1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/RuntimeLibcalls.h" 40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 41 #include "llvm/CodeGen/SelectionDAGNodes.h" 42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MachineValueType.h" 66 #include "llvm/Support/ManagedStatic.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/Mutex.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetOptions.h" 72 #include "llvm/Transforms/Utils/SizeOpts.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <cstdlib> 77 #include <limits> 78 #include <set> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 /// makeVTList - Return an instance of the SDVTList struct initialized with the 86 /// specified members. 87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 88 SDVTList Res = {VTs, NumVTs}; 89 return Res; 90 } 91 92 // Default null implementations of the callbacks. 93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 96 97 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 98 99 #define DEBUG_TYPE "selectiondag" 100 101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 102 cl::Hidden, cl::init(true), 103 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 104 105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 106 cl::desc("Number limit for gluing ld/st of memcpy."), 107 cl::Hidden, cl::init(0)); 108 109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 110 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // ConstantFPSDNode Class 115 //===----------------------------------------------------------------------===// 116 117 /// isExactlyValue - We don't rely on operator== working on double values, as 118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 119 /// As such, this method can be used to do an exact bit-for-bit comparison of 120 /// two floating point values. 121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 122 return getValueAPF().bitwiseIsEqual(V); 123 } 124 125 bool ConstantFPSDNode::isValueValidForType(EVT VT, 126 const APFloat& Val) { 127 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 128 129 // convert modifies in place, so make a copy. 130 APFloat Val2 = APFloat(Val); 131 bool losesInfo; 132 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 133 APFloat::rmNearestTiesToEven, 134 &losesInfo); 135 return !losesInfo; 136 } 137 138 //===----------------------------------------------------------------------===// 139 // ISD Namespace 140 //===----------------------------------------------------------------------===// 141 142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 143 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 144 unsigned EltSize = 145 N->getValueType(0).getVectorElementType().getSizeInBits(); 146 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 147 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 148 return true; 149 } 150 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 151 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 152 return true; 153 } 154 } 155 156 auto *BV = dyn_cast<BuildVectorSDNode>(N); 157 if (!BV) 158 return false; 159 160 APInt SplatUndef; 161 unsigned SplatBitSize; 162 bool HasUndefs; 163 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 164 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 165 EltSize) && 166 EltSize == SplatBitSize; 167 } 168 169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 170 // specializations of the more general isConstantSplatVector()? 171 172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 173 // Look through a bit convert. 174 while (N->getOpcode() == ISD::BITCAST) 175 N = N->getOperand(0).getNode(); 176 177 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 178 APInt SplatVal; 179 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 180 } 181 182 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 183 184 unsigned i = 0, e = N->getNumOperands(); 185 186 // Skip over all of the undef values. 187 while (i != e && N->getOperand(i).isUndef()) 188 ++i; 189 190 // Do not accept an all-undef vector. 191 if (i == e) return false; 192 193 // Do not accept build_vectors that aren't all constants or which have non-~0 194 // elements. We have to be a bit careful here, as the type of the constant 195 // may not be the same as the type of the vector elements due to type 196 // legalization (the elements are promoted to a legal type for the target and 197 // a vector of a type may be legal when the base element type is not). 198 // We only want to check enough bits to cover the vector elements, because 199 // we care if the resultant vector is all ones, not whether the individual 200 // constants are. 201 SDValue NotZero = N->getOperand(i); 202 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 203 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 204 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 205 return false; 206 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 207 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 208 return false; 209 } else 210 return false; 211 212 // Okay, we have at least one ~0 value, check to see if the rest match or are 213 // undefs. Even with the above element type twiddling, this should be OK, as 214 // the same type legalization should have applied to all the elements. 215 for (++i; i != e; ++i) 216 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 217 return false; 218 return true; 219 } 220 221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 222 // Look through a bit convert. 223 while (N->getOpcode() == ISD::BITCAST) 224 N = N->getOperand(0).getNode(); 225 226 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 227 APInt SplatVal; 228 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 229 } 230 231 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 232 233 bool IsAllUndef = true; 234 for (const SDValue &Op : N->op_values()) { 235 if (Op.isUndef()) 236 continue; 237 IsAllUndef = false; 238 // Do not accept build_vectors that aren't all constants or which have non-0 239 // elements. We have to be a bit careful here, as the type of the constant 240 // may not be the same as the type of the vector elements due to type 241 // legalization (the elements are promoted to a legal type for the target 242 // and a vector of a type may be legal when the base element type is not). 243 // We only want to check enough bits to cover the vector elements, because 244 // we care if the resultant vector is all zeros, not whether the individual 245 // constants are. 246 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 247 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 248 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 249 return false; 250 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 251 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 252 return false; 253 } else 254 return false; 255 } 256 257 // Do not accept an all-undef vector. 258 if (IsAllUndef) 259 return false; 260 return true; 261 } 262 263 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 264 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 265 } 266 267 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 268 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 269 } 270 271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 272 if (N->getOpcode() != ISD::BUILD_VECTOR) 273 return false; 274 275 for (const SDValue &Op : N->op_values()) { 276 if (Op.isUndef()) 277 continue; 278 if (!isa<ConstantSDNode>(Op)) 279 return false; 280 } 281 return true; 282 } 283 284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 285 if (N->getOpcode() != ISD::BUILD_VECTOR) 286 return false; 287 288 for (const SDValue &Op : N->op_values()) { 289 if (Op.isUndef()) 290 continue; 291 if (!isa<ConstantFPSDNode>(Op)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::allOperandsUndef(const SDNode *N) { 298 // Return false if the node has no operands. 299 // This is "logically inconsistent" with the definition of "all" but 300 // is probably the desired behavior. 301 if (N->getNumOperands() == 0) 302 return false; 303 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 304 } 305 306 bool ISD::matchUnaryPredicate(SDValue Op, 307 std::function<bool(ConstantSDNode *)> Match, 308 bool AllowUndefs) { 309 // FIXME: Add support for scalar UNDEF cases? 310 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 311 return Match(Cst); 312 313 // FIXME: Add support for vector UNDEF cases? 314 if (ISD::BUILD_VECTOR != Op.getOpcode() && 315 ISD::SPLAT_VECTOR != Op.getOpcode()) 316 return false; 317 318 EVT SVT = Op.getValueType().getScalarType(); 319 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 320 if (AllowUndefs && Op.getOperand(i).isUndef()) { 321 if (!Match(nullptr)) 322 return false; 323 continue; 324 } 325 326 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 327 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 328 return false; 329 } 330 return true; 331 } 332 333 bool ISD::matchBinaryPredicate( 334 SDValue LHS, SDValue RHS, 335 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 336 bool AllowUndefs, bool AllowTypeMismatch) { 337 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 338 return false; 339 340 // TODO: Add support for scalar UNDEF cases? 341 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 342 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 343 return Match(LHSCst, RHSCst); 344 345 // TODO: Add support for vector UNDEF cases? 346 if (LHS.getOpcode() != RHS.getOpcode() || 347 (LHS.getOpcode() != ISD::BUILD_VECTOR && 348 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 349 return false; 350 351 EVT SVT = LHS.getValueType().getScalarType(); 352 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 353 SDValue LHSOp = LHS.getOperand(i); 354 SDValue RHSOp = RHS.getOperand(i); 355 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 356 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 357 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 358 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 359 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 360 return false; 361 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 362 LHSOp.getValueType() != RHSOp.getValueType())) 363 return false; 364 if (!Match(LHSCst, RHSCst)) 365 return false; 366 } 367 return true; 368 } 369 370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 371 switch (VecReduceOpcode) { 372 default: 373 llvm_unreachable("Expected VECREDUCE opcode"); 374 case ISD::VECREDUCE_FADD: 375 case ISD::VECREDUCE_SEQ_FADD: 376 return ISD::FADD; 377 case ISD::VECREDUCE_FMUL: 378 case ISD::VECREDUCE_SEQ_FMUL: 379 return ISD::FMUL; 380 case ISD::VECREDUCE_ADD: 381 return ISD::ADD; 382 case ISD::VECREDUCE_MUL: 383 return ISD::MUL; 384 case ISD::VECREDUCE_AND: 385 return ISD::AND; 386 case ISD::VECREDUCE_OR: 387 return ISD::OR; 388 case ISD::VECREDUCE_XOR: 389 return ISD::XOR; 390 case ISD::VECREDUCE_SMAX: 391 return ISD::SMAX; 392 case ISD::VECREDUCE_SMIN: 393 return ISD::SMIN; 394 case ISD::VECREDUCE_UMAX: 395 return ISD::UMAX; 396 case ISD::VECREDUCE_UMIN: 397 return ISD::UMIN; 398 case ISD::VECREDUCE_FMAX: 399 return ISD::FMAXNUM; 400 case ISD::VECREDUCE_FMIN: 401 return ISD::FMINNUM; 402 } 403 } 404 405 bool ISD::isVPOpcode(unsigned Opcode) { 406 switch (Opcode) { 407 default: 408 return false; 409 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 410 case ISD::VPSD: \ 411 return true; 412 #include "llvm/IR/VPIntrinsics.def" 413 } 414 } 415 416 bool ISD::isVPBinaryOp(unsigned Opcode) { 417 switch (Opcode) { 418 default: 419 break; 420 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 421 #define VP_PROPERTY_BINARYOP return true; 422 #define END_REGISTER_VP_SDNODE(VPSD) break; 423 #include "llvm/IR/VPIntrinsics.def" 424 } 425 return false; 426 } 427 428 bool ISD::isVPReduction(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 break; 432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 433 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 434 #define END_REGISTER_VP_SDNODE(VPSD) break; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 return false; 438 } 439 440 /// The operand position of the vector mask. 441 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 442 switch (Opcode) { 443 default: 444 return None; 445 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 446 case ISD::VPSD: \ 447 return MASKPOS; 448 #include "llvm/IR/VPIntrinsics.def" 449 } 450 } 451 452 /// The operand position of the explicit vector length parameter. 453 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 454 switch (Opcode) { 455 default: 456 return None; 457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 458 case ISD::VPSD: \ 459 return EVLPOS; 460 #include "llvm/IR/VPIntrinsics.def" 461 } 462 } 463 464 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 465 switch (ExtType) { 466 case ISD::EXTLOAD: 467 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 468 case ISD::SEXTLOAD: 469 return ISD::SIGN_EXTEND; 470 case ISD::ZEXTLOAD: 471 return ISD::ZERO_EXTEND; 472 default: 473 break; 474 } 475 476 llvm_unreachable("Invalid LoadExtType"); 477 } 478 479 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 480 // To perform this operation, we just need to swap the L and G bits of the 481 // operation. 482 unsigned OldL = (Operation >> 2) & 1; 483 unsigned OldG = (Operation >> 1) & 1; 484 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 485 (OldL << 1) | // New G bit 486 (OldG << 2)); // New L bit. 487 } 488 489 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 490 unsigned Operation = Op; 491 if (isIntegerLike) 492 Operation ^= 7; // Flip L, G, E bits, but not U. 493 else 494 Operation ^= 15; // Flip all of the condition bits. 495 496 if (Operation > ISD::SETTRUE2) 497 Operation &= ~8; // Don't let N and U bits get set. 498 499 return ISD::CondCode(Operation); 500 } 501 502 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 503 return getSetCCInverseImpl(Op, Type.isInteger()); 504 } 505 506 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 507 bool isIntegerLike) { 508 return getSetCCInverseImpl(Op, isIntegerLike); 509 } 510 511 /// For an integer comparison, return 1 if the comparison is a signed operation 512 /// and 2 if the result is an unsigned comparison. Return zero if the operation 513 /// does not depend on the sign of the input (setne and seteq). 514 static int isSignedOp(ISD::CondCode Opcode) { 515 switch (Opcode) { 516 default: llvm_unreachable("Illegal integer setcc operation!"); 517 case ISD::SETEQ: 518 case ISD::SETNE: return 0; 519 case ISD::SETLT: 520 case ISD::SETLE: 521 case ISD::SETGT: 522 case ISD::SETGE: return 1; 523 case ISD::SETULT: 524 case ISD::SETULE: 525 case ISD::SETUGT: 526 case ISD::SETUGE: return 2; 527 } 528 } 529 530 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 531 EVT Type) { 532 bool IsInteger = Type.isInteger(); 533 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 534 // Cannot fold a signed integer setcc with an unsigned integer setcc. 535 return ISD::SETCC_INVALID; 536 537 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 538 539 // If the N and U bits get set, then the resultant comparison DOES suddenly 540 // care about orderedness, and it is true when ordered. 541 if (Op > ISD::SETTRUE2) 542 Op &= ~16; // Clear the U bit if the N bit is set. 543 544 // Canonicalize illegal integer setcc's. 545 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 546 Op = ISD::SETNE; 547 548 return ISD::CondCode(Op); 549 } 550 551 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 552 EVT Type) { 553 bool IsInteger = Type.isInteger(); 554 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 555 // Cannot fold a signed setcc with an unsigned setcc. 556 return ISD::SETCC_INVALID; 557 558 // Combine all of the condition bits. 559 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 560 561 // Canonicalize illegal integer setcc's. 562 if (IsInteger) { 563 switch (Result) { 564 default: break; 565 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 566 case ISD::SETOEQ: // SETEQ & SETU[LG]E 567 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 568 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 569 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 570 } 571 } 572 573 return Result; 574 } 575 576 //===----------------------------------------------------------------------===// 577 // SDNode Profile Support 578 //===----------------------------------------------------------------------===// 579 580 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 581 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 582 ID.AddInteger(OpC); 583 } 584 585 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 586 /// solely with their pointer. 587 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 588 ID.AddPointer(VTList.VTs); 589 } 590 591 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 592 static void AddNodeIDOperands(FoldingSetNodeID &ID, 593 ArrayRef<SDValue> Ops) { 594 for (auto& Op : Ops) { 595 ID.AddPointer(Op.getNode()); 596 ID.AddInteger(Op.getResNo()); 597 } 598 } 599 600 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 601 static void AddNodeIDOperands(FoldingSetNodeID &ID, 602 ArrayRef<SDUse> Ops) { 603 for (auto& Op : Ops) { 604 ID.AddPointer(Op.getNode()); 605 ID.AddInteger(Op.getResNo()); 606 } 607 } 608 609 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 610 SDVTList VTList, ArrayRef<SDValue> OpList) { 611 AddNodeIDOpcode(ID, OpC); 612 AddNodeIDValueTypes(ID, VTList); 613 AddNodeIDOperands(ID, OpList); 614 } 615 616 /// If this is an SDNode with special info, add this info to the NodeID data. 617 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 618 switch (N->getOpcode()) { 619 case ISD::TargetExternalSymbol: 620 case ISD::ExternalSymbol: 621 case ISD::MCSymbol: 622 llvm_unreachable("Should only be used on nodes with operands"); 623 default: break; // Normal nodes don't need extra info. 624 case ISD::TargetConstant: 625 case ISD::Constant: { 626 const ConstantSDNode *C = cast<ConstantSDNode>(N); 627 ID.AddPointer(C->getConstantIntValue()); 628 ID.AddBoolean(C->isOpaque()); 629 break; 630 } 631 case ISD::TargetConstantFP: 632 case ISD::ConstantFP: 633 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 634 break; 635 case ISD::TargetGlobalAddress: 636 case ISD::GlobalAddress: 637 case ISD::TargetGlobalTLSAddress: 638 case ISD::GlobalTLSAddress: { 639 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 640 ID.AddPointer(GA->getGlobal()); 641 ID.AddInteger(GA->getOffset()); 642 ID.AddInteger(GA->getTargetFlags()); 643 break; 644 } 645 case ISD::BasicBlock: 646 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 647 break; 648 case ISD::Register: 649 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 650 break; 651 case ISD::RegisterMask: 652 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 653 break; 654 case ISD::SRCVALUE: 655 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 656 break; 657 case ISD::FrameIndex: 658 case ISD::TargetFrameIndex: 659 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 660 break; 661 case ISD::LIFETIME_START: 662 case ISD::LIFETIME_END: 663 if (cast<LifetimeSDNode>(N)->hasOffset()) { 664 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 665 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 666 } 667 break; 668 case ISD::PSEUDO_PROBE: 669 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 670 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 671 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 672 break; 673 case ISD::JumpTable: 674 case ISD::TargetJumpTable: 675 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 676 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 677 break; 678 case ISD::ConstantPool: 679 case ISD::TargetConstantPool: { 680 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 681 ID.AddInteger(CP->getAlign().value()); 682 ID.AddInteger(CP->getOffset()); 683 if (CP->isMachineConstantPoolEntry()) 684 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 685 else 686 ID.AddPointer(CP->getConstVal()); 687 ID.AddInteger(CP->getTargetFlags()); 688 break; 689 } 690 case ISD::TargetIndex: { 691 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 692 ID.AddInteger(TI->getIndex()); 693 ID.AddInteger(TI->getOffset()); 694 ID.AddInteger(TI->getTargetFlags()); 695 break; 696 } 697 case ISD::LOAD: { 698 const LoadSDNode *LD = cast<LoadSDNode>(N); 699 ID.AddInteger(LD->getMemoryVT().getRawBits()); 700 ID.AddInteger(LD->getRawSubclassData()); 701 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 702 break; 703 } 704 case ISD::STORE: { 705 const StoreSDNode *ST = cast<StoreSDNode>(N); 706 ID.AddInteger(ST->getMemoryVT().getRawBits()); 707 ID.AddInteger(ST->getRawSubclassData()); 708 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 709 break; 710 } 711 case ISD::VP_LOAD: { 712 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 713 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 714 ID.AddInteger(ELD->getRawSubclassData()); 715 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 716 break; 717 } 718 case ISD::VP_STORE: { 719 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 720 ID.AddInteger(EST->getMemoryVT().getRawBits()); 721 ID.AddInteger(EST->getRawSubclassData()); 722 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 723 break; 724 } 725 case ISD::VP_GATHER: { 726 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 727 ID.AddInteger(EG->getMemoryVT().getRawBits()); 728 ID.AddInteger(EG->getRawSubclassData()); 729 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 730 break; 731 } 732 case ISD::VP_SCATTER: { 733 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 734 ID.AddInteger(ES->getMemoryVT().getRawBits()); 735 ID.AddInteger(ES->getRawSubclassData()); 736 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 737 break; 738 } 739 case ISD::MLOAD: { 740 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 741 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 742 ID.AddInteger(MLD->getRawSubclassData()); 743 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 744 break; 745 } 746 case ISD::MSTORE: { 747 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 748 ID.AddInteger(MST->getMemoryVT().getRawBits()); 749 ID.AddInteger(MST->getRawSubclassData()); 750 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 751 break; 752 } 753 case ISD::MGATHER: { 754 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 755 ID.AddInteger(MG->getMemoryVT().getRawBits()); 756 ID.AddInteger(MG->getRawSubclassData()); 757 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 758 break; 759 } 760 case ISD::MSCATTER: { 761 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 762 ID.AddInteger(MS->getMemoryVT().getRawBits()); 763 ID.AddInteger(MS->getRawSubclassData()); 764 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 765 break; 766 } 767 case ISD::ATOMIC_CMP_SWAP: 768 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 769 case ISD::ATOMIC_SWAP: 770 case ISD::ATOMIC_LOAD_ADD: 771 case ISD::ATOMIC_LOAD_SUB: 772 case ISD::ATOMIC_LOAD_AND: 773 case ISD::ATOMIC_LOAD_CLR: 774 case ISD::ATOMIC_LOAD_OR: 775 case ISD::ATOMIC_LOAD_XOR: 776 case ISD::ATOMIC_LOAD_NAND: 777 case ISD::ATOMIC_LOAD_MIN: 778 case ISD::ATOMIC_LOAD_MAX: 779 case ISD::ATOMIC_LOAD_UMIN: 780 case ISD::ATOMIC_LOAD_UMAX: 781 case ISD::ATOMIC_LOAD: 782 case ISD::ATOMIC_STORE: { 783 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 784 ID.AddInteger(AT->getMemoryVT().getRawBits()); 785 ID.AddInteger(AT->getRawSubclassData()); 786 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 787 break; 788 } 789 case ISD::PREFETCH: { 790 const MemSDNode *PF = cast<MemSDNode>(N); 791 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 792 break; 793 } 794 case ISD::VECTOR_SHUFFLE: { 795 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 796 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 797 i != e; ++i) 798 ID.AddInteger(SVN->getMaskElt(i)); 799 break; 800 } 801 case ISD::TargetBlockAddress: 802 case ISD::BlockAddress: { 803 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 804 ID.AddPointer(BA->getBlockAddress()); 805 ID.AddInteger(BA->getOffset()); 806 ID.AddInteger(BA->getTargetFlags()); 807 break; 808 } 809 } // end switch (N->getOpcode()) 810 811 // Target specific memory nodes could also have address spaces to check. 812 if (N->isTargetMemoryOpcode()) 813 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 814 } 815 816 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 817 /// data. 818 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 819 AddNodeIDOpcode(ID, N->getOpcode()); 820 // Add the return value info. 821 AddNodeIDValueTypes(ID, N->getVTList()); 822 // Add the operand info. 823 AddNodeIDOperands(ID, N->ops()); 824 825 // Handle SDNode leafs with special info. 826 AddNodeIDCustom(ID, N); 827 } 828 829 //===----------------------------------------------------------------------===// 830 // SelectionDAG Class 831 //===----------------------------------------------------------------------===// 832 833 /// doNotCSE - Return true if CSE should not be performed for this node. 834 static bool doNotCSE(SDNode *N) { 835 if (N->getValueType(0) == MVT::Glue) 836 return true; // Never CSE anything that produces a flag. 837 838 switch (N->getOpcode()) { 839 default: break; 840 case ISD::HANDLENODE: 841 case ISD::EH_LABEL: 842 return true; // Never CSE these nodes. 843 } 844 845 // Check that remaining values produced are not flags. 846 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 847 if (N->getValueType(i) == MVT::Glue) 848 return true; // Never CSE anything that produces a flag. 849 850 return false; 851 } 852 853 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 854 /// SelectionDAG. 855 void SelectionDAG::RemoveDeadNodes() { 856 // Create a dummy node (which is not added to allnodes), that adds a reference 857 // to the root node, preventing it from being deleted. 858 HandleSDNode Dummy(getRoot()); 859 860 SmallVector<SDNode*, 128> DeadNodes; 861 862 // Add all obviously-dead nodes to the DeadNodes worklist. 863 for (SDNode &Node : allnodes()) 864 if (Node.use_empty()) 865 DeadNodes.push_back(&Node); 866 867 RemoveDeadNodes(DeadNodes); 868 869 // If the root changed (e.g. it was a dead load, update the root). 870 setRoot(Dummy.getValue()); 871 } 872 873 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 874 /// given list, and any nodes that become unreachable as a result. 875 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 876 877 // Process the worklist, deleting the nodes and adding their uses to the 878 // worklist. 879 while (!DeadNodes.empty()) { 880 SDNode *N = DeadNodes.pop_back_val(); 881 // Skip to next node if we've already managed to delete the node. This could 882 // happen if replacing a node causes a node previously added to the node to 883 // be deleted. 884 if (N->getOpcode() == ISD::DELETED_NODE) 885 continue; 886 887 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 888 DUL->NodeDeleted(N, nullptr); 889 890 // Take the node out of the appropriate CSE map. 891 RemoveNodeFromCSEMaps(N); 892 893 // Next, brutally remove the operand list. This is safe to do, as there are 894 // no cycles in the graph. 895 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 896 SDUse &Use = *I++; 897 SDNode *Operand = Use.getNode(); 898 Use.set(SDValue()); 899 900 // Now that we removed this operand, see if there are no uses of it left. 901 if (Operand->use_empty()) 902 DeadNodes.push_back(Operand); 903 } 904 905 DeallocateNode(N); 906 } 907 } 908 909 void SelectionDAG::RemoveDeadNode(SDNode *N){ 910 SmallVector<SDNode*, 16> DeadNodes(1, N); 911 912 // Create a dummy node that adds a reference to the root node, preventing 913 // it from being deleted. (This matters if the root is an operand of the 914 // dead node.) 915 HandleSDNode Dummy(getRoot()); 916 917 RemoveDeadNodes(DeadNodes); 918 } 919 920 void SelectionDAG::DeleteNode(SDNode *N) { 921 // First take this out of the appropriate CSE map. 922 RemoveNodeFromCSEMaps(N); 923 924 // Finally, remove uses due to operands of this node, remove from the 925 // AllNodes list, and delete the node. 926 DeleteNodeNotInCSEMaps(N); 927 } 928 929 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 930 assert(N->getIterator() != AllNodes.begin() && 931 "Cannot delete the entry node!"); 932 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 933 934 // Drop all of the operands and decrement used node's use counts. 935 N->DropOperands(); 936 937 DeallocateNode(N); 938 } 939 940 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 941 assert(!(V->isVariadic() && isParameter)); 942 if (isParameter) 943 ByvalParmDbgValues.push_back(V); 944 else 945 DbgValues.push_back(V); 946 for (const SDNode *Node : V->getSDNodes()) 947 if (Node) 948 DbgValMap[Node].push_back(V); 949 } 950 951 void SDDbgInfo::erase(const SDNode *Node) { 952 DbgValMapType::iterator I = DbgValMap.find(Node); 953 if (I == DbgValMap.end()) 954 return; 955 for (auto &Val: I->second) 956 Val->setIsInvalidated(); 957 DbgValMap.erase(I); 958 } 959 960 void SelectionDAG::DeallocateNode(SDNode *N) { 961 // If we have operands, deallocate them. 962 removeOperands(N); 963 964 NodeAllocator.Deallocate(AllNodes.remove(N)); 965 966 // Set the opcode to DELETED_NODE to help catch bugs when node 967 // memory is reallocated. 968 // FIXME: There are places in SDag that have grown a dependency on the opcode 969 // value in the released node. 970 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 971 N->NodeType = ISD::DELETED_NODE; 972 973 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 974 // them and forget about that node. 975 DbgInfo->erase(N); 976 } 977 978 #ifndef NDEBUG 979 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 980 static void VerifySDNode(SDNode *N) { 981 switch (N->getOpcode()) { 982 default: 983 break; 984 case ISD::BUILD_PAIR: { 985 EVT VT = N->getValueType(0); 986 assert(N->getNumValues() == 1 && "Too many results!"); 987 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 988 "Wrong return type!"); 989 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 990 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 991 "Mismatched operand types!"); 992 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 993 "Wrong operand type!"); 994 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 995 "Wrong return type size"); 996 break; 997 } 998 case ISD::BUILD_VECTOR: { 999 assert(N->getNumValues() == 1 && "Too many results!"); 1000 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1001 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1002 "Wrong number of operands!"); 1003 EVT EltVT = N->getValueType(0).getVectorElementType(); 1004 for (const SDUse &Op : N->ops()) { 1005 assert((Op.getValueType() == EltVT || 1006 (EltVT.isInteger() && Op.getValueType().isInteger() && 1007 EltVT.bitsLE(Op.getValueType()))) && 1008 "Wrong operand type!"); 1009 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1010 "Operands must all have the same type"); 1011 } 1012 break; 1013 } 1014 } 1015 } 1016 #endif // NDEBUG 1017 1018 /// Insert a newly allocated node into the DAG. 1019 /// 1020 /// Handles insertion into the all nodes list and CSE map, as well as 1021 /// verification and other common operations when a new node is allocated. 1022 void SelectionDAG::InsertNode(SDNode *N) { 1023 AllNodes.push_back(N); 1024 #ifndef NDEBUG 1025 N->PersistentId = NextPersistentId++; 1026 VerifySDNode(N); 1027 #endif 1028 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1029 DUL->NodeInserted(N); 1030 } 1031 1032 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1033 /// correspond to it. This is useful when we're about to delete or repurpose 1034 /// the node. We don't want future request for structurally identical nodes 1035 /// to return N anymore. 1036 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1037 bool Erased = false; 1038 switch (N->getOpcode()) { 1039 case ISD::HANDLENODE: return false; // noop. 1040 case ISD::CONDCODE: 1041 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1042 "Cond code doesn't exist!"); 1043 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1044 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1045 break; 1046 case ISD::ExternalSymbol: 1047 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1048 break; 1049 case ISD::TargetExternalSymbol: { 1050 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1051 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1052 ESN->getSymbol(), ESN->getTargetFlags())); 1053 break; 1054 } 1055 case ISD::MCSymbol: { 1056 auto *MCSN = cast<MCSymbolSDNode>(N); 1057 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1058 break; 1059 } 1060 case ISD::VALUETYPE: { 1061 EVT VT = cast<VTSDNode>(N)->getVT(); 1062 if (VT.isExtended()) { 1063 Erased = ExtendedValueTypeNodes.erase(VT); 1064 } else { 1065 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1066 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1067 } 1068 break; 1069 } 1070 default: 1071 // Remove it from the CSE Map. 1072 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1073 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1074 Erased = CSEMap.RemoveNode(N); 1075 break; 1076 } 1077 #ifndef NDEBUG 1078 // Verify that the node was actually in one of the CSE maps, unless it has a 1079 // flag result (which cannot be CSE'd) or is one of the special cases that are 1080 // not subject to CSE. 1081 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1082 !N->isMachineOpcode() && !doNotCSE(N)) { 1083 N->dump(this); 1084 dbgs() << "\n"; 1085 llvm_unreachable("Node is not in map!"); 1086 } 1087 #endif 1088 return Erased; 1089 } 1090 1091 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1092 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1093 /// node already exists, in which case transfer all its users to the existing 1094 /// node. This transfer can potentially trigger recursive merging. 1095 void 1096 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1097 // For node types that aren't CSE'd, just act as if no identical node 1098 // already exists. 1099 if (!doNotCSE(N)) { 1100 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1101 if (Existing != N) { 1102 // If there was already an existing matching node, use ReplaceAllUsesWith 1103 // to replace the dead one with the existing one. This can cause 1104 // recursive merging of other unrelated nodes down the line. 1105 ReplaceAllUsesWith(N, Existing); 1106 1107 // N is now dead. Inform the listeners and delete it. 1108 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1109 DUL->NodeDeleted(N, Existing); 1110 DeleteNodeNotInCSEMaps(N); 1111 return; 1112 } 1113 } 1114 1115 // If the node doesn't already exist, we updated it. Inform listeners. 1116 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1117 DUL->NodeUpdated(N); 1118 } 1119 1120 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1121 /// were replaced with those specified. If this node is never memoized, 1122 /// return null, otherwise return a pointer to the slot it would take. If a 1123 /// node already exists with these operands, the slot will be non-null. 1124 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1125 void *&InsertPos) { 1126 if (doNotCSE(N)) 1127 return nullptr; 1128 1129 SDValue Ops[] = { Op }; 1130 FoldingSetNodeID ID; 1131 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1132 AddNodeIDCustom(ID, N); 1133 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1134 if (Node) 1135 Node->intersectFlagsWith(N->getFlags()); 1136 return Node; 1137 } 1138 1139 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1140 /// were replaced with those specified. If this node is never memoized, 1141 /// return null, otherwise return a pointer to the slot it would take. If a 1142 /// node already exists with these operands, the slot will be non-null. 1143 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1144 SDValue Op1, SDValue Op2, 1145 void *&InsertPos) { 1146 if (doNotCSE(N)) 1147 return nullptr; 1148 1149 SDValue Ops[] = { Op1, Op2 }; 1150 FoldingSetNodeID ID; 1151 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1152 AddNodeIDCustom(ID, N); 1153 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1154 if (Node) 1155 Node->intersectFlagsWith(N->getFlags()); 1156 return Node; 1157 } 1158 1159 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1160 /// were replaced with those specified. If this node is never memoized, 1161 /// return null, otherwise return a pointer to the slot it would take. If a 1162 /// node already exists with these operands, the slot will be non-null. 1163 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1164 void *&InsertPos) { 1165 if (doNotCSE(N)) 1166 return nullptr; 1167 1168 FoldingSetNodeID ID; 1169 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1170 AddNodeIDCustom(ID, N); 1171 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1172 if (Node) 1173 Node->intersectFlagsWith(N->getFlags()); 1174 return Node; 1175 } 1176 1177 Align SelectionDAG::getEVTAlign(EVT VT) const { 1178 Type *Ty = VT == MVT::iPTR ? 1179 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1180 VT.getTypeForEVT(*getContext()); 1181 1182 return getDataLayout().getABITypeAlign(Ty); 1183 } 1184 1185 // EntryNode could meaningfully have debug info if we can find it... 1186 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1187 : TM(tm), OptLevel(OL), 1188 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1189 Root(getEntryNode()) { 1190 InsertNode(&EntryNode); 1191 DbgInfo = new SDDbgInfo(); 1192 } 1193 1194 void SelectionDAG::init(MachineFunction &NewMF, 1195 OptimizationRemarkEmitter &NewORE, 1196 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1197 LegacyDivergenceAnalysis * Divergence, 1198 ProfileSummaryInfo *PSIin, 1199 BlockFrequencyInfo *BFIin) { 1200 MF = &NewMF; 1201 SDAGISelPass = PassPtr; 1202 ORE = &NewORE; 1203 TLI = getSubtarget().getTargetLowering(); 1204 TSI = getSubtarget().getSelectionDAGInfo(); 1205 LibInfo = LibraryInfo; 1206 Context = &MF->getFunction().getContext(); 1207 DA = Divergence; 1208 PSI = PSIin; 1209 BFI = BFIin; 1210 } 1211 1212 SelectionDAG::~SelectionDAG() { 1213 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1214 allnodes_clear(); 1215 OperandRecycler.clear(OperandAllocator); 1216 delete DbgInfo; 1217 } 1218 1219 bool SelectionDAG::shouldOptForSize() const { 1220 return MF->getFunction().hasOptSize() || 1221 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1222 } 1223 1224 void SelectionDAG::allnodes_clear() { 1225 assert(&*AllNodes.begin() == &EntryNode); 1226 AllNodes.remove(AllNodes.begin()); 1227 while (!AllNodes.empty()) 1228 DeallocateNode(&AllNodes.front()); 1229 #ifndef NDEBUG 1230 NextPersistentId = 0; 1231 #endif 1232 } 1233 1234 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1235 void *&InsertPos) { 1236 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1237 if (N) { 1238 switch (N->getOpcode()) { 1239 default: break; 1240 case ISD::Constant: 1241 case ISD::ConstantFP: 1242 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1243 "debug location. Use another overload."); 1244 } 1245 } 1246 return N; 1247 } 1248 1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1250 const SDLoc &DL, void *&InsertPos) { 1251 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1252 if (N) { 1253 switch (N->getOpcode()) { 1254 case ISD::Constant: 1255 case ISD::ConstantFP: 1256 // Erase debug location from the node if the node is used at several 1257 // different places. Do not propagate one location to all uses as it 1258 // will cause a worse single stepping debugging experience. 1259 if (N->getDebugLoc() != DL.getDebugLoc()) 1260 N->setDebugLoc(DebugLoc()); 1261 break; 1262 default: 1263 // When the node's point of use is located earlier in the instruction 1264 // sequence than its prior point of use, update its debug info to the 1265 // earlier location. 1266 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1267 N->setDebugLoc(DL.getDebugLoc()); 1268 break; 1269 } 1270 } 1271 return N; 1272 } 1273 1274 void SelectionDAG::clear() { 1275 allnodes_clear(); 1276 OperandRecycler.clear(OperandAllocator); 1277 OperandAllocator.Reset(); 1278 CSEMap.clear(); 1279 1280 ExtendedValueTypeNodes.clear(); 1281 ExternalSymbols.clear(); 1282 TargetExternalSymbols.clear(); 1283 MCSymbols.clear(); 1284 SDCallSiteDbgInfo.clear(); 1285 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1286 static_cast<CondCodeSDNode*>(nullptr)); 1287 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1288 static_cast<SDNode*>(nullptr)); 1289 1290 EntryNode.UseList = nullptr; 1291 InsertNode(&EntryNode); 1292 Root = getEntryNode(); 1293 DbgInfo->clear(); 1294 } 1295 1296 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1297 return VT.bitsGT(Op.getValueType()) 1298 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1299 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1300 } 1301 1302 std::pair<SDValue, SDValue> 1303 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1304 const SDLoc &DL, EVT VT) { 1305 assert(!VT.bitsEq(Op.getValueType()) && 1306 "Strict no-op FP extend/round not allowed."); 1307 SDValue Res = 1308 VT.bitsGT(Op.getValueType()) 1309 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1310 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1311 {Chain, Op, getIntPtrConstant(0, DL)}); 1312 1313 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1314 } 1315 1316 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1317 return VT.bitsGT(Op.getValueType()) ? 1318 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1319 getNode(ISD::TRUNCATE, DL, VT, Op); 1320 } 1321 1322 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1323 return VT.bitsGT(Op.getValueType()) ? 1324 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1325 getNode(ISD::TRUNCATE, DL, VT, Op); 1326 } 1327 1328 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1329 return VT.bitsGT(Op.getValueType()) ? 1330 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1331 getNode(ISD::TRUNCATE, DL, VT, Op); 1332 } 1333 1334 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1335 EVT OpVT) { 1336 if (VT.bitsLE(Op.getValueType())) 1337 return getNode(ISD::TRUNCATE, SL, VT, Op); 1338 1339 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1340 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1341 } 1342 1343 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1344 EVT OpVT = Op.getValueType(); 1345 assert(VT.isInteger() && OpVT.isInteger() && 1346 "Cannot getZeroExtendInReg FP types"); 1347 assert(VT.isVector() == OpVT.isVector() && 1348 "getZeroExtendInReg type should be vector iff the operand " 1349 "type is vector!"); 1350 assert((!VT.isVector() || 1351 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1352 "Vector element counts must match in getZeroExtendInReg"); 1353 assert(VT.bitsLE(OpVT) && "Not extending!"); 1354 if (OpVT == VT) 1355 return Op; 1356 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1357 VT.getScalarSizeInBits()); 1358 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1359 } 1360 1361 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1362 // Only unsigned pointer semantics are supported right now. In the future this 1363 // might delegate to TLI to check pointer signedness. 1364 return getZExtOrTrunc(Op, DL, VT); 1365 } 1366 1367 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1368 // Only unsigned pointer semantics are supported right now. In the future this 1369 // might delegate to TLI to check pointer signedness. 1370 return getZeroExtendInReg(Op, DL, VT); 1371 } 1372 1373 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1374 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1375 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1376 } 1377 1378 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1379 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1380 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1381 } 1382 1383 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1384 EVT OpVT) { 1385 if (!V) 1386 return getConstant(0, DL, VT); 1387 1388 switch (TLI->getBooleanContents(OpVT)) { 1389 case TargetLowering::ZeroOrOneBooleanContent: 1390 case TargetLowering::UndefinedBooleanContent: 1391 return getConstant(1, DL, VT); 1392 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1393 return getAllOnesConstant(DL, VT); 1394 } 1395 llvm_unreachable("Unexpected boolean content enum!"); 1396 } 1397 1398 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1399 bool isT, bool isO) { 1400 EVT EltVT = VT.getScalarType(); 1401 assert((EltVT.getSizeInBits() >= 64 || 1402 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1403 "getConstant with a uint64_t value that doesn't fit in the type!"); 1404 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1405 } 1406 1407 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1408 bool isT, bool isO) { 1409 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1410 } 1411 1412 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1413 EVT VT, bool isT, bool isO) { 1414 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1415 1416 EVT EltVT = VT.getScalarType(); 1417 const ConstantInt *Elt = &Val; 1418 1419 // In some cases the vector type is legal but the element type is illegal and 1420 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1421 // inserted value (the type does not need to match the vector element type). 1422 // Any extra bits introduced will be truncated away. 1423 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1424 TargetLowering::TypePromoteInteger) { 1425 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1426 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1427 Elt = ConstantInt::get(*getContext(), NewVal); 1428 } 1429 // In other cases the element type is illegal and needs to be expanded, for 1430 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1431 // the value into n parts and use a vector type with n-times the elements. 1432 // Then bitcast to the type requested. 1433 // Legalizing constants too early makes the DAGCombiner's job harder so we 1434 // only legalize if the DAG tells us we must produce legal types. 1435 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1436 TLI->getTypeAction(*getContext(), EltVT) == 1437 TargetLowering::TypeExpandInteger) { 1438 const APInt &NewVal = Elt->getValue(); 1439 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1440 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1441 1442 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1443 if (VT.isScalableVector()) { 1444 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1445 "Can only handle an even split!"); 1446 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1447 1448 SmallVector<SDValue, 2> ScalarParts; 1449 for (unsigned i = 0; i != Parts; ++i) 1450 ScalarParts.push_back(getConstant( 1451 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1452 ViaEltVT, isT, isO)); 1453 1454 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1455 } 1456 1457 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1458 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1459 1460 // Check the temporary vector is the correct size. If this fails then 1461 // getTypeToTransformTo() probably returned a type whose size (in bits) 1462 // isn't a power-of-2 factor of the requested type size. 1463 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1464 1465 SmallVector<SDValue, 2> EltParts; 1466 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1467 EltParts.push_back(getConstant( 1468 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1469 ViaEltVT, isT, isO)); 1470 1471 // EltParts is currently in little endian order. If we actually want 1472 // big-endian order then reverse it now. 1473 if (getDataLayout().isBigEndian()) 1474 std::reverse(EltParts.begin(), EltParts.end()); 1475 1476 // The elements must be reversed when the element order is different 1477 // to the endianness of the elements (because the BITCAST is itself a 1478 // vector shuffle in this situation). However, we do not need any code to 1479 // perform this reversal because getConstant() is producing a vector 1480 // splat. 1481 // This situation occurs in MIPS MSA. 1482 1483 SmallVector<SDValue, 8> Ops; 1484 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1485 llvm::append_range(Ops, EltParts); 1486 1487 SDValue V = 1488 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1489 return V; 1490 } 1491 1492 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1493 "APInt size does not match type size!"); 1494 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1495 FoldingSetNodeID ID; 1496 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1497 ID.AddPointer(Elt); 1498 ID.AddBoolean(isO); 1499 void *IP = nullptr; 1500 SDNode *N = nullptr; 1501 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1502 if (!VT.isVector()) 1503 return SDValue(N, 0); 1504 1505 if (!N) { 1506 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1507 CSEMap.InsertNode(N, IP); 1508 InsertNode(N); 1509 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1510 } 1511 1512 SDValue Result(N, 0); 1513 if (VT.isScalableVector()) 1514 Result = getSplatVector(VT, DL, Result); 1515 else if (VT.isVector()) 1516 Result = getSplatBuildVector(VT, DL, Result); 1517 1518 return Result; 1519 } 1520 1521 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1522 bool isTarget) { 1523 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1524 } 1525 1526 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1527 const SDLoc &DL, bool LegalTypes) { 1528 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1529 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1530 return getConstant(Val, DL, ShiftVT); 1531 } 1532 1533 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1534 bool isTarget) { 1535 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1536 } 1537 1538 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1539 bool isTarget) { 1540 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1541 } 1542 1543 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1544 EVT VT, bool isTarget) { 1545 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1546 1547 EVT EltVT = VT.getScalarType(); 1548 1549 // Do the map lookup using the actual bit pattern for the floating point 1550 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1551 // we don't have issues with SNANs. 1552 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1553 FoldingSetNodeID ID; 1554 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1555 ID.AddPointer(&V); 1556 void *IP = nullptr; 1557 SDNode *N = nullptr; 1558 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1559 if (!VT.isVector()) 1560 return SDValue(N, 0); 1561 1562 if (!N) { 1563 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1564 CSEMap.InsertNode(N, IP); 1565 InsertNode(N); 1566 } 1567 1568 SDValue Result(N, 0); 1569 if (VT.isScalableVector()) 1570 Result = getSplatVector(VT, DL, Result); 1571 else if (VT.isVector()) 1572 Result = getSplatBuildVector(VT, DL, Result); 1573 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1574 return Result; 1575 } 1576 1577 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1578 bool isTarget) { 1579 EVT EltVT = VT.getScalarType(); 1580 if (EltVT == MVT::f32) 1581 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1582 if (EltVT == MVT::f64) 1583 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1584 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1585 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1586 bool Ignored; 1587 APFloat APF = APFloat(Val); 1588 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1589 &Ignored); 1590 return getConstantFP(APF, DL, VT, isTarget); 1591 } 1592 llvm_unreachable("Unsupported type in getConstantFP"); 1593 } 1594 1595 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1596 EVT VT, int64_t Offset, bool isTargetGA, 1597 unsigned TargetFlags) { 1598 assert((TargetFlags == 0 || isTargetGA) && 1599 "Cannot set target flags on target-independent globals"); 1600 1601 // Truncate (with sign-extension) the offset value to the pointer size. 1602 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1603 if (BitWidth < 64) 1604 Offset = SignExtend64(Offset, BitWidth); 1605 1606 unsigned Opc; 1607 if (GV->isThreadLocal()) 1608 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1609 else 1610 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1611 1612 FoldingSetNodeID ID; 1613 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1614 ID.AddPointer(GV); 1615 ID.AddInteger(Offset); 1616 ID.AddInteger(TargetFlags); 1617 void *IP = nullptr; 1618 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1619 return SDValue(E, 0); 1620 1621 auto *N = newSDNode<GlobalAddressSDNode>( 1622 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1623 CSEMap.InsertNode(N, IP); 1624 InsertNode(N); 1625 return SDValue(N, 0); 1626 } 1627 1628 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1629 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1630 FoldingSetNodeID ID; 1631 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1632 ID.AddInteger(FI); 1633 void *IP = nullptr; 1634 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1635 return SDValue(E, 0); 1636 1637 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1638 CSEMap.InsertNode(N, IP); 1639 InsertNode(N); 1640 return SDValue(N, 0); 1641 } 1642 1643 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1644 unsigned TargetFlags) { 1645 assert((TargetFlags == 0 || isTarget) && 1646 "Cannot set target flags on target-independent jump tables"); 1647 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1648 FoldingSetNodeID ID; 1649 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1650 ID.AddInteger(JTI); 1651 ID.AddInteger(TargetFlags); 1652 void *IP = nullptr; 1653 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1654 return SDValue(E, 0); 1655 1656 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1657 CSEMap.InsertNode(N, IP); 1658 InsertNode(N); 1659 return SDValue(N, 0); 1660 } 1661 1662 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1663 MaybeAlign Alignment, int Offset, 1664 bool isTarget, unsigned TargetFlags) { 1665 assert((TargetFlags == 0 || isTarget) && 1666 "Cannot set target flags on target-independent globals"); 1667 if (!Alignment) 1668 Alignment = shouldOptForSize() 1669 ? getDataLayout().getABITypeAlign(C->getType()) 1670 : getDataLayout().getPrefTypeAlign(C->getType()); 1671 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1672 FoldingSetNodeID ID; 1673 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1674 ID.AddInteger(Alignment->value()); 1675 ID.AddInteger(Offset); 1676 ID.AddPointer(C); 1677 ID.AddInteger(TargetFlags); 1678 void *IP = nullptr; 1679 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1680 return SDValue(E, 0); 1681 1682 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1683 TargetFlags); 1684 CSEMap.InsertNode(N, IP); 1685 InsertNode(N); 1686 SDValue V = SDValue(N, 0); 1687 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1688 return V; 1689 } 1690 1691 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1692 MaybeAlign Alignment, int Offset, 1693 bool isTarget, unsigned TargetFlags) { 1694 assert((TargetFlags == 0 || isTarget) && 1695 "Cannot set target flags on target-independent globals"); 1696 if (!Alignment) 1697 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1698 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1699 FoldingSetNodeID ID; 1700 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1701 ID.AddInteger(Alignment->value()); 1702 ID.AddInteger(Offset); 1703 C->addSelectionDAGCSEId(ID); 1704 ID.AddInteger(TargetFlags); 1705 void *IP = nullptr; 1706 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1707 return SDValue(E, 0); 1708 1709 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1710 TargetFlags); 1711 CSEMap.InsertNode(N, IP); 1712 InsertNode(N); 1713 return SDValue(N, 0); 1714 } 1715 1716 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1717 unsigned TargetFlags) { 1718 FoldingSetNodeID ID; 1719 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1720 ID.AddInteger(Index); 1721 ID.AddInteger(Offset); 1722 ID.AddInteger(TargetFlags); 1723 void *IP = nullptr; 1724 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1725 return SDValue(E, 0); 1726 1727 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1728 CSEMap.InsertNode(N, IP); 1729 InsertNode(N); 1730 return SDValue(N, 0); 1731 } 1732 1733 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1734 FoldingSetNodeID ID; 1735 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1736 ID.AddPointer(MBB); 1737 void *IP = nullptr; 1738 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1739 return SDValue(E, 0); 1740 1741 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1742 CSEMap.InsertNode(N, IP); 1743 InsertNode(N); 1744 return SDValue(N, 0); 1745 } 1746 1747 SDValue SelectionDAG::getValueType(EVT VT) { 1748 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1749 ValueTypeNodes.size()) 1750 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1751 1752 SDNode *&N = VT.isExtended() ? 1753 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1754 1755 if (N) return SDValue(N, 0); 1756 N = newSDNode<VTSDNode>(VT); 1757 InsertNode(N); 1758 return SDValue(N, 0); 1759 } 1760 1761 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1762 SDNode *&N = ExternalSymbols[Sym]; 1763 if (N) return SDValue(N, 0); 1764 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1765 InsertNode(N); 1766 return SDValue(N, 0); 1767 } 1768 1769 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1770 SDNode *&N = MCSymbols[Sym]; 1771 if (N) 1772 return SDValue(N, 0); 1773 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1774 InsertNode(N); 1775 return SDValue(N, 0); 1776 } 1777 1778 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1779 unsigned TargetFlags) { 1780 SDNode *&N = 1781 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1782 if (N) return SDValue(N, 0); 1783 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1784 InsertNode(N); 1785 return SDValue(N, 0); 1786 } 1787 1788 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1789 if ((unsigned)Cond >= CondCodeNodes.size()) 1790 CondCodeNodes.resize(Cond+1); 1791 1792 if (!CondCodeNodes[Cond]) { 1793 auto *N = newSDNode<CondCodeSDNode>(Cond); 1794 CondCodeNodes[Cond] = N; 1795 InsertNode(N); 1796 } 1797 1798 return SDValue(CondCodeNodes[Cond], 0); 1799 } 1800 1801 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1802 APInt One(ResVT.getScalarSizeInBits(), 1); 1803 return getStepVector(DL, ResVT, One); 1804 } 1805 1806 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1807 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1808 if (ResVT.isScalableVector()) 1809 return getNode( 1810 ISD::STEP_VECTOR, DL, ResVT, 1811 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1812 1813 SmallVector<SDValue, 16> OpsStepConstants; 1814 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1815 OpsStepConstants.push_back( 1816 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1817 return getBuildVector(ResVT, DL, OpsStepConstants); 1818 } 1819 1820 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1821 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1822 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1823 std::swap(N1, N2); 1824 ShuffleVectorSDNode::commuteMask(M); 1825 } 1826 1827 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1828 SDValue N2, ArrayRef<int> Mask) { 1829 assert(VT.getVectorNumElements() == Mask.size() && 1830 "Must have the same number of vector elements as mask elements!"); 1831 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1832 "Invalid VECTOR_SHUFFLE"); 1833 1834 // Canonicalize shuffle undef, undef -> undef 1835 if (N1.isUndef() && N2.isUndef()) 1836 return getUNDEF(VT); 1837 1838 // Validate that all indices in Mask are within the range of the elements 1839 // input to the shuffle. 1840 int NElts = Mask.size(); 1841 assert(llvm::all_of(Mask, 1842 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1843 "Index out of range"); 1844 1845 // Copy the mask so we can do any needed cleanup. 1846 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1847 1848 // Canonicalize shuffle v, v -> v, undef 1849 if (N1 == N2) { 1850 N2 = getUNDEF(VT); 1851 for (int i = 0; i != NElts; ++i) 1852 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1853 } 1854 1855 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1856 if (N1.isUndef()) 1857 commuteShuffle(N1, N2, MaskVec); 1858 1859 if (TLI->hasVectorBlend()) { 1860 // If shuffling a splat, try to blend the splat instead. We do this here so 1861 // that even when this arises during lowering we don't have to re-handle it. 1862 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1863 BitVector UndefElements; 1864 SDValue Splat = BV->getSplatValue(&UndefElements); 1865 if (!Splat) 1866 return; 1867 1868 for (int i = 0; i < NElts; ++i) { 1869 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1870 continue; 1871 1872 // If this input comes from undef, mark it as such. 1873 if (UndefElements[MaskVec[i] - Offset]) { 1874 MaskVec[i] = -1; 1875 continue; 1876 } 1877 1878 // If we can blend a non-undef lane, use that instead. 1879 if (!UndefElements[i]) 1880 MaskVec[i] = i + Offset; 1881 } 1882 }; 1883 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1884 BlendSplat(N1BV, 0); 1885 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1886 BlendSplat(N2BV, NElts); 1887 } 1888 1889 // Canonicalize all index into lhs, -> shuffle lhs, undef 1890 // Canonicalize all index into rhs, -> shuffle rhs, undef 1891 bool AllLHS = true, AllRHS = true; 1892 bool N2Undef = N2.isUndef(); 1893 for (int i = 0; i != NElts; ++i) { 1894 if (MaskVec[i] >= NElts) { 1895 if (N2Undef) 1896 MaskVec[i] = -1; 1897 else 1898 AllLHS = false; 1899 } else if (MaskVec[i] >= 0) { 1900 AllRHS = false; 1901 } 1902 } 1903 if (AllLHS && AllRHS) 1904 return getUNDEF(VT); 1905 if (AllLHS && !N2Undef) 1906 N2 = getUNDEF(VT); 1907 if (AllRHS) { 1908 N1 = getUNDEF(VT); 1909 commuteShuffle(N1, N2, MaskVec); 1910 } 1911 // Reset our undef status after accounting for the mask. 1912 N2Undef = N2.isUndef(); 1913 // Re-check whether both sides ended up undef. 1914 if (N1.isUndef() && N2Undef) 1915 return getUNDEF(VT); 1916 1917 // If Identity shuffle return that node. 1918 bool Identity = true, AllSame = true; 1919 for (int i = 0; i != NElts; ++i) { 1920 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1921 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1922 } 1923 if (Identity && NElts) 1924 return N1; 1925 1926 // Shuffling a constant splat doesn't change the result. 1927 if (N2Undef) { 1928 SDValue V = N1; 1929 1930 // Look through any bitcasts. We check that these don't change the number 1931 // (and size) of elements and just changes their types. 1932 while (V.getOpcode() == ISD::BITCAST) 1933 V = V->getOperand(0); 1934 1935 // A splat should always show up as a build vector node. 1936 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1937 BitVector UndefElements; 1938 SDValue Splat = BV->getSplatValue(&UndefElements); 1939 // If this is a splat of an undef, shuffling it is also undef. 1940 if (Splat && Splat.isUndef()) 1941 return getUNDEF(VT); 1942 1943 bool SameNumElts = 1944 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1945 1946 // We only have a splat which can skip shuffles if there is a splatted 1947 // value and no undef lanes rearranged by the shuffle. 1948 if (Splat && UndefElements.none()) { 1949 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1950 // number of elements match or the value splatted is a zero constant. 1951 if (SameNumElts) 1952 return N1; 1953 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1954 if (C->isZero()) 1955 return N1; 1956 } 1957 1958 // If the shuffle itself creates a splat, build the vector directly. 1959 if (AllSame && SameNumElts) { 1960 EVT BuildVT = BV->getValueType(0); 1961 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1962 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1963 1964 // We may have jumped through bitcasts, so the type of the 1965 // BUILD_VECTOR may not match the type of the shuffle. 1966 if (BuildVT != VT) 1967 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1968 return NewBV; 1969 } 1970 } 1971 } 1972 1973 FoldingSetNodeID ID; 1974 SDValue Ops[2] = { N1, N2 }; 1975 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1976 for (int i = 0; i != NElts; ++i) 1977 ID.AddInteger(MaskVec[i]); 1978 1979 void* IP = nullptr; 1980 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1981 return SDValue(E, 0); 1982 1983 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1984 // SDNode doesn't have access to it. This memory will be "leaked" when 1985 // the node is deallocated, but recovered when the NodeAllocator is released. 1986 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1987 llvm::copy(MaskVec, MaskAlloc); 1988 1989 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1990 dl.getDebugLoc(), MaskAlloc); 1991 createOperands(N, Ops); 1992 1993 CSEMap.InsertNode(N, IP); 1994 InsertNode(N); 1995 SDValue V = SDValue(N, 0); 1996 NewSDValueDbgMsg(V, "Creating new node: ", this); 1997 return V; 1998 } 1999 2000 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2001 EVT VT = SV.getValueType(0); 2002 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2003 ShuffleVectorSDNode::commuteMask(MaskVec); 2004 2005 SDValue Op0 = SV.getOperand(0); 2006 SDValue Op1 = SV.getOperand(1); 2007 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2008 } 2009 2010 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2011 FoldingSetNodeID ID; 2012 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2013 ID.AddInteger(RegNo); 2014 void *IP = nullptr; 2015 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2016 return SDValue(E, 0); 2017 2018 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2019 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2020 CSEMap.InsertNode(N, IP); 2021 InsertNode(N); 2022 return SDValue(N, 0); 2023 } 2024 2025 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2026 FoldingSetNodeID ID; 2027 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2028 ID.AddPointer(RegMask); 2029 void *IP = nullptr; 2030 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2031 return SDValue(E, 0); 2032 2033 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2034 CSEMap.InsertNode(N, IP); 2035 InsertNode(N); 2036 return SDValue(N, 0); 2037 } 2038 2039 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2040 MCSymbol *Label) { 2041 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2042 } 2043 2044 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2045 SDValue Root, MCSymbol *Label) { 2046 FoldingSetNodeID ID; 2047 SDValue Ops[] = { Root }; 2048 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2049 ID.AddPointer(Label); 2050 void *IP = nullptr; 2051 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2052 return SDValue(E, 0); 2053 2054 auto *N = 2055 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2056 createOperands(N, Ops); 2057 2058 CSEMap.InsertNode(N, IP); 2059 InsertNode(N); 2060 return SDValue(N, 0); 2061 } 2062 2063 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2064 int64_t Offset, bool isTarget, 2065 unsigned TargetFlags) { 2066 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2067 2068 FoldingSetNodeID ID; 2069 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2070 ID.AddPointer(BA); 2071 ID.AddInteger(Offset); 2072 ID.AddInteger(TargetFlags); 2073 void *IP = nullptr; 2074 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2075 return SDValue(E, 0); 2076 2077 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2078 CSEMap.InsertNode(N, IP); 2079 InsertNode(N); 2080 return SDValue(N, 0); 2081 } 2082 2083 SDValue SelectionDAG::getSrcValue(const Value *V) { 2084 FoldingSetNodeID ID; 2085 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2086 ID.AddPointer(V); 2087 2088 void *IP = nullptr; 2089 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2090 return SDValue(E, 0); 2091 2092 auto *N = newSDNode<SrcValueSDNode>(V); 2093 CSEMap.InsertNode(N, IP); 2094 InsertNode(N); 2095 return SDValue(N, 0); 2096 } 2097 2098 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2099 FoldingSetNodeID ID; 2100 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2101 ID.AddPointer(MD); 2102 2103 void *IP = nullptr; 2104 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2105 return SDValue(E, 0); 2106 2107 auto *N = newSDNode<MDNodeSDNode>(MD); 2108 CSEMap.InsertNode(N, IP); 2109 InsertNode(N); 2110 return SDValue(N, 0); 2111 } 2112 2113 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2114 if (VT == V.getValueType()) 2115 return V; 2116 2117 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2118 } 2119 2120 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2121 unsigned SrcAS, unsigned DestAS) { 2122 SDValue Ops[] = {Ptr}; 2123 FoldingSetNodeID ID; 2124 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2125 ID.AddInteger(SrcAS); 2126 ID.AddInteger(DestAS); 2127 2128 void *IP = nullptr; 2129 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2130 return SDValue(E, 0); 2131 2132 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2133 VT, SrcAS, DestAS); 2134 createOperands(N, Ops); 2135 2136 CSEMap.InsertNode(N, IP); 2137 InsertNode(N); 2138 return SDValue(N, 0); 2139 } 2140 2141 SDValue SelectionDAG::getFreeze(SDValue V) { 2142 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2143 } 2144 2145 /// getShiftAmountOperand - Return the specified value casted to 2146 /// the target's desired shift amount type. 2147 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2148 EVT OpTy = Op.getValueType(); 2149 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2150 if (OpTy == ShTy || OpTy.isVector()) return Op; 2151 2152 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2153 } 2154 2155 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2156 SDLoc dl(Node); 2157 const TargetLowering &TLI = getTargetLoweringInfo(); 2158 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2159 EVT VT = Node->getValueType(0); 2160 SDValue Tmp1 = Node->getOperand(0); 2161 SDValue Tmp2 = Node->getOperand(1); 2162 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2163 2164 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2165 Tmp2, MachinePointerInfo(V)); 2166 SDValue VAList = VAListLoad; 2167 2168 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2169 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2170 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2171 2172 VAList = 2173 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2174 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2175 } 2176 2177 // Increment the pointer, VAList, to the next vaarg 2178 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2179 getConstant(getDataLayout().getTypeAllocSize( 2180 VT.getTypeForEVT(*getContext())), 2181 dl, VAList.getValueType())); 2182 // Store the incremented VAList to the legalized pointer 2183 Tmp1 = 2184 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2185 // Load the actual argument out of the pointer VAList 2186 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2187 } 2188 2189 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2190 SDLoc dl(Node); 2191 const TargetLowering &TLI = getTargetLoweringInfo(); 2192 // This defaults to loading a pointer from the input and storing it to the 2193 // output, returning the chain. 2194 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2195 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2196 SDValue Tmp1 = 2197 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2198 Node->getOperand(2), MachinePointerInfo(VS)); 2199 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2200 MachinePointerInfo(VD)); 2201 } 2202 2203 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2204 const DataLayout &DL = getDataLayout(); 2205 Type *Ty = VT.getTypeForEVT(*getContext()); 2206 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2207 2208 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2209 return RedAlign; 2210 2211 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2212 const Align StackAlign = TFI->getStackAlign(); 2213 2214 // See if we can choose a smaller ABI alignment in cases where it's an 2215 // illegal vector type that will get broken down. 2216 if (RedAlign > StackAlign) { 2217 EVT IntermediateVT; 2218 MVT RegisterVT; 2219 unsigned NumIntermediates; 2220 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2221 NumIntermediates, RegisterVT); 2222 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2223 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2224 if (RedAlign2 < RedAlign) 2225 RedAlign = RedAlign2; 2226 } 2227 2228 return RedAlign; 2229 } 2230 2231 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2232 MachineFrameInfo &MFI = MF->getFrameInfo(); 2233 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2234 int StackID = 0; 2235 if (Bytes.isScalable()) 2236 StackID = TFI->getStackIDForScalableVectors(); 2237 // The stack id gives an indication of whether the object is scalable or 2238 // not, so it's safe to pass in the minimum size here. 2239 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2240 false, nullptr, StackID); 2241 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2242 } 2243 2244 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2245 Type *Ty = VT.getTypeForEVT(*getContext()); 2246 Align StackAlign = 2247 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2248 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2249 } 2250 2251 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2252 TypeSize VT1Size = VT1.getStoreSize(); 2253 TypeSize VT2Size = VT2.getStoreSize(); 2254 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2255 "Don't know how to choose the maximum size when creating a stack " 2256 "temporary"); 2257 TypeSize Bytes = 2258 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2259 2260 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2261 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2262 const DataLayout &DL = getDataLayout(); 2263 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2264 return CreateStackTemporary(Bytes, Align); 2265 } 2266 2267 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2268 ISD::CondCode Cond, const SDLoc &dl) { 2269 EVT OpVT = N1.getValueType(); 2270 2271 // These setcc operations always fold. 2272 switch (Cond) { 2273 default: break; 2274 case ISD::SETFALSE: 2275 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2276 case ISD::SETTRUE: 2277 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2278 2279 case ISD::SETOEQ: 2280 case ISD::SETOGT: 2281 case ISD::SETOGE: 2282 case ISD::SETOLT: 2283 case ISD::SETOLE: 2284 case ISD::SETONE: 2285 case ISD::SETO: 2286 case ISD::SETUO: 2287 case ISD::SETUEQ: 2288 case ISD::SETUNE: 2289 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2290 break; 2291 } 2292 2293 if (OpVT.isInteger()) { 2294 // For EQ and NE, we can always pick a value for the undef to make the 2295 // predicate pass or fail, so we can return undef. 2296 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2297 // icmp eq/ne X, undef -> undef. 2298 if ((N1.isUndef() || N2.isUndef()) && 2299 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2300 return getUNDEF(VT); 2301 2302 // If both operands are undef, we can return undef for int comparison. 2303 // icmp undef, undef -> undef. 2304 if (N1.isUndef() && N2.isUndef()) 2305 return getUNDEF(VT); 2306 2307 // icmp X, X -> true/false 2308 // icmp X, undef -> true/false because undef could be X. 2309 if (N1 == N2) 2310 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2311 } 2312 2313 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2314 const APInt &C2 = N2C->getAPIntValue(); 2315 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2316 const APInt &C1 = N1C->getAPIntValue(); 2317 2318 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2319 dl, VT, OpVT); 2320 } 2321 } 2322 2323 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2324 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2325 2326 if (N1CFP && N2CFP) { 2327 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2328 switch (Cond) { 2329 default: break; 2330 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2331 return getUNDEF(VT); 2332 LLVM_FALLTHROUGH; 2333 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2334 OpVT); 2335 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2336 return getUNDEF(VT); 2337 LLVM_FALLTHROUGH; 2338 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2339 R==APFloat::cmpLessThan, dl, VT, 2340 OpVT); 2341 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2342 return getUNDEF(VT); 2343 LLVM_FALLTHROUGH; 2344 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2345 OpVT); 2346 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2347 return getUNDEF(VT); 2348 LLVM_FALLTHROUGH; 2349 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2350 VT, OpVT); 2351 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2352 return getUNDEF(VT); 2353 LLVM_FALLTHROUGH; 2354 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2355 R==APFloat::cmpEqual, dl, VT, 2356 OpVT); 2357 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2358 return getUNDEF(VT); 2359 LLVM_FALLTHROUGH; 2360 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2361 R==APFloat::cmpEqual, dl, VT, OpVT); 2362 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2363 OpVT); 2364 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2365 OpVT); 2366 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2367 R==APFloat::cmpEqual, dl, VT, 2368 OpVT); 2369 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2370 OpVT); 2371 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2372 R==APFloat::cmpLessThan, dl, VT, 2373 OpVT); 2374 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2375 R==APFloat::cmpUnordered, dl, VT, 2376 OpVT); 2377 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2378 VT, OpVT); 2379 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2380 OpVT); 2381 } 2382 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2383 // Ensure that the constant occurs on the RHS. 2384 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2385 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2386 return SDValue(); 2387 return getSetCC(dl, VT, N2, N1, SwappedCond); 2388 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2389 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2390 // If an operand is known to be a nan (or undef that could be a nan), we can 2391 // fold it. 2392 // Choosing NaN for the undef will always make unordered comparison succeed 2393 // and ordered comparison fails. 2394 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2395 switch (ISD::getUnorderedFlavor(Cond)) { 2396 default: 2397 llvm_unreachable("Unknown flavor!"); 2398 case 0: // Known false. 2399 return getBoolConstant(false, dl, VT, OpVT); 2400 case 1: // Known true. 2401 return getBoolConstant(true, dl, VT, OpVT); 2402 case 2: // Undefined. 2403 return getUNDEF(VT); 2404 } 2405 } 2406 2407 // Could not fold it. 2408 return SDValue(); 2409 } 2410 2411 /// See if the specified operand can be simplified with the knowledge that only 2412 /// the bits specified by DemandedBits are used. 2413 /// TODO: really we should be making this into the DAG equivalent of 2414 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2415 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2416 EVT VT = V.getValueType(); 2417 2418 if (VT.isScalableVector()) 2419 return SDValue(); 2420 2421 APInt DemandedElts = VT.isVector() 2422 ? APInt::getAllOnes(VT.getVectorNumElements()) 2423 : APInt(1, 1); 2424 return GetDemandedBits(V, DemandedBits, DemandedElts); 2425 } 2426 2427 /// See if the specified operand can be simplified with the knowledge that only 2428 /// the bits specified by DemandedBits are used in the elements specified by 2429 /// DemandedElts. 2430 /// TODO: really we should be making this into the DAG equivalent of 2431 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2432 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2433 const APInt &DemandedElts) { 2434 switch (V.getOpcode()) { 2435 default: 2436 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2437 *this, 0); 2438 case ISD::Constant: { 2439 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2440 APInt NewVal = CVal & DemandedBits; 2441 if (NewVal != CVal) 2442 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2443 break; 2444 } 2445 case ISD::SRL: 2446 // Only look at single-use SRLs. 2447 if (!V.getNode()->hasOneUse()) 2448 break; 2449 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2450 // See if we can recursively simplify the LHS. 2451 unsigned Amt = RHSC->getZExtValue(); 2452 2453 // Watch out for shift count overflow though. 2454 if (Amt >= DemandedBits.getBitWidth()) 2455 break; 2456 APInt SrcDemandedBits = DemandedBits << Amt; 2457 if (SDValue SimplifyLHS = 2458 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2459 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2460 V.getOperand(1)); 2461 } 2462 break; 2463 } 2464 return SDValue(); 2465 } 2466 2467 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2468 /// use this predicate to simplify operations downstream. 2469 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2470 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2471 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2472 } 2473 2474 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2475 /// this predicate to simplify operations downstream. Mask is known to be zero 2476 /// for bits that V cannot have. 2477 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2478 unsigned Depth) const { 2479 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2480 } 2481 2482 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2483 /// DemandedElts. We use this predicate to simplify operations downstream. 2484 /// Mask is known to be zero for bits that V cannot have. 2485 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2486 const APInt &DemandedElts, 2487 unsigned Depth) const { 2488 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2489 } 2490 2491 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2492 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2493 unsigned Depth) const { 2494 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2495 } 2496 2497 /// isSplatValue - Return true if the vector V has the same value 2498 /// across all DemandedElts. For scalable vectors it does not make 2499 /// sense to specify which elements are demanded or undefined, therefore 2500 /// they are simply ignored. 2501 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2502 APInt &UndefElts, unsigned Depth) { 2503 EVT VT = V.getValueType(); 2504 assert(VT.isVector() && "Vector type expected"); 2505 2506 if (!VT.isScalableVector() && !DemandedElts) 2507 return false; // No demanded elts, better to assume we don't know anything. 2508 2509 if (Depth >= MaxRecursionDepth) 2510 return false; // Limit search depth. 2511 2512 // Deal with some common cases here that work for both fixed and scalable 2513 // vector types. 2514 switch (V.getOpcode()) { 2515 case ISD::SPLAT_VECTOR: 2516 UndefElts = V.getOperand(0).isUndef() 2517 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2518 : APInt(DemandedElts.getBitWidth(), 0); 2519 return true; 2520 case ISD::ADD: 2521 case ISD::SUB: 2522 case ISD::AND: 2523 case ISD::XOR: 2524 case ISD::OR: { 2525 APInt UndefLHS, UndefRHS; 2526 SDValue LHS = V.getOperand(0); 2527 SDValue RHS = V.getOperand(1); 2528 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2529 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2530 UndefElts = UndefLHS | UndefRHS; 2531 return true; 2532 } 2533 return false; 2534 } 2535 case ISD::ABS: 2536 case ISD::TRUNCATE: 2537 case ISD::SIGN_EXTEND: 2538 case ISD::ZERO_EXTEND: 2539 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2540 } 2541 2542 // We don't support other cases than those above for scalable vectors at 2543 // the moment. 2544 if (VT.isScalableVector()) 2545 return false; 2546 2547 unsigned NumElts = VT.getVectorNumElements(); 2548 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2549 UndefElts = APInt::getZero(NumElts); 2550 2551 switch (V.getOpcode()) { 2552 case ISD::BUILD_VECTOR: { 2553 SDValue Scl; 2554 for (unsigned i = 0; i != NumElts; ++i) { 2555 SDValue Op = V.getOperand(i); 2556 if (Op.isUndef()) { 2557 UndefElts.setBit(i); 2558 continue; 2559 } 2560 if (!DemandedElts[i]) 2561 continue; 2562 if (Scl && Scl != Op) 2563 return false; 2564 Scl = Op; 2565 } 2566 return true; 2567 } 2568 case ISD::VECTOR_SHUFFLE: { 2569 // Check if this is a shuffle node doing a splat. 2570 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2571 int SplatIndex = -1; 2572 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2573 for (int i = 0; i != (int)NumElts; ++i) { 2574 int M = Mask[i]; 2575 if (M < 0) { 2576 UndefElts.setBit(i); 2577 continue; 2578 } 2579 if (!DemandedElts[i]) 2580 continue; 2581 if (0 <= SplatIndex && SplatIndex != M) 2582 return false; 2583 SplatIndex = M; 2584 } 2585 return true; 2586 } 2587 case ISD::EXTRACT_SUBVECTOR: { 2588 // Offset the demanded elts by the subvector index. 2589 SDValue Src = V.getOperand(0); 2590 // We don't support scalable vectors at the moment. 2591 if (Src.getValueType().isScalableVector()) 2592 return false; 2593 uint64_t Idx = V.getConstantOperandVal(1); 2594 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2595 APInt UndefSrcElts; 2596 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2597 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2598 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2599 return true; 2600 } 2601 break; 2602 } 2603 } 2604 2605 return false; 2606 } 2607 2608 /// Helper wrapper to main isSplatValue function. 2609 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2610 EVT VT = V.getValueType(); 2611 assert(VT.isVector() && "Vector type expected"); 2612 2613 APInt UndefElts; 2614 APInt DemandedElts; 2615 2616 // For now we don't support this with scalable vectors. 2617 if (!VT.isScalableVector()) 2618 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2619 return isSplatValue(V, DemandedElts, UndefElts) && 2620 (AllowUndefs || !UndefElts); 2621 } 2622 2623 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2624 V = peekThroughExtractSubvectors(V); 2625 2626 EVT VT = V.getValueType(); 2627 unsigned Opcode = V.getOpcode(); 2628 switch (Opcode) { 2629 default: { 2630 APInt UndefElts; 2631 APInt DemandedElts; 2632 2633 if (!VT.isScalableVector()) 2634 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2635 2636 if (isSplatValue(V, DemandedElts, UndefElts)) { 2637 if (VT.isScalableVector()) { 2638 // DemandedElts and UndefElts are ignored for scalable vectors, since 2639 // the only supported cases are SPLAT_VECTOR nodes. 2640 SplatIdx = 0; 2641 } else { 2642 // Handle case where all demanded elements are UNDEF. 2643 if (DemandedElts.isSubsetOf(UndefElts)) { 2644 SplatIdx = 0; 2645 return getUNDEF(VT); 2646 } 2647 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2648 } 2649 return V; 2650 } 2651 break; 2652 } 2653 case ISD::SPLAT_VECTOR: 2654 SplatIdx = 0; 2655 return V; 2656 case ISD::VECTOR_SHUFFLE: { 2657 if (VT.isScalableVector()) 2658 return SDValue(); 2659 2660 // Check if this is a shuffle node doing a splat. 2661 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2662 // getTargetVShiftNode currently struggles without the splat source. 2663 auto *SVN = cast<ShuffleVectorSDNode>(V); 2664 if (!SVN->isSplat()) 2665 break; 2666 int Idx = SVN->getSplatIndex(); 2667 int NumElts = V.getValueType().getVectorNumElements(); 2668 SplatIdx = Idx % NumElts; 2669 return V.getOperand(Idx / NumElts); 2670 } 2671 } 2672 2673 return SDValue(); 2674 } 2675 2676 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2677 int SplatIdx; 2678 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2679 EVT SVT = SrcVector.getValueType().getScalarType(); 2680 EVT LegalSVT = SVT; 2681 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2682 if (!SVT.isInteger()) 2683 return SDValue(); 2684 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2685 if (LegalSVT.bitsLT(SVT)) 2686 return SDValue(); 2687 } 2688 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2689 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2690 } 2691 return SDValue(); 2692 } 2693 2694 const APInt * 2695 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2696 const APInt &DemandedElts) const { 2697 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2698 V.getOpcode() == ISD::SRA) && 2699 "Unknown shift node"); 2700 unsigned BitWidth = V.getScalarValueSizeInBits(); 2701 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2702 // Shifting more than the bitwidth is not valid. 2703 const APInt &ShAmt = SA->getAPIntValue(); 2704 if (ShAmt.ult(BitWidth)) 2705 return &ShAmt; 2706 } 2707 return nullptr; 2708 } 2709 2710 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2711 SDValue V, const APInt &DemandedElts) const { 2712 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2713 V.getOpcode() == ISD::SRA) && 2714 "Unknown shift node"); 2715 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2716 return ValidAmt; 2717 unsigned BitWidth = V.getScalarValueSizeInBits(); 2718 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2719 if (!BV) 2720 return nullptr; 2721 const APInt *MinShAmt = nullptr; 2722 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2723 if (!DemandedElts[i]) 2724 continue; 2725 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2726 if (!SA) 2727 return nullptr; 2728 // Shifting more than the bitwidth is not valid. 2729 const APInt &ShAmt = SA->getAPIntValue(); 2730 if (ShAmt.uge(BitWidth)) 2731 return nullptr; 2732 if (MinShAmt && MinShAmt->ule(ShAmt)) 2733 continue; 2734 MinShAmt = &ShAmt; 2735 } 2736 return MinShAmt; 2737 } 2738 2739 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2740 SDValue V, const APInt &DemandedElts) const { 2741 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2742 V.getOpcode() == ISD::SRA) && 2743 "Unknown shift node"); 2744 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2745 return ValidAmt; 2746 unsigned BitWidth = V.getScalarValueSizeInBits(); 2747 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2748 if (!BV) 2749 return nullptr; 2750 const APInt *MaxShAmt = nullptr; 2751 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2752 if (!DemandedElts[i]) 2753 continue; 2754 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2755 if (!SA) 2756 return nullptr; 2757 // Shifting more than the bitwidth is not valid. 2758 const APInt &ShAmt = SA->getAPIntValue(); 2759 if (ShAmt.uge(BitWidth)) 2760 return nullptr; 2761 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2762 continue; 2763 MaxShAmt = &ShAmt; 2764 } 2765 return MaxShAmt; 2766 } 2767 2768 /// Determine which bits of Op are known to be either zero or one and return 2769 /// them in Known. For vectors, the known bits are those that are shared by 2770 /// every vector element. 2771 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2772 EVT VT = Op.getValueType(); 2773 2774 // TOOD: Until we have a plan for how to represent demanded elements for 2775 // scalable vectors, we can just bail out for now. 2776 if (Op.getValueType().isScalableVector()) { 2777 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2778 return KnownBits(BitWidth); 2779 } 2780 2781 APInt DemandedElts = VT.isVector() 2782 ? APInt::getAllOnes(VT.getVectorNumElements()) 2783 : APInt(1, 1); 2784 return computeKnownBits(Op, DemandedElts, Depth); 2785 } 2786 2787 /// Determine which bits of Op are known to be either zero or one and return 2788 /// them in Known. The DemandedElts argument allows us to only collect the known 2789 /// bits that are shared by the requested vector elements. 2790 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2791 unsigned Depth) const { 2792 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2793 2794 KnownBits Known(BitWidth); // Don't know anything. 2795 2796 // TOOD: Until we have a plan for how to represent demanded elements for 2797 // scalable vectors, we can just bail out for now. 2798 if (Op.getValueType().isScalableVector()) 2799 return Known; 2800 2801 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2802 // We know all of the bits for a constant! 2803 return KnownBits::makeConstant(C->getAPIntValue()); 2804 } 2805 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2806 // We know all of the bits for a constant fp! 2807 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2808 } 2809 2810 if (Depth >= MaxRecursionDepth) 2811 return Known; // Limit search depth. 2812 2813 KnownBits Known2; 2814 unsigned NumElts = DemandedElts.getBitWidth(); 2815 assert((!Op.getValueType().isVector() || 2816 NumElts == Op.getValueType().getVectorNumElements()) && 2817 "Unexpected vector size"); 2818 2819 if (!DemandedElts) 2820 return Known; // No demanded elts, better to assume we don't know anything. 2821 2822 unsigned Opcode = Op.getOpcode(); 2823 switch (Opcode) { 2824 case ISD::BUILD_VECTOR: 2825 // Collect the known bits that are shared by every demanded vector element. 2826 Known.Zero.setAllBits(); Known.One.setAllBits(); 2827 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2828 if (!DemandedElts[i]) 2829 continue; 2830 2831 SDValue SrcOp = Op.getOperand(i); 2832 Known2 = computeKnownBits(SrcOp, Depth + 1); 2833 2834 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2835 if (SrcOp.getValueSizeInBits() != BitWidth) { 2836 assert(SrcOp.getValueSizeInBits() > BitWidth && 2837 "Expected BUILD_VECTOR implicit truncation"); 2838 Known2 = Known2.trunc(BitWidth); 2839 } 2840 2841 // Known bits are the values that are shared by every demanded element. 2842 Known = KnownBits::commonBits(Known, Known2); 2843 2844 // If we don't know any bits, early out. 2845 if (Known.isUnknown()) 2846 break; 2847 } 2848 break; 2849 case ISD::VECTOR_SHUFFLE: { 2850 // Collect the known bits that are shared by every vector element referenced 2851 // by the shuffle. 2852 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2853 Known.Zero.setAllBits(); Known.One.setAllBits(); 2854 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2855 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2856 for (unsigned i = 0; i != NumElts; ++i) { 2857 if (!DemandedElts[i]) 2858 continue; 2859 2860 int M = SVN->getMaskElt(i); 2861 if (M < 0) { 2862 // For UNDEF elements, we don't know anything about the common state of 2863 // the shuffle result. 2864 Known.resetAll(); 2865 DemandedLHS.clearAllBits(); 2866 DemandedRHS.clearAllBits(); 2867 break; 2868 } 2869 2870 if ((unsigned)M < NumElts) 2871 DemandedLHS.setBit((unsigned)M % NumElts); 2872 else 2873 DemandedRHS.setBit((unsigned)M % NumElts); 2874 } 2875 // Known bits are the values that are shared by every demanded element. 2876 if (!!DemandedLHS) { 2877 SDValue LHS = Op.getOperand(0); 2878 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2879 Known = KnownBits::commonBits(Known, Known2); 2880 } 2881 // If we don't know any bits, early out. 2882 if (Known.isUnknown()) 2883 break; 2884 if (!!DemandedRHS) { 2885 SDValue RHS = Op.getOperand(1); 2886 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2887 Known = KnownBits::commonBits(Known, Known2); 2888 } 2889 break; 2890 } 2891 case ISD::CONCAT_VECTORS: { 2892 // Split DemandedElts and test each of the demanded subvectors. 2893 Known.Zero.setAllBits(); Known.One.setAllBits(); 2894 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2895 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2896 unsigned NumSubVectors = Op.getNumOperands(); 2897 for (unsigned i = 0; i != NumSubVectors; ++i) { 2898 APInt DemandedSub = 2899 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2900 if (!!DemandedSub) { 2901 SDValue Sub = Op.getOperand(i); 2902 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2903 Known = KnownBits::commonBits(Known, Known2); 2904 } 2905 // If we don't know any bits, early out. 2906 if (Known.isUnknown()) 2907 break; 2908 } 2909 break; 2910 } 2911 case ISD::INSERT_SUBVECTOR: { 2912 // Demand any elements from the subvector and the remainder from the src its 2913 // inserted into. 2914 SDValue Src = Op.getOperand(0); 2915 SDValue Sub = Op.getOperand(1); 2916 uint64_t Idx = Op.getConstantOperandVal(2); 2917 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2918 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2919 APInt DemandedSrcElts = DemandedElts; 2920 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2921 2922 Known.One.setAllBits(); 2923 Known.Zero.setAllBits(); 2924 if (!!DemandedSubElts) { 2925 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2926 if (Known.isUnknown()) 2927 break; // early-out. 2928 } 2929 if (!!DemandedSrcElts) { 2930 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2931 Known = KnownBits::commonBits(Known, Known2); 2932 } 2933 break; 2934 } 2935 case ISD::EXTRACT_SUBVECTOR: { 2936 // Offset the demanded elts by the subvector index. 2937 SDValue Src = Op.getOperand(0); 2938 // Bail until we can represent demanded elements for scalable vectors. 2939 if (Src.getValueType().isScalableVector()) 2940 break; 2941 uint64_t Idx = Op.getConstantOperandVal(1); 2942 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2943 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2944 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2945 break; 2946 } 2947 case ISD::SCALAR_TO_VECTOR: { 2948 // We know about scalar_to_vector as much as we know about it source, 2949 // which becomes the first element of otherwise unknown vector. 2950 if (DemandedElts != 1) 2951 break; 2952 2953 SDValue N0 = Op.getOperand(0); 2954 Known = computeKnownBits(N0, Depth + 1); 2955 if (N0.getValueSizeInBits() != BitWidth) 2956 Known = Known.trunc(BitWidth); 2957 2958 break; 2959 } 2960 case ISD::BITCAST: { 2961 SDValue N0 = Op.getOperand(0); 2962 EVT SubVT = N0.getValueType(); 2963 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2964 2965 // Ignore bitcasts from unsupported types. 2966 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2967 break; 2968 2969 // Fast handling of 'identity' bitcasts. 2970 if (BitWidth == SubBitWidth) { 2971 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2972 break; 2973 } 2974 2975 bool IsLE = getDataLayout().isLittleEndian(); 2976 2977 // Bitcast 'small element' vector to 'large element' scalar/vector. 2978 if ((BitWidth % SubBitWidth) == 0) { 2979 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2980 2981 // Collect known bits for the (larger) output by collecting the known 2982 // bits from each set of sub elements and shift these into place. 2983 // We need to separately call computeKnownBits for each set of 2984 // sub elements as the knownbits for each is likely to be different. 2985 unsigned SubScale = BitWidth / SubBitWidth; 2986 APInt SubDemandedElts(NumElts * SubScale, 0); 2987 for (unsigned i = 0; i != NumElts; ++i) 2988 if (DemandedElts[i]) 2989 SubDemandedElts.setBit(i * SubScale); 2990 2991 for (unsigned i = 0; i != SubScale; ++i) { 2992 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2993 Depth + 1); 2994 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2995 Known.insertBits(Known2, SubBitWidth * Shifts); 2996 } 2997 } 2998 2999 // Bitcast 'large element' scalar/vector to 'small element' vector. 3000 if ((SubBitWidth % BitWidth) == 0) { 3001 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3002 3003 // Collect known bits for the (smaller) output by collecting the known 3004 // bits from the overlapping larger input elements and extracting the 3005 // sub sections we actually care about. 3006 unsigned SubScale = SubBitWidth / BitWidth; 3007 APInt SubDemandedElts = 3008 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3009 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3010 3011 Known.Zero.setAllBits(); Known.One.setAllBits(); 3012 for (unsigned i = 0; i != NumElts; ++i) 3013 if (DemandedElts[i]) { 3014 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3015 unsigned Offset = (Shifts % SubScale) * BitWidth; 3016 Known = KnownBits::commonBits(Known, 3017 Known2.extractBits(BitWidth, Offset)); 3018 // If we don't know any bits, early out. 3019 if (Known.isUnknown()) 3020 break; 3021 } 3022 } 3023 break; 3024 } 3025 case ISD::AND: 3026 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3027 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3028 3029 Known &= Known2; 3030 break; 3031 case ISD::OR: 3032 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3033 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3034 3035 Known |= Known2; 3036 break; 3037 case ISD::XOR: 3038 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3039 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3040 3041 Known ^= Known2; 3042 break; 3043 case ISD::MUL: { 3044 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3045 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3046 Known = KnownBits::mul(Known, Known2); 3047 break; 3048 } 3049 case ISD::MULHU: { 3050 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3051 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3052 Known = KnownBits::mulhu(Known, Known2); 3053 break; 3054 } 3055 case ISD::MULHS: { 3056 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3057 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3058 Known = KnownBits::mulhs(Known, Known2); 3059 break; 3060 } 3061 case ISD::UMUL_LOHI: { 3062 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3063 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3064 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3065 if (Op.getResNo() == 0) 3066 Known = KnownBits::mul(Known, Known2); 3067 else 3068 Known = KnownBits::mulhu(Known, Known2); 3069 break; 3070 } 3071 case ISD::SMUL_LOHI: { 3072 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3073 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3074 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3075 if (Op.getResNo() == 0) 3076 Known = KnownBits::mul(Known, Known2); 3077 else 3078 Known = KnownBits::mulhs(Known, Known2); 3079 break; 3080 } 3081 case ISD::UDIV: { 3082 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3083 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3084 Known = KnownBits::udiv(Known, Known2); 3085 break; 3086 } 3087 case ISD::SELECT: 3088 case ISD::VSELECT: 3089 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3090 // If we don't know any bits, early out. 3091 if (Known.isUnknown()) 3092 break; 3093 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3094 3095 // Only known if known in both the LHS and RHS. 3096 Known = KnownBits::commonBits(Known, Known2); 3097 break; 3098 case ISD::SELECT_CC: 3099 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3100 // If we don't know any bits, early out. 3101 if (Known.isUnknown()) 3102 break; 3103 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3104 3105 // Only known if known in both the LHS and RHS. 3106 Known = KnownBits::commonBits(Known, Known2); 3107 break; 3108 case ISD::SMULO: 3109 case ISD::UMULO: 3110 if (Op.getResNo() != 1) 3111 break; 3112 // The boolean result conforms to getBooleanContents. 3113 // If we know the result of a setcc has the top bits zero, use this info. 3114 // We know that we have an integer-based boolean since these operations 3115 // are only available for integer. 3116 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3117 TargetLowering::ZeroOrOneBooleanContent && 3118 BitWidth > 1) 3119 Known.Zero.setBitsFrom(1); 3120 break; 3121 case ISD::SETCC: 3122 case ISD::STRICT_FSETCC: 3123 case ISD::STRICT_FSETCCS: { 3124 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3125 // If we know the result of a setcc has the top bits zero, use this info. 3126 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3127 TargetLowering::ZeroOrOneBooleanContent && 3128 BitWidth > 1) 3129 Known.Zero.setBitsFrom(1); 3130 break; 3131 } 3132 case ISD::SHL: 3133 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3134 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3135 Known = KnownBits::shl(Known, Known2); 3136 3137 // Minimum shift low bits are known zero. 3138 if (const APInt *ShMinAmt = 3139 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3140 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3141 break; 3142 case ISD::SRL: 3143 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3144 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3145 Known = KnownBits::lshr(Known, Known2); 3146 3147 // Minimum shift high bits are known zero. 3148 if (const APInt *ShMinAmt = 3149 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3150 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3151 break; 3152 case ISD::SRA: 3153 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3154 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3155 Known = KnownBits::ashr(Known, Known2); 3156 // TODO: Add minimum shift high known sign bits. 3157 break; 3158 case ISD::FSHL: 3159 case ISD::FSHR: 3160 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3161 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3162 3163 // For fshl, 0-shift returns the 1st arg. 3164 // For fshr, 0-shift returns the 2nd arg. 3165 if (Amt == 0) { 3166 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3167 DemandedElts, Depth + 1); 3168 break; 3169 } 3170 3171 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3172 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3173 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3174 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3175 if (Opcode == ISD::FSHL) { 3176 Known.One <<= Amt; 3177 Known.Zero <<= Amt; 3178 Known2.One.lshrInPlace(BitWidth - Amt); 3179 Known2.Zero.lshrInPlace(BitWidth - Amt); 3180 } else { 3181 Known.One <<= BitWidth - Amt; 3182 Known.Zero <<= BitWidth - Amt; 3183 Known2.One.lshrInPlace(Amt); 3184 Known2.Zero.lshrInPlace(Amt); 3185 } 3186 Known.One |= Known2.One; 3187 Known.Zero |= Known2.Zero; 3188 } 3189 break; 3190 case ISD::SIGN_EXTEND_INREG: { 3191 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3192 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3193 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3194 break; 3195 } 3196 case ISD::CTTZ: 3197 case ISD::CTTZ_ZERO_UNDEF: { 3198 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3199 // If we have a known 1, its position is our upper bound. 3200 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3201 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3202 Known.Zero.setBitsFrom(LowBits); 3203 break; 3204 } 3205 case ISD::CTLZ: 3206 case ISD::CTLZ_ZERO_UNDEF: { 3207 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3208 // If we have a known 1, its position is our upper bound. 3209 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3210 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3211 Known.Zero.setBitsFrom(LowBits); 3212 break; 3213 } 3214 case ISD::CTPOP: { 3215 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3216 // If we know some of the bits are zero, they can't be one. 3217 unsigned PossibleOnes = Known2.countMaxPopulation(); 3218 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3219 break; 3220 } 3221 case ISD::PARITY: { 3222 // Parity returns 0 everywhere but the LSB. 3223 Known.Zero.setBitsFrom(1); 3224 break; 3225 } 3226 case ISD::LOAD: { 3227 LoadSDNode *LD = cast<LoadSDNode>(Op); 3228 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3229 if (ISD::isNON_EXTLoad(LD) && Cst) { 3230 // Determine any common known bits from the loaded constant pool value. 3231 Type *CstTy = Cst->getType(); 3232 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3233 // If its a vector splat, then we can (quickly) reuse the scalar path. 3234 // NOTE: We assume all elements match and none are UNDEF. 3235 if (CstTy->isVectorTy()) { 3236 if (const Constant *Splat = Cst->getSplatValue()) { 3237 Cst = Splat; 3238 CstTy = Cst->getType(); 3239 } 3240 } 3241 // TODO - do we need to handle different bitwidths? 3242 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3243 // Iterate across all vector elements finding common known bits. 3244 Known.One.setAllBits(); 3245 Known.Zero.setAllBits(); 3246 for (unsigned i = 0; i != NumElts; ++i) { 3247 if (!DemandedElts[i]) 3248 continue; 3249 if (Constant *Elt = Cst->getAggregateElement(i)) { 3250 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3251 const APInt &Value = CInt->getValue(); 3252 Known.One &= Value; 3253 Known.Zero &= ~Value; 3254 continue; 3255 } 3256 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3257 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3258 Known.One &= Value; 3259 Known.Zero &= ~Value; 3260 continue; 3261 } 3262 } 3263 Known.One.clearAllBits(); 3264 Known.Zero.clearAllBits(); 3265 break; 3266 } 3267 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3268 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3269 Known = KnownBits::makeConstant(CInt->getValue()); 3270 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3271 Known = 3272 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3273 } 3274 } 3275 } 3276 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3277 // If this is a ZEXTLoad and we are looking at the loaded value. 3278 EVT VT = LD->getMemoryVT(); 3279 unsigned MemBits = VT.getScalarSizeInBits(); 3280 Known.Zero.setBitsFrom(MemBits); 3281 } else if (const MDNode *Ranges = LD->getRanges()) { 3282 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3283 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3284 } 3285 break; 3286 } 3287 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3288 EVT InVT = Op.getOperand(0).getValueType(); 3289 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3290 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3291 Known = Known.zext(BitWidth); 3292 break; 3293 } 3294 case ISD::ZERO_EXTEND: { 3295 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3296 Known = Known.zext(BitWidth); 3297 break; 3298 } 3299 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3300 EVT InVT = Op.getOperand(0).getValueType(); 3301 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3302 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3303 // If the sign bit is known to be zero or one, then sext will extend 3304 // it to the top bits, else it will just zext. 3305 Known = Known.sext(BitWidth); 3306 break; 3307 } 3308 case ISD::SIGN_EXTEND: { 3309 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3310 // If the sign bit is known to be zero or one, then sext will extend 3311 // it to the top bits, else it will just zext. 3312 Known = Known.sext(BitWidth); 3313 break; 3314 } 3315 case ISD::ANY_EXTEND_VECTOR_INREG: { 3316 EVT InVT = Op.getOperand(0).getValueType(); 3317 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3318 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3319 Known = Known.anyext(BitWidth); 3320 break; 3321 } 3322 case ISD::ANY_EXTEND: { 3323 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3324 Known = Known.anyext(BitWidth); 3325 break; 3326 } 3327 case ISD::TRUNCATE: { 3328 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3329 Known = Known.trunc(BitWidth); 3330 break; 3331 } 3332 case ISD::AssertZext: { 3333 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3334 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3335 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3336 Known.Zero |= (~InMask); 3337 Known.One &= (~Known.Zero); 3338 break; 3339 } 3340 case ISD::AssertAlign: { 3341 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3342 assert(LogOfAlign != 0); 3343 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3344 // well as clearing one bits. 3345 Known.Zero.setLowBits(LogOfAlign); 3346 Known.One.clearLowBits(LogOfAlign); 3347 break; 3348 } 3349 case ISD::FGETSIGN: 3350 // All bits are zero except the low bit. 3351 Known.Zero.setBitsFrom(1); 3352 break; 3353 case ISD::USUBO: 3354 case ISD::SSUBO: 3355 if (Op.getResNo() == 1) { 3356 // If we know the result of a setcc has the top bits zero, use this info. 3357 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3358 TargetLowering::ZeroOrOneBooleanContent && 3359 BitWidth > 1) 3360 Known.Zero.setBitsFrom(1); 3361 break; 3362 } 3363 LLVM_FALLTHROUGH; 3364 case ISD::SUB: 3365 case ISD::SUBC: { 3366 assert(Op.getResNo() == 0 && 3367 "We only compute knownbits for the difference here."); 3368 3369 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3370 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3371 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3372 Known, Known2); 3373 break; 3374 } 3375 case ISD::UADDO: 3376 case ISD::SADDO: 3377 case ISD::ADDCARRY: 3378 if (Op.getResNo() == 1) { 3379 // If we know the result of a setcc has the top bits zero, use this info. 3380 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3381 TargetLowering::ZeroOrOneBooleanContent && 3382 BitWidth > 1) 3383 Known.Zero.setBitsFrom(1); 3384 break; 3385 } 3386 LLVM_FALLTHROUGH; 3387 case ISD::ADD: 3388 case ISD::ADDC: 3389 case ISD::ADDE: { 3390 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3391 3392 // With ADDE and ADDCARRY, a carry bit may be added in. 3393 KnownBits Carry(1); 3394 if (Opcode == ISD::ADDE) 3395 // Can't track carry from glue, set carry to unknown. 3396 Carry.resetAll(); 3397 else if (Opcode == ISD::ADDCARRY) 3398 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3399 // the trouble (how often will we find a known carry bit). And I haven't 3400 // tested this very much yet, but something like this might work: 3401 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3402 // Carry = Carry.zextOrTrunc(1, false); 3403 Carry.resetAll(); 3404 else 3405 Carry.setAllZero(); 3406 3407 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3408 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3409 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3410 break; 3411 } 3412 case ISD::SREM: { 3413 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3414 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3415 Known = KnownBits::srem(Known, Known2); 3416 break; 3417 } 3418 case ISD::UREM: { 3419 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3420 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3421 Known = KnownBits::urem(Known, Known2); 3422 break; 3423 } 3424 case ISD::EXTRACT_ELEMENT: { 3425 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3426 const unsigned Index = Op.getConstantOperandVal(1); 3427 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3428 3429 // Remove low part of known bits mask 3430 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3431 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3432 3433 // Remove high part of known bit mask 3434 Known = Known.trunc(EltBitWidth); 3435 break; 3436 } 3437 case ISD::EXTRACT_VECTOR_ELT: { 3438 SDValue InVec = Op.getOperand(0); 3439 SDValue EltNo = Op.getOperand(1); 3440 EVT VecVT = InVec.getValueType(); 3441 // computeKnownBits not yet implemented for scalable vectors. 3442 if (VecVT.isScalableVector()) 3443 break; 3444 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3445 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3446 3447 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3448 // anything about the extended bits. 3449 if (BitWidth > EltBitWidth) 3450 Known = Known.trunc(EltBitWidth); 3451 3452 // If we know the element index, just demand that vector element, else for 3453 // an unknown element index, ignore DemandedElts and demand them all. 3454 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3455 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3456 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3457 DemandedSrcElts = 3458 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3459 3460 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3461 if (BitWidth > EltBitWidth) 3462 Known = Known.anyext(BitWidth); 3463 break; 3464 } 3465 case ISD::INSERT_VECTOR_ELT: { 3466 // If we know the element index, split the demand between the 3467 // source vector and the inserted element, otherwise assume we need 3468 // the original demanded vector elements and the value. 3469 SDValue InVec = Op.getOperand(0); 3470 SDValue InVal = Op.getOperand(1); 3471 SDValue EltNo = Op.getOperand(2); 3472 bool DemandedVal = true; 3473 APInt DemandedVecElts = DemandedElts; 3474 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3475 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3476 unsigned EltIdx = CEltNo->getZExtValue(); 3477 DemandedVal = !!DemandedElts[EltIdx]; 3478 DemandedVecElts.clearBit(EltIdx); 3479 } 3480 Known.One.setAllBits(); 3481 Known.Zero.setAllBits(); 3482 if (DemandedVal) { 3483 Known2 = computeKnownBits(InVal, Depth + 1); 3484 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3485 } 3486 if (!!DemandedVecElts) { 3487 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3488 Known = KnownBits::commonBits(Known, Known2); 3489 } 3490 break; 3491 } 3492 case ISD::BITREVERSE: { 3493 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3494 Known = Known2.reverseBits(); 3495 break; 3496 } 3497 case ISD::BSWAP: { 3498 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3499 Known = Known2.byteSwap(); 3500 break; 3501 } 3502 case ISD::ABS: { 3503 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3504 Known = Known2.abs(); 3505 break; 3506 } 3507 case ISD::USUBSAT: { 3508 // The result of usubsat will never be larger than the LHS. 3509 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3510 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3511 break; 3512 } 3513 case ISD::UMIN: { 3514 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3515 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3516 Known = KnownBits::umin(Known, Known2); 3517 break; 3518 } 3519 case ISD::UMAX: { 3520 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3521 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3522 Known = KnownBits::umax(Known, Known2); 3523 break; 3524 } 3525 case ISD::SMIN: 3526 case ISD::SMAX: { 3527 // If we have a clamp pattern, we know that the number of sign bits will be 3528 // the minimum of the clamp min/max range. 3529 bool IsMax = (Opcode == ISD::SMAX); 3530 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3531 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3532 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3533 CstHigh = 3534 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3535 if (CstLow && CstHigh) { 3536 if (!IsMax) 3537 std::swap(CstLow, CstHigh); 3538 3539 const APInt &ValueLow = CstLow->getAPIntValue(); 3540 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3541 if (ValueLow.sle(ValueHigh)) { 3542 unsigned LowSignBits = ValueLow.getNumSignBits(); 3543 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3544 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3545 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3546 Known.One.setHighBits(MinSignBits); 3547 break; 3548 } 3549 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3550 Known.Zero.setHighBits(MinSignBits); 3551 break; 3552 } 3553 } 3554 } 3555 3556 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3557 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3558 if (IsMax) 3559 Known = KnownBits::smax(Known, Known2); 3560 else 3561 Known = KnownBits::smin(Known, Known2); 3562 break; 3563 } 3564 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3565 if (Op.getResNo() == 1) { 3566 // The boolean result conforms to getBooleanContents. 3567 // If we know the result of a setcc has the top bits zero, use this info. 3568 // We know that we have an integer-based boolean since these operations 3569 // are only available for integer. 3570 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3571 TargetLowering::ZeroOrOneBooleanContent && 3572 BitWidth > 1) 3573 Known.Zero.setBitsFrom(1); 3574 break; 3575 } 3576 LLVM_FALLTHROUGH; 3577 case ISD::ATOMIC_CMP_SWAP: 3578 case ISD::ATOMIC_SWAP: 3579 case ISD::ATOMIC_LOAD_ADD: 3580 case ISD::ATOMIC_LOAD_SUB: 3581 case ISD::ATOMIC_LOAD_AND: 3582 case ISD::ATOMIC_LOAD_CLR: 3583 case ISD::ATOMIC_LOAD_OR: 3584 case ISD::ATOMIC_LOAD_XOR: 3585 case ISD::ATOMIC_LOAD_NAND: 3586 case ISD::ATOMIC_LOAD_MIN: 3587 case ISD::ATOMIC_LOAD_MAX: 3588 case ISD::ATOMIC_LOAD_UMIN: 3589 case ISD::ATOMIC_LOAD_UMAX: 3590 case ISD::ATOMIC_LOAD: { 3591 unsigned MemBits = 3592 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3593 // If we are looking at the loaded value. 3594 if (Op.getResNo() == 0) { 3595 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3596 Known.Zero.setBitsFrom(MemBits); 3597 } 3598 break; 3599 } 3600 case ISD::FrameIndex: 3601 case ISD::TargetFrameIndex: 3602 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3603 Known, getMachineFunction()); 3604 break; 3605 3606 default: 3607 if (Opcode < ISD::BUILTIN_OP_END) 3608 break; 3609 LLVM_FALLTHROUGH; 3610 case ISD::INTRINSIC_WO_CHAIN: 3611 case ISD::INTRINSIC_W_CHAIN: 3612 case ISD::INTRINSIC_VOID: 3613 // Allow the target to implement this method for its nodes. 3614 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3615 break; 3616 } 3617 3618 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3619 return Known; 3620 } 3621 3622 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3623 SDValue N1) const { 3624 // X + 0 never overflow 3625 if (isNullConstant(N1)) 3626 return OFK_Never; 3627 3628 KnownBits N1Known = computeKnownBits(N1); 3629 if (N1Known.Zero.getBoolValue()) { 3630 KnownBits N0Known = computeKnownBits(N0); 3631 3632 bool overflow; 3633 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3634 if (!overflow) 3635 return OFK_Never; 3636 } 3637 3638 // mulhi + 1 never overflow 3639 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3640 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3641 return OFK_Never; 3642 3643 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3644 KnownBits N0Known = computeKnownBits(N0); 3645 3646 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3647 return OFK_Never; 3648 } 3649 3650 return OFK_Sometime; 3651 } 3652 3653 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3654 EVT OpVT = Val.getValueType(); 3655 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3656 3657 // Is the constant a known power of 2? 3658 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3659 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3660 3661 // A left-shift of a constant one will have exactly one bit set because 3662 // shifting the bit off the end is undefined. 3663 if (Val.getOpcode() == ISD::SHL) { 3664 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3665 if (C && C->getAPIntValue() == 1) 3666 return true; 3667 } 3668 3669 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3670 // one bit set. 3671 if (Val.getOpcode() == ISD::SRL) { 3672 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3673 if (C && C->getAPIntValue().isSignMask()) 3674 return true; 3675 } 3676 3677 // Are all operands of a build vector constant powers of two? 3678 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3679 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3680 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3681 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3682 return false; 3683 })) 3684 return true; 3685 3686 // Is the operand of a splat vector a constant power of two? 3687 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3688 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3689 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3690 return true; 3691 3692 // More could be done here, though the above checks are enough 3693 // to handle some common cases. 3694 3695 // Fall back to computeKnownBits to catch other known cases. 3696 KnownBits Known = computeKnownBits(Val); 3697 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3698 } 3699 3700 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3701 EVT VT = Op.getValueType(); 3702 3703 // TODO: Assume we don't know anything for now. 3704 if (VT.isScalableVector()) 3705 return 1; 3706 3707 APInt DemandedElts = VT.isVector() 3708 ? APInt::getAllOnes(VT.getVectorNumElements()) 3709 : APInt(1, 1); 3710 return ComputeNumSignBits(Op, DemandedElts, Depth); 3711 } 3712 3713 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3714 unsigned Depth) const { 3715 EVT VT = Op.getValueType(); 3716 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3717 unsigned VTBits = VT.getScalarSizeInBits(); 3718 unsigned NumElts = DemandedElts.getBitWidth(); 3719 unsigned Tmp, Tmp2; 3720 unsigned FirstAnswer = 1; 3721 3722 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3723 const APInt &Val = C->getAPIntValue(); 3724 return Val.getNumSignBits(); 3725 } 3726 3727 if (Depth >= MaxRecursionDepth) 3728 return 1; // Limit search depth. 3729 3730 if (!DemandedElts || VT.isScalableVector()) 3731 return 1; // No demanded elts, better to assume we don't know anything. 3732 3733 unsigned Opcode = Op.getOpcode(); 3734 switch (Opcode) { 3735 default: break; 3736 case ISD::AssertSext: 3737 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3738 return VTBits-Tmp+1; 3739 case ISD::AssertZext: 3740 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3741 return VTBits-Tmp; 3742 3743 case ISD::BUILD_VECTOR: 3744 Tmp = VTBits; 3745 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3746 if (!DemandedElts[i]) 3747 continue; 3748 3749 SDValue SrcOp = Op.getOperand(i); 3750 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3751 3752 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3753 if (SrcOp.getValueSizeInBits() != VTBits) { 3754 assert(SrcOp.getValueSizeInBits() > VTBits && 3755 "Expected BUILD_VECTOR implicit truncation"); 3756 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3757 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3758 } 3759 Tmp = std::min(Tmp, Tmp2); 3760 } 3761 return Tmp; 3762 3763 case ISD::VECTOR_SHUFFLE: { 3764 // Collect the minimum number of sign bits that are shared by every vector 3765 // element referenced by the shuffle. 3766 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3767 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3768 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3769 for (unsigned i = 0; i != NumElts; ++i) { 3770 int M = SVN->getMaskElt(i); 3771 if (!DemandedElts[i]) 3772 continue; 3773 // For UNDEF elements, we don't know anything about the common state of 3774 // the shuffle result. 3775 if (M < 0) 3776 return 1; 3777 if ((unsigned)M < NumElts) 3778 DemandedLHS.setBit((unsigned)M % NumElts); 3779 else 3780 DemandedRHS.setBit((unsigned)M % NumElts); 3781 } 3782 Tmp = std::numeric_limits<unsigned>::max(); 3783 if (!!DemandedLHS) 3784 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3785 if (!!DemandedRHS) { 3786 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3787 Tmp = std::min(Tmp, Tmp2); 3788 } 3789 // If we don't know anything, early out and try computeKnownBits fall-back. 3790 if (Tmp == 1) 3791 break; 3792 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3793 return Tmp; 3794 } 3795 3796 case ISD::BITCAST: { 3797 SDValue N0 = Op.getOperand(0); 3798 EVT SrcVT = N0.getValueType(); 3799 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3800 3801 // Ignore bitcasts from unsupported types.. 3802 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3803 break; 3804 3805 // Fast handling of 'identity' bitcasts. 3806 if (VTBits == SrcBits) 3807 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3808 3809 bool IsLE = getDataLayout().isLittleEndian(); 3810 3811 // Bitcast 'large element' scalar/vector to 'small element' vector. 3812 if ((SrcBits % VTBits) == 0) { 3813 assert(VT.isVector() && "Expected bitcast to vector"); 3814 3815 unsigned Scale = SrcBits / VTBits; 3816 APInt SrcDemandedElts = 3817 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3818 3819 // Fast case - sign splat can be simply split across the small elements. 3820 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3821 if (Tmp == SrcBits) 3822 return VTBits; 3823 3824 // Slow case - determine how far the sign extends into each sub-element. 3825 Tmp2 = VTBits; 3826 for (unsigned i = 0; i != NumElts; ++i) 3827 if (DemandedElts[i]) { 3828 unsigned SubOffset = i % Scale; 3829 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3830 SubOffset = SubOffset * VTBits; 3831 if (Tmp <= SubOffset) 3832 return 1; 3833 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3834 } 3835 return Tmp2; 3836 } 3837 break; 3838 } 3839 3840 case ISD::SIGN_EXTEND: 3841 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3842 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3843 case ISD::SIGN_EXTEND_INREG: 3844 // Max of the input and what this extends. 3845 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3846 Tmp = VTBits-Tmp+1; 3847 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3848 return std::max(Tmp, Tmp2); 3849 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3850 SDValue Src = Op.getOperand(0); 3851 EVT SrcVT = Src.getValueType(); 3852 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3853 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3854 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3855 } 3856 case ISD::SRA: 3857 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3858 // SRA X, C -> adds C sign bits. 3859 if (const APInt *ShAmt = 3860 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3861 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3862 return Tmp; 3863 case ISD::SHL: 3864 if (const APInt *ShAmt = 3865 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3866 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3867 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3868 if (ShAmt->ult(Tmp)) 3869 return Tmp - ShAmt->getZExtValue(); 3870 } 3871 break; 3872 case ISD::AND: 3873 case ISD::OR: 3874 case ISD::XOR: // NOT is handled here. 3875 // Logical binary ops preserve the number of sign bits at the worst. 3876 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3877 if (Tmp != 1) { 3878 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3879 FirstAnswer = std::min(Tmp, Tmp2); 3880 // We computed what we know about the sign bits as our first 3881 // answer. Now proceed to the generic code that uses 3882 // computeKnownBits, and pick whichever answer is better. 3883 } 3884 break; 3885 3886 case ISD::SELECT: 3887 case ISD::VSELECT: 3888 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3889 if (Tmp == 1) return 1; // Early out. 3890 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3891 return std::min(Tmp, Tmp2); 3892 case ISD::SELECT_CC: 3893 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3894 if (Tmp == 1) return 1; // Early out. 3895 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3896 return std::min(Tmp, Tmp2); 3897 3898 case ISD::SMIN: 3899 case ISD::SMAX: { 3900 // If we have a clamp pattern, we know that the number of sign bits will be 3901 // the minimum of the clamp min/max range. 3902 bool IsMax = (Opcode == ISD::SMAX); 3903 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3904 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3905 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3906 CstHigh = 3907 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3908 if (CstLow && CstHigh) { 3909 if (!IsMax) 3910 std::swap(CstLow, CstHigh); 3911 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3912 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3913 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3914 return std::min(Tmp, Tmp2); 3915 } 3916 } 3917 3918 // Fallback - just get the minimum number of sign bits of the operands. 3919 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3920 if (Tmp == 1) 3921 return 1; // Early out. 3922 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3923 return std::min(Tmp, Tmp2); 3924 } 3925 case ISD::UMIN: 3926 case ISD::UMAX: 3927 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3928 if (Tmp == 1) 3929 return 1; // Early out. 3930 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3931 return std::min(Tmp, Tmp2); 3932 case ISD::SADDO: 3933 case ISD::UADDO: 3934 case ISD::SSUBO: 3935 case ISD::USUBO: 3936 case ISD::SMULO: 3937 case ISD::UMULO: 3938 if (Op.getResNo() != 1) 3939 break; 3940 // The boolean result conforms to getBooleanContents. Fall through. 3941 // If setcc returns 0/-1, all bits are sign bits. 3942 // We know that we have an integer-based boolean since these operations 3943 // are only available for integer. 3944 if (TLI->getBooleanContents(VT.isVector(), false) == 3945 TargetLowering::ZeroOrNegativeOneBooleanContent) 3946 return VTBits; 3947 break; 3948 case ISD::SETCC: 3949 case ISD::STRICT_FSETCC: 3950 case ISD::STRICT_FSETCCS: { 3951 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3952 // If setcc returns 0/-1, all bits are sign bits. 3953 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3954 TargetLowering::ZeroOrNegativeOneBooleanContent) 3955 return VTBits; 3956 break; 3957 } 3958 case ISD::ROTL: 3959 case ISD::ROTR: 3960 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3961 3962 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3963 if (Tmp == VTBits) 3964 return VTBits; 3965 3966 if (ConstantSDNode *C = 3967 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3968 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3969 3970 // Handle rotate right by N like a rotate left by 32-N. 3971 if (Opcode == ISD::ROTR) 3972 RotAmt = (VTBits - RotAmt) % VTBits; 3973 3974 // If we aren't rotating out all of the known-in sign bits, return the 3975 // number that are left. This handles rotl(sext(x), 1) for example. 3976 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3977 } 3978 break; 3979 case ISD::ADD: 3980 case ISD::ADDC: 3981 // Add can have at most one carry bit. Thus we know that the output 3982 // is, at worst, one more bit than the inputs. 3983 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3984 if (Tmp == 1) return 1; // Early out. 3985 3986 // Special case decrementing a value (ADD X, -1): 3987 if (ConstantSDNode *CRHS = 3988 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3989 if (CRHS->isAllOnes()) { 3990 KnownBits Known = 3991 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3992 3993 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3994 // sign bits set. 3995 if ((Known.Zero | 1).isAllOnes()) 3996 return VTBits; 3997 3998 // If we are subtracting one from a positive number, there is no carry 3999 // out of the result. 4000 if (Known.isNonNegative()) 4001 return Tmp; 4002 } 4003 4004 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4005 if (Tmp2 == 1) return 1; // Early out. 4006 return std::min(Tmp, Tmp2) - 1; 4007 case ISD::SUB: 4008 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4009 if (Tmp2 == 1) return 1; // Early out. 4010 4011 // Handle NEG. 4012 if (ConstantSDNode *CLHS = 4013 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4014 if (CLHS->isZero()) { 4015 KnownBits Known = 4016 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4017 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4018 // sign bits set. 4019 if ((Known.Zero | 1).isAllOnes()) 4020 return VTBits; 4021 4022 // If the input is known to be positive (the sign bit is known clear), 4023 // the output of the NEG has the same number of sign bits as the input. 4024 if (Known.isNonNegative()) 4025 return Tmp2; 4026 4027 // Otherwise, we treat this like a SUB. 4028 } 4029 4030 // Sub can have at most one carry bit. Thus we know that the output 4031 // is, at worst, one more bit than the inputs. 4032 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4033 if (Tmp == 1) return 1; // Early out. 4034 return std::min(Tmp, Tmp2) - 1; 4035 case ISD::MUL: { 4036 // The output of the Mul can be at most twice the valid bits in the inputs. 4037 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4038 if (SignBitsOp0 == 1) 4039 break; 4040 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4041 if (SignBitsOp1 == 1) 4042 break; 4043 unsigned OutValidBits = 4044 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4045 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4046 } 4047 case ISD::SREM: 4048 // The sign bit is the LHS's sign bit, except when the result of the 4049 // remainder is zero. The magnitude of the result should be less than or 4050 // equal to the magnitude of the LHS. Therefore, the result should have 4051 // at least as many sign bits as the left hand side. 4052 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4053 case ISD::TRUNCATE: { 4054 // Check if the sign bits of source go down as far as the truncated value. 4055 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4056 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4057 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4058 return NumSrcSignBits - (NumSrcBits - VTBits); 4059 break; 4060 } 4061 case ISD::EXTRACT_ELEMENT: { 4062 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4063 const int BitWidth = Op.getValueSizeInBits(); 4064 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4065 4066 // Get reverse index (starting from 1), Op1 value indexes elements from 4067 // little end. Sign starts at big end. 4068 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4069 4070 // If the sign portion ends in our element the subtraction gives correct 4071 // result. Otherwise it gives either negative or > bitwidth result 4072 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4073 } 4074 case ISD::INSERT_VECTOR_ELT: { 4075 // If we know the element index, split the demand between the 4076 // source vector and the inserted element, otherwise assume we need 4077 // the original demanded vector elements and the value. 4078 SDValue InVec = Op.getOperand(0); 4079 SDValue InVal = Op.getOperand(1); 4080 SDValue EltNo = Op.getOperand(2); 4081 bool DemandedVal = true; 4082 APInt DemandedVecElts = DemandedElts; 4083 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4084 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4085 unsigned EltIdx = CEltNo->getZExtValue(); 4086 DemandedVal = !!DemandedElts[EltIdx]; 4087 DemandedVecElts.clearBit(EltIdx); 4088 } 4089 Tmp = std::numeric_limits<unsigned>::max(); 4090 if (DemandedVal) { 4091 // TODO - handle implicit truncation of inserted elements. 4092 if (InVal.getScalarValueSizeInBits() != VTBits) 4093 break; 4094 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4095 Tmp = std::min(Tmp, Tmp2); 4096 } 4097 if (!!DemandedVecElts) { 4098 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4099 Tmp = std::min(Tmp, Tmp2); 4100 } 4101 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4102 return Tmp; 4103 } 4104 case ISD::EXTRACT_VECTOR_ELT: { 4105 SDValue InVec = Op.getOperand(0); 4106 SDValue EltNo = Op.getOperand(1); 4107 EVT VecVT = InVec.getValueType(); 4108 // ComputeNumSignBits not yet implemented for scalable vectors. 4109 if (VecVT.isScalableVector()) 4110 break; 4111 const unsigned BitWidth = Op.getValueSizeInBits(); 4112 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4113 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4114 4115 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4116 // anything about sign bits. But if the sizes match we can derive knowledge 4117 // about sign bits from the vector operand. 4118 if (BitWidth != EltBitWidth) 4119 break; 4120 4121 // If we know the element index, just demand that vector element, else for 4122 // an unknown element index, ignore DemandedElts and demand them all. 4123 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4124 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4125 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4126 DemandedSrcElts = 4127 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4128 4129 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4130 } 4131 case ISD::EXTRACT_SUBVECTOR: { 4132 // Offset the demanded elts by the subvector index. 4133 SDValue Src = Op.getOperand(0); 4134 // Bail until we can represent demanded elements for scalable vectors. 4135 if (Src.getValueType().isScalableVector()) 4136 break; 4137 uint64_t Idx = Op.getConstantOperandVal(1); 4138 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4139 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4140 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4141 } 4142 case ISD::CONCAT_VECTORS: { 4143 // Determine the minimum number of sign bits across all demanded 4144 // elts of the input vectors. Early out if the result is already 1. 4145 Tmp = std::numeric_limits<unsigned>::max(); 4146 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4147 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4148 unsigned NumSubVectors = Op.getNumOperands(); 4149 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4150 APInt DemandedSub = 4151 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4152 if (!DemandedSub) 4153 continue; 4154 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4155 Tmp = std::min(Tmp, Tmp2); 4156 } 4157 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4158 return Tmp; 4159 } 4160 case ISD::INSERT_SUBVECTOR: { 4161 // Demand any elements from the subvector and the remainder from the src its 4162 // inserted into. 4163 SDValue Src = Op.getOperand(0); 4164 SDValue Sub = Op.getOperand(1); 4165 uint64_t Idx = Op.getConstantOperandVal(2); 4166 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4167 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4168 APInt DemandedSrcElts = DemandedElts; 4169 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4170 4171 Tmp = std::numeric_limits<unsigned>::max(); 4172 if (!!DemandedSubElts) { 4173 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4174 if (Tmp == 1) 4175 return 1; // early-out 4176 } 4177 if (!!DemandedSrcElts) { 4178 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4179 Tmp = std::min(Tmp, Tmp2); 4180 } 4181 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4182 return Tmp; 4183 } 4184 case ISD::ATOMIC_CMP_SWAP: 4185 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4186 case ISD::ATOMIC_SWAP: 4187 case ISD::ATOMIC_LOAD_ADD: 4188 case ISD::ATOMIC_LOAD_SUB: 4189 case ISD::ATOMIC_LOAD_AND: 4190 case ISD::ATOMIC_LOAD_CLR: 4191 case ISD::ATOMIC_LOAD_OR: 4192 case ISD::ATOMIC_LOAD_XOR: 4193 case ISD::ATOMIC_LOAD_NAND: 4194 case ISD::ATOMIC_LOAD_MIN: 4195 case ISD::ATOMIC_LOAD_MAX: 4196 case ISD::ATOMIC_LOAD_UMIN: 4197 case ISD::ATOMIC_LOAD_UMAX: 4198 case ISD::ATOMIC_LOAD: { 4199 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4200 // If we are looking at the loaded value. 4201 if (Op.getResNo() == 0) { 4202 if (Tmp == VTBits) 4203 return 1; // early-out 4204 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4205 return VTBits - Tmp + 1; 4206 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4207 return VTBits - Tmp; 4208 } 4209 break; 4210 } 4211 } 4212 4213 // If we are looking at the loaded value of the SDNode. 4214 if (Op.getResNo() == 0) { 4215 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4216 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4217 unsigned ExtType = LD->getExtensionType(); 4218 switch (ExtType) { 4219 default: break; 4220 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4221 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4222 return VTBits - Tmp + 1; 4223 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4224 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4225 return VTBits - Tmp; 4226 case ISD::NON_EXTLOAD: 4227 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4228 // We only need to handle vectors - computeKnownBits should handle 4229 // scalar cases. 4230 Type *CstTy = Cst->getType(); 4231 if (CstTy->isVectorTy() && 4232 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4233 Tmp = VTBits; 4234 for (unsigned i = 0; i != NumElts; ++i) { 4235 if (!DemandedElts[i]) 4236 continue; 4237 if (Constant *Elt = Cst->getAggregateElement(i)) { 4238 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4239 const APInt &Value = CInt->getValue(); 4240 Tmp = std::min(Tmp, Value.getNumSignBits()); 4241 continue; 4242 } 4243 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4244 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4245 Tmp = std::min(Tmp, Value.getNumSignBits()); 4246 continue; 4247 } 4248 } 4249 // Unknown type. Conservatively assume no bits match sign bit. 4250 return 1; 4251 } 4252 return Tmp; 4253 } 4254 } 4255 break; 4256 } 4257 } 4258 } 4259 4260 // Allow the target to implement this method for its nodes. 4261 if (Opcode >= ISD::BUILTIN_OP_END || 4262 Opcode == ISD::INTRINSIC_WO_CHAIN || 4263 Opcode == ISD::INTRINSIC_W_CHAIN || 4264 Opcode == ISD::INTRINSIC_VOID) { 4265 unsigned NumBits = 4266 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4267 if (NumBits > 1) 4268 FirstAnswer = std::max(FirstAnswer, NumBits); 4269 } 4270 4271 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4272 // use this information. 4273 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4274 4275 APInt Mask; 4276 if (Known.isNonNegative()) { // sign bit is 0 4277 Mask = Known.Zero; 4278 } else if (Known.isNegative()) { // sign bit is 1; 4279 Mask = Known.One; 4280 } else { 4281 // Nothing known. 4282 return FirstAnswer; 4283 } 4284 4285 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4286 // the number of identical bits in the top of the input value. 4287 Mask <<= Mask.getBitWidth()-VTBits; 4288 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4289 } 4290 4291 unsigned SelectionDAG::ComputeMinSignedBits(SDValue Op, unsigned Depth) const { 4292 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4293 return Op.getScalarValueSizeInBits() - SignBits + 1; 4294 } 4295 4296 unsigned SelectionDAG::ComputeMinSignedBits(SDValue Op, 4297 const APInt &DemandedElts, 4298 unsigned Depth) const { 4299 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4300 return Op.getScalarValueSizeInBits() - SignBits + 1; 4301 } 4302 4303 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4304 unsigned Depth) const { 4305 // Early out for FREEZE. 4306 if (Op.getOpcode() == ISD::FREEZE) 4307 return true; 4308 4309 // TODO: Assume we don't know anything for now. 4310 EVT VT = Op.getValueType(); 4311 if (VT.isScalableVector()) 4312 return false; 4313 4314 APInt DemandedElts = VT.isVector() 4315 ? APInt::getAllOnes(VT.getVectorNumElements()) 4316 : APInt(1, 1); 4317 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4318 } 4319 4320 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4321 const APInt &DemandedElts, 4322 bool PoisonOnly, 4323 unsigned Depth) const { 4324 unsigned Opcode = Op.getOpcode(); 4325 4326 // Early out for FREEZE. 4327 if (Opcode == ISD::FREEZE) 4328 return true; 4329 4330 if (Depth >= MaxRecursionDepth) 4331 return false; // Limit search depth. 4332 4333 if (isIntOrFPConstant(Op)) 4334 return true; 4335 4336 switch (Opcode) { 4337 case ISD::UNDEF: 4338 return PoisonOnly; 4339 4340 case ISD::BUILD_VECTOR: 4341 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4342 // this shouldn't affect the result. 4343 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4344 if (!DemandedElts[i]) 4345 continue; 4346 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4347 Depth + 1)) 4348 return false; 4349 } 4350 return true; 4351 4352 // TODO: Search for noundef attributes from library functions. 4353 4354 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4355 4356 default: 4357 // Allow the target to implement this method for its nodes. 4358 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4359 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4360 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4361 Op, DemandedElts, *this, PoisonOnly, Depth); 4362 break; 4363 } 4364 4365 return false; 4366 } 4367 4368 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4369 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4370 !isa<ConstantSDNode>(Op.getOperand(1))) 4371 return false; 4372 4373 if (Op.getOpcode() == ISD::OR && 4374 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4375 return false; 4376 4377 return true; 4378 } 4379 4380 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4381 // If we're told that NaNs won't happen, assume they won't. 4382 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4383 return true; 4384 4385 if (Depth >= MaxRecursionDepth) 4386 return false; // Limit search depth. 4387 4388 // TODO: Handle vectors. 4389 // If the value is a constant, we can obviously see if it is a NaN or not. 4390 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4391 return !C->getValueAPF().isNaN() || 4392 (SNaN && !C->getValueAPF().isSignaling()); 4393 } 4394 4395 unsigned Opcode = Op.getOpcode(); 4396 switch (Opcode) { 4397 case ISD::FADD: 4398 case ISD::FSUB: 4399 case ISD::FMUL: 4400 case ISD::FDIV: 4401 case ISD::FREM: 4402 case ISD::FSIN: 4403 case ISD::FCOS: { 4404 if (SNaN) 4405 return true; 4406 // TODO: Need isKnownNeverInfinity 4407 return false; 4408 } 4409 case ISD::FCANONICALIZE: 4410 case ISD::FEXP: 4411 case ISD::FEXP2: 4412 case ISD::FTRUNC: 4413 case ISD::FFLOOR: 4414 case ISD::FCEIL: 4415 case ISD::FROUND: 4416 case ISD::FROUNDEVEN: 4417 case ISD::FRINT: 4418 case ISD::FNEARBYINT: { 4419 if (SNaN) 4420 return true; 4421 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4422 } 4423 case ISD::FABS: 4424 case ISD::FNEG: 4425 case ISD::FCOPYSIGN: { 4426 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4427 } 4428 case ISD::SELECT: 4429 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4430 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4431 case ISD::FP_EXTEND: 4432 case ISD::FP_ROUND: { 4433 if (SNaN) 4434 return true; 4435 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4436 } 4437 case ISD::SINT_TO_FP: 4438 case ISD::UINT_TO_FP: 4439 return true; 4440 case ISD::FMA: 4441 case ISD::FMAD: { 4442 if (SNaN) 4443 return true; 4444 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4445 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4446 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4447 } 4448 case ISD::FSQRT: // Need is known positive 4449 case ISD::FLOG: 4450 case ISD::FLOG2: 4451 case ISD::FLOG10: 4452 case ISD::FPOWI: 4453 case ISD::FPOW: { 4454 if (SNaN) 4455 return true; 4456 // TODO: Refine on operand 4457 return false; 4458 } 4459 case ISD::FMINNUM: 4460 case ISD::FMAXNUM: { 4461 // Only one needs to be known not-nan, since it will be returned if the 4462 // other ends up being one. 4463 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4464 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4465 } 4466 case ISD::FMINNUM_IEEE: 4467 case ISD::FMAXNUM_IEEE: { 4468 if (SNaN) 4469 return true; 4470 // This can return a NaN if either operand is an sNaN, or if both operands 4471 // are NaN. 4472 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4473 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4474 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4475 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4476 } 4477 case ISD::FMINIMUM: 4478 case ISD::FMAXIMUM: { 4479 // TODO: Does this quiet or return the origina NaN as-is? 4480 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4481 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4482 } 4483 case ISD::EXTRACT_VECTOR_ELT: { 4484 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4485 } 4486 default: 4487 if (Opcode >= ISD::BUILTIN_OP_END || 4488 Opcode == ISD::INTRINSIC_WO_CHAIN || 4489 Opcode == ISD::INTRINSIC_W_CHAIN || 4490 Opcode == ISD::INTRINSIC_VOID) { 4491 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4492 } 4493 4494 return false; 4495 } 4496 } 4497 4498 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4499 assert(Op.getValueType().isFloatingPoint() && 4500 "Floating point type expected"); 4501 4502 // If the value is a constant, we can obviously see if it is a zero or not. 4503 // TODO: Add BuildVector support. 4504 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4505 return !C->isZero(); 4506 return false; 4507 } 4508 4509 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4510 assert(!Op.getValueType().isFloatingPoint() && 4511 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4512 4513 // If the value is a constant, we can obviously see if it is a zero or not. 4514 if (ISD::matchUnaryPredicate(Op, 4515 [](ConstantSDNode *C) { return !C->isZero(); })) 4516 return true; 4517 4518 // TODO: Recognize more cases here. 4519 switch (Op.getOpcode()) { 4520 default: break; 4521 case ISD::OR: 4522 if (isKnownNeverZero(Op.getOperand(1)) || 4523 isKnownNeverZero(Op.getOperand(0))) 4524 return true; 4525 break; 4526 } 4527 4528 return false; 4529 } 4530 4531 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4532 // Check the obvious case. 4533 if (A == B) return true; 4534 4535 // For for negative and positive zero. 4536 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4537 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4538 if (CA->isZero() && CB->isZero()) return true; 4539 4540 // Otherwise they may not be equal. 4541 return false; 4542 } 4543 4544 // FIXME: unify with llvm::haveNoCommonBitsSet. 4545 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4546 assert(A.getValueType() == B.getValueType() && 4547 "Values must have the same type"); 4548 // Match masked merge pattern (X & ~M) op (Y & M) 4549 if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) { 4550 auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) { 4551 if (isBitwiseNot(NotM, true)) { 4552 SDValue NotOperand = NotM->getOperand(0); 4553 return NotOperand == And->getOperand(0) || 4554 NotOperand == And->getOperand(1); 4555 } 4556 return false; 4557 }; 4558 if (MatchNoCommonBitsPattern(A->getOperand(0), B) || 4559 MatchNoCommonBitsPattern(A->getOperand(1), B) || 4560 MatchNoCommonBitsPattern(B->getOperand(0), A) || 4561 MatchNoCommonBitsPattern(B->getOperand(1), A)) 4562 return true; 4563 } 4564 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4565 computeKnownBits(B)); 4566 } 4567 4568 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4569 SelectionDAG &DAG) { 4570 if (cast<ConstantSDNode>(Step)->isZero()) 4571 return DAG.getConstant(0, DL, VT); 4572 4573 return SDValue(); 4574 } 4575 4576 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4577 ArrayRef<SDValue> Ops, 4578 SelectionDAG &DAG) { 4579 int NumOps = Ops.size(); 4580 assert(NumOps != 0 && "Can't build an empty vector!"); 4581 assert(!VT.isScalableVector() && 4582 "BUILD_VECTOR cannot be used with scalable types"); 4583 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4584 "Incorrect element count in BUILD_VECTOR!"); 4585 4586 // BUILD_VECTOR of UNDEFs is UNDEF. 4587 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4588 return DAG.getUNDEF(VT); 4589 4590 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4591 SDValue IdentitySrc; 4592 bool IsIdentity = true; 4593 for (int i = 0; i != NumOps; ++i) { 4594 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4595 Ops[i].getOperand(0).getValueType() != VT || 4596 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4597 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4598 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4599 IsIdentity = false; 4600 break; 4601 } 4602 IdentitySrc = Ops[i].getOperand(0); 4603 } 4604 if (IsIdentity) 4605 return IdentitySrc; 4606 4607 return SDValue(); 4608 } 4609 4610 /// Try to simplify vector concatenation to an input value, undef, or build 4611 /// vector. 4612 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4613 ArrayRef<SDValue> Ops, 4614 SelectionDAG &DAG) { 4615 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4616 assert(llvm::all_of(Ops, 4617 [Ops](SDValue Op) { 4618 return Ops[0].getValueType() == Op.getValueType(); 4619 }) && 4620 "Concatenation of vectors with inconsistent value types!"); 4621 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4622 VT.getVectorElementCount() && 4623 "Incorrect element count in vector concatenation!"); 4624 4625 if (Ops.size() == 1) 4626 return Ops[0]; 4627 4628 // Concat of UNDEFs is UNDEF. 4629 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4630 return DAG.getUNDEF(VT); 4631 4632 // Scan the operands and look for extract operations from a single source 4633 // that correspond to insertion at the same location via this concatenation: 4634 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4635 SDValue IdentitySrc; 4636 bool IsIdentity = true; 4637 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4638 SDValue Op = Ops[i]; 4639 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4640 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4641 Op.getOperand(0).getValueType() != VT || 4642 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4643 Op.getConstantOperandVal(1) != IdentityIndex) { 4644 IsIdentity = false; 4645 break; 4646 } 4647 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4648 "Unexpected identity source vector for concat of extracts"); 4649 IdentitySrc = Op.getOperand(0); 4650 } 4651 if (IsIdentity) { 4652 assert(IdentitySrc && "Failed to set source vector of extracts"); 4653 return IdentitySrc; 4654 } 4655 4656 // The code below this point is only designed to work for fixed width 4657 // vectors, so we bail out for now. 4658 if (VT.isScalableVector()) 4659 return SDValue(); 4660 4661 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4662 // simplified to one big BUILD_VECTOR. 4663 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4664 EVT SVT = VT.getScalarType(); 4665 SmallVector<SDValue, 16> Elts; 4666 for (SDValue Op : Ops) { 4667 EVT OpVT = Op.getValueType(); 4668 if (Op.isUndef()) 4669 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4670 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4671 Elts.append(Op->op_begin(), Op->op_end()); 4672 else 4673 return SDValue(); 4674 } 4675 4676 // BUILD_VECTOR requires all inputs to be of the same type, find the 4677 // maximum type and extend them all. 4678 for (SDValue Op : Elts) 4679 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4680 4681 if (SVT.bitsGT(VT.getScalarType())) { 4682 for (SDValue &Op : Elts) { 4683 if (Op.isUndef()) 4684 Op = DAG.getUNDEF(SVT); 4685 else 4686 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4687 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4688 : DAG.getSExtOrTrunc(Op, DL, SVT); 4689 } 4690 } 4691 4692 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4693 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4694 return V; 4695 } 4696 4697 /// Gets or creates the specified node. 4698 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4699 FoldingSetNodeID ID; 4700 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4701 void *IP = nullptr; 4702 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4703 return SDValue(E, 0); 4704 4705 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4706 getVTList(VT)); 4707 CSEMap.InsertNode(N, IP); 4708 4709 InsertNode(N); 4710 SDValue V = SDValue(N, 0); 4711 NewSDValueDbgMsg(V, "Creating new node: ", this); 4712 return V; 4713 } 4714 4715 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4716 SDValue Operand) { 4717 SDNodeFlags Flags; 4718 if (Inserter) 4719 Flags = Inserter->getFlags(); 4720 return getNode(Opcode, DL, VT, Operand, Flags); 4721 } 4722 4723 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4724 SDValue Operand, const SDNodeFlags Flags) { 4725 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4726 "Operand is DELETED_NODE!"); 4727 // Constant fold unary operations with an integer constant operand. Even 4728 // opaque constant will be folded, because the folding of unary operations 4729 // doesn't create new constants with different values. Nevertheless, the 4730 // opaque flag is preserved during folding to prevent future folding with 4731 // other constants. 4732 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4733 const APInt &Val = C->getAPIntValue(); 4734 switch (Opcode) { 4735 default: break; 4736 case ISD::SIGN_EXTEND: 4737 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4738 C->isTargetOpcode(), C->isOpaque()); 4739 case ISD::TRUNCATE: 4740 if (C->isOpaque()) 4741 break; 4742 LLVM_FALLTHROUGH; 4743 case ISD::ZERO_EXTEND: 4744 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4745 C->isTargetOpcode(), C->isOpaque()); 4746 case ISD::ANY_EXTEND: 4747 // Some targets like RISCV prefer to sign extend some types. 4748 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4749 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4750 C->isTargetOpcode(), C->isOpaque()); 4751 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4752 C->isTargetOpcode(), C->isOpaque()); 4753 case ISD::UINT_TO_FP: 4754 case ISD::SINT_TO_FP: { 4755 APFloat apf(EVTToAPFloatSemantics(VT), 4756 APInt::getZero(VT.getSizeInBits())); 4757 (void)apf.convertFromAPInt(Val, 4758 Opcode==ISD::SINT_TO_FP, 4759 APFloat::rmNearestTiesToEven); 4760 return getConstantFP(apf, DL, VT); 4761 } 4762 case ISD::BITCAST: 4763 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4764 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4765 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4766 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4767 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4768 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4769 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4770 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4771 break; 4772 case ISD::ABS: 4773 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4774 C->isOpaque()); 4775 case ISD::BITREVERSE: 4776 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4777 C->isOpaque()); 4778 case ISD::BSWAP: 4779 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4780 C->isOpaque()); 4781 case ISD::CTPOP: 4782 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4783 C->isOpaque()); 4784 case ISD::CTLZ: 4785 case ISD::CTLZ_ZERO_UNDEF: 4786 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4787 C->isOpaque()); 4788 case ISD::CTTZ: 4789 case ISD::CTTZ_ZERO_UNDEF: 4790 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4791 C->isOpaque()); 4792 case ISD::FP16_TO_FP: { 4793 bool Ignored; 4794 APFloat FPV(APFloat::IEEEhalf(), 4795 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4796 4797 // This can return overflow, underflow, or inexact; we don't care. 4798 // FIXME need to be more flexible about rounding mode. 4799 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4800 APFloat::rmNearestTiesToEven, &Ignored); 4801 return getConstantFP(FPV, DL, VT); 4802 } 4803 case ISD::STEP_VECTOR: { 4804 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4805 return V; 4806 break; 4807 } 4808 } 4809 } 4810 4811 // Constant fold unary operations with a floating point constant operand. 4812 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4813 APFloat V = C->getValueAPF(); // make copy 4814 switch (Opcode) { 4815 case ISD::FNEG: 4816 V.changeSign(); 4817 return getConstantFP(V, DL, VT); 4818 case ISD::FABS: 4819 V.clearSign(); 4820 return getConstantFP(V, DL, VT); 4821 case ISD::FCEIL: { 4822 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4823 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4824 return getConstantFP(V, DL, VT); 4825 break; 4826 } 4827 case ISD::FTRUNC: { 4828 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4829 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4830 return getConstantFP(V, DL, VT); 4831 break; 4832 } 4833 case ISD::FFLOOR: { 4834 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4835 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4836 return getConstantFP(V, DL, VT); 4837 break; 4838 } 4839 case ISD::FP_EXTEND: { 4840 bool ignored; 4841 // This can return overflow, underflow, or inexact; we don't care. 4842 // FIXME need to be more flexible about rounding mode. 4843 (void)V.convert(EVTToAPFloatSemantics(VT), 4844 APFloat::rmNearestTiesToEven, &ignored); 4845 return getConstantFP(V, DL, VT); 4846 } 4847 case ISD::FP_TO_SINT: 4848 case ISD::FP_TO_UINT: { 4849 bool ignored; 4850 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4851 // FIXME need to be more flexible about rounding mode. 4852 APFloat::opStatus s = 4853 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4854 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4855 break; 4856 return getConstant(IntVal, DL, VT); 4857 } 4858 case ISD::BITCAST: 4859 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4860 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4861 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4862 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4863 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4864 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4865 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4866 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4867 break; 4868 case ISD::FP_TO_FP16: { 4869 bool Ignored; 4870 // This can return overflow, underflow, or inexact; we don't care. 4871 // FIXME need to be more flexible about rounding mode. 4872 (void)V.convert(APFloat::IEEEhalf(), 4873 APFloat::rmNearestTiesToEven, &Ignored); 4874 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4875 } 4876 } 4877 } 4878 4879 // Constant fold unary operations with a vector integer or float operand. 4880 switch (Opcode) { 4881 default: 4882 // FIXME: Entirely reasonable to perform folding of other unary 4883 // operations here as the need arises. 4884 break; 4885 case ISD::FNEG: 4886 case ISD::FABS: 4887 case ISD::FCEIL: 4888 case ISD::FTRUNC: 4889 case ISD::FFLOOR: 4890 case ISD::FP_EXTEND: 4891 case ISD::FP_TO_SINT: 4892 case ISD::FP_TO_UINT: 4893 case ISD::TRUNCATE: 4894 case ISD::ANY_EXTEND: 4895 case ISD::ZERO_EXTEND: 4896 case ISD::SIGN_EXTEND: 4897 case ISD::UINT_TO_FP: 4898 case ISD::SINT_TO_FP: 4899 case ISD::ABS: 4900 case ISD::BITREVERSE: 4901 case ISD::BSWAP: 4902 case ISD::CTLZ: 4903 case ISD::CTLZ_ZERO_UNDEF: 4904 case ISD::CTTZ: 4905 case ISD::CTTZ_ZERO_UNDEF: 4906 case ISD::CTPOP: { 4907 SDValue Ops = {Operand}; 4908 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 4909 return Fold; 4910 } 4911 } 4912 4913 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4914 switch (Opcode) { 4915 case ISD::STEP_VECTOR: 4916 assert(VT.isScalableVector() && 4917 "STEP_VECTOR can only be used with scalable types"); 4918 assert(OpOpcode == ISD::TargetConstant && 4919 VT.getVectorElementType() == Operand.getValueType() && 4920 "Unexpected step operand"); 4921 break; 4922 case ISD::FREEZE: 4923 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4924 break; 4925 case ISD::TokenFactor: 4926 case ISD::MERGE_VALUES: 4927 case ISD::CONCAT_VECTORS: 4928 return Operand; // Factor, merge or concat of one node? No need. 4929 case ISD::BUILD_VECTOR: { 4930 // Attempt to simplify BUILD_VECTOR. 4931 SDValue Ops[] = {Operand}; 4932 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4933 return V; 4934 break; 4935 } 4936 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4937 case ISD::FP_EXTEND: 4938 assert(VT.isFloatingPoint() && 4939 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4940 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4941 assert((!VT.isVector() || 4942 VT.getVectorElementCount() == 4943 Operand.getValueType().getVectorElementCount()) && 4944 "Vector element count mismatch!"); 4945 assert(Operand.getValueType().bitsLT(VT) && 4946 "Invalid fpext node, dst < src!"); 4947 if (Operand.isUndef()) 4948 return getUNDEF(VT); 4949 break; 4950 case ISD::FP_TO_SINT: 4951 case ISD::FP_TO_UINT: 4952 if (Operand.isUndef()) 4953 return getUNDEF(VT); 4954 break; 4955 case ISD::SINT_TO_FP: 4956 case ISD::UINT_TO_FP: 4957 // [us]itofp(undef) = 0, because the result value is bounded. 4958 if (Operand.isUndef()) 4959 return getConstantFP(0.0, DL, VT); 4960 break; 4961 case ISD::SIGN_EXTEND: 4962 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4963 "Invalid SIGN_EXTEND!"); 4964 assert(VT.isVector() == Operand.getValueType().isVector() && 4965 "SIGN_EXTEND result type type should be vector iff the operand " 4966 "type is vector!"); 4967 if (Operand.getValueType() == VT) return Operand; // noop extension 4968 assert((!VT.isVector() || 4969 VT.getVectorElementCount() == 4970 Operand.getValueType().getVectorElementCount()) && 4971 "Vector element count mismatch!"); 4972 assert(Operand.getValueType().bitsLT(VT) && 4973 "Invalid sext node, dst < src!"); 4974 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4975 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4976 if (OpOpcode == ISD::UNDEF) 4977 // sext(undef) = 0, because the top bits will all be the same. 4978 return getConstant(0, DL, VT); 4979 break; 4980 case ISD::ZERO_EXTEND: 4981 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4982 "Invalid ZERO_EXTEND!"); 4983 assert(VT.isVector() == Operand.getValueType().isVector() && 4984 "ZERO_EXTEND result type type should be vector iff the operand " 4985 "type is vector!"); 4986 if (Operand.getValueType() == VT) return Operand; // noop extension 4987 assert((!VT.isVector() || 4988 VT.getVectorElementCount() == 4989 Operand.getValueType().getVectorElementCount()) && 4990 "Vector element count mismatch!"); 4991 assert(Operand.getValueType().bitsLT(VT) && 4992 "Invalid zext node, dst < src!"); 4993 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4994 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4995 if (OpOpcode == ISD::UNDEF) 4996 // zext(undef) = 0, because the top bits will be zero. 4997 return getConstant(0, DL, VT); 4998 break; 4999 case ISD::ANY_EXTEND: 5000 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5001 "Invalid ANY_EXTEND!"); 5002 assert(VT.isVector() == Operand.getValueType().isVector() && 5003 "ANY_EXTEND result type type should be vector iff the operand " 5004 "type is vector!"); 5005 if (Operand.getValueType() == VT) return Operand; // noop extension 5006 assert((!VT.isVector() || 5007 VT.getVectorElementCount() == 5008 Operand.getValueType().getVectorElementCount()) && 5009 "Vector element count mismatch!"); 5010 assert(Operand.getValueType().bitsLT(VT) && 5011 "Invalid anyext node, dst < src!"); 5012 5013 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5014 OpOpcode == ISD::ANY_EXTEND) 5015 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5016 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5017 if (OpOpcode == ISD::UNDEF) 5018 return getUNDEF(VT); 5019 5020 // (ext (trunc x)) -> x 5021 if (OpOpcode == ISD::TRUNCATE) { 5022 SDValue OpOp = Operand.getOperand(0); 5023 if (OpOp.getValueType() == VT) { 5024 transferDbgValues(Operand, OpOp); 5025 return OpOp; 5026 } 5027 } 5028 break; 5029 case ISD::TRUNCATE: 5030 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5031 "Invalid TRUNCATE!"); 5032 assert(VT.isVector() == Operand.getValueType().isVector() && 5033 "TRUNCATE result type type should be vector iff the operand " 5034 "type is vector!"); 5035 if (Operand.getValueType() == VT) return Operand; // noop truncate 5036 assert((!VT.isVector() || 5037 VT.getVectorElementCount() == 5038 Operand.getValueType().getVectorElementCount()) && 5039 "Vector element count mismatch!"); 5040 assert(Operand.getValueType().bitsGT(VT) && 5041 "Invalid truncate node, src < dst!"); 5042 if (OpOpcode == ISD::TRUNCATE) 5043 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5044 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5045 OpOpcode == ISD::ANY_EXTEND) { 5046 // If the source is smaller than the dest, we still need an extend. 5047 if (Operand.getOperand(0).getValueType().getScalarType() 5048 .bitsLT(VT.getScalarType())) 5049 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5050 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5051 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5052 return Operand.getOperand(0); 5053 } 5054 if (OpOpcode == ISD::UNDEF) 5055 return getUNDEF(VT); 5056 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5057 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5058 break; 5059 case ISD::ANY_EXTEND_VECTOR_INREG: 5060 case ISD::ZERO_EXTEND_VECTOR_INREG: 5061 case ISD::SIGN_EXTEND_VECTOR_INREG: 5062 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5063 assert(Operand.getValueType().bitsLE(VT) && 5064 "The input must be the same size or smaller than the result."); 5065 assert(VT.getVectorMinNumElements() < 5066 Operand.getValueType().getVectorMinNumElements() && 5067 "The destination vector type must have fewer lanes than the input."); 5068 break; 5069 case ISD::ABS: 5070 assert(VT.isInteger() && VT == Operand.getValueType() && 5071 "Invalid ABS!"); 5072 if (OpOpcode == ISD::UNDEF) 5073 return getUNDEF(VT); 5074 break; 5075 case ISD::BSWAP: 5076 assert(VT.isInteger() && VT == Operand.getValueType() && 5077 "Invalid BSWAP!"); 5078 assert((VT.getScalarSizeInBits() % 16 == 0) && 5079 "BSWAP types must be a multiple of 16 bits!"); 5080 if (OpOpcode == ISD::UNDEF) 5081 return getUNDEF(VT); 5082 break; 5083 case ISD::BITREVERSE: 5084 assert(VT.isInteger() && VT == Operand.getValueType() && 5085 "Invalid BITREVERSE!"); 5086 if (OpOpcode == ISD::UNDEF) 5087 return getUNDEF(VT); 5088 break; 5089 case ISD::BITCAST: 5090 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5091 "Cannot BITCAST between types of different sizes!"); 5092 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5093 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5094 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5095 if (OpOpcode == ISD::UNDEF) 5096 return getUNDEF(VT); 5097 break; 5098 case ISD::SCALAR_TO_VECTOR: 5099 assert(VT.isVector() && !Operand.getValueType().isVector() && 5100 (VT.getVectorElementType() == Operand.getValueType() || 5101 (VT.getVectorElementType().isInteger() && 5102 Operand.getValueType().isInteger() && 5103 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5104 "Illegal SCALAR_TO_VECTOR node!"); 5105 if (OpOpcode == ISD::UNDEF) 5106 return getUNDEF(VT); 5107 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5108 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5109 isa<ConstantSDNode>(Operand.getOperand(1)) && 5110 Operand.getConstantOperandVal(1) == 0 && 5111 Operand.getOperand(0).getValueType() == VT) 5112 return Operand.getOperand(0); 5113 break; 5114 case ISD::FNEG: 5115 // Negation of an unknown bag of bits is still completely undefined. 5116 if (OpOpcode == ISD::UNDEF) 5117 return getUNDEF(VT); 5118 5119 if (OpOpcode == ISD::FNEG) // --X -> X 5120 return Operand.getOperand(0); 5121 break; 5122 case ISD::FABS: 5123 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5124 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5125 break; 5126 case ISD::VSCALE: 5127 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5128 break; 5129 case ISD::CTPOP: 5130 if (Operand.getValueType().getScalarType() == MVT::i1) 5131 return Operand; 5132 break; 5133 case ISD::CTLZ: 5134 case ISD::CTTZ: 5135 if (Operand.getValueType().getScalarType() == MVT::i1) 5136 return getNOT(DL, Operand, Operand.getValueType()); 5137 break; 5138 case ISD::VECREDUCE_SMIN: 5139 case ISD::VECREDUCE_UMAX: 5140 if (Operand.getValueType().getScalarType() == MVT::i1) 5141 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5142 break; 5143 case ISD::VECREDUCE_SMAX: 5144 case ISD::VECREDUCE_UMIN: 5145 if (Operand.getValueType().getScalarType() == MVT::i1) 5146 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5147 break; 5148 } 5149 5150 SDNode *N; 5151 SDVTList VTs = getVTList(VT); 5152 SDValue Ops[] = {Operand}; 5153 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5154 FoldingSetNodeID ID; 5155 AddNodeIDNode(ID, Opcode, VTs, Ops); 5156 void *IP = nullptr; 5157 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5158 E->intersectFlagsWith(Flags); 5159 return SDValue(E, 0); 5160 } 5161 5162 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5163 N->setFlags(Flags); 5164 createOperands(N, Ops); 5165 CSEMap.InsertNode(N, IP); 5166 } else { 5167 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5168 createOperands(N, Ops); 5169 } 5170 5171 InsertNode(N); 5172 SDValue V = SDValue(N, 0); 5173 NewSDValueDbgMsg(V, "Creating new node: ", this); 5174 return V; 5175 } 5176 5177 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5178 const APInt &C2) { 5179 switch (Opcode) { 5180 case ISD::ADD: return C1 + C2; 5181 case ISD::SUB: return C1 - C2; 5182 case ISD::MUL: return C1 * C2; 5183 case ISD::AND: return C1 & C2; 5184 case ISD::OR: return C1 | C2; 5185 case ISD::XOR: return C1 ^ C2; 5186 case ISD::SHL: return C1 << C2; 5187 case ISD::SRL: return C1.lshr(C2); 5188 case ISD::SRA: return C1.ashr(C2); 5189 case ISD::ROTL: return C1.rotl(C2); 5190 case ISD::ROTR: return C1.rotr(C2); 5191 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5192 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5193 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5194 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5195 case ISD::SADDSAT: return C1.sadd_sat(C2); 5196 case ISD::UADDSAT: return C1.uadd_sat(C2); 5197 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5198 case ISD::USUBSAT: return C1.usub_sat(C2); 5199 case ISD::UDIV: 5200 if (!C2.getBoolValue()) 5201 break; 5202 return C1.udiv(C2); 5203 case ISD::UREM: 5204 if (!C2.getBoolValue()) 5205 break; 5206 return C1.urem(C2); 5207 case ISD::SDIV: 5208 if (!C2.getBoolValue()) 5209 break; 5210 return C1.sdiv(C2); 5211 case ISD::SREM: 5212 if (!C2.getBoolValue()) 5213 break; 5214 return C1.srem(C2); 5215 case ISD::MULHS: { 5216 unsigned FullWidth = C1.getBitWidth() * 2; 5217 APInt C1Ext = C1.sext(FullWidth); 5218 APInt C2Ext = C2.sext(FullWidth); 5219 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5220 } 5221 case ISD::MULHU: { 5222 unsigned FullWidth = C1.getBitWidth() * 2; 5223 APInt C1Ext = C1.zext(FullWidth); 5224 APInt C2Ext = C2.zext(FullWidth); 5225 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5226 } 5227 } 5228 return llvm::None; 5229 } 5230 5231 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5232 const GlobalAddressSDNode *GA, 5233 const SDNode *N2) { 5234 if (GA->getOpcode() != ISD::GlobalAddress) 5235 return SDValue(); 5236 if (!TLI->isOffsetFoldingLegal(GA)) 5237 return SDValue(); 5238 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5239 if (!C2) 5240 return SDValue(); 5241 int64_t Offset = C2->getSExtValue(); 5242 switch (Opcode) { 5243 case ISD::ADD: break; 5244 case ISD::SUB: Offset = -uint64_t(Offset); break; 5245 default: return SDValue(); 5246 } 5247 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5248 GA->getOffset() + uint64_t(Offset)); 5249 } 5250 5251 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5252 switch (Opcode) { 5253 case ISD::SDIV: 5254 case ISD::UDIV: 5255 case ISD::SREM: 5256 case ISD::UREM: { 5257 // If a divisor is zero/undef or any element of a divisor vector is 5258 // zero/undef, the whole op is undef. 5259 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5260 SDValue Divisor = Ops[1]; 5261 if (Divisor.isUndef() || isNullConstant(Divisor)) 5262 return true; 5263 5264 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5265 llvm::any_of(Divisor->op_values(), 5266 [](SDValue V) { return V.isUndef() || 5267 isNullConstant(V); }); 5268 // TODO: Handle signed overflow. 5269 } 5270 // TODO: Handle oversized shifts. 5271 default: 5272 return false; 5273 } 5274 } 5275 5276 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5277 EVT VT, ArrayRef<SDValue> Ops) { 5278 // If the opcode is a target-specific ISD node, there's nothing we can 5279 // do here and the operand rules may not line up with the below, so 5280 // bail early. 5281 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5282 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5283 // foldCONCAT_VECTORS in getNode before this is called. 5284 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5285 return SDValue(); 5286 5287 unsigned NumOps = Ops.size(); 5288 if (NumOps == 0) 5289 return SDValue(); 5290 5291 if (isUndef(Opcode, Ops)) 5292 return getUNDEF(VT); 5293 5294 // Handle the case of two scalars. 5295 if (NumOps == 2) { 5296 // TODO: Move foldConstantFPMath here? 5297 5298 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5299 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5300 if (C1->isOpaque() || C2->isOpaque()) 5301 return SDValue(); 5302 5303 Optional<APInt> FoldAttempt = 5304 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5305 if (!FoldAttempt) 5306 return SDValue(); 5307 5308 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5309 assert((!Folded || !VT.isVector()) && 5310 "Can't fold vectors ops with scalar operands"); 5311 return Folded; 5312 } 5313 } 5314 5315 // fold (add Sym, c) -> Sym+c 5316 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5317 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5318 if (TLI->isCommutativeBinOp(Opcode)) 5319 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5320 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5321 } 5322 5323 // This is for vector folding only from here on. 5324 if (!VT.isVector()) 5325 return SDValue(); 5326 5327 ElementCount NumElts = VT.getVectorElementCount(); 5328 5329 // See if we can fold through bitcasted integer ops. 5330 // TODO: Can we handle undef elements? 5331 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5332 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5333 Ops[0].getOpcode() == ISD::BITCAST && 5334 Ops[1].getOpcode() == ISD::BITCAST) { 5335 SDValue N1 = peekThroughBitcasts(Ops[0]); 5336 SDValue N2 = peekThroughBitcasts(Ops[1]); 5337 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5338 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5339 EVT BVVT = N1.getValueType(); 5340 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5341 bool IsLE = getDataLayout().isLittleEndian(); 5342 unsigned EltBits = VT.getScalarSizeInBits(); 5343 SmallVector<APInt> RawBits1, RawBits2; 5344 BitVector UndefElts1, UndefElts2; 5345 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5346 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5347 UndefElts1.none() && UndefElts2.none()) { 5348 SmallVector<APInt> RawBits; 5349 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5350 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5351 if (!Fold) 5352 break; 5353 RawBits.push_back(Fold.getValue()); 5354 } 5355 if (RawBits.size() == NumElts.getFixedValue()) { 5356 // We have constant folded, but we need to cast this again back to 5357 // the original (possibly legalized) type. 5358 SmallVector<APInt> DstBits; 5359 BitVector DstUndefs; 5360 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5361 DstBits, RawBits, DstUndefs, 5362 BitVector(RawBits.size(), false)); 5363 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5364 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5365 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5366 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5367 if (DstUndefs[I]) 5368 continue; 5369 Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT); 5370 } 5371 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5372 } 5373 } 5374 } 5375 } 5376 5377 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5378 return !Op.getValueType().isVector() || 5379 Op.getValueType().getVectorElementCount() == NumElts; 5380 }; 5381 5382 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5383 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5384 Op.getOpcode() == ISD::BUILD_VECTOR || 5385 Op.getOpcode() == ISD::SPLAT_VECTOR; 5386 }; 5387 5388 // All operands must be vector types with the same number of elements as 5389 // the result type and must be either UNDEF or a build/splat vector 5390 // or UNDEF scalars. 5391 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5392 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5393 return SDValue(); 5394 5395 // If we are comparing vectors, then the result needs to be a i1 boolean 5396 // that is then sign-extended back to the legal result type. 5397 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5398 5399 // Find legal integer scalar type for constant promotion and 5400 // ensure that its scalar size is at least as large as source. 5401 EVT LegalSVT = VT.getScalarType(); 5402 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5403 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5404 if (LegalSVT.bitsLT(VT.getScalarType())) 5405 return SDValue(); 5406 } 5407 5408 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5409 // only have one operand to check. For fixed-length vector types we may have 5410 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5411 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5412 5413 // Constant fold each scalar lane separately. 5414 SmallVector<SDValue, 4> ScalarResults; 5415 for (unsigned I = 0; I != NumVectorElts; I++) { 5416 SmallVector<SDValue, 4> ScalarOps; 5417 for (SDValue Op : Ops) { 5418 EVT InSVT = Op.getValueType().getScalarType(); 5419 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5420 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5421 if (Op.isUndef()) 5422 ScalarOps.push_back(getUNDEF(InSVT)); 5423 else 5424 ScalarOps.push_back(Op); 5425 continue; 5426 } 5427 5428 SDValue ScalarOp = 5429 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5430 EVT ScalarVT = ScalarOp.getValueType(); 5431 5432 // Build vector (integer) scalar operands may need implicit 5433 // truncation - do this before constant folding. 5434 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5435 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5436 5437 ScalarOps.push_back(ScalarOp); 5438 } 5439 5440 // Constant fold the scalar operands. 5441 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5442 5443 // Legalize the (integer) scalar constant if necessary. 5444 if (LegalSVT != SVT) 5445 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5446 5447 // Scalar folding only succeeded if the result is a constant or UNDEF. 5448 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5449 ScalarResult.getOpcode() != ISD::ConstantFP) 5450 return SDValue(); 5451 ScalarResults.push_back(ScalarResult); 5452 } 5453 5454 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5455 : getBuildVector(VT, DL, ScalarResults); 5456 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5457 return V; 5458 } 5459 5460 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5461 EVT VT, SDValue N1, SDValue N2) { 5462 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5463 // should. That will require dealing with a potentially non-default 5464 // rounding mode, checking the "opStatus" return value from the APFloat 5465 // math calculations, and possibly other variations. 5466 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5467 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5468 if (N1CFP && N2CFP) { 5469 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5470 switch (Opcode) { 5471 case ISD::FADD: 5472 C1.add(C2, APFloat::rmNearestTiesToEven); 5473 return getConstantFP(C1, DL, VT); 5474 case ISD::FSUB: 5475 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5476 return getConstantFP(C1, DL, VT); 5477 case ISD::FMUL: 5478 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5479 return getConstantFP(C1, DL, VT); 5480 case ISD::FDIV: 5481 C1.divide(C2, APFloat::rmNearestTiesToEven); 5482 return getConstantFP(C1, DL, VT); 5483 case ISD::FREM: 5484 C1.mod(C2); 5485 return getConstantFP(C1, DL, VT); 5486 case ISD::FCOPYSIGN: 5487 C1.copySign(C2); 5488 return getConstantFP(C1, DL, VT); 5489 default: break; 5490 } 5491 } 5492 if (N1CFP && Opcode == ISD::FP_ROUND) { 5493 APFloat C1 = N1CFP->getValueAPF(); // make copy 5494 bool Unused; 5495 // This can return overflow, underflow, or inexact; we don't care. 5496 // FIXME need to be more flexible about rounding mode. 5497 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5498 &Unused); 5499 return getConstantFP(C1, DL, VT); 5500 } 5501 5502 switch (Opcode) { 5503 case ISD::FSUB: 5504 // -0.0 - undef --> undef (consistent with "fneg undef") 5505 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5506 return getUNDEF(VT); 5507 LLVM_FALLTHROUGH; 5508 5509 case ISD::FADD: 5510 case ISD::FMUL: 5511 case ISD::FDIV: 5512 case ISD::FREM: 5513 // If both operands are undef, the result is undef. If 1 operand is undef, 5514 // the result is NaN. This should match the behavior of the IR optimizer. 5515 if (N1.isUndef() && N2.isUndef()) 5516 return getUNDEF(VT); 5517 if (N1.isUndef() || N2.isUndef()) 5518 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5519 } 5520 return SDValue(); 5521 } 5522 5523 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5524 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5525 5526 // There's no need to assert on a byte-aligned pointer. All pointers are at 5527 // least byte aligned. 5528 if (A == Align(1)) 5529 return Val; 5530 5531 FoldingSetNodeID ID; 5532 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5533 ID.AddInteger(A.value()); 5534 5535 void *IP = nullptr; 5536 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5537 return SDValue(E, 0); 5538 5539 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5540 Val.getValueType(), A); 5541 createOperands(N, {Val}); 5542 5543 CSEMap.InsertNode(N, IP); 5544 InsertNode(N); 5545 5546 SDValue V(N, 0); 5547 NewSDValueDbgMsg(V, "Creating new node: ", this); 5548 return V; 5549 } 5550 5551 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5552 SDValue N1, SDValue N2) { 5553 SDNodeFlags Flags; 5554 if (Inserter) 5555 Flags = Inserter->getFlags(); 5556 return getNode(Opcode, DL, VT, N1, N2, Flags); 5557 } 5558 5559 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5560 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5561 assert(N1.getOpcode() != ISD::DELETED_NODE && 5562 N2.getOpcode() != ISD::DELETED_NODE && 5563 "Operand is DELETED_NODE!"); 5564 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5565 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5566 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5567 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5568 5569 // Canonicalize constant to RHS if commutative. 5570 if (TLI->isCommutativeBinOp(Opcode)) { 5571 if (N1C && !N2C) { 5572 std::swap(N1C, N2C); 5573 std::swap(N1, N2); 5574 } else if (N1CFP && !N2CFP) { 5575 std::swap(N1CFP, N2CFP); 5576 std::swap(N1, N2); 5577 } 5578 } 5579 5580 switch (Opcode) { 5581 default: break; 5582 case ISD::TokenFactor: 5583 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5584 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5585 // Fold trivial token factors. 5586 if (N1.getOpcode() == ISD::EntryToken) return N2; 5587 if (N2.getOpcode() == ISD::EntryToken) return N1; 5588 if (N1 == N2) return N1; 5589 break; 5590 case ISD::BUILD_VECTOR: { 5591 // Attempt to simplify BUILD_VECTOR. 5592 SDValue Ops[] = {N1, N2}; 5593 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5594 return V; 5595 break; 5596 } 5597 case ISD::CONCAT_VECTORS: { 5598 SDValue Ops[] = {N1, N2}; 5599 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5600 return V; 5601 break; 5602 } 5603 case ISD::AND: 5604 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5605 assert(N1.getValueType() == N2.getValueType() && 5606 N1.getValueType() == VT && "Binary operator types must match!"); 5607 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5608 // worth handling here. 5609 if (N2C && N2C->isZero()) 5610 return N2; 5611 if (N2C && N2C->isAllOnes()) // X & -1 -> X 5612 return N1; 5613 break; 5614 case ISD::OR: 5615 case ISD::XOR: 5616 case ISD::ADD: 5617 case ISD::SUB: 5618 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5619 assert(N1.getValueType() == N2.getValueType() && 5620 N1.getValueType() == VT && "Binary operator types must match!"); 5621 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5622 // it's worth handling here. 5623 if (N2C && N2C->isZero()) 5624 return N1; 5625 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5626 VT.getVectorElementType() == MVT::i1) 5627 return getNode(ISD::XOR, DL, VT, N1, N2); 5628 break; 5629 case ISD::MUL: 5630 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5631 assert(N1.getValueType() == N2.getValueType() && 5632 N1.getValueType() == VT && "Binary operator types must match!"); 5633 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5634 return getNode(ISD::AND, DL, VT, N1, N2); 5635 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5636 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5637 const APInt &N2CImm = N2C->getAPIntValue(); 5638 return getVScale(DL, VT, MulImm * N2CImm); 5639 } 5640 break; 5641 case ISD::UDIV: 5642 case ISD::UREM: 5643 case ISD::MULHU: 5644 case ISD::MULHS: 5645 case ISD::SDIV: 5646 case ISD::SREM: 5647 case ISD::SADDSAT: 5648 case ISD::SSUBSAT: 5649 case ISD::UADDSAT: 5650 case ISD::USUBSAT: 5651 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5652 assert(N1.getValueType() == N2.getValueType() && 5653 N1.getValueType() == VT && "Binary operator types must match!"); 5654 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5655 // fold (add_sat x, y) -> (or x, y) for bool types. 5656 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5657 return getNode(ISD::OR, DL, VT, N1, N2); 5658 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5659 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5660 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5661 } 5662 break; 5663 case ISD::SMIN: 5664 case ISD::UMAX: 5665 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5666 assert(N1.getValueType() == N2.getValueType() && 5667 N1.getValueType() == VT && "Binary operator types must match!"); 5668 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5669 return getNode(ISD::OR, DL, VT, N1, N2); 5670 break; 5671 case ISD::SMAX: 5672 case ISD::UMIN: 5673 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5674 assert(N1.getValueType() == N2.getValueType() && 5675 N1.getValueType() == VT && "Binary operator types must match!"); 5676 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5677 return getNode(ISD::AND, DL, VT, N1, N2); 5678 break; 5679 case ISD::FADD: 5680 case ISD::FSUB: 5681 case ISD::FMUL: 5682 case ISD::FDIV: 5683 case ISD::FREM: 5684 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5685 assert(N1.getValueType() == N2.getValueType() && 5686 N1.getValueType() == VT && "Binary operator types must match!"); 5687 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5688 return V; 5689 break; 5690 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5691 assert(N1.getValueType() == VT && 5692 N1.getValueType().isFloatingPoint() && 5693 N2.getValueType().isFloatingPoint() && 5694 "Invalid FCOPYSIGN!"); 5695 break; 5696 case ISD::SHL: 5697 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5698 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5699 const APInt &ShiftImm = N2C->getAPIntValue(); 5700 return getVScale(DL, VT, MulImm << ShiftImm); 5701 } 5702 LLVM_FALLTHROUGH; 5703 case ISD::SRA: 5704 case ISD::SRL: 5705 if (SDValue V = simplifyShift(N1, N2)) 5706 return V; 5707 LLVM_FALLTHROUGH; 5708 case ISD::ROTL: 5709 case ISD::ROTR: 5710 assert(VT == N1.getValueType() && 5711 "Shift operators return type must be the same as their first arg"); 5712 assert(VT.isInteger() && N2.getValueType().isInteger() && 5713 "Shifts only work on integers"); 5714 assert((!VT.isVector() || VT == N2.getValueType()) && 5715 "Vector shift amounts must be in the same as their first arg"); 5716 // Verify that the shift amount VT is big enough to hold valid shift 5717 // amounts. This catches things like trying to shift an i1024 value by an 5718 // i8, which is easy to fall into in generic code that uses 5719 // TLI.getShiftAmount(). 5720 assert(N2.getValueType().getScalarSizeInBits() >= 5721 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5722 "Invalid use of small shift amount with oversized value!"); 5723 5724 // Always fold shifts of i1 values so the code generator doesn't need to 5725 // handle them. Since we know the size of the shift has to be less than the 5726 // size of the value, the shift/rotate count is guaranteed to be zero. 5727 if (VT == MVT::i1) 5728 return N1; 5729 if (N2C && N2C->isZero()) 5730 return N1; 5731 break; 5732 case ISD::FP_ROUND: 5733 assert(VT.isFloatingPoint() && 5734 N1.getValueType().isFloatingPoint() && 5735 VT.bitsLE(N1.getValueType()) && 5736 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5737 "Invalid FP_ROUND!"); 5738 if (N1.getValueType() == VT) return N1; // noop conversion. 5739 break; 5740 case ISD::AssertSext: 5741 case ISD::AssertZext: { 5742 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5743 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5744 assert(VT.isInteger() && EVT.isInteger() && 5745 "Cannot *_EXTEND_INREG FP types"); 5746 assert(!EVT.isVector() && 5747 "AssertSExt/AssertZExt type should be the vector element type " 5748 "rather than the vector type!"); 5749 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5750 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5751 break; 5752 } 5753 case ISD::SIGN_EXTEND_INREG: { 5754 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5755 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5756 assert(VT.isInteger() && EVT.isInteger() && 5757 "Cannot *_EXTEND_INREG FP types"); 5758 assert(EVT.isVector() == VT.isVector() && 5759 "SIGN_EXTEND_INREG type should be vector iff the operand " 5760 "type is vector!"); 5761 assert((!EVT.isVector() || 5762 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5763 "Vector element counts must match in SIGN_EXTEND_INREG"); 5764 assert(EVT.bitsLE(VT) && "Not extending!"); 5765 if (EVT == VT) return N1; // Not actually extending 5766 5767 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5768 unsigned FromBits = EVT.getScalarSizeInBits(); 5769 Val <<= Val.getBitWidth() - FromBits; 5770 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5771 return getConstant(Val, DL, ConstantVT); 5772 }; 5773 5774 if (N1C) { 5775 const APInt &Val = N1C->getAPIntValue(); 5776 return SignExtendInReg(Val, VT); 5777 } 5778 5779 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5780 SmallVector<SDValue, 8> Ops; 5781 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5782 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5783 SDValue Op = N1.getOperand(i); 5784 if (Op.isUndef()) { 5785 Ops.push_back(getUNDEF(OpVT)); 5786 continue; 5787 } 5788 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5789 APInt Val = C->getAPIntValue(); 5790 Ops.push_back(SignExtendInReg(Val, OpVT)); 5791 } 5792 return getBuildVector(VT, DL, Ops); 5793 } 5794 break; 5795 } 5796 case ISD::FP_TO_SINT_SAT: 5797 case ISD::FP_TO_UINT_SAT: { 5798 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5799 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5800 assert(N1.getValueType().isVector() == VT.isVector() && 5801 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5802 "vector!"); 5803 assert((!VT.isVector() || VT.getVectorNumElements() == 5804 N1.getValueType().getVectorNumElements()) && 5805 "Vector element counts must match in FP_TO_*INT_SAT"); 5806 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5807 "Type to saturate to must be a scalar."); 5808 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5809 "Not extending!"); 5810 break; 5811 } 5812 case ISD::EXTRACT_VECTOR_ELT: 5813 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5814 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5815 element type of the vector."); 5816 5817 // Extract from an undefined value or using an undefined index is undefined. 5818 if (N1.isUndef() || N2.isUndef()) 5819 return getUNDEF(VT); 5820 5821 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5822 // vectors. For scalable vectors we will provide appropriate support for 5823 // dealing with arbitrary indices. 5824 if (N2C && N1.getValueType().isFixedLengthVector() && 5825 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5826 return getUNDEF(VT); 5827 5828 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5829 // expanding copies of large vectors from registers. This only works for 5830 // fixed length vectors, since we need to know the exact number of 5831 // elements. 5832 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5833 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5834 unsigned Factor = 5835 N1.getOperand(0).getValueType().getVectorNumElements(); 5836 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5837 N1.getOperand(N2C->getZExtValue() / Factor), 5838 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5839 } 5840 5841 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5842 // lowering is expanding large vector constants. 5843 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5844 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5845 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5846 N1.getValueType().isFixedLengthVector()) && 5847 "BUILD_VECTOR used for scalable vectors"); 5848 unsigned Index = 5849 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5850 SDValue Elt = N1.getOperand(Index); 5851 5852 if (VT != Elt.getValueType()) 5853 // If the vector element type is not legal, the BUILD_VECTOR operands 5854 // are promoted and implicitly truncated, and the result implicitly 5855 // extended. Make that explicit here. 5856 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5857 5858 return Elt; 5859 } 5860 5861 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5862 // operations are lowered to scalars. 5863 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5864 // If the indices are the same, return the inserted element else 5865 // if the indices are known different, extract the element from 5866 // the original vector. 5867 SDValue N1Op2 = N1.getOperand(2); 5868 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5869 5870 if (N1Op2C && N2C) { 5871 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5872 if (VT == N1.getOperand(1).getValueType()) 5873 return N1.getOperand(1); 5874 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5875 } 5876 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5877 } 5878 } 5879 5880 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5881 // when vector types are scalarized and v1iX is legal. 5882 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5883 // Here we are completely ignoring the extract element index (N2), 5884 // which is fine for fixed width vectors, since any index other than 0 5885 // is undefined anyway. However, this cannot be ignored for scalable 5886 // vectors - in theory we could support this, but we don't want to do this 5887 // without a profitability check. 5888 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5889 N1.getValueType().isFixedLengthVector() && 5890 N1.getValueType().getVectorNumElements() == 1) { 5891 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5892 N1.getOperand(1)); 5893 } 5894 break; 5895 case ISD::EXTRACT_ELEMENT: 5896 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5897 assert(!N1.getValueType().isVector() && !VT.isVector() && 5898 (N1.getValueType().isInteger() == VT.isInteger()) && 5899 N1.getValueType() != VT && 5900 "Wrong types for EXTRACT_ELEMENT!"); 5901 5902 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5903 // 64-bit integers into 32-bit parts. Instead of building the extract of 5904 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5905 if (N1.getOpcode() == ISD::BUILD_PAIR) 5906 return N1.getOperand(N2C->getZExtValue()); 5907 5908 // EXTRACT_ELEMENT of a constant int is also very common. 5909 if (N1C) { 5910 unsigned ElementSize = VT.getSizeInBits(); 5911 unsigned Shift = ElementSize * N2C->getZExtValue(); 5912 const APInt &Val = N1C->getAPIntValue(); 5913 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5914 } 5915 break; 5916 case ISD::EXTRACT_SUBVECTOR: { 5917 EVT N1VT = N1.getValueType(); 5918 assert(VT.isVector() && N1VT.isVector() && 5919 "Extract subvector VTs must be vectors!"); 5920 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5921 "Extract subvector VTs must have the same element type!"); 5922 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5923 "Cannot extract a scalable vector from a fixed length vector!"); 5924 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5925 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5926 "Extract subvector must be from larger vector to smaller vector!"); 5927 assert(N2C && "Extract subvector index must be a constant"); 5928 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5929 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5930 N1VT.getVectorMinNumElements()) && 5931 "Extract subvector overflow!"); 5932 assert(N2C->getAPIntValue().getBitWidth() == 5933 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5934 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5935 5936 // Trivial extraction. 5937 if (VT == N1VT) 5938 return N1; 5939 5940 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5941 if (N1.isUndef()) 5942 return getUNDEF(VT); 5943 5944 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5945 // the concat have the same type as the extract. 5946 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5947 VT == N1.getOperand(0).getValueType()) { 5948 unsigned Factor = VT.getVectorMinNumElements(); 5949 return N1.getOperand(N2C->getZExtValue() / Factor); 5950 } 5951 5952 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5953 // during shuffle legalization. 5954 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5955 VT == N1.getOperand(1).getValueType()) 5956 return N1.getOperand(1); 5957 break; 5958 } 5959 } 5960 5961 // Perform trivial constant folding. 5962 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5963 return SV; 5964 5965 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5966 return V; 5967 5968 // Canonicalize an UNDEF to the RHS, even over a constant. 5969 if (N1.isUndef()) { 5970 if (TLI->isCommutativeBinOp(Opcode)) { 5971 std::swap(N1, N2); 5972 } else { 5973 switch (Opcode) { 5974 case ISD::SIGN_EXTEND_INREG: 5975 case ISD::SUB: 5976 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5977 case ISD::UDIV: 5978 case ISD::SDIV: 5979 case ISD::UREM: 5980 case ISD::SREM: 5981 case ISD::SSUBSAT: 5982 case ISD::USUBSAT: 5983 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5984 } 5985 } 5986 } 5987 5988 // Fold a bunch of operators when the RHS is undef. 5989 if (N2.isUndef()) { 5990 switch (Opcode) { 5991 case ISD::XOR: 5992 if (N1.isUndef()) 5993 // Handle undef ^ undef -> 0 special case. This is a common 5994 // idiom (misuse). 5995 return getConstant(0, DL, VT); 5996 LLVM_FALLTHROUGH; 5997 case ISD::ADD: 5998 case ISD::SUB: 5999 case ISD::UDIV: 6000 case ISD::SDIV: 6001 case ISD::UREM: 6002 case ISD::SREM: 6003 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6004 case ISD::MUL: 6005 case ISD::AND: 6006 case ISD::SSUBSAT: 6007 case ISD::USUBSAT: 6008 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6009 case ISD::OR: 6010 case ISD::SADDSAT: 6011 case ISD::UADDSAT: 6012 return getAllOnesConstant(DL, VT); 6013 } 6014 } 6015 6016 // Memoize this node if possible. 6017 SDNode *N; 6018 SDVTList VTs = getVTList(VT); 6019 SDValue Ops[] = {N1, N2}; 6020 if (VT != MVT::Glue) { 6021 FoldingSetNodeID ID; 6022 AddNodeIDNode(ID, Opcode, VTs, Ops); 6023 void *IP = nullptr; 6024 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6025 E->intersectFlagsWith(Flags); 6026 return SDValue(E, 0); 6027 } 6028 6029 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6030 N->setFlags(Flags); 6031 createOperands(N, Ops); 6032 CSEMap.InsertNode(N, IP); 6033 } else { 6034 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6035 createOperands(N, Ops); 6036 } 6037 6038 InsertNode(N); 6039 SDValue V = SDValue(N, 0); 6040 NewSDValueDbgMsg(V, "Creating new node: ", this); 6041 return V; 6042 } 6043 6044 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6045 SDValue N1, SDValue N2, SDValue N3) { 6046 SDNodeFlags Flags; 6047 if (Inserter) 6048 Flags = Inserter->getFlags(); 6049 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6050 } 6051 6052 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6053 SDValue N1, SDValue N2, SDValue N3, 6054 const SDNodeFlags Flags) { 6055 assert(N1.getOpcode() != ISD::DELETED_NODE && 6056 N2.getOpcode() != ISD::DELETED_NODE && 6057 N3.getOpcode() != ISD::DELETED_NODE && 6058 "Operand is DELETED_NODE!"); 6059 // Perform various simplifications. 6060 switch (Opcode) { 6061 case ISD::FMA: { 6062 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6063 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6064 N3.getValueType() == VT && "FMA types must match!"); 6065 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6066 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6067 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6068 if (N1CFP && N2CFP && N3CFP) { 6069 APFloat V1 = N1CFP->getValueAPF(); 6070 const APFloat &V2 = N2CFP->getValueAPF(); 6071 const APFloat &V3 = N3CFP->getValueAPF(); 6072 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6073 return getConstantFP(V1, DL, VT); 6074 } 6075 break; 6076 } 6077 case ISD::BUILD_VECTOR: { 6078 // Attempt to simplify BUILD_VECTOR. 6079 SDValue Ops[] = {N1, N2, N3}; 6080 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6081 return V; 6082 break; 6083 } 6084 case ISD::CONCAT_VECTORS: { 6085 SDValue Ops[] = {N1, N2, N3}; 6086 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6087 return V; 6088 break; 6089 } 6090 case ISD::SETCC: { 6091 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6092 assert(N1.getValueType() == N2.getValueType() && 6093 "SETCC operands must have the same type!"); 6094 assert(VT.isVector() == N1.getValueType().isVector() && 6095 "SETCC type should be vector iff the operand type is vector!"); 6096 assert((!VT.isVector() || VT.getVectorElementCount() == 6097 N1.getValueType().getVectorElementCount()) && 6098 "SETCC vector element counts must match!"); 6099 // Use FoldSetCC to simplify SETCC's. 6100 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6101 return V; 6102 // Vector constant folding. 6103 SDValue Ops[] = {N1, N2, N3}; 6104 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6105 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6106 return V; 6107 } 6108 break; 6109 } 6110 case ISD::SELECT: 6111 case ISD::VSELECT: 6112 if (SDValue V = simplifySelect(N1, N2, N3)) 6113 return V; 6114 break; 6115 case ISD::VECTOR_SHUFFLE: 6116 llvm_unreachable("should use getVectorShuffle constructor!"); 6117 case ISD::VECTOR_SPLICE: { 6118 if (cast<ConstantSDNode>(N3)->isNullValue()) 6119 return N1; 6120 break; 6121 } 6122 case ISD::INSERT_VECTOR_ELT: { 6123 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6124 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6125 // for scalable vectors where we will generate appropriate code to 6126 // deal with out-of-bounds cases correctly. 6127 if (N3C && N1.getValueType().isFixedLengthVector() && 6128 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6129 return getUNDEF(VT); 6130 6131 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6132 if (N3.isUndef()) 6133 return getUNDEF(VT); 6134 6135 // If the inserted element is an UNDEF, just use the input vector. 6136 if (N2.isUndef()) 6137 return N1; 6138 6139 break; 6140 } 6141 case ISD::INSERT_SUBVECTOR: { 6142 // Inserting undef into undef is still undef. 6143 if (N1.isUndef() && N2.isUndef()) 6144 return getUNDEF(VT); 6145 6146 EVT N2VT = N2.getValueType(); 6147 assert(VT == N1.getValueType() && 6148 "Dest and insert subvector source types must match!"); 6149 assert(VT.isVector() && N2VT.isVector() && 6150 "Insert subvector VTs must be vectors!"); 6151 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6152 "Cannot insert a scalable vector into a fixed length vector!"); 6153 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6154 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6155 "Insert subvector must be from smaller vector to larger vector!"); 6156 assert(isa<ConstantSDNode>(N3) && 6157 "Insert subvector index must be constant"); 6158 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6159 (N2VT.getVectorMinNumElements() + 6160 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6161 VT.getVectorMinNumElements()) && 6162 "Insert subvector overflow!"); 6163 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6164 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6165 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6166 6167 // Trivial insertion. 6168 if (VT == N2VT) 6169 return N2; 6170 6171 // If this is an insert of an extracted vector into an undef vector, we 6172 // can just use the input to the extract. 6173 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6174 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6175 return N2.getOperand(0); 6176 break; 6177 } 6178 case ISD::BITCAST: 6179 // Fold bit_convert nodes from a type to themselves. 6180 if (N1.getValueType() == VT) 6181 return N1; 6182 break; 6183 } 6184 6185 // Memoize node if it doesn't produce a flag. 6186 SDNode *N; 6187 SDVTList VTs = getVTList(VT); 6188 SDValue Ops[] = {N1, N2, N3}; 6189 if (VT != MVT::Glue) { 6190 FoldingSetNodeID ID; 6191 AddNodeIDNode(ID, Opcode, VTs, Ops); 6192 void *IP = nullptr; 6193 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6194 E->intersectFlagsWith(Flags); 6195 return SDValue(E, 0); 6196 } 6197 6198 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6199 N->setFlags(Flags); 6200 createOperands(N, Ops); 6201 CSEMap.InsertNode(N, IP); 6202 } else { 6203 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6204 createOperands(N, Ops); 6205 } 6206 6207 InsertNode(N); 6208 SDValue V = SDValue(N, 0); 6209 NewSDValueDbgMsg(V, "Creating new node: ", this); 6210 return V; 6211 } 6212 6213 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6214 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6215 SDValue Ops[] = { N1, N2, N3, N4 }; 6216 return getNode(Opcode, DL, VT, Ops); 6217 } 6218 6219 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6220 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6221 SDValue N5) { 6222 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6223 return getNode(Opcode, DL, VT, Ops); 6224 } 6225 6226 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6227 /// the incoming stack arguments to be loaded from the stack. 6228 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6229 SmallVector<SDValue, 8> ArgChains; 6230 6231 // Include the original chain at the beginning of the list. When this is 6232 // used by target LowerCall hooks, this helps legalize find the 6233 // CALLSEQ_BEGIN node. 6234 ArgChains.push_back(Chain); 6235 6236 // Add a chain value for each stack argument. 6237 for (SDNode *U : getEntryNode().getNode()->uses()) 6238 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6239 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6240 if (FI->getIndex() < 0) 6241 ArgChains.push_back(SDValue(L, 1)); 6242 6243 // Build a tokenfactor for all the chains. 6244 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6245 } 6246 6247 /// getMemsetValue - Vectorized representation of the memset value 6248 /// operand. 6249 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6250 const SDLoc &dl) { 6251 assert(!Value.isUndef()); 6252 6253 unsigned NumBits = VT.getScalarSizeInBits(); 6254 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6255 assert(C->getAPIntValue().getBitWidth() == 8); 6256 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6257 if (VT.isInteger()) { 6258 bool IsOpaque = VT.getSizeInBits() > 64 || 6259 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6260 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6261 } 6262 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6263 VT); 6264 } 6265 6266 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6267 EVT IntVT = VT.getScalarType(); 6268 if (!IntVT.isInteger()) 6269 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6270 6271 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6272 if (NumBits > 8) { 6273 // Use a multiplication with 0x010101... to extend the input to the 6274 // required length. 6275 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6276 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6277 DAG.getConstant(Magic, dl, IntVT)); 6278 } 6279 6280 if (VT != Value.getValueType() && !VT.isInteger()) 6281 Value = DAG.getBitcast(VT.getScalarType(), Value); 6282 if (VT != Value.getValueType()) 6283 Value = DAG.getSplatBuildVector(VT, dl, Value); 6284 6285 return Value; 6286 } 6287 6288 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6289 /// used when a memcpy is turned into a memset when the source is a constant 6290 /// string ptr. 6291 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6292 const TargetLowering &TLI, 6293 const ConstantDataArraySlice &Slice) { 6294 // Handle vector with all elements zero. 6295 if (Slice.Array == nullptr) { 6296 if (VT.isInteger()) 6297 return DAG.getConstant(0, dl, VT); 6298 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6299 return DAG.getConstantFP(0.0, dl, VT); 6300 if (VT.isVector()) { 6301 unsigned NumElts = VT.getVectorNumElements(); 6302 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6303 return DAG.getNode(ISD::BITCAST, dl, VT, 6304 DAG.getConstant(0, dl, 6305 EVT::getVectorVT(*DAG.getContext(), 6306 EltVT, NumElts))); 6307 } 6308 llvm_unreachable("Expected type!"); 6309 } 6310 6311 assert(!VT.isVector() && "Can't handle vector type here!"); 6312 unsigned NumVTBits = VT.getSizeInBits(); 6313 unsigned NumVTBytes = NumVTBits / 8; 6314 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6315 6316 APInt Val(NumVTBits, 0); 6317 if (DAG.getDataLayout().isLittleEndian()) { 6318 for (unsigned i = 0; i != NumBytes; ++i) 6319 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6320 } else { 6321 for (unsigned i = 0; i != NumBytes; ++i) 6322 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6323 } 6324 6325 // If the "cost" of materializing the integer immediate is less than the cost 6326 // of a load, then it is cost effective to turn the load into the immediate. 6327 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6328 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6329 return DAG.getConstant(Val, dl, VT); 6330 return SDValue(nullptr, 0); 6331 } 6332 6333 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6334 const SDLoc &DL, 6335 const SDNodeFlags Flags) { 6336 EVT VT = Base.getValueType(); 6337 SDValue Index; 6338 6339 if (Offset.isScalable()) 6340 Index = getVScale(DL, Base.getValueType(), 6341 APInt(Base.getValueSizeInBits().getFixedSize(), 6342 Offset.getKnownMinSize())); 6343 else 6344 Index = getConstant(Offset.getFixedSize(), DL, VT); 6345 6346 return getMemBasePlusOffset(Base, Index, DL, Flags); 6347 } 6348 6349 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6350 const SDLoc &DL, 6351 const SDNodeFlags Flags) { 6352 assert(Offset.getValueType().isInteger()); 6353 EVT BasePtrVT = Ptr.getValueType(); 6354 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6355 } 6356 6357 /// Returns true if memcpy source is constant data. 6358 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6359 uint64_t SrcDelta = 0; 6360 GlobalAddressSDNode *G = nullptr; 6361 if (Src.getOpcode() == ISD::GlobalAddress) 6362 G = cast<GlobalAddressSDNode>(Src); 6363 else if (Src.getOpcode() == ISD::ADD && 6364 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6365 Src.getOperand(1).getOpcode() == ISD::Constant) { 6366 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6367 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6368 } 6369 if (!G) 6370 return false; 6371 6372 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6373 SrcDelta + G->getOffset()); 6374 } 6375 6376 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6377 SelectionDAG &DAG) { 6378 // On Darwin, -Os means optimize for size without hurting performance, so 6379 // only really optimize for size when -Oz (MinSize) is used. 6380 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6381 return MF.getFunction().hasMinSize(); 6382 return DAG.shouldOptForSize(); 6383 } 6384 6385 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6386 SmallVector<SDValue, 32> &OutChains, unsigned From, 6387 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6388 SmallVector<SDValue, 16> &OutStoreChains) { 6389 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6390 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6391 SmallVector<SDValue, 16> GluedLoadChains; 6392 for (unsigned i = From; i < To; ++i) { 6393 OutChains.push_back(OutLoadChains[i]); 6394 GluedLoadChains.push_back(OutLoadChains[i]); 6395 } 6396 6397 // Chain for all loads. 6398 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6399 GluedLoadChains); 6400 6401 for (unsigned i = From; i < To; ++i) { 6402 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6403 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6404 ST->getBasePtr(), ST->getMemoryVT(), 6405 ST->getMemOperand()); 6406 OutChains.push_back(NewStore); 6407 } 6408 } 6409 6410 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6411 SDValue Chain, SDValue Dst, SDValue Src, 6412 uint64_t Size, Align Alignment, 6413 bool isVol, bool AlwaysInline, 6414 MachinePointerInfo DstPtrInfo, 6415 MachinePointerInfo SrcPtrInfo, 6416 const AAMDNodes &AAInfo) { 6417 // Turn a memcpy of undef to nop. 6418 // FIXME: We need to honor volatile even is Src is undef. 6419 if (Src.isUndef()) 6420 return Chain; 6421 6422 // Expand memcpy to a series of load and store ops if the size operand falls 6423 // below a certain threshold. 6424 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6425 // rather than maybe a humongous number of loads and stores. 6426 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6427 const DataLayout &DL = DAG.getDataLayout(); 6428 LLVMContext &C = *DAG.getContext(); 6429 std::vector<EVT> MemOps; 6430 bool DstAlignCanChange = false; 6431 MachineFunction &MF = DAG.getMachineFunction(); 6432 MachineFrameInfo &MFI = MF.getFrameInfo(); 6433 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6434 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6435 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6436 DstAlignCanChange = true; 6437 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6438 if (!SrcAlign || Alignment > *SrcAlign) 6439 SrcAlign = Alignment; 6440 assert(SrcAlign && "SrcAlign must be set"); 6441 ConstantDataArraySlice Slice; 6442 // If marked as volatile, perform a copy even when marked as constant. 6443 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6444 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6445 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6446 const MemOp Op = isZeroConstant 6447 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6448 /*IsZeroMemset*/ true, isVol) 6449 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6450 *SrcAlign, isVol, CopyFromConstant); 6451 if (!TLI.findOptimalMemOpLowering( 6452 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6453 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6454 return SDValue(); 6455 6456 if (DstAlignCanChange) { 6457 Type *Ty = MemOps[0].getTypeForEVT(C); 6458 Align NewAlign = DL.getABITypeAlign(Ty); 6459 6460 // Don't promote to an alignment that would require dynamic stack 6461 // realignment. 6462 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6463 if (!TRI->hasStackRealignment(MF)) 6464 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6465 NewAlign = NewAlign / 2; 6466 6467 if (NewAlign > Alignment) { 6468 // Give the stack frame object a larger alignment if needed. 6469 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6470 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6471 Alignment = NewAlign; 6472 } 6473 } 6474 6475 // Prepare AAInfo for loads/stores after lowering this memcpy. 6476 AAMDNodes NewAAInfo = AAInfo; 6477 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6478 6479 MachineMemOperand::Flags MMOFlags = 6480 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6481 SmallVector<SDValue, 16> OutLoadChains; 6482 SmallVector<SDValue, 16> OutStoreChains; 6483 SmallVector<SDValue, 32> OutChains; 6484 unsigned NumMemOps = MemOps.size(); 6485 uint64_t SrcOff = 0, DstOff = 0; 6486 for (unsigned i = 0; i != NumMemOps; ++i) { 6487 EVT VT = MemOps[i]; 6488 unsigned VTSize = VT.getSizeInBits() / 8; 6489 SDValue Value, Store; 6490 6491 if (VTSize > Size) { 6492 // Issuing an unaligned load / store pair that overlaps with the previous 6493 // pair. Adjust the offset accordingly. 6494 assert(i == NumMemOps-1 && i != 0); 6495 SrcOff -= VTSize - Size; 6496 DstOff -= VTSize - Size; 6497 } 6498 6499 if (CopyFromConstant && 6500 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6501 // It's unlikely a store of a vector immediate can be done in a single 6502 // instruction. It would require a load from a constantpool first. 6503 // We only handle zero vectors here. 6504 // FIXME: Handle other cases where store of vector immediate is done in 6505 // a single instruction. 6506 ConstantDataArraySlice SubSlice; 6507 if (SrcOff < Slice.Length) { 6508 SubSlice = Slice; 6509 SubSlice.move(SrcOff); 6510 } else { 6511 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6512 SubSlice.Array = nullptr; 6513 SubSlice.Offset = 0; 6514 SubSlice.Length = VTSize; 6515 } 6516 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6517 if (Value.getNode()) { 6518 Store = DAG.getStore( 6519 Chain, dl, Value, 6520 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6521 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6522 OutChains.push_back(Store); 6523 } 6524 } 6525 6526 if (!Store.getNode()) { 6527 // The type might not be legal for the target. This should only happen 6528 // if the type is smaller than a legal type, as on PPC, so the right 6529 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6530 // to Load/Store if NVT==VT. 6531 // FIXME does the case above also need this? 6532 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6533 assert(NVT.bitsGE(VT)); 6534 6535 bool isDereferenceable = 6536 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6537 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6538 if (isDereferenceable) 6539 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6540 6541 Value = DAG.getExtLoad( 6542 ISD::EXTLOAD, dl, NVT, Chain, 6543 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6544 SrcPtrInfo.getWithOffset(SrcOff), VT, 6545 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6546 OutLoadChains.push_back(Value.getValue(1)); 6547 6548 Store = DAG.getTruncStore( 6549 Chain, dl, Value, 6550 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6551 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6552 OutStoreChains.push_back(Store); 6553 } 6554 SrcOff += VTSize; 6555 DstOff += VTSize; 6556 Size -= VTSize; 6557 } 6558 6559 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6560 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6561 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6562 6563 if (NumLdStInMemcpy) { 6564 // It may be that memcpy might be converted to memset if it's memcpy 6565 // of constants. In such a case, we won't have loads and stores, but 6566 // just stores. In the absence of loads, there is nothing to gang up. 6567 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6568 // If target does not care, just leave as it. 6569 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6570 OutChains.push_back(OutLoadChains[i]); 6571 OutChains.push_back(OutStoreChains[i]); 6572 } 6573 } else { 6574 // Ld/St less than/equal limit set by target. 6575 if (NumLdStInMemcpy <= GluedLdStLimit) { 6576 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6577 NumLdStInMemcpy, OutLoadChains, 6578 OutStoreChains); 6579 } else { 6580 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6581 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6582 unsigned GlueIter = 0; 6583 6584 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6585 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6586 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6587 6588 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6589 OutLoadChains, OutStoreChains); 6590 GlueIter += GluedLdStLimit; 6591 } 6592 6593 // Residual ld/st. 6594 if (RemainingLdStInMemcpy) { 6595 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6596 RemainingLdStInMemcpy, OutLoadChains, 6597 OutStoreChains); 6598 } 6599 } 6600 } 6601 } 6602 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6603 } 6604 6605 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6606 SDValue Chain, SDValue Dst, SDValue Src, 6607 uint64_t Size, Align Alignment, 6608 bool isVol, bool AlwaysInline, 6609 MachinePointerInfo DstPtrInfo, 6610 MachinePointerInfo SrcPtrInfo, 6611 const AAMDNodes &AAInfo) { 6612 // Turn a memmove of undef to nop. 6613 // FIXME: We need to honor volatile even is Src is undef. 6614 if (Src.isUndef()) 6615 return Chain; 6616 6617 // Expand memmove to a series of load and store ops if the size operand falls 6618 // below a certain threshold. 6619 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6620 const DataLayout &DL = DAG.getDataLayout(); 6621 LLVMContext &C = *DAG.getContext(); 6622 std::vector<EVT> MemOps; 6623 bool DstAlignCanChange = false; 6624 MachineFunction &MF = DAG.getMachineFunction(); 6625 MachineFrameInfo &MFI = MF.getFrameInfo(); 6626 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6627 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6628 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6629 DstAlignCanChange = true; 6630 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6631 if (!SrcAlign || Alignment > *SrcAlign) 6632 SrcAlign = Alignment; 6633 assert(SrcAlign && "SrcAlign must be set"); 6634 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6635 if (!TLI.findOptimalMemOpLowering( 6636 MemOps, Limit, 6637 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6638 /*IsVolatile*/ true), 6639 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6640 MF.getFunction().getAttributes())) 6641 return SDValue(); 6642 6643 if (DstAlignCanChange) { 6644 Type *Ty = MemOps[0].getTypeForEVT(C); 6645 Align NewAlign = DL.getABITypeAlign(Ty); 6646 if (NewAlign > Alignment) { 6647 // Give the stack frame object a larger alignment if needed. 6648 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6649 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6650 Alignment = NewAlign; 6651 } 6652 } 6653 6654 // Prepare AAInfo for loads/stores after lowering this memmove. 6655 AAMDNodes NewAAInfo = AAInfo; 6656 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6657 6658 MachineMemOperand::Flags MMOFlags = 6659 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6660 uint64_t SrcOff = 0, DstOff = 0; 6661 SmallVector<SDValue, 8> LoadValues; 6662 SmallVector<SDValue, 8> LoadChains; 6663 SmallVector<SDValue, 8> OutChains; 6664 unsigned NumMemOps = MemOps.size(); 6665 for (unsigned i = 0; i < NumMemOps; i++) { 6666 EVT VT = MemOps[i]; 6667 unsigned VTSize = VT.getSizeInBits() / 8; 6668 SDValue Value; 6669 6670 bool isDereferenceable = 6671 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6672 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6673 if (isDereferenceable) 6674 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6675 6676 Value = DAG.getLoad( 6677 VT, dl, Chain, 6678 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6679 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6680 LoadValues.push_back(Value); 6681 LoadChains.push_back(Value.getValue(1)); 6682 SrcOff += VTSize; 6683 } 6684 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6685 OutChains.clear(); 6686 for (unsigned i = 0; i < NumMemOps; i++) { 6687 EVT VT = MemOps[i]; 6688 unsigned VTSize = VT.getSizeInBits() / 8; 6689 SDValue Store; 6690 6691 Store = DAG.getStore( 6692 Chain, dl, LoadValues[i], 6693 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6694 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6695 OutChains.push_back(Store); 6696 DstOff += VTSize; 6697 } 6698 6699 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6700 } 6701 6702 /// Lower the call to 'memset' intrinsic function into a series of store 6703 /// operations. 6704 /// 6705 /// \param DAG Selection DAG where lowered code is placed. 6706 /// \param dl Link to corresponding IR location. 6707 /// \param Chain Control flow dependency. 6708 /// \param Dst Pointer to destination memory location. 6709 /// \param Src Value of byte to write into the memory. 6710 /// \param Size Number of bytes to write. 6711 /// \param Alignment Alignment of the destination in bytes. 6712 /// \param isVol True if destination is volatile. 6713 /// \param DstPtrInfo IR information on the memory pointer. 6714 /// \returns New head in the control flow, if lowering was successful, empty 6715 /// SDValue otherwise. 6716 /// 6717 /// The function tries to replace 'llvm.memset' intrinsic with several store 6718 /// operations and value calculation code. This is usually profitable for small 6719 /// memory size. 6720 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6721 SDValue Chain, SDValue Dst, SDValue Src, 6722 uint64_t Size, Align Alignment, bool isVol, 6723 MachinePointerInfo DstPtrInfo, 6724 const AAMDNodes &AAInfo) { 6725 // Turn a memset of undef to nop. 6726 // FIXME: We need to honor volatile even is Src is undef. 6727 if (Src.isUndef()) 6728 return Chain; 6729 6730 // Expand memset to a series of load/store ops if the size operand 6731 // falls below a certain threshold. 6732 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6733 std::vector<EVT> MemOps; 6734 bool DstAlignCanChange = false; 6735 MachineFunction &MF = DAG.getMachineFunction(); 6736 MachineFrameInfo &MFI = MF.getFrameInfo(); 6737 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6738 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6739 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6740 DstAlignCanChange = true; 6741 bool IsZeroVal = 6742 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 6743 if (!TLI.findOptimalMemOpLowering( 6744 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6745 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6746 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6747 return SDValue(); 6748 6749 if (DstAlignCanChange) { 6750 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6751 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6752 if (NewAlign > Alignment) { 6753 // Give the stack frame object a larger alignment if needed. 6754 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6755 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6756 Alignment = NewAlign; 6757 } 6758 } 6759 6760 SmallVector<SDValue, 8> OutChains; 6761 uint64_t DstOff = 0; 6762 unsigned NumMemOps = MemOps.size(); 6763 6764 // Find the largest store and generate the bit pattern for it. 6765 EVT LargestVT = MemOps[0]; 6766 for (unsigned i = 1; i < NumMemOps; i++) 6767 if (MemOps[i].bitsGT(LargestVT)) 6768 LargestVT = MemOps[i]; 6769 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6770 6771 // Prepare AAInfo for loads/stores after lowering this memset. 6772 AAMDNodes NewAAInfo = AAInfo; 6773 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6774 6775 for (unsigned i = 0; i < NumMemOps; i++) { 6776 EVT VT = MemOps[i]; 6777 unsigned VTSize = VT.getSizeInBits() / 8; 6778 if (VTSize > Size) { 6779 // Issuing an unaligned load / store pair that overlaps with the previous 6780 // pair. Adjust the offset accordingly. 6781 assert(i == NumMemOps-1 && i != 0); 6782 DstOff -= VTSize - Size; 6783 } 6784 6785 // If this store is smaller than the largest store see whether we can get 6786 // the smaller value for free with a truncate. 6787 SDValue Value = MemSetValue; 6788 if (VT.bitsLT(LargestVT)) { 6789 if (!LargestVT.isVector() && !VT.isVector() && 6790 TLI.isTruncateFree(LargestVT, VT)) 6791 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6792 else 6793 Value = getMemsetValue(Src, VT, DAG, dl); 6794 } 6795 assert(Value.getValueType() == VT && "Value with wrong type."); 6796 SDValue Store = DAG.getStore( 6797 Chain, dl, Value, 6798 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6799 DstPtrInfo.getWithOffset(DstOff), Alignment, 6800 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6801 NewAAInfo); 6802 OutChains.push_back(Store); 6803 DstOff += VT.getSizeInBits() / 8; 6804 Size -= VTSize; 6805 } 6806 6807 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6808 } 6809 6810 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6811 unsigned AS) { 6812 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6813 // pointer operands can be losslessly bitcasted to pointers of address space 0 6814 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6815 report_fatal_error("cannot lower memory intrinsic in address space " + 6816 Twine(AS)); 6817 } 6818 } 6819 6820 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6821 SDValue Src, SDValue Size, Align Alignment, 6822 bool isVol, bool AlwaysInline, bool isTailCall, 6823 MachinePointerInfo DstPtrInfo, 6824 MachinePointerInfo SrcPtrInfo, 6825 const AAMDNodes &AAInfo) { 6826 // Check to see if we should lower the memcpy to loads and stores first. 6827 // For cases within the target-specified limits, this is the best choice. 6828 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6829 if (ConstantSize) { 6830 // Memcpy with size zero? Just return the original chain. 6831 if (ConstantSize->isZero()) 6832 return Chain; 6833 6834 SDValue Result = getMemcpyLoadsAndStores( 6835 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6836 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6837 if (Result.getNode()) 6838 return Result; 6839 } 6840 6841 // Then check to see if we should lower the memcpy with target-specific 6842 // code. If the target chooses to do this, this is the next best. 6843 if (TSI) { 6844 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6845 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6846 DstPtrInfo, SrcPtrInfo); 6847 if (Result.getNode()) 6848 return Result; 6849 } 6850 6851 // If we really need inline code and the target declined to provide it, 6852 // use a (potentially long) sequence of loads and stores. 6853 if (AlwaysInline) { 6854 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6855 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6856 ConstantSize->getZExtValue(), Alignment, 6857 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 6858 } 6859 6860 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6861 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6862 6863 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6864 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6865 // respect volatile, so they may do things like read or write memory 6866 // beyond the given memory regions. But fixing this isn't easy, and most 6867 // people don't care. 6868 6869 // Emit a library call. 6870 TargetLowering::ArgListTy Args; 6871 TargetLowering::ArgListEntry Entry; 6872 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6873 Entry.Node = Dst; Args.push_back(Entry); 6874 Entry.Node = Src; Args.push_back(Entry); 6875 6876 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6877 Entry.Node = Size; Args.push_back(Entry); 6878 // FIXME: pass in SDLoc 6879 TargetLowering::CallLoweringInfo CLI(*this); 6880 CLI.setDebugLoc(dl) 6881 .setChain(Chain) 6882 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6883 Dst.getValueType().getTypeForEVT(*getContext()), 6884 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6885 TLI->getPointerTy(getDataLayout())), 6886 std::move(Args)) 6887 .setDiscardResult() 6888 .setTailCall(isTailCall); 6889 6890 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6891 return CallResult.second; 6892 } 6893 6894 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6895 SDValue Dst, unsigned DstAlign, 6896 SDValue Src, unsigned SrcAlign, 6897 SDValue Size, Type *SizeTy, 6898 unsigned ElemSz, bool isTailCall, 6899 MachinePointerInfo DstPtrInfo, 6900 MachinePointerInfo SrcPtrInfo) { 6901 // Emit a library call. 6902 TargetLowering::ArgListTy Args; 6903 TargetLowering::ArgListEntry Entry; 6904 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6905 Entry.Node = Dst; 6906 Args.push_back(Entry); 6907 6908 Entry.Node = Src; 6909 Args.push_back(Entry); 6910 6911 Entry.Ty = SizeTy; 6912 Entry.Node = Size; 6913 Args.push_back(Entry); 6914 6915 RTLIB::Libcall LibraryCall = 6916 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6917 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6918 report_fatal_error("Unsupported element size"); 6919 6920 TargetLowering::CallLoweringInfo CLI(*this); 6921 CLI.setDebugLoc(dl) 6922 .setChain(Chain) 6923 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6924 Type::getVoidTy(*getContext()), 6925 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6926 TLI->getPointerTy(getDataLayout())), 6927 std::move(Args)) 6928 .setDiscardResult() 6929 .setTailCall(isTailCall); 6930 6931 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6932 return CallResult.second; 6933 } 6934 6935 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6936 SDValue Src, SDValue Size, Align Alignment, 6937 bool isVol, bool isTailCall, 6938 MachinePointerInfo DstPtrInfo, 6939 MachinePointerInfo SrcPtrInfo, 6940 const AAMDNodes &AAInfo) { 6941 // Check to see if we should lower the memmove to loads and stores first. 6942 // For cases within the target-specified limits, this is the best choice. 6943 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6944 if (ConstantSize) { 6945 // Memmove with size zero? Just return the original chain. 6946 if (ConstantSize->isZero()) 6947 return Chain; 6948 6949 SDValue Result = getMemmoveLoadsAndStores( 6950 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6951 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6952 if (Result.getNode()) 6953 return Result; 6954 } 6955 6956 // Then check to see if we should lower the memmove with target-specific 6957 // code. If the target chooses to do this, this is the next best. 6958 if (TSI) { 6959 SDValue Result = 6960 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6961 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6962 if (Result.getNode()) 6963 return Result; 6964 } 6965 6966 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6967 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6968 6969 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6970 // not be safe. See memcpy above for more details. 6971 6972 // Emit a library call. 6973 TargetLowering::ArgListTy Args; 6974 TargetLowering::ArgListEntry Entry; 6975 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6976 Entry.Node = Dst; Args.push_back(Entry); 6977 Entry.Node = Src; Args.push_back(Entry); 6978 6979 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6980 Entry.Node = Size; Args.push_back(Entry); 6981 // FIXME: pass in SDLoc 6982 TargetLowering::CallLoweringInfo CLI(*this); 6983 CLI.setDebugLoc(dl) 6984 .setChain(Chain) 6985 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6986 Dst.getValueType().getTypeForEVT(*getContext()), 6987 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6988 TLI->getPointerTy(getDataLayout())), 6989 std::move(Args)) 6990 .setDiscardResult() 6991 .setTailCall(isTailCall); 6992 6993 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6994 return CallResult.second; 6995 } 6996 6997 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6998 SDValue Dst, unsigned DstAlign, 6999 SDValue Src, unsigned SrcAlign, 7000 SDValue Size, Type *SizeTy, 7001 unsigned ElemSz, bool isTailCall, 7002 MachinePointerInfo DstPtrInfo, 7003 MachinePointerInfo SrcPtrInfo) { 7004 // Emit a library call. 7005 TargetLowering::ArgListTy Args; 7006 TargetLowering::ArgListEntry Entry; 7007 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7008 Entry.Node = Dst; 7009 Args.push_back(Entry); 7010 7011 Entry.Node = Src; 7012 Args.push_back(Entry); 7013 7014 Entry.Ty = SizeTy; 7015 Entry.Node = Size; 7016 Args.push_back(Entry); 7017 7018 RTLIB::Libcall LibraryCall = 7019 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7020 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7021 report_fatal_error("Unsupported element size"); 7022 7023 TargetLowering::CallLoweringInfo CLI(*this); 7024 CLI.setDebugLoc(dl) 7025 .setChain(Chain) 7026 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7027 Type::getVoidTy(*getContext()), 7028 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7029 TLI->getPointerTy(getDataLayout())), 7030 std::move(Args)) 7031 .setDiscardResult() 7032 .setTailCall(isTailCall); 7033 7034 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7035 return CallResult.second; 7036 } 7037 7038 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7039 SDValue Src, SDValue Size, Align Alignment, 7040 bool isVol, bool isTailCall, 7041 MachinePointerInfo DstPtrInfo, 7042 const AAMDNodes &AAInfo) { 7043 // Check to see if we should lower the memset to stores first. 7044 // For cases within the target-specified limits, this is the best choice. 7045 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7046 if (ConstantSize) { 7047 // Memset with size zero? Just return the original chain. 7048 if (ConstantSize->isZero()) 7049 return Chain; 7050 7051 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7052 ConstantSize->getZExtValue(), Alignment, 7053 isVol, DstPtrInfo, AAInfo); 7054 7055 if (Result.getNode()) 7056 return Result; 7057 } 7058 7059 // Then check to see if we should lower the memset with target-specific 7060 // code. If the target chooses to do this, this is the next best. 7061 if (TSI) { 7062 SDValue Result = TSI->EmitTargetCodeForMemset( 7063 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7064 if (Result.getNode()) 7065 return Result; 7066 } 7067 7068 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7069 7070 // Emit a library call. 7071 TargetLowering::ArgListTy Args; 7072 TargetLowering::ArgListEntry Entry; 7073 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7074 Args.push_back(Entry); 7075 Entry.Node = Src; 7076 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7077 Args.push_back(Entry); 7078 Entry.Node = Size; 7079 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7080 Args.push_back(Entry); 7081 7082 // FIXME: pass in SDLoc 7083 TargetLowering::CallLoweringInfo CLI(*this); 7084 CLI.setDebugLoc(dl) 7085 .setChain(Chain) 7086 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7087 Dst.getValueType().getTypeForEVT(*getContext()), 7088 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7089 TLI->getPointerTy(getDataLayout())), 7090 std::move(Args)) 7091 .setDiscardResult() 7092 .setTailCall(isTailCall); 7093 7094 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7095 return CallResult.second; 7096 } 7097 7098 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7099 SDValue Dst, unsigned DstAlign, 7100 SDValue Value, SDValue Size, Type *SizeTy, 7101 unsigned ElemSz, bool isTailCall, 7102 MachinePointerInfo DstPtrInfo) { 7103 // Emit a library call. 7104 TargetLowering::ArgListTy Args; 7105 TargetLowering::ArgListEntry Entry; 7106 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7107 Entry.Node = Dst; 7108 Args.push_back(Entry); 7109 7110 Entry.Ty = Type::getInt8Ty(*getContext()); 7111 Entry.Node = Value; 7112 Args.push_back(Entry); 7113 7114 Entry.Ty = SizeTy; 7115 Entry.Node = Size; 7116 Args.push_back(Entry); 7117 7118 RTLIB::Libcall LibraryCall = 7119 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7120 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7121 report_fatal_error("Unsupported element size"); 7122 7123 TargetLowering::CallLoweringInfo CLI(*this); 7124 CLI.setDebugLoc(dl) 7125 .setChain(Chain) 7126 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7127 Type::getVoidTy(*getContext()), 7128 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7129 TLI->getPointerTy(getDataLayout())), 7130 std::move(Args)) 7131 .setDiscardResult() 7132 .setTailCall(isTailCall); 7133 7134 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7135 return CallResult.second; 7136 } 7137 7138 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7139 SDVTList VTList, ArrayRef<SDValue> Ops, 7140 MachineMemOperand *MMO) { 7141 FoldingSetNodeID ID; 7142 ID.AddInteger(MemVT.getRawBits()); 7143 AddNodeIDNode(ID, Opcode, VTList, Ops); 7144 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7145 void* IP = nullptr; 7146 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7147 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7148 return SDValue(E, 0); 7149 } 7150 7151 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7152 VTList, MemVT, MMO); 7153 createOperands(N, Ops); 7154 7155 CSEMap.InsertNode(N, IP); 7156 InsertNode(N); 7157 return SDValue(N, 0); 7158 } 7159 7160 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7161 EVT MemVT, SDVTList VTs, SDValue Chain, 7162 SDValue Ptr, SDValue Cmp, SDValue Swp, 7163 MachineMemOperand *MMO) { 7164 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7165 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7166 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7167 7168 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7169 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7170 } 7171 7172 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7173 SDValue Chain, SDValue Ptr, SDValue Val, 7174 MachineMemOperand *MMO) { 7175 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7176 Opcode == ISD::ATOMIC_LOAD_SUB || 7177 Opcode == ISD::ATOMIC_LOAD_AND || 7178 Opcode == ISD::ATOMIC_LOAD_CLR || 7179 Opcode == ISD::ATOMIC_LOAD_OR || 7180 Opcode == ISD::ATOMIC_LOAD_XOR || 7181 Opcode == ISD::ATOMIC_LOAD_NAND || 7182 Opcode == ISD::ATOMIC_LOAD_MIN || 7183 Opcode == ISD::ATOMIC_LOAD_MAX || 7184 Opcode == ISD::ATOMIC_LOAD_UMIN || 7185 Opcode == ISD::ATOMIC_LOAD_UMAX || 7186 Opcode == ISD::ATOMIC_LOAD_FADD || 7187 Opcode == ISD::ATOMIC_LOAD_FSUB || 7188 Opcode == ISD::ATOMIC_SWAP || 7189 Opcode == ISD::ATOMIC_STORE) && 7190 "Invalid Atomic Op"); 7191 7192 EVT VT = Val.getValueType(); 7193 7194 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7195 getVTList(VT, MVT::Other); 7196 SDValue Ops[] = {Chain, Ptr, Val}; 7197 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7198 } 7199 7200 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7201 EVT VT, SDValue Chain, SDValue Ptr, 7202 MachineMemOperand *MMO) { 7203 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7204 7205 SDVTList VTs = getVTList(VT, MVT::Other); 7206 SDValue Ops[] = {Chain, Ptr}; 7207 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7208 } 7209 7210 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7211 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7212 if (Ops.size() == 1) 7213 return Ops[0]; 7214 7215 SmallVector<EVT, 4> VTs; 7216 VTs.reserve(Ops.size()); 7217 for (const SDValue &Op : Ops) 7218 VTs.push_back(Op.getValueType()); 7219 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7220 } 7221 7222 SDValue SelectionDAG::getMemIntrinsicNode( 7223 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7224 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7225 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7226 if (!Size && MemVT.isScalableVector()) 7227 Size = MemoryLocation::UnknownSize; 7228 else if (!Size) 7229 Size = MemVT.getStoreSize(); 7230 7231 MachineFunction &MF = getMachineFunction(); 7232 MachineMemOperand *MMO = 7233 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7234 7235 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7236 } 7237 7238 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7239 SDVTList VTList, 7240 ArrayRef<SDValue> Ops, EVT MemVT, 7241 MachineMemOperand *MMO) { 7242 assert((Opcode == ISD::INTRINSIC_VOID || 7243 Opcode == ISD::INTRINSIC_W_CHAIN || 7244 Opcode == ISD::PREFETCH || 7245 ((int)Opcode <= std::numeric_limits<int>::max() && 7246 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7247 "Opcode is not a memory-accessing opcode!"); 7248 7249 // Memoize the node unless it returns a flag. 7250 MemIntrinsicSDNode *N; 7251 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7252 FoldingSetNodeID ID; 7253 AddNodeIDNode(ID, Opcode, VTList, Ops); 7254 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7255 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7256 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7257 void *IP = nullptr; 7258 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7259 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7260 return SDValue(E, 0); 7261 } 7262 7263 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7264 VTList, MemVT, MMO); 7265 createOperands(N, Ops); 7266 7267 CSEMap.InsertNode(N, IP); 7268 } else { 7269 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7270 VTList, MemVT, MMO); 7271 createOperands(N, Ops); 7272 } 7273 InsertNode(N); 7274 SDValue V(N, 0); 7275 NewSDValueDbgMsg(V, "Creating new node: ", this); 7276 return V; 7277 } 7278 7279 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7280 SDValue Chain, int FrameIndex, 7281 int64_t Size, int64_t Offset) { 7282 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7283 const auto VTs = getVTList(MVT::Other); 7284 SDValue Ops[2] = { 7285 Chain, 7286 getFrameIndex(FrameIndex, 7287 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7288 true)}; 7289 7290 FoldingSetNodeID ID; 7291 AddNodeIDNode(ID, Opcode, VTs, Ops); 7292 ID.AddInteger(FrameIndex); 7293 ID.AddInteger(Size); 7294 ID.AddInteger(Offset); 7295 void *IP = nullptr; 7296 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7297 return SDValue(E, 0); 7298 7299 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7300 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7301 createOperands(N, Ops); 7302 CSEMap.InsertNode(N, IP); 7303 InsertNode(N); 7304 SDValue V(N, 0); 7305 NewSDValueDbgMsg(V, "Creating new node: ", this); 7306 return V; 7307 } 7308 7309 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7310 uint64_t Guid, uint64_t Index, 7311 uint32_t Attr) { 7312 const unsigned Opcode = ISD::PSEUDO_PROBE; 7313 const auto VTs = getVTList(MVT::Other); 7314 SDValue Ops[] = {Chain}; 7315 FoldingSetNodeID ID; 7316 AddNodeIDNode(ID, Opcode, VTs, Ops); 7317 ID.AddInteger(Guid); 7318 ID.AddInteger(Index); 7319 void *IP = nullptr; 7320 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7321 return SDValue(E, 0); 7322 7323 auto *N = newSDNode<PseudoProbeSDNode>( 7324 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7325 createOperands(N, Ops); 7326 CSEMap.InsertNode(N, IP); 7327 InsertNode(N); 7328 SDValue V(N, 0); 7329 NewSDValueDbgMsg(V, "Creating new node: ", this); 7330 return V; 7331 } 7332 7333 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7334 /// MachinePointerInfo record from it. This is particularly useful because the 7335 /// code generator has many cases where it doesn't bother passing in a 7336 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7337 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7338 SelectionDAG &DAG, SDValue Ptr, 7339 int64_t Offset = 0) { 7340 // If this is FI+Offset, we can model it. 7341 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7342 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7343 FI->getIndex(), Offset); 7344 7345 // If this is (FI+Offset1)+Offset2, we can model it. 7346 if (Ptr.getOpcode() != ISD::ADD || 7347 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7348 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7349 return Info; 7350 7351 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7352 return MachinePointerInfo::getFixedStack( 7353 DAG.getMachineFunction(), FI, 7354 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7355 } 7356 7357 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7358 /// MachinePointerInfo record from it. This is particularly useful because the 7359 /// code generator has many cases where it doesn't bother passing in a 7360 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7361 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7362 SelectionDAG &DAG, SDValue Ptr, 7363 SDValue OffsetOp) { 7364 // If the 'Offset' value isn't a constant, we can't handle this. 7365 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7366 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7367 if (OffsetOp.isUndef()) 7368 return InferPointerInfo(Info, DAG, Ptr); 7369 return Info; 7370 } 7371 7372 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7373 EVT VT, const SDLoc &dl, SDValue Chain, 7374 SDValue Ptr, SDValue Offset, 7375 MachinePointerInfo PtrInfo, EVT MemVT, 7376 Align Alignment, 7377 MachineMemOperand::Flags MMOFlags, 7378 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7379 assert(Chain.getValueType() == MVT::Other && 7380 "Invalid chain type"); 7381 7382 MMOFlags |= MachineMemOperand::MOLoad; 7383 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7384 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7385 // clients. 7386 if (PtrInfo.V.isNull()) 7387 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7388 7389 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7390 MachineFunction &MF = getMachineFunction(); 7391 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7392 Alignment, AAInfo, Ranges); 7393 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7394 } 7395 7396 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7397 EVT VT, const SDLoc &dl, SDValue Chain, 7398 SDValue Ptr, SDValue Offset, EVT MemVT, 7399 MachineMemOperand *MMO) { 7400 if (VT == MemVT) { 7401 ExtType = ISD::NON_EXTLOAD; 7402 } else if (ExtType == ISD::NON_EXTLOAD) { 7403 assert(VT == MemVT && "Non-extending load from different memory type!"); 7404 } else { 7405 // Extending load. 7406 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7407 "Should only be an extending load, not truncating!"); 7408 assert(VT.isInteger() == MemVT.isInteger() && 7409 "Cannot convert from FP to Int or Int -> FP!"); 7410 assert(VT.isVector() == MemVT.isVector() && 7411 "Cannot use an ext load to convert to or from a vector!"); 7412 assert((!VT.isVector() || 7413 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7414 "Cannot use an ext load to change the number of vector elements!"); 7415 } 7416 7417 bool Indexed = AM != ISD::UNINDEXED; 7418 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7419 7420 SDVTList VTs = Indexed ? 7421 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7422 SDValue Ops[] = { Chain, Ptr, Offset }; 7423 FoldingSetNodeID ID; 7424 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7425 ID.AddInteger(MemVT.getRawBits()); 7426 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7427 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7428 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7429 void *IP = nullptr; 7430 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7431 cast<LoadSDNode>(E)->refineAlignment(MMO); 7432 return SDValue(E, 0); 7433 } 7434 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7435 ExtType, MemVT, MMO); 7436 createOperands(N, Ops); 7437 7438 CSEMap.InsertNode(N, IP); 7439 InsertNode(N); 7440 SDValue V(N, 0); 7441 NewSDValueDbgMsg(V, "Creating new node: ", this); 7442 return V; 7443 } 7444 7445 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7446 SDValue Ptr, MachinePointerInfo PtrInfo, 7447 MaybeAlign Alignment, 7448 MachineMemOperand::Flags MMOFlags, 7449 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7450 SDValue Undef = getUNDEF(Ptr.getValueType()); 7451 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7452 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7453 } 7454 7455 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7456 SDValue Ptr, MachineMemOperand *MMO) { 7457 SDValue Undef = getUNDEF(Ptr.getValueType()); 7458 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7459 VT, MMO); 7460 } 7461 7462 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7463 EVT VT, SDValue Chain, SDValue Ptr, 7464 MachinePointerInfo PtrInfo, EVT MemVT, 7465 MaybeAlign Alignment, 7466 MachineMemOperand::Flags MMOFlags, 7467 const AAMDNodes &AAInfo) { 7468 SDValue Undef = getUNDEF(Ptr.getValueType()); 7469 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7470 MemVT, Alignment, MMOFlags, AAInfo); 7471 } 7472 7473 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7474 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7475 MachineMemOperand *MMO) { 7476 SDValue Undef = getUNDEF(Ptr.getValueType()); 7477 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7478 MemVT, MMO); 7479 } 7480 7481 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7482 SDValue Base, SDValue Offset, 7483 ISD::MemIndexedMode AM) { 7484 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7485 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7486 // Don't propagate the invariant or dereferenceable flags. 7487 auto MMOFlags = 7488 LD->getMemOperand()->getFlags() & 7489 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7490 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7491 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7492 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7493 } 7494 7495 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7496 SDValue Ptr, MachinePointerInfo PtrInfo, 7497 Align Alignment, 7498 MachineMemOperand::Flags MMOFlags, 7499 const AAMDNodes &AAInfo) { 7500 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7501 7502 MMOFlags |= MachineMemOperand::MOStore; 7503 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7504 7505 if (PtrInfo.V.isNull()) 7506 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7507 7508 MachineFunction &MF = getMachineFunction(); 7509 uint64_t Size = 7510 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7511 MachineMemOperand *MMO = 7512 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7513 return getStore(Chain, dl, Val, Ptr, MMO); 7514 } 7515 7516 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7517 SDValue Ptr, MachineMemOperand *MMO) { 7518 assert(Chain.getValueType() == MVT::Other && 7519 "Invalid chain type"); 7520 EVT VT = Val.getValueType(); 7521 SDVTList VTs = getVTList(MVT::Other); 7522 SDValue Undef = getUNDEF(Ptr.getValueType()); 7523 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7524 FoldingSetNodeID ID; 7525 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7526 ID.AddInteger(VT.getRawBits()); 7527 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7528 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7529 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7530 void *IP = nullptr; 7531 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7532 cast<StoreSDNode>(E)->refineAlignment(MMO); 7533 return SDValue(E, 0); 7534 } 7535 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7536 ISD::UNINDEXED, false, VT, MMO); 7537 createOperands(N, Ops); 7538 7539 CSEMap.InsertNode(N, IP); 7540 InsertNode(N); 7541 SDValue V(N, 0); 7542 NewSDValueDbgMsg(V, "Creating new node: ", this); 7543 return V; 7544 } 7545 7546 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7547 SDValue Ptr, MachinePointerInfo PtrInfo, 7548 EVT SVT, Align Alignment, 7549 MachineMemOperand::Flags MMOFlags, 7550 const AAMDNodes &AAInfo) { 7551 assert(Chain.getValueType() == MVT::Other && 7552 "Invalid chain type"); 7553 7554 MMOFlags |= MachineMemOperand::MOStore; 7555 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7556 7557 if (PtrInfo.V.isNull()) 7558 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7559 7560 MachineFunction &MF = getMachineFunction(); 7561 MachineMemOperand *MMO = MF.getMachineMemOperand( 7562 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7563 Alignment, AAInfo); 7564 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7565 } 7566 7567 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7568 SDValue Ptr, EVT SVT, 7569 MachineMemOperand *MMO) { 7570 EVT VT = Val.getValueType(); 7571 7572 assert(Chain.getValueType() == MVT::Other && 7573 "Invalid chain type"); 7574 if (VT == SVT) 7575 return getStore(Chain, dl, Val, Ptr, MMO); 7576 7577 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7578 "Should only be a truncating store, not extending!"); 7579 assert(VT.isInteger() == SVT.isInteger() && 7580 "Can't do FP-INT conversion!"); 7581 assert(VT.isVector() == SVT.isVector() && 7582 "Cannot use trunc store to convert to or from a vector!"); 7583 assert((!VT.isVector() || 7584 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7585 "Cannot use trunc store to change the number of vector elements!"); 7586 7587 SDVTList VTs = getVTList(MVT::Other); 7588 SDValue Undef = getUNDEF(Ptr.getValueType()); 7589 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7590 FoldingSetNodeID ID; 7591 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7592 ID.AddInteger(SVT.getRawBits()); 7593 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7594 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7595 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7596 void *IP = nullptr; 7597 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7598 cast<StoreSDNode>(E)->refineAlignment(MMO); 7599 return SDValue(E, 0); 7600 } 7601 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7602 ISD::UNINDEXED, true, SVT, MMO); 7603 createOperands(N, Ops); 7604 7605 CSEMap.InsertNode(N, IP); 7606 InsertNode(N); 7607 SDValue V(N, 0); 7608 NewSDValueDbgMsg(V, "Creating new node: ", this); 7609 return V; 7610 } 7611 7612 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7613 SDValue Base, SDValue Offset, 7614 ISD::MemIndexedMode AM) { 7615 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7616 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7617 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7618 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7619 FoldingSetNodeID ID; 7620 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7621 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7622 ID.AddInteger(ST->getRawSubclassData()); 7623 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7624 void *IP = nullptr; 7625 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7626 return SDValue(E, 0); 7627 7628 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7629 ST->isTruncatingStore(), ST->getMemoryVT(), 7630 ST->getMemOperand()); 7631 createOperands(N, Ops); 7632 7633 CSEMap.InsertNode(N, IP); 7634 InsertNode(N); 7635 SDValue V(N, 0); 7636 NewSDValueDbgMsg(V, "Creating new node: ", this); 7637 return V; 7638 } 7639 7640 SDValue SelectionDAG::getLoadVP( 7641 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7642 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7643 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7644 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7645 const MDNode *Ranges, bool IsExpanding) { 7646 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7647 7648 MMOFlags |= MachineMemOperand::MOLoad; 7649 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7650 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7651 // clients. 7652 if (PtrInfo.V.isNull()) 7653 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7654 7655 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7656 MachineFunction &MF = getMachineFunction(); 7657 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7658 Alignment, AAInfo, Ranges); 7659 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7660 MMO, IsExpanding); 7661 } 7662 7663 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7664 ISD::LoadExtType ExtType, EVT VT, 7665 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7666 SDValue Offset, SDValue Mask, SDValue EVL, 7667 EVT MemVT, MachineMemOperand *MMO, 7668 bool IsExpanding) { 7669 if (VT == MemVT) { 7670 ExtType = ISD::NON_EXTLOAD; 7671 } else if (ExtType == ISD::NON_EXTLOAD) { 7672 assert(VT == MemVT && "Non-extending load from different memory type!"); 7673 } else { 7674 // Extending load. 7675 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7676 "Should only be an extending load, not truncating!"); 7677 assert(VT.isInteger() == MemVT.isInteger() && 7678 "Cannot convert from FP to Int or Int -> FP!"); 7679 assert(VT.isVector() == MemVT.isVector() && 7680 "Cannot use an ext load to convert to or from a vector!"); 7681 assert((!VT.isVector() || 7682 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7683 "Cannot use an ext load to change the number of vector elements!"); 7684 } 7685 7686 bool Indexed = AM != ISD::UNINDEXED; 7687 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7688 7689 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7690 : getVTList(VT, MVT::Other); 7691 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7692 FoldingSetNodeID ID; 7693 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7694 ID.AddInteger(VT.getRawBits()); 7695 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7696 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7697 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7698 void *IP = nullptr; 7699 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7700 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7701 return SDValue(E, 0); 7702 } 7703 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7704 ExtType, IsExpanding, MemVT, MMO); 7705 createOperands(N, Ops); 7706 7707 CSEMap.InsertNode(N, IP); 7708 InsertNode(N); 7709 SDValue V(N, 0); 7710 NewSDValueDbgMsg(V, "Creating new node: ", this); 7711 return V; 7712 } 7713 7714 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7715 SDValue Ptr, SDValue Mask, SDValue EVL, 7716 MachinePointerInfo PtrInfo, 7717 MaybeAlign Alignment, 7718 MachineMemOperand::Flags MMOFlags, 7719 const AAMDNodes &AAInfo, const MDNode *Ranges, 7720 bool IsExpanding) { 7721 SDValue Undef = getUNDEF(Ptr.getValueType()); 7722 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7723 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7724 IsExpanding); 7725 } 7726 7727 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7728 SDValue Ptr, SDValue Mask, SDValue EVL, 7729 MachineMemOperand *MMO, bool IsExpanding) { 7730 SDValue Undef = getUNDEF(Ptr.getValueType()); 7731 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7732 Mask, EVL, VT, MMO, IsExpanding); 7733 } 7734 7735 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7736 EVT VT, SDValue Chain, SDValue Ptr, 7737 SDValue Mask, SDValue EVL, 7738 MachinePointerInfo PtrInfo, EVT MemVT, 7739 MaybeAlign Alignment, 7740 MachineMemOperand::Flags MMOFlags, 7741 const AAMDNodes &AAInfo, bool IsExpanding) { 7742 SDValue Undef = getUNDEF(Ptr.getValueType()); 7743 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7744 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7745 IsExpanding); 7746 } 7747 7748 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7749 EVT VT, SDValue Chain, SDValue Ptr, 7750 SDValue Mask, SDValue EVL, EVT MemVT, 7751 MachineMemOperand *MMO, bool IsExpanding) { 7752 SDValue Undef = getUNDEF(Ptr.getValueType()); 7753 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7754 EVL, MemVT, MMO, IsExpanding); 7755 } 7756 7757 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 7758 SDValue Base, SDValue Offset, 7759 ISD::MemIndexedMode AM) { 7760 auto *LD = cast<VPLoadSDNode>(OrigLoad); 7761 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7762 // Don't propagate the invariant or dereferenceable flags. 7763 auto MMOFlags = 7764 LD->getMemOperand()->getFlags() & 7765 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7766 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7767 LD->getChain(), Base, Offset, LD->getMask(), 7768 LD->getVectorLength(), LD->getPointerInfo(), 7769 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 7770 nullptr, LD->isExpandingLoad()); 7771 } 7772 7773 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7774 SDValue Ptr, SDValue Mask, SDValue EVL, 7775 MachinePointerInfo PtrInfo, Align Alignment, 7776 MachineMemOperand::Flags MMOFlags, 7777 const AAMDNodes &AAInfo, bool IsCompressing) { 7778 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7779 7780 MMOFlags |= MachineMemOperand::MOStore; 7781 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7782 7783 if (PtrInfo.V.isNull()) 7784 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7785 7786 MachineFunction &MF = getMachineFunction(); 7787 uint64_t Size = 7788 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7789 MachineMemOperand *MMO = 7790 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7791 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7792 } 7793 7794 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7795 SDValue Ptr, SDValue Mask, SDValue EVL, 7796 MachineMemOperand *MMO, bool IsCompressing) { 7797 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7798 EVT VT = Val.getValueType(); 7799 SDVTList VTs = getVTList(MVT::Other); 7800 SDValue Undef = getUNDEF(Ptr.getValueType()); 7801 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7802 FoldingSetNodeID ID; 7803 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7804 ID.AddInteger(VT.getRawBits()); 7805 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7806 dl.getIROrder(), VTs, ISD::UNINDEXED, false, IsCompressing, VT, MMO)); 7807 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7808 void *IP = nullptr; 7809 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7810 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7811 return SDValue(E, 0); 7812 } 7813 auto *N = 7814 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7815 ISD::UNINDEXED, false, IsCompressing, VT, MMO); 7816 createOperands(N, Ops); 7817 7818 CSEMap.InsertNode(N, IP); 7819 InsertNode(N); 7820 SDValue V(N, 0); 7821 NewSDValueDbgMsg(V, "Creating new node: ", this); 7822 return V; 7823 } 7824 7825 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7826 SDValue Val, SDValue Ptr, SDValue Mask, 7827 SDValue EVL, MachinePointerInfo PtrInfo, 7828 EVT SVT, Align Alignment, 7829 MachineMemOperand::Flags MMOFlags, 7830 const AAMDNodes &AAInfo, 7831 bool IsCompressing) { 7832 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7833 7834 MMOFlags |= MachineMemOperand::MOStore; 7835 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7836 7837 if (PtrInfo.V.isNull()) 7838 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7839 7840 MachineFunction &MF = getMachineFunction(); 7841 MachineMemOperand *MMO = MF.getMachineMemOperand( 7842 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7843 Alignment, AAInfo); 7844 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 7845 IsCompressing); 7846 } 7847 7848 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7849 SDValue Val, SDValue Ptr, SDValue Mask, 7850 SDValue EVL, EVT SVT, 7851 MachineMemOperand *MMO, 7852 bool IsCompressing) { 7853 EVT VT = Val.getValueType(); 7854 7855 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7856 if (VT == SVT) 7857 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7858 7859 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7860 "Should only be a truncating store, not extending!"); 7861 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 7862 assert(VT.isVector() == SVT.isVector() && 7863 "Cannot use trunc store to convert to or from a vector!"); 7864 assert((!VT.isVector() || 7865 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7866 "Cannot use trunc store to change the number of vector elements!"); 7867 7868 SDVTList VTs = getVTList(MVT::Other); 7869 SDValue Undef = getUNDEF(Ptr.getValueType()); 7870 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7871 FoldingSetNodeID ID; 7872 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7873 ID.AddInteger(SVT.getRawBits()); 7874 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7875 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 7876 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7877 void *IP = nullptr; 7878 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7879 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7880 return SDValue(E, 0); 7881 } 7882 auto *N = 7883 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7884 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 7885 createOperands(N, Ops); 7886 7887 CSEMap.InsertNode(N, IP); 7888 InsertNode(N); 7889 SDValue V(N, 0); 7890 NewSDValueDbgMsg(V, "Creating new node: ", this); 7891 return V; 7892 } 7893 7894 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 7895 SDValue Base, SDValue Offset, 7896 ISD::MemIndexedMode AM) { 7897 auto *ST = cast<VPStoreSDNode>(OrigStore); 7898 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 7899 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7900 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 7901 Offset, ST->getMask(), ST->getVectorLength()}; 7902 FoldingSetNodeID ID; 7903 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7904 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7905 ID.AddInteger(ST->getRawSubclassData()); 7906 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7907 void *IP = nullptr; 7908 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7909 return SDValue(E, 0); 7910 7911 auto *N = newSDNode<VPStoreSDNode>( 7912 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 7913 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 7914 createOperands(N, Ops); 7915 7916 CSEMap.InsertNode(N, IP); 7917 InsertNode(N); 7918 SDValue V(N, 0); 7919 NewSDValueDbgMsg(V, "Creating new node: ", this); 7920 return V; 7921 } 7922 7923 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7924 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 7925 ISD::MemIndexType IndexType) { 7926 assert(Ops.size() == 6 && "Incompatible number of operands"); 7927 7928 FoldingSetNodeID ID; 7929 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 7930 ID.AddInteger(VT.getRawBits()); 7931 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 7932 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7933 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7934 void *IP = nullptr; 7935 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7936 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 7937 return SDValue(E, 0); 7938 } 7939 7940 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7941 VT, MMO, IndexType); 7942 createOperands(N, Ops); 7943 7944 assert(N->getMask().getValueType().getVectorElementCount() == 7945 N->getValueType(0).getVectorElementCount() && 7946 "Vector width mismatch between mask and data"); 7947 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7948 N->getValueType(0).getVectorElementCount().isScalable() && 7949 "Scalable flags of index and data do not match"); 7950 assert(ElementCount::isKnownGE( 7951 N->getIndex().getValueType().getVectorElementCount(), 7952 N->getValueType(0).getVectorElementCount()) && 7953 "Vector width mismatch between index and data"); 7954 assert(isa<ConstantSDNode>(N->getScale()) && 7955 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7956 "Scale should be a constant power of 2"); 7957 7958 CSEMap.InsertNode(N, IP); 7959 InsertNode(N); 7960 SDValue V(N, 0); 7961 NewSDValueDbgMsg(V, "Creating new node: ", this); 7962 return V; 7963 } 7964 7965 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7966 ArrayRef<SDValue> Ops, 7967 MachineMemOperand *MMO, 7968 ISD::MemIndexType IndexType) { 7969 assert(Ops.size() == 7 && "Incompatible number of operands"); 7970 7971 FoldingSetNodeID ID; 7972 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 7973 ID.AddInteger(VT.getRawBits()); 7974 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 7975 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7976 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7977 void *IP = nullptr; 7978 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7979 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 7980 return SDValue(E, 0); 7981 } 7982 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7983 VT, MMO, IndexType); 7984 createOperands(N, Ops); 7985 7986 assert(N->getMask().getValueType().getVectorElementCount() == 7987 N->getValue().getValueType().getVectorElementCount() && 7988 "Vector width mismatch between mask and data"); 7989 assert( 7990 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7991 N->getValue().getValueType().getVectorElementCount().isScalable() && 7992 "Scalable flags of index and data do not match"); 7993 assert(ElementCount::isKnownGE( 7994 N->getIndex().getValueType().getVectorElementCount(), 7995 N->getValue().getValueType().getVectorElementCount()) && 7996 "Vector width mismatch between index and data"); 7997 assert(isa<ConstantSDNode>(N->getScale()) && 7998 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7999 "Scale should be a constant power of 2"); 8000 8001 CSEMap.InsertNode(N, IP); 8002 InsertNode(N); 8003 SDValue V(N, 0); 8004 NewSDValueDbgMsg(V, "Creating new node: ", this); 8005 return V; 8006 } 8007 8008 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8009 SDValue Base, SDValue Offset, SDValue Mask, 8010 SDValue PassThru, EVT MemVT, 8011 MachineMemOperand *MMO, 8012 ISD::MemIndexedMode AM, 8013 ISD::LoadExtType ExtTy, bool isExpanding) { 8014 bool Indexed = AM != ISD::UNINDEXED; 8015 assert((Indexed || Offset.isUndef()) && 8016 "Unindexed masked load with an offset!"); 8017 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8018 : getVTList(VT, MVT::Other); 8019 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8020 FoldingSetNodeID ID; 8021 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8022 ID.AddInteger(MemVT.getRawBits()); 8023 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8024 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8025 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8026 void *IP = nullptr; 8027 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8028 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8029 return SDValue(E, 0); 8030 } 8031 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8032 AM, ExtTy, isExpanding, MemVT, MMO); 8033 createOperands(N, Ops); 8034 8035 CSEMap.InsertNode(N, IP); 8036 InsertNode(N); 8037 SDValue V(N, 0); 8038 NewSDValueDbgMsg(V, "Creating new node: ", this); 8039 return V; 8040 } 8041 8042 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8043 SDValue Base, SDValue Offset, 8044 ISD::MemIndexedMode AM) { 8045 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8046 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8047 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8048 Offset, LD->getMask(), LD->getPassThru(), 8049 LD->getMemoryVT(), LD->getMemOperand(), AM, 8050 LD->getExtensionType(), LD->isExpandingLoad()); 8051 } 8052 8053 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8054 SDValue Val, SDValue Base, SDValue Offset, 8055 SDValue Mask, EVT MemVT, 8056 MachineMemOperand *MMO, 8057 ISD::MemIndexedMode AM, bool IsTruncating, 8058 bool IsCompressing) { 8059 assert(Chain.getValueType() == MVT::Other && 8060 "Invalid chain type"); 8061 bool Indexed = AM != ISD::UNINDEXED; 8062 assert((Indexed || Offset.isUndef()) && 8063 "Unindexed masked store with an offset!"); 8064 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8065 : getVTList(MVT::Other); 8066 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8067 FoldingSetNodeID ID; 8068 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8069 ID.AddInteger(MemVT.getRawBits()); 8070 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8071 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8072 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8073 void *IP = nullptr; 8074 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8075 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8076 return SDValue(E, 0); 8077 } 8078 auto *N = 8079 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8080 IsTruncating, IsCompressing, MemVT, MMO); 8081 createOperands(N, Ops); 8082 8083 CSEMap.InsertNode(N, IP); 8084 InsertNode(N); 8085 SDValue V(N, 0); 8086 NewSDValueDbgMsg(V, "Creating new node: ", this); 8087 return V; 8088 } 8089 8090 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8091 SDValue Base, SDValue Offset, 8092 ISD::MemIndexedMode AM) { 8093 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8094 assert(ST->getOffset().isUndef() && 8095 "Masked store is already a indexed store!"); 8096 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8097 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8098 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8099 } 8100 8101 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8102 ArrayRef<SDValue> Ops, 8103 MachineMemOperand *MMO, 8104 ISD::MemIndexType IndexType, 8105 ISD::LoadExtType ExtTy) { 8106 assert(Ops.size() == 6 && "Incompatible number of operands"); 8107 8108 FoldingSetNodeID ID; 8109 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8110 ID.AddInteger(MemVT.getRawBits()); 8111 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8112 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8113 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8114 void *IP = nullptr; 8115 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8116 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8117 return SDValue(E, 0); 8118 } 8119 8120 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8121 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8122 VTs, MemVT, MMO, IndexType, ExtTy); 8123 createOperands(N, Ops); 8124 8125 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8126 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8127 assert(N->getMask().getValueType().getVectorElementCount() == 8128 N->getValueType(0).getVectorElementCount() && 8129 "Vector width mismatch between mask and data"); 8130 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8131 N->getValueType(0).getVectorElementCount().isScalable() && 8132 "Scalable flags of index and data do not match"); 8133 assert(ElementCount::isKnownGE( 8134 N->getIndex().getValueType().getVectorElementCount(), 8135 N->getValueType(0).getVectorElementCount()) && 8136 "Vector width mismatch between index and data"); 8137 assert(isa<ConstantSDNode>(N->getScale()) && 8138 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8139 "Scale should be a constant power of 2"); 8140 8141 CSEMap.InsertNode(N, IP); 8142 InsertNode(N); 8143 SDValue V(N, 0); 8144 NewSDValueDbgMsg(V, "Creating new node: ", this); 8145 return V; 8146 } 8147 8148 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8149 ArrayRef<SDValue> Ops, 8150 MachineMemOperand *MMO, 8151 ISD::MemIndexType IndexType, 8152 bool IsTrunc) { 8153 assert(Ops.size() == 6 && "Incompatible number of operands"); 8154 8155 FoldingSetNodeID ID; 8156 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8157 ID.AddInteger(MemVT.getRawBits()); 8158 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8159 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8160 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8161 void *IP = nullptr; 8162 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8163 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8164 return SDValue(E, 0); 8165 } 8166 8167 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8168 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8169 VTs, MemVT, MMO, IndexType, IsTrunc); 8170 createOperands(N, Ops); 8171 8172 assert(N->getMask().getValueType().getVectorElementCount() == 8173 N->getValue().getValueType().getVectorElementCount() && 8174 "Vector width mismatch between mask and data"); 8175 assert( 8176 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8177 N->getValue().getValueType().getVectorElementCount().isScalable() && 8178 "Scalable flags of index and data do not match"); 8179 assert(ElementCount::isKnownGE( 8180 N->getIndex().getValueType().getVectorElementCount(), 8181 N->getValue().getValueType().getVectorElementCount()) && 8182 "Vector width mismatch between index and data"); 8183 assert(isa<ConstantSDNode>(N->getScale()) && 8184 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8185 "Scale should be a constant power of 2"); 8186 8187 CSEMap.InsertNode(N, IP); 8188 InsertNode(N); 8189 SDValue V(N, 0); 8190 NewSDValueDbgMsg(V, "Creating new node: ", this); 8191 return V; 8192 } 8193 8194 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8195 // select undef, T, F --> T (if T is a constant), otherwise F 8196 // select, ?, undef, F --> F 8197 // select, ?, T, undef --> T 8198 if (Cond.isUndef()) 8199 return isConstantValueOfAnyType(T) ? T : F; 8200 if (T.isUndef()) 8201 return F; 8202 if (F.isUndef()) 8203 return T; 8204 8205 // select true, T, F --> T 8206 // select false, T, F --> F 8207 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8208 return CondC->isZero() ? F : T; 8209 8210 // TODO: This should simplify VSELECT with constant condition using something 8211 // like this (but check boolean contents to be complete?): 8212 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8213 // return T; 8214 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8215 // return F; 8216 8217 // select ?, T, T --> T 8218 if (T == F) 8219 return T; 8220 8221 return SDValue(); 8222 } 8223 8224 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8225 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8226 if (X.isUndef()) 8227 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8228 // shift X, undef --> undef (because it may shift by the bitwidth) 8229 if (Y.isUndef()) 8230 return getUNDEF(X.getValueType()); 8231 8232 // shift 0, Y --> 0 8233 // shift X, 0 --> X 8234 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8235 return X; 8236 8237 // shift X, C >= bitwidth(X) --> undef 8238 // All vector elements must be too big (or undef) to avoid partial undefs. 8239 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8240 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8241 }; 8242 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8243 return getUNDEF(X.getValueType()); 8244 8245 return SDValue(); 8246 } 8247 8248 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8249 SDNodeFlags Flags) { 8250 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8251 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8252 // operation is poison. That result can be relaxed to undef. 8253 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8254 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8255 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8256 (YC && YC->getValueAPF().isNaN()); 8257 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8258 (YC && YC->getValueAPF().isInfinity()); 8259 8260 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8261 return getUNDEF(X.getValueType()); 8262 8263 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8264 return getUNDEF(X.getValueType()); 8265 8266 if (!YC) 8267 return SDValue(); 8268 8269 // X + -0.0 --> X 8270 if (Opcode == ISD::FADD) 8271 if (YC->getValueAPF().isNegZero()) 8272 return X; 8273 8274 // X - +0.0 --> X 8275 if (Opcode == ISD::FSUB) 8276 if (YC->getValueAPF().isPosZero()) 8277 return X; 8278 8279 // X * 1.0 --> X 8280 // X / 1.0 --> X 8281 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8282 if (YC->getValueAPF().isExactlyValue(1.0)) 8283 return X; 8284 8285 // X * 0.0 --> 0.0 8286 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8287 if (YC->getValueAPF().isZero()) 8288 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8289 8290 return SDValue(); 8291 } 8292 8293 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8294 SDValue Ptr, SDValue SV, unsigned Align) { 8295 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8296 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8297 } 8298 8299 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8300 ArrayRef<SDUse> Ops) { 8301 switch (Ops.size()) { 8302 case 0: return getNode(Opcode, DL, VT); 8303 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8304 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8305 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8306 default: break; 8307 } 8308 8309 // Copy from an SDUse array into an SDValue array for use with 8310 // the regular getNode logic. 8311 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8312 return getNode(Opcode, DL, VT, NewOps); 8313 } 8314 8315 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8316 ArrayRef<SDValue> Ops) { 8317 SDNodeFlags Flags; 8318 if (Inserter) 8319 Flags = Inserter->getFlags(); 8320 return getNode(Opcode, DL, VT, Ops, Flags); 8321 } 8322 8323 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8324 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8325 unsigned NumOps = Ops.size(); 8326 switch (NumOps) { 8327 case 0: return getNode(Opcode, DL, VT); 8328 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8329 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8330 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8331 default: break; 8332 } 8333 8334 #ifndef NDEBUG 8335 for (auto &Op : Ops) 8336 assert(Op.getOpcode() != ISD::DELETED_NODE && 8337 "Operand is DELETED_NODE!"); 8338 #endif 8339 8340 switch (Opcode) { 8341 default: break; 8342 case ISD::BUILD_VECTOR: 8343 // Attempt to simplify BUILD_VECTOR. 8344 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8345 return V; 8346 break; 8347 case ISD::CONCAT_VECTORS: 8348 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8349 return V; 8350 break; 8351 case ISD::SELECT_CC: 8352 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8353 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8354 "LHS and RHS of condition must have same type!"); 8355 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8356 "True and False arms of SelectCC must have same type!"); 8357 assert(Ops[2].getValueType() == VT && 8358 "select_cc node must be of same type as true and false value!"); 8359 break; 8360 case ISD::BR_CC: 8361 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8362 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8363 "LHS/RHS of comparison should match types!"); 8364 break; 8365 } 8366 8367 // Memoize nodes. 8368 SDNode *N; 8369 SDVTList VTs = getVTList(VT); 8370 8371 if (VT != MVT::Glue) { 8372 FoldingSetNodeID ID; 8373 AddNodeIDNode(ID, Opcode, VTs, Ops); 8374 void *IP = nullptr; 8375 8376 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8377 return SDValue(E, 0); 8378 8379 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8380 createOperands(N, Ops); 8381 8382 CSEMap.InsertNode(N, IP); 8383 } else { 8384 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8385 createOperands(N, Ops); 8386 } 8387 8388 N->setFlags(Flags); 8389 InsertNode(N); 8390 SDValue V(N, 0); 8391 NewSDValueDbgMsg(V, "Creating new node: ", this); 8392 return V; 8393 } 8394 8395 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8396 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8397 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8398 } 8399 8400 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8401 ArrayRef<SDValue> Ops) { 8402 SDNodeFlags Flags; 8403 if (Inserter) 8404 Flags = Inserter->getFlags(); 8405 return getNode(Opcode, DL, VTList, Ops, Flags); 8406 } 8407 8408 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8409 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8410 if (VTList.NumVTs == 1) 8411 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8412 8413 #ifndef NDEBUG 8414 for (auto &Op : Ops) 8415 assert(Op.getOpcode() != ISD::DELETED_NODE && 8416 "Operand is DELETED_NODE!"); 8417 #endif 8418 8419 switch (Opcode) { 8420 case ISD::STRICT_FP_EXTEND: 8421 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8422 "Invalid STRICT_FP_EXTEND!"); 8423 assert(VTList.VTs[0].isFloatingPoint() && 8424 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8425 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8426 "STRICT_FP_EXTEND result type should be vector iff the operand " 8427 "type is vector!"); 8428 assert((!VTList.VTs[0].isVector() || 8429 VTList.VTs[0].getVectorNumElements() == 8430 Ops[1].getValueType().getVectorNumElements()) && 8431 "Vector element count mismatch!"); 8432 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8433 "Invalid fpext node, dst <= src!"); 8434 break; 8435 case ISD::STRICT_FP_ROUND: 8436 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8437 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8438 "STRICT_FP_ROUND result type should be vector iff the operand " 8439 "type is vector!"); 8440 assert((!VTList.VTs[0].isVector() || 8441 VTList.VTs[0].getVectorNumElements() == 8442 Ops[1].getValueType().getVectorNumElements()) && 8443 "Vector element count mismatch!"); 8444 assert(VTList.VTs[0].isFloatingPoint() && 8445 Ops[1].getValueType().isFloatingPoint() && 8446 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8447 isa<ConstantSDNode>(Ops[2]) && 8448 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8449 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8450 "Invalid STRICT_FP_ROUND!"); 8451 break; 8452 #if 0 8453 // FIXME: figure out how to safely handle things like 8454 // int foo(int x) { return 1 << (x & 255); } 8455 // int bar() { return foo(256); } 8456 case ISD::SRA_PARTS: 8457 case ISD::SRL_PARTS: 8458 case ISD::SHL_PARTS: 8459 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8460 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8461 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8462 else if (N3.getOpcode() == ISD::AND) 8463 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8464 // If the and is only masking out bits that cannot effect the shift, 8465 // eliminate the and. 8466 unsigned NumBits = VT.getScalarSizeInBits()*2; 8467 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8468 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8469 } 8470 break; 8471 #endif 8472 } 8473 8474 // Memoize the node unless it returns a flag. 8475 SDNode *N; 8476 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8477 FoldingSetNodeID ID; 8478 AddNodeIDNode(ID, Opcode, VTList, Ops); 8479 void *IP = nullptr; 8480 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8481 return SDValue(E, 0); 8482 8483 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8484 createOperands(N, Ops); 8485 CSEMap.InsertNode(N, IP); 8486 } else { 8487 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8488 createOperands(N, Ops); 8489 } 8490 8491 N->setFlags(Flags); 8492 InsertNode(N); 8493 SDValue V(N, 0); 8494 NewSDValueDbgMsg(V, "Creating new node: ", this); 8495 return V; 8496 } 8497 8498 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8499 SDVTList VTList) { 8500 return getNode(Opcode, DL, VTList, None); 8501 } 8502 8503 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8504 SDValue N1) { 8505 SDValue Ops[] = { N1 }; 8506 return getNode(Opcode, DL, VTList, Ops); 8507 } 8508 8509 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8510 SDValue N1, SDValue N2) { 8511 SDValue Ops[] = { N1, N2 }; 8512 return getNode(Opcode, DL, VTList, Ops); 8513 } 8514 8515 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8516 SDValue N1, SDValue N2, SDValue N3) { 8517 SDValue Ops[] = { N1, N2, N3 }; 8518 return getNode(Opcode, DL, VTList, Ops); 8519 } 8520 8521 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8522 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8523 SDValue Ops[] = { N1, N2, N3, N4 }; 8524 return getNode(Opcode, DL, VTList, Ops); 8525 } 8526 8527 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8528 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8529 SDValue N5) { 8530 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8531 return getNode(Opcode, DL, VTList, Ops); 8532 } 8533 8534 SDVTList SelectionDAG::getVTList(EVT VT) { 8535 return makeVTList(SDNode::getValueTypeList(VT), 1); 8536 } 8537 8538 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8539 FoldingSetNodeID ID; 8540 ID.AddInteger(2U); 8541 ID.AddInteger(VT1.getRawBits()); 8542 ID.AddInteger(VT2.getRawBits()); 8543 8544 void *IP = nullptr; 8545 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8546 if (!Result) { 8547 EVT *Array = Allocator.Allocate<EVT>(2); 8548 Array[0] = VT1; 8549 Array[1] = VT2; 8550 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8551 VTListMap.InsertNode(Result, IP); 8552 } 8553 return Result->getSDVTList(); 8554 } 8555 8556 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8557 FoldingSetNodeID ID; 8558 ID.AddInteger(3U); 8559 ID.AddInteger(VT1.getRawBits()); 8560 ID.AddInteger(VT2.getRawBits()); 8561 ID.AddInteger(VT3.getRawBits()); 8562 8563 void *IP = nullptr; 8564 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8565 if (!Result) { 8566 EVT *Array = Allocator.Allocate<EVT>(3); 8567 Array[0] = VT1; 8568 Array[1] = VT2; 8569 Array[2] = VT3; 8570 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8571 VTListMap.InsertNode(Result, IP); 8572 } 8573 return Result->getSDVTList(); 8574 } 8575 8576 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8577 FoldingSetNodeID ID; 8578 ID.AddInteger(4U); 8579 ID.AddInteger(VT1.getRawBits()); 8580 ID.AddInteger(VT2.getRawBits()); 8581 ID.AddInteger(VT3.getRawBits()); 8582 ID.AddInteger(VT4.getRawBits()); 8583 8584 void *IP = nullptr; 8585 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8586 if (!Result) { 8587 EVT *Array = Allocator.Allocate<EVT>(4); 8588 Array[0] = VT1; 8589 Array[1] = VT2; 8590 Array[2] = VT3; 8591 Array[3] = VT4; 8592 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8593 VTListMap.InsertNode(Result, IP); 8594 } 8595 return Result->getSDVTList(); 8596 } 8597 8598 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8599 unsigned NumVTs = VTs.size(); 8600 FoldingSetNodeID ID; 8601 ID.AddInteger(NumVTs); 8602 for (unsigned index = 0; index < NumVTs; index++) { 8603 ID.AddInteger(VTs[index].getRawBits()); 8604 } 8605 8606 void *IP = nullptr; 8607 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8608 if (!Result) { 8609 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8610 llvm::copy(VTs, Array); 8611 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8612 VTListMap.InsertNode(Result, IP); 8613 } 8614 return Result->getSDVTList(); 8615 } 8616 8617 8618 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8619 /// specified operands. If the resultant node already exists in the DAG, 8620 /// this does not modify the specified node, instead it returns the node that 8621 /// already exists. If the resultant node does not exist in the DAG, the 8622 /// input node is returned. As a degenerate case, if you specify the same 8623 /// input operands as the node already has, the input node is returned. 8624 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8625 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8626 8627 // Check to see if there is no change. 8628 if (Op == N->getOperand(0)) return N; 8629 8630 // See if the modified node already exists. 8631 void *InsertPos = nullptr; 8632 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8633 return Existing; 8634 8635 // Nope it doesn't. Remove the node from its current place in the maps. 8636 if (InsertPos) 8637 if (!RemoveNodeFromCSEMaps(N)) 8638 InsertPos = nullptr; 8639 8640 // Now we update the operands. 8641 N->OperandList[0].set(Op); 8642 8643 updateDivergence(N); 8644 // If this gets put into a CSE map, add it. 8645 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8646 return N; 8647 } 8648 8649 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8650 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8651 8652 // Check to see if there is no change. 8653 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8654 return N; // No operands changed, just return the input node. 8655 8656 // See if the modified node already exists. 8657 void *InsertPos = nullptr; 8658 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8659 return Existing; 8660 8661 // Nope it doesn't. Remove the node from its current place in the maps. 8662 if (InsertPos) 8663 if (!RemoveNodeFromCSEMaps(N)) 8664 InsertPos = nullptr; 8665 8666 // Now we update the operands. 8667 if (N->OperandList[0] != Op1) 8668 N->OperandList[0].set(Op1); 8669 if (N->OperandList[1] != Op2) 8670 N->OperandList[1].set(Op2); 8671 8672 updateDivergence(N); 8673 // If this gets put into a CSE map, add it. 8674 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8675 return N; 8676 } 8677 8678 SDNode *SelectionDAG:: 8679 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8680 SDValue Ops[] = { Op1, Op2, Op3 }; 8681 return UpdateNodeOperands(N, Ops); 8682 } 8683 8684 SDNode *SelectionDAG:: 8685 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8686 SDValue Op3, SDValue Op4) { 8687 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8688 return UpdateNodeOperands(N, Ops); 8689 } 8690 8691 SDNode *SelectionDAG:: 8692 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8693 SDValue Op3, SDValue Op4, SDValue Op5) { 8694 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8695 return UpdateNodeOperands(N, Ops); 8696 } 8697 8698 SDNode *SelectionDAG:: 8699 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8700 unsigned NumOps = Ops.size(); 8701 assert(N->getNumOperands() == NumOps && 8702 "Update with wrong number of operands"); 8703 8704 // If no operands changed just return the input node. 8705 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8706 return N; 8707 8708 // See if the modified node already exists. 8709 void *InsertPos = nullptr; 8710 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8711 return Existing; 8712 8713 // Nope it doesn't. Remove the node from its current place in the maps. 8714 if (InsertPos) 8715 if (!RemoveNodeFromCSEMaps(N)) 8716 InsertPos = nullptr; 8717 8718 // Now we update the operands. 8719 for (unsigned i = 0; i != NumOps; ++i) 8720 if (N->OperandList[i] != Ops[i]) 8721 N->OperandList[i].set(Ops[i]); 8722 8723 updateDivergence(N); 8724 // If this gets put into a CSE map, add it. 8725 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8726 return N; 8727 } 8728 8729 /// DropOperands - Release the operands and set this node to have 8730 /// zero operands. 8731 void SDNode::DropOperands() { 8732 // Unlike the code in MorphNodeTo that does this, we don't need to 8733 // watch for dead nodes here. 8734 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8735 SDUse &Use = *I++; 8736 Use.set(SDValue()); 8737 } 8738 } 8739 8740 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8741 ArrayRef<MachineMemOperand *> NewMemRefs) { 8742 if (NewMemRefs.empty()) { 8743 N->clearMemRefs(); 8744 return; 8745 } 8746 8747 // Check if we can avoid allocating by storing a single reference directly. 8748 if (NewMemRefs.size() == 1) { 8749 N->MemRefs = NewMemRefs[0]; 8750 N->NumMemRefs = 1; 8751 return; 8752 } 8753 8754 MachineMemOperand **MemRefsBuffer = 8755 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8756 llvm::copy(NewMemRefs, MemRefsBuffer); 8757 N->MemRefs = MemRefsBuffer; 8758 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8759 } 8760 8761 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8762 /// machine opcode. 8763 /// 8764 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8765 EVT VT) { 8766 SDVTList VTs = getVTList(VT); 8767 return SelectNodeTo(N, MachineOpc, VTs, None); 8768 } 8769 8770 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8771 EVT VT, SDValue Op1) { 8772 SDVTList VTs = getVTList(VT); 8773 SDValue Ops[] = { Op1 }; 8774 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8775 } 8776 8777 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8778 EVT VT, SDValue Op1, 8779 SDValue Op2) { 8780 SDVTList VTs = getVTList(VT); 8781 SDValue Ops[] = { Op1, Op2 }; 8782 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8783 } 8784 8785 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8786 EVT VT, SDValue Op1, 8787 SDValue Op2, SDValue Op3) { 8788 SDVTList VTs = getVTList(VT); 8789 SDValue Ops[] = { Op1, Op2, Op3 }; 8790 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8791 } 8792 8793 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8794 EVT VT, ArrayRef<SDValue> Ops) { 8795 SDVTList VTs = getVTList(VT); 8796 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8797 } 8798 8799 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8800 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8801 SDVTList VTs = getVTList(VT1, VT2); 8802 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8803 } 8804 8805 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8806 EVT VT1, EVT VT2) { 8807 SDVTList VTs = getVTList(VT1, VT2); 8808 return SelectNodeTo(N, MachineOpc, VTs, None); 8809 } 8810 8811 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8812 EVT VT1, EVT VT2, EVT VT3, 8813 ArrayRef<SDValue> Ops) { 8814 SDVTList VTs = getVTList(VT1, VT2, VT3); 8815 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8816 } 8817 8818 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8819 EVT VT1, EVT VT2, 8820 SDValue Op1, SDValue Op2) { 8821 SDVTList VTs = getVTList(VT1, VT2); 8822 SDValue Ops[] = { Op1, Op2 }; 8823 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8824 } 8825 8826 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8827 SDVTList VTs,ArrayRef<SDValue> Ops) { 8828 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8829 // Reset the NodeID to -1. 8830 New->setNodeId(-1); 8831 if (New != N) { 8832 ReplaceAllUsesWith(N, New); 8833 RemoveDeadNode(N); 8834 } 8835 return New; 8836 } 8837 8838 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8839 /// the line number information on the merged node since it is not possible to 8840 /// preserve the information that operation is associated with multiple lines. 8841 /// This will make the debugger working better at -O0, were there is a higher 8842 /// probability having other instructions associated with that line. 8843 /// 8844 /// For IROrder, we keep the smaller of the two 8845 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8846 DebugLoc NLoc = N->getDebugLoc(); 8847 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8848 N->setDebugLoc(DebugLoc()); 8849 } 8850 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8851 N->setIROrder(Order); 8852 return N; 8853 } 8854 8855 /// MorphNodeTo - This *mutates* the specified node to have the specified 8856 /// return type, opcode, and operands. 8857 /// 8858 /// Note that MorphNodeTo returns the resultant node. If there is already a 8859 /// node of the specified opcode and operands, it returns that node instead of 8860 /// the current one. Note that the SDLoc need not be the same. 8861 /// 8862 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8863 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8864 /// node, and because it doesn't require CSE recalculation for any of 8865 /// the node's users. 8866 /// 8867 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8868 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8869 /// the legalizer which maintain worklists that would need to be updated when 8870 /// deleting things. 8871 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8872 SDVTList VTs, ArrayRef<SDValue> Ops) { 8873 // If an identical node already exists, use it. 8874 void *IP = nullptr; 8875 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8876 FoldingSetNodeID ID; 8877 AddNodeIDNode(ID, Opc, VTs, Ops); 8878 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8879 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8880 } 8881 8882 if (!RemoveNodeFromCSEMaps(N)) 8883 IP = nullptr; 8884 8885 // Start the morphing. 8886 N->NodeType = Opc; 8887 N->ValueList = VTs.VTs; 8888 N->NumValues = VTs.NumVTs; 8889 8890 // Clear the operands list, updating used nodes to remove this from their 8891 // use list. Keep track of any operands that become dead as a result. 8892 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8893 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8894 SDUse &Use = *I++; 8895 SDNode *Used = Use.getNode(); 8896 Use.set(SDValue()); 8897 if (Used->use_empty()) 8898 DeadNodeSet.insert(Used); 8899 } 8900 8901 // For MachineNode, initialize the memory references information. 8902 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8903 MN->clearMemRefs(); 8904 8905 // Swap for an appropriately sized array from the recycler. 8906 removeOperands(N); 8907 createOperands(N, Ops); 8908 8909 // Delete any nodes that are still dead after adding the uses for the 8910 // new operands. 8911 if (!DeadNodeSet.empty()) { 8912 SmallVector<SDNode *, 16> DeadNodes; 8913 for (SDNode *N : DeadNodeSet) 8914 if (N->use_empty()) 8915 DeadNodes.push_back(N); 8916 RemoveDeadNodes(DeadNodes); 8917 } 8918 8919 if (IP) 8920 CSEMap.InsertNode(N, IP); // Memoize the new node. 8921 return N; 8922 } 8923 8924 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8925 unsigned OrigOpc = Node->getOpcode(); 8926 unsigned NewOpc; 8927 switch (OrigOpc) { 8928 default: 8929 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8930 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8931 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8932 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8933 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8934 #include "llvm/IR/ConstrainedOps.def" 8935 } 8936 8937 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8938 8939 // We're taking this node out of the chain, so we need to re-link things. 8940 SDValue InputChain = Node->getOperand(0); 8941 SDValue OutputChain = SDValue(Node, 1); 8942 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8943 8944 SmallVector<SDValue, 3> Ops; 8945 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8946 Ops.push_back(Node->getOperand(i)); 8947 8948 SDVTList VTs = getVTList(Node->getValueType(0)); 8949 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8950 8951 // MorphNodeTo can operate in two ways: if an existing node with the 8952 // specified operands exists, it can just return it. Otherwise, it 8953 // updates the node in place to have the requested operands. 8954 if (Res == Node) { 8955 // If we updated the node in place, reset the node ID. To the isel, 8956 // this should be just like a newly allocated machine node. 8957 Res->setNodeId(-1); 8958 } else { 8959 ReplaceAllUsesWith(Node, Res); 8960 RemoveDeadNode(Node); 8961 } 8962 8963 return Res; 8964 } 8965 8966 /// getMachineNode - These are used for target selectors to create a new node 8967 /// with specified return type(s), MachineInstr opcode, and operands. 8968 /// 8969 /// Note that getMachineNode returns the resultant node. If there is already a 8970 /// node of the specified opcode and operands, it returns that node instead of 8971 /// the current one. 8972 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8973 EVT VT) { 8974 SDVTList VTs = getVTList(VT); 8975 return getMachineNode(Opcode, dl, VTs, None); 8976 } 8977 8978 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8979 EVT VT, SDValue Op1) { 8980 SDVTList VTs = getVTList(VT); 8981 SDValue Ops[] = { Op1 }; 8982 return getMachineNode(Opcode, dl, VTs, Ops); 8983 } 8984 8985 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8986 EVT VT, SDValue Op1, SDValue Op2) { 8987 SDVTList VTs = getVTList(VT); 8988 SDValue Ops[] = { Op1, Op2 }; 8989 return getMachineNode(Opcode, dl, VTs, Ops); 8990 } 8991 8992 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8993 EVT VT, SDValue Op1, SDValue Op2, 8994 SDValue Op3) { 8995 SDVTList VTs = getVTList(VT); 8996 SDValue Ops[] = { Op1, Op2, Op3 }; 8997 return getMachineNode(Opcode, dl, VTs, Ops); 8998 } 8999 9000 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9001 EVT VT, ArrayRef<SDValue> Ops) { 9002 SDVTList VTs = getVTList(VT); 9003 return getMachineNode(Opcode, dl, VTs, Ops); 9004 } 9005 9006 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9007 EVT VT1, EVT VT2, SDValue Op1, 9008 SDValue Op2) { 9009 SDVTList VTs = getVTList(VT1, VT2); 9010 SDValue Ops[] = { Op1, Op2 }; 9011 return getMachineNode(Opcode, dl, VTs, Ops); 9012 } 9013 9014 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9015 EVT VT1, EVT VT2, SDValue Op1, 9016 SDValue Op2, SDValue Op3) { 9017 SDVTList VTs = getVTList(VT1, VT2); 9018 SDValue Ops[] = { Op1, Op2, Op3 }; 9019 return getMachineNode(Opcode, dl, VTs, Ops); 9020 } 9021 9022 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9023 EVT VT1, EVT VT2, 9024 ArrayRef<SDValue> Ops) { 9025 SDVTList VTs = getVTList(VT1, VT2); 9026 return getMachineNode(Opcode, dl, VTs, Ops); 9027 } 9028 9029 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9030 EVT VT1, EVT VT2, EVT VT3, 9031 SDValue Op1, SDValue Op2) { 9032 SDVTList VTs = getVTList(VT1, VT2, VT3); 9033 SDValue Ops[] = { Op1, Op2 }; 9034 return getMachineNode(Opcode, dl, VTs, Ops); 9035 } 9036 9037 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9038 EVT VT1, EVT VT2, EVT VT3, 9039 SDValue Op1, SDValue Op2, 9040 SDValue Op3) { 9041 SDVTList VTs = getVTList(VT1, VT2, VT3); 9042 SDValue Ops[] = { Op1, Op2, Op3 }; 9043 return getMachineNode(Opcode, dl, VTs, Ops); 9044 } 9045 9046 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9047 EVT VT1, EVT VT2, EVT VT3, 9048 ArrayRef<SDValue> Ops) { 9049 SDVTList VTs = getVTList(VT1, VT2, VT3); 9050 return getMachineNode(Opcode, dl, VTs, Ops); 9051 } 9052 9053 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9054 ArrayRef<EVT> ResultTys, 9055 ArrayRef<SDValue> Ops) { 9056 SDVTList VTs = getVTList(ResultTys); 9057 return getMachineNode(Opcode, dl, VTs, Ops); 9058 } 9059 9060 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9061 SDVTList VTs, 9062 ArrayRef<SDValue> Ops) { 9063 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9064 MachineSDNode *N; 9065 void *IP = nullptr; 9066 9067 if (DoCSE) { 9068 FoldingSetNodeID ID; 9069 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9070 IP = nullptr; 9071 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9072 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9073 } 9074 } 9075 9076 // Allocate a new MachineSDNode. 9077 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9078 createOperands(N, Ops); 9079 9080 if (DoCSE) 9081 CSEMap.InsertNode(N, IP); 9082 9083 InsertNode(N); 9084 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9085 return N; 9086 } 9087 9088 /// getTargetExtractSubreg - A convenience function for creating 9089 /// TargetOpcode::EXTRACT_SUBREG nodes. 9090 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9091 SDValue Operand) { 9092 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9093 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9094 VT, Operand, SRIdxVal); 9095 return SDValue(Subreg, 0); 9096 } 9097 9098 /// getTargetInsertSubreg - A convenience function for creating 9099 /// TargetOpcode::INSERT_SUBREG nodes. 9100 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9101 SDValue Operand, SDValue Subreg) { 9102 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9103 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9104 VT, Operand, Subreg, SRIdxVal); 9105 return SDValue(Result, 0); 9106 } 9107 9108 /// getNodeIfExists - Get the specified node if it's already available, or 9109 /// else return NULL. 9110 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9111 ArrayRef<SDValue> Ops) { 9112 SDNodeFlags Flags; 9113 if (Inserter) 9114 Flags = Inserter->getFlags(); 9115 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9116 } 9117 9118 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9119 ArrayRef<SDValue> Ops, 9120 const SDNodeFlags Flags) { 9121 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9122 FoldingSetNodeID ID; 9123 AddNodeIDNode(ID, Opcode, VTList, Ops); 9124 void *IP = nullptr; 9125 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9126 E->intersectFlagsWith(Flags); 9127 return E; 9128 } 9129 } 9130 return nullptr; 9131 } 9132 9133 /// doesNodeExist - Check if a node exists without modifying its flags. 9134 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9135 ArrayRef<SDValue> Ops) { 9136 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9137 FoldingSetNodeID ID; 9138 AddNodeIDNode(ID, Opcode, VTList, Ops); 9139 void *IP = nullptr; 9140 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9141 return true; 9142 } 9143 return false; 9144 } 9145 9146 /// getDbgValue - Creates a SDDbgValue node. 9147 /// 9148 /// SDNode 9149 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9150 SDNode *N, unsigned R, bool IsIndirect, 9151 const DebugLoc &DL, unsigned O) { 9152 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9153 "Expected inlined-at fields to agree"); 9154 return new (DbgInfo->getAlloc()) 9155 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9156 {}, IsIndirect, DL, O, 9157 /*IsVariadic=*/false); 9158 } 9159 9160 /// Constant 9161 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9162 DIExpression *Expr, 9163 const Value *C, 9164 const DebugLoc &DL, unsigned O) { 9165 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9166 "Expected inlined-at fields to agree"); 9167 return new (DbgInfo->getAlloc()) 9168 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9169 /*IsIndirect=*/false, DL, O, 9170 /*IsVariadic=*/false); 9171 } 9172 9173 /// FrameIndex 9174 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9175 DIExpression *Expr, unsigned FI, 9176 bool IsIndirect, 9177 const DebugLoc &DL, 9178 unsigned O) { 9179 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9180 "Expected inlined-at fields to agree"); 9181 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9182 } 9183 9184 /// FrameIndex with dependencies 9185 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9186 DIExpression *Expr, unsigned FI, 9187 ArrayRef<SDNode *> Dependencies, 9188 bool IsIndirect, 9189 const DebugLoc &DL, 9190 unsigned O) { 9191 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9192 "Expected inlined-at fields to agree"); 9193 return new (DbgInfo->getAlloc()) 9194 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9195 Dependencies, IsIndirect, DL, O, 9196 /*IsVariadic=*/false); 9197 } 9198 9199 /// VReg 9200 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9201 unsigned VReg, bool IsIndirect, 9202 const DebugLoc &DL, unsigned O) { 9203 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9204 "Expected inlined-at fields to agree"); 9205 return new (DbgInfo->getAlloc()) 9206 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9207 {}, IsIndirect, DL, O, 9208 /*IsVariadic=*/false); 9209 } 9210 9211 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9212 ArrayRef<SDDbgOperand> Locs, 9213 ArrayRef<SDNode *> Dependencies, 9214 bool IsIndirect, const DebugLoc &DL, 9215 unsigned O, bool IsVariadic) { 9216 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9217 "Expected inlined-at fields to agree"); 9218 return new (DbgInfo->getAlloc()) 9219 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9220 DL, O, IsVariadic); 9221 } 9222 9223 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9224 unsigned OffsetInBits, unsigned SizeInBits, 9225 bool InvalidateDbg) { 9226 SDNode *FromNode = From.getNode(); 9227 SDNode *ToNode = To.getNode(); 9228 assert(FromNode && ToNode && "Can't modify dbg values"); 9229 9230 // PR35338 9231 // TODO: assert(From != To && "Redundant dbg value transfer"); 9232 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9233 if (From == To || FromNode == ToNode) 9234 return; 9235 9236 if (!FromNode->getHasDebugValue()) 9237 return; 9238 9239 SDDbgOperand FromLocOp = 9240 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9241 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9242 9243 SmallVector<SDDbgValue *, 2> ClonedDVs; 9244 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9245 if (Dbg->isInvalidated()) 9246 continue; 9247 9248 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9249 9250 // Create a new location ops vector that is equal to the old vector, but 9251 // with each instance of FromLocOp replaced with ToLocOp. 9252 bool Changed = false; 9253 auto NewLocOps = Dbg->copyLocationOps(); 9254 std::replace_if( 9255 NewLocOps.begin(), NewLocOps.end(), 9256 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9257 bool Match = Op == FromLocOp; 9258 Changed |= Match; 9259 return Match; 9260 }, 9261 ToLocOp); 9262 // Ignore this SDDbgValue if we didn't find a matching location. 9263 if (!Changed) 9264 continue; 9265 9266 DIVariable *Var = Dbg->getVariable(); 9267 auto *Expr = Dbg->getExpression(); 9268 // If a fragment is requested, update the expression. 9269 if (SizeInBits) { 9270 // When splitting a larger (e.g., sign-extended) value whose 9271 // lower bits are described with an SDDbgValue, do not attempt 9272 // to transfer the SDDbgValue to the upper bits. 9273 if (auto FI = Expr->getFragmentInfo()) 9274 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9275 continue; 9276 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9277 SizeInBits); 9278 if (!Fragment) 9279 continue; 9280 Expr = *Fragment; 9281 } 9282 9283 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9284 // Clone the SDDbgValue and move it to To. 9285 SDDbgValue *Clone = getDbgValueList( 9286 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9287 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9288 Dbg->isVariadic()); 9289 ClonedDVs.push_back(Clone); 9290 9291 if (InvalidateDbg) { 9292 // Invalidate value and indicate the SDDbgValue should not be emitted. 9293 Dbg->setIsInvalidated(); 9294 Dbg->setIsEmitted(); 9295 } 9296 } 9297 9298 for (SDDbgValue *Dbg : ClonedDVs) { 9299 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9300 "Transferred DbgValues should depend on the new SDNode"); 9301 AddDbgValue(Dbg, false); 9302 } 9303 } 9304 9305 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9306 if (!N.getHasDebugValue()) 9307 return; 9308 9309 SmallVector<SDDbgValue *, 2> ClonedDVs; 9310 for (auto DV : GetDbgValues(&N)) { 9311 if (DV->isInvalidated()) 9312 continue; 9313 switch (N.getOpcode()) { 9314 default: 9315 break; 9316 case ISD::ADD: 9317 SDValue N0 = N.getOperand(0); 9318 SDValue N1 = N.getOperand(1); 9319 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9320 isConstantIntBuildVectorOrConstantInt(N1)) { 9321 uint64_t Offset = N.getConstantOperandVal(1); 9322 9323 // Rewrite an ADD constant node into a DIExpression. Since we are 9324 // performing arithmetic to compute the variable's *value* in the 9325 // DIExpression, we need to mark the expression with a 9326 // DW_OP_stack_value. 9327 auto *DIExpr = DV->getExpression(); 9328 auto NewLocOps = DV->copyLocationOps(); 9329 bool Changed = false; 9330 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9331 // We're not given a ResNo to compare against because the whole 9332 // node is going away. We know that any ISD::ADD only has one 9333 // result, so we can assume any node match is using the result. 9334 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9335 NewLocOps[i].getSDNode() != &N) 9336 continue; 9337 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9338 SmallVector<uint64_t, 3> ExprOps; 9339 DIExpression::appendOffset(ExprOps, Offset); 9340 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9341 Changed = true; 9342 } 9343 (void)Changed; 9344 assert(Changed && "Salvage target doesn't use N"); 9345 9346 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9347 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9348 NewLocOps, AdditionalDependencies, 9349 DV->isIndirect(), DV->getDebugLoc(), 9350 DV->getOrder(), DV->isVariadic()); 9351 ClonedDVs.push_back(Clone); 9352 DV->setIsInvalidated(); 9353 DV->setIsEmitted(); 9354 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9355 N0.getNode()->dumprFull(this); 9356 dbgs() << " into " << *DIExpr << '\n'); 9357 } 9358 } 9359 } 9360 9361 for (SDDbgValue *Dbg : ClonedDVs) { 9362 assert(!Dbg->getSDNodes().empty() && 9363 "Salvaged DbgValue should depend on a new SDNode"); 9364 AddDbgValue(Dbg, false); 9365 } 9366 } 9367 9368 /// Creates a SDDbgLabel node. 9369 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9370 const DebugLoc &DL, unsigned O) { 9371 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9372 "Expected inlined-at fields to agree"); 9373 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9374 } 9375 9376 namespace { 9377 9378 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9379 /// pointed to by a use iterator is deleted, increment the use iterator 9380 /// so that it doesn't dangle. 9381 /// 9382 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9383 SDNode::use_iterator &UI; 9384 SDNode::use_iterator &UE; 9385 9386 void NodeDeleted(SDNode *N, SDNode *E) override { 9387 // Increment the iterator as needed. 9388 while (UI != UE && N == *UI) 9389 ++UI; 9390 } 9391 9392 public: 9393 RAUWUpdateListener(SelectionDAG &d, 9394 SDNode::use_iterator &ui, 9395 SDNode::use_iterator &ue) 9396 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9397 }; 9398 9399 } // end anonymous namespace 9400 9401 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9402 /// This can cause recursive merging of nodes in the DAG. 9403 /// 9404 /// This version assumes From has a single result value. 9405 /// 9406 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9407 SDNode *From = FromN.getNode(); 9408 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9409 "Cannot replace with this method!"); 9410 assert(From != To.getNode() && "Cannot replace uses of with self"); 9411 9412 // Preserve Debug Values 9413 transferDbgValues(FromN, To); 9414 9415 // Iterate over all the existing uses of From. New uses will be added 9416 // to the beginning of the use list, which we avoid visiting. 9417 // This specifically avoids visiting uses of From that arise while the 9418 // replacement is happening, because any such uses would be the result 9419 // of CSE: If an existing node looks like From after one of its operands 9420 // is replaced by To, we don't want to replace of all its users with To 9421 // too. See PR3018 for more info. 9422 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9423 RAUWUpdateListener Listener(*this, UI, UE); 9424 while (UI != UE) { 9425 SDNode *User = *UI; 9426 9427 // This node is about to morph, remove its old self from the CSE maps. 9428 RemoveNodeFromCSEMaps(User); 9429 9430 // A user can appear in a use list multiple times, and when this 9431 // happens the uses are usually next to each other in the list. 9432 // To help reduce the number of CSE recomputations, process all 9433 // the uses of this user that we can find this way. 9434 do { 9435 SDUse &Use = UI.getUse(); 9436 ++UI; 9437 Use.set(To); 9438 if (To->isDivergent() != From->isDivergent()) 9439 updateDivergence(User); 9440 } while (UI != UE && *UI == User); 9441 // Now that we have modified User, add it back to the CSE maps. If it 9442 // already exists there, recursively merge the results together. 9443 AddModifiedNodeToCSEMaps(User); 9444 } 9445 9446 // If we just RAUW'd the root, take note. 9447 if (FromN == getRoot()) 9448 setRoot(To); 9449 } 9450 9451 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9452 /// This can cause recursive merging of nodes in the DAG. 9453 /// 9454 /// This version assumes that for each value of From, there is a 9455 /// corresponding value in To in the same position with the same type. 9456 /// 9457 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9458 #ifndef NDEBUG 9459 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9460 assert((!From->hasAnyUseOfValue(i) || 9461 From->getValueType(i) == To->getValueType(i)) && 9462 "Cannot use this version of ReplaceAllUsesWith!"); 9463 #endif 9464 9465 // Handle the trivial case. 9466 if (From == To) 9467 return; 9468 9469 // Preserve Debug Info. Only do this if there's a use. 9470 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9471 if (From->hasAnyUseOfValue(i)) { 9472 assert((i < To->getNumValues()) && "Invalid To location"); 9473 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9474 } 9475 9476 // Iterate over just the existing users of From. See the comments in 9477 // the ReplaceAllUsesWith above. 9478 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9479 RAUWUpdateListener Listener(*this, UI, UE); 9480 while (UI != UE) { 9481 SDNode *User = *UI; 9482 9483 // This node is about to morph, remove its old self from the CSE maps. 9484 RemoveNodeFromCSEMaps(User); 9485 9486 // A user can appear in a use list multiple times, and when this 9487 // happens the uses are usually next to each other in the list. 9488 // To help reduce the number of CSE recomputations, process all 9489 // the uses of this user that we can find this way. 9490 do { 9491 SDUse &Use = UI.getUse(); 9492 ++UI; 9493 Use.setNode(To); 9494 if (To->isDivergent() != From->isDivergent()) 9495 updateDivergence(User); 9496 } while (UI != UE && *UI == User); 9497 9498 // Now that we have modified User, add it back to the CSE maps. If it 9499 // already exists there, recursively merge the results together. 9500 AddModifiedNodeToCSEMaps(User); 9501 } 9502 9503 // If we just RAUW'd the root, take note. 9504 if (From == getRoot().getNode()) 9505 setRoot(SDValue(To, getRoot().getResNo())); 9506 } 9507 9508 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9509 /// This can cause recursive merging of nodes in the DAG. 9510 /// 9511 /// This version can replace From with any result values. To must match the 9512 /// number and types of values returned by From. 9513 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9514 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9515 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9516 9517 // Preserve Debug Info. 9518 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9519 transferDbgValues(SDValue(From, i), To[i]); 9520 9521 // Iterate over just the existing users of From. See the comments in 9522 // the ReplaceAllUsesWith above. 9523 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9524 RAUWUpdateListener Listener(*this, UI, UE); 9525 while (UI != UE) { 9526 SDNode *User = *UI; 9527 9528 // This node is about to morph, remove its old self from the CSE maps. 9529 RemoveNodeFromCSEMaps(User); 9530 9531 // A user can appear in a use list multiple times, and when this happens the 9532 // uses are usually next to each other in the list. To help reduce the 9533 // number of CSE and divergence recomputations, process all the uses of this 9534 // user that we can find this way. 9535 bool To_IsDivergent = false; 9536 do { 9537 SDUse &Use = UI.getUse(); 9538 const SDValue &ToOp = To[Use.getResNo()]; 9539 ++UI; 9540 Use.set(ToOp); 9541 To_IsDivergent |= ToOp->isDivergent(); 9542 } while (UI != UE && *UI == User); 9543 9544 if (To_IsDivergent != From->isDivergent()) 9545 updateDivergence(User); 9546 9547 // Now that we have modified User, add it back to the CSE maps. If it 9548 // already exists there, recursively merge the results together. 9549 AddModifiedNodeToCSEMaps(User); 9550 } 9551 9552 // If we just RAUW'd the root, take note. 9553 if (From == getRoot().getNode()) 9554 setRoot(SDValue(To[getRoot().getResNo()])); 9555 } 9556 9557 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9558 /// uses of other values produced by From.getNode() alone. The Deleted 9559 /// vector is handled the same way as for ReplaceAllUsesWith. 9560 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9561 // Handle the really simple, really trivial case efficiently. 9562 if (From == To) return; 9563 9564 // Handle the simple, trivial, case efficiently. 9565 if (From.getNode()->getNumValues() == 1) { 9566 ReplaceAllUsesWith(From, To); 9567 return; 9568 } 9569 9570 // Preserve Debug Info. 9571 transferDbgValues(From, To); 9572 9573 // Iterate over just the existing users of From. See the comments in 9574 // the ReplaceAllUsesWith above. 9575 SDNode::use_iterator UI = From.getNode()->use_begin(), 9576 UE = From.getNode()->use_end(); 9577 RAUWUpdateListener Listener(*this, UI, UE); 9578 while (UI != UE) { 9579 SDNode *User = *UI; 9580 bool UserRemovedFromCSEMaps = false; 9581 9582 // A user can appear in a use list multiple times, and when this 9583 // happens the uses are usually next to each other in the list. 9584 // To help reduce the number of CSE recomputations, process all 9585 // the uses of this user that we can find this way. 9586 do { 9587 SDUse &Use = UI.getUse(); 9588 9589 // Skip uses of different values from the same node. 9590 if (Use.getResNo() != From.getResNo()) { 9591 ++UI; 9592 continue; 9593 } 9594 9595 // If this node hasn't been modified yet, it's still in the CSE maps, 9596 // so remove its old self from the CSE maps. 9597 if (!UserRemovedFromCSEMaps) { 9598 RemoveNodeFromCSEMaps(User); 9599 UserRemovedFromCSEMaps = true; 9600 } 9601 9602 ++UI; 9603 Use.set(To); 9604 if (To->isDivergent() != From->isDivergent()) 9605 updateDivergence(User); 9606 } while (UI != UE && *UI == User); 9607 // We are iterating over all uses of the From node, so if a use 9608 // doesn't use the specific value, no changes are made. 9609 if (!UserRemovedFromCSEMaps) 9610 continue; 9611 9612 // Now that we have modified User, add it back to the CSE maps. If it 9613 // already exists there, recursively merge the results together. 9614 AddModifiedNodeToCSEMaps(User); 9615 } 9616 9617 // If we just RAUW'd the root, take note. 9618 if (From == getRoot()) 9619 setRoot(To); 9620 } 9621 9622 namespace { 9623 9624 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9625 /// to record information about a use. 9626 struct UseMemo { 9627 SDNode *User; 9628 unsigned Index; 9629 SDUse *Use; 9630 }; 9631 9632 /// operator< - Sort Memos by User. 9633 bool operator<(const UseMemo &L, const UseMemo &R) { 9634 return (intptr_t)L.User < (intptr_t)R.User; 9635 } 9636 9637 } // end anonymous namespace 9638 9639 bool SelectionDAG::calculateDivergence(SDNode *N) { 9640 if (TLI->isSDNodeAlwaysUniform(N)) { 9641 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9642 "Conflicting divergence information!"); 9643 return false; 9644 } 9645 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9646 return true; 9647 for (auto &Op : N->ops()) { 9648 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9649 return true; 9650 } 9651 return false; 9652 } 9653 9654 void SelectionDAG::updateDivergence(SDNode *N) { 9655 SmallVector<SDNode *, 16> Worklist(1, N); 9656 do { 9657 N = Worklist.pop_back_val(); 9658 bool IsDivergent = calculateDivergence(N); 9659 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9660 N->SDNodeBits.IsDivergent = IsDivergent; 9661 llvm::append_range(Worklist, N->uses()); 9662 } 9663 } while (!Worklist.empty()); 9664 } 9665 9666 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9667 DenseMap<SDNode *, unsigned> Degree; 9668 Order.reserve(AllNodes.size()); 9669 for (auto &N : allnodes()) { 9670 unsigned NOps = N.getNumOperands(); 9671 Degree[&N] = NOps; 9672 if (0 == NOps) 9673 Order.push_back(&N); 9674 } 9675 for (size_t I = 0; I != Order.size(); ++I) { 9676 SDNode *N = Order[I]; 9677 for (auto U : N->uses()) { 9678 unsigned &UnsortedOps = Degree[U]; 9679 if (0 == --UnsortedOps) 9680 Order.push_back(U); 9681 } 9682 } 9683 } 9684 9685 #ifndef NDEBUG 9686 void SelectionDAG::VerifyDAGDivergence() { 9687 std::vector<SDNode *> TopoOrder; 9688 CreateTopologicalOrder(TopoOrder); 9689 for (auto *N : TopoOrder) { 9690 assert(calculateDivergence(N) == N->isDivergent() && 9691 "Divergence bit inconsistency detected"); 9692 } 9693 } 9694 #endif 9695 9696 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9697 /// uses of other values produced by From.getNode() alone. The same value 9698 /// may appear in both the From and To list. The Deleted vector is 9699 /// handled the same way as for ReplaceAllUsesWith. 9700 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9701 const SDValue *To, 9702 unsigned Num){ 9703 // Handle the simple, trivial case efficiently. 9704 if (Num == 1) 9705 return ReplaceAllUsesOfValueWith(*From, *To); 9706 9707 transferDbgValues(*From, *To); 9708 9709 // Read up all the uses and make records of them. This helps 9710 // processing new uses that are introduced during the 9711 // replacement process. 9712 SmallVector<UseMemo, 4> Uses; 9713 for (unsigned i = 0; i != Num; ++i) { 9714 unsigned FromResNo = From[i].getResNo(); 9715 SDNode *FromNode = From[i].getNode(); 9716 for (SDNode::use_iterator UI = FromNode->use_begin(), 9717 E = FromNode->use_end(); UI != E; ++UI) { 9718 SDUse &Use = UI.getUse(); 9719 if (Use.getResNo() == FromResNo) { 9720 UseMemo Memo = { *UI, i, &Use }; 9721 Uses.push_back(Memo); 9722 } 9723 } 9724 } 9725 9726 // Sort the uses, so that all the uses from a given User are together. 9727 llvm::sort(Uses); 9728 9729 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9730 UseIndex != UseIndexEnd; ) { 9731 // We know that this user uses some value of From. If it is the right 9732 // value, update it. 9733 SDNode *User = Uses[UseIndex].User; 9734 9735 // This node is about to morph, remove its old self from the CSE maps. 9736 RemoveNodeFromCSEMaps(User); 9737 9738 // The Uses array is sorted, so all the uses for a given User 9739 // are next to each other in the list. 9740 // To help reduce the number of CSE recomputations, process all 9741 // the uses of this user that we can find this way. 9742 do { 9743 unsigned i = Uses[UseIndex].Index; 9744 SDUse &Use = *Uses[UseIndex].Use; 9745 ++UseIndex; 9746 9747 Use.set(To[i]); 9748 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9749 9750 // Now that we have modified User, add it back to the CSE maps. If it 9751 // already exists there, recursively merge the results together. 9752 AddModifiedNodeToCSEMaps(User); 9753 } 9754 } 9755 9756 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9757 /// based on their topological order. It returns the maximum id and a vector 9758 /// of the SDNodes* in assigned order by reference. 9759 unsigned SelectionDAG::AssignTopologicalOrder() { 9760 unsigned DAGSize = 0; 9761 9762 // SortedPos tracks the progress of the algorithm. Nodes before it are 9763 // sorted, nodes after it are unsorted. When the algorithm completes 9764 // it is at the end of the list. 9765 allnodes_iterator SortedPos = allnodes_begin(); 9766 9767 // Visit all the nodes. Move nodes with no operands to the front of 9768 // the list immediately. Annotate nodes that do have operands with their 9769 // operand count. Before we do this, the Node Id fields of the nodes 9770 // may contain arbitrary values. After, the Node Id fields for nodes 9771 // before SortedPos will contain the topological sort index, and the 9772 // Node Id fields for nodes At SortedPos and after will contain the 9773 // count of outstanding operands. 9774 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 9775 checkForCycles(&N, this); 9776 unsigned Degree = N.getNumOperands(); 9777 if (Degree == 0) { 9778 // A node with no uses, add it to the result array immediately. 9779 N.setNodeId(DAGSize++); 9780 allnodes_iterator Q(&N); 9781 if (Q != SortedPos) 9782 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9783 assert(SortedPos != AllNodes.end() && "Overran node list"); 9784 ++SortedPos; 9785 } else { 9786 // Temporarily use the Node Id as scratch space for the degree count. 9787 N.setNodeId(Degree); 9788 } 9789 } 9790 9791 // Visit all the nodes. As we iterate, move nodes into sorted order, 9792 // such that by the time the end is reached all nodes will be sorted. 9793 for (SDNode &Node : allnodes()) { 9794 SDNode *N = &Node; 9795 checkForCycles(N, this); 9796 // N is in sorted position, so all its uses have one less operand 9797 // that needs to be sorted. 9798 for (SDNode *P : N->uses()) { 9799 unsigned Degree = P->getNodeId(); 9800 assert(Degree != 0 && "Invalid node degree"); 9801 --Degree; 9802 if (Degree == 0) { 9803 // All of P's operands are sorted, so P may sorted now. 9804 P->setNodeId(DAGSize++); 9805 if (P->getIterator() != SortedPos) 9806 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9807 assert(SortedPos != AllNodes.end() && "Overran node list"); 9808 ++SortedPos; 9809 } else { 9810 // Update P's outstanding operand count. 9811 P->setNodeId(Degree); 9812 } 9813 } 9814 if (Node.getIterator() == SortedPos) { 9815 #ifndef NDEBUG 9816 allnodes_iterator I(N); 9817 SDNode *S = &*++I; 9818 dbgs() << "Overran sorted position:\n"; 9819 S->dumprFull(this); dbgs() << "\n"; 9820 dbgs() << "Checking if this is due to cycles\n"; 9821 checkForCycles(this, true); 9822 #endif 9823 llvm_unreachable(nullptr); 9824 } 9825 } 9826 9827 assert(SortedPos == AllNodes.end() && 9828 "Topological sort incomplete!"); 9829 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9830 "First node in topological sort is not the entry token!"); 9831 assert(AllNodes.front().getNodeId() == 0 && 9832 "First node in topological sort has non-zero id!"); 9833 assert(AllNodes.front().getNumOperands() == 0 && 9834 "First node in topological sort has operands!"); 9835 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9836 "Last node in topologic sort has unexpected id!"); 9837 assert(AllNodes.back().use_empty() && 9838 "Last node in topologic sort has users!"); 9839 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9840 return DAGSize; 9841 } 9842 9843 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9844 /// value is produced by SD. 9845 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9846 for (SDNode *SD : DB->getSDNodes()) { 9847 if (!SD) 9848 continue; 9849 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9850 SD->setHasDebugValue(true); 9851 } 9852 DbgInfo->add(DB, isParameter); 9853 } 9854 9855 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9856 9857 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9858 SDValue NewMemOpChain) { 9859 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9860 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9861 // The new memory operation must have the same position as the old load in 9862 // terms of memory dependency. Create a TokenFactor for the old load and new 9863 // memory operation and update uses of the old load's output chain to use that 9864 // TokenFactor. 9865 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9866 return NewMemOpChain; 9867 9868 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9869 OldChain, NewMemOpChain); 9870 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9871 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9872 return TokenFactor; 9873 } 9874 9875 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9876 SDValue NewMemOp) { 9877 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9878 SDValue OldChain = SDValue(OldLoad, 1); 9879 SDValue NewMemOpChain = NewMemOp.getValue(1); 9880 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9881 } 9882 9883 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9884 Function **OutFunction) { 9885 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9886 9887 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9888 auto *Module = MF->getFunction().getParent(); 9889 auto *Function = Module->getFunction(Symbol); 9890 9891 if (OutFunction != nullptr) 9892 *OutFunction = Function; 9893 9894 if (Function != nullptr) { 9895 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9896 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9897 } 9898 9899 std::string ErrorStr; 9900 raw_string_ostream ErrorFormatter(ErrorStr); 9901 ErrorFormatter << "Undefined external symbol "; 9902 ErrorFormatter << '"' << Symbol << '"'; 9903 report_fatal_error(Twine(ErrorFormatter.str())); 9904 } 9905 9906 //===----------------------------------------------------------------------===// 9907 // SDNode Class 9908 //===----------------------------------------------------------------------===// 9909 9910 bool llvm::isNullConstant(SDValue V) { 9911 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9912 return Const != nullptr && Const->isZero(); 9913 } 9914 9915 bool llvm::isNullFPConstant(SDValue V) { 9916 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9917 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9918 } 9919 9920 bool llvm::isAllOnesConstant(SDValue V) { 9921 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9922 return Const != nullptr && Const->isAllOnes(); 9923 } 9924 9925 bool llvm::isOneConstant(SDValue V) { 9926 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9927 return Const != nullptr && Const->isOne(); 9928 } 9929 9930 SDValue llvm::peekThroughBitcasts(SDValue V) { 9931 while (V.getOpcode() == ISD::BITCAST) 9932 V = V.getOperand(0); 9933 return V; 9934 } 9935 9936 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9937 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9938 V = V.getOperand(0); 9939 return V; 9940 } 9941 9942 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9943 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9944 V = V.getOperand(0); 9945 return V; 9946 } 9947 9948 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9949 if (V.getOpcode() != ISD::XOR) 9950 return false; 9951 V = peekThroughBitcasts(V.getOperand(1)); 9952 unsigned NumBits = V.getScalarValueSizeInBits(); 9953 ConstantSDNode *C = 9954 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9955 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9956 } 9957 9958 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9959 bool AllowTruncation) { 9960 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9961 return CN; 9962 9963 // SplatVectors can truncate their operands. Ignore that case here unless 9964 // AllowTruncation is set. 9965 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9966 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9967 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9968 EVT CVT = CN->getValueType(0); 9969 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9970 if (AllowTruncation || CVT == VecEltVT) 9971 return CN; 9972 } 9973 } 9974 9975 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9976 BitVector UndefElements; 9977 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9978 9979 // BuildVectors can truncate their operands. Ignore that case here unless 9980 // AllowTruncation is set. 9981 if (CN && (UndefElements.none() || AllowUndefs)) { 9982 EVT CVT = CN->getValueType(0); 9983 EVT NSVT = N.getValueType().getScalarType(); 9984 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9985 if (AllowTruncation || (CVT == NSVT)) 9986 return CN; 9987 } 9988 } 9989 9990 return nullptr; 9991 } 9992 9993 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9994 bool AllowUndefs, 9995 bool AllowTruncation) { 9996 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9997 return CN; 9998 9999 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10000 BitVector UndefElements; 10001 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10002 10003 // BuildVectors can truncate their operands. Ignore that case here unless 10004 // AllowTruncation is set. 10005 if (CN && (UndefElements.none() || AllowUndefs)) { 10006 EVT CVT = CN->getValueType(0); 10007 EVT NSVT = N.getValueType().getScalarType(); 10008 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10009 if (AllowTruncation || (CVT == NSVT)) 10010 return CN; 10011 } 10012 } 10013 10014 return nullptr; 10015 } 10016 10017 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10018 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10019 return CN; 10020 10021 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10022 BitVector UndefElements; 10023 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10024 if (CN && (UndefElements.none() || AllowUndefs)) 10025 return CN; 10026 } 10027 10028 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10029 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10030 return CN; 10031 10032 return nullptr; 10033 } 10034 10035 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10036 const APInt &DemandedElts, 10037 bool AllowUndefs) { 10038 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10039 return CN; 10040 10041 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10042 BitVector UndefElements; 10043 ConstantFPSDNode *CN = 10044 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10045 if (CN && (UndefElements.none() || AllowUndefs)) 10046 return CN; 10047 } 10048 10049 return nullptr; 10050 } 10051 10052 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10053 // TODO: may want to use peekThroughBitcast() here. 10054 ConstantSDNode *C = 10055 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10056 return C && C->isZero(); 10057 } 10058 10059 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10060 // TODO: may want to use peekThroughBitcast() here. 10061 unsigned BitWidth = N.getScalarValueSizeInBits(); 10062 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10063 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10064 } 10065 10066 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10067 N = peekThroughBitcasts(N); 10068 unsigned BitWidth = N.getScalarValueSizeInBits(); 10069 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10070 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10071 } 10072 10073 HandleSDNode::~HandleSDNode() { 10074 DropOperands(); 10075 } 10076 10077 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10078 const DebugLoc &DL, 10079 const GlobalValue *GA, EVT VT, 10080 int64_t o, unsigned TF) 10081 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10082 TheGlobal = GA; 10083 } 10084 10085 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10086 EVT VT, unsigned SrcAS, 10087 unsigned DestAS) 10088 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10089 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10090 10091 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10092 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10093 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10094 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10095 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10096 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10097 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10098 10099 // We check here that the size of the memory operand fits within the size of 10100 // the MMO. This is because the MMO might indicate only a possible address 10101 // range instead of specifying the affected memory addresses precisely. 10102 // TODO: Make MachineMemOperands aware of scalable vectors. 10103 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10104 "Size mismatch!"); 10105 } 10106 10107 /// Profile - Gather unique data for the node. 10108 /// 10109 void SDNode::Profile(FoldingSetNodeID &ID) const { 10110 AddNodeIDNode(ID, this); 10111 } 10112 10113 namespace { 10114 10115 struct EVTArray { 10116 std::vector<EVT> VTs; 10117 10118 EVTArray() { 10119 VTs.reserve(MVT::VALUETYPE_SIZE); 10120 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10121 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10122 } 10123 }; 10124 10125 } // end anonymous namespace 10126 10127 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10128 static ManagedStatic<EVTArray> SimpleVTArray; 10129 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10130 10131 /// getValueTypeList - Return a pointer to the specified value type. 10132 /// 10133 const EVT *SDNode::getValueTypeList(EVT VT) { 10134 if (VT.isExtended()) { 10135 sys::SmartScopedLock<true> Lock(*VTMutex); 10136 return &(*EVTs->insert(VT).first); 10137 } 10138 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10139 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10140 } 10141 10142 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10143 /// indicated value. This method ignores uses of other values defined by this 10144 /// operation. 10145 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10146 assert(Value < getNumValues() && "Bad value!"); 10147 10148 // TODO: Only iterate over uses of a given value of the node 10149 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10150 if (UI.getUse().getResNo() == Value) { 10151 if (NUses == 0) 10152 return false; 10153 --NUses; 10154 } 10155 } 10156 10157 // Found exactly the right number of uses? 10158 return NUses == 0; 10159 } 10160 10161 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10162 /// value. This method ignores uses of other values defined by this operation. 10163 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10164 assert(Value < getNumValues() && "Bad value!"); 10165 10166 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10167 if (UI.getUse().getResNo() == Value) 10168 return true; 10169 10170 return false; 10171 } 10172 10173 /// isOnlyUserOf - Return true if this node is the only use of N. 10174 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10175 bool Seen = false; 10176 for (const SDNode *User : N->uses()) { 10177 if (User == this) 10178 Seen = true; 10179 else 10180 return false; 10181 } 10182 10183 return Seen; 10184 } 10185 10186 /// Return true if the only users of N are contained in Nodes. 10187 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10188 bool Seen = false; 10189 for (const SDNode *User : N->uses()) { 10190 if (llvm::is_contained(Nodes, User)) 10191 Seen = true; 10192 else 10193 return false; 10194 } 10195 10196 return Seen; 10197 } 10198 10199 /// isOperand - Return true if this node is an operand of N. 10200 bool SDValue::isOperandOf(const SDNode *N) const { 10201 return is_contained(N->op_values(), *this); 10202 } 10203 10204 bool SDNode::isOperandOf(const SDNode *N) const { 10205 return any_of(N->op_values(), 10206 [this](SDValue Op) { return this == Op.getNode(); }); 10207 } 10208 10209 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10210 /// be a chain) reaches the specified operand without crossing any 10211 /// side-effecting instructions on any chain path. In practice, this looks 10212 /// through token factors and non-volatile loads. In order to remain efficient, 10213 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10214 /// 10215 /// Note that we only need to examine chains when we're searching for 10216 /// side-effects; SelectionDAG requires that all side-effects are represented 10217 /// by chains, even if another operand would force a specific ordering. This 10218 /// constraint is necessary to allow transformations like splitting loads. 10219 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10220 unsigned Depth) const { 10221 if (*this == Dest) return true; 10222 10223 // Don't search too deeply, we just want to be able to see through 10224 // TokenFactor's etc. 10225 if (Depth == 0) return false; 10226 10227 // If this is a token factor, all inputs to the TF happen in parallel. 10228 if (getOpcode() == ISD::TokenFactor) { 10229 // First, try a shallow search. 10230 if (is_contained((*this)->ops(), Dest)) { 10231 // We found the chain we want as an operand of this TokenFactor. 10232 // Essentially, we reach the chain without side-effects if we could 10233 // serialize the TokenFactor into a simple chain of operations with 10234 // Dest as the last operation. This is automatically true if the 10235 // chain has one use: there are no other ordering constraints. 10236 // If the chain has more than one use, we give up: some other 10237 // use of Dest might force a side-effect between Dest and the current 10238 // node. 10239 if (Dest.hasOneUse()) 10240 return true; 10241 } 10242 // Next, try a deep search: check whether every operand of the TokenFactor 10243 // reaches Dest. 10244 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10245 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10246 }); 10247 } 10248 10249 // Loads don't have side effects, look through them. 10250 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10251 if (Ld->isUnordered()) 10252 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10253 } 10254 return false; 10255 } 10256 10257 bool SDNode::hasPredecessor(const SDNode *N) const { 10258 SmallPtrSet<const SDNode *, 32> Visited; 10259 SmallVector<const SDNode *, 16> Worklist; 10260 Worklist.push_back(this); 10261 return hasPredecessorHelper(N, Visited, Worklist); 10262 } 10263 10264 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10265 this->Flags.intersectWith(Flags); 10266 } 10267 10268 SDValue 10269 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10270 ArrayRef<ISD::NodeType> CandidateBinOps, 10271 bool AllowPartials) { 10272 // The pattern must end in an extract from index 0. 10273 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10274 !isNullConstant(Extract->getOperand(1))) 10275 return SDValue(); 10276 10277 // Match against one of the candidate binary ops. 10278 SDValue Op = Extract->getOperand(0); 10279 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10280 return Op.getOpcode() == unsigned(BinOp); 10281 })) 10282 return SDValue(); 10283 10284 // Floating-point reductions may require relaxed constraints on the final step 10285 // of the reduction because they may reorder intermediate operations. 10286 unsigned CandidateBinOp = Op.getOpcode(); 10287 if (Op.getValueType().isFloatingPoint()) { 10288 SDNodeFlags Flags = Op->getFlags(); 10289 switch (CandidateBinOp) { 10290 case ISD::FADD: 10291 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10292 return SDValue(); 10293 break; 10294 default: 10295 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10296 } 10297 } 10298 10299 // Matching failed - attempt to see if we did enough stages that a partial 10300 // reduction from a subvector is possible. 10301 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10302 if (!AllowPartials || !Op) 10303 return SDValue(); 10304 EVT OpVT = Op.getValueType(); 10305 EVT OpSVT = OpVT.getScalarType(); 10306 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10307 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10308 return SDValue(); 10309 BinOp = (ISD::NodeType)CandidateBinOp; 10310 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10311 getVectorIdxConstant(0, SDLoc(Op))); 10312 }; 10313 10314 // At each stage, we're looking for something that looks like: 10315 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10316 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10317 // i32 undef, i32 undef, i32 undef, i32 undef> 10318 // %a = binop <8 x i32> %op, %s 10319 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10320 // we expect something like: 10321 // <4,5,6,7,u,u,u,u> 10322 // <2,3,u,u,u,u,u,u> 10323 // <1,u,u,u,u,u,u,u> 10324 // While a partial reduction match would be: 10325 // <2,3,u,u,u,u,u,u> 10326 // <1,u,u,u,u,u,u,u> 10327 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10328 SDValue PrevOp; 10329 for (unsigned i = 0; i < Stages; ++i) { 10330 unsigned MaskEnd = (1 << i); 10331 10332 if (Op.getOpcode() != CandidateBinOp) 10333 return PartialReduction(PrevOp, MaskEnd); 10334 10335 SDValue Op0 = Op.getOperand(0); 10336 SDValue Op1 = Op.getOperand(1); 10337 10338 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10339 if (Shuffle) { 10340 Op = Op1; 10341 } else { 10342 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10343 Op = Op0; 10344 } 10345 10346 // The first operand of the shuffle should be the same as the other operand 10347 // of the binop. 10348 if (!Shuffle || Shuffle->getOperand(0) != Op) 10349 return PartialReduction(PrevOp, MaskEnd); 10350 10351 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10352 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10353 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10354 return PartialReduction(PrevOp, MaskEnd); 10355 10356 PrevOp = Op; 10357 } 10358 10359 // Handle subvector reductions, which tend to appear after the shuffle 10360 // reduction stages. 10361 while (Op.getOpcode() == CandidateBinOp) { 10362 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10363 SDValue Op0 = Op.getOperand(0); 10364 SDValue Op1 = Op.getOperand(1); 10365 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10366 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10367 Op0.getOperand(0) != Op1.getOperand(0)) 10368 break; 10369 SDValue Src = Op0.getOperand(0); 10370 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10371 if (NumSrcElts != (2 * NumElts)) 10372 break; 10373 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10374 Op1.getConstantOperandAPInt(1) == NumElts) && 10375 !(Op1.getConstantOperandAPInt(1) == 0 && 10376 Op0.getConstantOperandAPInt(1) == NumElts)) 10377 break; 10378 Op = Src; 10379 } 10380 10381 BinOp = (ISD::NodeType)CandidateBinOp; 10382 return Op; 10383 } 10384 10385 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10386 assert(N->getNumValues() == 1 && 10387 "Can't unroll a vector with multiple results!"); 10388 10389 EVT VT = N->getValueType(0); 10390 unsigned NE = VT.getVectorNumElements(); 10391 EVT EltVT = VT.getVectorElementType(); 10392 SDLoc dl(N); 10393 10394 SmallVector<SDValue, 8> Scalars; 10395 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10396 10397 // If ResNE is 0, fully unroll the vector op. 10398 if (ResNE == 0) 10399 ResNE = NE; 10400 else if (NE > ResNE) 10401 NE = ResNE; 10402 10403 unsigned i; 10404 for (i= 0; i != NE; ++i) { 10405 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10406 SDValue Operand = N->getOperand(j); 10407 EVT OperandVT = Operand.getValueType(); 10408 if (OperandVT.isVector()) { 10409 // A vector operand; extract a single element. 10410 EVT OperandEltVT = OperandVT.getVectorElementType(); 10411 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10412 Operand, getVectorIdxConstant(i, dl)); 10413 } else { 10414 // A scalar operand; just use it as is. 10415 Operands[j] = Operand; 10416 } 10417 } 10418 10419 switch (N->getOpcode()) { 10420 default: { 10421 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10422 N->getFlags())); 10423 break; 10424 } 10425 case ISD::VSELECT: 10426 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10427 break; 10428 case ISD::SHL: 10429 case ISD::SRA: 10430 case ISD::SRL: 10431 case ISD::ROTL: 10432 case ISD::ROTR: 10433 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10434 getShiftAmountOperand(Operands[0].getValueType(), 10435 Operands[1]))); 10436 break; 10437 case ISD::SIGN_EXTEND_INREG: { 10438 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10439 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10440 Operands[0], 10441 getValueType(ExtVT))); 10442 } 10443 } 10444 } 10445 10446 for (; i < ResNE; ++i) 10447 Scalars.push_back(getUNDEF(EltVT)); 10448 10449 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10450 return getBuildVector(VecVT, dl, Scalars); 10451 } 10452 10453 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10454 SDNode *N, unsigned ResNE) { 10455 unsigned Opcode = N->getOpcode(); 10456 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10457 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10458 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10459 "Expected an overflow opcode"); 10460 10461 EVT ResVT = N->getValueType(0); 10462 EVT OvVT = N->getValueType(1); 10463 EVT ResEltVT = ResVT.getVectorElementType(); 10464 EVT OvEltVT = OvVT.getVectorElementType(); 10465 SDLoc dl(N); 10466 10467 // If ResNE is 0, fully unroll the vector op. 10468 unsigned NE = ResVT.getVectorNumElements(); 10469 if (ResNE == 0) 10470 ResNE = NE; 10471 else if (NE > ResNE) 10472 NE = ResNE; 10473 10474 SmallVector<SDValue, 8> LHSScalars; 10475 SmallVector<SDValue, 8> RHSScalars; 10476 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10477 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10478 10479 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10480 SDVTList VTs = getVTList(ResEltVT, SVT); 10481 SmallVector<SDValue, 8> ResScalars; 10482 SmallVector<SDValue, 8> OvScalars; 10483 for (unsigned i = 0; i < NE; ++i) { 10484 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10485 SDValue Ov = 10486 getSelect(dl, OvEltVT, Res.getValue(1), 10487 getBoolConstant(true, dl, OvEltVT, ResVT), 10488 getConstant(0, dl, OvEltVT)); 10489 10490 ResScalars.push_back(Res); 10491 OvScalars.push_back(Ov); 10492 } 10493 10494 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10495 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10496 10497 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10498 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10499 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10500 getBuildVector(NewOvVT, dl, OvScalars)); 10501 } 10502 10503 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10504 LoadSDNode *Base, 10505 unsigned Bytes, 10506 int Dist) const { 10507 if (LD->isVolatile() || Base->isVolatile()) 10508 return false; 10509 // TODO: probably too restrictive for atomics, revisit 10510 if (!LD->isSimple()) 10511 return false; 10512 if (LD->isIndexed() || Base->isIndexed()) 10513 return false; 10514 if (LD->getChain() != Base->getChain()) 10515 return false; 10516 EVT VT = LD->getValueType(0); 10517 if (VT.getSizeInBits() / 8 != Bytes) 10518 return false; 10519 10520 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10521 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10522 10523 int64_t Offset = 0; 10524 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10525 return (Dist * Bytes == Offset); 10526 return false; 10527 } 10528 10529 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10530 /// if it cannot be inferred. 10531 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10532 // If this is a GlobalAddress + cst, return the alignment. 10533 const GlobalValue *GV = nullptr; 10534 int64_t GVOffset = 0; 10535 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10536 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10537 KnownBits Known(PtrWidth); 10538 llvm::computeKnownBits(GV, Known, getDataLayout()); 10539 unsigned AlignBits = Known.countMinTrailingZeros(); 10540 if (AlignBits) 10541 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10542 } 10543 10544 // If this is a direct reference to a stack slot, use information about the 10545 // stack slot's alignment. 10546 int FrameIdx = INT_MIN; 10547 int64_t FrameOffset = 0; 10548 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10549 FrameIdx = FI->getIndex(); 10550 } else if (isBaseWithConstantOffset(Ptr) && 10551 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10552 // Handle FI+Cst 10553 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10554 FrameOffset = Ptr.getConstantOperandVal(1); 10555 } 10556 10557 if (FrameIdx != INT_MIN) { 10558 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10559 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10560 } 10561 10562 return None; 10563 } 10564 10565 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10566 /// which is split (or expanded) into two not necessarily identical pieces. 10567 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10568 // Currently all types are split in half. 10569 EVT LoVT, HiVT; 10570 if (!VT.isVector()) 10571 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10572 else 10573 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10574 10575 return std::make_pair(LoVT, HiVT); 10576 } 10577 10578 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10579 /// type, dependent on an enveloping VT that has been split into two identical 10580 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10581 std::pair<EVT, EVT> 10582 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10583 bool *HiIsEmpty) const { 10584 EVT EltTp = VT.getVectorElementType(); 10585 // Examples: 10586 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10587 // custom VL=9 with enveloping VL=8/8 yields 8/1 10588 // custom VL=10 with enveloping VL=8/8 yields 8/2 10589 // etc. 10590 ElementCount VTNumElts = VT.getVectorElementCount(); 10591 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10592 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10593 "Mixing fixed width and scalable vectors when enveloping a type"); 10594 EVT LoVT, HiVT; 10595 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10596 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10597 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10598 *HiIsEmpty = false; 10599 } else { 10600 // Flag that hi type has zero storage size, but return split envelop type 10601 // (this would be easier if vector types with zero elements were allowed). 10602 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10603 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10604 *HiIsEmpty = true; 10605 } 10606 return std::make_pair(LoVT, HiVT); 10607 } 10608 10609 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10610 /// low/high part. 10611 std::pair<SDValue, SDValue> 10612 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10613 const EVT &HiVT) { 10614 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10615 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10616 "Splitting vector with an invalid mixture of fixed and scalable " 10617 "vector types"); 10618 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10619 N.getValueType().getVectorMinNumElements() && 10620 "More vector elements requested than available!"); 10621 SDValue Lo, Hi; 10622 Lo = 10623 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10624 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10625 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10626 // IDX with the runtime scaling factor of the result vector type. For 10627 // fixed-width result vectors, that runtime scaling factor is 1. 10628 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10629 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10630 return std::make_pair(Lo, Hi); 10631 } 10632 10633 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10634 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10635 EVT VT = N.getValueType(); 10636 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10637 NextPowerOf2(VT.getVectorNumElements())); 10638 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10639 getVectorIdxConstant(0, DL)); 10640 } 10641 10642 void SelectionDAG::ExtractVectorElements(SDValue Op, 10643 SmallVectorImpl<SDValue> &Args, 10644 unsigned Start, unsigned Count, 10645 EVT EltVT) { 10646 EVT VT = Op.getValueType(); 10647 if (Count == 0) 10648 Count = VT.getVectorNumElements(); 10649 if (EltVT == EVT()) 10650 EltVT = VT.getVectorElementType(); 10651 SDLoc SL(Op); 10652 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10653 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10654 getVectorIdxConstant(i, SL))); 10655 } 10656 } 10657 10658 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10659 unsigned GlobalAddressSDNode::getAddressSpace() const { 10660 return getGlobal()->getType()->getAddressSpace(); 10661 } 10662 10663 Type *ConstantPoolSDNode::getType() const { 10664 if (isMachineConstantPoolEntry()) 10665 return Val.MachineCPVal->getType(); 10666 return Val.ConstVal->getType(); 10667 } 10668 10669 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10670 unsigned &SplatBitSize, 10671 bool &HasAnyUndefs, 10672 unsigned MinSplatBits, 10673 bool IsBigEndian) const { 10674 EVT VT = getValueType(0); 10675 assert(VT.isVector() && "Expected a vector type"); 10676 unsigned VecWidth = VT.getSizeInBits(); 10677 if (MinSplatBits > VecWidth) 10678 return false; 10679 10680 // FIXME: The widths are based on this node's type, but build vectors can 10681 // truncate their operands. 10682 SplatValue = APInt(VecWidth, 0); 10683 SplatUndef = APInt(VecWidth, 0); 10684 10685 // Get the bits. Bits with undefined values (when the corresponding element 10686 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10687 // in SplatValue. If any of the values are not constant, give up and return 10688 // false. 10689 unsigned int NumOps = getNumOperands(); 10690 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10691 unsigned EltWidth = VT.getScalarSizeInBits(); 10692 10693 for (unsigned j = 0; j < NumOps; ++j) { 10694 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10695 SDValue OpVal = getOperand(i); 10696 unsigned BitPos = j * EltWidth; 10697 10698 if (OpVal.isUndef()) 10699 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10700 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10701 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10702 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10703 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10704 else 10705 return false; 10706 } 10707 10708 // The build_vector is all constants or undefs. Find the smallest element 10709 // size that splats the vector. 10710 HasAnyUndefs = (SplatUndef != 0); 10711 10712 // FIXME: This does not work for vectors with elements less than 8 bits. 10713 while (VecWidth > 8) { 10714 unsigned HalfSize = VecWidth / 2; 10715 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10716 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10717 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10718 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10719 10720 // If the two halves do not match (ignoring undef bits), stop here. 10721 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10722 MinSplatBits > HalfSize) 10723 break; 10724 10725 SplatValue = HighValue | LowValue; 10726 SplatUndef = HighUndef & LowUndef; 10727 10728 VecWidth = HalfSize; 10729 } 10730 10731 SplatBitSize = VecWidth; 10732 return true; 10733 } 10734 10735 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10736 BitVector *UndefElements) const { 10737 unsigned NumOps = getNumOperands(); 10738 if (UndefElements) { 10739 UndefElements->clear(); 10740 UndefElements->resize(NumOps); 10741 } 10742 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10743 if (!DemandedElts) 10744 return SDValue(); 10745 SDValue Splatted; 10746 for (unsigned i = 0; i != NumOps; ++i) { 10747 if (!DemandedElts[i]) 10748 continue; 10749 SDValue Op = getOperand(i); 10750 if (Op.isUndef()) { 10751 if (UndefElements) 10752 (*UndefElements)[i] = true; 10753 } else if (!Splatted) { 10754 Splatted = Op; 10755 } else if (Splatted != Op) { 10756 return SDValue(); 10757 } 10758 } 10759 10760 if (!Splatted) { 10761 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10762 assert(getOperand(FirstDemandedIdx).isUndef() && 10763 "Can only have a splat without a constant for all undefs."); 10764 return getOperand(FirstDemandedIdx); 10765 } 10766 10767 return Splatted; 10768 } 10769 10770 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10771 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10772 return getSplatValue(DemandedElts, UndefElements); 10773 } 10774 10775 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10776 SmallVectorImpl<SDValue> &Sequence, 10777 BitVector *UndefElements) const { 10778 unsigned NumOps = getNumOperands(); 10779 Sequence.clear(); 10780 if (UndefElements) { 10781 UndefElements->clear(); 10782 UndefElements->resize(NumOps); 10783 } 10784 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10785 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10786 return false; 10787 10788 // Set the undefs even if we don't find a sequence (like getSplatValue). 10789 if (UndefElements) 10790 for (unsigned I = 0; I != NumOps; ++I) 10791 if (DemandedElts[I] && getOperand(I).isUndef()) 10792 (*UndefElements)[I] = true; 10793 10794 // Iteratively widen the sequence length looking for repetitions. 10795 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10796 Sequence.append(SeqLen, SDValue()); 10797 for (unsigned I = 0; I != NumOps; ++I) { 10798 if (!DemandedElts[I]) 10799 continue; 10800 SDValue &SeqOp = Sequence[I % SeqLen]; 10801 SDValue Op = getOperand(I); 10802 if (Op.isUndef()) { 10803 if (!SeqOp) 10804 SeqOp = Op; 10805 continue; 10806 } 10807 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10808 Sequence.clear(); 10809 break; 10810 } 10811 SeqOp = Op; 10812 } 10813 if (!Sequence.empty()) 10814 return true; 10815 } 10816 10817 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10818 return false; 10819 } 10820 10821 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10822 BitVector *UndefElements) const { 10823 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10824 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10825 } 10826 10827 ConstantSDNode * 10828 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10829 BitVector *UndefElements) const { 10830 return dyn_cast_or_null<ConstantSDNode>( 10831 getSplatValue(DemandedElts, UndefElements)); 10832 } 10833 10834 ConstantSDNode * 10835 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10836 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10837 } 10838 10839 ConstantFPSDNode * 10840 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10841 BitVector *UndefElements) const { 10842 return dyn_cast_or_null<ConstantFPSDNode>( 10843 getSplatValue(DemandedElts, UndefElements)); 10844 } 10845 10846 ConstantFPSDNode * 10847 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10848 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10849 } 10850 10851 int32_t 10852 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10853 uint32_t BitWidth) const { 10854 if (ConstantFPSDNode *CN = 10855 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10856 bool IsExact; 10857 APSInt IntVal(BitWidth); 10858 const APFloat &APF = CN->getValueAPF(); 10859 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10860 APFloat::opOK || 10861 !IsExact) 10862 return -1; 10863 10864 return IntVal.exactLogBase2(); 10865 } 10866 return -1; 10867 } 10868 10869 bool BuildVectorSDNode::getConstantRawBits( 10870 bool IsLittleEndian, unsigned DstEltSizeInBits, 10871 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 10872 // Early-out if this contains anything but Undef/Constant/ConstantFP. 10873 if (!isConstant()) 10874 return false; 10875 10876 unsigned NumSrcOps = getNumOperands(); 10877 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 10878 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10879 "Invalid bitcast scale"); 10880 10881 // Extract raw src bits. 10882 SmallVector<APInt> SrcBitElements(NumSrcOps, 10883 APInt::getNullValue(SrcEltSizeInBits)); 10884 BitVector SrcUndeElements(NumSrcOps, false); 10885 10886 for (unsigned I = 0; I != NumSrcOps; ++I) { 10887 SDValue Op = getOperand(I); 10888 if (Op.isUndef()) { 10889 SrcUndeElements.set(I); 10890 continue; 10891 } 10892 auto *CInt = dyn_cast<ConstantSDNode>(Op); 10893 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 10894 assert((CInt || CFP) && "Unknown constant"); 10895 SrcBitElements[I] = 10896 CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits) 10897 : CFP->getValueAPF().bitcastToAPInt(); 10898 } 10899 10900 // Recast to dst width. 10901 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 10902 SrcBitElements, UndefElements, SrcUndeElements); 10903 return true; 10904 } 10905 10906 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 10907 unsigned DstEltSizeInBits, 10908 SmallVectorImpl<APInt> &DstBitElements, 10909 ArrayRef<APInt> SrcBitElements, 10910 BitVector &DstUndefElements, 10911 const BitVector &SrcUndefElements) { 10912 unsigned NumSrcOps = SrcBitElements.size(); 10913 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 10914 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10915 "Invalid bitcast scale"); 10916 assert(NumSrcOps == SrcUndefElements.size() && 10917 "Vector size mismatch"); 10918 10919 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 10920 DstUndefElements.clear(); 10921 DstUndefElements.resize(NumDstOps, false); 10922 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 10923 10924 // Concatenate src elements constant bits together into dst element. 10925 if (SrcEltSizeInBits <= DstEltSizeInBits) { 10926 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 10927 for (unsigned I = 0; I != NumDstOps; ++I) { 10928 DstUndefElements.set(I); 10929 APInt &DstBits = DstBitElements[I]; 10930 for (unsigned J = 0; J != Scale; ++J) { 10931 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10932 if (SrcUndefElements[Idx]) 10933 continue; 10934 DstUndefElements.reset(I); 10935 const APInt &SrcBits = SrcBitElements[Idx]; 10936 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 10937 "Illegal constant bitwidths"); 10938 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 10939 } 10940 } 10941 return; 10942 } 10943 10944 // Split src element constant bits into dst elements. 10945 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 10946 for (unsigned I = 0; I != NumSrcOps; ++I) { 10947 if (SrcUndefElements[I]) { 10948 DstUndefElements.set(I * Scale, (I + 1) * Scale); 10949 continue; 10950 } 10951 const APInt &SrcBits = SrcBitElements[I]; 10952 for (unsigned J = 0; J != Scale; ++J) { 10953 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10954 APInt &DstBits = DstBitElements[Idx]; 10955 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 10956 } 10957 } 10958 } 10959 10960 bool BuildVectorSDNode::isConstant() const { 10961 for (const SDValue &Op : op_values()) { 10962 unsigned Opc = Op.getOpcode(); 10963 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10964 return false; 10965 } 10966 return true; 10967 } 10968 10969 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10970 // Find the first non-undef value in the shuffle mask. 10971 unsigned i, e; 10972 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10973 /* search */; 10974 10975 // If all elements are undefined, this shuffle can be considered a splat 10976 // (although it should eventually get simplified away completely). 10977 if (i == e) 10978 return true; 10979 10980 // Make sure all remaining elements are either undef or the same as the first 10981 // non-undef value. 10982 for (int Idx = Mask[i]; i != e; ++i) 10983 if (Mask[i] >= 0 && Mask[i] != Idx) 10984 return false; 10985 return true; 10986 } 10987 10988 // Returns the SDNode if it is a constant integer BuildVector 10989 // or constant integer. 10990 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 10991 if (isa<ConstantSDNode>(N)) 10992 return N.getNode(); 10993 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10994 return N.getNode(); 10995 // Treat a GlobalAddress supporting constant offset folding as a 10996 // constant integer. 10997 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10998 if (GA->getOpcode() == ISD::GlobalAddress && 10999 TLI->isOffsetFoldingLegal(GA)) 11000 return GA; 11001 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11002 isa<ConstantSDNode>(N.getOperand(0))) 11003 return N.getNode(); 11004 return nullptr; 11005 } 11006 11007 // Returns the SDNode if it is a constant float BuildVector 11008 // or constant float. 11009 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11010 if (isa<ConstantFPSDNode>(N)) 11011 return N.getNode(); 11012 11013 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11014 return N.getNode(); 11015 11016 return nullptr; 11017 } 11018 11019 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11020 assert(!Node->OperandList && "Node already has operands"); 11021 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11022 "too many operands to fit into SDNode"); 11023 SDUse *Ops = OperandRecycler.allocate( 11024 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11025 11026 bool IsDivergent = false; 11027 for (unsigned I = 0; I != Vals.size(); ++I) { 11028 Ops[I].setUser(Node); 11029 Ops[I].setInitial(Vals[I]); 11030 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11031 IsDivergent |= Ops[I].getNode()->isDivergent(); 11032 } 11033 Node->NumOperands = Vals.size(); 11034 Node->OperandList = Ops; 11035 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11036 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11037 Node->SDNodeBits.IsDivergent = IsDivergent; 11038 } 11039 checkForCycles(Node); 11040 } 11041 11042 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11043 SmallVectorImpl<SDValue> &Vals) { 11044 size_t Limit = SDNode::getMaxNumOperands(); 11045 while (Vals.size() > Limit) { 11046 unsigned SliceIdx = Vals.size() - Limit; 11047 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11048 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11049 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11050 Vals.emplace_back(NewTF); 11051 } 11052 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11053 } 11054 11055 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11056 EVT VT, SDNodeFlags Flags) { 11057 switch (Opcode) { 11058 default: 11059 return SDValue(); 11060 case ISD::ADD: 11061 case ISD::OR: 11062 case ISD::XOR: 11063 case ISD::UMAX: 11064 return getConstant(0, DL, VT); 11065 case ISD::MUL: 11066 return getConstant(1, DL, VT); 11067 case ISD::AND: 11068 case ISD::UMIN: 11069 return getAllOnesConstant(DL, VT); 11070 case ISD::SMAX: 11071 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11072 case ISD::SMIN: 11073 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11074 case ISD::FADD: 11075 return getConstantFP(-0.0, DL, VT); 11076 case ISD::FMUL: 11077 return getConstantFP(1.0, DL, VT); 11078 case ISD::FMINNUM: 11079 case ISD::FMAXNUM: { 11080 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11081 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11082 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11083 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11084 APFloat::getLargest(Semantics); 11085 if (Opcode == ISD::FMAXNUM) 11086 NeutralAF.changeSign(); 11087 11088 return getConstantFP(NeutralAF, DL, VT); 11089 } 11090 } 11091 } 11092 11093 #ifndef NDEBUG 11094 static void checkForCyclesHelper(const SDNode *N, 11095 SmallPtrSetImpl<const SDNode*> &Visited, 11096 SmallPtrSetImpl<const SDNode*> &Checked, 11097 const llvm::SelectionDAG *DAG) { 11098 // If this node has already been checked, don't check it again. 11099 if (Checked.count(N)) 11100 return; 11101 11102 // If a node has already been visited on this depth-first walk, reject it as 11103 // a cycle. 11104 if (!Visited.insert(N).second) { 11105 errs() << "Detected cycle in SelectionDAG\n"; 11106 dbgs() << "Offending node:\n"; 11107 N->dumprFull(DAG); dbgs() << "\n"; 11108 abort(); 11109 } 11110 11111 for (const SDValue &Op : N->op_values()) 11112 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11113 11114 Checked.insert(N); 11115 Visited.erase(N); 11116 } 11117 #endif 11118 11119 void llvm::checkForCycles(const llvm::SDNode *N, 11120 const llvm::SelectionDAG *DAG, 11121 bool force) { 11122 #ifndef NDEBUG 11123 bool check = force; 11124 #ifdef EXPENSIVE_CHECKS 11125 check = true; 11126 #endif // EXPENSIVE_CHECKS 11127 if (check) { 11128 assert(N && "Checking nonexistent SDNode"); 11129 SmallPtrSet<const SDNode*, 32> visited; 11130 SmallPtrSet<const SDNode*, 32> checked; 11131 checkForCyclesHelper(N, visited, checked, DAG); 11132 } 11133 #endif // !NDEBUG 11134 } 11135 11136 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11137 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11138 } 11139