9705   if (From == To || FromNode == ToNode)
9706     return;
9707 
9708   if (!FromNode->getHasDebugValue())
9709     return;
9710 
9711   SDDbgOperand FromLocOp =
9712       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9713   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9714 
9715   SmallVector<SDDbgValue *, 2> ClonedDVs;
9716   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9717     if (Dbg->isInvalidated())
9718       continue;
9719 
9720     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9721 
9722     // Create a new location ops vector that is equal to the old vector, but
9723     // with each instance of FromLocOp replaced with ToLocOp.
9724     bool Changed = false;
9725     auto NewLocOps = Dbg->copyLocationOps();
9726     std::replace_if(
9727         NewLocOps.begin(), NewLocOps.end(),
9728         [&Changed, FromLocOp](const SDDbgOperand &Op) {
9729           bool Match = Op == FromLocOp;
9730           Changed |= Match;
9731           return Match;
9732         },
9733         ToLocOp);
9734     // Ignore this SDDbgValue if we didn't find a matching location.
9735     if (!Changed)
9736       continue;
9737 
9738     DIVariable *Var = Dbg->getVariable();
9739     auto *Expr = Dbg->getExpression();
9740     // If a fragment is requested, update the expression.
9741     if (SizeInBits) {
9742       // When splitting a larger (e.g., sign-extended) value whose
9743       // lower bits are described with an SDDbgValue, do not attempt
9744       // to transfer the SDDbgValue to the upper bits.
9745       if (auto FI = Expr->getFragmentInfo())
9746         if (OffsetInBits + SizeInBits > FI->SizeInBits)
9747           continue;
9748       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9749                                                              SizeInBits);
9750       if (!Fragment)
9751         continue;
9752       Expr = *Fragment;
9753     }
9754 
9755     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9756     // Clone the SDDbgValue and move it to To.
9757     SDDbgValue *Clone = getDbgValueList(
9758         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9759         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9760         Dbg->isVariadic());
9761     ClonedDVs.push_back(Clone);
9762 
9763     if (InvalidateDbg) {
9764       // Invalidate value and indicate the SDDbgValue should not be emitted.
9765       Dbg->setIsInvalidated();
9766       Dbg->setIsEmitted();
9767     }
9768   }
9769 
9770   for (SDDbgValue *Dbg : ClonedDVs) {
9771     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9772            "Transferred DbgValues should depend on the new SDNode");
9773     AddDbgValue(Dbg, false);
9774   }
9775 }
9776 
9777 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9778   if (!N.getHasDebugValue())
9779     return;
9780 
9781   SmallVector<SDDbgValue *, 2> ClonedDVs;
9782   for (auto DV : GetDbgValues(&N)) {
9783     if (DV->isInvalidated())
9784       continue;
9785     switch (N.getOpcode()) {
9786     default:
9787       break;
9788     case ISD::ADD:
9789       SDValue N0 = N.getOperand(0);
9790       SDValue N1 = N.getOperand(1);
9791       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
9792           isConstantIntBuildVectorOrConstantInt(N1)) {
9793         uint64_t Offset = N.getConstantOperandVal(1);
9794 
9795         // Rewrite an ADD constant node into a DIExpression. Since we are
9796         // performing arithmetic to compute the variable's *value* in the
9797         // DIExpression, we need to mark the expression with a
9798         // DW_OP_stack_value.
9799         auto *DIExpr = DV->getExpression();
9800         auto NewLocOps = DV->copyLocationOps();
9801         bool Changed = false;
9802         for (size_t i = 0; i < NewLocOps.size(); ++i) {
9803           // We're not given a ResNo to compare against because the whole
9804           // node is going away. We know that any ISD::ADD only has one
9805           // result, so we can assume any node match is using the result.
9806           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
9807               NewLocOps[i].getSDNode() != &N)
9808             continue;
9809           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
9810           SmallVector<uint64_t, 3> ExprOps;
9811           DIExpression::appendOffset(ExprOps, Offset);
9812           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
9813           Changed = true;
9814         }
9815         (void)Changed;
9816         assert(Changed && "Salvage target doesn't use N");
9817 
9818         auto AdditionalDependencies = DV->getAdditionalDependencies();
9819         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
9820                                             NewLocOps, AdditionalDependencies,
9821                                             DV->isIndirect(), DV->getDebugLoc(),
9822                                             DV->getOrder(), DV->isVariadic());
9823         ClonedDVs.push_back(Clone);
9824         DV->setIsInvalidated();
9825         DV->setIsEmitted();
9826         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
9827                    N0.getNode()->dumprFull(this);
9828                    dbgs() << " into " << *DIExpr << '\n');
9829       }
9830     }
9831   }
9832 
9833   for (SDDbgValue *Dbg : ClonedDVs) {
9834     assert(!Dbg->getSDNodes().empty() &&
9835            "Salvaged DbgValue should depend on a new SDNode");
9836     AddDbgValue(Dbg, false);
9837   }
9838 }
9839 
9840 /// Creates a SDDbgLabel node.
9841 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
9842                                       const DebugLoc &DL, unsigned O) {
9843   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
9844          "Expected inlined-at fields to agree");
9845   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
9846 }
9847 
9848 namespace {
9849 
9850 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9851 /// pointed to by a use iterator is deleted, increment the use iterator
9852 /// so that it doesn't dangle.
9853 ///
9854 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
9855   SDNode::use_iterator &UI;
9856   SDNode::use_iterator &UE;
9857 
9858   void NodeDeleted(SDNode *N, SDNode *E) override {
9859     // Increment the iterator as needed.
9860     while (UI != UE && N == *UI)
9861       ++UI;
9862   }
9863 
9864 public:
9865   RAUWUpdateListener(SelectionDAG &d,
9866                      SDNode::use_iterator &ui,
9867                      SDNode::use_iterator &ue)
9868     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9869 };
9870 
9871 } // end anonymous namespace
9872 
9873 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9874 /// This can cause recursive merging of nodes in the DAG.
9875 ///
9876 /// This version assumes From has a single result value.
9877 ///
9878 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9879   SDNode *From = FromN.getNode();
9880   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9881          "Cannot replace with this method!");
9882   assert(From != To.getNode() && "Cannot replace uses of with self");
9883 
9884   // Preserve Debug Values
9885   transferDbgValues(FromN, To);
9886 
9887   // Iterate over all the existing uses of From. New uses will be added
9888   // to the beginning of the use list, which we avoid visiting.
9889   // This specifically avoids visiting uses of From that arise while the
9890   // replacement is happening, because any such uses would be the result
9891   // of CSE: If an existing node looks like From after one of its operands
9892   // is replaced by To, we don't want to replace of all its users with To
9893   // too. See PR3018 for more info.
9894   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9895   RAUWUpdateListener Listener(*this, UI, UE);
9896   while (UI != UE) {
9897     SDNode *User = *UI;
9898 
9899     // This node is about to morph, remove its old self from the CSE maps.
9900     RemoveNodeFromCSEMaps(User);
9901 
9902     // A user can appear in a use list multiple times, and when this
9903     // happens the uses are usually next to each other in the list.
9904     // To help reduce the number of CSE recomputations, process all
9905     // the uses of this user that we can find this way.
9906     do {
9907       SDUse &Use = UI.getUse();
9908       ++UI;
9909       Use.set(To);
9910       if (To->isDivergent() != From->isDivergent())
9911         updateDivergence(User);
9912     } while (UI != UE && *UI == User);
9913     // Now that we have modified User, add it back to the CSE maps.  If it
9914     // already exists there, recursively merge the results together.
9915     AddModifiedNodeToCSEMaps(User);
9916   }
9917 
9918   // If we just RAUW'd the root, take note.
9919   if (FromN == getRoot())
9920     setRoot(To);
9921 }
9922 
9923 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9924 /// This can cause recursive merging of nodes in the DAG.
9925 ///
9926 /// This version assumes that for each value of From, there is a
9927 /// corresponding value in To in the same position with the same type.
9928 ///
9929 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9930 #ifndef NDEBUG
9931   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9932     assert((!From->hasAnyUseOfValue(i) ||
9933             From->getValueType(i) == To->getValueType(i)) &&
9934            "Cannot use this version of ReplaceAllUsesWith!");
9935 #endif
9936 
9937   // Handle the trivial case.
9938   if (From == To)
9939     return;
9940 
9941   // Preserve Debug Info. Only do this if there's a use.
9942   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9943     if (From->hasAnyUseOfValue(i)) {
9944       assert((i < To->getNumValues()) && "Invalid To location");
9945       transferDbgValues(SDValue(From, i), SDValue(To, i));
9946     }
9947 
9948   // Iterate over just the existing users of From. See the comments in
9949   // the ReplaceAllUsesWith above.
9950   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9951   RAUWUpdateListener Listener(*this, UI, UE);
9952   while (UI != UE) {
9953     SDNode *User = *UI;
9954 
9955     // This node is about to morph, remove its old self from the CSE maps.
9956     RemoveNodeFromCSEMaps(User);
9957 
9958     // A user can appear in a use list multiple times, and when this
9959     // happens the uses are usually next to each other in the list.
9960     // To help reduce the number of CSE recomputations, process all
9961     // the uses of this user that we can find this way.
9962     do {
9963       SDUse &Use = UI.getUse();
9964       ++UI;
9965       Use.setNode(To);
9966       if (To->isDivergent() != From->isDivergent())
9967         updateDivergence(User);
9968     } while (UI != UE && *UI == User);
9969 
9970     // Now that we have modified User, add it back to the CSE maps.  If it
9971     // already exists there, recursively merge the results together.
9972     AddModifiedNodeToCSEMaps(User);
9973   }
9974 
9975   // If we just RAUW'd the root, take note.
9976   if (From == getRoot().getNode())
9977     setRoot(SDValue(To, getRoot().getResNo()));
9978 }
9979 
9980 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9981 /// This can cause recursive merging of nodes in the DAG.
9982 ///
9983 /// This version can replace From with any result values.  To must match the
9984 /// number and types of values returned by From.
9985 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9986   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9987     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9988 
9989   // Preserve Debug Info.
9990   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9991     transferDbgValues(SDValue(From, i), To[i]);
9992 
9993   // Iterate over just the existing users of From. See the comments in
9994   // the ReplaceAllUsesWith above.
9995   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9996   RAUWUpdateListener Listener(*this, UI, UE);
9997   while (UI != UE) {
9998     SDNode *User = *UI;
9999 
10000     // This node is about to morph, remove its old self from the CSE maps.
10001     RemoveNodeFromCSEMaps(User);
10002 
10003     // A user can appear in a use list multiple times, and when this happens the
10004     // uses are usually next to each other in the list.  To help reduce the
10005     // number of CSE and divergence recomputations, process all the uses of this
10006     // user that we can find this way.
10007     bool To_IsDivergent = false;
10008     do {
10009       SDUse &Use = UI.getUse();
10010       const SDValue &ToOp = To[Use.getResNo()];
10011       ++UI;
10012       Use.set(ToOp);
10013       To_IsDivergent |= ToOp->isDivergent();
10014     } while (UI != UE && *UI == User);
10015 
10016     if (To_IsDivergent != From->isDivergent())
10017       updateDivergence(User);
10018 
10019     // Now that we have modified User, add it back to the CSE maps.  If it
10020     // already exists there, recursively merge the results together.
10021     AddModifiedNodeToCSEMaps(User);
10022   }
10023 
10024   // If we just RAUW'd the root, take note.
10025   if (From == getRoot().getNode())
10026     setRoot(SDValue(To[getRoot().getResNo()]));
10027 }
10028 
10029 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
10030 /// uses of other values produced by From.getNode() alone.  The Deleted
10031 /// vector is handled the same way as for ReplaceAllUsesWith.
10032 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
10033   // Handle the really simple, really trivial case efficiently.
10034   if (From == To) return;
10035 
10036   // Handle the simple, trivial, case efficiently.
10037   if (From.getNode()->getNumValues() == 1) {
10038     ReplaceAllUsesWith(From, To);
10039     return;
10040   }
10041 
10042   // Preserve Debug Info.
10043   transferDbgValues(From, To);
10044 
10045   // Iterate over just the existing users of From. See the comments in
10046   // the ReplaceAllUsesWith above.
10047   SDNode::use_iterator UI = From.getNode()->use_begin(),
10048                        UE = From.getNode()->use_end();
10049   RAUWUpdateListener Listener(*this, UI, UE);
10050   while (UI != UE) {
10051     SDNode *User = *UI;
10052     bool UserRemovedFromCSEMaps = false;
10053 
10054     // A user can appear in a use list multiple times, and when this
10055     // happens the uses are usually next to each other in the list.
10056     // To help reduce the number of CSE recomputations, process all
10057     // the uses of this user that we can find this way.
10058     do {
10059       SDUse &Use = UI.getUse();
10060 
10061       // Skip uses of different values from the same node.
10062       if (Use.getResNo() != From.getResNo()) {
10063         ++UI;
10064         continue;
10065       }
10066 
10067       // If this node hasn't been modified yet, it's still in the CSE maps,
10068       // so remove its old self from the CSE maps.
10069       if (!UserRemovedFromCSEMaps) {
10070         RemoveNodeFromCSEMaps(User);
10071         UserRemovedFromCSEMaps = true;
10072       }
10073 
10074       ++UI;
10075       Use.set(To);
10076       if (To->isDivergent() != From->isDivergent())
10077         updateDivergence(User);
10078     } while (UI != UE && *UI == User);
10079     // We are iterating over all uses of the From node, so if a use
10080     // doesn't use the specific value, no changes are made.
10081     if (!UserRemovedFromCSEMaps)
10082       continue;
10083 
10084     // Now that we have modified User, add it back to the CSE maps.  If it
10085     // already exists there, recursively merge the results together.
10086     AddModifiedNodeToCSEMaps(User);
10087   }
10088 
10089   // If we just RAUW'd the root, take note.
10090   if (From == getRoot())
10091     setRoot(To);
10092 }
10093 
10094 namespace {
10095 
10096 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
10097 /// to record information about a use.
10098 struct UseMemo {
10099   SDNode *User;
10100   unsigned Index;
10101   SDUse *Use;
10102 };
10103 
10104 /// operator< - Sort Memos by User.
10105 bool operator<(const UseMemo &L, const UseMemo &R) {
10106   return (intptr_t)L.User < (intptr_t)R.User;
10107 }
10108 
10109 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
10110 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
10111 /// the node already has been taken care of recursively.
10112 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
10113   SmallVector<UseMemo, 4> &Uses;
10114 
10115   void NodeDeleted(SDNode *N, SDNode *E) override {
10116     for (UseMemo &Memo : Uses)
10117       if (Memo.User == N)
10118         Memo.User = nullptr;
10119   }
10120 
10121 public:
10122   RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses)
10123       : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
10124 };
10125 
10126 } // end anonymous namespace
10127 
10128 bool SelectionDAG::calculateDivergence(SDNode *N) {
10129   if (TLI->isSDNodeAlwaysUniform(N)) {
10130     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
10131            "Conflicting divergence information!");
10132     return false;
10133   }
10134   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
10135     return true;
10136   for (auto &Op : N->ops()) {
10137     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
10138       return true;
10139   }
10140   return false;
10141 }
10142 
10143 void SelectionDAG::updateDivergence(SDNode *N) {
10144   SmallVector<SDNode *, 16> Worklist(1, N);
10145   do {
10146     N = Worklist.pop_back_val();
10147     bool IsDivergent = calculateDivergence(N);
10148     if (N->SDNodeBits.IsDivergent != IsDivergent) {
10149       N->SDNodeBits.IsDivergent = IsDivergent;
10150       llvm::append_range(Worklist, N->uses());
10151     }
10152   } while (!Worklist.empty());
10153 }
10154 
10155 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
10156   DenseMap<SDNode *, unsigned> Degree;
10157   Order.reserve(AllNodes.size());
10158   for (auto &N : allnodes()) {
10159     unsigned NOps = N.getNumOperands();
10160     Degree[&N] = NOps;
10161     if (0 == NOps)
10162       Order.push_back(&N);
10163   }
10164   for (size_t I = 0; I != Order.size(); ++I) {
10165     SDNode *N = Order[I];
10166     for (auto U : N->uses()) {
10167       unsigned &UnsortedOps = Degree[U];
10168       if (0 == --UnsortedOps)
10169         Order.push_back(U);
10170     }
10171   }
10172 }
10173 
10174 #ifndef NDEBUG
10175 void SelectionDAG::VerifyDAGDivergence() {
10176   std::vector<SDNode *> TopoOrder;
10177   CreateTopologicalOrder(TopoOrder);
10178   for (auto *N : TopoOrder) {
10179     assert(calculateDivergence(N) == N->isDivergent() &&
10180            "Divergence bit inconsistency detected");
10181   }
10182 }
10183 #endif
10184 
10185 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
10186 /// uses of other values produced by From.getNode() alone.  The same value
10187 /// may appear in both the From and To list.  The Deleted vector is
10188 /// handled the same way as for ReplaceAllUsesWith.
10189 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
10190                                               const SDValue *To,
10191                                               unsigned Num){
10192   // Handle the simple, trivial case efficiently.
10193   if (Num == 1)
10194     return ReplaceAllUsesOfValueWith(*From, *To);
10195 
10196   transferDbgValues(*From, *To);
10197 
10198   // Read up all the uses and make records of them. This helps
10199   // processing new uses that are introduced during the
10200   // replacement process.
10201   SmallVector<UseMemo, 4> Uses;
10202   for (unsigned i = 0; i != Num; ++i) {
10203     unsigned FromResNo = From[i].getResNo();
10204     SDNode *FromNode = From[i].getNode();
10205     for (SDNode::use_iterator UI = FromNode->use_begin(),
10206          E = FromNode->use_end(); UI != E; ++UI) {
10207       SDUse &Use = UI.getUse();
10208       if (Use.getResNo() == FromResNo) {
10209         UseMemo Memo = { *UI, i, &Use };
10210         Uses.push_back(Memo);
10211       }
10212     }
10213   }
10214 
10215   // Sort the uses, so that all the uses from a given User are together.
10216   llvm::sort(Uses);
10217   RAUOVWUpdateListener Listener(*this, Uses);
10218 
10219   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
10220        UseIndex != UseIndexEnd; ) {
10221     // We know that this user uses some value of From.  If it is the right
10222     // value, update it.
10223     SDNode *User = Uses[UseIndex].User;
10224     // If the node has been deleted by recursive CSE updates when updating
10225     // another node, then just skip this entry.
10226     if (User == nullptr) {
10227       ++UseIndex;
10228       continue;
10229     }
10230 
10231     // This node is about to morph, remove its old self from the CSE maps.
10232     RemoveNodeFromCSEMaps(User);
10233 
10234     // The Uses array is sorted, so all the uses for a given User
10235     // are next to each other in the list.
10236     // To help reduce the number of CSE recomputations, process all
10237     // the uses of this user that we can find this way.
10238     do {
10239       unsigned i = Uses[UseIndex].Index;
10240       SDUse &Use = *Uses[UseIndex].Use;
10241       ++UseIndex;
10242 
10243       Use.set(To[i]);
10244     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
10245 
10246     // Now that we have modified User, add it back to the CSE maps.  If it
10247     // already exists there, recursively merge the results together.
10248     AddModifiedNodeToCSEMaps(User);
10249   }
10250 }
10251 
10252 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
10253 /// based on their topological order. It returns the maximum id and a vector
10254 /// of the SDNodes* in assigned order by reference.
10255 unsigned SelectionDAG::AssignTopologicalOrder() {
10256   unsigned DAGSize = 0;
10257 
10258   // SortedPos tracks the progress of the algorithm. Nodes before it are
10259   // sorted, nodes after it are unsorted. When the algorithm completes
10260   // it is at the end of the list.
10261   allnodes_iterator SortedPos = allnodes_begin();
10262 
10263   // Visit all the nodes. Move nodes with no operands to the front of
10264   // the list immediately. Annotate nodes that do have operands with their
10265   // operand count. Before we do this, the Node Id fields of the nodes
10266   // may contain arbitrary values. After, the Node Id fields for nodes
10267   // before SortedPos will contain the topological sort index, and the
10268   // Node Id fields for nodes At SortedPos and after will contain the
10269   // count of outstanding operands.
10270   for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
10271     checkForCycles(&N, this);
10272     unsigned Degree = N.getNumOperands();
10273     if (Degree == 0) {
10274       // A node with no uses, add it to the result array immediately.
10275       N.setNodeId(DAGSize++);
10276       allnodes_iterator Q(&N);
10277       if (Q != SortedPos)
10278         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
10279       assert(SortedPos != AllNodes.end() && "Overran node list");
10280       ++SortedPos;
10281     } else {
10282       // Temporarily use the Node Id as scratch space for the degree count.
10283       N.setNodeId(Degree);
10284     }
10285   }
10286 
10287   // Visit all the nodes. As we iterate, move nodes into sorted order,
10288   // such that by the time the end is reached all nodes will be sorted.
10289   for (SDNode &Node : allnodes()) {
10290     SDNode *N = &Node;
10291     checkForCycles(N, this);
10292     // N is in sorted position, so all its uses have one less operand
10293     // that needs to be sorted.
10294     for (SDNode *P : N->uses()) {
10295       unsigned Degree = P->getNodeId();
10296       assert(Degree != 0 && "Invalid node degree");
10297       --Degree;
10298       if (Degree == 0) {
10299         // All of P's operands are sorted, so P may sorted now.
10300         P->setNodeId(DAGSize++);
10301         if (P->getIterator() != SortedPos)
10302           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
10303         assert(SortedPos != AllNodes.end() && "Overran node list");
10304         ++SortedPos;
10305       } else {
10306         // Update P's outstanding operand count.
10307         P->setNodeId(Degree);
10308       }
10309     }
10310     if (Node.getIterator() == SortedPos) {
10311 #ifndef NDEBUG
10312       allnodes_iterator I(N);
10313       SDNode *S = &*++I;
10314       dbgs() << "Overran sorted position:\n";
10315       S->dumprFull(this); dbgs() << "\n";
10316       dbgs() << "Checking if this is due to cycles\n";
10317       checkForCycles(this, true);
10318 #endif
10319       llvm_unreachable(nullptr);
10320     }
10321   }
10322 
10323   assert(SortedPos == AllNodes.end() &&
10324          "Topological sort incomplete!");
10325   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
10326          "First node in topological sort is not the entry token!");
10327   assert(AllNodes.front().getNodeId() == 0 &&
10328          "First node in topological sort has non-zero id!");
10329   assert(AllNodes.front().getNumOperands() == 0 &&
10330          "First node in topological sort has operands!");
10331   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
10332          "Last node in topologic sort has unexpected id!");
10333   assert(AllNodes.back().use_empty() &&
10334          "Last node in topologic sort has users!");
10335   assert(DAGSize == allnodes_size() && "Node count mismatch!");
10336   return DAGSize;
10337 }
10338 
10339 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
10340 /// value is produced by SD.
10341 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
10342   for (SDNode *SD : DB->getSDNodes()) {
10343     if (!SD)
10344       continue;
10345     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
10346     SD->setHasDebugValue(true);
10347   }
10348   DbgInfo->add(DB, isParameter);
10349 }
10350 
10351 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
10352 
10353 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
10354                                                    SDValue NewMemOpChain) {
10355   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
10356   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
10357   // The new memory operation must have the same position as the old load in
10358   // terms of memory dependency. Create a TokenFactor for the old load and new
10359   // memory operation and update uses of the old load's output chain to use that
10360   // TokenFactor.
10361   if (OldChain == NewMemOpChain || OldChain.use_empty())
10362     return NewMemOpChain;
10363 
10364   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
10365                                 OldChain, NewMemOpChain);
10366   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
10367   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
10368   return TokenFactor;
10369 }
10370 
10371 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
10372                                                    SDValue NewMemOp) {
10373   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
10374   SDValue OldChain = SDValue(OldLoad, 1);
10375   SDValue NewMemOpChain = NewMemOp.getValue(1);
10376   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
10377 }
10378 
10379 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
10380                                                      Function **OutFunction) {
10381   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
10382 
10383   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
10384   auto *Module = MF->getFunction().getParent();
10385   auto *Function = Module->getFunction(Symbol);
10386 
10387   if (OutFunction != nullptr)
10388       *OutFunction = Function;
10389 
10390   if (Function != nullptr) {
10391     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
10392     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
10393   }
10394 
10395   std::string ErrorStr;
10396   raw_string_ostream ErrorFormatter(ErrorStr);
10397   ErrorFormatter << "Undefined external symbol ";
10398   ErrorFormatter << '"' << Symbol << '"';
10399   report_fatal_error(Twine(ErrorFormatter.str()));
10400 }
10401 
10402 //===----------------------------------------------------------------------===//
10403 //                              SDNode Class
10404 //===----------------------------------------------------------------------===//
10405 
10406 bool llvm::isNullConstant(SDValue V) {
10407   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10408   return Const != nullptr && Const->isZero();
10409 }
10410 
10411 bool llvm::isNullFPConstant(SDValue V) {
10412   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
10413   return Const != nullptr && Const->isZero() && !Const->isNegative();
10414 }
10415 
10416 bool llvm::isAllOnesConstant(SDValue V) {
10417   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10418   return Const != nullptr && Const->isAllOnes();
10419 }
10420 
10421 bool llvm::isOneConstant(SDValue V) {
10422   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10423   return Const != nullptr && Const->isOne();
10424 }
10425 
10426 bool llvm::isMinSignedConstant(SDValue V) {
10427   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10428   return Const != nullptr && Const->isMinSignedValue();
10429 }
10430 
10431 SDValue llvm::peekThroughBitcasts(SDValue V) {
10432   while (V.getOpcode() == ISD::BITCAST)
10433     V = V.getOperand(0);
10434   return V;
10435 }
10436 
10437 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
10438   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
10439     V = V.getOperand(0);
10440   return V;
10441 }
10442 
10443 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
10444   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
10445     V = V.getOperand(0);
10446   return V;
10447 }
10448 
10449 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
10450   if (V.getOpcode() != ISD::XOR)
10451     return false;
10452   V = peekThroughBitcasts(V.getOperand(1));
10453   unsigned NumBits = V.getScalarValueSizeInBits();
10454   ConstantSDNode *C =
10455       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
10456   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
10457 }
10458 
10459 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
10460                                           bool AllowTruncation) {
10461   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10462     return CN;
10463 
10464   // SplatVectors can truncate their operands. Ignore that case here unless
10465   // AllowTruncation is set.
10466   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
10467     EVT VecEltVT = N->getValueType(0).getVectorElementType();
10468     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10469       EVT CVT = CN->getValueType(0);
10470       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
10471       if (AllowTruncation || CVT == VecEltVT)
10472         return CN;
10473     }
10474   }
10475 
10476   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10477     BitVector UndefElements;
10478     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
10479 
10480     // BuildVectors can truncate their operands. Ignore that case here unless
10481     // AllowTruncation is set.
10482     if (CN && (UndefElements.none() || AllowUndefs)) {
10483       EVT CVT = CN->getValueType(0);
10484       EVT NSVT = N.getValueType().getScalarType();
10485       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10486       if (AllowTruncation || (CVT == NSVT))
10487         return CN;
10488     }
10489   }
10490 
10491   return nullptr;
10492 }
10493 
10494 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10495                                           bool AllowUndefs,
10496                                           bool AllowTruncation) {
10497   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10498     return CN;
10499 
10500   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10501     BitVector UndefElements;
10502     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10503 
10504     // BuildVectors can truncate their operands. Ignore that case here unless
10505     // AllowTruncation is set.
10506     if (CN && (UndefElements.none() || AllowUndefs)) {
10507       EVT CVT = CN->getValueType(0);
10508       EVT NSVT = N.getValueType().getScalarType();
10509       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10510       if (AllowTruncation || (CVT == NSVT))
10511         return CN;
10512     }
10513   }
10514 
10515   return nullptr;
10516 }
10517 
10518 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10519   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10520     return CN;
10521 
10522   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10523     BitVector UndefElements;
10524     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10525     if (CN && (UndefElements.none() || AllowUndefs))
10526       return CN;
10527   }
10528 
10529   if (N.getOpcode() == ISD::SPLAT_VECTOR)
10530     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10531       return CN;
10532 
10533   return nullptr;
10534 }
10535 
10536 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10537                                               const APInt &DemandedElts,
10538                                               bool AllowUndefs) {
10539   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10540     return CN;
10541 
10542   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10543     BitVector UndefElements;
10544     ConstantFPSDNode *CN =
10545         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10546     if (CN && (UndefElements.none() || AllowUndefs))
10547       return CN;
10548   }
10549 
10550   return nullptr;
10551 }
10552 
10553 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10554   // TODO: may want to use peekThroughBitcast() here.
10555   ConstantSDNode *C =
10556       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10557   return C && C->isZero();
10558 }
10559 
10560 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10561   // TODO: may want to use peekThroughBitcast() here.
10562   unsigned BitWidth = N.getScalarValueSizeInBits();
10563   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10564   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
10565 }
10566 
10567 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10568   N = peekThroughBitcasts(N);
10569   unsigned BitWidth = N.getScalarValueSizeInBits();
10570   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10571   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
10572 }
10573 
10574 HandleSDNode::~HandleSDNode() {
10575   DropOperands();
10576 }
10577 
10578 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10579                                          const DebugLoc &DL,
10580                                          const GlobalValue *GA, EVT VT,
10581                                          int64_t o, unsigned TF)
10582     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10583   TheGlobal = GA;
10584 }
10585 
10586 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10587                                          EVT VT, unsigned SrcAS,
10588                                          unsigned DestAS)
10589     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10590       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10591 
10592 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10593                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10594     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10595   MemSDNodeBits.IsVolatile = MMO->isVolatile();
10596   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10597   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10598   MemSDNodeBits.IsInvariant = MMO->isInvariant();
10599 
10600   // We check here that the size of the memory operand fits within the size of
10601   // the MMO. This is because the MMO might indicate only a possible address
10602   // range instead of specifying the affected memory addresses precisely.
10603   // TODO: Make MachineMemOperands aware of scalable vectors.
10604   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10605          "Size mismatch!");
10606 }
10607 
10608 /// Profile - Gather unique data for the node.
10609 ///
10610 void SDNode::Profile(FoldingSetNodeID &ID) const {
10611   AddNodeIDNode(ID, this);
10612 }
10613 
10614 namespace {
10615 
10616   struct EVTArray {
10617     std::vector<EVT> VTs;
10618 
10619     EVTArray() {
10620       VTs.reserve(MVT::VALUETYPE_SIZE);
10621       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10622         VTs.push_back(MVT((MVT::SimpleValueType)i));
10623     }
10624   };
10625 
10626 } // end anonymous namespace
10627 
10628 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
10629 static ManagedStatic<EVTArray> SimpleVTArray;
10630 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
10631 
10632 /// getValueTypeList - Return a pointer to the specified value type.
10633 ///
10634 const EVT *SDNode::getValueTypeList(EVT VT) {
10635   if (VT.isExtended()) {
10636     sys::SmartScopedLock<true> Lock(*VTMutex);
10637     return &(*EVTs->insert(VT).first);
10638   }
10639   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10640   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
10641 }
10642 
10643 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10644 /// indicated value.  This method ignores uses of other values defined by this
10645 /// operation.
10646 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10647   assert(Value < getNumValues() && "Bad value!");
10648 
10649   // TODO: Only iterate over uses of a given value of the node
10650   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10651     if (UI.getUse().getResNo() == Value) {
10652       if (NUses == 0)
10653         return false;
10654       --NUses;
10655     }
10656   }
10657 
10658   // Found exactly the right number of uses?
10659   return NUses == 0;
10660 }
10661 
10662 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10663 /// value. This method ignores uses of other values defined by this operation.
10664 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10665   assert(Value < getNumValues() && "Bad value!");
10666 
10667   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10668     if (UI.getUse().getResNo() == Value)
10669       return true;
10670 
10671   return false;
10672 }
10673 
10674 /// isOnlyUserOf - Return true if this node is the only use of N.
10675 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10676   bool Seen = false;
10677   for (const SDNode *User : N->uses()) {
10678     if (User == this)
10679       Seen = true;
10680     else
10681       return false;
10682   }
10683 
10684   return Seen;
10685 }
10686 
10687 /// Return true if the only users of N are contained in Nodes.
10688 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10689   bool Seen = false;
10690   for (const SDNode *User : N->uses()) {
10691     if (llvm::is_contained(Nodes, User))
10692       Seen = true;
10693     else
10694       return false;
10695   }
10696 
10697   return Seen;
10698 }
10699 
10700 /// isOperand - Return true if this node is an operand of N.
10701 bool SDValue::isOperandOf(const SDNode *N) const {
10702   return is_contained(N->op_values(), *this);
10703 }
10704 
10705 bool SDNode::isOperandOf(const SDNode *N) const {
10706   return any_of(N->op_values(),
10707                 [this](SDValue Op) { return this == Op.getNode(); });
10708 }
10709 
10710 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10711 /// be a chain) reaches the specified operand without crossing any
10712 /// side-effecting instructions on any chain path.  In practice, this looks
10713 /// through token factors and non-volatile loads.  In order to remain efficient,
10714 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10715 ///
10716 /// Note that we only need to examine chains when we're searching for
10717 /// side-effects; SelectionDAG requires that all side-effects are represented
10718 /// by chains, even if another operand would force a specific ordering. This
10719 /// constraint is necessary to allow transformations like splitting loads.
10720 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10721                                              unsigned Depth) const {
10722   if (*this == Dest) return true;
10723 
10724   // Don't search too deeply, we just want to be able to see through
10725   // TokenFactor's etc.
10726   if (Depth == 0) return false;
10727 
10728   // If this is a token factor, all inputs to the TF happen in parallel.
10729   if (getOpcode() == ISD::TokenFactor) {
10730     // First, try a shallow search.
10731     if (is_contained((*this)->ops(), Dest)) {
10732       // We found the chain we want as an operand of this TokenFactor.
10733       // Essentially, we reach the chain without side-effects if we could
10734       // serialize the TokenFactor into a simple chain of operations with
10735       // Dest as the last operation. This is automatically true if the
10736       // chain has one use: there are no other ordering constraints.
10737       // If the chain has more than one use, we give up: some other
10738       // use of Dest might force a side-effect between Dest and the current
10739       // node.
10740       if (Dest.hasOneUse())
10741         return true;
10742     }
10743     // Next, try a deep search: check whether every operand of the TokenFactor
10744     // reaches Dest.
10745     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10746       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10747     });
10748   }
10749 
10750   // Loads don't have side effects, look through them.
10751   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10752     if (Ld->isUnordered())
10753       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10754   }
10755   return false;
10756 }
10757 
10758 bool SDNode::hasPredecessor(const SDNode *N) const {
10759   SmallPtrSet<const SDNode *, 32> Visited;
10760   SmallVector<const SDNode *, 16> Worklist;
10761   Worklist.push_back(this);
10762   return hasPredecessorHelper(N, Visited, Worklist);
10763 }
10764 
10765 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10766   this->Flags.intersectWith(Flags);
10767 }
10768 
10769 SDValue
10770 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10771                                   ArrayRef<ISD::NodeType> CandidateBinOps,
10772                                   bool AllowPartials) {
10773   // The pattern must end in an extract from index 0.
10774   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10775       !isNullConstant(Extract->getOperand(1)))
10776     return SDValue();
10777 
10778   // Match against one of the candidate binary ops.
10779   SDValue Op = Extract->getOperand(0);
10780   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10781         return Op.getOpcode() == unsigned(BinOp);
10782       }))
10783     return SDValue();
10784 
10785   // Floating-point reductions may require relaxed constraints on the final step
10786   // of the reduction because they may reorder intermediate operations.
10787   unsigned CandidateBinOp = Op.getOpcode();
10788   if (Op.getValueType().isFloatingPoint()) {
10789     SDNodeFlags Flags = Op->getFlags();
10790     switch (CandidateBinOp) {
10791     case ISD::FADD:
10792       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
10793         return SDValue();
10794       break;
10795     default:
10796       llvm_unreachable("Unhandled FP opcode for binop reduction");
10797     }
10798   }
10799 
10800   // Matching failed - attempt to see if we did enough stages that a partial
10801   // reduction from a subvector is possible.
10802   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
10803     if (!AllowPartials || !Op)
10804       return SDValue();
10805     EVT OpVT = Op.getValueType();
10806     EVT OpSVT = OpVT.getScalarType();
10807     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
10808     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
10809       return SDValue();
10810     BinOp = (ISD::NodeType)CandidateBinOp;
10811     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
10812                    getVectorIdxConstant(0, SDLoc(Op)));
10813   };
10814 
10815   // At each stage, we're looking for something that looks like:
10816   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
10817   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
10818   //                               i32 undef, i32 undef, i32 undef, i32 undef>
10819   // %a = binop <8 x i32> %op, %s
10820   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
10821   // we expect something like:
10822   // <4,5,6,7,u,u,u,u>
10823   // <2,3,u,u,u,u,u,u>
10824   // <1,u,u,u,u,u,u,u>
10825   // While a partial reduction match would be:
10826   // <2,3,u,u,u,u,u,u>
10827   // <1,u,u,u,u,u,u,u>
10828   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
10829   SDValue PrevOp;
10830   for (unsigned i = 0; i < Stages; ++i) {
10831     unsigned MaskEnd = (1 << i);
10832 
10833     if (Op.getOpcode() != CandidateBinOp)
10834       return PartialReduction(PrevOp, MaskEnd);
10835 
10836     SDValue Op0 = Op.getOperand(0);
10837     SDValue Op1 = Op.getOperand(1);
10838 
10839     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
10840     if (Shuffle) {
10841       Op = Op1;
10842     } else {
10843       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
10844       Op = Op0;
10845     }
10846 
10847     // The first operand of the shuffle should be the same as the other operand
10848     // of the binop.
10849     if (!Shuffle || Shuffle->getOperand(0) != Op)
10850       return PartialReduction(PrevOp, MaskEnd);
10851 
10852     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
10853     for (int Index = 0; Index < (int)MaskEnd; ++Index)
10854       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
10855         return PartialReduction(PrevOp, MaskEnd);
10856 
10857     PrevOp = Op;
10858   }
10859 
10860   // Handle subvector reductions, which tend to appear after the shuffle
10861   // reduction stages.
10862   while (Op.getOpcode() == CandidateBinOp) {
10863     unsigned NumElts = Op.getValueType().getVectorNumElements();
10864     SDValue Op0 = Op.getOperand(0);
10865     SDValue Op1 = Op.getOperand(1);
10866     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10867         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10868         Op0.getOperand(0) != Op1.getOperand(0))
10869       break;
10870     SDValue Src = Op0.getOperand(0);
10871     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
10872     if (NumSrcElts != (2 * NumElts))
10873       break;
10874     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
10875           Op1.getConstantOperandAPInt(1) == NumElts) &&
10876         !(Op1.getConstantOperandAPInt(1) == 0 &&
10877           Op0.getConstantOperandAPInt(1) == NumElts))
10878       break;
10879     Op = Src;
10880   }
10881 
10882   BinOp = (ISD::NodeType)CandidateBinOp;
10883   return Op;
10884 }
10885 
10886 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
10887   assert(N->getNumValues() == 1 &&
10888          "Can't unroll a vector with multiple results!");
10889 
10890   EVT VT = N->getValueType(0);
10891   unsigned NE = VT.getVectorNumElements();
10892   EVT EltVT = VT.getVectorElementType();
10893   SDLoc dl(N);
10894 
10895   SmallVector<SDValue, 8> Scalars;
10896   SmallVector<SDValue, 4> Operands(N->getNumOperands());
10897 
10898   // If ResNE is 0, fully unroll the vector op.
10899   if (ResNE == 0)
10900     ResNE = NE;
10901   else if (NE > ResNE)
10902     NE = ResNE;
10903 
10904   unsigned i;
10905   for (i= 0; i != NE; ++i) {
10906     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
10907       SDValue Operand = N->getOperand(j);
10908       EVT OperandVT = Operand.getValueType();
10909       if (OperandVT.isVector()) {
10910         // A vector operand; extract a single element.
10911         EVT OperandEltVT = OperandVT.getVectorElementType();
10912         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
10913                               Operand, getVectorIdxConstant(i, dl));
10914       } else {
10915         // A scalar operand; just use it as is.
10916         Operands[j] = Operand;
10917       }
10918     }
10919 
10920     switch (N->getOpcode()) {
10921     default: {
10922       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
10923                                 N->getFlags()));
10924       break;
10925     }
10926     case ISD::VSELECT:
10927       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
10928       break;
10929     case ISD::SHL:
10930     case ISD::SRA:
10931     case ISD::SRL:
10932     case ISD::ROTL:
10933     case ISD::ROTR:
10934       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
10935                                getShiftAmountOperand(Operands[0].getValueType(),
10936                                                      Operands[1])));
10937       break;
10938     case ISD::SIGN_EXTEND_INREG: {
10939       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
10940       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
10941                                 Operands[0],
10942                                 getValueType(ExtVT)));
10943     }
10944     }
10945   }
10946 
10947   for (; i < ResNE; ++i)
10948     Scalars.push_back(getUNDEF(EltVT));
10949 
10950   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
10951   return getBuildVector(VecVT, dl, Scalars);
10952 }
10953 
10954 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
10955     SDNode *N, unsigned ResNE) {
10956   unsigned Opcode = N->getOpcode();
10957   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
10958           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
10959           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
10960          "Expected an overflow opcode");
10961 
10962   EVT ResVT = N->getValueType(0);
10963   EVT OvVT = N->getValueType(1);
10964   EVT ResEltVT = ResVT.getVectorElementType();
10965   EVT OvEltVT = OvVT.getVectorElementType();
10966   SDLoc dl(N);
10967 
10968   // If ResNE is 0, fully unroll the vector op.
10969   unsigned NE = ResVT.getVectorNumElements();
10970   if (ResNE == 0)
10971     ResNE = NE;
10972   else if (NE > ResNE)
10973     NE = ResNE;
10974 
10975   SmallVector<SDValue, 8> LHSScalars;
10976   SmallVector<SDValue, 8> RHSScalars;
10977   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10978   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10979 
10980   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10981   SDVTList VTs = getVTList(ResEltVT, SVT);
10982   SmallVector<SDValue, 8> ResScalars;
10983   SmallVector<SDValue, 8> OvScalars;
10984   for (unsigned i = 0; i < NE; ++i) {
10985     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10986     SDValue Ov =
10987         getSelect(dl, OvEltVT, Res.getValue(1),
10988                   getBoolConstant(true, dl, OvEltVT, ResVT),
10989                   getConstant(0, dl, OvEltVT));
10990 
10991     ResScalars.push_back(Res);
10992     OvScalars.push_back(Ov);
10993   }
10994 
10995   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10996   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10997 
10998   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10999   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
11000   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
11001                         getBuildVector(NewOvVT, dl, OvScalars));
11002 }
11003 
11004 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
11005                                                   LoadSDNode *Base,
11006                                                   unsigned Bytes,
11007                                                   int Dist) const {
11008   if (LD->isVolatile() || Base->isVolatile())
11009     return false;
11010   // TODO: probably too restrictive for atomics, revisit
11011   if (!LD->isSimple())
11012     return false;
11013   if (LD->isIndexed() || Base->isIndexed())
11014     return false;
11015   if (LD->getChain() != Base->getChain())
11016     return false;
11017   EVT VT = LD->getValueType(0);
11018   if (VT.getSizeInBits() / 8 != Bytes)
11019     return false;
11020 
11021   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
11022   auto LocDecomp = BaseIndexOffset::match(LD, *this);
11023 
11024   int64_t Offset = 0;
11025   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
11026     return (Dist * Bytes == Offset);
11027   return false;
11028 }
11029 
11030 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
11031 /// if it cannot be inferred.
11032 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
11033   // If this is a GlobalAddress + cst, return the alignment.
11034   const GlobalValue *GV = nullptr;
11035   int64_t GVOffset = 0;
11036   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
11037     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
11038     KnownBits Known(PtrWidth);
11039     llvm::computeKnownBits(GV, Known, getDataLayout());
11040     unsigned AlignBits = Known.countMinTrailingZeros();
11041     if (AlignBits)
11042       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
11043   }
11044 
11045   // If this is a direct reference to a stack slot, use information about the
11046   // stack slot's alignment.
11047   int FrameIdx = INT_MIN;
11048   int64_t FrameOffset = 0;
11049   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
11050     FrameIdx = FI->getIndex();
11051   } else if (isBaseWithConstantOffset(Ptr) &&
11052              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
11053     // Handle FI+Cst
11054     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
11055     FrameOffset = Ptr.getConstantOperandVal(1);
11056   }
11057 
11058   if (FrameIdx != INT_MIN) {
11059     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
11060     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
11061   }
11062 
11063   return None;
11064 }
11065 
11066 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
11067 /// which is split (or expanded) into two not necessarily identical pieces.
11068 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
11069   // Currently all types are split in half.
11070   EVT LoVT, HiVT;
11071   if (!VT.isVector())
11072     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
11073   else
11074     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
11075 
11076   return std::make_pair(LoVT, HiVT);
11077 }
11078 
11079 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
11080 /// type, dependent on an enveloping VT that has been split into two identical
11081 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
11082 std::pair<EVT, EVT>
11083 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
11084                                        bool *HiIsEmpty) const {
11085   EVT EltTp = VT.getVectorElementType();
11086   // Examples:
11087   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
11088   //   custom VL=9  with enveloping VL=8/8 yields 8/1
11089   //   custom VL=10 with enveloping VL=8/8 yields 8/2
11090   //   etc.
11091   ElementCount VTNumElts = VT.getVectorElementCount();
11092   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
11093   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
11094          "Mixing fixed width and scalable vectors when enveloping a type");
11095   EVT LoVT, HiVT;
11096   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
11097     LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
11098     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
11099     *HiIsEmpty = false;
11100   } else {
11101     // Flag that hi type has zero storage size, but return split envelop type
11102     // (this would be easier if vector types with zero elements were allowed).
11103     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
11104     HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
11105     *HiIsEmpty = true;
11106   }
11107   return std::make_pair(LoVT, HiVT);
11108 }
11109 
11110 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
11111 /// low/high part.
11112 std::pair<SDValue, SDValue>
11113 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
11114                           const EVT &HiVT) {
11115   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
11116          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
11117          "Splitting vector with an invalid mixture of fixed and scalable "
11118          "vector types");
11119   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
11120              N.getValueType().getVectorMinNumElements() &&
11121          "More vector elements requested than available!");
11122   SDValue Lo, Hi;
11123   Lo =
11124       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
11125   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
11126   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
11127   // IDX with the runtime scaling factor of the result vector type. For
11128   // fixed-width result vectors, that runtime scaling factor is 1.
11129   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
11130                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
11131   return std::make_pair(Lo, Hi);
11132 }
11133 
11134 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
11135                                                    const SDLoc &DL) {
11136   // Split the vector length parameter.
11137   // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
11138   EVT VT = N.getValueType();
11139   assert(VecVT.getVectorElementCount().isKnownEven() &&
11140          "Expecting the mask to be an evenly-sized vector");
11141   unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
11142   SDValue HalfNumElts =
11143       VecVT.isFixedLengthVector()
11144           ? getConstant(HalfMinNumElts, DL, VT)
11145           : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
11146   SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
11147   SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
11148   return std::make_pair(Lo, Hi);
11149 }
11150 
11151 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
11152 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
11153   EVT VT = N.getValueType();
11154   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
11155                                 NextPowerOf2(VT.getVectorNumElements()));
11156   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
11157                  getVectorIdxConstant(0, DL));
11158 }
11159 
11160 void SelectionDAG::ExtractVectorElements(SDValue Op,
11161                                          SmallVectorImpl<SDValue> &Args,
11162                                          unsigned Start, unsigned Count,
11163                                          EVT EltVT) {
11164   EVT VT = Op.getValueType();
11165   if (Count == 0)
11166     Count = VT.getVectorNumElements();
11167   if (EltVT == EVT())
11168     EltVT = VT.getVectorElementType();
11169   SDLoc SL(Op);
11170   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
11171     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
11172                            getVectorIdxConstant(i, SL)));
11173   }
11174 }
11175 
11176 // getAddressSpace - Return the address space this GlobalAddress belongs to.
11177 unsigned GlobalAddressSDNode::getAddressSpace() const {
11178   return getGlobal()->getType()->getAddressSpace();
11179 }
11180 
11181 Type *ConstantPoolSDNode::getType() const {
11182   if (isMachineConstantPoolEntry())
11183     return Val.MachineCPVal->getType();
11184   return Val.ConstVal->getType();
11185 }
11186 
11187 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
11188                                         unsigned &SplatBitSize,
11189                                         bool &HasAnyUndefs,
11190                                         unsigned MinSplatBits,
11191                                         bool IsBigEndian) const {
11192   EVT VT = getValueType(0);
11193   assert(VT.isVector() && "Expected a vector type");
11194   unsigned VecWidth = VT.getSizeInBits();
11195   if (MinSplatBits > VecWidth)
11196     return false;
11197 
11198   // FIXME: The widths are based on this node's type, but build vectors can
11199   // truncate their operands.
11200   SplatValue = APInt(VecWidth, 0);
11201   SplatUndef = APInt(VecWidth, 0);
11202 
11203   // Get the bits. Bits with undefined values (when the corresponding element
11204   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
11205   // in SplatValue. If any of the values are not constant, give up and return
11206   // false.
11207   unsigned int NumOps = getNumOperands();
11208   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
11209   unsigned EltWidth = VT.getScalarSizeInBits();
11210 
11211   for (unsigned j = 0; j < NumOps; ++j) {
11212     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
11213     SDValue OpVal = getOperand(i);
11214     unsigned BitPos = j * EltWidth;
11215 
11216     if (OpVal.isUndef())
11217       SplatUndef.setBits(BitPos, BitPos + EltWidth);
11218     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
11219       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
11220     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
11221       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
11222     else
11223       return false;
11224   }
11225 
11226   // The build_vector is all constants or undefs. Find the smallest element
11227   // size that splats the vector.
11228   HasAnyUndefs = (SplatUndef != 0);
11229 
11230   // FIXME: This does not work for vectors with elements less than 8 bits.
11231   while (VecWidth > 8) {
11232     unsigned HalfSize = VecWidth / 2;
11233     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
11234     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
11235     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
11236     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
11237 
11238     // If the two halves do not match (ignoring undef bits), stop here.
11239     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
11240         MinSplatBits > HalfSize)
11241       break;
11242 
11243     SplatValue = HighValue | LowValue;
11244     SplatUndef = HighUndef & LowUndef;
11245 
11246     VecWidth = HalfSize;
11247   }
11248 
11249   SplatBitSize = VecWidth;
11250   return true;
11251 }
11252 
11253 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
11254                                          BitVector *UndefElements) const {
11255   unsigned NumOps = getNumOperands();
11256   if (UndefElements) {
11257     UndefElements->clear();
11258     UndefElements->resize(NumOps);
11259   }
11260   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
11261   if (!DemandedElts)
11262     return SDValue();
11263   SDValue Splatted;
11264   for (unsigned i = 0; i != NumOps; ++i) {
11265     if (!DemandedElts[i])
11266       continue;
11267     SDValue Op = getOperand(i);
11268     if (Op.isUndef()) {
11269       if (UndefElements)
11270         (*UndefElements)[i] = true;
11271     } else if (!Splatted) {
11272       Splatted = Op;
11273     } else if (Splatted != Op) {
11274       return SDValue();
11275     }
11276   }
11277 
11278   if (!Splatted) {
11279     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
11280     assert(getOperand(FirstDemandedIdx).isUndef() &&
11281            "Can only have a splat without a constant for all undefs.");
11282     return getOperand(FirstDemandedIdx);
11283   }
11284 
11285   return Splatted;
11286 }
11287 
11288 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
11289   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
11290   return getSplatValue(DemandedElts, UndefElements);
11291 }
11292 
11293 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
11294                                             SmallVectorImpl<SDValue> &Sequence,
11295                                             BitVector *UndefElements) const {
11296   unsigned NumOps = getNumOperands();
11297   Sequence.clear();
11298   if (UndefElements) {
11299     UndefElements->clear();
11300     UndefElements->resize(NumOps);
11301   }
11302   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
11303   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
11304     return false;
11305 
11306   // Set the undefs even if we don't find a sequence (like getSplatValue).
11307   if (UndefElements)
11308     for (unsigned I = 0; I != NumOps; ++I)
11309       if (DemandedElts[I] && getOperand(I).isUndef())
11310         (*UndefElements)[I] = true;
11311 
11312   // Iteratively widen the sequence length looking for repetitions.
11313   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
11314     Sequence.append(SeqLen, SDValue());
11315     for (unsigned I = 0; I != NumOps; ++I) {
11316       if (!DemandedElts[I])
11317         continue;
11318       SDValue &SeqOp = Sequence[I % SeqLen];
11319       SDValue Op = getOperand(I);
11320       if (Op.isUndef()) {
11321         if (!SeqOp)
11322           SeqOp = Op;
11323         continue;
11324       }
11325       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
11326         Sequence.clear();
11327         break;
11328       }
11329       SeqOp = Op;
11330     }
11331     if (!Sequence.empty())
11332       return true;
11333   }
11334 
11335   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
11336   return false;
11337 }
11338 
11339 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
11340                                             BitVector *UndefElements) const {
11341   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
11342   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
11343 }
11344 
11345 ConstantSDNode *
11346 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
11347                                         BitVector *UndefElements) const {
11348   return dyn_cast_or_null<ConstantSDNode>(
11349       getSplatValue(DemandedElts, UndefElements));
11350 }
11351 
11352 ConstantSDNode *
11353 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
11354   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
11355 }
11356 
11357 ConstantFPSDNode *
11358 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
11359                                           BitVector *UndefElements) const {
11360   return dyn_cast_or_null<ConstantFPSDNode>(
11361       getSplatValue(DemandedElts, UndefElements));
11362 }
11363 
11364 ConstantFPSDNode *
11365 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
11366   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
11367 }
11368 
11369 int32_t
11370 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
11371                                                    uint32_t BitWidth) const {
11372   if (ConstantFPSDNode *CN =
11373           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
11374     bool IsExact;
11375     APSInt IntVal(BitWidth);
11376     const APFloat &APF = CN->getValueAPF();
11377     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
11378             APFloat::opOK ||
11379         !IsExact)
11380       return -1;
11381 
11382     return IntVal.exactLogBase2();
11383   }
11384   return -1;
11385 }
11386 
11387 bool BuildVectorSDNode::getConstantRawBits(
11388     bool IsLittleEndian, unsigned DstEltSizeInBits,
11389     SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
11390   // Early-out if this contains anything but Undef/Constant/ConstantFP.
11391   if (!isConstant())
11392     return false;
11393 
11394   unsigned NumSrcOps = getNumOperands();
11395   unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
11396   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
11397          "Invalid bitcast scale");
11398 
11399   // Extract raw src bits.
11400   SmallVector<APInt> SrcBitElements(NumSrcOps,
11401                                     APInt::getNullValue(SrcEltSizeInBits));
11402   BitVector SrcUndeElements(NumSrcOps, false);
11403 
11404   for (unsigned I = 0; I != NumSrcOps; ++I) {
11405     SDValue Op = getOperand(I);
11406     if (Op.isUndef()) {
11407       SrcUndeElements.set(I);
11408       continue;
11409     }
11410     auto *CInt = dyn_cast<ConstantSDNode>(Op);
11411     auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
11412     assert((CInt || CFP) && "Unknown constant");
11413     SrcBitElements[I] =
11414         CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits)
11415              : CFP->getValueAPF().bitcastToAPInt();
11416   }
11417 
11418   // Recast to dst width.
11419   recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
11420                 SrcBitElements, UndefElements, SrcUndeElements);
11421   return true;
11422 }
11423 
11424 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
11425                                       unsigned DstEltSizeInBits,
11426                                       SmallVectorImpl<APInt> &DstBitElements,
11427                                       ArrayRef<APInt> SrcBitElements,
11428                                       BitVector &DstUndefElements,
11429                                       const BitVector &SrcUndefElements) {
11430   unsigned NumSrcOps = SrcBitElements.size();
11431   unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
11432   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
11433          "Invalid bitcast scale");
11434   assert(NumSrcOps == SrcUndefElements.size() &&
11435          "Vector size mismatch");
11436 
11437   unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
11438   DstUndefElements.clear();
11439   DstUndefElements.resize(NumDstOps, false);
11440   DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits));
11441 
11442   // Concatenate src elements constant bits together into dst element.
11443   if (SrcEltSizeInBits <= DstEltSizeInBits) {
11444     unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
11445     for (unsigned I = 0; I != NumDstOps; ++I) {
11446       DstUndefElements.set(I);
11447       APInt &DstBits = DstBitElements[I];
11448       for (unsigned J = 0; J != Scale; ++J) {
11449         unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11450         if (SrcUndefElements[Idx])
11451           continue;
11452         DstUndefElements.reset(I);
11453         const APInt &SrcBits = SrcBitElements[Idx];
11454         assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
11455                "Illegal constant bitwidths");
11456         DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
11457       }
11458     }
11459     return;
11460   }
11461 
11462   // Split src element constant bits into dst elements.
11463   unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
11464   for (unsigned I = 0; I != NumSrcOps; ++I) {
11465     if (SrcUndefElements[I]) {
11466       DstUndefElements.set(I * Scale, (I + 1) * Scale);
11467       continue;
11468     }
11469     const APInt &SrcBits = SrcBitElements[I];
11470     for (unsigned J = 0; J != Scale; ++J) {
11471       unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11472       APInt &DstBits = DstBitElements[Idx];
11473       DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
11474     }
11475   }
11476 }
11477 
11478 bool BuildVectorSDNode::isConstant() const {
11479   for (const SDValue &Op : op_values()) {
11480     unsigned Opc = Op.getOpcode();
11481     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
11482       return false;
11483   }
11484   return true;
11485 }
11486 
11487 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
11488   // Find the first non-undef value in the shuffle mask.
11489   unsigned i, e;
11490   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
11491     /* search */;
11492 
11493   // If all elements are undefined, this shuffle can be considered a splat
11494   // (although it should eventually get simplified away completely).
11495   if (i == e)
11496     return true;
11497 
11498   // Make sure all remaining elements are either undef or the same as the first
11499   // non-undef value.
11500   for (int Idx = Mask[i]; i != e; ++i)
11501     if (Mask[i] >= 0 && Mask[i] != Idx)
11502       return false;
11503   return true;
11504 }
11505 
11506 // Returns the SDNode if it is a constant integer BuildVector
11507 // or constant integer.
11508 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
11509   if (isa<ConstantSDNode>(N))
11510     return N.getNode();
11511   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
11512     return N.getNode();
11513   // Treat a GlobalAddress supporting constant offset folding as a
11514   // constant integer.
11515   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
11516     if (GA->getOpcode() == ISD::GlobalAddress &&
11517         TLI->isOffsetFoldingLegal(GA))
11518       return GA;
11519   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11520       isa<ConstantSDNode>(N.getOperand(0)))
11521     return N.getNode();
11522   return nullptr;
11523 }
11524 
11525 // Returns the SDNode if it is a constant float BuildVector
11526 // or constant float.
11527 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
11528   if (isa<ConstantFPSDNode>(N))
11529     return N.getNode();
11530 
11531   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
11532     return N.getNode();
11533 
11534   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11535       isa<ConstantFPSDNode>(N.getOperand(0)))
11536     return N.getNode();
11537 
11538   return nullptr;
11539 }
11540 
11541 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
11542   assert(!Node->OperandList && "Node already has operands");
11543   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
11544          "too many operands to fit into SDNode");
11545   SDUse *Ops = OperandRecycler.allocate(
11546       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
11547 
11548   bool IsDivergent = false;
11549   for (unsigned I = 0; I != Vals.size(); ++I) {
11550     Ops[I].setUser(Node);
11551     Ops[I].setInitial(Vals[I]);
11552     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
11553       IsDivergent |= Ops[I].getNode()->isDivergent();
11554   }
11555   Node->NumOperands = Vals.size();
11556   Node->OperandList = Ops;
11557   if (!TLI->isSDNodeAlwaysUniform(Node)) {
11558     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
11559     Node->SDNodeBits.IsDivergent = IsDivergent;
11560   }
11561   checkForCycles(Node);
11562 }
11563 
11564 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
11565                                      SmallVectorImpl<SDValue> &Vals) {
11566   size_t Limit = SDNode::getMaxNumOperands();
11567   while (Vals.size() > Limit) {
11568     unsigned SliceIdx = Vals.size() - Limit;
11569     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
11570     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
11571     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
11572     Vals.emplace_back(NewTF);
11573   }
11574   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
11575 }
11576 
11577 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
11578                                         EVT VT, SDNodeFlags Flags) {
11579   switch (Opcode) {
11580   default:
11581     return SDValue();
11582   case ISD::ADD:
11583   case ISD::OR:
11584   case ISD::XOR:
11585   case ISD::UMAX:
11586     return getConstant(0, DL, VT);
11587   case ISD::MUL:
11588     return getConstant(1, DL, VT);
11589   case ISD::AND:
11590   case ISD::UMIN:
11591     return getAllOnesConstant(DL, VT);
11592   case ISD::SMAX:
11593     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11594   case ISD::SMIN:
11595     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11596   case ISD::FADD:
11597     return getConstantFP(-0.0, DL, VT);
11598   case ISD::FMUL:
11599     return getConstantFP(1.0, DL, VT);
11600   case ISD::FMINNUM:
11601   case ISD::FMAXNUM: {
11602     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11603     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11604     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11605                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11606                         APFloat::getLargest(Semantics);
11607     if (Opcode == ISD::FMAXNUM)
11608       NeutralAF.changeSign();
11609 
11610     return getConstantFP(NeutralAF, DL, VT);
11611   }
11612   }
11613 }
11614 
11615 #ifndef NDEBUG
11616 static void checkForCyclesHelper(const SDNode *N,
11617                                  SmallPtrSetImpl<const SDNode*> &Visited,
11618                                  SmallPtrSetImpl<const SDNode*> &Checked,
11619                                  const llvm::SelectionDAG *DAG) {
11620   // If this node has already been checked, don't check it again.
11621   if (Checked.count(N))
11622     return;
11623 
11624   // If a node has already been visited on this depth-first walk, reject it as
11625   // a cycle.
11626   if (!Visited.insert(N).second) {
11627     errs() << "Detected cycle in SelectionDAG\n";
11628     dbgs() << "Offending node:\n";
11629     N->dumprFull(DAG); dbgs() << "\n";
11630     abort();
11631   }
11632 
11633   for (const SDValue &Op : N->op_values())
11634     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11635 
11636   Checked.insert(N);
11637   Visited.erase(N);
11638 }
11639 #endif
11640 
11641 void llvm::checkForCycles(const llvm::SDNode *N,
11642                           const llvm::SelectionDAG *DAG,
11643                           bool force) {
11644 #ifndef NDEBUG
11645   bool check = force;
11646 #ifdef EXPENSIVE_CHECKS
11647   check = true;
11648 #endif  // EXPENSIVE_CHECKS
11649   if (check) {
11650     assert(N && "Checking nonexistent SDNode");
11651     SmallPtrSet<const SDNode*, 32> visited;
11652     SmallPtrSet<const SDNode*, 32> checked;
11653     checkForCyclesHelper(N, visited, checked, DAG);
11654   }
11655 #endif  // !NDEBUG
11656 }
11657 
11658 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11659   checkForCycles(DAG->getRoot().getNode(), DAG, force);
11660 }
11661