1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetLowering.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/CodeGen/ValueTypes.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/KnownBits.h"
62 #include "llvm/Support/MachineValueType.h"
63 #include "llvm/Support/ManagedStatic.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/Mutex.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Transforms/Utils/SizeOpts.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstdint>
73 #include <cstdlib>
74 #include <limits>
75 #include <set>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 using namespace llvm;
81 
82 /// makeVTList - Return an instance of the SDVTList struct initialized with the
83 /// specified members.
84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
85   SDVTList Res = {VTs, NumVTs};
86   return Res;
87 }
88 
89 // Default null implementations of the callbacks.
90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
93 
94 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
95 
96 #define DEBUG_TYPE "selectiondag"
97 
98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
99        cl::Hidden, cl::init(true),
100        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
101 
102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
103        cl::desc("Number limit for gluing ld/st of memcpy."),
104        cl::Hidden, cl::init(0));
105 
106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
107   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
108 }
109 
110 //===----------------------------------------------------------------------===//
111 //                              ConstantFPSDNode Class
112 //===----------------------------------------------------------------------===//
113 
114 /// isExactlyValue - We don't rely on operator== working on double values, as
115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
116 /// As such, this method can be used to do an exact bit-for-bit comparison of
117 /// two floating point values.
118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
119   return getValueAPF().bitwiseIsEqual(V);
120 }
121 
122 bool ConstantFPSDNode::isValueValidForType(EVT VT,
123                                            const APFloat& Val) {
124   assert(VT.isFloatingPoint() && "Can only convert between FP types");
125 
126   // convert modifies in place, so make a copy.
127   APFloat Val2 = APFloat(Val);
128   bool losesInfo;
129   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
130                       APFloat::rmNearestTiesToEven,
131                       &losesInfo);
132   return !losesInfo;
133 }
134 
135 //===----------------------------------------------------------------------===//
136 //                              ISD Namespace
137 //===----------------------------------------------------------------------===//
138 
139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
140   auto *BV = dyn_cast<BuildVectorSDNode>(N);
141   if (!BV)
142     return false;
143 
144   APInt SplatUndef;
145   unsigned SplatBitSize;
146   bool HasUndefs;
147   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
148   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
149                              EltSize) &&
150          EltSize == SplatBitSize;
151 }
152 
153 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
154 // specializations of the more general isConstantSplatVector()?
155 
156 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
157   // Look through a bit convert.
158   while (N->getOpcode() == ISD::BITCAST)
159     N = N->getOperand(0).getNode();
160 
161   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
162 
163   unsigned i = 0, e = N->getNumOperands();
164 
165   // Skip over all of the undef values.
166   while (i != e && N->getOperand(i).isUndef())
167     ++i;
168 
169   // Do not accept an all-undef vector.
170   if (i == e) return false;
171 
172   // Do not accept build_vectors that aren't all constants or which have non-~0
173   // elements. We have to be a bit careful here, as the type of the constant
174   // may not be the same as the type of the vector elements due to type
175   // legalization (the elements are promoted to a legal type for the target and
176   // a vector of a type may be legal when the base element type is not).
177   // We only want to check enough bits to cover the vector elements, because
178   // we care if the resultant vector is all ones, not whether the individual
179   // constants are.
180   SDValue NotZero = N->getOperand(i);
181   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
182   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
183     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
184       return false;
185   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
186     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
187       return false;
188   } else
189     return false;
190 
191   // Okay, we have at least one ~0 value, check to see if the rest match or are
192   // undefs. Even with the above element type twiddling, this should be OK, as
193   // the same type legalization should have applied to all the elements.
194   for (++i; i != e; ++i)
195     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
196       return false;
197   return true;
198 }
199 
200 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
201   // Look through a bit convert.
202   while (N->getOpcode() == ISD::BITCAST)
203     N = N->getOperand(0).getNode();
204 
205   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
206 
207   bool IsAllUndef = true;
208   for (const SDValue &Op : N->op_values()) {
209     if (Op.isUndef())
210       continue;
211     IsAllUndef = false;
212     // Do not accept build_vectors that aren't all constants or which have non-0
213     // elements. We have to be a bit careful here, as the type of the constant
214     // may not be the same as the type of the vector elements due to type
215     // legalization (the elements are promoted to a legal type for the target
216     // and a vector of a type may be legal when the base element type is not).
217     // We only want to check enough bits to cover the vector elements, because
218     // we care if the resultant vector is all zeros, not whether the individual
219     // constants are.
220     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
221     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
222       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
223         return false;
224     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
225       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
226         return false;
227     } else
228       return false;
229   }
230 
231   // Do not accept an all-undef vector.
232   if (IsAllUndef)
233     return false;
234   return true;
235 }
236 
237 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
238   if (N->getOpcode() != ISD::BUILD_VECTOR)
239     return false;
240 
241   for (const SDValue &Op : N->op_values()) {
242     if (Op.isUndef())
243       continue;
244     if (!isa<ConstantSDNode>(Op))
245       return false;
246   }
247   return true;
248 }
249 
250 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
251   if (N->getOpcode() != ISD::BUILD_VECTOR)
252     return false;
253 
254   for (const SDValue &Op : N->op_values()) {
255     if (Op.isUndef())
256       continue;
257     if (!isa<ConstantFPSDNode>(Op))
258       return false;
259   }
260   return true;
261 }
262 
263 bool ISD::allOperandsUndef(const SDNode *N) {
264   // Return false if the node has no operands.
265   // This is "logically inconsistent" with the definition of "all" but
266   // is probably the desired behavior.
267   if (N->getNumOperands() == 0)
268     return false;
269   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
270 }
271 
272 bool ISD::matchUnaryPredicate(SDValue Op,
273                               std::function<bool(ConstantSDNode *)> Match,
274                               bool AllowUndefs) {
275   // FIXME: Add support for scalar UNDEF cases?
276   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
277     return Match(Cst);
278 
279   // FIXME: Add support for vector UNDEF cases?
280   if (ISD::BUILD_VECTOR != Op.getOpcode())
281     return false;
282 
283   EVT SVT = Op.getValueType().getScalarType();
284   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
285     if (AllowUndefs && Op.getOperand(i).isUndef()) {
286       if (!Match(nullptr))
287         return false;
288       continue;
289     }
290 
291     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
292     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
293       return false;
294   }
295   return true;
296 }
297 
298 bool ISD::matchBinaryPredicate(
299     SDValue LHS, SDValue RHS,
300     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
301     bool AllowUndefs, bool AllowTypeMismatch) {
302   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
303     return false;
304 
305   // TODO: Add support for scalar UNDEF cases?
306   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
307     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
308       return Match(LHSCst, RHSCst);
309 
310   // TODO: Add support for vector UNDEF cases?
311   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
312       ISD::BUILD_VECTOR != RHS.getOpcode())
313     return false;
314 
315   EVT SVT = LHS.getValueType().getScalarType();
316   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
317     SDValue LHSOp = LHS.getOperand(i);
318     SDValue RHSOp = RHS.getOperand(i);
319     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
320     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
321     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
322     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
323     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
324       return false;
325     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
326                                LHSOp.getValueType() != RHSOp.getValueType()))
327       return false;
328     if (!Match(LHSCst, RHSCst))
329       return false;
330   }
331   return true;
332 }
333 
334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
335   switch (ExtType) {
336   case ISD::EXTLOAD:
337     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
338   case ISD::SEXTLOAD:
339     return ISD::SIGN_EXTEND;
340   case ISD::ZEXTLOAD:
341     return ISD::ZERO_EXTEND;
342   default:
343     break;
344   }
345 
346   llvm_unreachable("Invalid LoadExtType");
347 }
348 
349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
350   // To perform this operation, we just need to swap the L and G bits of the
351   // operation.
352   unsigned OldL = (Operation >> 2) & 1;
353   unsigned OldG = (Operation >> 1) & 1;
354   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
355                        (OldL << 1) |       // New G bit
356                        (OldG << 2));       // New L bit.
357 }
358 
359 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
360   unsigned Operation = Op;
361   if (isIntegerLike)
362     Operation ^= 7;   // Flip L, G, E bits, but not U.
363   else
364     Operation ^= 15;  // Flip all of the condition bits.
365 
366   if (Operation > ISD::SETTRUE2)
367     Operation &= ~8;  // Don't let N and U bits get set.
368 
369   return ISD::CondCode(Operation);
370 }
371 
372 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
373   return getSetCCInverseImpl(Op, Type.isInteger());
374 }
375 
376 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
377                                                bool isIntegerLike) {
378   return getSetCCInverseImpl(Op, isIntegerLike);
379 }
380 
381 /// For an integer comparison, return 1 if the comparison is a signed operation
382 /// and 2 if the result is an unsigned comparison. Return zero if the operation
383 /// does not depend on the sign of the input (setne and seteq).
384 static int isSignedOp(ISD::CondCode Opcode) {
385   switch (Opcode) {
386   default: llvm_unreachable("Illegal integer setcc operation!");
387   case ISD::SETEQ:
388   case ISD::SETNE: return 0;
389   case ISD::SETLT:
390   case ISD::SETLE:
391   case ISD::SETGT:
392   case ISD::SETGE: return 1;
393   case ISD::SETULT:
394   case ISD::SETULE:
395   case ISD::SETUGT:
396   case ISD::SETUGE: return 2;
397   }
398 }
399 
400 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
401                                        EVT Type) {
402   bool IsInteger = Type.isInteger();
403   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
404     // Cannot fold a signed integer setcc with an unsigned integer setcc.
405     return ISD::SETCC_INVALID;
406 
407   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
408 
409   // If the N and U bits get set, then the resultant comparison DOES suddenly
410   // care about orderedness, and it is true when ordered.
411   if (Op > ISD::SETTRUE2)
412     Op &= ~16;     // Clear the U bit if the N bit is set.
413 
414   // Canonicalize illegal integer setcc's.
415   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
416     Op = ISD::SETNE;
417 
418   return ISD::CondCode(Op);
419 }
420 
421 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
422                                         EVT Type) {
423   bool IsInteger = Type.isInteger();
424   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
425     // Cannot fold a signed setcc with an unsigned setcc.
426     return ISD::SETCC_INVALID;
427 
428   // Combine all of the condition bits.
429   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
430 
431   // Canonicalize illegal integer setcc's.
432   if (IsInteger) {
433     switch (Result) {
434     default: break;
435     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
436     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
437     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
438     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
439     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
440     }
441   }
442 
443   return Result;
444 }
445 
446 //===----------------------------------------------------------------------===//
447 //                           SDNode Profile Support
448 //===----------------------------------------------------------------------===//
449 
450 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
451 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
452   ID.AddInteger(OpC);
453 }
454 
455 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
456 /// solely with their pointer.
457 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
458   ID.AddPointer(VTList.VTs);
459 }
460 
461 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
462 static void AddNodeIDOperands(FoldingSetNodeID &ID,
463                               ArrayRef<SDValue> Ops) {
464   for (auto& Op : Ops) {
465     ID.AddPointer(Op.getNode());
466     ID.AddInteger(Op.getResNo());
467   }
468 }
469 
470 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
471 static void AddNodeIDOperands(FoldingSetNodeID &ID,
472                               ArrayRef<SDUse> Ops) {
473   for (auto& Op : Ops) {
474     ID.AddPointer(Op.getNode());
475     ID.AddInteger(Op.getResNo());
476   }
477 }
478 
479 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
480                           SDVTList VTList, ArrayRef<SDValue> OpList) {
481   AddNodeIDOpcode(ID, OpC);
482   AddNodeIDValueTypes(ID, VTList);
483   AddNodeIDOperands(ID, OpList);
484 }
485 
486 /// If this is an SDNode with special info, add this info to the NodeID data.
487 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
488   switch (N->getOpcode()) {
489   case ISD::TargetExternalSymbol:
490   case ISD::ExternalSymbol:
491   case ISD::MCSymbol:
492     llvm_unreachable("Should only be used on nodes with operands");
493   default: break;  // Normal nodes don't need extra info.
494   case ISD::TargetConstant:
495   case ISD::Constant: {
496     const ConstantSDNode *C = cast<ConstantSDNode>(N);
497     ID.AddPointer(C->getConstantIntValue());
498     ID.AddBoolean(C->isOpaque());
499     break;
500   }
501   case ISD::TargetConstantFP:
502   case ISD::ConstantFP:
503     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
504     break;
505   case ISD::TargetGlobalAddress:
506   case ISD::GlobalAddress:
507   case ISD::TargetGlobalTLSAddress:
508   case ISD::GlobalTLSAddress: {
509     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
510     ID.AddPointer(GA->getGlobal());
511     ID.AddInteger(GA->getOffset());
512     ID.AddInteger(GA->getTargetFlags());
513     break;
514   }
515   case ISD::BasicBlock:
516     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
517     break;
518   case ISD::Register:
519     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
520     break;
521   case ISD::RegisterMask:
522     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
523     break;
524   case ISD::SRCVALUE:
525     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
526     break;
527   case ISD::FrameIndex:
528   case ISD::TargetFrameIndex:
529     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
530     break;
531   case ISD::LIFETIME_START:
532   case ISD::LIFETIME_END:
533     if (cast<LifetimeSDNode>(N)->hasOffset()) {
534       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
535       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
536     }
537     break;
538   case ISD::JumpTable:
539   case ISD::TargetJumpTable:
540     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
541     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
542     break;
543   case ISD::ConstantPool:
544   case ISD::TargetConstantPool: {
545     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
546     ID.AddInteger(CP->getAlignment());
547     ID.AddInteger(CP->getOffset());
548     if (CP->isMachineConstantPoolEntry())
549       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
550     else
551       ID.AddPointer(CP->getConstVal());
552     ID.AddInteger(CP->getTargetFlags());
553     break;
554   }
555   case ISD::TargetIndex: {
556     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
557     ID.AddInteger(TI->getIndex());
558     ID.AddInteger(TI->getOffset());
559     ID.AddInteger(TI->getTargetFlags());
560     break;
561   }
562   case ISD::LOAD: {
563     const LoadSDNode *LD = cast<LoadSDNode>(N);
564     ID.AddInteger(LD->getMemoryVT().getRawBits());
565     ID.AddInteger(LD->getRawSubclassData());
566     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
567     break;
568   }
569   case ISD::STORE: {
570     const StoreSDNode *ST = cast<StoreSDNode>(N);
571     ID.AddInteger(ST->getMemoryVT().getRawBits());
572     ID.AddInteger(ST->getRawSubclassData());
573     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
574     break;
575   }
576   case ISD::MLOAD: {
577     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
578     ID.AddInteger(MLD->getMemoryVT().getRawBits());
579     ID.AddInteger(MLD->getRawSubclassData());
580     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
581     break;
582   }
583   case ISD::MSTORE: {
584     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
585     ID.AddInteger(MST->getMemoryVT().getRawBits());
586     ID.AddInteger(MST->getRawSubclassData());
587     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
588     break;
589   }
590   case ISD::MGATHER: {
591     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
592     ID.AddInteger(MG->getMemoryVT().getRawBits());
593     ID.AddInteger(MG->getRawSubclassData());
594     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
595     break;
596   }
597   case ISD::MSCATTER: {
598     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
599     ID.AddInteger(MS->getMemoryVT().getRawBits());
600     ID.AddInteger(MS->getRawSubclassData());
601     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
602     break;
603   }
604   case ISD::ATOMIC_CMP_SWAP:
605   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
606   case ISD::ATOMIC_SWAP:
607   case ISD::ATOMIC_LOAD_ADD:
608   case ISD::ATOMIC_LOAD_SUB:
609   case ISD::ATOMIC_LOAD_AND:
610   case ISD::ATOMIC_LOAD_CLR:
611   case ISD::ATOMIC_LOAD_OR:
612   case ISD::ATOMIC_LOAD_XOR:
613   case ISD::ATOMIC_LOAD_NAND:
614   case ISD::ATOMIC_LOAD_MIN:
615   case ISD::ATOMIC_LOAD_MAX:
616   case ISD::ATOMIC_LOAD_UMIN:
617   case ISD::ATOMIC_LOAD_UMAX:
618   case ISD::ATOMIC_LOAD:
619   case ISD::ATOMIC_STORE: {
620     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
621     ID.AddInteger(AT->getMemoryVT().getRawBits());
622     ID.AddInteger(AT->getRawSubclassData());
623     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
624     break;
625   }
626   case ISD::PREFETCH: {
627     const MemSDNode *PF = cast<MemSDNode>(N);
628     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
629     break;
630   }
631   case ISD::VECTOR_SHUFFLE: {
632     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
633     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
634          i != e; ++i)
635       ID.AddInteger(SVN->getMaskElt(i));
636     break;
637   }
638   case ISD::TargetBlockAddress:
639   case ISD::BlockAddress: {
640     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
641     ID.AddPointer(BA->getBlockAddress());
642     ID.AddInteger(BA->getOffset());
643     ID.AddInteger(BA->getTargetFlags());
644     break;
645   }
646   } // end switch (N->getOpcode())
647 
648   // Target specific memory nodes could also have address spaces to check.
649   if (N->isTargetMemoryOpcode())
650     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
651 }
652 
653 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
654 /// data.
655 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
656   AddNodeIDOpcode(ID, N->getOpcode());
657   // Add the return value info.
658   AddNodeIDValueTypes(ID, N->getVTList());
659   // Add the operand info.
660   AddNodeIDOperands(ID, N->ops());
661 
662   // Handle SDNode leafs with special info.
663   AddNodeIDCustom(ID, N);
664 }
665 
666 //===----------------------------------------------------------------------===//
667 //                              SelectionDAG Class
668 //===----------------------------------------------------------------------===//
669 
670 /// doNotCSE - Return true if CSE should not be performed for this node.
671 static bool doNotCSE(SDNode *N) {
672   if (N->getValueType(0) == MVT::Glue)
673     return true; // Never CSE anything that produces a flag.
674 
675   switch (N->getOpcode()) {
676   default: break;
677   case ISD::HANDLENODE:
678   case ISD::EH_LABEL:
679     return true;   // Never CSE these nodes.
680   }
681 
682   // Check that remaining values produced are not flags.
683   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
684     if (N->getValueType(i) == MVT::Glue)
685       return true; // Never CSE anything that produces a flag.
686 
687   return false;
688 }
689 
690 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
691 /// SelectionDAG.
692 void SelectionDAG::RemoveDeadNodes() {
693   // Create a dummy node (which is not added to allnodes), that adds a reference
694   // to the root node, preventing it from being deleted.
695   HandleSDNode Dummy(getRoot());
696 
697   SmallVector<SDNode*, 128> DeadNodes;
698 
699   // Add all obviously-dead nodes to the DeadNodes worklist.
700   for (SDNode &Node : allnodes())
701     if (Node.use_empty())
702       DeadNodes.push_back(&Node);
703 
704   RemoveDeadNodes(DeadNodes);
705 
706   // If the root changed (e.g. it was a dead load, update the root).
707   setRoot(Dummy.getValue());
708 }
709 
710 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
711 /// given list, and any nodes that become unreachable as a result.
712 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
713 
714   // Process the worklist, deleting the nodes and adding their uses to the
715   // worklist.
716   while (!DeadNodes.empty()) {
717     SDNode *N = DeadNodes.pop_back_val();
718     // Skip to next node if we've already managed to delete the node. This could
719     // happen if replacing a node causes a node previously added to the node to
720     // be deleted.
721     if (N->getOpcode() == ISD::DELETED_NODE)
722       continue;
723 
724     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
725       DUL->NodeDeleted(N, nullptr);
726 
727     // Take the node out of the appropriate CSE map.
728     RemoveNodeFromCSEMaps(N);
729 
730     // Next, brutally remove the operand list.  This is safe to do, as there are
731     // no cycles in the graph.
732     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
733       SDUse &Use = *I++;
734       SDNode *Operand = Use.getNode();
735       Use.set(SDValue());
736 
737       // Now that we removed this operand, see if there are no uses of it left.
738       if (Operand->use_empty())
739         DeadNodes.push_back(Operand);
740     }
741 
742     DeallocateNode(N);
743   }
744 }
745 
746 void SelectionDAG::RemoveDeadNode(SDNode *N){
747   SmallVector<SDNode*, 16> DeadNodes(1, N);
748 
749   // Create a dummy node that adds a reference to the root node, preventing
750   // it from being deleted.  (This matters if the root is an operand of the
751   // dead node.)
752   HandleSDNode Dummy(getRoot());
753 
754   RemoveDeadNodes(DeadNodes);
755 }
756 
757 void SelectionDAG::DeleteNode(SDNode *N) {
758   // First take this out of the appropriate CSE map.
759   RemoveNodeFromCSEMaps(N);
760 
761   // Finally, remove uses due to operands of this node, remove from the
762   // AllNodes list, and delete the node.
763   DeleteNodeNotInCSEMaps(N);
764 }
765 
766 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
767   assert(N->getIterator() != AllNodes.begin() &&
768          "Cannot delete the entry node!");
769   assert(N->use_empty() && "Cannot delete a node that is not dead!");
770 
771   // Drop all of the operands and decrement used node's use counts.
772   N->DropOperands();
773 
774   DeallocateNode(N);
775 }
776 
777 void SDDbgInfo::erase(const SDNode *Node) {
778   DbgValMapType::iterator I = DbgValMap.find(Node);
779   if (I == DbgValMap.end())
780     return;
781   for (auto &Val: I->second)
782     Val->setIsInvalidated();
783   DbgValMap.erase(I);
784 }
785 
786 void SelectionDAG::DeallocateNode(SDNode *N) {
787   // If we have operands, deallocate them.
788   removeOperands(N);
789 
790   NodeAllocator.Deallocate(AllNodes.remove(N));
791 
792   // Set the opcode to DELETED_NODE to help catch bugs when node
793   // memory is reallocated.
794   // FIXME: There are places in SDag that have grown a dependency on the opcode
795   // value in the released node.
796   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
797   N->NodeType = ISD::DELETED_NODE;
798 
799   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
800   // them and forget about that node.
801   DbgInfo->erase(N);
802 }
803 
804 #ifndef NDEBUG
805 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
806 static void VerifySDNode(SDNode *N) {
807   switch (N->getOpcode()) {
808   default:
809     break;
810   case ISD::BUILD_PAIR: {
811     EVT VT = N->getValueType(0);
812     assert(N->getNumValues() == 1 && "Too many results!");
813     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
814            "Wrong return type!");
815     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
816     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
817            "Mismatched operand types!");
818     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
819            "Wrong operand type!");
820     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
821            "Wrong return type size");
822     break;
823   }
824   case ISD::BUILD_VECTOR: {
825     assert(N->getNumValues() == 1 && "Too many results!");
826     assert(N->getValueType(0).isVector() && "Wrong return type!");
827     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
828            "Wrong number of operands!");
829     EVT EltVT = N->getValueType(0).getVectorElementType();
830     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
831       assert((I->getValueType() == EltVT ||
832              (EltVT.isInteger() && I->getValueType().isInteger() &&
833               EltVT.bitsLE(I->getValueType()))) &&
834             "Wrong operand type!");
835       assert(I->getValueType() == N->getOperand(0).getValueType() &&
836              "Operands must all have the same type");
837     }
838     break;
839   }
840   }
841 }
842 #endif // NDEBUG
843 
844 /// Insert a newly allocated node into the DAG.
845 ///
846 /// Handles insertion into the all nodes list and CSE map, as well as
847 /// verification and other common operations when a new node is allocated.
848 void SelectionDAG::InsertNode(SDNode *N) {
849   AllNodes.push_back(N);
850 #ifndef NDEBUG
851   N->PersistentId = NextPersistentId++;
852   VerifySDNode(N);
853 #endif
854   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
855     DUL->NodeInserted(N);
856 }
857 
858 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
859 /// correspond to it.  This is useful when we're about to delete or repurpose
860 /// the node.  We don't want future request for structurally identical nodes
861 /// to return N anymore.
862 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
863   bool Erased = false;
864   switch (N->getOpcode()) {
865   case ISD::HANDLENODE: return false;  // noop.
866   case ISD::CONDCODE:
867     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
868            "Cond code doesn't exist!");
869     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
870     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
871     break;
872   case ISD::ExternalSymbol:
873     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
874     break;
875   case ISD::TargetExternalSymbol: {
876     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
877     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
878         ESN->getSymbol(), ESN->getTargetFlags()));
879     break;
880   }
881   case ISD::MCSymbol: {
882     auto *MCSN = cast<MCSymbolSDNode>(N);
883     Erased = MCSymbols.erase(MCSN->getMCSymbol());
884     break;
885   }
886   case ISD::VALUETYPE: {
887     EVT VT = cast<VTSDNode>(N)->getVT();
888     if (VT.isExtended()) {
889       Erased = ExtendedValueTypeNodes.erase(VT);
890     } else {
891       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
892       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
893     }
894     break;
895   }
896   default:
897     // Remove it from the CSE Map.
898     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
899     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
900     Erased = CSEMap.RemoveNode(N);
901     break;
902   }
903 #ifndef NDEBUG
904   // Verify that the node was actually in one of the CSE maps, unless it has a
905   // flag result (which cannot be CSE'd) or is one of the special cases that are
906   // not subject to CSE.
907   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
908       !N->isMachineOpcode() && !doNotCSE(N)) {
909     N->dump(this);
910     dbgs() << "\n";
911     llvm_unreachable("Node is not in map!");
912   }
913 #endif
914   return Erased;
915 }
916 
917 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
918 /// maps and modified in place. Add it back to the CSE maps, unless an identical
919 /// node already exists, in which case transfer all its users to the existing
920 /// node. This transfer can potentially trigger recursive merging.
921 void
922 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
923   // For node types that aren't CSE'd, just act as if no identical node
924   // already exists.
925   if (!doNotCSE(N)) {
926     SDNode *Existing = CSEMap.GetOrInsertNode(N);
927     if (Existing != N) {
928       // If there was already an existing matching node, use ReplaceAllUsesWith
929       // to replace the dead one with the existing one.  This can cause
930       // recursive merging of other unrelated nodes down the line.
931       ReplaceAllUsesWith(N, Existing);
932 
933       // N is now dead. Inform the listeners and delete it.
934       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
935         DUL->NodeDeleted(N, Existing);
936       DeleteNodeNotInCSEMaps(N);
937       return;
938     }
939   }
940 
941   // If the node doesn't already exist, we updated it.  Inform listeners.
942   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
943     DUL->NodeUpdated(N);
944 }
945 
946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
947 /// were replaced with those specified.  If this node is never memoized,
948 /// return null, otherwise return a pointer to the slot it would take.  If a
949 /// node already exists with these operands, the slot will be non-null.
950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
951                                            void *&InsertPos) {
952   if (doNotCSE(N))
953     return nullptr;
954 
955   SDValue Ops[] = { Op };
956   FoldingSetNodeID ID;
957   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
958   AddNodeIDCustom(ID, N);
959   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
960   if (Node)
961     Node->intersectFlagsWith(N->getFlags());
962   return Node;
963 }
964 
965 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
966 /// were replaced with those specified.  If this node is never memoized,
967 /// return null, otherwise return a pointer to the slot it would take.  If a
968 /// node already exists with these operands, the slot will be non-null.
969 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
970                                            SDValue Op1, SDValue Op2,
971                                            void *&InsertPos) {
972   if (doNotCSE(N))
973     return nullptr;
974 
975   SDValue Ops[] = { Op1, Op2 };
976   FoldingSetNodeID ID;
977   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
978   AddNodeIDCustom(ID, N);
979   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
980   if (Node)
981     Node->intersectFlagsWith(N->getFlags());
982   return Node;
983 }
984 
985 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
986 /// were replaced with those specified.  If this node is never memoized,
987 /// return null, otherwise return a pointer to the slot it would take.  If a
988 /// node already exists with these operands, the slot will be non-null.
989 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
990                                            void *&InsertPos) {
991   if (doNotCSE(N))
992     return nullptr;
993 
994   FoldingSetNodeID ID;
995   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
996   AddNodeIDCustom(ID, N);
997   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
998   if (Node)
999     Node->intersectFlagsWith(N->getFlags());
1000   return Node;
1001 }
1002 
1003 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
1004   Type *Ty = VT == MVT::iPTR ?
1005                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1006                    VT.getTypeForEVT(*getContext());
1007 
1008   return getDataLayout().getABITypeAlignment(Ty);
1009 }
1010 
1011 // EntryNode could meaningfully have debug info if we can find it...
1012 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1013     : TM(tm), OptLevel(OL),
1014       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1015       Root(getEntryNode()) {
1016   InsertNode(&EntryNode);
1017   DbgInfo = new SDDbgInfo();
1018 }
1019 
1020 void SelectionDAG::init(MachineFunction &NewMF,
1021                         OptimizationRemarkEmitter &NewORE,
1022                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1023                         LegacyDivergenceAnalysis * Divergence,
1024                         ProfileSummaryInfo *PSIin,
1025                         BlockFrequencyInfo *BFIin) {
1026   MF = &NewMF;
1027   SDAGISelPass = PassPtr;
1028   ORE = &NewORE;
1029   TLI = getSubtarget().getTargetLowering();
1030   TSI = getSubtarget().getSelectionDAGInfo();
1031   LibInfo = LibraryInfo;
1032   Context = &MF->getFunction().getContext();
1033   DA = Divergence;
1034   PSI = PSIin;
1035   BFI = BFIin;
1036 }
1037 
1038 SelectionDAG::~SelectionDAG() {
1039   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1040   allnodes_clear();
1041   OperandRecycler.clear(OperandAllocator);
1042   delete DbgInfo;
1043 }
1044 
1045 bool SelectionDAG::shouldOptForSize() const {
1046   return MF->getFunction().hasOptSize() ||
1047       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1048 }
1049 
1050 void SelectionDAG::allnodes_clear() {
1051   assert(&*AllNodes.begin() == &EntryNode);
1052   AllNodes.remove(AllNodes.begin());
1053   while (!AllNodes.empty())
1054     DeallocateNode(&AllNodes.front());
1055 #ifndef NDEBUG
1056   NextPersistentId = 0;
1057 #endif
1058 }
1059 
1060 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1061                                           void *&InsertPos) {
1062   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1063   if (N) {
1064     switch (N->getOpcode()) {
1065     default: break;
1066     case ISD::Constant:
1067     case ISD::ConstantFP:
1068       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1069                        "debug location.  Use another overload.");
1070     }
1071   }
1072   return N;
1073 }
1074 
1075 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1076                                           const SDLoc &DL, void *&InsertPos) {
1077   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1078   if (N) {
1079     switch (N->getOpcode()) {
1080     case ISD::Constant:
1081     case ISD::ConstantFP:
1082       // Erase debug location from the node if the node is used at several
1083       // different places. Do not propagate one location to all uses as it
1084       // will cause a worse single stepping debugging experience.
1085       if (N->getDebugLoc() != DL.getDebugLoc())
1086         N->setDebugLoc(DebugLoc());
1087       break;
1088     default:
1089       // When the node's point of use is located earlier in the instruction
1090       // sequence than its prior point of use, update its debug info to the
1091       // earlier location.
1092       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1093         N->setDebugLoc(DL.getDebugLoc());
1094       break;
1095     }
1096   }
1097   return N;
1098 }
1099 
1100 void SelectionDAG::clear() {
1101   allnodes_clear();
1102   OperandRecycler.clear(OperandAllocator);
1103   OperandAllocator.Reset();
1104   CSEMap.clear();
1105 
1106   ExtendedValueTypeNodes.clear();
1107   ExternalSymbols.clear();
1108   TargetExternalSymbols.clear();
1109   MCSymbols.clear();
1110   SDCallSiteDbgInfo.clear();
1111   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1112             static_cast<CondCodeSDNode*>(nullptr));
1113   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1114             static_cast<SDNode*>(nullptr));
1115 
1116   EntryNode.UseList = nullptr;
1117   InsertNode(&EntryNode);
1118   Root = getEntryNode();
1119   DbgInfo->clear();
1120 }
1121 
1122 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1123   return VT.bitsGT(Op.getValueType())
1124              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1125              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1126 }
1127 
1128 std::pair<SDValue, SDValue>
1129 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1130                                        const SDLoc &DL, EVT VT) {
1131   assert(!VT.bitsEq(Op.getValueType()) &&
1132          "Strict no-op FP extend/round not allowed.");
1133   SDValue Res =
1134       VT.bitsGT(Op.getValueType())
1135           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1136           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1137                     {Chain, Op, getIntPtrConstant(0, DL)});
1138 
1139   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1140 }
1141 
1142 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1143   return VT.bitsGT(Op.getValueType()) ?
1144     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1145     getNode(ISD::TRUNCATE, DL, VT, Op);
1146 }
1147 
1148 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1149   return VT.bitsGT(Op.getValueType()) ?
1150     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1151     getNode(ISD::TRUNCATE, DL, VT, Op);
1152 }
1153 
1154 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1155   return VT.bitsGT(Op.getValueType()) ?
1156     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1157     getNode(ISD::TRUNCATE, DL, VT, Op);
1158 }
1159 
1160 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1161                                         EVT OpVT) {
1162   if (VT.bitsLE(Op.getValueType()))
1163     return getNode(ISD::TRUNCATE, SL, VT, Op);
1164 
1165   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1166   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1167 }
1168 
1169 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1170   assert(!VT.isVector() &&
1171          "getZeroExtendInReg should use the vector element type instead of "
1172          "the vector type!");
1173   if (Op.getValueType().getScalarType() == VT) return Op;
1174   unsigned BitWidth = Op.getScalarValueSizeInBits();
1175   APInt Imm = APInt::getLowBitsSet(BitWidth,
1176                                    VT.getSizeInBits());
1177   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1178                  getConstant(Imm, DL, Op.getValueType()));
1179 }
1180 
1181 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1182   // Only unsigned pointer semantics are supported right now. In the future this
1183   // might delegate to TLI to check pointer signedness.
1184   return getZExtOrTrunc(Op, DL, VT);
1185 }
1186 
1187 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1188   // Only unsigned pointer semantics are supported right now. In the future this
1189   // might delegate to TLI to check pointer signedness.
1190   return getZeroExtendInReg(Op, DL, VT);
1191 }
1192 
1193 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1194 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1195   EVT EltVT = VT.getScalarType();
1196   SDValue NegOne =
1197     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1198   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1199 }
1200 
1201 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1202   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1203   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1204 }
1205 
1206 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1207                                       EVT OpVT) {
1208   if (!V)
1209     return getConstant(0, DL, VT);
1210 
1211   switch (TLI->getBooleanContents(OpVT)) {
1212   case TargetLowering::ZeroOrOneBooleanContent:
1213   case TargetLowering::UndefinedBooleanContent:
1214     return getConstant(1, DL, VT);
1215   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1216     return getAllOnesConstant(DL, VT);
1217   }
1218   llvm_unreachable("Unexpected boolean content enum!");
1219 }
1220 
1221 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1222                                   bool isT, bool isO) {
1223   EVT EltVT = VT.getScalarType();
1224   assert((EltVT.getSizeInBits() >= 64 ||
1225          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1226          "getConstant with a uint64_t value that doesn't fit in the type!");
1227   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1228 }
1229 
1230 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1231                                   bool isT, bool isO) {
1232   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1233 }
1234 
1235 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1236                                   EVT VT, bool isT, bool isO) {
1237   assert(VT.isInteger() && "Cannot create FP integer constant!");
1238 
1239   EVT EltVT = VT.getScalarType();
1240   const ConstantInt *Elt = &Val;
1241 
1242   // In some cases the vector type is legal but the element type is illegal and
1243   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1244   // inserted value (the type does not need to match the vector element type).
1245   // Any extra bits introduced will be truncated away.
1246   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1247       TargetLowering::TypePromoteInteger) {
1248    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1249    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1250    Elt = ConstantInt::get(*getContext(), NewVal);
1251   }
1252   // In other cases the element type is illegal and needs to be expanded, for
1253   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1254   // the value into n parts and use a vector type with n-times the elements.
1255   // Then bitcast to the type requested.
1256   // Legalizing constants too early makes the DAGCombiner's job harder so we
1257   // only legalize if the DAG tells us we must produce legal types.
1258   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1259            TLI->getTypeAction(*getContext(), EltVT) ==
1260            TargetLowering::TypeExpandInteger) {
1261     const APInt &NewVal = Elt->getValue();
1262     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1263     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1264     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1265     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1266 
1267     // Check the temporary vector is the correct size. If this fails then
1268     // getTypeToTransformTo() probably returned a type whose size (in bits)
1269     // isn't a power-of-2 factor of the requested type size.
1270     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1271 
1272     SmallVector<SDValue, 2> EltParts;
1273     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1274       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1275                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1276                                      ViaEltVT, isT, isO));
1277     }
1278 
1279     // EltParts is currently in little endian order. If we actually want
1280     // big-endian order then reverse it now.
1281     if (getDataLayout().isBigEndian())
1282       std::reverse(EltParts.begin(), EltParts.end());
1283 
1284     // The elements must be reversed when the element order is different
1285     // to the endianness of the elements (because the BITCAST is itself a
1286     // vector shuffle in this situation). However, we do not need any code to
1287     // perform this reversal because getConstant() is producing a vector
1288     // splat.
1289     // This situation occurs in MIPS MSA.
1290 
1291     SmallVector<SDValue, 8> Ops;
1292     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1293       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1294 
1295     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1296     return V;
1297   }
1298 
1299   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1300          "APInt size does not match type size!");
1301   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1302   FoldingSetNodeID ID;
1303   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1304   ID.AddPointer(Elt);
1305   ID.AddBoolean(isO);
1306   void *IP = nullptr;
1307   SDNode *N = nullptr;
1308   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1309     if (!VT.isVector())
1310       return SDValue(N, 0);
1311 
1312   if (!N) {
1313     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1314     CSEMap.InsertNode(N, IP);
1315     InsertNode(N);
1316     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1317   }
1318 
1319   SDValue Result(N, 0);
1320   if (VT.isScalableVector())
1321     Result = getSplatVector(VT, DL, Result);
1322   else if (VT.isVector())
1323     Result = getSplatBuildVector(VT, DL, Result);
1324 
1325   return Result;
1326 }
1327 
1328 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1329                                         bool isTarget) {
1330   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1331 }
1332 
1333 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1334                                              const SDLoc &DL, bool LegalTypes) {
1335   assert(VT.isInteger() && "Shift amount is not an integer type!");
1336   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1337   return getConstant(Val, DL, ShiftVT);
1338 }
1339 
1340 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1341                                            bool isTarget) {
1342   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1343 }
1344 
1345 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1346                                     bool isTarget) {
1347   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1348 }
1349 
1350 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1351                                     EVT VT, bool isTarget) {
1352   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1353 
1354   EVT EltVT = VT.getScalarType();
1355 
1356   // Do the map lookup using the actual bit pattern for the floating point
1357   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1358   // we don't have issues with SNANs.
1359   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1360   FoldingSetNodeID ID;
1361   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1362   ID.AddPointer(&V);
1363   void *IP = nullptr;
1364   SDNode *N = nullptr;
1365   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1366     if (!VT.isVector())
1367       return SDValue(N, 0);
1368 
1369   if (!N) {
1370     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1371     CSEMap.InsertNode(N, IP);
1372     InsertNode(N);
1373   }
1374 
1375   SDValue Result(N, 0);
1376   if (VT.isVector())
1377     Result = getSplatBuildVector(VT, DL, Result);
1378   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1379   return Result;
1380 }
1381 
1382 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1383                                     bool isTarget) {
1384   EVT EltVT = VT.getScalarType();
1385   if (EltVT == MVT::f32)
1386     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1387   else if (EltVT == MVT::f64)
1388     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1389   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1390            EltVT == MVT::f16) {
1391     bool Ignored;
1392     APFloat APF = APFloat(Val);
1393     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1394                 &Ignored);
1395     return getConstantFP(APF, DL, VT, isTarget);
1396   } else
1397     llvm_unreachable("Unsupported type in getConstantFP");
1398 }
1399 
1400 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1401                                        EVT VT, int64_t Offset, bool isTargetGA,
1402                                        unsigned TargetFlags) {
1403   assert((TargetFlags == 0 || isTargetGA) &&
1404          "Cannot set target flags on target-independent globals");
1405 
1406   // Truncate (with sign-extension) the offset value to the pointer size.
1407   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1408   if (BitWidth < 64)
1409     Offset = SignExtend64(Offset, BitWidth);
1410 
1411   unsigned Opc;
1412   if (GV->isThreadLocal())
1413     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1414   else
1415     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1416 
1417   FoldingSetNodeID ID;
1418   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1419   ID.AddPointer(GV);
1420   ID.AddInteger(Offset);
1421   ID.AddInteger(TargetFlags);
1422   void *IP = nullptr;
1423   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1424     return SDValue(E, 0);
1425 
1426   auto *N = newSDNode<GlobalAddressSDNode>(
1427       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1428   CSEMap.InsertNode(N, IP);
1429     InsertNode(N);
1430   return SDValue(N, 0);
1431 }
1432 
1433 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1434   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1435   FoldingSetNodeID ID;
1436   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1437   ID.AddInteger(FI);
1438   void *IP = nullptr;
1439   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1440     return SDValue(E, 0);
1441 
1442   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1443   CSEMap.InsertNode(N, IP);
1444   InsertNode(N);
1445   return SDValue(N, 0);
1446 }
1447 
1448 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1449                                    unsigned TargetFlags) {
1450   assert((TargetFlags == 0 || isTarget) &&
1451          "Cannot set target flags on target-independent jump tables");
1452   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1453   FoldingSetNodeID ID;
1454   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1455   ID.AddInteger(JTI);
1456   ID.AddInteger(TargetFlags);
1457   void *IP = nullptr;
1458   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1459     return SDValue(E, 0);
1460 
1461   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1462   CSEMap.InsertNode(N, IP);
1463   InsertNode(N);
1464   return SDValue(N, 0);
1465 }
1466 
1467 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1468                                       unsigned Alignment, int Offset,
1469                                       bool isTarget,
1470                                       unsigned TargetFlags) {
1471   assert((TargetFlags == 0 || isTarget) &&
1472          "Cannot set target flags on target-independent globals");
1473   if (Alignment == 0)
1474     Alignment = shouldOptForSize()
1475                     ? getDataLayout().getABITypeAlignment(C->getType())
1476                     : getDataLayout().getPrefTypeAlignment(C->getType());
1477   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1478   FoldingSetNodeID ID;
1479   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1480   ID.AddInteger(Alignment);
1481   ID.AddInteger(Offset);
1482   ID.AddPointer(C);
1483   ID.AddInteger(TargetFlags);
1484   void *IP = nullptr;
1485   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1486     return SDValue(E, 0);
1487 
1488   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1489                                           TargetFlags);
1490   CSEMap.InsertNode(N, IP);
1491   InsertNode(N);
1492   return SDValue(N, 0);
1493 }
1494 
1495 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1496                                       unsigned Alignment, int Offset,
1497                                       bool isTarget,
1498                                       unsigned TargetFlags) {
1499   assert((TargetFlags == 0 || isTarget) &&
1500          "Cannot set target flags on target-independent globals");
1501   if (Alignment == 0)
1502     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1503   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1504   FoldingSetNodeID ID;
1505   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1506   ID.AddInteger(Alignment);
1507   ID.AddInteger(Offset);
1508   C->addSelectionDAGCSEId(ID);
1509   ID.AddInteger(TargetFlags);
1510   void *IP = nullptr;
1511   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1512     return SDValue(E, 0);
1513 
1514   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1515                                           TargetFlags);
1516   CSEMap.InsertNode(N, IP);
1517   InsertNode(N);
1518   return SDValue(N, 0);
1519 }
1520 
1521 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1522                                      unsigned TargetFlags) {
1523   FoldingSetNodeID ID;
1524   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1525   ID.AddInteger(Index);
1526   ID.AddInteger(Offset);
1527   ID.AddInteger(TargetFlags);
1528   void *IP = nullptr;
1529   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1530     return SDValue(E, 0);
1531 
1532   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1533   CSEMap.InsertNode(N, IP);
1534   InsertNode(N);
1535   return SDValue(N, 0);
1536 }
1537 
1538 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1539   FoldingSetNodeID ID;
1540   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1541   ID.AddPointer(MBB);
1542   void *IP = nullptr;
1543   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1544     return SDValue(E, 0);
1545 
1546   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1547   CSEMap.InsertNode(N, IP);
1548   InsertNode(N);
1549   return SDValue(N, 0);
1550 }
1551 
1552 SDValue SelectionDAG::getValueType(EVT VT) {
1553   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1554       ValueTypeNodes.size())
1555     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1556 
1557   SDNode *&N = VT.isExtended() ?
1558     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1559 
1560   if (N) return SDValue(N, 0);
1561   N = newSDNode<VTSDNode>(VT);
1562   InsertNode(N);
1563   return SDValue(N, 0);
1564 }
1565 
1566 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1567   SDNode *&N = ExternalSymbols[Sym];
1568   if (N) return SDValue(N, 0);
1569   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1570   InsertNode(N);
1571   return SDValue(N, 0);
1572 }
1573 
1574 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1575   SDNode *&N = MCSymbols[Sym];
1576   if (N)
1577     return SDValue(N, 0);
1578   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1579   InsertNode(N);
1580   return SDValue(N, 0);
1581 }
1582 
1583 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1584                                               unsigned TargetFlags) {
1585   SDNode *&N =
1586       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1587   if (N) return SDValue(N, 0);
1588   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1589   InsertNode(N);
1590   return SDValue(N, 0);
1591 }
1592 
1593 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1594   if ((unsigned)Cond >= CondCodeNodes.size())
1595     CondCodeNodes.resize(Cond+1);
1596 
1597   if (!CondCodeNodes[Cond]) {
1598     auto *N = newSDNode<CondCodeSDNode>(Cond);
1599     CondCodeNodes[Cond] = N;
1600     InsertNode(N);
1601   }
1602 
1603   return SDValue(CondCodeNodes[Cond], 0);
1604 }
1605 
1606 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1607 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1608 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1609   std::swap(N1, N2);
1610   ShuffleVectorSDNode::commuteMask(M);
1611 }
1612 
1613 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1614                                        SDValue N2, ArrayRef<int> Mask) {
1615   assert(VT.getVectorNumElements() == Mask.size() &&
1616            "Must have the same number of vector elements as mask elements!");
1617   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1618          "Invalid VECTOR_SHUFFLE");
1619 
1620   // Canonicalize shuffle undef, undef -> undef
1621   if (N1.isUndef() && N2.isUndef())
1622     return getUNDEF(VT);
1623 
1624   // Validate that all indices in Mask are within the range of the elements
1625   // input to the shuffle.
1626   int NElts = Mask.size();
1627   assert(llvm::all_of(Mask,
1628                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1629          "Index out of range");
1630 
1631   // Copy the mask so we can do any needed cleanup.
1632   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1633 
1634   // Canonicalize shuffle v, v -> v, undef
1635   if (N1 == N2) {
1636     N2 = getUNDEF(VT);
1637     for (int i = 0; i != NElts; ++i)
1638       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1639   }
1640 
1641   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1642   if (N1.isUndef())
1643     commuteShuffle(N1, N2, MaskVec);
1644 
1645   if (TLI->hasVectorBlend()) {
1646     // If shuffling a splat, try to blend the splat instead. We do this here so
1647     // that even when this arises during lowering we don't have to re-handle it.
1648     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1649       BitVector UndefElements;
1650       SDValue Splat = BV->getSplatValue(&UndefElements);
1651       if (!Splat)
1652         return;
1653 
1654       for (int i = 0; i < NElts; ++i) {
1655         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1656           continue;
1657 
1658         // If this input comes from undef, mark it as such.
1659         if (UndefElements[MaskVec[i] - Offset]) {
1660           MaskVec[i] = -1;
1661           continue;
1662         }
1663 
1664         // If we can blend a non-undef lane, use that instead.
1665         if (!UndefElements[i])
1666           MaskVec[i] = i + Offset;
1667       }
1668     };
1669     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1670       BlendSplat(N1BV, 0);
1671     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1672       BlendSplat(N2BV, NElts);
1673   }
1674 
1675   // Canonicalize all index into lhs, -> shuffle lhs, undef
1676   // Canonicalize all index into rhs, -> shuffle rhs, undef
1677   bool AllLHS = true, AllRHS = true;
1678   bool N2Undef = N2.isUndef();
1679   for (int i = 0; i != NElts; ++i) {
1680     if (MaskVec[i] >= NElts) {
1681       if (N2Undef)
1682         MaskVec[i] = -1;
1683       else
1684         AllLHS = false;
1685     } else if (MaskVec[i] >= 0) {
1686       AllRHS = false;
1687     }
1688   }
1689   if (AllLHS && AllRHS)
1690     return getUNDEF(VT);
1691   if (AllLHS && !N2Undef)
1692     N2 = getUNDEF(VT);
1693   if (AllRHS) {
1694     N1 = getUNDEF(VT);
1695     commuteShuffle(N1, N2, MaskVec);
1696   }
1697   // Reset our undef status after accounting for the mask.
1698   N2Undef = N2.isUndef();
1699   // Re-check whether both sides ended up undef.
1700   if (N1.isUndef() && N2Undef)
1701     return getUNDEF(VT);
1702 
1703   // If Identity shuffle return that node.
1704   bool Identity = true, AllSame = true;
1705   for (int i = 0; i != NElts; ++i) {
1706     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1707     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1708   }
1709   if (Identity && NElts)
1710     return N1;
1711 
1712   // Shuffling a constant splat doesn't change the result.
1713   if (N2Undef) {
1714     SDValue V = N1;
1715 
1716     // Look through any bitcasts. We check that these don't change the number
1717     // (and size) of elements and just changes their types.
1718     while (V.getOpcode() == ISD::BITCAST)
1719       V = V->getOperand(0);
1720 
1721     // A splat should always show up as a build vector node.
1722     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1723       BitVector UndefElements;
1724       SDValue Splat = BV->getSplatValue(&UndefElements);
1725       // If this is a splat of an undef, shuffling it is also undef.
1726       if (Splat && Splat.isUndef())
1727         return getUNDEF(VT);
1728 
1729       bool SameNumElts =
1730           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1731 
1732       // We only have a splat which can skip shuffles if there is a splatted
1733       // value and no undef lanes rearranged by the shuffle.
1734       if (Splat && UndefElements.none()) {
1735         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1736         // number of elements match or the value splatted is a zero constant.
1737         if (SameNumElts)
1738           return N1;
1739         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1740           if (C->isNullValue())
1741             return N1;
1742       }
1743 
1744       // If the shuffle itself creates a splat, build the vector directly.
1745       if (AllSame && SameNumElts) {
1746         EVT BuildVT = BV->getValueType(0);
1747         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1748         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1749 
1750         // We may have jumped through bitcasts, so the type of the
1751         // BUILD_VECTOR may not match the type of the shuffle.
1752         if (BuildVT != VT)
1753           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1754         return NewBV;
1755       }
1756     }
1757   }
1758 
1759   FoldingSetNodeID ID;
1760   SDValue Ops[2] = { N1, N2 };
1761   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1762   for (int i = 0; i != NElts; ++i)
1763     ID.AddInteger(MaskVec[i]);
1764 
1765   void* IP = nullptr;
1766   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1767     return SDValue(E, 0);
1768 
1769   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1770   // SDNode doesn't have access to it.  This memory will be "leaked" when
1771   // the node is deallocated, but recovered when the NodeAllocator is released.
1772   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1773   llvm::copy(MaskVec, MaskAlloc);
1774 
1775   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1776                                            dl.getDebugLoc(), MaskAlloc);
1777   createOperands(N, Ops);
1778 
1779   CSEMap.InsertNode(N, IP);
1780   InsertNode(N);
1781   SDValue V = SDValue(N, 0);
1782   NewSDValueDbgMsg(V, "Creating new node: ", this);
1783   return V;
1784 }
1785 
1786 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1787   EVT VT = SV.getValueType(0);
1788   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1789   ShuffleVectorSDNode::commuteMask(MaskVec);
1790 
1791   SDValue Op0 = SV.getOperand(0);
1792   SDValue Op1 = SV.getOperand(1);
1793   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1794 }
1795 
1796 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1797   FoldingSetNodeID ID;
1798   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1799   ID.AddInteger(RegNo);
1800   void *IP = nullptr;
1801   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1802     return SDValue(E, 0);
1803 
1804   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1805   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1806   CSEMap.InsertNode(N, IP);
1807   InsertNode(N);
1808   return SDValue(N, 0);
1809 }
1810 
1811 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1812   FoldingSetNodeID ID;
1813   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1814   ID.AddPointer(RegMask);
1815   void *IP = nullptr;
1816   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1817     return SDValue(E, 0);
1818 
1819   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1820   CSEMap.InsertNode(N, IP);
1821   InsertNode(N);
1822   return SDValue(N, 0);
1823 }
1824 
1825 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1826                                  MCSymbol *Label) {
1827   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1828 }
1829 
1830 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1831                                    SDValue Root, MCSymbol *Label) {
1832   FoldingSetNodeID ID;
1833   SDValue Ops[] = { Root };
1834   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1835   ID.AddPointer(Label);
1836   void *IP = nullptr;
1837   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1838     return SDValue(E, 0);
1839 
1840   auto *N =
1841       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1842   createOperands(N, Ops);
1843 
1844   CSEMap.InsertNode(N, IP);
1845   InsertNode(N);
1846   return SDValue(N, 0);
1847 }
1848 
1849 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1850                                       int64_t Offset, bool isTarget,
1851                                       unsigned TargetFlags) {
1852   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1853 
1854   FoldingSetNodeID ID;
1855   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1856   ID.AddPointer(BA);
1857   ID.AddInteger(Offset);
1858   ID.AddInteger(TargetFlags);
1859   void *IP = nullptr;
1860   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1861     return SDValue(E, 0);
1862 
1863   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1864   CSEMap.InsertNode(N, IP);
1865   InsertNode(N);
1866   return SDValue(N, 0);
1867 }
1868 
1869 SDValue SelectionDAG::getSrcValue(const Value *V) {
1870   assert((!V || V->getType()->isPointerTy()) &&
1871          "SrcValue is not a pointer?");
1872 
1873   FoldingSetNodeID ID;
1874   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1875   ID.AddPointer(V);
1876 
1877   void *IP = nullptr;
1878   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1879     return SDValue(E, 0);
1880 
1881   auto *N = newSDNode<SrcValueSDNode>(V);
1882   CSEMap.InsertNode(N, IP);
1883   InsertNode(N);
1884   return SDValue(N, 0);
1885 }
1886 
1887 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1888   FoldingSetNodeID ID;
1889   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1890   ID.AddPointer(MD);
1891 
1892   void *IP = nullptr;
1893   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1894     return SDValue(E, 0);
1895 
1896   auto *N = newSDNode<MDNodeSDNode>(MD);
1897   CSEMap.InsertNode(N, IP);
1898   InsertNode(N);
1899   return SDValue(N, 0);
1900 }
1901 
1902 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1903   if (VT == V.getValueType())
1904     return V;
1905 
1906   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1907 }
1908 
1909 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1910                                        unsigned SrcAS, unsigned DestAS) {
1911   SDValue Ops[] = {Ptr};
1912   FoldingSetNodeID ID;
1913   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1914   ID.AddInteger(SrcAS);
1915   ID.AddInteger(DestAS);
1916 
1917   void *IP = nullptr;
1918   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1919     return SDValue(E, 0);
1920 
1921   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1922                                            VT, SrcAS, DestAS);
1923   createOperands(N, Ops);
1924 
1925   CSEMap.InsertNode(N, IP);
1926   InsertNode(N);
1927   return SDValue(N, 0);
1928 }
1929 
1930 /// getShiftAmountOperand - Return the specified value casted to
1931 /// the target's desired shift amount type.
1932 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1933   EVT OpTy = Op.getValueType();
1934   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1935   if (OpTy == ShTy || OpTy.isVector()) return Op;
1936 
1937   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1938 }
1939 
1940 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1941   SDLoc dl(Node);
1942   const TargetLowering &TLI = getTargetLoweringInfo();
1943   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1944   EVT VT = Node->getValueType(0);
1945   SDValue Tmp1 = Node->getOperand(0);
1946   SDValue Tmp2 = Node->getOperand(1);
1947   const MaybeAlign MA(Node->getConstantOperandVal(3));
1948 
1949   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1950                                Tmp2, MachinePointerInfo(V));
1951   SDValue VAList = VAListLoad;
1952 
1953   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1954     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1955                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
1956 
1957     VAList =
1958         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1959                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
1960   }
1961 
1962   // Increment the pointer, VAList, to the next vaarg
1963   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1964                  getConstant(getDataLayout().getTypeAllocSize(
1965                                                VT.getTypeForEVT(*getContext())),
1966                              dl, VAList.getValueType()));
1967   // Store the incremented VAList to the legalized pointer
1968   Tmp1 =
1969       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1970   // Load the actual argument out of the pointer VAList
1971   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1972 }
1973 
1974 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1975   SDLoc dl(Node);
1976   const TargetLowering &TLI = getTargetLoweringInfo();
1977   // This defaults to loading a pointer from the input and storing it to the
1978   // output, returning the chain.
1979   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1980   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1981   SDValue Tmp1 =
1982       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1983               Node->getOperand(2), MachinePointerInfo(VS));
1984   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1985                   MachinePointerInfo(VD));
1986 }
1987 
1988 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1989   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1990   unsigned ByteSize = VT.getStoreSize();
1991   Type *Ty = VT.getTypeForEVT(*getContext());
1992   unsigned StackAlign =
1993       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1994 
1995   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1996   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1997 }
1998 
1999 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2000   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
2001   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2002   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2003   const DataLayout &DL = getDataLayout();
2004   unsigned Align =
2005       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
2006 
2007   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
2008   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
2009   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2010 }
2011 
2012 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2013                                 ISD::CondCode Cond, const SDLoc &dl) {
2014   EVT OpVT = N1.getValueType();
2015 
2016   // These setcc operations always fold.
2017   switch (Cond) {
2018   default: break;
2019   case ISD::SETFALSE:
2020   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2021   case ISD::SETTRUE:
2022   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2023 
2024   case ISD::SETOEQ:
2025   case ISD::SETOGT:
2026   case ISD::SETOGE:
2027   case ISD::SETOLT:
2028   case ISD::SETOLE:
2029   case ISD::SETONE:
2030   case ISD::SETO:
2031   case ISD::SETUO:
2032   case ISD::SETUEQ:
2033   case ISD::SETUNE:
2034     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2035     break;
2036   }
2037 
2038   if (OpVT.isInteger()) {
2039     // For EQ and NE, we can always pick a value for the undef to make the
2040     // predicate pass or fail, so we can return undef.
2041     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2042     // icmp eq/ne X, undef -> undef.
2043     if ((N1.isUndef() || N2.isUndef()) &&
2044         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2045       return getUNDEF(VT);
2046 
2047     // If both operands are undef, we can return undef for int comparison.
2048     // icmp undef, undef -> undef.
2049     if (N1.isUndef() && N2.isUndef())
2050       return getUNDEF(VT);
2051 
2052     // icmp X, X -> true/false
2053     // icmp X, undef -> true/false because undef could be X.
2054     if (N1 == N2)
2055       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2056   }
2057 
2058   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2059     const APInt &C2 = N2C->getAPIntValue();
2060     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2061       const APInt &C1 = N1C->getAPIntValue();
2062 
2063       switch (Cond) {
2064       default: llvm_unreachable("Unknown integer setcc!");
2065       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2066       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2067       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2068       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2069       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2070       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2071       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2072       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2073       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2074       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2075       }
2076     }
2077   }
2078 
2079   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2080   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2081 
2082   if (N1CFP && N2CFP) {
2083     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2084     switch (Cond) {
2085     default: break;
2086     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2087                         return getUNDEF(VT);
2088                       LLVM_FALLTHROUGH;
2089     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2090                                              OpVT);
2091     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2092                         return getUNDEF(VT);
2093                       LLVM_FALLTHROUGH;
2094     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2095                                              R==APFloat::cmpLessThan, dl, VT,
2096                                              OpVT);
2097     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2098                         return getUNDEF(VT);
2099                       LLVM_FALLTHROUGH;
2100     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2101                                              OpVT);
2102     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2103                         return getUNDEF(VT);
2104                       LLVM_FALLTHROUGH;
2105     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2106                                              VT, OpVT);
2107     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2108                         return getUNDEF(VT);
2109                       LLVM_FALLTHROUGH;
2110     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2111                                              R==APFloat::cmpEqual, dl, VT,
2112                                              OpVT);
2113     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2114                         return getUNDEF(VT);
2115                       LLVM_FALLTHROUGH;
2116     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2117                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2118     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2119                                              OpVT);
2120     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2121                                              OpVT);
2122     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2123                                              R==APFloat::cmpEqual, dl, VT,
2124                                              OpVT);
2125     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2126                                              OpVT);
2127     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2128                                              R==APFloat::cmpLessThan, dl, VT,
2129                                              OpVT);
2130     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2131                                              R==APFloat::cmpUnordered, dl, VT,
2132                                              OpVT);
2133     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2134                                              VT, OpVT);
2135     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2136                                              OpVT);
2137     }
2138   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2139     // Ensure that the constant occurs on the RHS.
2140     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2141     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2142       return SDValue();
2143     return getSetCC(dl, VT, N2, N1, SwappedCond);
2144   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2145              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2146     // If an operand is known to be a nan (or undef that could be a nan), we can
2147     // fold it.
2148     // Choosing NaN for the undef will always make unordered comparison succeed
2149     // and ordered comparison fails.
2150     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2151     switch (ISD::getUnorderedFlavor(Cond)) {
2152     default:
2153       llvm_unreachable("Unknown flavor!");
2154     case 0: // Known false.
2155       return getBoolConstant(false, dl, VT, OpVT);
2156     case 1: // Known true.
2157       return getBoolConstant(true, dl, VT, OpVT);
2158     case 2: // Undefined.
2159       return getUNDEF(VT);
2160     }
2161   }
2162 
2163   // Could not fold it.
2164   return SDValue();
2165 }
2166 
2167 /// See if the specified operand can be simplified with the knowledge that only
2168 /// the bits specified by DemandedBits are used.
2169 /// TODO: really we should be making this into the DAG equivalent of
2170 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2171 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2172   EVT VT = V.getValueType();
2173   APInt DemandedElts = VT.isVector()
2174                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2175                            : APInt(1, 1);
2176   return GetDemandedBits(V, DemandedBits, DemandedElts);
2177 }
2178 
2179 /// See if the specified operand can be simplified with the knowledge that only
2180 /// the bits specified by DemandedBits are used in the elements specified by
2181 /// DemandedElts.
2182 /// TODO: really we should be making this into the DAG equivalent of
2183 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2184 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2185                                       const APInt &DemandedElts) {
2186   switch (V.getOpcode()) {
2187   default:
2188     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2189                                                 *this, 0);
2190     break;
2191   case ISD::Constant: {
2192     auto *CV = cast<ConstantSDNode>(V.getNode());
2193     assert(CV && "Const value should be ConstSDNode.");
2194     const APInt &CVal = CV->getAPIntValue();
2195     APInt NewVal = CVal & DemandedBits;
2196     if (NewVal != CVal)
2197       return getConstant(NewVal, SDLoc(V), V.getValueType());
2198     break;
2199   }
2200   case ISD::SRL:
2201     // Only look at single-use SRLs.
2202     if (!V.getNode()->hasOneUse())
2203       break;
2204     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2205       // See if we can recursively simplify the LHS.
2206       unsigned Amt = RHSC->getZExtValue();
2207 
2208       // Watch out for shift count overflow though.
2209       if (Amt >= DemandedBits.getBitWidth())
2210         break;
2211       APInt SrcDemandedBits = DemandedBits << Amt;
2212       if (SDValue SimplifyLHS =
2213               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2214         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2215                        V.getOperand(1));
2216     }
2217     break;
2218   case ISD::AND: {
2219     // X & -1 -> X (ignoring bits which aren't demanded).
2220     // Also handle the case where masked out bits in X are known to be zero.
2221     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2222       const APInt &AndVal = RHSC->getAPIntValue();
2223       if (DemandedBits.isSubsetOf(AndVal) ||
2224           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2225                                   AndVal))
2226         return V.getOperand(0);
2227     }
2228     break;
2229   }
2230   }
2231   return SDValue();
2232 }
2233 
2234 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2235 /// use this predicate to simplify operations downstream.
2236 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2237   unsigned BitWidth = Op.getScalarValueSizeInBits();
2238   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2239 }
2240 
2241 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2242 /// this predicate to simplify operations downstream.  Mask is known to be zero
2243 /// for bits that V cannot have.
2244 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2245                                      unsigned Depth) const {
2246   EVT VT = V.getValueType();
2247   APInt DemandedElts = VT.isVector()
2248                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2249                            : APInt(1, 1);
2250   return MaskedValueIsZero(V, Mask, DemandedElts, Depth);
2251 }
2252 
2253 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2254 /// DemandedElts.  We use this predicate to simplify operations downstream.
2255 /// Mask is known to be zero for bits that V cannot have.
2256 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2257                                      const APInt &DemandedElts,
2258                                      unsigned Depth) const {
2259   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2260 }
2261 
2262 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2263 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2264                                         unsigned Depth) const {
2265   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2266 }
2267 
2268 /// isSplatValue - Return true if the vector V has the same value
2269 /// across all DemandedElts.
2270 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2271                                 APInt &UndefElts) {
2272   if (!DemandedElts)
2273     return false; // No demanded elts, better to assume we don't know anything.
2274 
2275   EVT VT = V.getValueType();
2276   assert(VT.isVector() && "Vector type expected");
2277 
2278   unsigned NumElts = VT.getVectorNumElements();
2279   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2280   UndefElts = APInt::getNullValue(NumElts);
2281 
2282   switch (V.getOpcode()) {
2283   case ISD::BUILD_VECTOR: {
2284     SDValue Scl;
2285     for (unsigned i = 0; i != NumElts; ++i) {
2286       SDValue Op = V.getOperand(i);
2287       if (Op.isUndef()) {
2288         UndefElts.setBit(i);
2289         continue;
2290       }
2291       if (!DemandedElts[i])
2292         continue;
2293       if (Scl && Scl != Op)
2294         return false;
2295       Scl = Op;
2296     }
2297     return true;
2298   }
2299   case ISD::VECTOR_SHUFFLE: {
2300     // Check if this is a shuffle node doing a splat.
2301     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2302     int SplatIndex = -1;
2303     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2304     for (int i = 0; i != (int)NumElts; ++i) {
2305       int M = Mask[i];
2306       if (M < 0) {
2307         UndefElts.setBit(i);
2308         continue;
2309       }
2310       if (!DemandedElts[i])
2311         continue;
2312       if (0 <= SplatIndex && SplatIndex != M)
2313         return false;
2314       SplatIndex = M;
2315     }
2316     return true;
2317   }
2318   case ISD::EXTRACT_SUBVECTOR: {
2319     SDValue Src = V.getOperand(0);
2320     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2321     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2322     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2323       // Offset the demanded elts by the subvector index.
2324       uint64_t Idx = SubIdx->getZExtValue();
2325       APInt UndefSrcElts;
2326       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2327       if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2328         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2329         return true;
2330       }
2331     }
2332     break;
2333   }
2334   case ISD::ADD:
2335   case ISD::SUB:
2336   case ISD::AND: {
2337     APInt UndefLHS, UndefRHS;
2338     SDValue LHS = V.getOperand(0);
2339     SDValue RHS = V.getOperand(1);
2340     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2341         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2342       UndefElts = UndefLHS | UndefRHS;
2343       return true;
2344     }
2345     break;
2346   }
2347   }
2348 
2349   return false;
2350 }
2351 
2352 /// Helper wrapper to main isSplatValue function.
2353 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2354   EVT VT = V.getValueType();
2355   assert(VT.isVector() && "Vector type expected");
2356   unsigned NumElts = VT.getVectorNumElements();
2357 
2358   APInt UndefElts;
2359   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2360   return isSplatValue(V, DemandedElts, UndefElts) &&
2361          (AllowUndefs || !UndefElts);
2362 }
2363 
2364 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2365   V = peekThroughExtractSubvectors(V);
2366 
2367   EVT VT = V.getValueType();
2368   unsigned Opcode = V.getOpcode();
2369   switch (Opcode) {
2370   default: {
2371     APInt UndefElts;
2372     APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2373     if (isSplatValue(V, DemandedElts, UndefElts)) {
2374       // Handle case where all demanded elements are UNDEF.
2375       if (DemandedElts.isSubsetOf(UndefElts)) {
2376         SplatIdx = 0;
2377         return getUNDEF(VT);
2378       }
2379       SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2380       return V;
2381     }
2382     break;
2383   }
2384   case ISD::VECTOR_SHUFFLE: {
2385     // Check if this is a shuffle node doing a splat.
2386     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2387     // getTargetVShiftNode currently struggles without the splat source.
2388     auto *SVN = cast<ShuffleVectorSDNode>(V);
2389     if (!SVN->isSplat())
2390       break;
2391     int Idx = SVN->getSplatIndex();
2392     int NumElts = V.getValueType().getVectorNumElements();
2393     SplatIdx = Idx % NumElts;
2394     return V.getOperand(Idx / NumElts);
2395   }
2396   }
2397 
2398   return SDValue();
2399 }
2400 
2401 SDValue SelectionDAG::getSplatValue(SDValue V) {
2402   int SplatIdx;
2403   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2404     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2405                    SrcVector.getValueType().getScalarType(), SrcVector,
2406                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2407   return SDValue();
2408 }
2409 
2410 const APInt *
2411 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2412                                           const APInt &DemandedElts) const {
2413   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2414           V.getOpcode() == ISD::SRA) &&
2415          "Unknown shift node");
2416   unsigned BitWidth = V.getScalarValueSizeInBits();
2417   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2418     // Shifting more than the bitwidth is not valid.
2419     const APInt &ShAmt = SA->getAPIntValue();
2420     if (ShAmt.ult(BitWidth))
2421       return &ShAmt;
2422   }
2423   return nullptr;
2424 }
2425 
2426 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2427     SDValue V, const APInt &DemandedElts) const {
2428   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2429           V.getOpcode() == ISD::SRA) &&
2430          "Unknown shift node");
2431   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2432     return ValidAmt;
2433   unsigned BitWidth = V.getScalarValueSizeInBits();
2434   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2435   if (!BV)
2436     return nullptr;
2437   const APInt *MinShAmt = nullptr;
2438   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2439     if (!DemandedElts[i])
2440       continue;
2441     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2442     if (!SA)
2443       return nullptr;
2444     // Shifting more than the bitwidth is not valid.
2445     const APInt &ShAmt = SA->getAPIntValue();
2446     if (ShAmt.uge(BitWidth))
2447       return nullptr;
2448     if (MinShAmt && MinShAmt->ule(ShAmt))
2449       continue;
2450     MinShAmt = &ShAmt;
2451   }
2452   return MinShAmt;
2453 }
2454 
2455 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2456     SDValue V, const APInt &DemandedElts) const {
2457   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2458           V.getOpcode() == ISD::SRA) &&
2459          "Unknown shift node");
2460   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2461     return ValidAmt;
2462   unsigned BitWidth = V.getScalarValueSizeInBits();
2463   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2464   if (!BV)
2465     return nullptr;
2466   const APInt *MaxShAmt = nullptr;
2467   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2468     if (!DemandedElts[i])
2469       continue;
2470     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2471     if (!SA)
2472       return nullptr;
2473     // Shifting more than the bitwidth is not valid.
2474     const APInt &ShAmt = SA->getAPIntValue();
2475     if (ShAmt.uge(BitWidth))
2476       return nullptr;
2477     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2478       continue;
2479     MaxShAmt = &ShAmt;
2480   }
2481   return MaxShAmt;
2482 }
2483 
2484 /// Determine which bits of Op are known to be either zero or one and return
2485 /// them in Known. For vectors, the known bits are those that are shared by
2486 /// every vector element.
2487 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2488   EVT VT = Op.getValueType();
2489   APInt DemandedElts = VT.isVector()
2490                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2491                            : APInt(1, 1);
2492   return computeKnownBits(Op, DemandedElts, Depth);
2493 }
2494 
2495 /// Determine which bits of Op are known to be either zero or one and return
2496 /// them in Known. The DemandedElts argument allows us to only collect the known
2497 /// bits that are shared by the requested vector elements.
2498 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2499                                          unsigned Depth) const {
2500   unsigned BitWidth = Op.getScalarValueSizeInBits();
2501 
2502   KnownBits Known(BitWidth);   // Don't know anything.
2503 
2504   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2505     // We know all of the bits for a constant!
2506     Known.One = C->getAPIntValue();
2507     Known.Zero = ~Known.One;
2508     return Known;
2509   }
2510   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2511     // We know all of the bits for a constant fp!
2512     Known.One = C->getValueAPF().bitcastToAPInt();
2513     Known.Zero = ~Known.One;
2514     return Known;
2515   }
2516 
2517   if (Depth >= MaxRecursionDepth)
2518     return Known;  // Limit search depth.
2519 
2520   KnownBits Known2;
2521   unsigned NumElts = DemandedElts.getBitWidth();
2522   assert((!Op.getValueType().isVector() ||
2523           NumElts == Op.getValueType().getVectorNumElements()) &&
2524          "Unexpected vector size");
2525 
2526   if (!DemandedElts)
2527     return Known;  // No demanded elts, better to assume we don't know anything.
2528 
2529   unsigned Opcode = Op.getOpcode();
2530   switch (Opcode) {
2531   case ISD::BUILD_VECTOR:
2532     // Collect the known bits that are shared by every demanded vector element.
2533     Known.Zero.setAllBits(); Known.One.setAllBits();
2534     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2535       if (!DemandedElts[i])
2536         continue;
2537 
2538       SDValue SrcOp = Op.getOperand(i);
2539       Known2 = computeKnownBits(SrcOp, Depth + 1);
2540 
2541       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2542       if (SrcOp.getValueSizeInBits() != BitWidth) {
2543         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2544                "Expected BUILD_VECTOR implicit truncation");
2545         Known2 = Known2.trunc(BitWidth);
2546       }
2547 
2548       // Known bits are the values that are shared by every demanded element.
2549       Known.One &= Known2.One;
2550       Known.Zero &= Known2.Zero;
2551 
2552       // If we don't know any bits, early out.
2553       if (Known.isUnknown())
2554         break;
2555     }
2556     break;
2557   case ISD::VECTOR_SHUFFLE: {
2558     // Collect the known bits that are shared by every vector element referenced
2559     // by the shuffle.
2560     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2561     Known.Zero.setAllBits(); Known.One.setAllBits();
2562     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2563     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2564     for (unsigned i = 0; i != NumElts; ++i) {
2565       if (!DemandedElts[i])
2566         continue;
2567 
2568       int M = SVN->getMaskElt(i);
2569       if (M < 0) {
2570         // For UNDEF elements, we don't know anything about the common state of
2571         // the shuffle result.
2572         Known.resetAll();
2573         DemandedLHS.clearAllBits();
2574         DemandedRHS.clearAllBits();
2575         break;
2576       }
2577 
2578       if ((unsigned)M < NumElts)
2579         DemandedLHS.setBit((unsigned)M % NumElts);
2580       else
2581         DemandedRHS.setBit((unsigned)M % NumElts);
2582     }
2583     // Known bits are the values that are shared by every demanded element.
2584     if (!!DemandedLHS) {
2585       SDValue LHS = Op.getOperand(0);
2586       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2587       Known.One &= Known2.One;
2588       Known.Zero &= Known2.Zero;
2589     }
2590     // If we don't know any bits, early out.
2591     if (Known.isUnknown())
2592       break;
2593     if (!!DemandedRHS) {
2594       SDValue RHS = Op.getOperand(1);
2595       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2596       Known.One &= Known2.One;
2597       Known.Zero &= Known2.Zero;
2598     }
2599     break;
2600   }
2601   case ISD::CONCAT_VECTORS: {
2602     // Split DemandedElts and test each of the demanded subvectors.
2603     Known.Zero.setAllBits(); Known.One.setAllBits();
2604     EVT SubVectorVT = Op.getOperand(0).getValueType();
2605     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2606     unsigned NumSubVectors = Op.getNumOperands();
2607     for (unsigned i = 0; i != NumSubVectors; ++i) {
2608       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2609       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2610       if (!!DemandedSub) {
2611         SDValue Sub = Op.getOperand(i);
2612         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2613         Known.One &= Known2.One;
2614         Known.Zero &= Known2.Zero;
2615       }
2616       // If we don't know any bits, early out.
2617       if (Known.isUnknown())
2618         break;
2619     }
2620     break;
2621   }
2622   case ISD::INSERT_SUBVECTOR: {
2623     // If we know the element index, demand any elements from the subvector and
2624     // the remainder from the src its inserted into, otherwise assume we need
2625     // the original demanded base elements and ALL the inserted subvector
2626     // elements.
2627     SDValue Src = Op.getOperand(0);
2628     SDValue Sub = Op.getOperand(1);
2629     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2630     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2631     APInt DemandedSubElts = APInt::getAllOnesValue(NumSubElts);
2632     APInt DemandedSrcElts = DemandedElts;
2633     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2634       uint64_t Idx = SubIdx->getZExtValue();
2635       DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2636       DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2637     }
2638     Known.One.setAllBits();
2639     Known.Zero.setAllBits();
2640     if (!!DemandedSubElts) {
2641       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2642       if (Known.isUnknown())
2643         break; // early-out.
2644     }
2645     if (!!DemandedSrcElts) {
2646       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2647       Known.One &= Known2.One;
2648       Known.Zero &= Known2.Zero;
2649     }
2650     break;
2651   }
2652   case ISD::EXTRACT_SUBVECTOR: {
2653     // If we know the element index, just demand that subvector elements,
2654     // otherwise demand them all.
2655     SDValue Src = Op.getOperand(0);
2656     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2657     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2658     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
2659     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2660       // Offset the demanded elts by the subvector index.
2661       uint64_t Idx = SubIdx->getZExtValue();
2662       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2663     }
2664     Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2665     break;
2666   }
2667   case ISD::SCALAR_TO_VECTOR: {
2668     // We know about scalar_to_vector as much as we know about it source,
2669     // which becomes the first element of otherwise unknown vector.
2670     if (DemandedElts != 1)
2671       break;
2672 
2673     SDValue N0 = Op.getOperand(0);
2674     Known = computeKnownBits(N0, Depth + 1);
2675     if (N0.getValueSizeInBits() != BitWidth)
2676       Known = Known.trunc(BitWidth);
2677 
2678     break;
2679   }
2680   case ISD::BITCAST: {
2681     SDValue N0 = Op.getOperand(0);
2682     EVT SubVT = N0.getValueType();
2683     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2684 
2685     // Ignore bitcasts from unsupported types.
2686     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2687       break;
2688 
2689     // Fast handling of 'identity' bitcasts.
2690     if (BitWidth == SubBitWidth) {
2691       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2692       break;
2693     }
2694 
2695     bool IsLE = getDataLayout().isLittleEndian();
2696 
2697     // Bitcast 'small element' vector to 'large element' scalar/vector.
2698     if ((BitWidth % SubBitWidth) == 0) {
2699       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2700 
2701       // Collect known bits for the (larger) output by collecting the known
2702       // bits from each set of sub elements and shift these into place.
2703       // We need to separately call computeKnownBits for each set of
2704       // sub elements as the knownbits for each is likely to be different.
2705       unsigned SubScale = BitWidth / SubBitWidth;
2706       APInt SubDemandedElts(NumElts * SubScale, 0);
2707       for (unsigned i = 0; i != NumElts; ++i)
2708         if (DemandedElts[i])
2709           SubDemandedElts.setBit(i * SubScale);
2710 
2711       for (unsigned i = 0; i != SubScale; ++i) {
2712         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2713                          Depth + 1);
2714         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2715         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2716         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2717       }
2718     }
2719 
2720     // Bitcast 'large element' scalar/vector to 'small element' vector.
2721     if ((SubBitWidth % BitWidth) == 0) {
2722       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2723 
2724       // Collect known bits for the (smaller) output by collecting the known
2725       // bits from the overlapping larger input elements and extracting the
2726       // sub sections we actually care about.
2727       unsigned SubScale = SubBitWidth / BitWidth;
2728       APInt SubDemandedElts(NumElts / SubScale, 0);
2729       for (unsigned i = 0; i != NumElts; ++i)
2730         if (DemandedElts[i])
2731           SubDemandedElts.setBit(i / SubScale);
2732 
2733       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2734 
2735       Known.Zero.setAllBits(); Known.One.setAllBits();
2736       for (unsigned i = 0; i != NumElts; ++i)
2737         if (DemandedElts[i]) {
2738           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2739           unsigned Offset = (Shifts % SubScale) * BitWidth;
2740           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2741           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2742           // If we don't know any bits, early out.
2743           if (Known.isUnknown())
2744             break;
2745         }
2746     }
2747     break;
2748   }
2749   case ISD::AND:
2750     // If either the LHS or the RHS are Zero, the result is zero.
2751     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2752     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2753 
2754     // Output known-1 bits are only known if set in both the LHS & RHS.
2755     Known.One &= Known2.One;
2756     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2757     Known.Zero |= Known2.Zero;
2758     break;
2759   case ISD::OR:
2760     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2761     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2762 
2763     // Output known-0 bits are only known if clear in both the LHS & RHS.
2764     Known.Zero &= Known2.Zero;
2765     // Output known-1 are known to be set if set in either the LHS | RHS.
2766     Known.One |= Known2.One;
2767     break;
2768   case ISD::XOR: {
2769     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2770     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2771 
2772     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2773     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2774     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2775     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2776     Known.Zero = KnownZeroOut;
2777     break;
2778   }
2779   case ISD::MUL: {
2780     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2781     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2782 
2783     // If low bits are zero in either operand, output low known-0 bits.
2784     // Also compute a conservative estimate for high known-0 bits.
2785     // More trickiness is possible, but this is sufficient for the
2786     // interesting case of alignment computation.
2787     unsigned TrailZ = Known.countMinTrailingZeros() +
2788                       Known2.countMinTrailingZeros();
2789     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2790                                Known2.countMinLeadingZeros(),
2791                                BitWidth) - BitWidth;
2792 
2793     Known.resetAll();
2794     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2795     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2796     break;
2797   }
2798   case ISD::UDIV: {
2799     // For the purposes of computing leading zeros we can conservatively
2800     // treat a udiv as a logical right shift by the power of 2 known to
2801     // be less than the denominator.
2802     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2803     unsigned LeadZ = Known2.countMinLeadingZeros();
2804 
2805     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2806     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2807     if (RHSMaxLeadingZeros != BitWidth)
2808       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2809 
2810     Known.Zero.setHighBits(LeadZ);
2811     break;
2812   }
2813   case ISD::SELECT:
2814   case ISD::VSELECT:
2815     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2816     // If we don't know any bits, early out.
2817     if (Known.isUnknown())
2818       break;
2819     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2820 
2821     // Only known if known in both the LHS and RHS.
2822     Known.One &= Known2.One;
2823     Known.Zero &= Known2.Zero;
2824     break;
2825   case ISD::SELECT_CC:
2826     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2827     // If we don't know any bits, early out.
2828     if (Known.isUnknown())
2829       break;
2830     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2831 
2832     // Only known if known in both the LHS and RHS.
2833     Known.One &= Known2.One;
2834     Known.Zero &= Known2.Zero;
2835     break;
2836   case ISD::SMULO:
2837   case ISD::UMULO:
2838   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2839     if (Op.getResNo() != 1)
2840       break;
2841     // The boolean result conforms to getBooleanContents.
2842     // If we know the result of a setcc has the top bits zero, use this info.
2843     // We know that we have an integer-based boolean since these operations
2844     // are only available for integer.
2845     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2846             TargetLowering::ZeroOrOneBooleanContent &&
2847         BitWidth > 1)
2848       Known.Zero.setBitsFrom(1);
2849     break;
2850   case ISD::SETCC:
2851   case ISD::STRICT_FSETCC:
2852   case ISD::STRICT_FSETCCS: {
2853     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2854     // If we know the result of a setcc has the top bits zero, use this info.
2855     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2856             TargetLowering::ZeroOrOneBooleanContent &&
2857         BitWidth > 1)
2858       Known.Zero.setBitsFrom(1);
2859     break;
2860   }
2861   case ISD::SHL:
2862     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2863 
2864     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2865       unsigned Shift = ShAmt->getZExtValue();
2866       Known.Zero <<= Shift;
2867       Known.One <<= Shift;
2868       // Low bits are known zero.
2869       Known.Zero.setLowBits(Shift);
2870       break;
2871     }
2872 
2873     // No matter the shift amount, the trailing zeros will stay zero.
2874     Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros());
2875     Known.One.clearAllBits();
2876 
2877     // Minimum shift low bits are known zero.
2878     if (const APInt *ShMinAmt =
2879             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2880       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2881     break;
2882   case ISD::SRL:
2883     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2884 
2885     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2886       unsigned Shift = ShAmt->getZExtValue();
2887       Known.Zero.lshrInPlace(Shift);
2888       Known.One.lshrInPlace(Shift);
2889       // High bits are known zero.
2890       Known.Zero.setHighBits(Shift);
2891       break;
2892     }
2893 
2894     // No matter the shift amount, the leading zeros will stay zero.
2895     Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros());
2896     Known.One.clearAllBits();
2897 
2898     // Minimum shift high bits are known zero.
2899     if (const APInt *ShMinAmt =
2900             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2901       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2902     break;
2903   case ISD::SRA:
2904     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2905       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2906       unsigned Shift = ShAmt->getZExtValue();
2907       // Sign extend known zero/one bit (else is unknown).
2908       Known.Zero.ashrInPlace(Shift);
2909       Known.One.ashrInPlace(Shift);
2910     }
2911     break;
2912   case ISD::FSHL:
2913   case ISD::FSHR:
2914     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2915       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2916 
2917       // For fshl, 0-shift returns the 1st arg.
2918       // For fshr, 0-shift returns the 2nd arg.
2919       if (Amt == 0) {
2920         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2921                                  DemandedElts, Depth + 1);
2922         break;
2923       }
2924 
2925       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2926       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2927       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2928       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2929       if (Opcode == ISD::FSHL) {
2930         Known.One <<= Amt;
2931         Known.Zero <<= Amt;
2932         Known2.One.lshrInPlace(BitWidth - Amt);
2933         Known2.Zero.lshrInPlace(BitWidth - Amt);
2934       } else {
2935         Known.One <<= BitWidth - Amt;
2936         Known.Zero <<= BitWidth - Amt;
2937         Known2.One.lshrInPlace(Amt);
2938         Known2.Zero.lshrInPlace(Amt);
2939       }
2940       Known.One |= Known2.One;
2941       Known.Zero |= Known2.Zero;
2942     }
2943     break;
2944   case ISD::SIGN_EXTEND_INREG: {
2945     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2946     unsigned EBits = EVT.getScalarSizeInBits();
2947 
2948     // Sign extension.  Compute the demanded bits in the result that are not
2949     // present in the input.
2950     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2951 
2952     APInt InSignMask = APInt::getSignMask(EBits);
2953     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2954 
2955     // If the sign extended bits are demanded, we know that the sign
2956     // bit is demanded.
2957     InSignMask = InSignMask.zext(BitWidth);
2958     if (NewBits.getBoolValue())
2959       InputDemandedBits |= InSignMask;
2960 
2961     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2962     Known.One &= InputDemandedBits;
2963     Known.Zero &= InputDemandedBits;
2964 
2965     // If the sign bit of the input is known set or clear, then we know the
2966     // top bits of the result.
2967     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2968       Known.Zero |= NewBits;
2969       Known.One  &= ~NewBits;
2970     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2971       Known.One  |= NewBits;
2972       Known.Zero &= ~NewBits;
2973     } else {                              // Input sign bit unknown
2974       Known.Zero &= ~NewBits;
2975       Known.One  &= ~NewBits;
2976     }
2977     break;
2978   }
2979   case ISD::CTTZ:
2980   case ISD::CTTZ_ZERO_UNDEF: {
2981     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2982     // If we have a known 1, its position is our upper bound.
2983     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2984     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2985     Known.Zero.setBitsFrom(LowBits);
2986     break;
2987   }
2988   case ISD::CTLZ:
2989   case ISD::CTLZ_ZERO_UNDEF: {
2990     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2991     // If we have a known 1, its position is our upper bound.
2992     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2993     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2994     Known.Zero.setBitsFrom(LowBits);
2995     break;
2996   }
2997   case ISD::CTPOP: {
2998     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2999     // If we know some of the bits are zero, they can't be one.
3000     unsigned PossibleOnes = Known2.countMaxPopulation();
3001     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3002     break;
3003   }
3004   case ISD::LOAD: {
3005     LoadSDNode *LD = cast<LoadSDNode>(Op);
3006     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3007     if (ISD::isNON_EXTLoad(LD) && Cst) {
3008       // Determine any common known bits from the loaded constant pool value.
3009       Type *CstTy = Cst->getType();
3010       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3011         // If its a vector splat, then we can (quickly) reuse the scalar path.
3012         // NOTE: We assume all elements match and none are UNDEF.
3013         if (CstTy->isVectorTy()) {
3014           if (const Constant *Splat = Cst->getSplatValue()) {
3015             Cst = Splat;
3016             CstTy = Cst->getType();
3017           }
3018         }
3019         // TODO - do we need to handle different bitwidths?
3020         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3021           // Iterate across all vector elements finding common known bits.
3022           Known.One.setAllBits();
3023           Known.Zero.setAllBits();
3024           for (unsigned i = 0; i != NumElts; ++i) {
3025             if (!DemandedElts[i])
3026               continue;
3027             if (Constant *Elt = Cst->getAggregateElement(i)) {
3028               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3029                 const APInt &Value = CInt->getValue();
3030                 Known.One &= Value;
3031                 Known.Zero &= ~Value;
3032                 continue;
3033               }
3034               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3035                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3036                 Known.One &= Value;
3037                 Known.Zero &= ~Value;
3038                 continue;
3039               }
3040             }
3041             Known.One.clearAllBits();
3042             Known.Zero.clearAllBits();
3043             break;
3044           }
3045         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3046           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3047             const APInt &Value = CInt->getValue();
3048             Known.One = Value;
3049             Known.Zero = ~Value;
3050           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3051             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3052             Known.One = Value;
3053             Known.Zero = ~Value;
3054           }
3055         }
3056       }
3057     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3058       // If this is a ZEXTLoad and we are looking at the loaded value.
3059       EVT VT = LD->getMemoryVT();
3060       unsigned MemBits = VT.getScalarSizeInBits();
3061       Known.Zero.setBitsFrom(MemBits);
3062     } else if (const MDNode *Ranges = LD->getRanges()) {
3063       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3064         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3065     }
3066     break;
3067   }
3068   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3069     EVT InVT = Op.getOperand(0).getValueType();
3070     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3071     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3072     Known = Known.zext(BitWidth);
3073     break;
3074   }
3075   case ISD::ZERO_EXTEND: {
3076     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3077     Known = Known.zext(BitWidth);
3078     break;
3079   }
3080   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3081     EVT InVT = Op.getOperand(0).getValueType();
3082     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3083     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3084     // If the sign bit is known to be zero or one, then sext will extend
3085     // it to the top bits, else it will just zext.
3086     Known = Known.sext(BitWidth);
3087     break;
3088   }
3089   case ISD::SIGN_EXTEND: {
3090     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3091     // If the sign bit is known to be zero or one, then sext will extend
3092     // it to the top bits, else it will just zext.
3093     Known = Known.sext(BitWidth);
3094     break;
3095   }
3096   case ISD::ANY_EXTEND_VECTOR_INREG: {
3097     EVT InVT = Op.getOperand(0).getValueType();
3098     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3099     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3100     Known = Known.anyext(BitWidth);
3101     break;
3102   }
3103   case ISD::ANY_EXTEND: {
3104     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3105     Known = Known.anyext(BitWidth);
3106     break;
3107   }
3108   case ISD::TRUNCATE: {
3109     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3110     Known = Known.trunc(BitWidth);
3111     break;
3112   }
3113   case ISD::AssertZext: {
3114     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3115     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3116     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3117     Known.Zero |= (~InMask);
3118     Known.One  &= (~Known.Zero);
3119     break;
3120   }
3121   case ISD::FGETSIGN:
3122     // All bits are zero except the low bit.
3123     Known.Zero.setBitsFrom(1);
3124     break;
3125   case ISD::USUBO:
3126   case ISD::SSUBO:
3127     if (Op.getResNo() == 1) {
3128       // If we know the result of a setcc has the top bits zero, use this info.
3129       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3130               TargetLowering::ZeroOrOneBooleanContent &&
3131           BitWidth > 1)
3132         Known.Zero.setBitsFrom(1);
3133       break;
3134     }
3135     LLVM_FALLTHROUGH;
3136   case ISD::SUB:
3137   case ISD::SUBC: {
3138     assert(Op.getResNo() == 0 &&
3139            "We only compute knownbits for the difference here.");
3140 
3141     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3142     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3143     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3144                                         Known, Known2);
3145     break;
3146   }
3147   case ISD::UADDO:
3148   case ISD::SADDO:
3149   case ISD::ADDCARRY:
3150     if (Op.getResNo() == 1) {
3151       // If we know the result of a setcc has the top bits zero, use this info.
3152       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3153               TargetLowering::ZeroOrOneBooleanContent &&
3154           BitWidth > 1)
3155         Known.Zero.setBitsFrom(1);
3156       break;
3157     }
3158     LLVM_FALLTHROUGH;
3159   case ISD::ADD:
3160   case ISD::ADDC:
3161   case ISD::ADDE: {
3162     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3163 
3164     // With ADDE and ADDCARRY, a carry bit may be added in.
3165     KnownBits Carry(1);
3166     if (Opcode == ISD::ADDE)
3167       // Can't track carry from glue, set carry to unknown.
3168       Carry.resetAll();
3169     else if (Opcode == ISD::ADDCARRY)
3170       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3171       // the trouble (how often will we find a known carry bit). And I haven't
3172       // tested this very much yet, but something like this might work:
3173       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3174       //   Carry = Carry.zextOrTrunc(1, false);
3175       Carry.resetAll();
3176     else
3177       Carry.setAllZero();
3178 
3179     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3180     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3181     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3182     break;
3183   }
3184   case ISD::SREM:
3185     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3186       const APInt &RA = Rem->getAPIntValue().abs();
3187       if (RA.isPowerOf2()) {
3188         APInt LowBits = RA - 1;
3189         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3190 
3191         // The low bits of the first operand are unchanged by the srem.
3192         Known.Zero = Known2.Zero & LowBits;
3193         Known.One = Known2.One & LowBits;
3194 
3195         // If the first operand is non-negative or has all low bits zero, then
3196         // the upper bits are all zero.
3197         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3198           Known.Zero |= ~LowBits;
3199 
3200         // If the first operand is negative and not all low bits are zero, then
3201         // the upper bits are all one.
3202         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3203           Known.One |= ~LowBits;
3204         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3205       }
3206     }
3207     break;
3208   case ISD::UREM: {
3209     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3210       const APInt &RA = Rem->getAPIntValue();
3211       if (RA.isPowerOf2()) {
3212         APInt LowBits = (RA - 1);
3213         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3214 
3215         // The upper bits are all zero, the lower ones are unchanged.
3216         Known.Zero = Known2.Zero | ~LowBits;
3217         Known.One = Known2.One & LowBits;
3218         break;
3219       }
3220     }
3221 
3222     // Since the result is less than or equal to either operand, any leading
3223     // zero bits in either operand must also exist in the result.
3224     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3225     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3226 
3227     uint32_t Leaders =
3228         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3229     Known.resetAll();
3230     Known.Zero.setHighBits(Leaders);
3231     break;
3232   }
3233   case ISD::EXTRACT_ELEMENT: {
3234     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3235     const unsigned Index = Op.getConstantOperandVal(1);
3236     const unsigned EltBitWidth = Op.getValueSizeInBits();
3237 
3238     // Remove low part of known bits mask
3239     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3240     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3241 
3242     // Remove high part of known bit mask
3243     Known = Known.trunc(EltBitWidth);
3244     break;
3245   }
3246   case ISD::EXTRACT_VECTOR_ELT: {
3247     SDValue InVec = Op.getOperand(0);
3248     SDValue EltNo = Op.getOperand(1);
3249     EVT VecVT = InVec.getValueType();
3250     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3251     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3252 
3253     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3254     // anything about the extended bits.
3255     if (BitWidth > EltBitWidth)
3256       Known = Known.trunc(EltBitWidth);
3257 
3258     // If we know the element index, just demand that vector element, else for
3259     // an unknown element index, ignore DemandedElts and demand them all.
3260     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3261     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3262     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3263       DemandedSrcElts =
3264           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3265 
3266     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3267     if (BitWidth > EltBitWidth)
3268       Known = Known.anyext(BitWidth);
3269     break;
3270   }
3271   case ISD::INSERT_VECTOR_ELT: {
3272     // If we know the element index, split the demand between the
3273     // source vector and the inserted element, otherwise assume we need
3274     // the original demanded vector elements and the value.
3275     SDValue InVec = Op.getOperand(0);
3276     SDValue InVal = Op.getOperand(1);
3277     SDValue EltNo = Op.getOperand(2);
3278     bool DemandedVal = true;
3279     APInt DemandedVecElts = DemandedElts;
3280     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3281     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3282       unsigned EltIdx = CEltNo->getZExtValue();
3283       DemandedVal = !!DemandedElts[EltIdx];
3284       DemandedVecElts.clearBit(EltIdx);
3285     }
3286     Known.One.setAllBits();
3287     Known.Zero.setAllBits();
3288     if (DemandedVal) {
3289       Known2 = computeKnownBits(InVal, Depth + 1);
3290       Known.One &= Known2.One.zextOrTrunc(BitWidth);
3291       Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth);
3292     }
3293     if (!!DemandedVecElts) {
3294       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3295       Known.One &= Known2.One;
3296       Known.Zero &= Known2.Zero;
3297     }
3298     break;
3299   }
3300   case ISD::BITREVERSE: {
3301     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3302     Known.Zero = Known2.Zero.reverseBits();
3303     Known.One = Known2.One.reverseBits();
3304     break;
3305   }
3306   case ISD::BSWAP: {
3307     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3308     Known.Zero = Known2.Zero.byteSwap();
3309     Known.One = Known2.One.byteSwap();
3310     break;
3311   }
3312   case ISD::ABS: {
3313     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3314 
3315     // If the source's MSB is zero then we know the rest of the bits already.
3316     if (Known2.isNonNegative()) {
3317       Known.Zero = Known2.Zero;
3318       Known.One = Known2.One;
3319       break;
3320     }
3321 
3322     // We only know that the absolute values's MSB will be zero iff there is
3323     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3324     Known2.One.clearSignBit();
3325     if (Known2.One.getBoolValue()) {
3326       Known.Zero = APInt::getSignMask(BitWidth);
3327       break;
3328     }
3329     break;
3330   }
3331   case ISD::UMIN: {
3332     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3333     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3334 
3335     // UMIN - we know that the result will have the maximum of the
3336     // known zero leading bits of the inputs.
3337     unsigned LeadZero = Known.countMinLeadingZeros();
3338     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3339 
3340     Known.Zero &= Known2.Zero;
3341     Known.One &= Known2.One;
3342     Known.Zero.setHighBits(LeadZero);
3343     break;
3344   }
3345   case ISD::UMAX: {
3346     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3347     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3348 
3349     // UMAX - we know that the result will have the maximum of the
3350     // known one leading bits of the inputs.
3351     unsigned LeadOne = Known.countMinLeadingOnes();
3352     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3353 
3354     Known.Zero &= Known2.Zero;
3355     Known.One &= Known2.One;
3356     Known.One.setHighBits(LeadOne);
3357     break;
3358   }
3359   case ISD::SMIN:
3360   case ISD::SMAX: {
3361     // If we have a clamp pattern, we know that the number of sign bits will be
3362     // the minimum of the clamp min/max range.
3363     bool IsMax = (Opcode == ISD::SMAX);
3364     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3365     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3366       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3367         CstHigh =
3368             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3369     if (CstLow && CstHigh) {
3370       if (!IsMax)
3371         std::swap(CstLow, CstHigh);
3372 
3373       const APInt &ValueLow = CstLow->getAPIntValue();
3374       const APInt &ValueHigh = CstHigh->getAPIntValue();
3375       if (ValueLow.sle(ValueHigh)) {
3376         unsigned LowSignBits = ValueLow.getNumSignBits();
3377         unsigned HighSignBits = ValueHigh.getNumSignBits();
3378         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3379         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3380           Known.One.setHighBits(MinSignBits);
3381           break;
3382         }
3383         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3384           Known.Zero.setHighBits(MinSignBits);
3385           break;
3386         }
3387       }
3388     }
3389 
3390     // Fallback - just get the shared known bits of the operands.
3391     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3392     if (Known.isUnknown()) break; // Early-out
3393     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3394     Known.Zero &= Known2.Zero;
3395     Known.One &= Known2.One;
3396     break;
3397   }
3398   case ISD::FrameIndex:
3399   case ISD::TargetFrameIndex:
3400     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3401     break;
3402 
3403   default:
3404     if (Opcode < ISD::BUILTIN_OP_END)
3405       break;
3406     LLVM_FALLTHROUGH;
3407   case ISD::INTRINSIC_WO_CHAIN:
3408   case ISD::INTRINSIC_W_CHAIN:
3409   case ISD::INTRINSIC_VOID:
3410     // Allow the target to implement this method for its nodes.
3411     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3412     break;
3413   }
3414 
3415   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3416   return Known;
3417 }
3418 
3419 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3420                                                              SDValue N1) const {
3421   // X + 0 never overflow
3422   if (isNullConstant(N1))
3423     return OFK_Never;
3424 
3425   KnownBits N1Known = computeKnownBits(N1);
3426   if (N1Known.Zero.getBoolValue()) {
3427     KnownBits N0Known = computeKnownBits(N0);
3428 
3429     bool overflow;
3430     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3431     if (!overflow)
3432       return OFK_Never;
3433   }
3434 
3435   // mulhi + 1 never overflow
3436   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3437       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3438     return OFK_Never;
3439 
3440   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3441     KnownBits N0Known = computeKnownBits(N0);
3442 
3443     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3444       return OFK_Never;
3445   }
3446 
3447   return OFK_Sometime;
3448 }
3449 
3450 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3451   EVT OpVT = Val.getValueType();
3452   unsigned BitWidth = OpVT.getScalarSizeInBits();
3453 
3454   // Is the constant a known power of 2?
3455   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3456     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3457 
3458   // A left-shift of a constant one will have exactly one bit set because
3459   // shifting the bit off the end is undefined.
3460   if (Val.getOpcode() == ISD::SHL) {
3461     auto *C = isConstOrConstSplat(Val.getOperand(0));
3462     if (C && C->getAPIntValue() == 1)
3463       return true;
3464   }
3465 
3466   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3467   // one bit set.
3468   if (Val.getOpcode() == ISD::SRL) {
3469     auto *C = isConstOrConstSplat(Val.getOperand(0));
3470     if (C && C->getAPIntValue().isSignMask())
3471       return true;
3472   }
3473 
3474   // Are all operands of a build vector constant powers of two?
3475   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3476     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3477           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3478             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3479           return false;
3480         }))
3481       return true;
3482 
3483   // More could be done here, though the above checks are enough
3484   // to handle some common cases.
3485 
3486   // Fall back to computeKnownBits to catch other known cases.
3487   KnownBits Known = computeKnownBits(Val);
3488   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3489 }
3490 
3491 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3492   EVT VT = Op.getValueType();
3493   APInt DemandedElts = VT.isVector()
3494                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3495                            : APInt(1, 1);
3496   return ComputeNumSignBits(Op, DemandedElts, Depth);
3497 }
3498 
3499 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3500                                           unsigned Depth) const {
3501   EVT VT = Op.getValueType();
3502   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3503   unsigned VTBits = VT.getScalarSizeInBits();
3504   unsigned NumElts = DemandedElts.getBitWidth();
3505   unsigned Tmp, Tmp2;
3506   unsigned FirstAnswer = 1;
3507 
3508   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3509     const APInt &Val = C->getAPIntValue();
3510     return Val.getNumSignBits();
3511   }
3512 
3513   if (Depth >= MaxRecursionDepth)
3514     return 1;  // Limit search depth.
3515 
3516   if (!DemandedElts)
3517     return 1;  // No demanded elts, better to assume we don't know anything.
3518 
3519   unsigned Opcode = Op.getOpcode();
3520   switch (Opcode) {
3521   default: break;
3522   case ISD::AssertSext:
3523     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3524     return VTBits-Tmp+1;
3525   case ISD::AssertZext:
3526     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3527     return VTBits-Tmp;
3528 
3529   case ISD::BUILD_VECTOR:
3530     Tmp = VTBits;
3531     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3532       if (!DemandedElts[i])
3533         continue;
3534 
3535       SDValue SrcOp = Op.getOperand(i);
3536       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3537 
3538       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3539       if (SrcOp.getValueSizeInBits() != VTBits) {
3540         assert(SrcOp.getValueSizeInBits() > VTBits &&
3541                "Expected BUILD_VECTOR implicit truncation");
3542         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3543         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3544       }
3545       Tmp = std::min(Tmp, Tmp2);
3546     }
3547     return Tmp;
3548 
3549   case ISD::VECTOR_SHUFFLE: {
3550     // Collect the minimum number of sign bits that are shared by every vector
3551     // element referenced by the shuffle.
3552     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3553     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3554     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3555     for (unsigned i = 0; i != NumElts; ++i) {
3556       int M = SVN->getMaskElt(i);
3557       if (!DemandedElts[i])
3558         continue;
3559       // For UNDEF elements, we don't know anything about the common state of
3560       // the shuffle result.
3561       if (M < 0)
3562         return 1;
3563       if ((unsigned)M < NumElts)
3564         DemandedLHS.setBit((unsigned)M % NumElts);
3565       else
3566         DemandedRHS.setBit((unsigned)M % NumElts);
3567     }
3568     Tmp = std::numeric_limits<unsigned>::max();
3569     if (!!DemandedLHS)
3570       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3571     if (!!DemandedRHS) {
3572       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3573       Tmp = std::min(Tmp, Tmp2);
3574     }
3575     // If we don't know anything, early out and try computeKnownBits fall-back.
3576     if (Tmp == 1)
3577       break;
3578     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3579     return Tmp;
3580   }
3581 
3582   case ISD::BITCAST: {
3583     SDValue N0 = Op.getOperand(0);
3584     EVT SrcVT = N0.getValueType();
3585     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3586 
3587     // Ignore bitcasts from unsupported types..
3588     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3589       break;
3590 
3591     // Fast handling of 'identity' bitcasts.
3592     if (VTBits == SrcBits)
3593       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3594 
3595     bool IsLE = getDataLayout().isLittleEndian();
3596 
3597     // Bitcast 'large element' scalar/vector to 'small element' vector.
3598     if ((SrcBits % VTBits) == 0) {
3599       assert(VT.isVector() && "Expected bitcast to vector");
3600 
3601       unsigned Scale = SrcBits / VTBits;
3602       APInt SrcDemandedElts(NumElts / Scale, 0);
3603       for (unsigned i = 0; i != NumElts; ++i)
3604         if (DemandedElts[i])
3605           SrcDemandedElts.setBit(i / Scale);
3606 
3607       // Fast case - sign splat can be simply split across the small elements.
3608       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3609       if (Tmp == SrcBits)
3610         return VTBits;
3611 
3612       // Slow case - determine how far the sign extends into each sub-element.
3613       Tmp2 = VTBits;
3614       for (unsigned i = 0; i != NumElts; ++i)
3615         if (DemandedElts[i]) {
3616           unsigned SubOffset = i % Scale;
3617           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3618           SubOffset = SubOffset * VTBits;
3619           if (Tmp <= SubOffset)
3620             return 1;
3621           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3622         }
3623       return Tmp2;
3624     }
3625     break;
3626   }
3627 
3628   case ISD::SIGN_EXTEND:
3629     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3630     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3631   case ISD::SIGN_EXTEND_INREG:
3632     // Max of the input and what this extends.
3633     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3634     Tmp = VTBits-Tmp+1;
3635     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3636     return std::max(Tmp, Tmp2);
3637   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3638     SDValue Src = Op.getOperand(0);
3639     EVT SrcVT = Src.getValueType();
3640     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3641     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3642     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3643   }
3644   case ISD::SRA:
3645     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3646     // SRA X, C -> adds C sign bits.
3647     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts))
3648       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3649     else if (const APInt *ShAmt =
3650                  getValidMinimumShiftAmountConstant(Op, DemandedElts))
3651       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3652     return Tmp;
3653   case ISD::SHL:
3654     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
3655       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3656       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3657       if (ShAmt->ult(Tmp))
3658         return Tmp - ShAmt->getZExtValue();
3659     } else if (const APInt *ShAmt =
3660                    getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3661       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3662       if (ShAmt->ult(Tmp))
3663         return Tmp - ShAmt->getZExtValue();
3664     }
3665     break;
3666   case ISD::AND:
3667   case ISD::OR:
3668   case ISD::XOR:    // NOT is handled here.
3669     // Logical binary ops preserve the number of sign bits at the worst.
3670     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3671     if (Tmp != 1) {
3672       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3673       FirstAnswer = std::min(Tmp, Tmp2);
3674       // We computed what we know about the sign bits as our first
3675       // answer. Now proceed to the generic code that uses
3676       // computeKnownBits, and pick whichever answer is better.
3677     }
3678     break;
3679 
3680   case ISD::SELECT:
3681   case ISD::VSELECT:
3682     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3683     if (Tmp == 1) return 1;  // Early out.
3684     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3685     return std::min(Tmp, Tmp2);
3686   case ISD::SELECT_CC:
3687     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3688     if (Tmp == 1) return 1;  // Early out.
3689     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3690     return std::min(Tmp, Tmp2);
3691 
3692   case ISD::SMIN:
3693   case ISD::SMAX: {
3694     // If we have a clamp pattern, we know that the number of sign bits will be
3695     // the minimum of the clamp min/max range.
3696     bool IsMax = (Opcode == ISD::SMAX);
3697     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3698     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3699       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3700         CstHigh =
3701             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3702     if (CstLow && CstHigh) {
3703       if (!IsMax)
3704         std::swap(CstLow, CstHigh);
3705       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3706         Tmp = CstLow->getAPIntValue().getNumSignBits();
3707         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3708         return std::min(Tmp, Tmp2);
3709       }
3710     }
3711 
3712     // Fallback - just get the minimum number of sign bits of the operands.
3713     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3714     if (Tmp == 1)
3715       return 1;  // Early out.
3716     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3717     return std::min(Tmp, Tmp2);
3718   }
3719   case ISD::UMIN:
3720   case ISD::UMAX:
3721     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3722     if (Tmp == 1)
3723       return 1;  // Early out.
3724     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3725     return std::min(Tmp, Tmp2);
3726   case ISD::SADDO:
3727   case ISD::UADDO:
3728   case ISD::SSUBO:
3729   case ISD::USUBO:
3730   case ISD::SMULO:
3731   case ISD::UMULO:
3732     if (Op.getResNo() != 1)
3733       break;
3734     // The boolean result conforms to getBooleanContents.  Fall through.
3735     // If setcc returns 0/-1, all bits are sign bits.
3736     // We know that we have an integer-based boolean since these operations
3737     // are only available for integer.
3738     if (TLI->getBooleanContents(VT.isVector(), false) ==
3739         TargetLowering::ZeroOrNegativeOneBooleanContent)
3740       return VTBits;
3741     break;
3742   case ISD::SETCC:
3743   case ISD::STRICT_FSETCC:
3744   case ISD::STRICT_FSETCCS: {
3745     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3746     // If setcc returns 0/-1, all bits are sign bits.
3747     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3748         TargetLowering::ZeroOrNegativeOneBooleanContent)
3749       return VTBits;
3750     break;
3751   }
3752   case ISD::ROTL:
3753   case ISD::ROTR:
3754     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3755 
3756     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3757     if (Tmp == VTBits)
3758       return VTBits;
3759 
3760     if (ConstantSDNode *C =
3761             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3762       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3763 
3764       // Handle rotate right by N like a rotate left by 32-N.
3765       if (Opcode == ISD::ROTR)
3766         RotAmt = (VTBits - RotAmt) % VTBits;
3767 
3768       // If we aren't rotating out all of the known-in sign bits, return the
3769       // number that are left.  This handles rotl(sext(x), 1) for example.
3770       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3771     }
3772     break;
3773   case ISD::ADD:
3774   case ISD::ADDC:
3775     // Add can have at most one carry bit.  Thus we know that the output
3776     // is, at worst, one more bit than the inputs.
3777     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3778     if (Tmp == 1) return 1; // Early out.
3779 
3780     // Special case decrementing a value (ADD X, -1):
3781     if (ConstantSDNode *CRHS =
3782             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3783       if (CRHS->isAllOnesValue()) {
3784         KnownBits Known =
3785             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3786 
3787         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3788         // sign bits set.
3789         if ((Known.Zero | 1).isAllOnesValue())
3790           return VTBits;
3791 
3792         // If we are subtracting one from a positive number, there is no carry
3793         // out of the result.
3794         if (Known.isNonNegative())
3795           return Tmp;
3796       }
3797 
3798     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3799     if (Tmp2 == 1) return 1; // Early out.
3800     return std::min(Tmp, Tmp2) - 1;
3801   case ISD::SUB:
3802     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3803     if (Tmp2 == 1) return 1; // Early out.
3804 
3805     // Handle NEG.
3806     if (ConstantSDNode *CLHS =
3807             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3808       if (CLHS->isNullValue()) {
3809         KnownBits Known =
3810             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3811         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3812         // sign bits set.
3813         if ((Known.Zero | 1).isAllOnesValue())
3814           return VTBits;
3815 
3816         // If the input is known to be positive (the sign bit is known clear),
3817         // the output of the NEG has the same number of sign bits as the input.
3818         if (Known.isNonNegative())
3819           return Tmp2;
3820 
3821         // Otherwise, we treat this like a SUB.
3822       }
3823 
3824     // Sub can have at most one carry bit.  Thus we know that the output
3825     // is, at worst, one more bit than the inputs.
3826     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3827     if (Tmp == 1) return 1; // Early out.
3828     return std::min(Tmp, Tmp2) - 1;
3829   case ISD::MUL: {
3830     // The output of the Mul can be at most twice the valid bits in the inputs.
3831     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3832     if (SignBitsOp0 == 1)
3833       break;
3834     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3835     if (SignBitsOp1 == 1)
3836       break;
3837     unsigned OutValidBits =
3838         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3839     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3840   }
3841   case ISD::TRUNCATE: {
3842     // Check if the sign bits of source go down as far as the truncated value.
3843     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3844     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3845     if (NumSrcSignBits > (NumSrcBits - VTBits))
3846       return NumSrcSignBits - (NumSrcBits - VTBits);
3847     break;
3848   }
3849   case ISD::EXTRACT_ELEMENT: {
3850     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3851     const int BitWidth = Op.getValueSizeInBits();
3852     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3853 
3854     // Get reverse index (starting from 1), Op1 value indexes elements from
3855     // little end. Sign starts at big end.
3856     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3857 
3858     // If the sign portion ends in our element the subtraction gives correct
3859     // result. Otherwise it gives either negative or > bitwidth result
3860     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3861   }
3862   case ISD::INSERT_VECTOR_ELT: {
3863     // If we know the element index, split the demand between the
3864     // source vector and the inserted element, otherwise assume we need
3865     // the original demanded vector elements and the value.
3866     SDValue InVec = Op.getOperand(0);
3867     SDValue InVal = Op.getOperand(1);
3868     SDValue EltNo = Op.getOperand(2);
3869     bool DemandedVal = true;
3870     APInt DemandedVecElts = DemandedElts;
3871     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3872     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3873       unsigned EltIdx = CEltNo->getZExtValue();
3874       DemandedVal = !!DemandedElts[EltIdx];
3875       DemandedVecElts.clearBit(EltIdx);
3876     }
3877     Tmp = std::numeric_limits<unsigned>::max();
3878     if (DemandedVal) {
3879       // TODO - handle implicit truncation of inserted elements.
3880       if (InVal.getScalarValueSizeInBits() != VTBits)
3881         break;
3882       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3883       Tmp = std::min(Tmp, Tmp2);
3884     }
3885     if (!!DemandedVecElts) {
3886       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3887       Tmp = std::min(Tmp, Tmp2);
3888     }
3889     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3890     return Tmp;
3891   }
3892   case ISD::EXTRACT_VECTOR_ELT: {
3893     SDValue InVec = Op.getOperand(0);
3894     SDValue EltNo = Op.getOperand(1);
3895     EVT VecVT = InVec.getValueType();
3896     const unsigned BitWidth = Op.getValueSizeInBits();
3897     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3898     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3899 
3900     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3901     // anything about sign bits. But if the sizes match we can derive knowledge
3902     // about sign bits from the vector operand.
3903     if (BitWidth != EltBitWidth)
3904       break;
3905 
3906     // If we know the element index, just demand that vector element, else for
3907     // an unknown element index, ignore DemandedElts and demand them all.
3908     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3909     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3910     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3911       DemandedSrcElts =
3912           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3913 
3914     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3915   }
3916   case ISD::EXTRACT_SUBVECTOR: {
3917     // If we know the element index, just demand that subvector elements,
3918     // otherwise demand them all.
3919     SDValue Src = Op.getOperand(0);
3920     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3921     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3922     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
3923     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3924       // Offset the demanded elts by the subvector index.
3925       uint64_t Idx = SubIdx->getZExtValue();
3926       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3927     }
3928     return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3929   }
3930   case ISD::CONCAT_VECTORS: {
3931     // Determine the minimum number of sign bits across all demanded
3932     // elts of the input vectors. Early out if the result is already 1.
3933     Tmp = std::numeric_limits<unsigned>::max();
3934     EVT SubVectorVT = Op.getOperand(0).getValueType();
3935     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3936     unsigned NumSubVectors = Op.getNumOperands();
3937     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3938       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3939       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3940       if (!DemandedSub)
3941         continue;
3942       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3943       Tmp = std::min(Tmp, Tmp2);
3944     }
3945     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3946     return Tmp;
3947   }
3948   case ISD::INSERT_SUBVECTOR: {
3949     // If we know the element index, demand any elements from the subvector and
3950     // the remainder from the src its inserted into, otherwise assume we need
3951     // the original demanded base elements and ALL the inserted subvector
3952     // elements.
3953     SDValue Src = Op.getOperand(0);
3954     SDValue Sub = Op.getOperand(1);
3955     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3956     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3957     APInt DemandedSubElts = APInt::getAllOnesValue(NumSubElts);
3958     APInt DemandedSrcElts = DemandedElts;
3959     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3960       uint64_t Idx = SubIdx->getZExtValue();
3961       DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3962       DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
3963     }
3964     Tmp = std::numeric_limits<unsigned>::max();
3965     if (!!DemandedSubElts) {
3966       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3967       if (Tmp == 1)
3968         return 1; // early-out
3969     }
3970     if (!!DemandedSrcElts) {
3971       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3972       Tmp = std::min(Tmp, Tmp2);
3973     }
3974     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3975     return Tmp;
3976   }
3977   }
3978 
3979   // If we are looking at the loaded value of the SDNode.
3980   if (Op.getResNo() == 0) {
3981     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3982     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3983       unsigned ExtType = LD->getExtensionType();
3984       switch (ExtType) {
3985       default: break;
3986       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3987         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3988         return VTBits - Tmp + 1;
3989       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3990         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3991         return VTBits - Tmp;
3992       case ISD::NON_EXTLOAD:
3993         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
3994           // We only need to handle vectors - computeKnownBits should handle
3995           // scalar cases.
3996           Type *CstTy = Cst->getType();
3997           if (CstTy->isVectorTy() &&
3998               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
3999             Tmp = VTBits;
4000             for (unsigned i = 0; i != NumElts; ++i) {
4001               if (!DemandedElts[i])
4002                 continue;
4003               if (Constant *Elt = Cst->getAggregateElement(i)) {
4004                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4005                   const APInt &Value = CInt->getValue();
4006                   Tmp = std::min(Tmp, Value.getNumSignBits());
4007                   continue;
4008                 }
4009                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4010                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4011                   Tmp = std::min(Tmp, Value.getNumSignBits());
4012                   continue;
4013                 }
4014               }
4015               // Unknown type. Conservatively assume no bits match sign bit.
4016               return 1;
4017             }
4018             return Tmp;
4019           }
4020         }
4021         break;
4022       }
4023     }
4024   }
4025 
4026   // Allow the target to implement this method for its nodes.
4027   if (Opcode >= ISD::BUILTIN_OP_END ||
4028       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4029       Opcode == ISD::INTRINSIC_W_CHAIN ||
4030       Opcode == ISD::INTRINSIC_VOID) {
4031     unsigned NumBits =
4032         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4033     if (NumBits > 1)
4034       FirstAnswer = std::max(FirstAnswer, NumBits);
4035   }
4036 
4037   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4038   // use this information.
4039   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4040 
4041   APInt Mask;
4042   if (Known.isNonNegative()) {        // sign bit is 0
4043     Mask = Known.Zero;
4044   } else if (Known.isNegative()) {  // sign bit is 1;
4045     Mask = Known.One;
4046   } else {
4047     // Nothing known.
4048     return FirstAnswer;
4049   }
4050 
4051   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
4052   // the number of identical bits in the top of the input value.
4053   Mask = ~Mask;
4054   Mask <<= Mask.getBitWidth()-VTBits;
4055   // Return # leading zeros.  We use 'min' here in case Val was zero before
4056   // shifting.  We don't want to return '64' as for an i32 "0".
4057   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
4058 }
4059 
4060 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4061   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4062       !isa<ConstantSDNode>(Op.getOperand(1)))
4063     return false;
4064 
4065   if (Op.getOpcode() == ISD::OR &&
4066       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4067     return false;
4068 
4069   return true;
4070 }
4071 
4072 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4073   // If we're told that NaNs won't happen, assume they won't.
4074   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4075     return true;
4076 
4077   if (Depth >= MaxRecursionDepth)
4078     return false; // Limit search depth.
4079 
4080   // TODO: Handle vectors.
4081   // If the value is a constant, we can obviously see if it is a NaN or not.
4082   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4083     return !C->getValueAPF().isNaN() ||
4084            (SNaN && !C->getValueAPF().isSignaling());
4085   }
4086 
4087   unsigned Opcode = Op.getOpcode();
4088   switch (Opcode) {
4089   case ISD::FADD:
4090   case ISD::FSUB:
4091   case ISD::FMUL:
4092   case ISD::FDIV:
4093   case ISD::FREM:
4094   case ISD::FSIN:
4095   case ISD::FCOS: {
4096     if (SNaN)
4097       return true;
4098     // TODO: Need isKnownNeverInfinity
4099     return false;
4100   }
4101   case ISD::FCANONICALIZE:
4102   case ISD::FEXP:
4103   case ISD::FEXP2:
4104   case ISD::FTRUNC:
4105   case ISD::FFLOOR:
4106   case ISD::FCEIL:
4107   case ISD::FROUND:
4108   case ISD::FRINT:
4109   case ISD::FNEARBYINT: {
4110     if (SNaN)
4111       return true;
4112     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4113   }
4114   case ISD::FABS:
4115   case ISD::FNEG:
4116   case ISD::FCOPYSIGN: {
4117     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4118   }
4119   case ISD::SELECT:
4120     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4121            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4122   case ISD::FP_EXTEND:
4123   case ISD::FP_ROUND: {
4124     if (SNaN)
4125       return true;
4126     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4127   }
4128   case ISD::SINT_TO_FP:
4129   case ISD::UINT_TO_FP:
4130     return true;
4131   case ISD::FMA:
4132   case ISD::FMAD: {
4133     if (SNaN)
4134       return true;
4135     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4136            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4137            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4138   }
4139   case ISD::FSQRT: // Need is known positive
4140   case ISD::FLOG:
4141   case ISD::FLOG2:
4142   case ISD::FLOG10:
4143   case ISD::FPOWI:
4144   case ISD::FPOW: {
4145     if (SNaN)
4146       return true;
4147     // TODO: Refine on operand
4148     return false;
4149   }
4150   case ISD::FMINNUM:
4151   case ISD::FMAXNUM: {
4152     // Only one needs to be known not-nan, since it will be returned if the
4153     // other ends up being one.
4154     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4155            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4156   }
4157   case ISD::FMINNUM_IEEE:
4158   case ISD::FMAXNUM_IEEE: {
4159     if (SNaN)
4160       return true;
4161     // This can return a NaN if either operand is an sNaN, or if both operands
4162     // are NaN.
4163     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4164             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4165            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4166             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4167   }
4168   case ISD::FMINIMUM:
4169   case ISD::FMAXIMUM: {
4170     // TODO: Does this quiet or return the origina NaN as-is?
4171     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4172            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4173   }
4174   case ISD::EXTRACT_VECTOR_ELT: {
4175     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4176   }
4177   default:
4178     if (Opcode >= ISD::BUILTIN_OP_END ||
4179         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4180         Opcode == ISD::INTRINSIC_W_CHAIN ||
4181         Opcode == ISD::INTRINSIC_VOID) {
4182       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4183     }
4184 
4185     return false;
4186   }
4187 }
4188 
4189 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4190   assert(Op.getValueType().isFloatingPoint() &&
4191          "Floating point type expected");
4192 
4193   // If the value is a constant, we can obviously see if it is a zero or not.
4194   // TODO: Add BuildVector support.
4195   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4196     return !C->isZero();
4197   return false;
4198 }
4199 
4200 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4201   assert(!Op.getValueType().isFloatingPoint() &&
4202          "Floating point types unsupported - use isKnownNeverZeroFloat");
4203 
4204   // If the value is a constant, we can obviously see if it is a zero or not.
4205   if (ISD::matchUnaryPredicate(
4206           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4207     return true;
4208 
4209   // TODO: Recognize more cases here.
4210   switch (Op.getOpcode()) {
4211   default: break;
4212   case ISD::OR:
4213     if (isKnownNeverZero(Op.getOperand(1)) ||
4214         isKnownNeverZero(Op.getOperand(0)))
4215       return true;
4216     break;
4217   }
4218 
4219   return false;
4220 }
4221 
4222 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4223   // Check the obvious case.
4224   if (A == B) return true;
4225 
4226   // For for negative and positive zero.
4227   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4228     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4229       if (CA->isZero() && CB->isZero()) return true;
4230 
4231   // Otherwise they may not be equal.
4232   return false;
4233 }
4234 
4235 // FIXME: unify with llvm::haveNoCommonBitsSet.
4236 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4237 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4238   assert(A.getValueType() == B.getValueType() &&
4239          "Values must have the same type");
4240   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4241 }
4242 
4243 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4244                                 ArrayRef<SDValue> Ops,
4245                                 SelectionDAG &DAG) {
4246   int NumOps = Ops.size();
4247   assert(NumOps != 0 && "Can't build an empty vector!");
4248   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4249          "Incorrect element count in BUILD_VECTOR!");
4250 
4251   // BUILD_VECTOR of UNDEFs is UNDEF.
4252   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4253     return DAG.getUNDEF(VT);
4254 
4255   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4256   SDValue IdentitySrc;
4257   bool IsIdentity = true;
4258   for (int i = 0; i != NumOps; ++i) {
4259     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4260         Ops[i].getOperand(0).getValueType() != VT ||
4261         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4262         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4263         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4264       IsIdentity = false;
4265       break;
4266     }
4267     IdentitySrc = Ops[i].getOperand(0);
4268   }
4269   if (IsIdentity)
4270     return IdentitySrc;
4271 
4272   return SDValue();
4273 }
4274 
4275 /// Try to simplify vector concatenation to an input value, undef, or build
4276 /// vector.
4277 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4278                                   ArrayRef<SDValue> Ops,
4279                                   SelectionDAG &DAG) {
4280   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4281   assert(llvm::all_of(Ops,
4282                       [Ops](SDValue Op) {
4283                         return Ops[0].getValueType() == Op.getValueType();
4284                       }) &&
4285          "Concatenation of vectors with inconsistent value types!");
4286   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4287              VT.getVectorNumElements() &&
4288          "Incorrect element count in vector concatenation!");
4289 
4290   if (Ops.size() == 1)
4291     return Ops[0];
4292 
4293   // Concat of UNDEFs is UNDEF.
4294   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4295     return DAG.getUNDEF(VT);
4296 
4297   // Scan the operands and look for extract operations from a single source
4298   // that correspond to insertion at the same location via this concatenation:
4299   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4300   SDValue IdentitySrc;
4301   bool IsIdentity = true;
4302   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4303     SDValue Op = Ops[i];
4304     unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements();
4305     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4306         Op.getOperand(0).getValueType() != VT ||
4307         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4308         !isa<ConstantSDNode>(Op.getOperand(1)) ||
4309         Op.getConstantOperandVal(1) != IdentityIndex) {
4310       IsIdentity = false;
4311       break;
4312     }
4313     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4314            "Unexpected identity source vector for concat of extracts");
4315     IdentitySrc = Op.getOperand(0);
4316   }
4317   if (IsIdentity) {
4318     assert(IdentitySrc && "Failed to set source vector of extracts");
4319     return IdentitySrc;
4320   }
4321 
4322   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4323   // simplified to one big BUILD_VECTOR.
4324   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4325   EVT SVT = VT.getScalarType();
4326   SmallVector<SDValue, 16> Elts;
4327   for (SDValue Op : Ops) {
4328     EVT OpVT = Op.getValueType();
4329     if (Op.isUndef())
4330       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4331     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4332       Elts.append(Op->op_begin(), Op->op_end());
4333     else
4334       return SDValue();
4335   }
4336 
4337   // BUILD_VECTOR requires all inputs to be of the same type, find the
4338   // maximum type and extend them all.
4339   for (SDValue Op : Elts)
4340     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4341 
4342   if (SVT.bitsGT(VT.getScalarType()))
4343     for (SDValue &Op : Elts)
4344       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4345                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4346                : DAG.getSExtOrTrunc(Op, DL, SVT);
4347 
4348   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4349   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4350   return V;
4351 }
4352 
4353 /// Gets or creates the specified node.
4354 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4355   FoldingSetNodeID ID;
4356   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4357   void *IP = nullptr;
4358   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4359     return SDValue(E, 0);
4360 
4361   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4362                               getVTList(VT));
4363   CSEMap.InsertNode(N, IP);
4364 
4365   InsertNode(N);
4366   SDValue V = SDValue(N, 0);
4367   NewSDValueDbgMsg(V, "Creating new node: ", this);
4368   return V;
4369 }
4370 
4371 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4372                               SDValue Operand, const SDNodeFlags Flags) {
4373   // Constant fold unary operations with an integer constant operand. Even
4374   // opaque constant will be folded, because the folding of unary operations
4375   // doesn't create new constants with different values. Nevertheless, the
4376   // opaque flag is preserved during folding to prevent future folding with
4377   // other constants.
4378   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4379     const APInt &Val = C->getAPIntValue();
4380     switch (Opcode) {
4381     default: break;
4382     case ISD::SIGN_EXTEND:
4383       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4384                          C->isTargetOpcode(), C->isOpaque());
4385     case ISD::TRUNCATE:
4386       if (C->isOpaque())
4387         break;
4388       LLVM_FALLTHROUGH;
4389     case ISD::ANY_EXTEND:
4390     case ISD::ZERO_EXTEND:
4391       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4392                          C->isTargetOpcode(), C->isOpaque());
4393     case ISD::UINT_TO_FP:
4394     case ISD::SINT_TO_FP: {
4395       APFloat apf(EVTToAPFloatSemantics(VT),
4396                   APInt::getNullValue(VT.getSizeInBits()));
4397       (void)apf.convertFromAPInt(Val,
4398                                  Opcode==ISD::SINT_TO_FP,
4399                                  APFloat::rmNearestTiesToEven);
4400       return getConstantFP(apf, DL, VT);
4401     }
4402     case ISD::BITCAST:
4403       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4404         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4405       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4406         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4407       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4408         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4409       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4410         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4411       break;
4412     case ISD::ABS:
4413       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4414                          C->isOpaque());
4415     case ISD::BITREVERSE:
4416       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4417                          C->isOpaque());
4418     case ISD::BSWAP:
4419       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4420                          C->isOpaque());
4421     case ISD::CTPOP:
4422       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4423                          C->isOpaque());
4424     case ISD::CTLZ:
4425     case ISD::CTLZ_ZERO_UNDEF:
4426       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4427                          C->isOpaque());
4428     case ISD::CTTZ:
4429     case ISD::CTTZ_ZERO_UNDEF:
4430       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4431                          C->isOpaque());
4432     case ISD::FP16_TO_FP: {
4433       bool Ignored;
4434       APFloat FPV(APFloat::IEEEhalf(),
4435                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4436 
4437       // This can return overflow, underflow, or inexact; we don't care.
4438       // FIXME need to be more flexible about rounding mode.
4439       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4440                         APFloat::rmNearestTiesToEven, &Ignored);
4441       return getConstantFP(FPV, DL, VT);
4442     }
4443     }
4444   }
4445 
4446   // Constant fold unary operations with a floating point constant operand.
4447   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4448     APFloat V = C->getValueAPF();    // make copy
4449     switch (Opcode) {
4450     case ISD::FNEG:
4451       V.changeSign();
4452       return getConstantFP(V, DL, VT);
4453     case ISD::FABS:
4454       V.clearSign();
4455       return getConstantFP(V, DL, VT);
4456     case ISD::FCEIL: {
4457       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4458       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4459         return getConstantFP(V, DL, VT);
4460       break;
4461     }
4462     case ISD::FTRUNC: {
4463       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4464       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4465         return getConstantFP(V, DL, VT);
4466       break;
4467     }
4468     case ISD::FFLOOR: {
4469       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4470       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4471         return getConstantFP(V, DL, VT);
4472       break;
4473     }
4474     case ISD::FP_EXTEND: {
4475       bool ignored;
4476       // This can return overflow, underflow, or inexact; we don't care.
4477       // FIXME need to be more flexible about rounding mode.
4478       (void)V.convert(EVTToAPFloatSemantics(VT),
4479                       APFloat::rmNearestTiesToEven, &ignored);
4480       return getConstantFP(V, DL, VT);
4481     }
4482     case ISD::FP_TO_SINT:
4483     case ISD::FP_TO_UINT: {
4484       bool ignored;
4485       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4486       // FIXME need to be more flexible about rounding mode.
4487       APFloat::opStatus s =
4488           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4489       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4490         break;
4491       return getConstant(IntVal, DL, VT);
4492     }
4493     case ISD::BITCAST:
4494       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4495         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4496       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4497         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4498       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4499         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4500       break;
4501     case ISD::FP_TO_FP16: {
4502       bool Ignored;
4503       // This can return overflow, underflow, or inexact; we don't care.
4504       // FIXME need to be more flexible about rounding mode.
4505       (void)V.convert(APFloat::IEEEhalf(),
4506                       APFloat::rmNearestTiesToEven, &Ignored);
4507       return getConstant(V.bitcastToAPInt(), DL, VT);
4508     }
4509     }
4510   }
4511 
4512   // Constant fold unary operations with a vector integer or float operand.
4513   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4514     if (BV->isConstant()) {
4515       switch (Opcode) {
4516       default:
4517         // FIXME: Entirely reasonable to perform folding of other unary
4518         // operations here as the need arises.
4519         break;
4520       case ISD::FNEG:
4521       case ISD::FABS:
4522       case ISD::FCEIL:
4523       case ISD::FTRUNC:
4524       case ISD::FFLOOR:
4525       case ISD::FP_EXTEND:
4526       case ISD::FP_TO_SINT:
4527       case ISD::FP_TO_UINT:
4528       case ISD::TRUNCATE:
4529       case ISD::ANY_EXTEND:
4530       case ISD::ZERO_EXTEND:
4531       case ISD::SIGN_EXTEND:
4532       case ISD::UINT_TO_FP:
4533       case ISD::SINT_TO_FP:
4534       case ISD::ABS:
4535       case ISD::BITREVERSE:
4536       case ISD::BSWAP:
4537       case ISD::CTLZ:
4538       case ISD::CTLZ_ZERO_UNDEF:
4539       case ISD::CTTZ:
4540       case ISD::CTTZ_ZERO_UNDEF:
4541       case ISD::CTPOP: {
4542         SDValue Ops = { Operand };
4543         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4544           return Fold;
4545       }
4546       }
4547     }
4548   }
4549 
4550   unsigned OpOpcode = Operand.getNode()->getOpcode();
4551   switch (Opcode) {
4552   case ISD::TokenFactor:
4553   case ISD::MERGE_VALUES:
4554   case ISD::CONCAT_VECTORS:
4555     return Operand;         // Factor, merge or concat of one node?  No need.
4556   case ISD::BUILD_VECTOR: {
4557     // Attempt to simplify BUILD_VECTOR.
4558     SDValue Ops[] = {Operand};
4559     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4560       return V;
4561     break;
4562   }
4563   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4564   case ISD::FP_EXTEND:
4565     assert(VT.isFloatingPoint() &&
4566            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4567     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4568     assert((!VT.isVector() ||
4569             VT.getVectorNumElements() ==
4570             Operand.getValueType().getVectorNumElements()) &&
4571            "Vector element count mismatch!");
4572     assert(Operand.getValueType().bitsLT(VT) &&
4573            "Invalid fpext node, dst < src!");
4574     if (Operand.isUndef())
4575       return getUNDEF(VT);
4576     break;
4577   case ISD::FP_TO_SINT:
4578   case ISD::FP_TO_UINT:
4579     if (Operand.isUndef())
4580       return getUNDEF(VT);
4581     break;
4582   case ISD::SINT_TO_FP:
4583   case ISD::UINT_TO_FP:
4584     // [us]itofp(undef) = 0, because the result value is bounded.
4585     if (Operand.isUndef())
4586       return getConstantFP(0.0, DL, VT);
4587     break;
4588   case ISD::SIGN_EXTEND:
4589     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4590            "Invalid SIGN_EXTEND!");
4591     assert(VT.isVector() == Operand.getValueType().isVector() &&
4592            "SIGN_EXTEND result type type should be vector iff the operand "
4593            "type is vector!");
4594     if (Operand.getValueType() == VT) return Operand;   // noop extension
4595     assert((!VT.isVector() ||
4596             VT.getVectorNumElements() ==
4597             Operand.getValueType().getVectorNumElements()) &&
4598            "Vector element count mismatch!");
4599     assert(Operand.getValueType().bitsLT(VT) &&
4600            "Invalid sext node, dst < src!");
4601     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4602       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4603     else if (OpOpcode == ISD::UNDEF)
4604       // sext(undef) = 0, because the top bits will all be the same.
4605       return getConstant(0, DL, VT);
4606     break;
4607   case ISD::ZERO_EXTEND:
4608     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4609            "Invalid ZERO_EXTEND!");
4610     assert(VT.isVector() == Operand.getValueType().isVector() &&
4611            "ZERO_EXTEND result type type should be vector iff the operand "
4612            "type is vector!");
4613     if (Operand.getValueType() == VT) return Operand;   // noop extension
4614     assert((!VT.isVector() ||
4615             VT.getVectorNumElements() ==
4616             Operand.getValueType().getVectorNumElements()) &&
4617            "Vector element count mismatch!");
4618     assert(Operand.getValueType().bitsLT(VT) &&
4619            "Invalid zext node, dst < src!");
4620     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4621       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4622     else if (OpOpcode == ISD::UNDEF)
4623       // zext(undef) = 0, because the top bits will be zero.
4624       return getConstant(0, DL, VT);
4625     break;
4626   case ISD::ANY_EXTEND:
4627     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4628            "Invalid ANY_EXTEND!");
4629     assert(VT.isVector() == Operand.getValueType().isVector() &&
4630            "ANY_EXTEND result type type should be vector iff the operand "
4631            "type is vector!");
4632     if (Operand.getValueType() == VT) return Operand;   // noop extension
4633     assert((!VT.isVector() ||
4634             VT.getVectorNumElements() ==
4635             Operand.getValueType().getVectorNumElements()) &&
4636            "Vector element count mismatch!");
4637     assert(Operand.getValueType().bitsLT(VT) &&
4638            "Invalid anyext node, dst < src!");
4639 
4640     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4641         OpOpcode == ISD::ANY_EXTEND)
4642       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4643       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4644     else if (OpOpcode == ISD::UNDEF)
4645       return getUNDEF(VT);
4646 
4647     // (ext (trunc x)) -> x
4648     if (OpOpcode == ISD::TRUNCATE) {
4649       SDValue OpOp = Operand.getOperand(0);
4650       if (OpOp.getValueType() == VT) {
4651         transferDbgValues(Operand, OpOp);
4652         return OpOp;
4653       }
4654     }
4655     break;
4656   case ISD::TRUNCATE:
4657     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4658            "Invalid TRUNCATE!");
4659     assert(VT.isVector() == Operand.getValueType().isVector() &&
4660            "TRUNCATE result type type should be vector iff the operand "
4661            "type is vector!");
4662     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4663     assert((!VT.isVector() ||
4664             VT.getVectorNumElements() ==
4665             Operand.getValueType().getVectorNumElements()) &&
4666            "Vector element count mismatch!");
4667     assert(Operand.getValueType().bitsGT(VT) &&
4668            "Invalid truncate node, src < dst!");
4669     if (OpOpcode == ISD::TRUNCATE)
4670       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4671     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4672         OpOpcode == ISD::ANY_EXTEND) {
4673       // If the source is smaller than the dest, we still need an extend.
4674       if (Operand.getOperand(0).getValueType().getScalarType()
4675             .bitsLT(VT.getScalarType()))
4676         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4677       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4678         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4679       return Operand.getOperand(0);
4680     }
4681     if (OpOpcode == ISD::UNDEF)
4682       return getUNDEF(VT);
4683     break;
4684   case ISD::ANY_EXTEND_VECTOR_INREG:
4685   case ISD::ZERO_EXTEND_VECTOR_INREG:
4686   case ISD::SIGN_EXTEND_VECTOR_INREG:
4687     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4688     assert(Operand.getValueType().bitsLE(VT) &&
4689            "The input must be the same size or smaller than the result.");
4690     assert(VT.getVectorNumElements() <
4691              Operand.getValueType().getVectorNumElements() &&
4692            "The destination vector type must have fewer lanes than the input.");
4693     break;
4694   case ISD::ABS:
4695     assert(VT.isInteger() && VT == Operand.getValueType() &&
4696            "Invalid ABS!");
4697     if (OpOpcode == ISD::UNDEF)
4698       return getUNDEF(VT);
4699     break;
4700   case ISD::BSWAP:
4701     assert(VT.isInteger() && VT == Operand.getValueType() &&
4702            "Invalid BSWAP!");
4703     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4704            "BSWAP types must be a multiple of 16 bits!");
4705     if (OpOpcode == ISD::UNDEF)
4706       return getUNDEF(VT);
4707     break;
4708   case ISD::BITREVERSE:
4709     assert(VT.isInteger() && VT == Operand.getValueType() &&
4710            "Invalid BITREVERSE!");
4711     if (OpOpcode == ISD::UNDEF)
4712       return getUNDEF(VT);
4713     break;
4714   case ISD::BITCAST:
4715     // Basic sanity checking.
4716     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4717            "Cannot BITCAST between types of different sizes!");
4718     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4719     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4720       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4721     if (OpOpcode == ISD::UNDEF)
4722       return getUNDEF(VT);
4723     break;
4724   case ISD::SCALAR_TO_VECTOR:
4725     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4726            (VT.getVectorElementType() == Operand.getValueType() ||
4727             (VT.getVectorElementType().isInteger() &&
4728              Operand.getValueType().isInteger() &&
4729              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4730            "Illegal SCALAR_TO_VECTOR node!");
4731     if (OpOpcode == ISD::UNDEF)
4732       return getUNDEF(VT);
4733     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4734     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4735         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4736         Operand.getConstantOperandVal(1) == 0 &&
4737         Operand.getOperand(0).getValueType() == VT)
4738       return Operand.getOperand(0);
4739     break;
4740   case ISD::FNEG:
4741     // Negation of an unknown bag of bits is still completely undefined.
4742     if (OpOpcode == ISD::UNDEF)
4743       return getUNDEF(VT);
4744 
4745     if (OpOpcode == ISD::FNEG)  // --X -> X
4746       return Operand.getOperand(0);
4747     break;
4748   case ISD::FABS:
4749     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4750       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4751     break;
4752   }
4753 
4754   SDNode *N;
4755   SDVTList VTs = getVTList(VT);
4756   SDValue Ops[] = {Operand};
4757   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4758     FoldingSetNodeID ID;
4759     AddNodeIDNode(ID, Opcode, VTs, Ops);
4760     void *IP = nullptr;
4761     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4762       E->intersectFlagsWith(Flags);
4763       return SDValue(E, 0);
4764     }
4765 
4766     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4767     N->setFlags(Flags);
4768     createOperands(N, Ops);
4769     CSEMap.InsertNode(N, IP);
4770   } else {
4771     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4772     createOperands(N, Ops);
4773   }
4774 
4775   InsertNode(N);
4776   SDValue V = SDValue(N, 0);
4777   NewSDValueDbgMsg(V, "Creating new node: ", this);
4778   return V;
4779 }
4780 
4781 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4782                                        const APInt &C2) {
4783   switch (Opcode) {
4784   case ISD::ADD:  return C1 + C2;
4785   case ISD::SUB:  return C1 - C2;
4786   case ISD::MUL:  return C1 * C2;
4787   case ISD::AND:  return C1 & C2;
4788   case ISD::OR:   return C1 | C2;
4789   case ISD::XOR:  return C1 ^ C2;
4790   case ISD::SHL:  return C1 << C2;
4791   case ISD::SRL:  return C1.lshr(C2);
4792   case ISD::SRA:  return C1.ashr(C2);
4793   case ISD::ROTL: return C1.rotl(C2);
4794   case ISD::ROTR: return C1.rotr(C2);
4795   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4796   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4797   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4798   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4799   case ISD::SADDSAT: return C1.sadd_sat(C2);
4800   case ISD::UADDSAT: return C1.uadd_sat(C2);
4801   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4802   case ISD::USUBSAT: return C1.usub_sat(C2);
4803   case ISD::UDIV:
4804     if (!C2.getBoolValue())
4805       break;
4806     return C1.udiv(C2);
4807   case ISD::UREM:
4808     if (!C2.getBoolValue())
4809       break;
4810     return C1.urem(C2);
4811   case ISD::SDIV:
4812     if (!C2.getBoolValue())
4813       break;
4814     return C1.sdiv(C2);
4815   case ISD::SREM:
4816     if (!C2.getBoolValue())
4817       break;
4818     return C1.srem(C2);
4819   }
4820   return llvm::None;
4821 }
4822 
4823 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4824                                              EVT VT, const ConstantSDNode *C1,
4825                                              const ConstantSDNode *C2) {
4826   if (C1->isOpaque() || C2->isOpaque())
4827     return SDValue();
4828   if (Optional<APInt> Folded =
4829           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()))
4830     return getConstant(Folded.getValue(), DL, VT);
4831   return SDValue();
4832 }
4833 
4834 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4835                                        const GlobalAddressSDNode *GA,
4836                                        const SDNode *N2) {
4837   if (GA->getOpcode() != ISD::GlobalAddress)
4838     return SDValue();
4839   if (!TLI->isOffsetFoldingLegal(GA))
4840     return SDValue();
4841   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4842   if (!C2)
4843     return SDValue();
4844   int64_t Offset = C2->getSExtValue();
4845   switch (Opcode) {
4846   case ISD::ADD: break;
4847   case ISD::SUB: Offset = -uint64_t(Offset); break;
4848   default: return SDValue();
4849   }
4850   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4851                           GA->getOffset() + uint64_t(Offset));
4852 }
4853 
4854 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4855   switch (Opcode) {
4856   case ISD::SDIV:
4857   case ISD::UDIV:
4858   case ISD::SREM:
4859   case ISD::UREM: {
4860     // If a divisor is zero/undef or any element of a divisor vector is
4861     // zero/undef, the whole op is undef.
4862     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4863     SDValue Divisor = Ops[1];
4864     if (Divisor.isUndef() || isNullConstant(Divisor))
4865       return true;
4866 
4867     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4868            llvm::any_of(Divisor->op_values(),
4869                         [](SDValue V) { return V.isUndef() ||
4870                                         isNullConstant(V); });
4871     // TODO: Handle signed overflow.
4872   }
4873   // TODO: Handle oversized shifts.
4874   default:
4875     return false;
4876   }
4877 }
4878 
4879 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4880                                              EVT VT, ArrayRef<SDValue> Ops) {
4881   // If the opcode is a target-specific ISD node, there's nothing we can
4882   // do here and the operand rules may not line up with the below, so
4883   // bail early.
4884   if (Opcode >= ISD::BUILTIN_OP_END)
4885     return SDValue();
4886 
4887   // For now, the array Ops should only contain two values.
4888   // This enforcement will be removed once this function is merged with
4889   // FoldConstantVectorArithmetic
4890   if (Ops.size() != 2)
4891     return SDValue();
4892 
4893   if (isUndef(Opcode, Ops))
4894     return getUNDEF(VT);
4895 
4896   SDNode *N1 = Ops[0].getNode();
4897   SDNode *N2 = Ops[1].getNode();
4898 
4899   // Handle the case of two scalars.
4900   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4901     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4902       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
4903       assert((!Folded || !VT.isVector()) &&
4904              "Can't fold vectors ops with scalar operands");
4905       return Folded;
4906     }
4907   }
4908 
4909   // fold (add Sym, c) -> Sym+c
4910   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4911     return FoldSymbolOffset(Opcode, VT, GA, N2);
4912   if (TLI->isCommutativeBinOp(Opcode))
4913     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4914       return FoldSymbolOffset(Opcode, VT, GA, N1);
4915 
4916   // For vectors, extract each constant element and fold them individually.
4917   // Either input may be an undef value.
4918   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4919   if (!BV1 && !N1->isUndef())
4920     return SDValue();
4921   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4922   if (!BV2 && !N2->isUndef())
4923     return SDValue();
4924   // If both operands are undef, that's handled the same way as scalars.
4925   if (!BV1 && !BV2)
4926     return SDValue();
4927 
4928   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4929          "Vector binop with different number of elements in operands?");
4930 
4931   EVT SVT = VT.getScalarType();
4932   EVT LegalSVT = SVT;
4933   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4934     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4935     if (LegalSVT.bitsLT(SVT))
4936       return SDValue();
4937   }
4938   SmallVector<SDValue, 4> Outputs;
4939   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4940   for (unsigned I = 0; I != NumOps; ++I) {
4941     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4942     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4943     if (SVT.isInteger()) {
4944       if (V1->getValueType(0).bitsGT(SVT))
4945         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4946       if (V2->getValueType(0).bitsGT(SVT))
4947         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4948     }
4949 
4950     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4951       return SDValue();
4952 
4953     // Fold one vector element.
4954     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4955     if (LegalSVT != SVT)
4956       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4957 
4958     // Scalar folding only succeeded if the result is a constant or UNDEF.
4959     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4960         ScalarResult.getOpcode() != ISD::ConstantFP)
4961       return SDValue();
4962     Outputs.push_back(ScalarResult);
4963   }
4964 
4965   assert(VT.getVectorNumElements() == Outputs.size() &&
4966          "Vector size mismatch!");
4967 
4968   // We may have a vector type but a scalar result. Create a splat.
4969   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4970 
4971   // Build a big vector out of the scalar elements we generated.
4972   return getBuildVector(VT, SDLoc(), Outputs);
4973 }
4974 
4975 // TODO: Merge with FoldConstantArithmetic
4976 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4977                                                    const SDLoc &DL, EVT VT,
4978                                                    ArrayRef<SDValue> Ops,
4979                                                    const SDNodeFlags Flags) {
4980   // If the opcode is a target-specific ISD node, there's nothing we can
4981   // do here and the operand rules may not line up with the below, so
4982   // bail early.
4983   if (Opcode >= ISD::BUILTIN_OP_END)
4984     return SDValue();
4985 
4986   if (isUndef(Opcode, Ops))
4987     return getUNDEF(VT);
4988 
4989   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4990   if (!VT.isVector())
4991     return SDValue();
4992 
4993   unsigned NumElts = VT.getVectorNumElements();
4994 
4995   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4996     return !Op.getValueType().isVector() ||
4997            Op.getValueType().getVectorNumElements() == NumElts;
4998   };
4999 
5000   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5001     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5002     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5003            (BV && BV->isConstant());
5004   };
5005 
5006   // All operands must be vector types with the same number of elements as
5007   // the result type and must be either UNDEF or a build vector of constant
5008   // or UNDEF scalars.
5009   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5010       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5011     return SDValue();
5012 
5013   // If we are comparing vectors, then the result needs to be a i1 boolean
5014   // that is then sign-extended back to the legal result type.
5015   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5016 
5017   // Find legal integer scalar type for constant promotion and
5018   // ensure that its scalar size is at least as large as source.
5019   EVT LegalSVT = VT.getScalarType();
5020   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5021     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5022     if (LegalSVT.bitsLT(VT.getScalarType()))
5023       return SDValue();
5024   }
5025 
5026   // Constant fold each scalar lane separately.
5027   SmallVector<SDValue, 4> ScalarResults;
5028   for (unsigned i = 0; i != NumElts; i++) {
5029     SmallVector<SDValue, 4> ScalarOps;
5030     for (SDValue Op : Ops) {
5031       EVT InSVT = Op.getValueType().getScalarType();
5032       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5033       if (!InBV) {
5034         // We've checked that this is UNDEF or a constant of some kind.
5035         if (Op.isUndef())
5036           ScalarOps.push_back(getUNDEF(InSVT));
5037         else
5038           ScalarOps.push_back(Op);
5039         continue;
5040       }
5041 
5042       SDValue ScalarOp = InBV->getOperand(i);
5043       EVT ScalarVT = ScalarOp.getValueType();
5044 
5045       // Build vector (integer) scalar operands may need implicit
5046       // truncation - do this before constant folding.
5047       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5048         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5049 
5050       ScalarOps.push_back(ScalarOp);
5051     }
5052 
5053     // Constant fold the scalar operands.
5054     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5055 
5056     // Legalize the (integer) scalar constant if necessary.
5057     if (LegalSVT != SVT)
5058       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5059 
5060     // Scalar folding only succeeded if the result is a constant or UNDEF.
5061     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5062         ScalarResult.getOpcode() != ISD::ConstantFP)
5063       return SDValue();
5064     ScalarResults.push_back(ScalarResult);
5065   }
5066 
5067   SDValue V = getBuildVector(VT, DL, ScalarResults);
5068   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5069   return V;
5070 }
5071 
5072 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5073                                          EVT VT, SDValue N1, SDValue N2) {
5074   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5075   //       should. That will require dealing with a potentially non-default
5076   //       rounding mode, checking the "opStatus" return value from the APFloat
5077   //       math calculations, and possibly other variations.
5078   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5079   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5080   if (N1CFP && N2CFP) {
5081     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5082     switch (Opcode) {
5083     case ISD::FADD:
5084       C1.add(C2, APFloat::rmNearestTiesToEven);
5085       return getConstantFP(C1, DL, VT);
5086     case ISD::FSUB:
5087       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5088       return getConstantFP(C1, DL, VT);
5089     case ISD::FMUL:
5090       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5091       return getConstantFP(C1, DL, VT);
5092     case ISD::FDIV:
5093       C1.divide(C2, APFloat::rmNearestTiesToEven);
5094       return getConstantFP(C1, DL, VT);
5095     case ISD::FREM:
5096       C1.mod(C2);
5097       return getConstantFP(C1, DL, VT);
5098     case ISD::FCOPYSIGN:
5099       C1.copySign(C2);
5100       return getConstantFP(C1, DL, VT);
5101     default: break;
5102     }
5103   }
5104   if (N1CFP && Opcode == ISD::FP_ROUND) {
5105     APFloat C1 = N1CFP->getValueAPF();    // make copy
5106     bool Unused;
5107     // This can return overflow, underflow, or inexact; we don't care.
5108     // FIXME need to be more flexible about rounding mode.
5109     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5110                       &Unused);
5111     return getConstantFP(C1, DL, VT);
5112   }
5113 
5114   switch (Opcode) {
5115   case ISD::FSUB:
5116     // -0.0 - undef --> undef (consistent with "fneg undef")
5117     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5118       return getUNDEF(VT);
5119     LLVM_FALLTHROUGH;
5120 
5121   case ISD::FADD:
5122   case ISD::FMUL:
5123   case ISD::FDIV:
5124   case ISD::FREM:
5125     // If both operands are undef, the result is undef. If 1 operand is undef,
5126     // the result is NaN. This should match the behavior of the IR optimizer.
5127     if (N1.isUndef() && N2.isUndef())
5128       return getUNDEF(VT);
5129     if (N1.isUndef() || N2.isUndef())
5130       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5131   }
5132   return SDValue();
5133 }
5134 
5135 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5136                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5137   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5138   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5139   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5140   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5141 
5142   // Canonicalize constant to RHS if commutative.
5143   if (TLI->isCommutativeBinOp(Opcode)) {
5144     if (N1C && !N2C) {
5145       std::swap(N1C, N2C);
5146       std::swap(N1, N2);
5147     } else if (N1CFP && !N2CFP) {
5148       std::swap(N1CFP, N2CFP);
5149       std::swap(N1, N2);
5150     }
5151   }
5152 
5153   switch (Opcode) {
5154   default: break;
5155   case ISD::TokenFactor:
5156     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5157            N2.getValueType() == MVT::Other && "Invalid token factor!");
5158     // Fold trivial token factors.
5159     if (N1.getOpcode() == ISD::EntryToken) return N2;
5160     if (N2.getOpcode() == ISD::EntryToken) return N1;
5161     if (N1 == N2) return N1;
5162     break;
5163   case ISD::BUILD_VECTOR: {
5164     // Attempt to simplify BUILD_VECTOR.
5165     SDValue Ops[] = {N1, N2};
5166     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5167       return V;
5168     break;
5169   }
5170   case ISD::CONCAT_VECTORS: {
5171     SDValue Ops[] = {N1, N2};
5172     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5173       return V;
5174     break;
5175   }
5176   case ISD::AND:
5177     assert(VT.isInteger() && "This operator does not apply to FP types!");
5178     assert(N1.getValueType() == N2.getValueType() &&
5179            N1.getValueType() == VT && "Binary operator types must match!");
5180     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5181     // worth handling here.
5182     if (N2C && N2C->isNullValue())
5183       return N2;
5184     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5185       return N1;
5186     break;
5187   case ISD::OR:
5188   case ISD::XOR:
5189   case ISD::ADD:
5190   case ISD::SUB:
5191     assert(VT.isInteger() && "This operator does not apply to FP types!");
5192     assert(N1.getValueType() == N2.getValueType() &&
5193            N1.getValueType() == VT && "Binary operator types must match!");
5194     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5195     // it's worth handling here.
5196     if (N2C && N2C->isNullValue())
5197       return N1;
5198     break;
5199   case ISD::MUL:
5200     assert(VT.isInteger() && "This operator does not apply to FP types!");
5201     assert(N1.getValueType() == N2.getValueType() &&
5202            N1.getValueType() == VT && "Binary operator types must match!");
5203     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5204       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5205       APInt N2CImm = N2C->getAPIntValue();
5206       return getVScale(DL, VT, MulImm * N2CImm);
5207     }
5208     break;
5209   case ISD::UDIV:
5210   case ISD::UREM:
5211   case ISD::MULHU:
5212   case ISD::MULHS:
5213   case ISD::SDIV:
5214   case ISD::SREM:
5215   case ISD::SMIN:
5216   case ISD::SMAX:
5217   case ISD::UMIN:
5218   case ISD::UMAX:
5219   case ISD::SADDSAT:
5220   case ISD::SSUBSAT:
5221   case ISD::UADDSAT:
5222   case ISD::USUBSAT:
5223     assert(VT.isInteger() && "This operator does not apply to FP types!");
5224     assert(N1.getValueType() == N2.getValueType() &&
5225            N1.getValueType() == VT && "Binary operator types must match!");
5226     break;
5227   case ISD::FADD:
5228   case ISD::FSUB:
5229   case ISD::FMUL:
5230   case ISD::FDIV:
5231   case ISD::FREM:
5232     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5233     assert(N1.getValueType() == N2.getValueType() &&
5234            N1.getValueType() == VT && "Binary operator types must match!");
5235     if (SDValue V = simplifyFPBinop(Opcode, N1, N2))
5236       return V;
5237     break;
5238   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5239     assert(N1.getValueType() == VT &&
5240            N1.getValueType().isFloatingPoint() &&
5241            N2.getValueType().isFloatingPoint() &&
5242            "Invalid FCOPYSIGN!");
5243     break;
5244   case ISD::SHL:
5245     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5246       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5247       APInt ShiftImm = N2C->getAPIntValue();
5248       return getVScale(DL, VT, MulImm << ShiftImm);
5249     }
5250     LLVM_FALLTHROUGH;
5251   case ISD::SRA:
5252   case ISD::SRL:
5253     if (SDValue V = simplifyShift(N1, N2))
5254       return V;
5255     LLVM_FALLTHROUGH;
5256   case ISD::ROTL:
5257   case ISD::ROTR:
5258     assert(VT == N1.getValueType() &&
5259            "Shift operators return type must be the same as their first arg");
5260     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5261            "Shifts only work on integers");
5262     assert((!VT.isVector() || VT == N2.getValueType()) &&
5263            "Vector shift amounts must be in the same as their first arg");
5264     // Verify that the shift amount VT is big enough to hold valid shift
5265     // amounts.  This catches things like trying to shift an i1024 value by an
5266     // i8, which is easy to fall into in generic code that uses
5267     // TLI.getShiftAmount().
5268     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
5269            "Invalid use of small shift amount with oversized value!");
5270 
5271     // Always fold shifts of i1 values so the code generator doesn't need to
5272     // handle them.  Since we know the size of the shift has to be less than the
5273     // size of the value, the shift/rotate count is guaranteed to be zero.
5274     if (VT == MVT::i1)
5275       return N1;
5276     if (N2C && N2C->isNullValue())
5277       return N1;
5278     break;
5279   case ISD::FP_ROUND:
5280     assert(VT.isFloatingPoint() &&
5281            N1.getValueType().isFloatingPoint() &&
5282            VT.bitsLE(N1.getValueType()) &&
5283            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5284            "Invalid FP_ROUND!");
5285     if (N1.getValueType() == VT) return N1;  // noop conversion.
5286     break;
5287   case ISD::AssertSext:
5288   case ISD::AssertZext: {
5289     EVT EVT = cast<VTSDNode>(N2)->getVT();
5290     assert(VT == N1.getValueType() && "Not an inreg extend!");
5291     assert(VT.isInteger() && EVT.isInteger() &&
5292            "Cannot *_EXTEND_INREG FP types");
5293     assert(!EVT.isVector() &&
5294            "AssertSExt/AssertZExt type should be the vector element type "
5295            "rather than the vector type!");
5296     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5297     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5298     break;
5299   }
5300   case ISD::SIGN_EXTEND_INREG: {
5301     EVT EVT = cast<VTSDNode>(N2)->getVT();
5302     assert(VT == N1.getValueType() && "Not an inreg extend!");
5303     assert(VT.isInteger() && EVT.isInteger() &&
5304            "Cannot *_EXTEND_INREG FP types");
5305     assert(EVT.isVector() == VT.isVector() &&
5306            "SIGN_EXTEND_INREG type should be vector iff the operand "
5307            "type is vector!");
5308     assert((!EVT.isVector() ||
5309             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5310            "Vector element counts must match in SIGN_EXTEND_INREG");
5311     assert(EVT.bitsLE(VT) && "Not extending!");
5312     if (EVT == VT) return N1;  // Not actually extending
5313 
5314     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5315       unsigned FromBits = EVT.getScalarSizeInBits();
5316       Val <<= Val.getBitWidth() - FromBits;
5317       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5318       return getConstant(Val, DL, ConstantVT);
5319     };
5320 
5321     if (N1C) {
5322       const APInt &Val = N1C->getAPIntValue();
5323       return SignExtendInReg(Val, VT);
5324     }
5325     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5326       SmallVector<SDValue, 8> Ops;
5327       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5328       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5329         SDValue Op = N1.getOperand(i);
5330         if (Op.isUndef()) {
5331           Ops.push_back(getUNDEF(OpVT));
5332           continue;
5333         }
5334         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5335         APInt Val = C->getAPIntValue();
5336         Ops.push_back(SignExtendInReg(Val, OpVT));
5337       }
5338       return getBuildVector(VT, DL, Ops);
5339     }
5340     break;
5341   }
5342   case ISD::EXTRACT_VECTOR_ELT:
5343     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5344            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5345              element type of the vector.");
5346 
5347     // Extract from an undefined value or using an undefined index is undefined.
5348     if (N1.isUndef() || N2.isUndef())
5349       return getUNDEF(VT);
5350 
5351     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5352     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5353       return getUNDEF(VT);
5354 
5355     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5356     // expanding copies of large vectors from registers.
5357     if (N2C &&
5358         N1.getOpcode() == ISD::CONCAT_VECTORS &&
5359         N1.getNumOperands() > 0) {
5360       unsigned Factor =
5361         N1.getOperand(0).getValueType().getVectorNumElements();
5362       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5363                      N1.getOperand(N2C->getZExtValue() / Factor),
5364                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5365     }
5366 
5367     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5368     // expanding large vector constants.
5369     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5370       SDValue Elt = N1.getOperand(N2C->getZExtValue());
5371 
5372       if (VT != Elt.getValueType())
5373         // If the vector element type is not legal, the BUILD_VECTOR operands
5374         // are promoted and implicitly truncated, and the result implicitly
5375         // extended. Make that explicit here.
5376         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5377 
5378       return Elt;
5379     }
5380 
5381     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5382     // operations are lowered to scalars.
5383     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5384       // If the indices are the same, return the inserted element else
5385       // if the indices are known different, extract the element from
5386       // the original vector.
5387       SDValue N1Op2 = N1.getOperand(2);
5388       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5389 
5390       if (N1Op2C && N2C) {
5391         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5392           if (VT == N1.getOperand(1).getValueType())
5393             return N1.getOperand(1);
5394           else
5395             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5396         }
5397 
5398         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5399       }
5400     }
5401 
5402     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5403     // when vector types are scalarized and v1iX is legal.
5404     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5405     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5406         N1.getValueType().getVectorNumElements() == 1) {
5407       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5408                      N1.getOperand(1));
5409     }
5410     break;
5411   case ISD::EXTRACT_ELEMENT:
5412     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5413     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5414            (N1.getValueType().isInteger() == VT.isInteger()) &&
5415            N1.getValueType() != VT &&
5416            "Wrong types for EXTRACT_ELEMENT!");
5417 
5418     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5419     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5420     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5421     if (N1.getOpcode() == ISD::BUILD_PAIR)
5422       return N1.getOperand(N2C->getZExtValue());
5423 
5424     // EXTRACT_ELEMENT of a constant int is also very common.
5425     if (N1C) {
5426       unsigned ElementSize = VT.getSizeInBits();
5427       unsigned Shift = ElementSize * N2C->getZExtValue();
5428       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5429       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5430     }
5431     break;
5432   case ISD::EXTRACT_SUBVECTOR:
5433     if (VT.isSimple() && N1.getValueType().isSimple()) {
5434       assert(VT.isVector() && N1.getValueType().isVector() &&
5435              "Extract subvector VTs must be a vectors!");
5436       assert(VT.getVectorElementType() ==
5437              N1.getValueType().getVectorElementType() &&
5438              "Extract subvector VTs must have the same element type!");
5439       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5440              "Extract subvector must be from larger vector to smaller vector!");
5441 
5442       if (N2C) {
5443         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5444                 <= N1.getValueType().getVectorNumElements())
5445                && "Extract subvector overflow!");
5446       }
5447 
5448       // Trivial extraction.
5449       if (VT.getSimpleVT() == N1.getSimpleValueType())
5450         return N1;
5451 
5452       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5453       if (N1.isUndef())
5454         return getUNDEF(VT);
5455 
5456       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5457       // the concat have the same type as the extract.
5458       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5459           N1.getNumOperands() > 0 &&
5460           VT == N1.getOperand(0).getValueType()) {
5461         unsigned Factor = VT.getVectorNumElements();
5462         return N1.getOperand(N2C->getZExtValue() / Factor);
5463       }
5464 
5465       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5466       // during shuffle legalization.
5467       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5468           VT == N1.getOperand(1).getValueType())
5469         return N1.getOperand(1);
5470     }
5471     break;
5472   }
5473 
5474   // Perform trivial constant folding.
5475   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5476     return SV;
5477 
5478   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5479     return V;
5480 
5481   // Canonicalize an UNDEF to the RHS, even over a constant.
5482   if (N1.isUndef()) {
5483     if (TLI->isCommutativeBinOp(Opcode)) {
5484       std::swap(N1, N2);
5485     } else {
5486       switch (Opcode) {
5487       case ISD::SIGN_EXTEND_INREG:
5488       case ISD::SUB:
5489         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5490       case ISD::UDIV:
5491       case ISD::SDIV:
5492       case ISD::UREM:
5493       case ISD::SREM:
5494       case ISD::SSUBSAT:
5495       case ISD::USUBSAT:
5496         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5497       }
5498     }
5499   }
5500 
5501   // Fold a bunch of operators when the RHS is undef.
5502   if (N2.isUndef()) {
5503     switch (Opcode) {
5504     case ISD::XOR:
5505       if (N1.isUndef())
5506         // Handle undef ^ undef -> 0 special case. This is a common
5507         // idiom (misuse).
5508         return getConstant(0, DL, VT);
5509       LLVM_FALLTHROUGH;
5510     case ISD::ADD:
5511     case ISD::SUB:
5512     case ISD::UDIV:
5513     case ISD::SDIV:
5514     case ISD::UREM:
5515     case ISD::SREM:
5516       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5517     case ISD::MUL:
5518     case ISD::AND:
5519     case ISD::SSUBSAT:
5520     case ISD::USUBSAT:
5521       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5522     case ISD::OR:
5523     case ISD::SADDSAT:
5524     case ISD::UADDSAT:
5525       return getAllOnesConstant(DL, VT);
5526     }
5527   }
5528 
5529   // Memoize this node if possible.
5530   SDNode *N;
5531   SDVTList VTs = getVTList(VT);
5532   SDValue Ops[] = {N1, N2};
5533   if (VT != MVT::Glue) {
5534     FoldingSetNodeID ID;
5535     AddNodeIDNode(ID, Opcode, VTs, Ops);
5536     void *IP = nullptr;
5537     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5538       E->intersectFlagsWith(Flags);
5539       return SDValue(E, 0);
5540     }
5541 
5542     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5543     N->setFlags(Flags);
5544     createOperands(N, Ops);
5545     CSEMap.InsertNode(N, IP);
5546   } else {
5547     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5548     createOperands(N, Ops);
5549   }
5550 
5551   InsertNode(N);
5552   SDValue V = SDValue(N, 0);
5553   NewSDValueDbgMsg(V, "Creating new node: ", this);
5554   return V;
5555 }
5556 
5557 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5558                               SDValue N1, SDValue N2, SDValue N3,
5559                               const SDNodeFlags Flags) {
5560   // Perform various simplifications.
5561   switch (Opcode) {
5562   case ISD::FMA: {
5563     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5564     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5565            N3.getValueType() == VT && "FMA types must match!");
5566     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5567     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5568     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5569     if (N1CFP && N2CFP && N3CFP) {
5570       APFloat  V1 = N1CFP->getValueAPF();
5571       const APFloat &V2 = N2CFP->getValueAPF();
5572       const APFloat &V3 = N3CFP->getValueAPF();
5573       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5574       return getConstantFP(V1, DL, VT);
5575     }
5576     break;
5577   }
5578   case ISD::BUILD_VECTOR: {
5579     // Attempt to simplify BUILD_VECTOR.
5580     SDValue Ops[] = {N1, N2, N3};
5581     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5582       return V;
5583     break;
5584   }
5585   case ISD::CONCAT_VECTORS: {
5586     SDValue Ops[] = {N1, N2, N3};
5587     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5588       return V;
5589     break;
5590   }
5591   case ISD::SETCC: {
5592     assert(VT.isInteger() && "SETCC result type must be an integer!");
5593     assert(N1.getValueType() == N2.getValueType() &&
5594            "SETCC operands must have the same type!");
5595     assert(VT.isVector() == N1.getValueType().isVector() &&
5596            "SETCC type should be vector iff the operand type is vector!");
5597     assert((!VT.isVector() ||
5598             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5599            "SETCC vector element counts must match!");
5600     // Use FoldSetCC to simplify SETCC's.
5601     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5602       return V;
5603     // Vector constant folding.
5604     SDValue Ops[] = {N1, N2, N3};
5605     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5606       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5607       return V;
5608     }
5609     break;
5610   }
5611   case ISD::SELECT:
5612   case ISD::VSELECT:
5613     if (SDValue V = simplifySelect(N1, N2, N3))
5614       return V;
5615     break;
5616   case ISD::VECTOR_SHUFFLE:
5617     llvm_unreachable("should use getVectorShuffle constructor!");
5618   case ISD::INSERT_VECTOR_ELT: {
5619     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5620     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5621     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5622       return getUNDEF(VT);
5623 
5624     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5625     if (N3.isUndef())
5626       return getUNDEF(VT);
5627 
5628     // If the inserted element is an UNDEF, just use the input vector.
5629     if (N2.isUndef())
5630       return N1;
5631 
5632     break;
5633   }
5634   case ISD::INSERT_SUBVECTOR: {
5635     // Inserting undef into undef is still undef.
5636     if (N1.isUndef() && N2.isUndef())
5637       return getUNDEF(VT);
5638     SDValue Index = N3;
5639     if (VT.isSimple() && N1.getValueType().isSimple()
5640         && N2.getValueType().isSimple()) {
5641       assert(VT.isVector() && N1.getValueType().isVector() &&
5642              N2.getValueType().isVector() &&
5643              "Insert subvector VTs must be a vectors");
5644       assert(VT == N1.getValueType() &&
5645              "Dest and insert subvector source types must match!");
5646       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5647              "Insert subvector must be from smaller vector to larger vector!");
5648       if (isa<ConstantSDNode>(Index)) {
5649         assert((N2.getValueType().getVectorNumElements() +
5650                 cast<ConstantSDNode>(Index)->getZExtValue()
5651                 <= VT.getVectorNumElements())
5652                && "Insert subvector overflow!");
5653       }
5654 
5655       // Trivial insertion.
5656       if (VT.getSimpleVT() == N2.getSimpleValueType())
5657         return N2;
5658 
5659       // If this is an insert of an extracted vector into an undef vector, we
5660       // can just use the input to the extract.
5661       if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5662           N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5663         return N2.getOperand(0);
5664     }
5665     break;
5666   }
5667   case ISD::BITCAST:
5668     // Fold bit_convert nodes from a type to themselves.
5669     if (N1.getValueType() == VT)
5670       return N1;
5671     break;
5672   }
5673 
5674   // Memoize node if it doesn't produce a flag.
5675   SDNode *N;
5676   SDVTList VTs = getVTList(VT);
5677   SDValue Ops[] = {N1, N2, N3};
5678   if (VT != MVT::Glue) {
5679     FoldingSetNodeID ID;
5680     AddNodeIDNode(ID, Opcode, VTs, Ops);
5681     void *IP = nullptr;
5682     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5683       E->intersectFlagsWith(Flags);
5684       return SDValue(E, 0);
5685     }
5686 
5687     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5688     N->setFlags(Flags);
5689     createOperands(N, Ops);
5690     CSEMap.InsertNode(N, IP);
5691   } else {
5692     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5693     createOperands(N, Ops);
5694   }
5695 
5696   InsertNode(N);
5697   SDValue V = SDValue(N, 0);
5698   NewSDValueDbgMsg(V, "Creating new node: ", this);
5699   return V;
5700 }
5701 
5702 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5703                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5704   SDValue Ops[] = { N1, N2, N3, N4 };
5705   return getNode(Opcode, DL, VT, Ops);
5706 }
5707 
5708 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5709                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5710                               SDValue N5) {
5711   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5712   return getNode(Opcode, DL, VT, Ops);
5713 }
5714 
5715 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5716 /// the incoming stack arguments to be loaded from the stack.
5717 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5718   SmallVector<SDValue, 8> ArgChains;
5719 
5720   // Include the original chain at the beginning of the list. When this is
5721   // used by target LowerCall hooks, this helps legalize find the
5722   // CALLSEQ_BEGIN node.
5723   ArgChains.push_back(Chain);
5724 
5725   // Add a chain value for each stack argument.
5726   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5727        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5728     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5729       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5730         if (FI->getIndex() < 0)
5731           ArgChains.push_back(SDValue(L, 1));
5732 
5733   // Build a tokenfactor for all the chains.
5734   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5735 }
5736 
5737 /// getMemsetValue - Vectorized representation of the memset value
5738 /// operand.
5739 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5740                               const SDLoc &dl) {
5741   assert(!Value.isUndef());
5742 
5743   unsigned NumBits = VT.getScalarSizeInBits();
5744   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5745     assert(C->getAPIntValue().getBitWidth() == 8);
5746     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5747     if (VT.isInteger()) {
5748       bool IsOpaque = VT.getSizeInBits() > 64 ||
5749           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5750       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5751     }
5752     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5753                              VT);
5754   }
5755 
5756   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5757   EVT IntVT = VT.getScalarType();
5758   if (!IntVT.isInteger())
5759     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5760 
5761   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5762   if (NumBits > 8) {
5763     // Use a multiplication with 0x010101... to extend the input to the
5764     // required length.
5765     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5766     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5767                         DAG.getConstant(Magic, dl, IntVT));
5768   }
5769 
5770   if (VT != Value.getValueType() && !VT.isInteger())
5771     Value = DAG.getBitcast(VT.getScalarType(), Value);
5772   if (VT != Value.getValueType())
5773     Value = DAG.getSplatBuildVector(VT, dl, Value);
5774 
5775   return Value;
5776 }
5777 
5778 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5779 /// used when a memcpy is turned into a memset when the source is a constant
5780 /// string ptr.
5781 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5782                                   const TargetLowering &TLI,
5783                                   const ConstantDataArraySlice &Slice) {
5784   // Handle vector with all elements zero.
5785   if (Slice.Array == nullptr) {
5786     if (VT.isInteger())
5787       return DAG.getConstant(0, dl, VT);
5788     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5789       return DAG.getConstantFP(0.0, dl, VT);
5790     else if (VT.isVector()) {
5791       unsigned NumElts = VT.getVectorNumElements();
5792       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5793       return DAG.getNode(ISD::BITCAST, dl, VT,
5794                          DAG.getConstant(0, dl,
5795                                          EVT::getVectorVT(*DAG.getContext(),
5796                                                           EltVT, NumElts)));
5797     } else
5798       llvm_unreachable("Expected type!");
5799   }
5800 
5801   assert(!VT.isVector() && "Can't handle vector type here!");
5802   unsigned NumVTBits = VT.getSizeInBits();
5803   unsigned NumVTBytes = NumVTBits / 8;
5804   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5805 
5806   APInt Val(NumVTBits, 0);
5807   if (DAG.getDataLayout().isLittleEndian()) {
5808     for (unsigned i = 0; i != NumBytes; ++i)
5809       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5810   } else {
5811     for (unsigned i = 0; i != NumBytes; ++i)
5812       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5813   }
5814 
5815   // If the "cost" of materializing the integer immediate is less than the cost
5816   // of a load, then it is cost effective to turn the load into the immediate.
5817   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5818   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5819     return DAG.getConstant(Val, dl, VT);
5820   return SDValue(nullptr, 0);
5821 }
5822 
5823 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset,
5824                                            const SDLoc &DL,
5825                                            const SDNodeFlags Flags) {
5826   EVT VT = Base.getValueType();
5827   return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags);
5828 }
5829 
5830 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5831                                            const SDLoc &DL,
5832                                            const SDNodeFlags Flags) {
5833   assert(Offset.getValueType().isInteger());
5834   EVT BasePtrVT = Ptr.getValueType();
5835   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5836 }
5837 
5838 /// Returns true if memcpy source is constant data.
5839 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5840   uint64_t SrcDelta = 0;
5841   GlobalAddressSDNode *G = nullptr;
5842   if (Src.getOpcode() == ISD::GlobalAddress)
5843     G = cast<GlobalAddressSDNode>(Src);
5844   else if (Src.getOpcode() == ISD::ADD &&
5845            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5846            Src.getOperand(1).getOpcode() == ISD::Constant) {
5847     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5848     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5849   }
5850   if (!G)
5851     return false;
5852 
5853   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5854                                   SrcDelta + G->getOffset());
5855 }
5856 
5857 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
5858                                       SelectionDAG &DAG) {
5859   // On Darwin, -Os means optimize for size without hurting performance, so
5860   // only really optimize for size when -Oz (MinSize) is used.
5861   if (MF.getTarget().getTargetTriple().isOSDarwin())
5862     return MF.getFunction().hasMinSize();
5863   return DAG.shouldOptForSize();
5864 }
5865 
5866 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5867                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5868                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5869                           SmallVector<SDValue, 16> &OutStoreChains) {
5870   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5871   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5872   SmallVector<SDValue, 16> GluedLoadChains;
5873   for (unsigned i = From; i < To; ++i) {
5874     OutChains.push_back(OutLoadChains[i]);
5875     GluedLoadChains.push_back(OutLoadChains[i]);
5876   }
5877 
5878   // Chain for all loads.
5879   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5880                                   GluedLoadChains);
5881 
5882   for (unsigned i = From; i < To; ++i) {
5883     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5884     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5885                                   ST->getBasePtr(), ST->getMemoryVT(),
5886                                   ST->getMemOperand());
5887     OutChains.push_back(NewStore);
5888   }
5889 }
5890 
5891 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5892                                        SDValue Chain, SDValue Dst, SDValue Src,
5893                                        uint64_t Size, Align Alignment,
5894                                        bool isVol, bool AlwaysInline,
5895                                        MachinePointerInfo DstPtrInfo,
5896                                        MachinePointerInfo SrcPtrInfo) {
5897   // Turn a memcpy of undef to nop.
5898   // FIXME: We need to honor volatile even is Src is undef.
5899   if (Src.isUndef())
5900     return Chain;
5901 
5902   // Expand memcpy to a series of load and store ops if the size operand falls
5903   // below a certain threshold.
5904   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5905   // rather than maybe a humongous number of loads and stores.
5906   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5907   const DataLayout &DL = DAG.getDataLayout();
5908   LLVMContext &C = *DAG.getContext();
5909   std::vector<EVT> MemOps;
5910   bool DstAlignCanChange = false;
5911   MachineFunction &MF = DAG.getMachineFunction();
5912   MachineFrameInfo &MFI = MF.getFrameInfo();
5913   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
5914   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5915   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5916     DstAlignCanChange = true;
5917   MaybeAlign SrcAlign(DAG.InferPtrAlignment(Src));
5918   if (!SrcAlign || Alignment > *SrcAlign)
5919     SrcAlign = Alignment;
5920   assert(SrcAlign && "SrcAlign must be set");
5921   ConstantDataArraySlice Slice;
5922   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5923   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5924   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5925   const MemOp Op = isZeroConstant
5926                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
5927                                     /*IsZeroMemset*/ true, isVol)
5928                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
5929                                      *SrcAlign, isVol, CopyFromConstant);
5930   if (!TLI.findOptimalMemOpLowering(
5931           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
5932           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
5933     return SDValue();
5934 
5935   if (DstAlignCanChange) {
5936     Type *Ty = MemOps[0].getTypeForEVT(C);
5937     Align NewAlign = DL.getABITypeAlign(Ty);
5938 
5939     // Don't promote to an alignment that would require dynamic stack
5940     // realignment.
5941     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5942     if (!TRI->needsStackRealignment(MF))
5943       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
5944         NewAlign = NewAlign / 2;
5945 
5946     if (NewAlign > Alignment) {
5947       // Give the stack frame object a larger alignment if needed.
5948       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
5949         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5950       Alignment = NewAlign;
5951     }
5952   }
5953 
5954   MachineMemOperand::Flags MMOFlags =
5955       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5956   SmallVector<SDValue, 16> OutLoadChains;
5957   SmallVector<SDValue, 16> OutStoreChains;
5958   SmallVector<SDValue, 32> OutChains;
5959   unsigned NumMemOps = MemOps.size();
5960   uint64_t SrcOff = 0, DstOff = 0;
5961   for (unsigned i = 0; i != NumMemOps; ++i) {
5962     EVT VT = MemOps[i];
5963     unsigned VTSize = VT.getSizeInBits() / 8;
5964     SDValue Value, Store;
5965 
5966     if (VTSize > Size) {
5967       // Issuing an unaligned load / store pair  that overlaps with the previous
5968       // pair. Adjust the offset accordingly.
5969       assert(i == NumMemOps-1 && i != 0);
5970       SrcOff -= VTSize - Size;
5971       DstOff -= VTSize - Size;
5972     }
5973 
5974     if (CopyFromConstant &&
5975         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5976       // It's unlikely a store of a vector immediate can be done in a single
5977       // instruction. It would require a load from a constantpool first.
5978       // We only handle zero vectors here.
5979       // FIXME: Handle other cases where store of vector immediate is done in
5980       // a single instruction.
5981       ConstantDataArraySlice SubSlice;
5982       if (SrcOff < Slice.Length) {
5983         SubSlice = Slice;
5984         SubSlice.move(SrcOff);
5985       } else {
5986         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5987         SubSlice.Array = nullptr;
5988         SubSlice.Offset = 0;
5989         SubSlice.Length = VTSize;
5990       }
5991       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5992       if (Value.getNode()) {
5993         Store = DAG.getStore(
5994             Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5995             DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
5996         OutChains.push_back(Store);
5997       }
5998     }
5999 
6000     if (!Store.getNode()) {
6001       // The type might not be legal for the target.  This should only happen
6002       // if the type is smaller than a legal type, as on PPC, so the right
6003       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6004       // to Load/Store if NVT==VT.
6005       // FIXME does the case above also need this?
6006       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6007       assert(NVT.bitsGE(VT));
6008 
6009       bool isDereferenceable =
6010         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6011       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6012       if (isDereferenceable)
6013         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6014 
6015       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
6016                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6017                              SrcPtrInfo.getWithOffset(SrcOff), VT,
6018                              commonAlignment(*SrcAlign, SrcOff).value(),
6019                              SrcMMOFlags);
6020       OutLoadChains.push_back(Value.getValue(1));
6021 
6022       Store = DAG.getTruncStore(
6023           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6024           DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags);
6025       OutStoreChains.push_back(Store);
6026     }
6027     SrcOff += VTSize;
6028     DstOff += VTSize;
6029     Size -= VTSize;
6030   }
6031 
6032   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6033                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6034   unsigned NumLdStInMemcpy = OutStoreChains.size();
6035 
6036   if (NumLdStInMemcpy) {
6037     // It may be that memcpy might be converted to memset if it's memcpy
6038     // of constants. In such a case, we won't have loads and stores, but
6039     // just stores. In the absence of loads, there is nothing to gang up.
6040     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6041       // If target does not care, just leave as it.
6042       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6043         OutChains.push_back(OutLoadChains[i]);
6044         OutChains.push_back(OutStoreChains[i]);
6045       }
6046     } else {
6047       // Ld/St less than/equal limit set by target.
6048       if (NumLdStInMemcpy <= GluedLdStLimit) {
6049           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6050                                         NumLdStInMemcpy, OutLoadChains,
6051                                         OutStoreChains);
6052       } else {
6053         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6054         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6055         unsigned GlueIter = 0;
6056 
6057         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6058           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6059           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6060 
6061           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6062                                        OutLoadChains, OutStoreChains);
6063           GlueIter += GluedLdStLimit;
6064         }
6065 
6066         // Residual ld/st.
6067         if (RemainingLdStInMemcpy) {
6068           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6069                                         RemainingLdStInMemcpy, OutLoadChains,
6070                                         OutStoreChains);
6071         }
6072       }
6073     }
6074   }
6075   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6076 }
6077 
6078 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6079                                         SDValue Chain, SDValue Dst, SDValue Src,
6080                                         uint64_t Size, Align Alignment,
6081                                         bool isVol, bool AlwaysInline,
6082                                         MachinePointerInfo DstPtrInfo,
6083                                         MachinePointerInfo SrcPtrInfo) {
6084   // Turn a memmove of undef to nop.
6085   // FIXME: We need to honor volatile even is Src is undef.
6086   if (Src.isUndef())
6087     return Chain;
6088 
6089   // Expand memmove to a series of load and store ops if the size operand falls
6090   // below a certain threshold.
6091   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6092   const DataLayout &DL = DAG.getDataLayout();
6093   LLVMContext &C = *DAG.getContext();
6094   std::vector<EVT> MemOps;
6095   bool DstAlignCanChange = false;
6096   MachineFunction &MF = DAG.getMachineFunction();
6097   MachineFrameInfo &MFI = MF.getFrameInfo();
6098   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6099   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6100   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6101     DstAlignCanChange = true;
6102   MaybeAlign SrcAlign(DAG.InferPtrAlignment(Src));
6103   if (!SrcAlign || Alignment > *SrcAlign)
6104     SrcAlign = Alignment;
6105   assert(SrcAlign && "SrcAlign must be set");
6106   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6107   if (!TLI.findOptimalMemOpLowering(
6108           MemOps, Limit,
6109           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6110                       /*IsVolatile*/ true),
6111           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6112           MF.getFunction().getAttributes()))
6113     return SDValue();
6114 
6115   if (DstAlignCanChange) {
6116     Type *Ty = MemOps[0].getTypeForEVT(C);
6117     Align NewAlign = DL.getABITypeAlign(Ty);
6118     if (NewAlign > Alignment) {
6119       // Give the stack frame object a larger alignment if needed.
6120       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6121         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6122       Alignment = NewAlign;
6123     }
6124   }
6125 
6126   MachineMemOperand::Flags MMOFlags =
6127       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6128   uint64_t SrcOff = 0, DstOff = 0;
6129   SmallVector<SDValue, 8> LoadValues;
6130   SmallVector<SDValue, 8> LoadChains;
6131   SmallVector<SDValue, 8> OutChains;
6132   unsigned NumMemOps = MemOps.size();
6133   for (unsigned i = 0; i < NumMemOps; i++) {
6134     EVT VT = MemOps[i];
6135     unsigned VTSize = VT.getSizeInBits() / 8;
6136     SDValue Value;
6137 
6138     bool isDereferenceable =
6139       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6140     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6141     if (isDereferenceable)
6142       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6143 
6144     Value = DAG.getLoad(
6145         VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6146         SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags);
6147     LoadValues.push_back(Value);
6148     LoadChains.push_back(Value.getValue(1));
6149     SrcOff += VTSize;
6150   }
6151   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6152   OutChains.clear();
6153   for (unsigned i = 0; i < NumMemOps; i++) {
6154     EVT VT = MemOps[i];
6155     unsigned VTSize = VT.getSizeInBits() / 8;
6156     SDValue Store;
6157 
6158     Store = DAG.getStore(
6159         Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6160         DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
6161     OutChains.push_back(Store);
6162     DstOff += VTSize;
6163   }
6164 
6165   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6166 }
6167 
6168 /// Lower the call to 'memset' intrinsic function into a series of store
6169 /// operations.
6170 ///
6171 /// \param DAG Selection DAG where lowered code is placed.
6172 /// \param dl Link to corresponding IR location.
6173 /// \param Chain Control flow dependency.
6174 /// \param Dst Pointer to destination memory location.
6175 /// \param Src Value of byte to write into the memory.
6176 /// \param Size Number of bytes to write.
6177 /// \param Alignment Alignment of the destination in bytes.
6178 /// \param isVol True if destination is volatile.
6179 /// \param DstPtrInfo IR information on the memory pointer.
6180 /// \returns New head in the control flow, if lowering was successful, empty
6181 /// SDValue otherwise.
6182 ///
6183 /// The function tries to replace 'llvm.memset' intrinsic with several store
6184 /// operations and value calculation code. This is usually profitable for small
6185 /// memory size.
6186 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6187                                SDValue Chain, SDValue Dst, SDValue Src,
6188                                uint64_t Size, Align Alignment, bool isVol,
6189                                MachinePointerInfo DstPtrInfo) {
6190   // Turn a memset of undef to nop.
6191   // FIXME: We need to honor volatile even is Src is undef.
6192   if (Src.isUndef())
6193     return Chain;
6194 
6195   // Expand memset to a series of load/store ops if the size operand
6196   // falls below a certain threshold.
6197   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6198   std::vector<EVT> MemOps;
6199   bool DstAlignCanChange = false;
6200   MachineFunction &MF = DAG.getMachineFunction();
6201   MachineFrameInfo &MFI = MF.getFrameInfo();
6202   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6203   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6204   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6205     DstAlignCanChange = true;
6206   bool IsZeroVal =
6207     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6208   if (!TLI.findOptimalMemOpLowering(
6209           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6210           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6211           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6212     return SDValue();
6213 
6214   if (DstAlignCanChange) {
6215     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6216     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6217     if (NewAlign > Alignment) {
6218       // Give the stack frame object a larger alignment if needed.
6219       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6220         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6221       Alignment = NewAlign;
6222     }
6223   }
6224 
6225   SmallVector<SDValue, 8> OutChains;
6226   uint64_t DstOff = 0;
6227   unsigned NumMemOps = MemOps.size();
6228 
6229   // Find the largest store and generate the bit pattern for it.
6230   EVT LargestVT = MemOps[0];
6231   for (unsigned i = 1; i < NumMemOps; i++)
6232     if (MemOps[i].bitsGT(LargestVT))
6233       LargestVT = MemOps[i];
6234   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6235 
6236   for (unsigned i = 0; i < NumMemOps; i++) {
6237     EVT VT = MemOps[i];
6238     unsigned VTSize = VT.getSizeInBits() / 8;
6239     if (VTSize > Size) {
6240       // Issuing an unaligned load / store pair  that overlaps with the previous
6241       // pair. Adjust the offset accordingly.
6242       assert(i == NumMemOps-1 && i != 0);
6243       DstOff -= VTSize - Size;
6244     }
6245 
6246     // If this store is smaller than the largest store see whether we can get
6247     // the smaller value for free with a truncate.
6248     SDValue Value = MemSetValue;
6249     if (VT.bitsLT(LargestVT)) {
6250       if (!LargestVT.isVector() && !VT.isVector() &&
6251           TLI.isTruncateFree(LargestVT, VT))
6252         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6253       else
6254         Value = getMemsetValue(Src, VT, DAG, dl);
6255     }
6256     assert(Value.getValueType() == VT && "Value with wrong type.");
6257     SDValue Store = DAG.getStore(
6258         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6259         DstPtrInfo.getWithOffset(DstOff), Alignment.value(),
6260         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6261     OutChains.push_back(Store);
6262     DstOff += VT.getSizeInBits() / 8;
6263     Size -= VTSize;
6264   }
6265 
6266   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6267 }
6268 
6269 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6270                                             unsigned AS) {
6271   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6272   // pointer operands can be losslessly bitcasted to pointers of address space 0
6273   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6274     report_fatal_error("cannot lower memory intrinsic in address space " +
6275                        Twine(AS));
6276   }
6277 }
6278 
6279 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6280                                 SDValue Src, SDValue Size, Align Alignment,
6281                                 bool isVol, bool AlwaysInline, bool isTailCall,
6282                                 MachinePointerInfo DstPtrInfo,
6283                                 MachinePointerInfo SrcPtrInfo) {
6284   // Check to see if we should lower the memcpy to loads and stores first.
6285   // For cases within the target-specified limits, this is the best choice.
6286   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6287   if (ConstantSize) {
6288     // Memcpy with size zero? Just return the original chain.
6289     if (ConstantSize->isNullValue())
6290       return Chain;
6291 
6292     SDValue Result = getMemcpyLoadsAndStores(
6293         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6294         isVol, false, DstPtrInfo, SrcPtrInfo);
6295     if (Result.getNode())
6296       return Result;
6297   }
6298 
6299   // Then check to see if we should lower the memcpy with target-specific
6300   // code. If the target chooses to do this, this is the next best.
6301   if (TSI) {
6302     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6303         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol,
6304         AlwaysInline, DstPtrInfo, SrcPtrInfo);
6305     if (Result.getNode())
6306       return Result;
6307   }
6308 
6309   // If we really need inline code and the target declined to provide it,
6310   // use a (potentially long) sequence of loads and stores.
6311   if (AlwaysInline) {
6312     assert(ConstantSize && "AlwaysInline requires a constant size!");
6313     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6314                                    ConstantSize->getZExtValue(), Alignment,
6315                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6316   }
6317 
6318   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6319   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6320 
6321   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6322   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6323   // respect volatile, so they may do things like read or write memory
6324   // beyond the given memory regions. But fixing this isn't easy, and most
6325   // people don't care.
6326 
6327   // Emit a library call.
6328   TargetLowering::ArgListTy Args;
6329   TargetLowering::ArgListEntry Entry;
6330   Entry.Ty = Type::getInt8PtrTy(*getContext());
6331   Entry.Node = Dst; Args.push_back(Entry);
6332   Entry.Node = Src; Args.push_back(Entry);
6333 
6334   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6335   Entry.Node = Size; Args.push_back(Entry);
6336   // FIXME: pass in SDLoc
6337   TargetLowering::CallLoweringInfo CLI(*this);
6338   CLI.setDebugLoc(dl)
6339       .setChain(Chain)
6340       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6341                     Dst.getValueType().getTypeForEVT(*getContext()),
6342                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6343                                       TLI->getPointerTy(getDataLayout())),
6344                     std::move(Args))
6345       .setDiscardResult()
6346       .setTailCall(isTailCall);
6347 
6348   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6349   return CallResult.second;
6350 }
6351 
6352 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6353                                       SDValue Dst, unsigned DstAlign,
6354                                       SDValue Src, unsigned SrcAlign,
6355                                       SDValue Size, Type *SizeTy,
6356                                       unsigned ElemSz, bool isTailCall,
6357                                       MachinePointerInfo DstPtrInfo,
6358                                       MachinePointerInfo SrcPtrInfo) {
6359   // Emit a library call.
6360   TargetLowering::ArgListTy Args;
6361   TargetLowering::ArgListEntry Entry;
6362   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6363   Entry.Node = Dst;
6364   Args.push_back(Entry);
6365 
6366   Entry.Node = Src;
6367   Args.push_back(Entry);
6368 
6369   Entry.Ty = SizeTy;
6370   Entry.Node = Size;
6371   Args.push_back(Entry);
6372 
6373   RTLIB::Libcall LibraryCall =
6374       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6375   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6376     report_fatal_error("Unsupported element size");
6377 
6378   TargetLowering::CallLoweringInfo CLI(*this);
6379   CLI.setDebugLoc(dl)
6380       .setChain(Chain)
6381       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6382                     Type::getVoidTy(*getContext()),
6383                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6384                                       TLI->getPointerTy(getDataLayout())),
6385                     std::move(Args))
6386       .setDiscardResult()
6387       .setTailCall(isTailCall);
6388 
6389   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6390   return CallResult.second;
6391 }
6392 
6393 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6394                                  SDValue Src, SDValue Size, Align Alignment,
6395                                  bool isVol, bool isTailCall,
6396                                  MachinePointerInfo DstPtrInfo,
6397                                  MachinePointerInfo SrcPtrInfo) {
6398   // Check to see if we should lower the memmove to loads and stores first.
6399   // For cases within the target-specified limits, this is the best choice.
6400   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6401   if (ConstantSize) {
6402     // Memmove with size zero? Just return the original chain.
6403     if (ConstantSize->isNullValue())
6404       return Chain;
6405 
6406     SDValue Result = getMemmoveLoadsAndStores(
6407         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6408         isVol, false, DstPtrInfo, SrcPtrInfo);
6409     if (Result.getNode())
6410       return Result;
6411   }
6412 
6413   // Then check to see if we should lower the memmove with target-specific
6414   // code. If the target chooses to do this, this is the next best.
6415   if (TSI) {
6416     SDValue Result = TSI->EmitTargetCodeForMemmove(
6417         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo,
6418         SrcPtrInfo);
6419     if (Result.getNode())
6420       return Result;
6421   }
6422 
6423   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6424   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6425 
6426   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6427   // not be safe.  See memcpy above for more details.
6428 
6429   // Emit a library call.
6430   TargetLowering::ArgListTy Args;
6431   TargetLowering::ArgListEntry Entry;
6432   Entry.Ty = Type::getInt8PtrTy(*getContext());
6433   Entry.Node = Dst; Args.push_back(Entry);
6434   Entry.Node = Src; Args.push_back(Entry);
6435 
6436   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6437   Entry.Node = Size; Args.push_back(Entry);
6438   // FIXME:  pass in SDLoc
6439   TargetLowering::CallLoweringInfo CLI(*this);
6440   CLI.setDebugLoc(dl)
6441       .setChain(Chain)
6442       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6443                     Dst.getValueType().getTypeForEVT(*getContext()),
6444                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6445                                       TLI->getPointerTy(getDataLayout())),
6446                     std::move(Args))
6447       .setDiscardResult()
6448       .setTailCall(isTailCall);
6449 
6450   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6451   return CallResult.second;
6452 }
6453 
6454 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6455                                        SDValue Dst, unsigned DstAlign,
6456                                        SDValue Src, unsigned SrcAlign,
6457                                        SDValue Size, Type *SizeTy,
6458                                        unsigned ElemSz, bool isTailCall,
6459                                        MachinePointerInfo DstPtrInfo,
6460                                        MachinePointerInfo SrcPtrInfo) {
6461   // Emit a library call.
6462   TargetLowering::ArgListTy Args;
6463   TargetLowering::ArgListEntry Entry;
6464   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6465   Entry.Node = Dst;
6466   Args.push_back(Entry);
6467 
6468   Entry.Node = Src;
6469   Args.push_back(Entry);
6470 
6471   Entry.Ty = SizeTy;
6472   Entry.Node = Size;
6473   Args.push_back(Entry);
6474 
6475   RTLIB::Libcall LibraryCall =
6476       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6477   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6478     report_fatal_error("Unsupported element size");
6479 
6480   TargetLowering::CallLoweringInfo CLI(*this);
6481   CLI.setDebugLoc(dl)
6482       .setChain(Chain)
6483       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6484                     Type::getVoidTy(*getContext()),
6485                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6486                                       TLI->getPointerTy(getDataLayout())),
6487                     std::move(Args))
6488       .setDiscardResult()
6489       .setTailCall(isTailCall);
6490 
6491   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6492   return CallResult.second;
6493 }
6494 
6495 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6496                                 SDValue Src, SDValue Size, Align Alignment,
6497                                 bool isVol, bool isTailCall,
6498                                 MachinePointerInfo DstPtrInfo) {
6499   // Check to see if we should lower the memset to stores first.
6500   // For cases within the target-specified limits, this is the best choice.
6501   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6502   if (ConstantSize) {
6503     // Memset with size zero? Just return the original chain.
6504     if (ConstantSize->isNullValue())
6505       return Chain;
6506 
6507     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6508                                      ConstantSize->getZExtValue(), Alignment,
6509                                      isVol, DstPtrInfo);
6510 
6511     if (Result.getNode())
6512       return Result;
6513   }
6514 
6515   // Then check to see if we should lower the memset with target-specific
6516   // code. If the target chooses to do this, this is the next best.
6517   if (TSI) {
6518     SDValue Result = TSI->EmitTargetCodeForMemset(
6519         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo);
6520     if (Result.getNode())
6521       return Result;
6522   }
6523 
6524   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6525 
6526   // Emit a library call.
6527   TargetLowering::ArgListTy Args;
6528   TargetLowering::ArgListEntry Entry;
6529   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6530   Args.push_back(Entry);
6531   Entry.Node = Src;
6532   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6533   Args.push_back(Entry);
6534   Entry.Node = Size;
6535   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6536   Args.push_back(Entry);
6537 
6538   // FIXME: pass in SDLoc
6539   TargetLowering::CallLoweringInfo CLI(*this);
6540   CLI.setDebugLoc(dl)
6541       .setChain(Chain)
6542       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6543                     Dst.getValueType().getTypeForEVT(*getContext()),
6544                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6545                                       TLI->getPointerTy(getDataLayout())),
6546                     std::move(Args))
6547       .setDiscardResult()
6548       .setTailCall(isTailCall);
6549 
6550   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6551   return CallResult.second;
6552 }
6553 
6554 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6555                                       SDValue Dst, unsigned DstAlign,
6556                                       SDValue Value, SDValue Size, Type *SizeTy,
6557                                       unsigned ElemSz, bool isTailCall,
6558                                       MachinePointerInfo DstPtrInfo) {
6559   // Emit a library call.
6560   TargetLowering::ArgListTy Args;
6561   TargetLowering::ArgListEntry Entry;
6562   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6563   Entry.Node = Dst;
6564   Args.push_back(Entry);
6565 
6566   Entry.Ty = Type::getInt8Ty(*getContext());
6567   Entry.Node = Value;
6568   Args.push_back(Entry);
6569 
6570   Entry.Ty = SizeTy;
6571   Entry.Node = Size;
6572   Args.push_back(Entry);
6573 
6574   RTLIB::Libcall LibraryCall =
6575       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6576   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6577     report_fatal_error("Unsupported element size");
6578 
6579   TargetLowering::CallLoweringInfo CLI(*this);
6580   CLI.setDebugLoc(dl)
6581       .setChain(Chain)
6582       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6583                     Type::getVoidTy(*getContext()),
6584                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6585                                       TLI->getPointerTy(getDataLayout())),
6586                     std::move(Args))
6587       .setDiscardResult()
6588       .setTailCall(isTailCall);
6589 
6590   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6591   return CallResult.second;
6592 }
6593 
6594 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6595                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6596                                 MachineMemOperand *MMO) {
6597   FoldingSetNodeID ID;
6598   ID.AddInteger(MemVT.getRawBits());
6599   AddNodeIDNode(ID, Opcode, VTList, Ops);
6600   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6601   void* IP = nullptr;
6602   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6603     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6604     return SDValue(E, 0);
6605   }
6606 
6607   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6608                                     VTList, MemVT, MMO);
6609   createOperands(N, Ops);
6610 
6611   CSEMap.InsertNode(N, IP);
6612   InsertNode(N);
6613   return SDValue(N, 0);
6614 }
6615 
6616 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6617                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6618                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6619                                        MachineMemOperand *MMO) {
6620   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6621          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6622   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6623 
6624   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6625   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6626 }
6627 
6628 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6629                                 SDValue Chain, SDValue Ptr, SDValue Val,
6630                                 MachineMemOperand *MMO) {
6631   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6632           Opcode == ISD::ATOMIC_LOAD_SUB ||
6633           Opcode == ISD::ATOMIC_LOAD_AND ||
6634           Opcode == ISD::ATOMIC_LOAD_CLR ||
6635           Opcode == ISD::ATOMIC_LOAD_OR ||
6636           Opcode == ISD::ATOMIC_LOAD_XOR ||
6637           Opcode == ISD::ATOMIC_LOAD_NAND ||
6638           Opcode == ISD::ATOMIC_LOAD_MIN ||
6639           Opcode == ISD::ATOMIC_LOAD_MAX ||
6640           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6641           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6642           Opcode == ISD::ATOMIC_LOAD_FADD ||
6643           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6644           Opcode == ISD::ATOMIC_SWAP ||
6645           Opcode == ISD::ATOMIC_STORE) &&
6646          "Invalid Atomic Op");
6647 
6648   EVT VT = Val.getValueType();
6649 
6650   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6651                                                getVTList(VT, MVT::Other);
6652   SDValue Ops[] = {Chain, Ptr, Val};
6653   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6654 }
6655 
6656 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6657                                 EVT VT, SDValue Chain, SDValue Ptr,
6658                                 MachineMemOperand *MMO) {
6659   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6660 
6661   SDVTList VTs = getVTList(VT, MVT::Other);
6662   SDValue Ops[] = {Chain, Ptr};
6663   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6664 }
6665 
6666 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6667 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6668   if (Ops.size() == 1)
6669     return Ops[0];
6670 
6671   SmallVector<EVT, 4> VTs;
6672   VTs.reserve(Ops.size());
6673   for (unsigned i = 0; i < Ops.size(); ++i)
6674     VTs.push_back(Ops[i].getValueType());
6675   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6676 }
6677 
6678 SDValue SelectionDAG::getMemIntrinsicNode(
6679     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6680     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6681     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6682   if (Align == 0)  // Ensure that codegen never sees alignment 0
6683     Align = getEVTAlignment(MemVT);
6684 
6685   if (!Size && MemVT.isScalableVector())
6686     Size = MemoryLocation::UnknownSize;
6687   else if (!Size)
6688     Size = MemVT.getStoreSize();
6689 
6690   MachineFunction &MF = getMachineFunction();
6691   MachineMemOperand *MMO =
6692       MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo);
6693 
6694   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6695 }
6696 
6697 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6698                                           SDVTList VTList,
6699                                           ArrayRef<SDValue> Ops, EVT MemVT,
6700                                           MachineMemOperand *MMO) {
6701   assert((Opcode == ISD::INTRINSIC_VOID ||
6702           Opcode == ISD::INTRINSIC_W_CHAIN ||
6703           Opcode == ISD::PREFETCH ||
6704           ((int)Opcode <= std::numeric_limits<int>::max() &&
6705            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6706          "Opcode is not a memory-accessing opcode!");
6707 
6708   // Memoize the node unless it returns a flag.
6709   MemIntrinsicSDNode *N;
6710   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6711     FoldingSetNodeID ID;
6712     AddNodeIDNode(ID, Opcode, VTList, Ops);
6713     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6714         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6715     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6716     void *IP = nullptr;
6717     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6718       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6719       return SDValue(E, 0);
6720     }
6721 
6722     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6723                                       VTList, MemVT, MMO);
6724     createOperands(N, Ops);
6725 
6726   CSEMap.InsertNode(N, IP);
6727   } else {
6728     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6729                                       VTList, MemVT, MMO);
6730     createOperands(N, Ops);
6731   }
6732   InsertNode(N);
6733   SDValue V(N, 0);
6734   NewSDValueDbgMsg(V, "Creating new node: ", this);
6735   return V;
6736 }
6737 
6738 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6739                                       SDValue Chain, int FrameIndex,
6740                                       int64_t Size, int64_t Offset) {
6741   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6742   const auto VTs = getVTList(MVT::Other);
6743   SDValue Ops[2] = {
6744       Chain,
6745       getFrameIndex(FrameIndex,
6746                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6747                     true)};
6748 
6749   FoldingSetNodeID ID;
6750   AddNodeIDNode(ID, Opcode, VTs, Ops);
6751   ID.AddInteger(FrameIndex);
6752   ID.AddInteger(Size);
6753   ID.AddInteger(Offset);
6754   void *IP = nullptr;
6755   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6756     return SDValue(E, 0);
6757 
6758   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6759       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6760   createOperands(N, Ops);
6761   CSEMap.InsertNode(N, IP);
6762   InsertNode(N);
6763   SDValue V(N, 0);
6764   NewSDValueDbgMsg(V, "Creating new node: ", this);
6765   return V;
6766 }
6767 
6768 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6769 /// MachinePointerInfo record from it.  This is particularly useful because the
6770 /// code generator has many cases where it doesn't bother passing in a
6771 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6772 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6773                                            SelectionDAG &DAG, SDValue Ptr,
6774                                            int64_t Offset = 0) {
6775   // If this is FI+Offset, we can model it.
6776   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6777     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6778                                              FI->getIndex(), Offset);
6779 
6780   // If this is (FI+Offset1)+Offset2, we can model it.
6781   if (Ptr.getOpcode() != ISD::ADD ||
6782       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6783       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6784     return Info;
6785 
6786   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6787   return MachinePointerInfo::getFixedStack(
6788       DAG.getMachineFunction(), FI,
6789       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6790 }
6791 
6792 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6793 /// MachinePointerInfo record from it.  This is particularly useful because the
6794 /// code generator has many cases where it doesn't bother passing in a
6795 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6796 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6797                                            SelectionDAG &DAG, SDValue Ptr,
6798                                            SDValue OffsetOp) {
6799   // If the 'Offset' value isn't a constant, we can't handle this.
6800   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6801     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6802   if (OffsetOp.isUndef())
6803     return InferPointerInfo(Info, DAG, Ptr);
6804   return Info;
6805 }
6806 
6807 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6808                               EVT VT, const SDLoc &dl, SDValue Chain,
6809                               SDValue Ptr, SDValue Offset,
6810                               MachinePointerInfo PtrInfo, EVT MemVT,
6811                               unsigned Alignment,
6812                               MachineMemOperand::Flags MMOFlags,
6813                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6814   assert(Chain.getValueType() == MVT::Other &&
6815         "Invalid chain type");
6816   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6817     Alignment = getEVTAlignment(MemVT);
6818 
6819   MMOFlags |= MachineMemOperand::MOLoad;
6820   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6821   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6822   // clients.
6823   if (PtrInfo.V.isNull())
6824     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6825 
6826   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
6827   MachineFunction &MF = getMachineFunction();
6828   MachineMemOperand *MMO = MF.getMachineMemOperand(
6829       PtrInfo, MMOFlags, Size, Alignment, AAInfo, Ranges);
6830   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6831 }
6832 
6833 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6834                               EVT VT, const SDLoc &dl, SDValue Chain,
6835                               SDValue Ptr, SDValue Offset, EVT MemVT,
6836                               MachineMemOperand *MMO) {
6837   if (VT == MemVT) {
6838     ExtType = ISD::NON_EXTLOAD;
6839   } else if (ExtType == ISD::NON_EXTLOAD) {
6840     assert(VT == MemVT && "Non-extending load from different memory type!");
6841   } else {
6842     // Extending load.
6843     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6844            "Should only be an extending load, not truncating!");
6845     assert(VT.isInteger() == MemVT.isInteger() &&
6846            "Cannot convert from FP to Int or Int -> FP!");
6847     assert(VT.isVector() == MemVT.isVector() &&
6848            "Cannot use an ext load to convert to or from a vector!");
6849     assert((!VT.isVector() ||
6850             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6851            "Cannot use an ext load to change the number of vector elements!");
6852   }
6853 
6854   bool Indexed = AM != ISD::UNINDEXED;
6855   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6856 
6857   SDVTList VTs = Indexed ?
6858     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6859   SDValue Ops[] = { Chain, Ptr, Offset };
6860   FoldingSetNodeID ID;
6861   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6862   ID.AddInteger(MemVT.getRawBits());
6863   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6864       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6865   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6866   void *IP = nullptr;
6867   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6868     cast<LoadSDNode>(E)->refineAlignment(MMO);
6869     return SDValue(E, 0);
6870   }
6871   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6872                                   ExtType, MemVT, MMO);
6873   createOperands(N, Ops);
6874 
6875   CSEMap.InsertNode(N, IP);
6876   InsertNode(N);
6877   SDValue V(N, 0);
6878   NewSDValueDbgMsg(V, "Creating new node: ", this);
6879   return V;
6880 }
6881 
6882 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6883                               SDValue Ptr, MachinePointerInfo PtrInfo,
6884                               unsigned Alignment,
6885                               MachineMemOperand::Flags MMOFlags,
6886                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6887   SDValue Undef = getUNDEF(Ptr.getValueType());
6888   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6889                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6890 }
6891 
6892 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6893                               SDValue Ptr, MachineMemOperand *MMO) {
6894   SDValue Undef = getUNDEF(Ptr.getValueType());
6895   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6896                  VT, MMO);
6897 }
6898 
6899 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6900                                  EVT VT, SDValue Chain, SDValue Ptr,
6901                                  MachinePointerInfo PtrInfo, EVT MemVT,
6902                                  unsigned Alignment,
6903                                  MachineMemOperand::Flags MMOFlags,
6904                                  const AAMDNodes &AAInfo) {
6905   SDValue Undef = getUNDEF(Ptr.getValueType());
6906   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6907                  MemVT, Alignment, MMOFlags, AAInfo);
6908 }
6909 
6910 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6911                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6912                                  MachineMemOperand *MMO) {
6913   SDValue Undef = getUNDEF(Ptr.getValueType());
6914   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6915                  MemVT, MMO);
6916 }
6917 
6918 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6919                                      SDValue Base, SDValue Offset,
6920                                      ISD::MemIndexedMode AM) {
6921   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6922   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6923   // Don't propagate the invariant or dereferenceable flags.
6924   auto MMOFlags =
6925       LD->getMemOperand()->getFlags() &
6926       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6927   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6928                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6929                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6930                  LD->getAAInfo());
6931 }
6932 
6933 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6934                                SDValue Ptr, MachinePointerInfo PtrInfo,
6935                                unsigned Alignment,
6936                                MachineMemOperand::Flags MMOFlags,
6937                                const AAMDNodes &AAInfo) {
6938   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6939   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6940     Alignment = getEVTAlignment(Val.getValueType());
6941 
6942   MMOFlags |= MachineMemOperand::MOStore;
6943   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6944 
6945   if (PtrInfo.V.isNull())
6946     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6947 
6948   MachineFunction &MF = getMachineFunction();
6949   uint64_t Size =
6950       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
6951   MachineMemOperand *MMO =
6952       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
6953   return getStore(Chain, dl, Val, Ptr, MMO);
6954 }
6955 
6956 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6957                                SDValue Ptr, MachineMemOperand *MMO) {
6958   assert(Chain.getValueType() == MVT::Other &&
6959         "Invalid chain type");
6960   EVT VT = Val.getValueType();
6961   SDVTList VTs = getVTList(MVT::Other);
6962   SDValue Undef = getUNDEF(Ptr.getValueType());
6963   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6964   FoldingSetNodeID ID;
6965   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6966   ID.AddInteger(VT.getRawBits());
6967   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6968       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6969   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6970   void *IP = nullptr;
6971   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6972     cast<StoreSDNode>(E)->refineAlignment(MMO);
6973     return SDValue(E, 0);
6974   }
6975   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6976                                    ISD::UNINDEXED, false, VT, MMO);
6977   createOperands(N, Ops);
6978 
6979   CSEMap.InsertNode(N, IP);
6980   InsertNode(N);
6981   SDValue V(N, 0);
6982   NewSDValueDbgMsg(V, "Creating new node: ", this);
6983   return V;
6984 }
6985 
6986 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6987                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6988                                     EVT SVT, unsigned Alignment,
6989                                     MachineMemOperand::Flags MMOFlags,
6990                                     const AAMDNodes &AAInfo) {
6991   assert(Chain.getValueType() == MVT::Other &&
6992         "Invalid chain type");
6993   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6994     Alignment = getEVTAlignment(SVT);
6995 
6996   MMOFlags |= MachineMemOperand::MOStore;
6997   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6998 
6999   if (PtrInfo.V.isNull())
7000     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7001 
7002   MachineFunction &MF = getMachineFunction();
7003   MachineMemOperand *MMO = MF.getMachineMemOperand(
7004       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
7005   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7006 }
7007 
7008 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7009                                     SDValue Ptr, EVT SVT,
7010                                     MachineMemOperand *MMO) {
7011   EVT VT = Val.getValueType();
7012 
7013   assert(Chain.getValueType() == MVT::Other &&
7014         "Invalid chain type");
7015   if (VT == SVT)
7016     return getStore(Chain, dl, Val, Ptr, MMO);
7017 
7018   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7019          "Should only be a truncating store, not extending!");
7020   assert(VT.isInteger() == SVT.isInteger() &&
7021          "Can't do FP-INT conversion!");
7022   assert(VT.isVector() == SVT.isVector() &&
7023          "Cannot use trunc store to convert to or from a vector!");
7024   assert((!VT.isVector() ||
7025           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
7026          "Cannot use trunc store to change the number of vector elements!");
7027 
7028   SDVTList VTs = getVTList(MVT::Other);
7029   SDValue Undef = getUNDEF(Ptr.getValueType());
7030   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7031   FoldingSetNodeID ID;
7032   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7033   ID.AddInteger(SVT.getRawBits());
7034   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7035       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7036   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7037   void *IP = nullptr;
7038   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7039     cast<StoreSDNode>(E)->refineAlignment(MMO);
7040     return SDValue(E, 0);
7041   }
7042   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7043                                    ISD::UNINDEXED, true, SVT, MMO);
7044   createOperands(N, Ops);
7045 
7046   CSEMap.InsertNode(N, IP);
7047   InsertNode(N);
7048   SDValue V(N, 0);
7049   NewSDValueDbgMsg(V, "Creating new node: ", this);
7050   return V;
7051 }
7052 
7053 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7054                                       SDValue Base, SDValue Offset,
7055                                       ISD::MemIndexedMode AM) {
7056   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7057   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7058   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7059   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7060   FoldingSetNodeID ID;
7061   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7062   ID.AddInteger(ST->getMemoryVT().getRawBits());
7063   ID.AddInteger(ST->getRawSubclassData());
7064   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7065   void *IP = nullptr;
7066   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7067     return SDValue(E, 0);
7068 
7069   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7070                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7071                                    ST->getMemOperand());
7072   createOperands(N, Ops);
7073 
7074   CSEMap.InsertNode(N, IP);
7075   InsertNode(N);
7076   SDValue V(N, 0);
7077   NewSDValueDbgMsg(V, "Creating new node: ", this);
7078   return V;
7079 }
7080 
7081 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7082                                     SDValue Base, SDValue Offset, SDValue Mask,
7083                                     SDValue PassThru, EVT MemVT,
7084                                     MachineMemOperand *MMO,
7085                                     ISD::MemIndexedMode AM,
7086                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7087   bool Indexed = AM != ISD::UNINDEXED;
7088   assert((Indexed || Offset.isUndef()) &&
7089          "Unindexed masked load with an offset!");
7090   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7091                          : getVTList(VT, MVT::Other);
7092   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7093   FoldingSetNodeID ID;
7094   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7095   ID.AddInteger(MemVT.getRawBits());
7096   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7097       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7098   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7099   void *IP = nullptr;
7100   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7101     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7102     return SDValue(E, 0);
7103   }
7104   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7105                                         AM, ExtTy, isExpanding, MemVT, MMO);
7106   createOperands(N, Ops);
7107 
7108   CSEMap.InsertNode(N, IP);
7109   InsertNode(N);
7110   SDValue V(N, 0);
7111   NewSDValueDbgMsg(V, "Creating new node: ", this);
7112   return V;
7113 }
7114 
7115 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7116                                            SDValue Base, SDValue Offset,
7117                                            ISD::MemIndexedMode AM) {
7118   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7119   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7120   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7121                        Offset, LD->getMask(), LD->getPassThru(),
7122                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7123                        LD->getExtensionType(), LD->isExpandingLoad());
7124 }
7125 
7126 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7127                                      SDValue Val, SDValue Base, SDValue Offset,
7128                                      SDValue Mask, EVT MemVT,
7129                                      MachineMemOperand *MMO,
7130                                      ISD::MemIndexedMode AM, bool IsTruncating,
7131                                      bool IsCompressing) {
7132   assert(Chain.getValueType() == MVT::Other &&
7133         "Invalid chain type");
7134   bool Indexed = AM != ISD::UNINDEXED;
7135   assert((Indexed || Offset.isUndef()) &&
7136          "Unindexed masked store with an offset!");
7137   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7138                          : getVTList(MVT::Other);
7139   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7140   FoldingSetNodeID ID;
7141   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7142   ID.AddInteger(MemVT.getRawBits());
7143   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7144       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7145   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7146   void *IP = nullptr;
7147   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7148     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7149     return SDValue(E, 0);
7150   }
7151   auto *N =
7152       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7153                                    IsTruncating, IsCompressing, MemVT, MMO);
7154   createOperands(N, Ops);
7155 
7156   CSEMap.InsertNode(N, IP);
7157   InsertNode(N);
7158   SDValue V(N, 0);
7159   NewSDValueDbgMsg(V, "Creating new node: ", this);
7160   return V;
7161 }
7162 
7163 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7164                                             SDValue Base, SDValue Offset,
7165                                             ISD::MemIndexedMode AM) {
7166   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7167   assert(ST->getOffset().isUndef() &&
7168          "Masked store is already a indexed store!");
7169   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7170                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7171                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7172 }
7173 
7174 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7175                                       ArrayRef<SDValue> Ops,
7176                                       MachineMemOperand *MMO,
7177                                       ISD::MemIndexType IndexType) {
7178   assert(Ops.size() == 6 && "Incompatible number of operands");
7179 
7180   FoldingSetNodeID ID;
7181   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7182   ID.AddInteger(VT.getRawBits());
7183   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7184       dl.getIROrder(), VTs, VT, MMO, IndexType));
7185   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7186   void *IP = nullptr;
7187   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7188     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7189     return SDValue(E, 0);
7190   }
7191 
7192   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7193                                           VTs, VT, MMO, IndexType);
7194   createOperands(N, Ops);
7195 
7196   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7197          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7198   assert(N->getMask().getValueType().getVectorNumElements() ==
7199              N->getValueType(0).getVectorNumElements() &&
7200          "Vector width mismatch between mask and data");
7201   assert(N->getIndex().getValueType().getVectorNumElements() >=
7202              N->getValueType(0).getVectorNumElements() &&
7203          "Vector width mismatch between index and data");
7204   assert(isa<ConstantSDNode>(N->getScale()) &&
7205          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7206          "Scale should be a constant power of 2");
7207 
7208   CSEMap.InsertNode(N, IP);
7209   InsertNode(N);
7210   SDValue V(N, 0);
7211   NewSDValueDbgMsg(V, "Creating new node: ", this);
7212   return V;
7213 }
7214 
7215 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7216                                        ArrayRef<SDValue> Ops,
7217                                        MachineMemOperand *MMO,
7218                                        ISD::MemIndexType IndexType) {
7219   assert(Ops.size() == 6 && "Incompatible number of operands");
7220 
7221   FoldingSetNodeID ID;
7222   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7223   ID.AddInteger(VT.getRawBits());
7224   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7225       dl.getIROrder(), VTs, VT, MMO, IndexType));
7226   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7227   void *IP = nullptr;
7228   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7229     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7230     return SDValue(E, 0);
7231   }
7232   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7233                                            VTs, VT, MMO, IndexType);
7234   createOperands(N, Ops);
7235 
7236   assert(N->getMask().getValueType().getVectorNumElements() ==
7237              N->getValue().getValueType().getVectorNumElements() &&
7238          "Vector width mismatch between mask and data");
7239   assert(N->getIndex().getValueType().getVectorNumElements() >=
7240              N->getValue().getValueType().getVectorNumElements() &&
7241          "Vector width mismatch between index and data");
7242   assert(isa<ConstantSDNode>(N->getScale()) &&
7243          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7244          "Scale should be a constant power of 2");
7245 
7246   CSEMap.InsertNode(N, IP);
7247   InsertNode(N);
7248   SDValue V(N, 0);
7249   NewSDValueDbgMsg(V, "Creating new node: ", this);
7250   return V;
7251 }
7252 
7253 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7254   // select undef, T, F --> T (if T is a constant), otherwise F
7255   // select, ?, undef, F --> F
7256   // select, ?, T, undef --> T
7257   if (Cond.isUndef())
7258     return isConstantValueOfAnyType(T) ? T : F;
7259   if (T.isUndef())
7260     return F;
7261   if (F.isUndef())
7262     return T;
7263 
7264   // select true, T, F --> T
7265   // select false, T, F --> F
7266   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7267     return CondC->isNullValue() ? F : T;
7268 
7269   // TODO: This should simplify VSELECT with constant condition using something
7270   // like this (but check boolean contents to be complete?):
7271   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7272   //    return T;
7273   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7274   //    return F;
7275 
7276   // select ?, T, T --> T
7277   if (T == F)
7278     return T;
7279 
7280   return SDValue();
7281 }
7282 
7283 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7284   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7285   if (X.isUndef())
7286     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7287   // shift X, undef --> undef (because it may shift by the bitwidth)
7288   if (Y.isUndef())
7289     return getUNDEF(X.getValueType());
7290 
7291   // shift 0, Y --> 0
7292   // shift X, 0 --> X
7293   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7294     return X;
7295 
7296   // shift X, C >= bitwidth(X) --> undef
7297   // All vector elements must be too big (or undef) to avoid partial undefs.
7298   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7299     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7300   };
7301   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7302     return getUNDEF(X.getValueType());
7303 
7304   return SDValue();
7305 }
7306 
7307 // TODO: Use fast-math-flags to enable more simplifications.
7308 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) {
7309   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7310   if (!YC)
7311     return SDValue();
7312 
7313   // X + -0.0 --> X
7314   if (Opcode == ISD::FADD)
7315     if (YC->getValueAPF().isNegZero())
7316       return X;
7317 
7318   // X - +0.0 --> X
7319   if (Opcode == ISD::FSUB)
7320     if (YC->getValueAPF().isPosZero())
7321       return X;
7322 
7323   // X * 1.0 --> X
7324   // X / 1.0 --> X
7325   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7326     if (YC->getValueAPF().isExactlyValue(1.0))
7327       return X;
7328 
7329   return SDValue();
7330 }
7331 
7332 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7333                                SDValue Ptr, SDValue SV, unsigned Align) {
7334   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7335   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7336 }
7337 
7338 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7339                               ArrayRef<SDUse> Ops) {
7340   switch (Ops.size()) {
7341   case 0: return getNode(Opcode, DL, VT);
7342   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7343   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7344   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7345   default: break;
7346   }
7347 
7348   // Copy from an SDUse array into an SDValue array for use with
7349   // the regular getNode logic.
7350   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7351   return getNode(Opcode, DL, VT, NewOps);
7352 }
7353 
7354 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7355                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7356   unsigned NumOps = Ops.size();
7357   switch (NumOps) {
7358   case 0: return getNode(Opcode, DL, VT);
7359   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7360   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7361   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7362   default: break;
7363   }
7364 
7365   switch (Opcode) {
7366   default: break;
7367   case ISD::BUILD_VECTOR:
7368     // Attempt to simplify BUILD_VECTOR.
7369     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7370       return V;
7371     break;
7372   case ISD::CONCAT_VECTORS:
7373     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7374       return V;
7375     break;
7376   case ISD::SELECT_CC:
7377     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7378     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7379            "LHS and RHS of condition must have same type!");
7380     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7381            "True and False arms of SelectCC must have same type!");
7382     assert(Ops[2].getValueType() == VT &&
7383            "select_cc node must be of same type as true and false value!");
7384     break;
7385   case ISD::BR_CC:
7386     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7387     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7388            "LHS/RHS of comparison should match types!");
7389     break;
7390   }
7391 
7392   // Memoize nodes.
7393   SDNode *N;
7394   SDVTList VTs = getVTList(VT);
7395 
7396   if (VT != MVT::Glue) {
7397     FoldingSetNodeID ID;
7398     AddNodeIDNode(ID, Opcode, VTs, Ops);
7399     void *IP = nullptr;
7400 
7401     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7402       return SDValue(E, 0);
7403 
7404     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7405     createOperands(N, Ops);
7406 
7407     CSEMap.InsertNode(N, IP);
7408   } else {
7409     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7410     createOperands(N, Ops);
7411   }
7412 
7413   InsertNode(N);
7414   SDValue V(N, 0);
7415   NewSDValueDbgMsg(V, "Creating new node: ", this);
7416   return V;
7417 }
7418 
7419 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7420                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7421   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7422 }
7423 
7424 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7425                               ArrayRef<SDValue> Ops) {
7426   if (VTList.NumVTs == 1)
7427     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7428 
7429   switch (Opcode) {
7430   case ISD::STRICT_FP_EXTEND:
7431     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7432            "Invalid STRICT_FP_EXTEND!");
7433     assert(VTList.VTs[0].isFloatingPoint() &&
7434            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7435     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7436            "STRICT_FP_EXTEND result type should be vector iff the operand "
7437            "type is vector!");
7438     assert((!VTList.VTs[0].isVector() ||
7439             VTList.VTs[0].getVectorNumElements() ==
7440             Ops[1].getValueType().getVectorNumElements()) &&
7441            "Vector element count mismatch!");
7442     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7443            "Invalid fpext node, dst <= src!");
7444     break;
7445   case ISD::STRICT_FP_ROUND:
7446     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7447     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7448            "STRICT_FP_ROUND result type should be vector iff the operand "
7449            "type is vector!");
7450     assert((!VTList.VTs[0].isVector() ||
7451             VTList.VTs[0].getVectorNumElements() ==
7452             Ops[1].getValueType().getVectorNumElements()) &&
7453            "Vector element count mismatch!");
7454     assert(VTList.VTs[0].isFloatingPoint() &&
7455            Ops[1].getValueType().isFloatingPoint() &&
7456            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7457            isa<ConstantSDNode>(Ops[2]) &&
7458            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7459             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7460            "Invalid STRICT_FP_ROUND!");
7461     break;
7462 #if 0
7463   // FIXME: figure out how to safely handle things like
7464   // int foo(int x) { return 1 << (x & 255); }
7465   // int bar() { return foo(256); }
7466   case ISD::SRA_PARTS:
7467   case ISD::SRL_PARTS:
7468   case ISD::SHL_PARTS:
7469     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7470         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7471       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7472     else if (N3.getOpcode() == ISD::AND)
7473       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7474         // If the and is only masking out bits that cannot effect the shift,
7475         // eliminate the and.
7476         unsigned NumBits = VT.getScalarSizeInBits()*2;
7477         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7478           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7479       }
7480     break;
7481 #endif
7482   }
7483 
7484   // Memoize the node unless it returns a flag.
7485   SDNode *N;
7486   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7487     FoldingSetNodeID ID;
7488     AddNodeIDNode(ID, Opcode, VTList, Ops);
7489     void *IP = nullptr;
7490     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7491       return SDValue(E, 0);
7492 
7493     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7494     createOperands(N, Ops);
7495     CSEMap.InsertNode(N, IP);
7496   } else {
7497     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7498     createOperands(N, Ops);
7499   }
7500   InsertNode(N);
7501   SDValue V(N, 0);
7502   NewSDValueDbgMsg(V, "Creating new node: ", this);
7503   return V;
7504 }
7505 
7506 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7507                               SDVTList VTList) {
7508   return getNode(Opcode, DL, VTList, None);
7509 }
7510 
7511 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7512                               SDValue N1) {
7513   SDValue Ops[] = { N1 };
7514   return getNode(Opcode, DL, VTList, Ops);
7515 }
7516 
7517 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7518                               SDValue N1, SDValue N2) {
7519   SDValue Ops[] = { N1, N2 };
7520   return getNode(Opcode, DL, VTList, Ops);
7521 }
7522 
7523 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7524                               SDValue N1, SDValue N2, SDValue N3) {
7525   SDValue Ops[] = { N1, N2, N3 };
7526   return getNode(Opcode, DL, VTList, Ops);
7527 }
7528 
7529 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7530                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7531   SDValue Ops[] = { N1, N2, N3, N4 };
7532   return getNode(Opcode, DL, VTList, Ops);
7533 }
7534 
7535 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7536                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7537                               SDValue N5) {
7538   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7539   return getNode(Opcode, DL, VTList, Ops);
7540 }
7541 
7542 SDVTList SelectionDAG::getVTList(EVT VT) {
7543   return makeVTList(SDNode::getValueTypeList(VT), 1);
7544 }
7545 
7546 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7547   FoldingSetNodeID ID;
7548   ID.AddInteger(2U);
7549   ID.AddInteger(VT1.getRawBits());
7550   ID.AddInteger(VT2.getRawBits());
7551 
7552   void *IP = nullptr;
7553   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7554   if (!Result) {
7555     EVT *Array = Allocator.Allocate<EVT>(2);
7556     Array[0] = VT1;
7557     Array[1] = VT2;
7558     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7559     VTListMap.InsertNode(Result, IP);
7560   }
7561   return Result->getSDVTList();
7562 }
7563 
7564 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7565   FoldingSetNodeID ID;
7566   ID.AddInteger(3U);
7567   ID.AddInteger(VT1.getRawBits());
7568   ID.AddInteger(VT2.getRawBits());
7569   ID.AddInteger(VT3.getRawBits());
7570 
7571   void *IP = nullptr;
7572   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7573   if (!Result) {
7574     EVT *Array = Allocator.Allocate<EVT>(3);
7575     Array[0] = VT1;
7576     Array[1] = VT2;
7577     Array[2] = VT3;
7578     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7579     VTListMap.InsertNode(Result, IP);
7580   }
7581   return Result->getSDVTList();
7582 }
7583 
7584 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7585   FoldingSetNodeID ID;
7586   ID.AddInteger(4U);
7587   ID.AddInteger(VT1.getRawBits());
7588   ID.AddInteger(VT2.getRawBits());
7589   ID.AddInteger(VT3.getRawBits());
7590   ID.AddInteger(VT4.getRawBits());
7591 
7592   void *IP = nullptr;
7593   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7594   if (!Result) {
7595     EVT *Array = Allocator.Allocate<EVT>(4);
7596     Array[0] = VT1;
7597     Array[1] = VT2;
7598     Array[2] = VT3;
7599     Array[3] = VT4;
7600     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7601     VTListMap.InsertNode(Result, IP);
7602   }
7603   return Result->getSDVTList();
7604 }
7605 
7606 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7607   unsigned NumVTs = VTs.size();
7608   FoldingSetNodeID ID;
7609   ID.AddInteger(NumVTs);
7610   for (unsigned index = 0; index < NumVTs; index++) {
7611     ID.AddInteger(VTs[index].getRawBits());
7612   }
7613 
7614   void *IP = nullptr;
7615   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7616   if (!Result) {
7617     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7618     llvm::copy(VTs, Array);
7619     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7620     VTListMap.InsertNode(Result, IP);
7621   }
7622   return Result->getSDVTList();
7623 }
7624 
7625 
7626 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7627 /// specified operands.  If the resultant node already exists in the DAG,
7628 /// this does not modify the specified node, instead it returns the node that
7629 /// already exists.  If the resultant node does not exist in the DAG, the
7630 /// input node is returned.  As a degenerate case, if you specify the same
7631 /// input operands as the node already has, the input node is returned.
7632 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7633   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7634 
7635   // Check to see if there is no change.
7636   if (Op == N->getOperand(0)) return N;
7637 
7638   // See if the modified node already exists.
7639   void *InsertPos = nullptr;
7640   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7641     return Existing;
7642 
7643   // Nope it doesn't.  Remove the node from its current place in the maps.
7644   if (InsertPos)
7645     if (!RemoveNodeFromCSEMaps(N))
7646       InsertPos = nullptr;
7647 
7648   // Now we update the operands.
7649   N->OperandList[0].set(Op);
7650 
7651   updateDivergence(N);
7652   // If this gets put into a CSE map, add it.
7653   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7654   return N;
7655 }
7656 
7657 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7658   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7659 
7660   // Check to see if there is no change.
7661   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7662     return N;   // No operands changed, just return the input node.
7663 
7664   // See if the modified node already exists.
7665   void *InsertPos = nullptr;
7666   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7667     return Existing;
7668 
7669   // Nope it doesn't.  Remove the node from its current place in the maps.
7670   if (InsertPos)
7671     if (!RemoveNodeFromCSEMaps(N))
7672       InsertPos = nullptr;
7673 
7674   // Now we update the operands.
7675   if (N->OperandList[0] != Op1)
7676     N->OperandList[0].set(Op1);
7677   if (N->OperandList[1] != Op2)
7678     N->OperandList[1].set(Op2);
7679 
7680   updateDivergence(N);
7681   // If this gets put into a CSE map, add it.
7682   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7683   return N;
7684 }
7685 
7686 SDNode *SelectionDAG::
7687 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7688   SDValue Ops[] = { Op1, Op2, Op3 };
7689   return UpdateNodeOperands(N, Ops);
7690 }
7691 
7692 SDNode *SelectionDAG::
7693 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7694                    SDValue Op3, SDValue Op4) {
7695   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7696   return UpdateNodeOperands(N, Ops);
7697 }
7698 
7699 SDNode *SelectionDAG::
7700 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7701                    SDValue Op3, SDValue Op4, SDValue Op5) {
7702   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7703   return UpdateNodeOperands(N, Ops);
7704 }
7705 
7706 SDNode *SelectionDAG::
7707 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7708   unsigned NumOps = Ops.size();
7709   assert(N->getNumOperands() == NumOps &&
7710          "Update with wrong number of operands");
7711 
7712   // If no operands changed just return the input node.
7713   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7714     return N;
7715 
7716   // See if the modified node already exists.
7717   void *InsertPos = nullptr;
7718   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7719     return Existing;
7720 
7721   // Nope it doesn't.  Remove the node from its current place in the maps.
7722   if (InsertPos)
7723     if (!RemoveNodeFromCSEMaps(N))
7724       InsertPos = nullptr;
7725 
7726   // Now we update the operands.
7727   for (unsigned i = 0; i != NumOps; ++i)
7728     if (N->OperandList[i] != Ops[i])
7729       N->OperandList[i].set(Ops[i]);
7730 
7731   updateDivergence(N);
7732   // If this gets put into a CSE map, add it.
7733   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7734   return N;
7735 }
7736 
7737 /// DropOperands - Release the operands and set this node to have
7738 /// zero operands.
7739 void SDNode::DropOperands() {
7740   // Unlike the code in MorphNodeTo that does this, we don't need to
7741   // watch for dead nodes here.
7742   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7743     SDUse &Use = *I++;
7744     Use.set(SDValue());
7745   }
7746 }
7747 
7748 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7749                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7750   if (NewMemRefs.empty()) {
7751     N->clearMemRefs();
7752     return;
7753   }
7754 
7755   // Check if we can avoid allocating by storing a single reference directly.
7756   if (NewMemRefs.size() == 1) {
7757     N->MemRefs = NewMemRefs[0];
7758     N->NumMemRefs = 1;
7759     return;
7760   }
7761 
7762   MachineMemOperand **MemRefsBuffer =
7763       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7764   llvm::copy(NewMemRefs, MemRefsBuffer);
7765   N->MemRefs = MemRefsBuffer;
7766   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7767 }
7768 
7769 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7770 /// machine opcode.
7771 ///
7772 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7773                                    EVT VT) {
7774   SDVTList VTs = getVTList(VT);
7775   return SelectNodeTo(N, MachineOpc, VTs, None);
7776 }
7777 
7778 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7779                                    EVT VT, SDValue Op1) {
7780   SDVTList VTs = getVTList(VT);
7781   SDValue Ops[] = { Op1 };
7782   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7783 }
7784 
7785 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7786                                    EVT VT, SDValue Op1,
7787                                    SDValue Op2) {
7788   SDVTList VTs = getVTList(VT);
7789   SDValue Ops[] = { Op1, Op2 };
7790   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7791 }
7792 
7793 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7794                                    EVT VT, SDValue Op1,
7795                                    SDValue Op2, SDValue Op3) {
7796   SDVTList VTs = getVTList(VT);
7797   SDValue Ops[] = { Op1, Op2, Op3 };
7798   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7799 }
7800 
7801 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7802                                    EVT VT, ArrayRef<SDValue> Ops) {
7803   SDVTList VTs = getVTList(VT);
7804   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7805 }
7806 
7807 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7808                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7809   SDVTList VTs = getVTList(VT1, VT2);
7810   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7811 }
7812 
7813 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7814                                    EVT VT1, EVT VT2) {
7815   SDVTList VTs = getVTList(VT1, VT2);
7816   return SelectNodeTo(N, MachineOpc, VTs, None);
7817 }
7818 
7819 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7820                                    EVT VT1, EVT VT2, EVT VT3,
7821                                    ArrayRef<SDValue> Ops) {
7822   SDVTList VTs = getVTList(VT1, VT2, VT3);
7823   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7824 }
7825 
7826 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7827                                    EVT VT1, EVT VT2,
7828                                    SDValue Op1, SDValue Op2) {
7829   SDVTList VTs = getVTList(VT1, VT2);
7830   SDValue Ops[] = { Op1, Op2 };
7831   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7832 }
7833 
7834 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7835                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7836   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7837   // Reset the NodeID to -1.
7838   New->setNodeId(-1);
7839   if (New != N) {
7840     ReplaceAllUsesWith(N, New);
7841     RemoveDeadNode(N);
7842   }
7843   return New;
7844 }
7845 
7846 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7847 /// the line number information on the merged node since it is not possible to
7848 /// preserve the information that operation is associated with multiple lines.
7849 /// This will make the debugger working better at -O0, were there is a higher
7850 /// probability having other instructions associated with that line.
7851 ///
7852 /// For IROrder, we keep the smaller of the two
7853 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7854   DebugLoc NLoc = N->getDebugLoc();
7855   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7856     N->setDebugLoc(DebugLoc());
7857   }
7858   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7859   N->setIROrder(Order);
7860   return N;
7861 }
7862 
7863 /// MorphNodeTo - This *mutates* the specified node to have the specified
7864 /// return type, opcode, and operands.
7865 ///
7866 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7867 /// node of the specified opcode and operands, it returns that node instead of
7868 /// the current one.  Note that the SDLoc need not be the same.
7869 ///
7870 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7871 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7872 /// node, and because it doesn't require CSE recalculation for any of
7873 /// the node's users.
7874 ///
7875 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7876 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7877 /// the legalizer which maintain worklists that would need to be updated when
7878 /// deleting things.
7879 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7880                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7881   // If an identical node already exists, use it.
7882   void *IP = nullptr;
7883   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7884     FoldingSetNodeID ID;
7885     AddNodeIDNode(ID, Opc, VTs, Ops);
7886     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7887       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7888   }
7889 
7890   if (!RemoveNodeFromCSEMaps(N))
7891     IP = nullptr;
7892 
7893   // Start the morphing.
7894   N->NodeType = Opc;
7895   N->ValueList = VTs.VTs;
7896   N->NumValues = VTs.NumVTs;
7897 
7898   // Clear the operands list, updating used nodes to remove this from their
7899   // use list.  Keep track of any operands that become dead as a result.
7900   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7901   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7902     SDUse &Use = *I++;
7903     SDNode *Used = Use.getNode();
7904     Use.set(SDValue());
7905     if (Used->use_empty())
7906       DeadNodeSet.insert(Used);
7907   }
7908 
7909   // For MachineNode, initialize the memory references information.
7910   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7911     MN->clearMemRefs();
7912 
7913   // Swap for an appropriately sized array from the recycler.
7914   removeOperands(N);
7915   createOperands(N, Ops);
7916 
7917   // Delete any nodes that are still dead after adding the uses for the
7918   // new operands.
7919   if (!DeadNodeSet.empty()) {
7920     SmallVector<SDNode *, 16> DeadNodes;
7921     for (SDNode *N : DeadNodeSet)
7922       if (N->use_empty())
7923         DeadNodes.push_back(N);
7924     RemoveDeadNodes(DeadNodes);
7925   }
7926 
7927   if (IP)
7928     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7929   return N;
7930 }
7931 
7932 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7933   unsigned OrigOpc = Node->getOpcode();
7934   unsigned NewOpc;
7935   switch (OrigOpc) {
7936   default:
7937     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7938 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7939   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
7940 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7941   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
7942 #include "llvm/IR/ConstrainedOps.def"
7943   }
7944 
7945   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
7946 
7947   // We're taking this node out of the chain, so we need to re-link things.
7948   SDValue InputChain = Node->getOperand(0);
7949   SDValue OutputChain = SDValue(Node, 1);
7950   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7951 
7952   SmallVector<SDValue, 3> Ops;
7953   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
7954     Ops.push_back(Node->getOperand(i));
7955 
7956   SDVTList VTs = getVTList(Node->getValueType(0));
7957   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
7958 
7959   // MorphNodeTo can operate in two ways: if an existing node with the
7960   // specified operands exists, it can just return it.  Otherwise, it
7961   // updates the node in place to have the requested operands.
7962   if (Res == Node) {
7963     // If we updated the node in place, reset the node ID.  To the isel,
7964     // this should be just like a newly allocated machine node.
7965     Res->setNodeId(-1);
7966   } else {
7967     ReplaceAllUsesWith(Node, Res);
7968     RemoveDeadNode(Node);
7969   }
7970 
7971   return Res;
7972 }
7973 
7974 /// getMachineNode - These are used for target selectors to create a new node
7975 /// with specified return type(s), MachineInstr opcode, and operands.
7976 ///
7977 /// Note that getMachineNode returns the resultant node.  If there is already a
7978 /// node of the specified opcode and operands, it returns that node instead of
7979 /// the current one.
7980 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7981                                             EVT VT) {
7982   SDVTList VTs = getVTList(VT);
7983   return getMachineNode(Opcode, dl, VTs, None);
7984 }
7985 
7986 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7987                                             EVT VT, SDValue Op1) {
7988   SDVTList VTs = getVTList(VT);
7989   SDValue Ops[] = { Op1 };
7990   return getMachineNode(Opcode, dl, VTs, Ops);
7991 }
7992 
7993 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7994                                             EVT VT, SDValue Op1, SDValue Op2) {
7995   SDVTList VTs = getVTList(VT);
7996   SDValue Ops[] = { Op1, Op2 };
7997   return getMachineNode(Opcode, dl, VTs, Ops);
7998 }
7999 
8000 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8001                                             EVT VT, SDValue Op1, SDValue Op2,
8002                                             SDValue Op3) {
8003   SDVTList VTs = getVTList(VT);
8004   SDValue Ops[] = { Op1, Op2, Op3 };
8005   return getMachineNode(Opcode, dl, VTs, Ops);
8006 }
8007 
8008 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8009                                             EVT VT, ArrayRef<SDValue> Ops) {
8010   SDVTList VTs = getVTList(VT);
8011   return getMachineNode(Opcode, dl, VTs, Ops);
8012 }
8013 
8014 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8015                                             EVT VT1, EVT VT2, SDValue Op1,
8016                                             SDValue Op2) {
8017   SDVTList VTs = getVTList(VT1, VT2);
8018   SDValue Ops[] = { Op1, Op2 };
8019   return getMachineNode(Opcode, dl, VTs, Ops);
8020 }
8021 
8022 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8023                                             EVT VT1, EVT VT2, SDValue Op1,
8024                                             SDValue Op2, SDValue Op3) {
8025   SDVTList VTs = getVTList(VT1, VT2);
8026   SDValue Ops[] = { Op1, Op2, Op3 };
8027   return getMachineNode(Opcode, dl, VTs, Ops);
8028 }
8029 
8030 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8031                                             EVT VT1, EVT VT2,
8032                                             ArrayRef<SDValue> Ops) {
8033   SDVTList VTs = getVTList(VT1, VT2);
8034   return getMachineNode(Opcode, dl, VTs, Ops);
8035 }
8036 
8037 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8038                                             EVT VT1, EVT VT2, EVT VT3,
8039                                             SDValue Op1, SDValue Op2) {
8040   SDVTList VTs = getVTList(VT1, VT2, VT3);
8041   SDValue Ops[] = { Op1, Op2 };
8042   return getMachineNode(Opcode, dl, VTs, Ops);
8043 }
8044 
8045 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8046                                             EVT VT1, EVT VT2, EVT VT3,
8047                                             SDValue Op1, SDValue Op2,
8048                                             SDValue Op3) {
8049   SDVTList VTs = getVTList(VT1, VT2, VT3);
8050   SDValue Ops[] = { Op1, Op2, Op3 };
8051   return getMachineNode(Opcode, dl, VTs, Ops);
8052 }
8053 
8054 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8055                                             EVT VT1, EVT VT2, EVT VT3,
8056                                             ArrayRef<SDValue> Ops) {
8057   SDVTList VTs = getVTList(VT1, VT2, VT3);
8058   return getMachineNode(Opcode, dl, VTs, Ops);
8059 }
8060 
8061 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8062                                             ArrayRef<EVT> ResultTys,
8063                                             ArrayRef<SDValue> Ops) {
8064   SDVTList VTs = getVTList(ResultTys);
8065   return getMachineNode(Opcode, dl, VTs, Ops);
8066 }
8067 
8068 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8069                                             SDVTList VTs,
8070                                             ArrayRef<SDValue> Ops) {
8071   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8072   MachineSDNode *N;
8073   void *IP = nullptr;
8074 
8075   if (DoCSE) {
8076     FoldingSetNodeID ID;
8077     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8078     IP = nullptr;
8079     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8080       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8081     }
8082   }
8083 
8084   // Allocate a new MachineSDNode.
8085   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8086   createOperands(N, Ops);
8087 
8088   if (DoCSE)
8089     CSEMap.InsertNode(N, IP);
8090 
8091   InsertNode(N);
8092   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8093   return N;
8094 }
8095 
8096 /// getTargetExtractSubreg - A convenience function for creating
8097 /// TargetOpcode::EXTRACT_SUBREG nodes.
8098 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8099                                              SDValue Operand) {
8100   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8101   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8102                                   VT, Operand, SRIdxVal);
8103   return SDValue(Subreg, 0);
8104 }
8105 
8106 /// getTargetInsertSubreg - A convenience function for creating
8107 /// TargetOpcode::INSERT_SUBREG nodes.
8108 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8109                                             SDValue Operand, SDValue Subreg) {
8110   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8111   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8112                                   VT, Operand, Subreg, SRIdxVal);
8113   return SDValue(Result, 0);
8114 }
8115 
8116 /// getNodeIfExists - Get the specified node if it's already available, or
8117 /// else return NULL.
8118 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8119                                       ArrayRef<SDValue> Ops,
8120                                       const SDNodeFlags Flags) {
8121   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8122     FoldingSetNodeID ID;
8123     AddNodeIDNode(ID, Opcode, VTList, Ops);
8124     void *IP = nullptr;
8125     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8126       E->intersectFlagsWith(Flags);
8127       return E;
8128     }
8129   }
8130   return nullptr;
8131 }
8132 
8133 /// getDbgValue - Creates a SDDbgValue node.
8134 ///
8135 /// SDNode
8136 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8137                                       SDNode *N, unsigned R, bool IsIndirect,
8138                                       const DebugLoc &DL, unsigned O) {
8139   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8140          "Expected inlined-at fields to agree");
8141   return new (DbgInfo->getAlloc())
8142       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8143 }
8144 
8145 /// Constant
8146 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8147                                               DIExpression *Expr,
8148                                               const Value *C,
8149                                               const DebugLoc &DL, unsigned O) {
8150   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8151          "Expected inlined-at fields to agree");
8152   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8153 }
8154 
8155 /// FrameIndex
8156 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8157                                                 DIExpression *Expr, unsigned FI,
8158                                                 bool IsIndirect,
8159                                                 const DebugLoc &DL,
8160                                                 unsigned O) {
8161   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8162          "Expected inlined-at fields to agree");
8163   return new (DbgInfo->getAlloc())
8164       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8165 }
8166 
8167 /// VReg
8168 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8169                                           DIExpression *Expr,
8170                                           unsigned VReg, bool IsIndirect,
8171                                           const DebugLoc &DL, unsigned O) {
8172   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8173          "Expected inlined-at fields to agree");
8174   return new (DbgInfo->getAlloc())
8175       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8176 }
8177 
8178 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8179                                      unsigned OffsetInBits, unsigned SizeInBits,
8180                                      bool InvalidateDbg) {
8181   SDNode *FromNode = From.getNode();
8182   SDNode *ToNode = To.getNode();
8183   assert(FromNode && ToNode && "Can't modify dbg values");
8184 
8185   // PR35338
8186   // TODO: assert(From != To && "Redundant dbg value transfer");
8187   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8188   if (From == To || FromNode == ToNode)
8189     return;
8190 
8191   if (!FromNode->getHasDebugValue())
8192     return;
8193 
8194   SmallVector<SDDbgValue *, 2> ClonedDVs;
8195   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8196     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8197       continue;
8198 
8199     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8200 
8201     // Just transfer the dbg value attached to From.
8202     if (Dbg->getResNo() != From.getResNo())
8203       continue;
8204 
8205     DIVariable *Var = Dbg->getVariable();
8206     auto *Expr = Dbg->getExpression();
8207     // If a fragment is requested, update the expression.
8208     if (SizeInBits) {
8209       // When splitting a larger (e.g., sign-extended) value whose
8210       // lower bits are described with an SDDbgValue, do not attempt
8211       // to transfer the SDDbgValue to the upper bits.
8212       if (auto FI = Expr->getFragmentInfo())
8213         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8214           continue;
8215       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8216                                                              SizeInBits);
8217       if (!Fragment)
8218         continue;
8219       Expr = *Fragment;
8220     }
8221     // Clone the SDDbgValue and move it to To.
8222     SDDbgValue *Clone = getDbgValue(
8223         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8224         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8225     ClonedDVs.push_back(Clone);
8226 
8227     if (InvalidateDbg) {
8228       // Invalidate value and indicate the SDDbgValue should not be emitted.
8229       Dbg->setIsInvalidated();
8230       Dbg->setIsEmitted();
8231     }
8232   }
8233 
8234   for (SDDbgValue *Dbg : ClonedDVs)
8235     AddDbgValue(Dbg, ToNode, false);
8236 }
8237 
8238 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8239   if (!N.getHasDebugValue())
8240     return;
8241 
8242   SmallVector<SDDbgValue *, 2> ClonedDVs;
8243   for (auto DV : GetDbgValues(&N)) {
8244     if (DV->isInvalidated())
8245       continue;
8246     switch (N.getOpcode()) {
8247     default:
8248       break;
8249     case ISD::ADD:
8250       SDValue N0 = N.getOperand(0);
8251       SDValue N1 = N.getOperand(1);
8252       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8253           isConstantIntBuildVectorOrConstantInt(N1)) {
8254         uint64_t Offset = N.getConstantOperandVal(1);
8255         // Rewrite an ADD constant node into a DIExpression. Since we are
8256         // performing arithmetic to compute the variable's *value* in the
8257         // DIExpression, we need to mark the expression with a
8258         // DW_OP_stack_value.
8259         auto *DIExpr = DV->getExpression();
8260         DIExpr =
8261             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8262         SDDbgValue *Clone =
8263             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8264                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8265         ClonedDVs.push_back(Clone);
8266         DV->setIsInvalidated();
8267         DV->setIsEmitted();
8268         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8269                    N0.getNode()->dumprFull(this);
8270                    dbgs() << " into " << *DIExpr << '\n');
8271       }
8272     }
8273   }
8274 
8275   for (SDDbgValue *Dbg : ClonedDVs)
8276     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8277 }
8278 
8279 /// Creates a SDDbgLabel node.
8280 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8281                                       const DebugLoc &DL, unsigned O) {
8282   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8283          "Expected inlined-at fields to agree");
8284   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8285 }
8286 
8287 namespace {
8288 
8289 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8290 /// pointed to by a use iterator is deleted, increment the use iterator
8291 /// so that it doesn't dangle.
8292 ///
8293 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8294   SDNode::use_iterator &UI;
8295   SDNode::use_iterator &UE;
8296 
8297   void NodeDeleted(SDNode *N, SDNode *E) override {
8298     // Increment the iterator as needed.
8299     while (UI != UE && N == *UI)
8300       ++UI;
8301   }
8302 
8303 public:
8304   RAUWUpdateListener(SelectionDAG &d,
8305                      SDNode::use_iterator &ui,
8306                      SDNode::use_iterator &ue)
8307     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8308 };
8309 
8310 } // end anonymous namespace
8311 
8312 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8313 /// This can cause recursive merging of nodes in the DAG.
8314 ///
8315 /// This version assumes From has a single result value.
8316 ///
8317 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8318   SDNode *From = FromN.getNode();
8319   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8320          "Cannot replace with this method!");
8321   assert(From != To.getNode() && "Cannot replace uses of with self");
8322 
8323   // Preserve Debug Values
8324   transferDbgValues(FromN, To);
8325 
8326   // Iterate over all the existing uses of From. New uses will be added
8327   // to the beginning of the use list, which we avoid visiting.
8328   // This specifically avoids visiting uses of From that arise while the
8329   // replacement is happening, because any such uses would be the result
8330   // of CSE: If an existing node looks like From after one of its operands
8331   // is replaced by To, we don't want to replace of all its users with To
8332   // too. See PR3018 for more info.
8333   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8334   RAUWUpdateListener Listener(*this, UI, UE);
8335   while (UI != UE) {
8336     SDNode *User = *UI;
8337 
8338     // This node is about to morph, remove its old self from the CSE maps.
8339     RemoveNodeFromCSEMaps(User);
8340 
8341     // A user can appear in a use list multiple times, and when this
8342     // happens the uses are usually next to each other in the list.
8343     // To help reduce the number of CSE recomputations, process all
8344     // the uses of this user that we can find this way.
8345     do {
8346       SDUse &Use = UI.getUse();
8347       ++UI;
8348       Use.set(To);
8349       if (To->isDivergent() != From->isDivergent())
8350         updateDivergence(User);
8351     } while (UI != UE && *UI == User);
8352     // Now that we have modified User, add it back to the CSE maps.  If it
8353     // already exists there, recursively merge the results together.
8354     AddModifiedNodeToCSEMaps(User);
8355   }
8356 
8357   // If we just RAUW'd the root, take note.
8358   if (FromN == getRoot())
8359     setRoot(To);
8360 }
8361 
8362 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8363 /// This can cause recursive merging of nodes in the DAG.
8364 ///
8365 /// This version assumes that for each value of From, there is a
8366 /// corresponding value in To in the same position with the same type.
8367 ///
8368 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8369 #ifndef NDEBUG
8370   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8371     assert((!From->hasAnyUseOfValue(i) ||
8372             From->getValueType(i) == To->getValueType(i)) &&
8373            "Cannot use this version of ReplaceAllUsesWith!");
8374 #endif
8375 
8376   // Handle the trivial case.
8377   if (From == To)
8378     return;
8379 
8380   // Preserve Debug Info. Only do this if there's a use.
8381   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8382     if (From->hasAnyUseOfValue(i)) {
8383       assert((i < To->getNumValues()) && "Invalid To location");
8384       transferDbgValues(SDValue(From, i), SDValue(To, i));
8385     }
8386 
8387   // Iterate over just the existing users of From. See the comments in
8388   // the ReplaceAllUsesWith above.
8389   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8390   RAUWUpdateListener Listener(*this, UI, UE);
8391   while (UI != UE) {
8392     SDNode *User = *UI;
8393 
8394     // This node is about to morph, remove its old self from the CSE maps.
8395     RemoveNodeFromCSEMaps(User);
8396 
8397     // A user can appear in a use list multiple times, and when this
8398     // happens the uses are usually next to each other in the list.
8399     // To help reduce the number of CSE recomputations, process all
8400     // the uses of this user that we can find this way.
8401     do {
8402       SDUse &Use = UI.getUse();
8403       ++UI;
8404       Use.setNode(To);
8405       if (To->isDivergent() != From->isDivergent())
8406         updateDivergence(User);
8407     } while (UI != UE && *UI == User);
8408 
8409     // Now that we have modified User, add it back to the CSE maps.  If it
8410     // already exists there, recursively merge the results together.
8411     AddModifiedNodeToCSEMaps(User);
8412   }
8413 
8414   // If we just RAUW'd the root, take note.
8415   if (From == getRoot().getNode())
8416     setRoot(SDValue(To, getRoot().getResNo()));
8417 }
8418 
8419 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8420 /// This can cause recursive merging of nodes in the DAG.
8421 ///
8422 /// This version can replace From with any result values.  To must match the
8423 /// number and types of values returned by From.
8424 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8425   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8426     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8427 
8428   // Preserve Debug Info.
8429   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8430     transferDbgValues(SDValue(From, i), To[i]);
8431 
8432   // Iterate over just the existing users of From. See the comments in
8433   // the ReplaceAllUsesWith above.
8434   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8435   RAUWUpdateListener Listener(*this, UI, UE);
8436   while (UI != UE) {
8437     SDNode *User = *UI;
8438 
8439     // This node is about to morph, remove its old self from the CSE maps.
8440     RemoveNodeFromCSEMaps(User);
8441 
8442     // A user can appear in a use list multiple times, and when this happens the
8443     // uses are usually next to each other in the list.  To help reduce the
8444     // number of CSE and divergence recomputations, process all the uses of this
8445     // user that we can find this way.
8446     bool To_IsDivergent = false;
8447     do {
8448       SDUse &Use = UI.getUse();
8449       const SDValue &ToOp = To[Use.getResNo()];
8450       ++UI;
8451       Use.set(ToOp);
8452       To_IsDivergent |= ToOp->isDivergent();
8453     } while (UI != UE && *UI == User);
8454 
8455     if (To_IsDivergent != From->isDivergent())
8456       updateDivergence(User);
8457 
8458     // Now that we have modified User, add it back to the CSE maps.  If it
8459     // already exists there, recursively merge the results together.
8460     AddModifiedNodeToCSEMaps(User);
8461   }
8462 
8463   // If we just RAUW'd the root, take note.
8464   if (From == getRoot().getNode())
8465     setRoot(SDValue(To[getRoot().getResNo()]));
8466 }
8467 
8468 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8469 /// uses of other values produced by From.getNode() alone.  The Deleted
8470 /// vector is handled the same way as for ReplaceAllUsesWith.
8471 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8472   // Handle the really simple, really trivial case efficiently.
8473   if (From == To) return;
8474 
8475   // Handle the simple, trivial, case efficiently.
8476   if (From.getNode()->getNumValues() == 1) {
8477     ReplaceAllUsesWith(From, To);
8478     return;
8479   }
8480 
8481   // Preserve Debug Info.
8482   transferDbgValues(From, To);
8483 
8484   // Iterate over just the existing users of From. See the comments in
8485   // the ReplaceAllUsesWith above.
8486   SDNode::use_iterator UI = From.getNode()->use_begin(),
8487                        UE = From.getNode()->use_end();
8488   RAUWUpdateListener Listener(*this, UI, UE);
8489   while (UI != UE) {
8490     SDNode *User = *UI;
8491     bool UserRemovedFromCSEMaps = false;
8492 
8493     // A user can appear in a use list multiple times, and when this
8494     // happens the uses are usually next to each other in the list.
8495     // To help reduce the number of CSE recomputations, process all
8496     // the uses of this user that we can find this way.
8497     do {
8498       SDUse &Use = UI.getUse();
8499 
8500       // Skip uses of different values from the same node.
8501       if (Use.getResNo() != From.getResNo()) {
8502         ++UI;
8503         continue;
8504       }
8505 
8506       // If this node hasn't been modified yet, it's still in the CSE maps,
8507       // so remove its old self from the CSE maps.
8508       if (!UserRemovedFromCSEMaps) {
8509         RemoveNodeFromCSEMaps(User);
8510         UserRemovedFromCSEMaps = true;
8511       }
8512 
8513       ++UI;
8514       Use.set(To);
8515       if (To->isDivergent() != From->isDivergent())
8516         updateDivergence(User);
8517     } while (UI != UE && *UI == User);
8518     // We are iterating over all uses of the From node, so if a use
8519     // doesn't use the specific value, no changes are made.
8520     if (!UserRemovedFromCSEMaps)
8521       continue;
8522 
8523     // Now that we have modified User, add it back to the CSE maps.  If it
8524     // already exists there, recursively merge the results together.
8525     AddModifiedNodeToCSEMaps(User);
8526   }
8527 
8528   // If we just RAUW'd the root, take note.
8529   if (From == getRoot())
8530     setRoot(To);
8531 }
8532 
8533 namespace {
8534 
8535   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8536   /// to record information about a use.
8537   struct UseMemo {
8538     SDNode *User;
8539     unsigned Index;
8540     SDUse *Use;
8541   };
8542 
8543   /// operator< - Sort Memos by User.
8544   bool operator<(const UseMemo &L, const UseMemo &R) {
8545     return (intptr_t)L.User < (intptr_t)R.User;
8546   }
8547 
8548 } // end anonymous namespace
8549 
8550 void SelectionDAG::updateDivergence(SDNode * N)
8551 {
8552   if (TLI->isSDNodeAlwaysUniform(N))
8553     return;
8554   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8555   for (auto &Op : N->ops()) {
8556     if (Op.Val.getValueType() != MVT::Other)
8557       IsDivergent |= Op.getNode()->isDivergent();
8558   }
8559   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8560     N->SDNodeBits.IsDivergent = IsDivergent;
8561     for (auto U : N->uses()) {
8562       updateDivergence(U);
8563     }
8564   }
8565 }
8566 
8567 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8568   DenseMap<SDNode *, unsigned> Degree;
8569   Order.reserve(AllNodes.size());
8570   for (auto &N : allnodes()) {
8571     unsigned NOps = N.getNumOperands();
8572     Degree[&N] = NOps;
8573     if (0 == NOps)
8574       Order.push_back(&N);
8575   }
8576   for (size_t I = 0; I != Order.size(); ++I) {
8577     SDNode *N = Order[I];
8578     for (auto U : N->uses()) {
8579       unsigned &UnsortedOps = Degree[U];
8580       if (0 == --UnsortedOps)
8581         Order.push_back(U);
8582     }
8583   }
8584 }
8585 
8586 #ifndef NDEBUG
8587 void SelectionDAG::VerifyDAGDiverence() {
8588   std::vector<SDNode *> TopoOrder;
8589   CreateTopologicalOrder(TopoOrder);
8590   const TargetLowering &TLI = getTargetLoweringInfo();
8591   DenseMap<const SDNode *, bool> DivergenceMap;
8592   for (auto &N : allnodes()) {
8593     DivergenceMap[&N] = false;
8594   }
8595   for (auto N : TopoOrder) {
8596     bool IsDivergent = DivergenceMap[N];
8597     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8598     for (auto &Op : N->ops()) {
8599       if (Op.Val.getValueType() != MVT::Other)
8600         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8601     }
8602     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8603       DivergenceMap[N] = true;
8604     }
8605   }
8606   for (auto &N : allnodes()) {
8607     (void)N;
8608     assert(DivergenceMap[&N] == N.isDivergent() &&
8609            "Divergence bit inconsistency detected\n");
8610   }
8611 }
8612 #endif
8613 
8614 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8615 /// uses of other values produced by From.getNode() alone.  The same value
8616 /// may appear in both the From and To list.  The Deleted vector is
8617 /// handled the same way as for ReplaceAllUsesWith.
8618 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8619                                               const SDValue *To,
8620                                               unsigned Num){
8621   // Handle the simple, trivial case efficiently.
8622   if (Num == 1)
8623     return ReplaceAllUsesOfValueWith(*From, *To);
8624 
8625   transferDbgValues(*From, *To);
8626 
8627   // Read up all the uses and make records of them. This helps
8628   // processing new uses that are introduced during the
8629   // replacement process.
8630   SmallVector<UseMemo, 4> Uses;
8631   for (unsigned i = 0; i != Num; ++i) {
8632     unsigned FromResNo = From[i].getResNo();
8633     SDNode *FromNode = From[i].getNode();
8634     for (SDNode::use_iterator UI = FromNode->use_begin(),
8635          E = FromNode->use_end(); UI != E; ++UI) {
8636       SDUse &Use = UI.getUse();
8637       if (Use.getResNo() == FromResNo) {
8638         UseMemo Memo = { *UI, i, &Use };
8639         Uses.push_back(Memo);
8640       }
8641     }
8642   }
8643 
8644   // Sort the uses, so that all the uses from a given User are together.
8645   llvm::sort(Uses);
8646 
8647   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8648        UseIndex != UseIndexEnd; ) {
8649     // We know that this user uses some value of From.  If it is the right
8650     // value, update it.
8651     SDNode *User = Uses[UseIndex].User;
8652 
8653     // This node is about to morph, remove its old self from the CSE maps.
8654     RemoveNodeFromCSEMaps(User);
8655 
8656     // The Uses array is sorted, so all the uses for a given User
8657     // are next to each other in the list.
8658     // To help reduce the number of CSE recomputations, process all
8659     // the uses of this user that we can find this way.
8660     do {
8661       unsigned i = Uses[UseIndex].Index;
8662       SDUse &Use = *Uses[UseIndex].Use;
8663       ++UseIndex;
8664 
8665       Use.set(To[i]);
8666     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8667 
8668     // Now that we have modified User, add it back to the CSE maps.  If it
8669     // already exists there, recursively merge the results together.
8670     AddModifiedNodeToCSEMaps(User);
8671   }
8672 }
8673 
8674 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8675 /// based on their topological order. It returns the maximum id and a vector
8676 /// of the SDNodes* in assigned order by reference.
8677 unsigned SelectionDAG::AssignTopologicalOrder() {
8678   unsigned DAGSize = 0;
8679 
8680   // SortedPos tracks the progress of the algorithm. Nodes before it are
8681   // sorted, nodes after it are unsorted. When the algorithm completes
8682   // it is at the end of the list.
8683   allnodes_iterator SortedPos = allnodes_begin();
8684 
8685   // Visit all the nodes. Move nodes with no operands to the front of
8686   // the list immediately. Annotate nodes that do have operands with their
8687   // operand count. Before we do this, the Node Id fields of the nodes
8688   // may contain arbitrary values. After, the Node Id fields for nodes
8689   // before SortedPos will contain the topological sort index, and the
8690   // Node Id fields for nodes At SortedPos and after will contain the
8691   // count of outstanding operands.
8692   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8693     SDNode *N = &*I++;
8694     checkForCycles(N, this);
8695     unsigned Degree = N->getNumOperands();
8696     if (Degree == 0) {
8697       // A node with no uses, add it to the result array immediately.
8698       N->setNodeId(DAGSize++);
8699       allnodes_iterator Q(N);
8700       if (Q != SortedPos)
8701         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8702       assert(SortedPos != AllNodes.end() && "Overran node list");
8703       ++SortedPos;
8704     } else {
8705       // Temporarily use the Node Id as scratch space for the degree count.
8706       N->setNodeId(Degree);
8707     }
8708   }
8709 
8710   // Visit all the nodes. As we iterate, move nodes into sorted order,
8711   // such that by the time the end is reached all nodes will be sorted.
8712   for (SDNode &Node : allnodes()) {
8713     SDNode *N = &Node;
8714     checkForCycles(N, this);
8715     // N is in sorted position, so all its uses have one less operand
8716     // that needs to be sorted.
8717     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8718          UI != UE; ++UI) {
8719       SDNode *P = *UI;
8720       unsigned Degree = P->getNodeId();
8721       assert(Degree != 0 && "Invalid node degree");
8722       --Degree;
8723       if (Degree == 0) {
8724         // All of P's operands are sorted, so P may sorted now.
8725         P->setNodeId(DAGSize++);
8726         if (P->getIterator() != SortedPos)
8727           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8728         assert(SortedPos != AllNodes.end() && "Overran node list");
8729         ++SortedPos;
8730       } else {
8731         // Update P's outstanding operand count.
8732         P->setNodeId(Degree);
8733       }
8734     }
8735     if (Node.getIterator() == SortedPos) {
8736 #ifndef NDEBUG
8737       allnodes_iterator I(N);
8738       SDNode *S = &*++I;
8739       dbgs() << "Overran sorted position:\n";
8740       S->dumprFull(this); dbgs() << "\n";
8741       dbgs() << "Checking if this is due to cycles\n";
8742       checkForCycles(this, true);
8743 #endif
8744       llvm_unreachable(nullptr);
8745     }
8746   }
8747 
8748   assert(SortedPos == AllNodes.end() &&
8749          "Topological sort incomplete!");
8750   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8751          "First node in topological sort is not the entry token!");
8752   assert(AllNodes.front().getNodeId() == 0 &&
8753          "First node in topological sort has non-zero id!");
8754   assert(AllNodes.front().getNumOperands() == 0 &&
8755          "First node in topological sort has operands!");
8756   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8757          "Last node in topologic sort has unexpected id!");
8758   assert(AllNodes.back().use_empty() &&
8759          "Last node in topologic sort has users!");
8760   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8761   return DAGSize;
8762 }
8763 
8764 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8765 /// value is produced by SD.
8766 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8767   if (SD) {
8768     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8769     SD->setHasDebugValue(true);
8770   }
8771   DbgInfo->add(DB, SD, isParameter);
8772 }
8773 
8774 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8775   DbgInfo->add(DB);
8776 }
8777 
8778 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8779                                                    SDValue NewMemOp) {
8780   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8781   // The new memory operation must have the same position as the old load in
8782   // terms of memory dependency. Create a TokenFactor for the old load and new
8783   // memory operation and update uses of the old load's output chain to use that
8784   // TokenFactor.
8785   SDValue OldChain = SDValue(OldLoad, 1);
8786   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8787   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8788     return NewChain;
8789 
8790   SDValue TokenFactor =
8791       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8792   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8793   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8794   return TokenFactor;
8795 }
8796 
8797 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8798                                                      Function **OutFunction) {
8799   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8800 
8801   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8802   auto *Module = MF->getFunction().getParent();
8803   auto *Function = Module->getFunction(Symbol);
8804 
8805   if (OutFunction != nullptr)
8806       *OutFunction = Function;
8807 
8808   if (Function != nullptr) {
8809     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8810     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8811   }
8812 
8813   std::string ErrorStr;
8814   raw_string_ostream ErrorFormatter(ErrorStr);
8815 
8816   ErrorFormatter << "Undefined external symbol ";
8817   ErrorFormatter << '"' << Symbol << '"';
8818   ErrorFormatter.flush();
8819 
8820   report_fatal_error(ErrorStr);
8821 }
8822 
8823 //===----------------------------------------------------------------------===//
8824 //                              SDNode Class
8825 //===----------------------------------------------------------------------===//
8826 
8827 bool llvm::isNullConstant(SDValue V) {
8828   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8829   return Const != nullptr && Const->isNullValue();
8830 }
8831 
8832 bool llvm::isNullFPConstant(SDValue V) {
8833   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8834   return Const != nullptr && Const->isZero() && !Const->isNegative();
8835 }
8836 
8837 bool llvm::isAllOnesConstant(SDValue V) {
8838   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8839   return Const != nullptr && Const->isAllOnesValue();
8840 }
8841 
8842 bool llvm::isOneConstant(SDValue V) {
8843   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8844   return Const != nullptr && Const->isOne();
8845 }
8846 
8847 SDValue llvm::peekThroughBitcasts(SDValue V) {
8848   while (V.getOpcode() == ISD::BITCAST)
8849     V = V.getOperand(0);
8850   return V;
8851 }
8852 
8853 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8854   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8855     V = V.getOperand(0);
8856   return V;
8857 }
8858 
8859 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8860   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8861     V = V.getOperand(0);
8862   return V;
8863 }
8864 
8865 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8866   if (V.getOpcode() != ISD::XOR)
8867     return false;
8868   V = peekThroughBitcasts(V.getOperand(1));
8869   unsigned NumBits = V.getScalarValueSizeInBits();
8870   ConstantSDNode *C =
8871       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
8872   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
8873 }
8874 
8875 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
8876                                           bool AllowTruncation) {
8877   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8878     return CN;
8879 
8880   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8881     BitVector UndefElements;
8882     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8883 
8884     // BuildVectors can truncate their operands. Ignore that case here unless
8885     // AllowTruncation is set.
8886     if (CN && (UndefElements.none() || AllowUndefs)) {
8887       EVT CVT = CN->getValueType(0);
8888       EVT NSVT = N.getValueType().getScalarType();
8889       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8890       if (AllowTruncation || (CVT == NSVT))
8891         return CN;
8892     }
8893   }
8894 
8895   return nullptr;
8896 }
8897 
8898 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8899                                           bool AllowUndefs,
8900                                           bool AllowTruncation) {
8901   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8902     return CN;
8903 
8904   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8905     BitVector UndefElements;
8906     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8907 
8908     // BuildVectors can truncate their operands. Ignore that case here unless
8909     // AllowTruncation is set.
8910     if (CN && (UndefElements.none() || AllowUndefs)) {
8911       EVT CVT = CN->getValueType(0);
8912       EVT NSVT = N.getValueType().getScalarType();
8913       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8914       if (AllowTruncation || (CVT == NSVT))
8915         return CN;
8916     }
8917   }
8918 
8919   return nullptr;
8920 }
8921 
8922 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8923   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8924     return CN;
8925 
8926   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8927     BitVector UndefElements;
8928     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8929     if (CN && (UndefElements.none() || AllowUndefs))
8930       return CN;
8931   }
8932 
8933   return nullptr;
8934 }
8935 
8936 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8937                                               const APInt &DemandedElts,
8938                                               bool AllowUndefs) {
8939   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8940     return CN;
8941 
8942   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8943     BitVector UndefElements;
8944     ConstantFPSDNode *CN =
8945         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8946     if (CN && (UndefElements.none() || AllowUndefs))
8947       return CN;
8948   }
8949 
8950   return nullptr;
8951 }
8952 
8953 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8954   // TODO: may want to use peekThroughBitcast() here.
8955   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8956   return C && C->isNullValue();
8957 }
8958 
8959 bool llvm::isOneOrOneSplat(SDValue N) {
8960   // TODO: may want to use peekThroughBitcast() here.
8961   unsigned BitWidth = N.getScalarValueSizeInBits();
8962   ConstantSDNode *C = isConstOrConstSplat(N);
8963   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8964 }
8965 
8966 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8967   N = peekThroughBitcasts(N);
8968   unsigned BitWidth = N.getScalarValueSizeInBits();
8969   ConstantSDNode *C = isConstOrConstSplat(N);
8970   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8971 }
8972 
8973 HandleSDNode::~HandleSDNode() {
8974   DropOperands();
8975 }
8976 
8977 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8978                                          const DebugLoc &DL,
8979                                          const GlobalValue *GA, EVT VT,
8980                                          int64_t o, unsigned TF)
8981     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8982   TheGlobal = GA;
8983 }
8984 
8985 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8986                                          EVT VT, unsigned SrcAS,
8987                                          unsigned DestAS)
8988     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8989       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8990 
8991 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8992                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8993     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8994   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8995   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8996   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8997   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8998 
8999   // We check here that the size of the memory operand fits within the size of
9000   // the MMO. This is because the MMO might indicate only a possible address
9001   // range instead of specifying the affected memory addresses precisely.
9002   // TODO: Make MachineMemOperands aware of scalable vectors.
9003   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9004          "Size mismatch!");
9005 }
9006 
9007 /// Profile - Gather unique data for the node.
9008 ///
9009 void SDNode::Profile(FoldingSetNodeID &ID) const {
9010   AddNodeIDNode(ID, this);
9011 }
9012 
9013 namespace {
9014 
9015   struct EVTArray {
9016     std::vector<EVT> VTs;
9017 
9018     EVTArray() {
9019       VTs.reserve(MVT::LAST_VALUETYPE);
9020       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9021         VTs.push_back(MVT((MVT::SimpleValueType)i));
9022     }
9023   };
9024 
9025 } // end anonymous namespace
9026 
9027 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9028 static ManagedStatic<EVTArray> SimpleVTArray;
9029 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9030 
9031 /// getValueTypeList - Return a pointer to the specified value type.
9032 ///
9033 const EVT *SDNode::getValueTypeList(EVT VT) {
9034   if (VT.isExtended()) {
9035     sys::SmartScopedLock<true> Lock(*VTMutex);
9036     return &(*EVTs->insert(VT).first);
9037   } else {
9038     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9039            "Value type out of range!");
9040     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9041   }
9042 }
9043 
9044 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9045 /// indicated value.  This method ignores uses of other values defined by this
9046 /// operation.
9047 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9048   assert(Value < getNumValues() && "Bad value!");
9049 
9050   // TODO: Only iterate over uses of a given value of the node
9051   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9052     if (UI.getUse().getResNo() == Value) {
9053       if (NUses == 0)
9054         return false;
9055       --NUses;
9056     }
9057   }
9058 
9059   // Found exactly the right number of uses?
9060   return NUses == 0;
9061 }
9062 
9063 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9064 /// value. This method ignores uses of other values defined by this operation.
9065 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9066   assert(Value < getNumValues() && "Bad value!");
9067 
9068   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9069     if (UI.getUse().getResNo() == Value)
9070       return true;
9071 
9072   return false;
9073 }
9074 
9075 /// isOnlyUserOf - Return true if this node is the only use of N.
9076 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9077   bool Seen = false;
9078   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9079     SDNode *User = *I;
9080     if (User == this)
9081       Seen = true;
9082     else
9083       return false;
9084   }
9085 
9086   return Seen;
9087 }
9088 
9089 /// Return true if the only users of N are contained in Nodes.
9090 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9091   bool Seen = false;
9092   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9093     SDNode *User = *I;
9094     if (llvm::any_of(Nodes,
9095                      [&User](const SDNode *Node) { return User == Node; }))
9096       Seen = true;
9097     else
9098       return false;
9099   }
9100 
9101   return Seen;
9102 }
9103 
9104 /// isOperand - Return true if this node is an operand of N.
9105 bool SDValue::isOperandOf(const SDNode *N) const {
9106   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9107 }
9108 
9109 bool SDNode::isOperandOf(const SDNode *N) const {
9110   return any_of(N->op_values(),
9111                 [this](SDValue Op) { return this == Op.getNode(); });
9112 }
9113 
9114 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9115 /// be a chain) reaches the specified operand without crossing any
9116 /// side-effecting instructions on any chain path.  In practice, this looks
9117 /// through token factors and non-volatile loads.  In order to remain efficient,
9118 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9119 ///
9120 /// Note that we only need to examine chains when we're searching for
9121 /// side-effects; SelectionDAG requires that all side-effects are represented
9122 /// by chains, even if another operand would force a specific ordering. This
9123 /// constraint is necessary to allow transformations like splitting loads.
9124 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9125                                              unsigned Depth) const {
9126   if (*this == Dest) return true;
9127 
9128   // Don't search too deeply, we just want to be able to see through
9129   // TokenFactor's etc.
9130   if (Depth == 0) return false;
9131 
9132   // If this is a token factor, all inputs to the TF happen in parallel.
9133   if (getOpcode() == ISD::TokenFactor) {
9134     // First, try a shallow search.
9135     if (is_contained((*this)->ops(), Dest)) {
9136       // We found the chain we want as an operand of this TokenFactor.
9137       // Essentially, we reach the chain without side-effects if we could
9138       // serialize the TokenFactor into a simple chain of operations with
9139       // Dest as the last operation. This is automatically true if the
9140       // chain has one use: there are no other ordering constraints.
9141       // If the chain has more than one use, we give up: some other
9142       // use of Dest might force a side-effect between Dest and the current
9143       // node.
9144       if (Dest.hasOneUse())
9145         return true;
9146     }
9147     // Next, try a deep search: check whether every operand of the TokenFactor
9148     // reaches Dest.
9149     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9150       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9151     });
9152   }
9153 
9154   // Loads don't have side effects, look through them.
9155   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9156     if (Ld->isUnordered())
9157       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9158   }
9159   return false;
9160 }
9161 
9162 bool SDNode::hasPredecessor(const SDNode *N) const {
9163   SmallPtrSet<const SDNode *, 32> Visited;
9164   SmallVector<const SDNode *, 16> Worklist;
9165   Worklist.push_back(this);
9166   return hasPredecessorHelper(N, Visited, Worklist);
9167 }
9168 
9169 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9170   this->Flags.intersectWith(Flags);
9171 }
9172 
9173 SDValue
9174 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9175                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9176                                   bool AllowPartials) {
9177   // The pattern must end in an extract from index 0.
9178   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9179       !isNullConstant(Extract->getOperand(1)))
9180     return SDValue();
9181 
9182   // Match against one of the candidate binary ops.
9183   SDValue Op = Extract->getOperand(0);
9184   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9185         return Op.getOpcode() == unsigned(BinOp);
9186       }))
9187     return SDValue();
9188 
9189   // Floating-point reductions may require relaxed constraints on the final step
9190   // of the reduction because they may reorder intermediate operations.
9191   unsigned CandidateBinOp = Op.getOpcode();
9192   if (Op.getValueType().isFloatingPoint()) {
9193     SDNodeFlags Flags = Op->getFlags();
9194     switch (CandidateBinOp) {
9195     case ISD::FADD:
9196       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9197         return SDValue();
9198       break;
9199     default:
9200       llvm_unreachable("Unhandled FP opcode for binop reduction");
9201     }
9202   }
9203 
9204   // Matching failed - attempt to see if we did enough stages that a partial
9205   // reduction from a subvector is possible.
9206   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9207     if (!AllowPartials || !Op)
9208       return SDValue();
9209     EVT OpVT = Op.getValueType();
9210     EVT OpSVT = OpVT.getScalarType();
9211     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9212     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9213       return SDValue();
9214     BinOp = (ISD::NodeType)CandidateBinOp;
9215     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9216                    getVectorIdxConstant(0, SDLoc(Op)));
9217   };
9218 
9219   // At each stage, we're looking for something that looks like:
9220   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9221   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9222   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9223   // %a = binop <8 x i32> %op, %s
9224   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9225   // we expect something like:
9226   // <4,5,6,7,u,u,u,u>
9227   // <2,3,u,u,u,u,u,u>
9228   // <1,u,u,u,u,u,u,u>
9229   // While a partial reduction match would be:
9230   // <2,3,u,u,u,u,u,u>
9231   // <1,u,u,u,u,u,u,u>
9232   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9233   SDValue PrevOp;
9234   for (unsigned i = 0; i < Stages; ++i) {
9235     unsigned MaskEnd = (1 << i);
9236 
9237     if (Op.getOpcode() != CandidateBinOp)
9238       return PartialReduction(PrevOp, MaskEnd);
9239 
9240     SDValue Op0 = Op.getOperand(0);
9241     SDValue Op1 = Op.getOperand(1);
9242 
9243     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9244     if (Shuffle) {
9245       Op = Op1;
9246     } else {
9247       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9248       Op = Op0;
9249     }
9250 
9251     // The first operand of the shuffle should be the same as the other operand
9252     // of the binop.
9253     if (!Shuffle || Shuffle->getOperand(0) != Op)
9254       return PartialReduction(PrevOp, MaskEnd);
9255 
9256     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9257     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9258       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9259         return PartialReduction(PrevOp, MaskEnd);
9260 
9261     PrevOp = Op;
9262   }
9263 
9264   BinOp = (ISD::NodeType)CandidateBinOp;
9265   return Op;
9266 }
9267 
9268 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9269   assert(N->getNumValues() == 1 &&
9270          "Can't unroll a vector with multiple results!");
9271 
9272   EVT VT = N->getValueType(0);
9273   unsigned NE = VT.getVectorNumElements();
9274   EVT EltVT = VT.getVectorElementType();
9275   SDLoc dl(N);
9276 
9277   SmallVector<SDValue, 8> Scalars;
9278   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9279 
9280   // If ResNE is 0, fully unroll the vector op.
9281   if (ResNE == 0)
9282     ResNE = NE;
9283   else if (NE > ResNE)
9284     NE = ResNE;
9285 
9286   unsigned i;
9287   for (i= 0; i != NE; ++i) {
9288     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9289       SDValue Operand = N->getOperand(j);
9290       EVT OperandVT = Operand.getValueType();
9291       if (OperandVT.isVector()) {
9292         // A vector operand; extract a single element.
9293         EVT OperandEltVT = OperandVT.getVectorElementType();
9294         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9295                               Operand, getVectorIdxConstant(i, dl));
9296       } else {
9297         // A scalar operand; just use it as is.
9298         Operands[j] = Operand;
9299       }
9300     }
9301 
9302     switch (N->getOpcode()) {
9303     default: {
9304       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9305                                 N->getFlags()));
9306       break;
9307     }
9308     case ISD::VSELECT:
9309       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9310       break;
9311     case ISD::SHL:
9312     case ISD::SRA:
9313     case ISD::SRL:
9314     case ISD::ROTL:
9315     case ISD::ROTR:
9316       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9317                                getShiftAmountOperand(Operands[0].getValueType(),
9318                                                      Operands[1])));
9319       break;
9320     case ISD::SIGN_EXTEND_INREG: {
9321       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9322       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9323                                 Operands[0],
9324                                 getValueType(ExtVT)));
9325     }
9326     }
9327   }
9328 
9329   for (; i < ResNE; ++i)
9330     Scalars.push_back(getUNDEF(EltVT));
9331 
9332   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9333   return getBuildVector(VecVT, dl, Scalars);
9334 }
9335 
9336 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9337     SDNode *N, unsigned ResNE) {
9338   unsigned Opcode = N->getOpcode();
9339   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9340           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9341           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9342          "Expected an overflow opcode");
9343 
9344   EVT ResVT = N->getValueType(0);
9345   EVT OvVT = N->getValueType(1);
9346   EVT ResEltVT = ResVT.getVectorElementType();
9347   EVT OvEltVT = OvVT.getVectorElementType();
9348   SDLoc dl(N);
9349 
9350   // If ResNE is 0, fully unroll the vector op.
9351   unsigned NE = ResVT.getVectorNumElements();
9352   if (ResNE == 0)
9353     ResNE = NE;
9354   else if (NE > ResNE)
9355     NE = ResNE;
9356 
9357   SmallVector<SDValue, 8> LHSScalars;
9358   SmallVector<SDValue, 8> RHSScalars;
9359   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9360   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9361 
9362   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9363   SDVTList VTs = getVTList(ResEltVT, SVT);
9364   SmallVector<SDValue, 8> ResScalars;
9365   SmallVector<SDValue, 8> OvScalars;
9366   for (unsigned i = 0; i < NE; ++i) {
9367     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9368     SDValue Ov =
9369         getSelect(dl, OvEltVT, Res.getValue(1),
9370                   getBoolConstant(true, dl, OvEltVT, ResVT),
9371                   getConstant(0, dl, OvEltVT));
9372 
9373     ResScalars.push_back(Res);
9374     OvScalars.push_back(Ov);
9375   }
9376 
9377   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9378   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9379 
9380   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9381   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9382   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9383                         getBuildVector(NewOvVT, dl, OvScalars));
9384 }
9385 
9386 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9387                                                   LoadSDNode *Base,
9388                                                   unsigned Bytes,
9389                                                   int Dist) const {
9390   if (LD->isVolatile() || Base->isVolatile())
9391     return false;
9392   // TODO: probably too restrictive for atomics, revisit
9393   if (!LD->isSimple())
9394     return false;
9395   if (LD->isIndexed() || Base->isIndexed())
9396     return false;
9397   if (LD->getChain() != Base->getChain())
9398     return false;
9399   EVT VT = LD->getValueType(0);
9400   if (VT.getSizeInBits() / 8 != Bytes)
9401     return false;
9402 
9403   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9404   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9405 
9406   int64_t Offset = 0;
9407   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9408     return (Dist * Bytes == Offset);
9409   return false;
9410 }
9411 
9412 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9413 /// it cannot be inferred.
9414 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9415   // If this is a GlobalAddress + cst, return the alignment.
9416   const GlobalValue *GV = nullptr;
9417   int64_t GVOffset = 0;
9418   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9419     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9420     KnownBits Known(PtrWidth);
9421     llvm::computeKnownBits(GV, Known, getDataLayout());
9422     unsigned AlignBits = Known.countMinTrailingZeros();
9423     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9424     if (Align)
9425       return MinAlign(Align, GVOffset);
9426   }
9427 
9428   // If this is a direct reference to a stack slot, use information about the
9429   // stack slot's alignment.
9430   int FrameIdx = INT_MIN;
9431   int64_t FrameOffset = 0;
9432   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9433     FrameIdx = FI->getIndex();
9434   } else if (isBaseWithConstantOffset(Ptr) &&
9435              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9436     // Handle FI+Cst
9437     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9438     FrameOffset = Ptr.getConstantOperandVal(1);
9439   }
9440 
9441   if (FrameIdx != INT_MIN) {
9442     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9443     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9444                                     FrameOffset);
9445     return FIInfoAlign;
9446   }
9447 
9448   return 0;
9449 }
9450 
9451 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9452 /// which is split (or expanded) into two not necessarily identical pieces.
9453 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9454   // Currently all types are split in half.
9455   EVT LoVT, HiVT;
9456   if (!VT.isVector())
9457     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9458   else
9459     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9460 
9461   return std::make_pair(LoVT, HiVT);
9462 }
9463 
9464 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9465 /// low/high part.
9466 std::pair<SDValue, SDValue>
9467 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9468                           const EVT &HiVT) {
9469   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9470          N.getValueType().getVectorNumElements() &&
9471          "More vector elements requested than available!");
9472   SDValue Lo, Hi;
9473   Lo =
9474       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9475   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9476                getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
9477   return std::make_pair(Lo, Hi);
9478 }
9479 
9480 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9481 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9482   EVT VT = N.getValueType();
9483   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9484                                 NextPowerOf2(VT.getVectorNumElements()));
9485   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9486                  getVectorIdxConstant(0, DL));
9487 }
9488 
9489 void SelectionDAG::ExtractVectorElements(SDValue Op,
9490                                          SmallVectorImpl<SDValue> &Args,
9491                                          unsigned Start, unsigned Count) {
9492   EVT VT = Op.getValueType();
9493   if (Count == 0)
9494     Count = VT.getVectorNumElements();
9495 
9496   EVT EltVT = VT.getVectorElementType();
9497   SDLoc SL(Op);
9498   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9499     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9500                            getVectorIdxConstant(i, SL)));
9501   }
9502 }
9503 
9504 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9505 unsigned GlobalAddressSDNode::getAddressSpace() const {
9506   return getGlobal()->getType()->getAddressSpace();
9507 }
9508 
9509 Type *ConstantPoolSDNode::getType() const {
9510   if (isMachineConstantPoolEntry())
9511     return Val.MachineCPVal->getType();
9512   return Val.ConstVal->getType();
9513 }
9514 
9515 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9516                                         unsigned &SplatBitSize,
9517                                         bool &HasAnyUndefs,
9518                                         unsigned MinSplatBits,
9519                                         bool IsBigEndian) const {
9520   EVT VT = getValueType(0);
9521   assert(VT.isVector() && "Expected a vector type");
9522   unsigned VecWidth = VT.getSizeInBits();
9523   if (MinSplatBits > VecWidth)
9524     return false;
9525 
9526   // FIXME: The widths are based on this node's type, but build vectors can
9527   // truncate their operands.
9528   SplatValue = APInt(VecWidth, 0);
9529   SplatUndef = APInt(VecWidth, 0);
9530 
9531   // Get the bits. Bits with undefined values (when the corresponding element
9532   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9533   // in SplatValue. If any of the values are not constant, give up and return
9534   // false.
9535   unsigned int NumOps = getNumOperands();
9536   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9537   unsigned EltWidth = VT.getScalarSizeInBits();
9538 
9539   for (unsigned j = 0; j < NumOps; ++j) {
9540     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9541     SDValue OpVal = getOperand(i);
9542     unsigned BitPos = j * EltWidth;
9543 
9544     if (OpVal.isUndef())
9545       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9546     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9547       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9548     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9549       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9550     else
9551       return false;
9552   }
9553 
9554   // The build_vector is all constants or undefs. Find the smallest element
9555   // size that splats the vector.
9556   HasAnyUndefs = (SplatUndef != 0);
9557 
9558   // FIXME: This does not work for vectors with elements less than 8 bits.
9559   while (VecWidth > 8) {
9560     unsigned HalfSize = VecWidth / 2;
9561     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9562     APInt LowValue = SplatValue.trunc(HalfSize);
9563     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9564     APInt LowUndef = SplatUndef.trunc(HalfSize);
9565 
9566     // If the two halves do not match (ignoring undef bits), stop here.
9567     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9568         MinSplatBits > HalfSize)
9569       break;
9570 
9571     SplatValue = HighValue | LowValue;
9572     SplatUndef = HighUndef & LowUndef;
9573 
9574     VecWidth = HalfSize;
9575   }
9576 
9577   SplatBitSize = VecWidth;
9578   return true;
9579 }
9580 
9581 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9582                                          BitVector *UndefElements) const {
9583   if (UndefElements) {
9584     UndefElements->clear();
9585     UndefElements->resize(getNumOperands());
9586   }
9587   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9588          "Unexpected vector size");
9589   if (!DemandedElts)
9590     return SDValue();
9591   SDValue Splatted;
9592   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9593     if (!DemandedElts[i])
9594       continue;
9595     SDValue Op = getOperand(i);
9596     if (Op.isUndef()) {
9597       if (UndefElements)
9598         (*UndefElements)[i] = true;
9599     } else if (!Splatted) {
9600       Splatted = Op;
9601     } else if (Splatted != Op) {
9602       return SDValue();
9603     }
9604   }
9605 
9606   if (!Splatted) {
9607     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9608     assert(getOperand(FirstDemandedIdx).isUndef() &&
9609            "Can only have a splat without a constant for all undefs.");
9610     return getOperand(FirstDemandedIdx);
9611   }
9612 
9613   return Splatted;
9614 }
9615 
9616 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9617   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9618   return getSplatValue(DemandedElts, UndefElements);
9619 }
9620 
9621 ConstantSDNode *
9622 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9623                                         BitVector *UndefElements) const {
9624   return dyn_cast_or_null<ConstantSDNode>(
9625       getSplatValue(DemandedElts, UndefElements));
9626 }
9627 
9628 ConstantSDNode *
9629 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9630   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9631 }
9632 
9633 ConstantFPSDNode *
9634 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9635                                           BitVector *UndefElements) const {
9636   return dyn_cast_or_null<ConstantFPSDNode>(
9637       getSplatValue(DemandedElts, UndefElements));
9638 }
9639 
9640 ConstantFPSDNode *
9641 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9642   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9643 }
9644 
9645 int32_t
9646 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9647                                                    uint32_t BitWidth) const {
9648   if (ConstantFPSDNode *CN =
9649           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9650     bool IsExact;
9651     APSInt IntVal(BitWidth);
9652     const APFloat &APF = CN->getValueAPF();
9653     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9654             APFloat::opOK ||
9655         !IsExact)
9656       return -1;
9657 
9658     return IntVal.exactLogBase2();
9659   }
9660   return -1;
9661 }
9662 
9663 bool BuildVectorSDNode::isConstant() const {
9664   for (const SDValue &Op : op_values()) {
9665     unsigned Opc = Op.getOpcode();
9666     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9667       return false;
9668   }
9669   return true;
9670 }
9671 
9672 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9673   // Find the first non-undef value in the shuffle mask.
9674   unsigned i, e;
9675   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9676     /* search */;
9677 
9678   // If all elements are undefined, this shuffle can be considered a splat
9679   // (although it should eventually get simplified away completely).
9680   if (i == e)
9681     return true;
9682 
9683   // Make sure all remaining elements are either undef or the same as the first
9684   // non-undef value.
9685   for (int Idx = Mask[i]; i != e; ++i)
9686     if (Mask[i] >= 0 && Mask[i] != Idx)
9687       return false;
9688   return true;
9689 }
9690 
9691 // Returns the SDNode if it is a constant integer BuildVector
9692 // or constant integer.
9693 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9694   if (isa<ConstantSDNode>(N))
9695     return N.getNode();
9696   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9697     return N.getNode();
9698   // Treat a GlobalAddress supporting constant offset folding as a
9699   // constant integer.
9700   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9701     if (GA->getOpcode() == ISD::GlobalAddress &&
9702         TLI->isOffsetFoldingLegal(GA))
9703       return GA;
9704   return nullptr;
9705 }
9706 
9707 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9708   if (isa<ConstantFPSDNode>(N))
9709     return N.getNode();
9710 
9711   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9712     return N.getNode();
9713 
9714   return nullptr;
9715 }
9716 
9717 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9718   assert(!Node->OperandList && "Node already has operands");
9719   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9720          "too many operands to fit into SDNode");
9721   SDUse *Ops = OperandRecycler.allocate(
9722       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9723 
9724   bool IsDivergent = false;
9725   for (unsigned I = 0; I != Vals.size(); ++I) {
9726     Ops[I].setUser(Node);
9727     Ops[I].setInitial(Vals[I]);
9728     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9729       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9730   }
9731   Node->NumOperands = Vals.size();
9732   Node->OperandList = Ops;
9733   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9734   if (!TLI->isSDNodeAlwaysUniform(Node))
9735     Node->SDNodeBits.IsDivergent = IsDivergent;
9736   checkForCycles(Node);
9737 }
9738 
9739 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9740                                      SmallVectorImpl<SDValue> &Vals) {
9741   size_t Limit = SDNode::getMaxNumOperands();
9742   while (Vals.size() > Limit) {
9743     unsigned SliceIdx = Vals.size() - Limit;
9744     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9745     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9746     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9747     Vals.emplace_back(NewTF);
9748   }
9749   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9750 }
9751 
9752 #ifndef NDEBUG
9753 static void checkForCyclesHelper(const SDNode *N,
9754                                  SmallPtrSetImpl<const SDNode*> &Visited,
9755                                  SmallPtrSetImpl<const SDNode*> &Checked,
9756                                  const llvm::SelectionDAG *DAG) {
9757   // If this node has already been checked, don't check it again.
9758   if (Checked.count(N))
9759     return;
9760 
9761   // If a node has already been visited on this depth-first walk, reject it as
9762   // a cycle.
9763   if (!Visited.insert(N).second) {
9764     errs() << "Detected cycle in SelectionDAG\n";
9765     dbgs() << "Offending node:\n";
9766     N->dumprFull(DAG); dbgs() << "\n";
9767     abort();
9768   }
9769 
9770   for (const SDValue &Op : N->op_values())
9771     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9772 
9773   Checked.insert(N);
9774   Visited.erase(N);
9775 }
9776 #endif
9777 
9778 void llvm::checkForCycles(const llvm::SDNode *N,
9779                           const llvm::SelectionDAG *DAG,
9780                           bool force) {
9781 #ifndef NDEBUG
9782   bool check = force;
9783 #ifdef EXPENSIVE_CHECKS
9784   check = true;
9785 #endif  // EXPENSIVE_CHECKS
9786   if (check) {
9787     assert(N && "Checking nonexistent SDNode");
9788     SmallPtrSet<const SDNode*, 32> visited;
9789     SmallPtrSet<const SDNode*, 32> checked;
9790     checkForCyclesHelper(N, visited, checked, DAG);
9791   }
9792 #endif  // !NDEBUG
9793 }
9794 
9795 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9796   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9797 }
9798