1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetLowering.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/CodeGen/ValueTypes.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/KnownBits.h"
62 #include "llvm/Support/MachineValueType.h"
63 #include "llvm/Support/ManagedStatic.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/Mutex.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Transforms/Utils/SizeOpts.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstdint>
73 #include <cstdlib>
74 #include <limits>
75 #include <set>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 using namespace llvm;
81 
82 /// makeVTList - Return an instance of the SDVTList struct initialized with the
83 /// specified members.
84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
85   SDVTList Res = {VTs, NumVTs};
86   return Res;
87 }
88 
89 // Default null implementations of the callbacks.
90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
93 
94 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
95 
96 #define DEBUG_TYPE "selectiondag"
97 
98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
99        cl::Hidden, cl::init(true),
100        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
101 
102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
103        cl::desc("Number limit for gluing ld/st of memcpy."),
104        cl::Hidden, cl::init(0));
105 
106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
107   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
108 }
109 
110 //===----------------------------------------------------------------------===//
111 //                              ConstantFPSDNode Class
112 //===----------------------------------------------------------------------===//
113 
114 /// isExactlyValue - We don't rely on operator== working on double values, as
115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
116 /// As such, this method can be used to do an exact bit-for-bit comparison of
117 /// two floating point values.
118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
119   return getValueAPF().bitwiseIsEqual(V);
120 }
121 
122 bool ConstantFPSDNode::isValueValidForType(EVT VT,
123                                            const APFloat& Val) {
124   assert(VT.isFloatingPoint() && "Can only convert between FP types");
125 
126   // convert modifies in place, so make a copy.
127   APFloat Val2 = APFloat(Val);
128   bool losesInfo;
129   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
130                       APFloat::rmNearestTiesToEven,
131                       &losesInfo);
132   return !losesInfo;
133 }
134 
135 //===----------------------------------------------------------------------===//
136 //                              ISD Namespace
137 //===----------------------------------------------------------------------===//
138 
139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
140   auto *BV = dyn_cast<BuildVectorSDNode>(N);
141   if (!BV)
142     return false;
143 
144   APInt SplatUndef;
145   unsigned SplatBitSize;
146   bool HasUndefs;
147   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
148   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
149                              EltSize) &&
150          EltSize == SplatBitSize;
151 }
152 
153 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
154 // specializations of the more general isConstantSplatVector()?
155 
156 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
157   // Look through a bit convert.
158   while (N->getOpcode() == ISD::BITCAST)
159     N = N->getOperand(0).getNode();
160 
161   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
162 
163   unsigned i = 0, e = N->getNumOperands();
164 
165   // Skip over all of the undef values.
166   while (i != e && N->getOperand(i).isUndef())
167     ++i;
168 
169   // Do not accept an all-undef vector.
170   if (i == e) return false;
171 
172   // Do not accept build_vectors that aren't all constants or which have non-~0
173   // elements. We have to be a bit careful here, as the type of the constant
174   // may not be the same as the type of the vector elements due to type
175   // legalization (the elements are promoted to a legal type for the target and
176   // a vector of a type may be legal when the base element type is not).
177   // We only want to check enough bits to cover the vector elements, because
178   // we care if the resultant vector is all ones, not whether the individual
179   // constants are.
180   SDValue NotZero = N->getOperand(i);
181   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
182   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
183     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
184       return false;
185   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
186     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
187       return false;
188   } else
189     return false;
190 
191   // Okay, we have at least one ~0 value, check to see if the rest match or are
192   // undefs. Even with the above element type twiddling, this should be OK, as
193   // the same type legalization should have applied to all the elements.
194   for (++i; i != e; ++i)
195     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
196       return false;
197   return true;
198 }
199 
200 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
201   // Look through a bit convert.
202   while (N->getOpcode() == ISD::BITCAST)
203     N = N->getOperand(0).getNode();
204 
205   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
206 
207   bool IsAllUndef = true;
208   for (const SDValue &Op : N->op_values()) {
209     if (Op.isUndef())
210       continue;
211     IsAllUndef = false;
212     // Do not accept build_vectors that aren't all constants or which have non-0
213     // elements. We have to be a bit careful here, as the type of the constant
214     // may not be the same as the type of the vector elements due to type
215     // legalization (the elements are promoted to a legal type for the target
216     // and a vector of a type may be legal when the base element type is not).
217     // We only want to check enough bits to cover the vector elements, because
218     // we care if the resultant vector is all zeros, not whether the individual
219     // constants are.
220     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
221     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
222       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
223         return false;
224     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
225       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
226         return false;
227     } else
228       return false;
229   }
230 
231   // Do not accept an all-undef vector.
232   if (IsAllUndef)
233     return false;
234   return true;
235 }
236 
237 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
238   if (N->getOpcode() != ISD::BUILD_VECTOR)
239     return false;
240 
241   for (const SDValue &Op : N->op_values()) {
242     if (Op.isUndef())
243       continue;
244     if (!isa<ConstantSDNode>(Op))
245       return false;
246   }
247   return true;
248 }
249 
250 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
251   if (N->getOpcode() != ISD::BUILD_VECTOR)
252     return false;
253 
254   for (const SDValue &Op : N->op_values()) {
255     if (Op.isUndef())
256       continue;
257     if (!isa<ConstantFPSDNode>(Op))
258       return false;
259   }
260   return true;
261 }
262 
263 bool ISD::allOperandsUndef(const SDNode *N) {
264   // Return false if the node has no operands.
265   // This is "logically inconsistent" with the definition of "all" but
266   // is probably the desired behavior.
267   if (N->getNumOperands() == 0)
268     return false;
269   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
270 }
271 
272 bool ISD::matchUnaryPredicate(SDValue Op,
273                               std::function<bool(ConstantSDNode *)> Match,
274                               bool AllowUndefs) {
275   // FIXME: Add support for scalar UNDEF cases?
276   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
277     return Match(Cst);
278 
279   // FIXME: Add support for vector UNDEF cases?
280   if (ISD::BUILD_VECTOR != Op.getOpcode())
281     return false;
282 
283   EVT SVT = Op.getValueType().getScalarType();
284   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
285     if (AllowUndefs && Op.getOperand(i).isUndef()) {
286       if (!Match(nullptr))
287         return false;
288       continue;
289     }
290 
291     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
292     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
293       return false;
294   }
295   return true;
296 }
297 
298 bool ISD::matchBinaryPredicate(
299     SDValue LHS, SDValue RHS,
300     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
301     bool AllowUndefs, bool AllowTypeMismatch) {
302   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
303     return false;
304 
305   // TODO: Add support for scalar UNDEF cases?
306   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
307     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
308       return Match(LHSCst, RHSCst);
309 
310   // TODO: Add support for vector UNDEF cases?
311   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
312       ISD::BUILD_VECTOR != RHS.getOpcode())
313     return false;
314 
315   EVT SVT = LHS.getValueType().getScalarType();
316   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
317     SDValue LHSOp = LHS.getOperand(i);
318     SDValue RHSOp = RHS.getOperand(i);
319     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
320     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
321     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
322     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
323     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
324       return false;
325     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
326                                LHSOp.getValueType() != RHSOp.getValueType()))
327       return false;
328     if (!Match(LHSCst, RHSCst))
329       return false;
330   }
331   return true;
332 }
333 
334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
335   switch (ExtType) {
336   case ISD::EXTLOAD:
337     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
338   case ISD::SEXTLOAD:
339     return ISD::SIGN_EXTEND;
340   case ISD::ZEXTLOAD:
341     return ISD::ZERO_EXTEND;
342   default:
343     break;
344   }
345 
346   llvm_unreachable("Invalid LoadExtType");
347 }
348 
349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
350   // To perform this operation, we just need to swap the L and G bits of the
351   // operation.
352   unsigned OldL = (Operation >> 2) & 1;
353   unsigned OldG = (Operation >> 1) & 1;
354   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
355                        (OldL << 1) |       // New G bit
356                        (OldG << 2));       // New L bit.
357 }
358 
359 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
360   unsigned Operation = Op;
361   if (isIntegerLike)
362     Operation ^= 7;   // Flip L, G, E bits, but not U.
363   else
364     Operation ^= 15;  // Flip all of the condition bits.
365 
366   if (Operation > ISD::SETTRUE2)
367     Operation &= ~8;  // Don't let N and U bits get set.
368 
369   return ISD::CondCode(Operation);
370 }
371 
372 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
373   return getSetCCInverseImpl(Op, Type.isInteger());
374 }
375 
376 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
377                                                bool isIntegerLike) {
378   return getSetCCInverseImpl(Op, isIntegerLike);
379 }
380 
381 /// For an integer comparison, return 1 if the comparison is a signed operation
382 /// and 2 if the result is an unsigned comparison. Return zero if the operation
383 /// does not depend on the sign of the input (setne and seteq).
384 static int isSignedOp(ISD::CondCode Opcode) {
385   switch (Opcode) {
386   default: llvm_unreachable("Illegal integer setcc operation!");
387   case ISD::SETEQ:
388   case ISD::SETNE: return 0;
389   case ISD::SETLT:
390   case ISD::SETLE:
391   case ISD::SETGT:
392   case ISD::SETGE: return 1;
393   case ISD::SETULT:
394   case ISD::SETULE:
395   case ISD::SETUGT:
396   case ISD::SETUGE: return 2;
397   }
398 }
399 
400 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
401                                        EVT Type) {
402   bool IsInteger = Type.isInteger();
403   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
404     // Cannot fold a signed integer setcc with an unsigned integer setcc.
405     return ISD::SETCC_INVALID;
406 
407   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
408 
409   // If the N and U bits get set, then the resultant comparison DOES suddenly
410   // care about orderedness, and it is true when ordered.
411   if (Op > ISD::SETTRUE2)
412     Op &= ~16;     // Clear the U bit if the N bit is set.
413 
414   // Canonicalize illegal integer setcc's.
415   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
416     Op = ISD::SETNE;
417 
418   return ISD::CondCode(Op);
419 }
420 
421 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
422                                         EVT Type) {
423   bool IsInteger = Type.isInteger();
424   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
425     // Cannot fold a signed setcc with an unsigned setcc.
426     return ISD::SETCC_INVALID;
427 
428   // Combine all of the condition bits.
429   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
430 
431   // Canonicalize illegal integer setcc's.
432   if (IsInteger) {
433     switch (Result) {
434     default: break;
435     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
436     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
437     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
438     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
439     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
440     }
441   }
442 
443   return Result;
444 }
445 
446 //===----------------------------------------------------------------------===//
447 //                           SDNode Profile Support
448 //===----------------------------------------------------------------------===//
449 
450 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
451 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
452   ID.AddInteger(OpC);
453 }
454 
455 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
456 /// solely with their pointer.
457 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
458   ID.AddPointer(VTList.VTs);
459 }
460 
461 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
462 static void AddNodeIDOperands(FoldingSetNodeID &ID,
463                               ArrayRef<SDValue> Ops) {
464   for (auto& Op : Ops) {
465     ID.AddPointer(Op.getNode());
466     ID.AddInteger(Op.getResNo());
467   }
468 }
469 
470 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
471 static void AddNodeIDOperands(FoldingSetNodeID &ID,
472                               ArrayRef<SDUse> Ops) {
473   for (auto& Op : Ops) {
474     ID.AddPointer(Op.getNode());
475     ID.AddInteger(Op.getResNo());
476   }
477 }
478 
479 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
480                           SDVTList VTList, ArrayRef<SDValue> OpList) {
481   AddNodeIDOpcode(ID, OpC);
482   AddNodeIDValueTypes(ID, VTList);
483   AddNodeIDOperands(ID, OpList);
484 }
485 
486 /// If this is an SDNode with special info, add this info to the NodeID data.
487 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
488   switch (N->getOpcode()) {
489   case ISD::TargetExternalSymbol:
490   case ISD::ExternalSymbol:
491   case ISD::MCSymbol:
492     llvm_unreachable("Should only be used on nodes with operands");
493   default: break;  // Normal nodes don't need extra info.
494   case ISD::TargetConstant:
495   case ISD::Constant: {
496     const ConstantSDNode *C = cast<ConstantSDNode>(N);
497     ID.AddPointer(C->getConstantIntValue());
498     ID.AddBoolean(C->isOpaque());
499     break;
500   }
501   case ISD::TargetConstantFP:
502   case ISD::ConstantFP:
503     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
504     break;
505   case ISD::TargetGlobalAddress:
506   case ISD::GlobalAddress:
507   case ISD::TargetGlobalTLSAddress:
508   case ISD::GlobalTLSAddress: {
509     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
510     ID.AddPointer(GA->getGlobal());
511     ID.AddInteger(GA->getOffset());
512     ID.AddInteger(GA->getTargetFlags());
513     break;
514   }
515   case ISD::BasicBlock:
516     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
517     break;
518   case ISD::Register:
519     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
520     break;
521   case ISD::RegisterMask:
522     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
523     break;
524   case ISD::SRCVALUE:
525     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
526     break;
527   case ISD::FrameIndex:
528   case ISD::TargetFrameIndex:
529     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
530     break;
531   case ISD::LIFETIME_START:
532   case ISD::LIFETIME_END:
533     if (cast<LifetimeSDNode>(N)->hasOffset()) {
534       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
535       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
536     }
537     break;
538   case ISD::JumpTable:
539   case ISD::TargetJumpTable:
540     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
541     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
542     break;
543   case ISD::ConstantPool:
544   case ISD::TargetConstantPool: {
545     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
546     ID.AddInteger(CP->getAlignment());
547     ID.AddInteger(CP->getOffset());
548     if (CP->isMachineConstantPoolEntry())
549       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
550     else
551       ID.AddPointer(CP->getConstVal());
552     ID.AddInteger(CP->getTargetFlags());
553     break;
554   }
555   case ISD::TargetIndex: {
556     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
557     ID.AddInteger(TI->getIndex());
558     ID.AddInteger(TI->getOffset());
559     ID.AddInteger(TI->getTargetFlags());
560     break;
561   }
562   case ISD::LOAD: {
563     const LoadSDNode *LD = cast<LoadSDNode>(N);
564     ID.AddInteger(LD->getMemoryVT().getRawBits());
565     ID.AddInteger(LD->getRawSubclassData());
566     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
567     break;
568   }
569   case ISD::STORE: {
570     const StoreSDNode *ST = cast<StoreSDNode>(N);
571     ID.AddInteger(ST->getMemoryVT().getRawBits());
572     ID.AddInteger(ST->getRawSubclassData());
573     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
574     break;
575   }
576   case ISD::MLOAD: {
577     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
578     ID.AddInteger(MLD->getMemoryVT().getRawBits());
579     ID.AddInteger(MLD->getRawSubclassData());
580     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
581     break;
582   }
583   case ISD::MSTORE: {
584     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
585     ID.AddInteger(MST->getMemoryVT().getRawBits());
586     ID.AddInteger(MST->getRawSubclassData());
587     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
588     break;
589   }
590   case ISD::MGATHER: {
591     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
592     ID.AddInteger(MG->getMemoryVT().getRawBits());
593     ID.AddInteger(MG->getRawSubclassData());
594     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
595     break;
596   }
597   case ISD::MSCATTER: {
598     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
599     ID.AddInteger(MS->getMemoryVT().getRawBits());
600     ID.AddInteger(MS->getRawSubclassData());
601     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
602     break;
603   }
604   case ISD::ATOMIC_CMP_SWAP:
605   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
606   case ISD::ATOMIC_SWAP:
607   case ISD::ATOMIC_LOAD_ADD:
608   case ISD::ATOMIC_LOAD_SUB:
609   case ISD::ATOMIC_LOAD_AND:
610   case ISD::ATOMIC_LOAD_CLR:
611   case ISD::ATOMIC_LOAD_OR:
612   case ISD::ATOMIC_LOAD_XOR:
613   case ISD::ATOMIC_LOAD_NAND:
614   case ISD::ATOMIC_LOAD_MIN:
615   case ISD::ATOMIC_LOAD_MAX:
616   case ISD::ATOMIC_LOAD_UMIN:
617   case ISD::ATOMIC_LOAD_UMAX:
618   case ISD::ATOMIC_LOAD:
619   case ISD::ATOMIC_STORE: {
620     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
621     ID.AddInteger(AT->getMemoryVT().getRawBits());
622     ID.AddInteger(AT->getRawSubclassData());
623     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
624     break;
625   }
626   case ISD::PREFETCH: {
627     const MemSDNode *PF = cast<MemSDNode>(N);
628     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
629     break;
630   }
631   case ISD::VECTOR_SHUFFLE: {
632     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
633     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
634          i != e; ++i)
635       ID.AddInteger(SVN->getMaskElt(i));
636     break;
637   }
638   case ISD::TargetBlockAddress:
639   case ISD::BlockAddress: {
640     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
641     ID.AddPointer(BA->getBlockAddress());
642     ID.AddInteger(BA->getOffset());
643     ID.AddInteger(BA->getTargetFlags());
644     break;
645   }
646   } // end switch (N->getOpcode())
647 
648   // Target specific memory nodes could also have address spaces to check.
649   if (N->isTargetMemoryOpcode())
650     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
651 }
652 
653 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
654 /// data.
655 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
656   AddNodeIDOpcode(ID, N->getOpcode());
657   // Add the return value info.
658   AddNodeIDValueTypes(ID, N->getVTList());
659   // Add the operand info.
660   AddNodeIDOperands(ID, N->ops());
661 
662   // Handle SDNode leafs with special info.
663   AddNodeIDCustom(ID, N);
664 }
665 
666 //===----------------------------------------------------------------------===//
667 //                              SelectionDAG Class
668 //===----------------------------------------------------------------------===//
669 
670 /// doNotCSE - Return true if CSE should not be performed for this node.
671 static bool doNotCSE(SDNode *N) {
672   if (N->getValueType(0) == MVT::Glue)
673     return true; // Never CSE anything that produces a flag.
674 
675   switch (N->getOpcode()) {
676   default: break;
677   case ISD::HANDLENODE:
678   case ISD::EH_LABEL:
679     return true;   // Never CSE these nodes.
680   }
681 
682   // Check that remaining values produced are not flags.
683   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
684     if (N->getValueType(i) == MVT::Glue)
685       return true; // Never CSE anything that produces a flag.
686 
687   return false;
688 }
689 
690 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
691 /// SelectionDAG.
692 void SelectionDAG::RemoveDeadNodes() {
693   // Create a dummy node (which is not added to allnodes), that adds a reference
694   // to the root node, preventing it from being deleted.
695   HandleSDNode Dummy(getRoot());
696 
697   SmallVector<SDNode*, 128> DeadNodes;
698 
699   // Add all obviously-dead nodes to the DeadNodes worklist.
700   for (SDNode &Node : allnodes())
701     if (Node.use_empty())
702       DeadNodes.push_back(&Node);
703 
704   RemoveDeadNodes(DeadNodes);
705 
706   // If the root changed (e.g. it was a dead load, update the root).
707   setRoot(Dummy.getValue());
708 }
709 
710 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
711 /// given list, and any nodes that become unreachable as a result.
712 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
713 
714   // Process the worklist, deleting the nodes and adding their uses to the
715   // worklist.
716   while (!DeadNodes.empty()) {
717     SDNode *N = DeadNodes.pop_back_val();
718     // Skip to next node if we've already managed to delete the node. This could
719     // happen if replacing a node causes a node previously added to the node to
720     // be deleted.
721     if (N->getOpcode() == ISD::DELETED_NODE)
722       continue;
723 
724     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
725       DUL->NodeDeleted(N, nullptr);
726 
727     // Take the node out of the appropriate CSE map.
728     RemoveNodeFromCSEMaps(N);
729 
730     // Next, brutally remove the operand list.  This is safe to do, as there are
731     // no cycles in the graph.
732     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
733       SDUse &Use = *I++;
734       SDNode *Operand = Use.getNode();
735       Use.set(SDValue());
736 
737       // Now that we removed this operand, see if there are no uses of it left.
738       if (Operand->use_empty())
739         DeadNodes.push_back(Operand);
740     }
741 
742     DeallocateNode(N);
743   }
744 }
745 
746 void SelectionDAG::RemoveDeadNode(SDNode *N){
747   SmallVector<SDNode*, 16> DeadNodes(1, N);
748 
749   // Create a dummy node that adds a reference to the root node, preventing
750   // it from being deleted.  (This matters if the root is an operand of the
751   // dead node.)
752   HandleSDNode Dummy(getRoot());
753 
754   RemoveDeadNodes(DeadNodes);
755 }
756 
757 void SelectionDAG::DeleteNode(SDNode *N) {
758   // First take this out of the appropriate CSE map.
759   RemoveNodeFromCSEMaps(N);
760 
761   // Finally, remove uses due to operands of this node, remove from the
762   // AllNodes list, and delete the node.
763   DeleteNodeNotInCSEMaps(N);
764 }
765 
766 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
767   assert(N->getIterator() != AllNodes.begin() &&
768          "Cannot delete the entry node!");
769   assert(N->use_empty() && "Cannot delete a node that is not dead!");
770 
771   // Drop all of the operands and decrement used node's use counts.
772   N->DropOperands();
773 
774   DeallocateNode(N);
775 }
776 
777 void SDDbgInfo::erase(const SDNode *Node) {
778   DbgValMapType::iterator I = DbgValMap.find(Node);
779   if (I == DbgValMap.end())
780     return;
781   for (auto &Val: I->second)
782     Val->setIsInvalidated();
783   DbgValMap.erase(I);
784 }
785 
786 void SelectionDAG::DeallocateNode(SDNode *N) {
787   // If we have operands, deallocate them.
788   removeOperands(N);
789 
790   NodeAllocator.Deallocate(AllNodes.remove(N));
791 
792   // Set the opcode to DELETED_NODE to help catch bugs when node
793   // memory is reallocated.
794   // FIXME: There are places in SDag that have grown a dependency on the opcode
795   // value in the released node.
796   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
797   N->NodeType = ISD::DELETED_NODE;
798 
799   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
800   // them and forget about that node.
801   DbgInfo->erase(N);
802 }
803 
804 #ifndef NDEBUG
805 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
806 static void VerifySDNode(SDNode *N) {
807   switch (N->getOpcode()) {
808   default:
809     break;
810   case ISD::BUILD_PAIR: {
811     EVT VT = N->getValueType(0);
812     assert(N->getNumValues() == 1 && "Too many results!");
813     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
814            "Wrong return type!");
815     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
816     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
817            "Mismatched operand types!");
818     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
819            "Wrong operand type!");
820     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
821            "Wrong return type size");
822     break;
823   }
824   case ISD::BUILD_VECTOR: {
825     assert(N->getNumValues() == 1 && "Too many results!");
826     assert(N->getValueType(0).isVector() && "Wrong return type!");
827     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
828            "Wrong number of operands!");
829     EVT EltVT = N->getValueType(0).getVectorElementType();
830     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
831       assert((I->getValueType() == EltVT ||
832              (EltVT.isInteger() && I->getValueType().isInteger() &&
833               EltVT.bitsLE(I->getValueType()))) &&
834             "Wrong operand type!");
835       assert(I->getValueType() == N->getOperand(0).getValueType() &&
836              "Operands must all have the same type");
837     }
838     break;
839   }
840   }
841 }
842 #endif // NDEBUG
843 
844 /// Insert a newly allocated node into the DAG.
845 ///
846 /// Handles insertion into the all nodes list and CSE map, as well as
847 /// verification and other common operations when a new node is allocated.
848 void SelectionDAG::InsertNode(SDNode *N) {
849   AllNodes.push_back(N);
850 #ifndef NDEBUG
851   N->PersistentId = NextPersistentId++;
852   VerifySDNode(N);
853 #endif
854   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
855     DUL->NodeInserted(N);
856 }
857 
858 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
859 /// correspond to it.  This is useful when we're about to delete or repurpose
860 /// the node.  We don't want future request for structurally identical nodes
861 /// to return N anymore.
862 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
863   bool Erased = false;
864   switch (N->getOpcode()) {
865   case ISD::HANDLENODE: return false;  // noop.
866   case ISD::CONDCODE:
867     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
868            "Cond code doesn't exist!");
869     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
870     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
871     break;
872   case ISD::ExternalSymbol:
873     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
874     break;
875   case ISD::TargetExternalSymbol: {
876     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
877     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
878         ESN->getSymbol(), ESN->getTargetFlags()));
879     break;
880   }
881   case ISD::MCSymbol: {
882     auto *MCSN = cast<MCSymbolSDNode>(N);
883     Erased = MCSymbols.erase(MCSN->getMCSymbol());
884     break;
885   }
886   case ISD::VALUETYPE: {
887     EVT VT = cast<VTSDNode>(N)->getVT();
888     if (VT.isExtended()) {
889       Erased = ExtendedValueTypeNodes.erase(VT);
890     } else {
891       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
892       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
893     }
894     break;
895   }
896   default:
897     // Remove it from the CSE Map.
898     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
899     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
900     Erased = CSEMap.RemoveNode(N);
901     break;
902   }
903 #ifndef NDEBUG
904   // Verify that the node was actually in one of the CSE maps, unless it has a
905   // flag result (which cannot be CSE'd) or is one of the special cases that are
906   // not subject to CSE.
907   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
908       !N->isMachineOpcode() && !doNotCSE(N)) {
909     N->dump(this);
910     dbgs() << "\n";
911     llvm_unreachable("Node is not in map!");
912   }
913 #endif
914   return Erased;
915 }
916 
917 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
918 /// maps and modified in place. Add it back to the CSE maps, unless an identical
919 /// node already exists, in which case transfer all its users to the existing
920 /// node. This transfer can potentially trigger recursive merging.
921 void
922 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
923   // For node types that aren't CSE'd, just act as if no identical node
924   // already exists.
925   if (!doNotCSE(N)) {
926     SDNode *Existing = CSEMap.GetOrInsertNode(N);
927     if (Existing != N) {
928       // If there was already an existing matching node, use ReplaceAllUsesWith
929       // to replace the dead one with the existing one.  This can cause
930       // recursive merging of other unrelated nodes down the line.
931       ReplaceAllUsesWith(N, Existing);
932 
933       // N is now dead. Inform the listeners and delete it.
934       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
935         DUL->NodeDeleted(N, Existing);
936       DeleteNodeNotInCSEMaps(N);
937       return;
938     }
939   }
940 
941   // If the node doesn't already exist, we updated it.  Inform listeners.
942   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
943     DUL->NodeUpdated(N);
944 }
945 
946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
947 /// were replaced with those specified.  If this node is never memoized,
948 /// return null, otherwise return a pointer to the slot it would take.  If a
949 /// node already exists with these operands, the slot will be non-null.
950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
951                                            void *&InsertPos) {
952   if (doNotCSE(N))
953     return nullptr;
954 
955   SDValue Ops[] = { Op };
956   FoldingSetNodeID ID;
957   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
958   AddNodeIDCustom(ID, N);
959   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
960   if (Node)
961     Node->intersectFlagsWith(N->getFlags());
962   return Node;
963 }
964 
965 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
966 /// were replaced with those specified.  If this node is never memoized,
967 /// return null, otherwise return a pointer to the slot it would take.  If a
968 /// node already exists with these operands, the slot will be non-null.
969 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
970                                            SDValue Op1, SDValue Op2,
971                                            void *&InsertPos) {
972   if (doNotCSE(N))
973     return nullptr;
974 
975   SDValue Ops[] = { Op1, Op2 };
976   FoldingSetNodeID ID;
977   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
978   AddNodeIDCustom(ID, N);
979   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
980   if (Node)
981     Node->intersectFlagsWith(N->getFlags());
982   return Node;
983 }
984 
985 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
986 /// were replaced with those specified.  If this node is never memoized,
987 /// return null, otherwise return a pointer to the slot it would take.  If a
988 /// node already exists with these operands, the slot will be non-null.
989 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
990                                            void *&InsertPos) {
991   if (doNotCSE(N))
992     return nullptr;
993 
994   FoldingSetNodeID ID;
995   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
996   AddNodeIDCustom(ID, N);
997   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
998   if (Node)
999     Node->intersectFlagsWith(N->getFlags());
1000   return Node;
1001 }
1002 
1003 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
1004   Type *Ty = VT == MVT::iPTR ?
1005                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1006                    VT.getTypeForEVT(*getContext());
1007 
1008   return getDataLayout().getABITypeAlignment(Ty);
1009 }
1010 
1011 // EntryNode could meaningfully have debug info if we can find it...
1012 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1013     : TM(tm), OptLevel(OL),
1014       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1015       Root(getEntryNode()) {
1016   InsertNode(&EntryNode);
1017   DbgInfo = new SDDbgInfo();
1018 }
1019 
1020 void SelectionDAG::init(MachineFunction &NewMF,
1021                         OptimizationRemarkEmitter &NewORE,
1022                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1023                         LegacyDivergenceAnalysis * Divergence,
1024                         ProfileSummaryInfo *PSIin,
1025                         BlockFrequencyInfo *BFIin) {
1026   MF = &NewMF;
1027   SDAGISelPass = PassPtr;
1028   ORE = &NewORE;
1029   TLI = getSubtarget().getTargetLowering();
1030   TSI = getSubtarget().getSelectionDAGInfo();
1031   LibInfo = LibraryInfo;
1032   Context = &MF->getFunction().getContext();
1033   DA = Divergence;
1034   PSI = PSIin;
1035   BFI = BFIin;
1036 }
1037 
1038 SelectionDAG::~SelectionDAG() {
1039   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1040   allnodes_clear();
1041   OperandRecycler.clear(OperandAllocator);
1042   delete DbgInfo;
1043 }
1044 
1045 bool SelectionDAG::shouldOptForSize() const {
1046   return MF->getFunction().hasOptSize() ||
1047       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1048 }
1049 
1050 void SelectionDAG::allnodes_clear() {
1051   assert(&*AllNodes.begin() == &EntryNode);
1052   AllNodes.remove(AllNodes.begin());
1053   while (!AllNodes.empty())
1054     DeallocateNode(&AllNodes.front());
1055 #ifndef NDEBUG
1056   NextPersistentId = 0;
1057 #endif
1058 }
1059 
1060 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1061                                           void *&InsertPos) {
1062   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1063   if (N) {
1064     switch (N->getOpcode()) {
1065     default: break;
1066     case ISD::Constant:
1067     case ISD::ConstantFP:
1068       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1069                        "debug location.  Use another overload.");
1070     }
1071   }
1072   return N;
1073 }
1074 
1075 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1076                                           const SDLoc &DL, void *&InsertPos) {
1077   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1078   if (N) {
1079     switch (N->getOpcode()) {
1080     case ISD::Constant:
1081     case ISD::ConstantFP:
1082       // Erase debug location from the node if the node is used at several
1083       // different places. Do not propagate one location to all uses as it
1084       // will cause a worse single stepping debugging experience.
1085       if (N->getDebugLoc() != DL.getDebugLoc())
1086         N->setDebugLoc(DebugLoc());
1087       break;
1088     default:
1089       // When the node's point of use is located earlier in the instruction
1090       // sequence than its prior point of use, update its debug info to the
1091       // earlier location.
1092       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1093         N->setDebugLoc(DL.getDebugLoc());
1094       break;
1095     }
1096   }
1097   return N;
1098 }
1099 
1100 void SelectionDAG::clear() {
1101   allnodes_clear();
1102   OperandRecycler.clear(OperandAllocator);
1103   OperandAllocator.Reset();
1104   CSEMap.clear();
1105 
1106   ExtendedValueTypeNodes.clear();
1107   ExternalSymbols.clear();
1108   TargetExternalSymbols.clear();
1109   MCSymbols.clear();
1110   SDCallSiteDbgInfo.clear();
1111   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1112             static_cast<CondCodeSDNode*>(nullptr));
1113   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1114             static_cast<SDNode*>(nullptr));
1115 
1116   EntryNode.UseList = nullptr;
1117   InsertNode(&EntryNode);
1118   Root = getEntryNode();
1119   DbgInfo->clear();
1120 }
1121 
1122 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1123   return VT.bitsGT(Op.getValueType())
1124              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1125              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1126 }
1127 
1128 std::pair<SDValue, SDValue>
1129 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1130                                        const SDLoc &DL, EVT VT) {
1131   assert(!VT.bitsEq(Op.getValueType()) &&
1132          "Strict no-op FP extend/round not allowed.");
1133   SDValue Res =
1134       VT.bitsGT(Op.getValueType())
1135           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1136           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1137                     {Chain, Op, getIntPtrConstant(0, DL)});
1138 
1139   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1140 }
1141 
1142 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1143   return VT.bitsGT(Op.getValueType()) ?
1144     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1145     getNode(ISD::TRUNCATE, DL, VT, Op);
1146 }
1147 
1148 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1149   return VT.bitsGT(Op.getValueType()) ?
1150     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1151     getNode(ISD::TRUNCATE, DL, VT, Op);
1152 }
1153 
1154 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1155   return VT.bitsGT(Op.getValueType()) ?
1156     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1157     getNode(ISD::TRUNCATE, DL, VT, Op);
1158 }
1159 
1160 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1161                                         EVT OpVT) {
1162   if (VT.bitsLE(Op.getValueType()))
1163     return getNode(ISD::TRUNCATE, SL, VT, Op);
1164 
1165   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1166   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1167 }
1168 
1169 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1170   assert(!VT.isVector() &&
1171          "getZeroExtendInReg should use the vector element type instead of "
1172          "the vector type!");
1173   if (Op.getValueType().getScalarType() == VT) return Op;
1174   unsigned BitWidth = Op.getScalarValueSizeInBits();
1175   APInt Imm = APInt::getLowBitsSet(BitWidth,
1176                                    VT.getSizeInBits());
1177   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1178                  getConstant(Imm, DL, Op.getValueType()));
1179 }
1180 
1181 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1182   // Only unsigned pointer semantics are supported right now. In the future this
1183   // might delegate to TLI to check pointer signedness.
1184   return getZExtOrTrunc(Op, DL, VT);
1185 }
1186 
1187 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1188   // Only unsigned pointer semantics are supported right now. In the future this
1189   // might delegate to TLI to check pointer signedness.
1190   return getZeroExtendInReg(Op, DL, VT);
1191 }
1192 
1193 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1194 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1195   EVT EltVT = VT.getScalarType();
1196   SDValue NegOne =
1197     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1198   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1199 }
1200 
1201 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1202   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1203   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1204 }
1205 
1206 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1207                                       EVT OpVT) {
1208   if (!V)
1209     return getConstant(0, DL, VT);
1210 
1211   switch (TLI->getBooleanContents(OpVT)) {
1212   case TargetLowering::ZeroOrOneBooleanContent:
1213   case TargetLowering::UndefinedBooleanContent:
1214     return getConstant(1, DL, VT);
1215   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1216     return getAllOnesConstant(DL, VT);
1217   }
1218   llvm_unreachable("Unexpected boolean content enum!");
1219 }
1220 
1221 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1222                                   bool isT, bool isO) {
1223   EVT EltVT = VT.getScalarType();
1224   assert((EltVT.getSizeInBits() >= 64 ||
1225          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1226          "getConstant with a uint64_t value that doesn't fit in the type!");
1227   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1228 }
1229 
1230 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1231                                   bool isT, bool isO) {
1232   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1233 }
1234 
1235 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1236                                   EVT VT, bool isT, bool isO) {
1237   assert(VT.isInteger() && "Cannot create FP integer constant!");
1238 
1239   EVT EltVT = VT.getScalarType();
1240   const ConstantInt *Elt = &Val;
1241 
1242   // In some cases the vector type is legal but the element type is illegal and
1243   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1244   // inserted value (the type does not need to match the vector element type).
1245   // Any extra bits introduced will be truncated away.
1246   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1247       TargetLowering::TypePromoteInteger) {
1248    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1249    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1250    Elt = ConstantInt::get(*getContext(), NewVal);
1251   }
1252   // In other cases the element type is illegal and needs to be expanded, for
1253   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1254   // the value into n parts and use a vector type with n-times the elements.
1255   // Then bitcast to the type requested.
1256   // Legalizing constants too early makes the DAGCombiner's job harder so we
1257   // only legalize if the DAG tells us we must produce legal types.
1258   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1259            TLI->getTypeAction(*getContext(), EltVT) ==
1260            TargetLowering::TypeExpandInteger) {
1261     const APInt &NewVal = Elt->getValue();
1262     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1263     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1264     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1265     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1266 
1267     // Check the temporary vector is the correct size. If this fails then
1268     // getTypeToTransformTo() probably returned a type whose size (in bits)
1269     // isn't a power-of-2 factor of the requested type size.
1270     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1271 
1272     SmallVector<SDValue, 2> EltParts;
1273     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1274       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1275                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1276                                      ViaEltVT, isT, isO));
1277     }
1278 
1279     // EltParts is currently in little endian order. If we actually want
1280     // big-endian order then reverse it now.
1281     if (getDataLayout().isBigEndian())
1282       std::reverse(EltParts.begin(), EltParts.end());
1283 
1284     // The elements must be reversed when the element order is different
1285     // to the endianness of the elements (because the BITCAST is itself a
1286     // vector shuffle in this situation). However, we do not need any code to
1287     // perform this reversal because getConstant() is producing a vector
1288     // splat.
1289     // This situation occurs in MIPS MSA.
1290 
1291     SmallVector<SDValue, 8> Ops;
1292     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1293       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1294 
1295     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1296     return V;
1297   }
1298 
1299   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1300          "APInt size does not match type size!");
1301   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1302   FoldingSetNodeID ID;
1303   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1304   ID.AddPointer(Elt);
1305   ID.AddBoolean(isO);
1306   void *IP = nullptr;
1307   SDNode *N = nullptr;
1308   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1309     if (!VT.isVector())
1310       return SDValue(N, 0);
1311 
1312   if (!N) {
1313     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1314     CSEMap.InsertNode(N, IP);
1315     InsertNode(N);
1316     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1317   }
1318 
1319   SDValue Result(N, 0);
1320   if (VT.isScalableVector())
1321     Result = getSplatVector(VT, DL, Result);
1322   else if (VT.isVector())
1323     Result = getSplatBuildVector(VT, DL, Result);
1324 
1325   return Result;
1326 }
1327 
1328 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1329                                         bool isTarget) {
1330   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1331 }
1332 
1333 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1334                                              const SDLoc &DL, bool LegalTypes) {
1335   assert(VT.isInteger() && "Shift amount is not an integer type!");
1336   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1337   return getConstant(Val, DL, ShiftVT);
1338 }
1339 
1340 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1341                                            bool isTarget) {
1342   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1343 }
1344 
1345 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1346                                     bool isTarget) {
1347   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1348 }
1349 
1350 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1351                                     EVT VT, bool isTarget) {
1352   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1353 
1354   EVT EltVT = VT.getScalarType();
1355 
1356   // Do the map lookup using the actual bit pattern for the floating point
1357   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1358   // we don't have issues with SNANs.
1359   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1360   FoldingSetNodeID ID;
1361   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1362   ID.AddPointer(&V);
1363   void *IP = nullptr;
1364   SDNode *N = nullptr;
1365   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1366     if (!VT.isVector())
1367       return SDValue(N, 0);
1368 
1369   if (!N) {
1370     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1371     CSEMap.InsertNode(N, IP);
1372     InsertNode(N);
1373   }
1374 
1375   SDValue Result(N, 0);
1376   if (VT.isVector())
1377     Result = getSplatBuildVector(VT, DL, Result);
1378   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1379   return Result;
1380 }
1381 
1382 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1383                                     bool isTarget) {
1384   EVT EltVT = VT.getScalarType();
1385   if (EltVT == MVT::f32)
1386     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1387   else if (EltVT == MVT::f64)
1388     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1389   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1390            EltVT == MVT::f16) {
1391     bool Ignored;
1392     APFloat APF = APFloat(Val);
1393     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1394                 &Ignored);
1395     return getConstantFP(APF, DL, VT, isTarget);
1396   } else
1397     llvm_unreachable("Unsupported type in getConstantFP");
1398 }
1399 
1400 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1401                                        EVT VT, int64_t Offset, bool isTargetGA,
1402                                        unsigned TargetFlags) {
1403   assert((TargetFlags == 0 || isTargetGA) &&
1404          "Cannot set target flags on target-independent globals");
1405 
1406   // Truncate (with sign-extension) the offset value to the pointer size.
1407   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1408   if (BitWidth < 64)
1409     Offset = SignExtend64(Offset, BitWidth);
1410 
1411   unsigned Opc;
1412   if (GV->isThreadLocal())
1413     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1414   else
1415     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1416 
1417   FoldingSetNodeID ID;
1418   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1419   ID.AddPointer(GV);
1420   ID.AddInteger(Offset);
1421   ID.AddInteger(TargetFlags);
1422   void *IP = nullptr;
1423   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1424     return SDValue(E, 0);
1425 
1426   auto *N = newSDNode<GlobalAddressSDNode>(
1427       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1428   CSEMap.InsertNode(N, IP);
1429     InsertNode(N);
1430   return SDValue(N, 0);
1431 }
1432 
1433 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1434   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1435   FoldingSetNodeID ID;
1436   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1437   ID.AddInteger(FI);
1438   void *IP = nullptr;
1439   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1440     return SDValue(E, 0);
1441 
1442   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1443   CSEMap.InsertNode(N, IP);
1444   InsertNode(N);
1445   return SDValue(N, 0);
1446 }
1447 
1448 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1449                                    unsigned TargetFlags) {
1450   assert((TargetFlags == 0 || isTarget) &&
1451          "Cannot set target flags on target-independent jump tables");
1452   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1453   FoldingSetNodeID ID;
1454   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1455   ID.AddInteger(JTI);
1456   ID.AddInteger(TargetFlags);
1457   void *IP = nullptr;
1458   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1459     return SDValue(E, 0);
1460 
1461   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1462   CSEMap.InsertNode(N, IP);
1463   InsertNode(N);
1464   return SDValue(N, 0);
1465 }
1466 
1467 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1468                                       unsigned Alignment, int Offset,
1469                                       bool isTarget,
1470                                       unsigned TargetFlags) {
1471   assert((TargetFlags == 0 || isTarget) &&
1472          "Cannot set target flags on target-independent globals");
1473   if (Alignment == 0)
1474     Alignment = shouldOptForSize()
1475                     ? getDataLayout().getABITypeAlignment(C->getType())
1476                     : getDataLayout().getPrefTypeAlignment(C->getType());
1477   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1478   FoldingSetNodeID ID;
1479   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1480   ID.AddInteger(Alignment);
1481   ID.AddInteger(Offset);
1482   ID.AddPointer(C);
1483   ID.AddInteger(TargetFlags);
1484   void *IP = nullptr;
1485   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1486     return SDValue(E, 0);
1487 
1488   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1489                                           TargetFlags);
1490   CSEMap.InsertNode(N, IP);
1491   InsertNode(N);
1492   return SDValue(N, 0);
1493 }
1494 
1495 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1496                                       unsigned Alignment, int Offset,
1497                                       bool isTarget,
1498                                       unsigned TargetFlags) {
1499   assert((TargetFlags == 0 || isTarget) &&
1500          "Cannot set target flags on target-independent globals");
1501   if (Alignment == 0)
1502     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1503   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1504   FoldingSetNodeID ID;
1505   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1506   ID.AddInteger(Alignment);
1507   ID.AddInteger(Offset);
1508   C->addSelectionDAGCSEId(ID);
1509   ID.AddInteger(TargetFlags);
1510   void *IP = nullptr;
1511   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1512     return SDValue(E, 0);
1513 
1514   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1515                                           TargetFlags);
1516   CSEMap.InsertNode(N, IP);
1517   InsertNode(N);
1518   return SDValue(N, 0);
1519 }
1520 
1521 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1522                                      unsigned TargetFlags) {
1523   FoldingSetNodeID ID;
1524   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1525   ID.AddInteger(Index);
1526   ID.AddInteger(Offset);
1527   ID.AddInteger(TargetFlags);
1528   void *IP = nullptr;
1529   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1530     return SDValue(E, 0);
1531 
1532   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1533   CSEMap.InsertNode(N, IP);
1534   InsertNode(N);
1535   return SDValue(N, 0);
1536 }
1537 
1538 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1539   FoldingSetNodeID ID;
1540   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1541   ID.AddPointer(MBB);
1542   void *IP = nullptr;
1543   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1544     return SDValue(E, 0);
1545 
1546   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1547   CSEMap.InsertNode(N, IP);
1548   InsertNode(N);
1549   return SDValue(N, 0);
1550 }
1551 
1552 SDValue SelectionDAG::getValueType(EVT VT) {
1553   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1554       ValueTypeNodes.size())
1555     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1556 
1557   SDNode *&N = VT.isExtended() ?
1558     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1559 
1560   if (N) return SDValue(N, 0);
1561   N = newSDNode<VTSDNode>(VT);
1562   InsertNode(N);
1563   return SDValue(N, 0);
1564 }
1565 
1566 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1567   SDNode *&N = ExternalSymbols[Sym];
1568   if (N) return SDValue(N, 0);
1569   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1570   InsertNode(N);
1571   return SDValue(N, 0);
1572 }
1573 
1574 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1575   SDNode *&N = MCSymbols[Sym];
1576   if (N)
1577     return SDValue(N, 0);
1578   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1579   InsertNode(N);
1580   return SDValue(N, 0);
1581 }
1582 
1583 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1584                                               unsigned TargetFlags) {
1585   SDNode *&N =
1586       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1587   if (N) return SDValue(N, 0);
1588   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1589   InsertNode(N);
1590   return SDValue(N, 0);
1591 }
1592 
1593 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1594   if ((unsigned)Cond >= CondCodeNodes.size())
1595     CondCodeNodes.resize(Cond+1);
1596 
1597   if (!CondCodeNodes[Cond]) {
1598     auto *N = newSDNode<CondCodeSDNode>(Cond);
1599     CondCodeNodes[Cond] = N;
1600     InsertNode(N);
1601   }
1602 
1603   return SDValue(CondCodeNodes[Cond], 0);
1604 }
1605 
1606 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1607 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1608 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1609   std::swap(N1, N2);
1610   ShuffleVectorSDNode::commuteMask(M);
1611 }
1612 
1613 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1614                                        SDValue N2, ArrayRef<int> Mask) {
1615   assert(VT.getVectorNumElements() == Mask.size() &&
1616            "Must have the same number of vector elements as mask elements!");
1617   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1618          "Invalid VECTOR_SHUFFLE");
1619 
1620   // Canonicalize shuffle undef, undef -> undef
1621   if (N1.isUndef() && N2.isUndef())
1622     return getUNDEF(VT);
1623 
1624   // Validate that all indices in Mask are within the range of the elements
1625   // input to the shuffle.
1626   int NElts = Mask.size();
1627   assert(llvm::all_of(Mask,
1628                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1629          "Index out of range");
1630 
1631   // Copy the mask so we can do any needed cleanup.
1632   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1633 
1634   // Canonicalize shuffle v, v -> v, undef
1635   if (N1 == N2) {
1636     N2 = getUNDEF(VT);
1637     for (int i = 0; i != NElts; ++i)
1638       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1639   }
1640 
1641   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1642   if (N1.isUndef())
1643     commuteShuffle(N1, N2, MaskVec);
1644 
1645   if (TLI->hasVectorBlend()) {
1646     // If shuffling a splat, try to blend the splat instead. We do this here so
1647     // that even when this arises during lowering we don't have to re-handle it.
1648     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1649       BitVector UndefElements;
1650       SDValue Splat = BV->getSplatValue(&UndefElements);
1651       if (!Splat)
1652         return;
1653 
1654       for (int i = 0; i < NElts; ++i) {
1655         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1656           continue;
1657 
1658         // If this input comes from undef, mark it as such.
1659         if (UndefElements[MaskVec[i] - Offset]) {
1660           MaskVec[i] = -1;
1661           continue;
1662         }
1663 
1664         // If we can blend a non-undef lane, use that instead.
1665         if (!UndefElements[i])
1666           MaskVec[i] = i + Offset;
1667       }
1668     };
1669     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1670       BlendSplat(N1BV, 0);
1671     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1672       BlendSplat(N2BV, NElts);
1673   }
1674 
1675   // Canonicalize all index into lhs, -> shuffle lhs, undef
1676   // Canonicalize all index into rhs, -> shuffle rhs, undef
1677   bool AllLHS = true, AllRHS = true;
1678   bool N2Undef = N2.isUndef();
1679   for (int i = 0; i != NElts; ++i) {
1680     if (MaskVec[i] >= NElts) {
1681       if (N2Undef)
1682         MaskVec[i] = -1;
1683       else
1684         AllLHS = false;
1685     } else if (MaskVec[i] >= 0) {
1686       AllRHS = false;
1687     }
1688   }
1689   if (AllLHS && AllRHS)
1690     return getUNDEF(VT);
1691   if (AllLHS && !N2Undef)
1692     N2 = getUNDEF(VT);
1693   if (AllRHS) {
1694     N1 = getUNDEF(VT);
1695     commuteShuffle(N1, N2, MaskVec);
1696   }
1697   // Reset our undef status after accounting for the mask.
1698   N2Undef = N2.isUndef();
1699   // Re-check whether both sides ended up undef.
1700   if (N1.isUndef() && N2Undef)
1701     return getUNDEF(VT);
1702 
1703   // If Identity shuffle return that node.
1704   bool Identity = true, AllSame = true;
1705   for (int i = 0; i != NElts; ++i) {
1706     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1707     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1708   }
1709   if (Identity && NElts)
1710     return N1;
1711 
1712   // Shuffling a constant splat doesn't change the result.
1713   if (N2Undef) {
1714     SDValue V = N1;
1715 
1716     // Look through any bitcasts. We check that these don't change the number
1717     // (and size) of elements and just changes their types.
1718     while (V.getOpcode() == ISD::BITCAST)
1719       V = V->getOperand(0);
1720 
1721     // A splat should always show up as a build vector node.
1722     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1723       BitVector UndefElements;
1724       SDValue Splat = BV->getSplatValue(&UndefElements);
1725       // If this is a splat of an undef, shuffling it is also undef.
1726       if (Splat && Splat.isUndef())
1727         return getUNDEF(VT);
1728 
1729       bool SameNumElts =
1730           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1731 
1732       // We only have a splat which can skip shuffles if there is a splatted
1733       // value and no undef lanes rearranged by the shuffle.
1734       if (Splat && UndefElements.none()) {
1735         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1736         // number of elements match or the value splatted is a zero constant.
1737         if (SameNumElts)
1738           return N1;
1739         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1740           if (C->isNullValue())
1741             return N1;
1742       }
1743 
1744       // If the shuffle itself creates a splat, build the vector directly.
1745       if (AllSame && SameNumElts) {
1746         EVT BuildVT = BV->getValueType(0);
1747         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1748         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1749 
1750         // We may have jumped through bitcasts, so the type of the
1751         // BUILD_VECTOR may not match the type of the shuffle.
1752         if (BuildVT != VT)
1753           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1754         return NewBV;
1755       }
1756     }
1757   }
1758 
1759   FoldingSetNodeID ID;
1760   SDValue Ops[2] = { N1, N2 };
1761   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1762   for (int i = 0; i != NElts; ++i)
1763     ID.AddInteger(MaskVec[i]);
1764 
1765   void* IP = nullptr;
1766   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1767     return SDValue(E, 0);
1768 
1769   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1770   // SDNode doesn't have access to it.  This memory will be "leaked" when
1771   // the node is deallocated, but recovered when the NodeAllocator is released.
1772   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1773   llvm::copy(MaskVec, MaskAlloc);
1774 
1775   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1776                                            dl.getDebugLoc(), MaskAlloc);
1777   createOperands(N, Ops);
1778 
1779   CSEMap.InsertNode(N, IP);
1780   InsertNode(N);
1781   SDValue V = SDValue(N, 0);
1782   NewSDValueDbgMsg(V, "Creating new node: ", this);
1783   return V;
1784 }
1785 
1786 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1787   EVT VT = SV.getValueType(0);
1788   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1789   ShuffleVectorSDNode::commuteMask(MaskVec);
1790 
1791   SDValue Op0 = SV.getOperand(0);
1792   SDValue Op1 = SV.getOperand(1);
1793   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1794 }
1795 
1796 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1797   FoldingSetNodeID ID;
1798   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1799   ID.AddInteger(RegNo);
1800   void *IP = nullptr;
1801   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1802     return SDValue(E, 0);
1803 
1804   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1805   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1806   CSEMap.InsertNode(N, IP);
1807   InsertNode(N);
1808   return SDValue(N, 0);
1809 }
1810 
1811 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1812   FoldingSetNodeID ID;
1813   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1814   ID.AddPointer(RegMask);
1815   void *IP = nullptr;
1816   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1817     return SDValue(E, 0);
1818 
1819   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1820   CSEMap.InsertNode(N, IP);
1821   InsertNode(N);
1822   return SDValue(N, 0);
1823 }
1824 
1825 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1826                                  MCSymbol *Label) {
1827   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1828 }
1829 
1830 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1831                                    SDValue Root, MCSymbol *Label) {
1832   FoldingSetNodeID ID;
1833   SDValue Ops[] = { Root };
1834   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1835   ID.AddPointer(Label);
1836   void *IP = nullptr;
1837   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1838     return SDValue(E, 0);
1839 
1840   auto *N =
1841       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1842   createOperands(N, Ops);
1843 
1844   CSEMap.InsertNode(N, IP);
1845   InsertNode(N);
1846   return SDValue(N, 0);
1847 }
1848 
1849 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1850                                       int64_t Offset, bool isTarget,
1851                                       unsigned TargetFlags) {
1852   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1853 
1854   FoldingSetNodeID ID;
1855   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1856   ID.AddPointer(BA);
1857   ID.AddInteger(Offset);
1858   ID.AddInteger(TargetFlags);
1859   void *IP = nullptr;
1860   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1861     return SDValue(E, 0);
1862 
1863   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1864   CSEMap.InsertNode(N, IP);
1865   InsertNode(N);
1866   return SDValue(N, 0);
1867 }
1868 
1869 SDValue SelectionDAG::getSrcValue(const Value *V) {
1870   assert((!V || V->getType()->isPointerTy()) &&
1871          "SrcValue is not a pointer?");
1872 
1873   FoldingSetNodeID ID;
1874   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1875   ID.AddPointer(V);
1876 
1877   void *IP = nullptr;
1878   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1879     return SDValue(E, 0);
1880 
1881   auto *N = newSDNode<SrcValueSDNode>(V);
1882   CSEMap.InsertNode(N, IP);
1883   InsertNode(N);
1884   return SDValue(N, 0);
1885 }
1886 
1887 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1888   FoldingSetNodeID ID;
1889   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1890   ID.AddPointer(MD);
1891 
1892   void *IP = nullptr;
1893   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1894     return SDValue(E, 0);
1895 
1896   auto *N = newSDNode<MDNodeSDNode>(MD);
1897   CSEMap.InsertNode(N, IP);
1898   InsertNode(N);
1899   return SDValue(N, 0);
1900 }
1901 
1902 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1903   if (VT == V.getValueType())
1904     return V;
1905 
1906   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1907 }
1908 
1909 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1910                                        unsigned SrcAS, unsigned DestAS) {
1911   SDValue Ops[] = {Ptr};
1912   FoldingSetNodeID ID;
1913   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1914   ID.AddInteger(SrcAS);
1915   ID.AddInteger(DestAS);
1916 
1917   void *IP = nullptr;
1918   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1919     return SDValue(E, 0);
1920 
1921   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1922                                            VT, SrcAS, DestAS);
1923   createOperands(N, Ops);
1924 
1925   CSEMap.InsertNode(N, IP);
1926   InsertNode(N);
1927   return SDValue(N, 0);
1928 }
1929 
1930 /// getShiftAmountOperand - Return the specified value casted to
1931 /// the target's desired shift amount type.
1932 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1933   EVT OpTy = Op.getValueType();
1934   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1935   if (OpTy == ShTy || OpTy.isVector()) return Op;
1936 
1937   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1938 }
1939 
1940 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1941   SDLoc dl(Node);
1942   const TargetLowering &TLI = getTargetLoweringInfo();
1943   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1944   EVT VT = Node->getValueType(0);
1945   SDValue Tmp1 = Node->getOperand(0);
1946   SDValue Tmp2 = Node->getOperand(1);
1947   const MaybeAlign MA(Node->getConstantOperandVal(3));
1948 
1949   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1950                                Tmp2, MachinePointerInfo(V));
1951   SDValue VAList = VAListLoad;
1952 
1953   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1954     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1955                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
1956 
1957     VAList =
1958         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1959                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
1960   }
1961 
1962   // Increment the pointer, VAList, to the next vaarg
1963   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1964                  getConstant(getDataLayout().getTypeAllocSize(
1965                                                VT.getTypeForEVT(*getContext())),
1966                              dl, VAList.getValueType()));
1967   // Store the incremented VAList to the legalized pointer
1968   Tmp1 =
1969       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1970   // Load the actual argument out of the pointer VAList
1971   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1972 }
1973 
1974 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1975   SDLoc dl(Node);
1976   const TargetLowering &TLI = getTargetLoweringInfo();
1977   // This defaults to loading a pointer from the input and storing it to the
1978   // output, returning the chain.
1979   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1980   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1981   SDValue Tmp1 =
1982       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1983               Node->getOperand(2), MachinePointerInfo(VS));
1984   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1985                   MachinePointerInfo(VD));
1986 }
1987 
1988 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1989   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1990   unsigned ByteSize = VT.getStoreSize();
1991   Type *Ty = VT.getTypeForEVT(*getContext());
1992   unsigned StackAlign =
1993       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1994 
1995   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1996   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1997 }
1998 
1999 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2000   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
2001   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2002   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2003   const DataLayout &DL = getDataLayout();
2004   unsigned Align =
2005       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
2006 
2007   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
2008   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
2009   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2010 }
2011 
2012 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2013                                 ISD::CondCode Cond, const SDLoc &dl) {
2014   EVT OpVT = N1.getValueType();
2015 
2016   // These setcc operations always fold.
2017   switch (Cond) {
2018   default: break;
2019   case ISD::SETFALSE:
2020   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2021   case ISD::SETTRUE:
2022   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2023 
2024   case ISD::SETOEQ:
2025   case ISD::SETOGT:
2026   case ISD::SETOGE:
2027   case ISD::SETOLT:
2028   case ISD::SETOLE:
2029   case ISD::SETONE:
2030   case ISD::SETO:
2031   case ISD::SETUO:
2032   case ISD::SETUEQ:
2033   case ISD::SETUNE:
2034     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2035     break;
2036   }
2037 
2038   if (OpVT.isInteger()) {
2039     // For EQ and NE, we can always pick a value for the undef to make the
2040     // predicate pass or fail, so we can return undef.
2041     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2042     // icmp eq/ne X, undef -> undef.
2043     if ((N1.isUndef() || N2.isUndef()) &&
2044         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2045       return getUNDEF(VT);
2046 
2047     // If both operands are undef, we can return undef for int comparison.
2048     // icmp undef, undef -> undef.
2049     if (N1.isUndef() && N2.isUndef())
2050       return getUNDEF(VT);
2051 
2052     // icmp X, X -> true/false
2053     // icmp X, undef -> true/false because undef could be X.
2054     if (N1 == N2)
2055       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2056   }
2057 
2058   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2059     const APInt &C2 = N2C->getAPIntValue();
2060     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2061       const APInt &C1 = N1C->getAPIntValue();
2062 
2063       switch (Cond) {
2064       default: llvm_unreachable("Unknown integer setcc!");
2065       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2066       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2067       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2068       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2069       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2070       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2071       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2072       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2073       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2074       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2075       }
2076     }
2077   }
2078 
2079   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2080   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2081 
2082   if (N1CFP && N2CFP) {
2083     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2084     switch (Cond) {
2085     default: break;
2086     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2087                         return getUNDEF(VT);
2088                       LLVM_FALLTHROUGH;
2089     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2090                                              OpVT);
2091     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2092                         return getUNDEF(VT);
2093                       LLVM_FALLTHROUGH;
2094     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2095                                              R==APFloat::cmpLessThan, dl, VT,
2096                                              OpVT);
2097     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2098                         return getUNDEF(VT);
2099                       LLVM_FALLTHROUGH;
2100     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2101                                              OpVT);
2102     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2103                         return getUNDEF(VT);
2104                       LLVM_FALLTHROUGH;
2105     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2106                                              VT, OpVT);
2107     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2108                         return getUNDEF(VT);
2109                       LLVM_FALLTHROUGH;
2110     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2111                                              R==APFloat::cmpEqual, dl, VT,
2112                                              OpVT);
2113     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2114                         return getUNDEF(VT);
2115                       LLVM_FALLTHROUGH;
2116     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2117                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2118     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2119                                              OpVT);
2120     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2121                                              OpVT);
2122     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2123                                              R==APFloat::cmpEqual, dl, VT,
2124                                              OpVT);
2125     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2126                                              OpVT);
2127     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2128                                              R==APFloat::cmpLessThan, dl, VT,
2129                                              OpVT);
2130     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2131                                              R==APFloat::cmpUnordered, dl, VT,
2132                                              OpVT);
2133     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2134                                              VT, OpVT);
2135     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2136                                              OpVT);
2137     }
2138   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2139     // Ensure that the constant occurs on the RHS.
2140     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2141     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2142       return SDValue();
2143     return getSetCC(dl, VT, N2, N1, SwappedCond);
2144   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2145              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2146     // If an operand is known to be a nan (or undef that could be a nan), we can
2147     // fold it.
2148     // Choosing NaN for the undef will always make unordered comparison succeed
2149     // and ordered comparison fails.
2150     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2151     switch (ISD::getUnorderedFlavor(Cond)) {
2152     default:
2153       llvm_unreachable("Unknown flavor!");
2154     case 0: // Known false.
2155       return getBoolConstant(false, dl, VT, OpVT);
2156     case 1: // Known true.
2157       return getBoolConstant(true, dl, VT, OpVT);
2158     case 2: // Undefined.
2159       return getUNDEF(VT);
2160     }
2161   }
2162 
2163   // Could not fold it.
2164   return SDValue();
2165 }
2166 
2167 /// See if the specified operand can be simplified with the knowledge that only
2168 /// the bits specified by DemandedBits are used.
2169 /// TODO: really we should be making this into the DAG equivalent of
2170 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2171 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2172   EVT VT = V.getValueType();
2173   APInt DemandedElts = VT.isVector()
2174                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2175                            : APInt(1, 1);
2176   return GetDemandedBits(V, DemandedBits, DemandedElts);
2177 }
2178 
2179 /// See if the specified operand can be simplified with the knowledge that only
2180 /// the bits specified by DemandedBits are used in the elements specified by
2181 /// DemandedElts.
2182 /// TODO: really we should be making this into the DAG equivalent of
2183 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2184 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2185                                       const APInt &DemandedElts) {
2186   switch (V.getOpcode()) {
2187   default:
2188     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2189                                                 *this, 0);
2190     break;
2191   case ISD::Constant: {
2192     auto *CV = cast<ConstantSDNode>(V.getNode());
2193     assert(CV && "Const value should be ConstSDNode.");
2194     const APInt &CVal = CV->getAPIntValue();
2195     APInt NewVal = CVal & DemandedBits;
2196     if (NewVal != CVal)
2197       return getConstant(NewVal, SDLoc(V), V.getValueType());
2198     break;
2199   }
2200   case ISD::SRL:
2201     // Only look at single-use SRLs.
2202     if (!V.getNode()->hasOneUse())
2203       break;
2204     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2205       // See if we can recursively simplify the LHS.
2206       unsigned Amt = RHSC->getZExtValue();
2207 
2208       // Watch out for shift count overflow though.
2209       if (Amt >= DemandedBits.getBitWidth())
2210         break;
2211       APInt SrcDemandedBits = DemandedBits << Amt;
2212       if (SDValue SimplifyLHS =
2213               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2214         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2215                        V.getOperand(1));
2216     }
2217     break;
2218   case ISD::AND: {
2219     // X & -1 -> X (ignoring bits which aren't demanded).
2220     // Also handle the case where masked out bits in X are known to be zero.
2221     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2222       const APInt &AndVal = RHSC->getAPIntValue();
2223       if (DemandedBits.isSubsetOf(AndVal) ||
2224           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2225                                   AndVal))
2226         return V.getOperand(0);
2227     }
2228     break;
2229   }
2230   }
2231   return SDValue();
2232 }
2233 
2234 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2235 /// use this predicate to simplify operations downstream.
2236 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2237   unsigned BitWidth = Op.getScalarValueSizeInBits();
2238   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2239 }
2240 
2241 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2242 /// this predicate to simplify operations downstream.  Mask is known to be zero
2243 /// for bits that V cannot have.
2244 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2245                                      unsigned Depth) const {
2246   EVT VT = V.getValueType();
2247   APInt DemandedElts = VT.isVector()
2248                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2249                            : APInt(1, 1);
2250   return MaskedValueIsZero(V, Mask, DemandedElts, Depth);
2251 }
2252 
2253 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2254 /// DemandedElts.  We use this predicate to simplify operations downstream.
2255 /// Mask is known to be zero for bits that V cannot have.
2256 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2257                                      const APInt &DemandedElts,
2258                                      unsigned Depth) const {
2259   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2260 }
2261 
2262 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2263 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2264                                         unsigned Depth) const {
2265   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2266 }
2267 
2268 /// isSplatValue - Return true if the vector V has the same value
2269 /// across all DemandedElts.
2270 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2271                                 APInt &UndefElts) {
2272   if (!DemandedElts)
2273     return false; // No demanded elts, better to assume we don't know anything.
2274 
2275   EVT VT = V.getValueType();
2276   assert(VT.isVector() && "Vector type expected");
2277 
2278   unsigned NumElts = VT.getVectorNumElements();
2279   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2280   UndefElts = APInt::getNullValue(NumElts);
2281 
2282   switch (V.getOpcode()) {
2283   case ISD::BUILD_VECTOR: {
2284     SDValue Scl;
2285     for (unsigned i = 0; i != NumElts; ++i) {
2286       SDValue Op = V.getOperand(i);
2287       if (Op.isUndef()) {
2288         UndefElts.setBit(i);
2289         continue;
2290       }
2291       if (!DemandedElts[i])
2292         continue;
2293       if (Scl && Scl != Op)
2294         return false;
2295       Scl = Op;
2296     }
2297     return true;
2298   }
2299   case ISD::VECTOR_SHUFFLE: {
2300     // Check if this is a shuffle node doing a splat.
2301     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2302     int SplatIndex = -1;
2303     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2304     for (int i = 0; i != (int)NumElts; ++i) {
2305       int M = Mask[i];
2306       if (M < 0) {
2307         UndefElts.setBit(i);
2308         continue;
2309       }
2310       if (!DemandedElts[i])
2311         continue;
2312       if (0 <= SplatIndex && SplatIndex != M)
2313         return false;
2314       SplatIndex = M;
2315     }
2316     return true;
2317   }
2318   case ISD::EXTRACT_SUBVECTOR: {
2319     SDValue Src = V.getOperand(0);
2320     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2321     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2322     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2323       // Offset the demanded elts by the subvector index.
2324       uint64_t Idx = SubIdx->getZExtValue();
2325       APInt UndefSrcElts;
2326       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2327       if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2328         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2329         return true;
2330       }
2331     }
2332     break;
2333   }
2334   case ISD::ADD:
2335   case ISD::SUB:
2336   case ISD::AND: {
2337     APInt UndefLHS, UndefRHS;
2338     SDValue LHS = V.getOperand(0);
2339     SDValue RHS = V.getOperand(1);
2340     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2341         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2342       UndefElts = UndefLHS | UndefRHS;
2343       return true;
2344     }
2345     break;
2346   }
2347   }
2348 
2349   return false;
2350 }
2351 
2352 /// Helper wrapper to main isSplatValue function.
2353 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2354   EVT VT = V.getValueType();
2355   assert(VT.isVector() && "Vector type expected");
2356   unsigned NumElts = VT.getVectorNumElements();
2357 
2358   APInt UndefElts;
2359   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2360   return isSplatValue(V, DemandedElts, UndefElts) &&
2361          (AllowUndefs || !UndefElts);
2362 }
2363 
2364 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2365   V = peekThroughExtractSubvectors(V);
2366 
2367   EVT VT = V.getValueType();
2368   unsigned Opcode = V.getOpcode();
2369   switch (Opcode) {
2370   default: {
2371     APInt UndefElts;
2372     APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2373     if (isSplatValue(V, DemandedElts, UndefElts)) {
2374       // Handle case where all demanded elements are UNDEF.
2375       if (DemandedElts.isSubsetOf(UndefElts)) {
2376         SplatIdx = 0;
2377         return getUNDEF(VT);
2378       }
2379       SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2380       return V;
2381     }
2382     break;
2383   }
2384   case ISD::VECTOR_SHUFFLE: {
2385     // Check if this is a shuffle node doing a splat.
2386     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2387     // getTargetVShiftNode currently struggles without the splat source.
2388     auto *SVN = cast<ShuffleVectorSDNode>(V);
2389     if (!SVN->isSplat())
2390       break;
2391     int Idx = SVN->getSplatIndex();
2392     int NumElts = V.getValueType().getVectorNumElements();
2393     SplatIdx = Idx % NumElts;
2394     return V.getOperand(Idx / NumElts);
2395   }
2396   }
2397 
2398   return SDValue();
2399 }
2400 
2401 SDValue SelectionDAG::getSplatValue(SDValue V) {
2402   int SplatIdx;
2403   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2404     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2405                    SrcVector.getValueType().getScalarType(), SrcVector,
2406                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2407   return SDValue();
2408 }
2409 
2410 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2411 /// is less than the element bit-width of the shift node, return it.
2412 static const APInt *getValidShiftAmountConstant(SDValue V,
2413                                                 const APInt &DemandedElts) {
2414   unsigned BitWidth = V.getScalarValueSizeInBits();
2415   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2416     // Shifting more than the bitwidth is not valid.
2417     const APInt &ShAmt = SA->getAPIntValue();
2418     if (ShAmt.ult(BitWidth))
2419       return &ShAmt;
2420   }
2421   return nullptr;
2422 }
2423 
2424 /// If a SHL/SRA/SRL node has constant vector shift amounts that are all less
2425 /// than the element bit-width of the shift node, return the minimum value.
2426 static const APInt *
2427 getValidMinimumShiftAmountConstant(SDValue V, const APInt &DemandedElts) {
2428   unsigned BitWidth = V.getScalarValueSizeInBits();
2429   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2430   if (!BV)
2431     return nullptr;
2432   const APInt *MinShAmt = nullptr;
2433   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2434     if (!DemandedElts[i])
2435       continue;
2436     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2437     if (!SA)
2438       return nullptr;
2439     // Shifting more than the bitwidth is not valid.
2440     const APInt &ShAmt = SA->getAPIntValue();
2441     if (ShAmt.uge(BitWidth))
2442       return nullptr;
2443     if (MinShAmt && MinShAmt->ule(ShAmt))
2444       continue;
2445     MinShAmt = &ShAmt;
2446   }
2447   return MinShAmt;
2448 }
2449 
2450 /// If a SHL/SRA/SRL node has constant vector shift amounts that are all less
2451 /// than the element bit-width of the shift node, return the maximum value.
2452 static const APInt *
2453 getValidMaximumShiftAmountConstant(SDValue V, const APInt &DemandedElts) {
2454   unsigned BitWidth = V.getScalarValueSizeInBits();
2455   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2456   if (!BV)
2457     return nullptr;
2458   const APInt *MaxShAmt = nullptr;
2459   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2460     if (!DemandedElts[i])
2461       continue;
2462     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2463     if (!SA)
2464       return nullptr;
2465     // Shifting more than the bitwidth is not valid.
2466     const APInt &ShAmt = SA->getAPIntValue();
2467     if (ShAmt.uge(BitWidth))
2468       return nullptr;
2469     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2470       continue;
2471     MaxShAmt = &ShAmt;
2472   }
2473   return MaxShAmt;
2474 }
2475 
2476 /// Determine which bits of Op are known to be either zero or one and return
2477 /// them in Known. For vectors, the known bits are those that are shared by
2478 /// every vector element.
2479 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2480   EVT VT = Op.getValueType();
2481   APInt DemandedElts = VT.isVector()
2482                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2483                            : APInt(1, 1);
2484   return computeKnownBits(Op, DemandedElts, Depth);
2485 }
2486 
2487 /// Determine which bits of Op are known to be either zero or one and return
2488 /// them in Known. The DemandedElts argument allows us to only collect the known
2489 /// bits that are shared by the requested vector elements.
2490 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2491                                          unsigned Depth) const {
2492   unsigned BitWidth = Op.getScalarValueSizeInBits();
2493 
2494   KnownBits Known(BitWidth);   // Don't know anything.
2495 
2496   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2497     // We know all of the bits for a constant!
2498     Known.One = C->getAPIntValue();
2499     Known.Zero = ~Known.One;
2500     return Known;
2501   }
2502   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2503     // We know all of the bits for a constant fp!
2504     Known.One = C->getValueAPF().bitcastToAPInt();
2505     Known.Zero = ~Known.One;
2506     return Known;
2507   }
2508 
2509   if (Depth >= MaxRecursionDepth)
2510     return Known;  // Limit search depth.
2511 
2512   KnownBits Known2;
2513   unsigned NumElts = DemandedElts.getBitWidth();
2514   assert((!Op.getValueType().isVector() ||
2515           NumElts == Op.getValueType().getVectorNumElements()) &&
2516          "Unexpected vector size");
2517 
2518   if (!DemandedElts)
2519     return Known;  // No demanded elts, better to assume we don't know anything.
2520 
2521   unsigned Opcode = Op.getOpcode();
2522   switch (Opcode) {
2523   case ISD::BUILD_VECTOR:
2524     // Collect the known bits that are shared by every demanded vector element.
2525     Known.Zero.setAllBits(); Known.One.setAllBits();
2526     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2527       if (!DemandedElts[i])
2528         continue;
2529 
2530       SDValue SrcOp = Op.getOperand(i);
2531       Known2 = computeKnownBits(SrcOp, Depth + 1);
2532 
2533       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2534       if (SrcOp.getValueSizeInBits() != BitWidth) {
2535         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2536                "Expected BUILD_VECTOR implicit truncation");
2537         Known2 = Known2.trunc(BitWidth);
2538       }
2539 
2540       // Known bits are the values that are shared by every demanded element.
2541       Known.One &= Known2.One;
2542       Known.Zero &= Known2.Zero;
2543 
2544       // If we don't know any bits, early out.
2545       if (Known.isUnknown())
2546         break;
2547     }
2548     break;
2549   case ISD::VECTOR_SHUFFLE: {
2550     // Collect the known bits that are shared by every vector element referenced
2551     // by the shuffle.
2552     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2553     Known.Zero.setAllBits(); Known.One.setAllBits();
2554     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2555     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2556     for (unsigned i = 0; i != NumElts; ++i) {
2557       if (!DemandedElts[i])
2558         continue;
2559 
2560       int M = SVN->getMaskElt(i);
2561       if (M < 0) {
2562         // For UNDEF elements, we don't know anything about the common state of
2563         // the shuffle result.
2564         Known.resetAll();
2565         DemandedLHS.clearAllBits();
2566         DemandedRHS.clearAllBits();
2567         break;
2568       }
2569 
2570       if ((unsigned)M < NumElts)
2571         DemandedLHS.setBit((unsigned)M % NumElts);
2572       else
2573         DemandedRHS.setBit((unsigned)M % NumElts);
2574     }
2575     // Known bits are the values that are shared by every demanded element.
2576     if (!!DemandedLHS) {
2577       SDValue LHS = Op.getOperand(0);
2578       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2579       Known.One &= Known2.One;
2580       Known.Zero &= Known2.Zero;
2581     }
2582     // If we don't know any bits, early out.
2583     if (Known.isUnknown())
2584       break;
2585     if (!!DemandedRHS) {
2586       SDValue RHS = Op.getOperand(1);
2587       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2588       Known.One &= Known2.One;
2589       Known.Zero &= Known2.Zero;
2590     }
2591     break;
2592   }
2593   case ISD::CONCAT_VECTORS: {
2594     // Split DemandedElts and test each of the demanded subvectors.
2595     Known.Zero.setAllBits(); Known.One.setAllBits();
2596     EVT SubVectorVT = Op.getOperand(0).getValueType();
2597     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2598     unsigned NumSubVectors = Op.getNumOperands();
2599     for (unsigned i = 0; i != NumSubVectors; ++i) {
2600       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2601       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2602       if (!!DemandedSub) {
2603         SDValue Sub = Op.getOperand(i);
2604         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2605         Known.One &= Known2.One;
2606         Known.Zero &= Known2.Zero;
2607       }
2608       // If we don't know any bits, early out.
2609       if (Known.isUnknown())
2610         break;
2611     }
2612     break;
2613   }
2614   case ISD::INSERT_SUBVECTOR: {
2615     // If we know the element index, demand any elements from the subvector and
2616     // the remainder from the src its inserted into, otherwise demand them all.
2617     SDValue Src = Op.getOperand(0);
2618     SDValue Sub = Op.getOperand(1);
2619     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2620     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2621     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2622       Known.One.setAllBits();
2623       Known.Zero.setAllBits();
2624       uint64_t Idx = SubIdx->getZExtValue();
2625       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2626       if (!!DemandedSubElts) {
2627         Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2628         if (Known.isUnknown())
2629           break; // early-out.
2630       }
2631       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2632       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2633       if (!!DemandedSrcElts) {
2634         Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2635         Known.One &= Known2.One;
2636         Known.Zero &= Known2.Zero;
2637       }
2638     } else {
2639       Known = computeKnownBits(Sub, Depth + 1);
2640       if (Known.isUnknown())
2641         break; // early-out.
2642       Known2 = computeKnownBits(Src, Depth + 1);
2643       Known.One &= Known2.One;
2644       Known.Zero &= Known2.Zero;
2645     }
2646     break;
2647   }
2648   case ISD::EXTRACT_SUBVECTOR: {
2649     // If we know the element index, just demand that subvector elements,
2650     // otherwise demand them all.
2651     SDValue Src = Op.getOperand(0);
2652     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2653     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2654     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
2655     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2656       // Offset the demanded elts by the subvector index.
2657       uint64_t Idx = SubIdx->getZExtValue();
2658       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2659     }
2660     Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2661     break;
2662   }
2663   case ISD::SCALAR_TO_VECTOR: {
2664     // We know about scalar_to_vector as much as we know about it source,
2665     // which becomes the first element of otherwise unknown vector.
2666     if (DemandedElts != 1)
2667       break;
2668 
2669     SDValue N0 = Op.getOperand(0);
2670     Known = computeKnownBits(N0, Depth + 1);
2671     if (N0.getValueSizeInBits() != BitWidth)
2672       Known = Known.trunc(BitWidth);
2673 
2674     break;
2675   }
2676   case ISD::BITCAST: {
2677     SDValue N0 = Op.getOperand(0);
2678     EVT SubVT = N0.getValueType();
2679     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2680 
2681     // Ignore bitcasts from unsupported types.
2682     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2683       break;
2684 
2685     // Fast handling of 'identity' bitcasts.
2686     if (BitWidth == SubBitWidth) {
2687       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2688       break;
2689     }
2690 
2691     bool IsLE = getDataLayout().isLittleEndian();
2692 
2693     // Bitcast 'small element' vector to 'large element' scalar/vector.
2694     if ((BitWidth % SubBitWidth) == 0) {
2695       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2696 
2697       // Collect known bits for the (larger) output by collecting the known
2698       // bits from each set of sub elements and shift these into place.
2699       // We need to separately call computeKnownBits for each set of
2700       // sub elements as the knownbits for each is likely to be different.
2701       unsigned SubScale = BitWidth / SubBitWidth;
2702       APInt SubDemandedElts(NumElts * SubScale, 0);
2703       for (unsigned i = 0; i != NumElts; ++i)
2704         if (DemandedElts[i])
2705           SubDemandedElts.setBit(i * SubScale);
2706 
2707       for (unsigned i = 0; i != SubScale; ++i) {
2708         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2709                          Depth + 1);
2710         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2711         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2712         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2713       }
2714     }
2715 
2716     // Bitcast 'large element' scalar/vector to 'small element' vector.
2717     if ((SubBitWidth % BitWidth) == 0) {
2718       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2719 
2720       // Collect known bits for the (smaller) output by collecting the known
2721       // bits from the overlapping larger input elements and extracting the
2722       // sub sections we actually care about.
2723       unsigned SubScale = SubBitWidth / BitWidth;
2724       APInt SubDemandedElts(NumElts / SubScale, 0);
2725       for (unsigned i = 0; i != NumElts; ++i)
2726         if (DemandedElts[i])
2727           SubDemandedElts.setBit(i / SubScale);
2728 
2729       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2730 
2731       Known.Zero.setAllBits(); Known.One.setAllBits();
2732       for (unsigned i = 0; i != NumElts; ++i)
2733         if (DemandedElts[i]) {
2734           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2735           unsigned Offset = (Shifts % SubScale) * BitWidth;
2736           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2737           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2738           // If we don't know any bits, early out.
2739           if (Known.isUnknown())
2740             break;
2741         }
2742     }
2743     break;
2744   }
2745   case ISD::AND:
2746     // If either the LHS or the RHS are Zero, the result is zero.
2747     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2748     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2749 
2750     // Output known-1 bits are only known if set in both the LHS & RHS.
2751     Known.One &= Known2.One;
2752     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2753     Known.Zero |= Known2.Zero;
2754     break;
2755   case ISD::OR:
2756     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2757     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2758 
2759     // Output known-0 bits are only known if clear in both the LHS & RHS.
2760     Known.Zero &= Known2.Zero;
2761     // Output known-1 are known to be set if set in either the LHS | RHS.
2762     Known.One |= Known2.One;
2763     break;
2764   case ISD::XOR: {
2765     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2766     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2767 
2768     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2769     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2770     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2771     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2772     Known.Zero = KnownZeroOut;
2773     break;
2774   }
2775   case ISD::MUL: {
2776     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2777     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2778 
2779     // If low bits are zero in either operand, output low known-0 bits.
2780     // Also compute a conservative estimate for high known-0 bits.
2781     // More trickiness is possible, but this is sufficient for the
2782     // interesting case of alignment computation.
2783     unsigned TrailZ = Known.countMinTrailingZeros() +
2784                       Known2.countMinTrailingZeros();
2785     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2786                                Known2.countMinLeadingZeros(),
2787                                BitWidth) - BitWidth;
2788 
2789     Known.resetAll();
2790     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2791     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2792     break;
2793   }
2794   case ISD::UDIV: {
2795     // For the purposes of computing leading zeros we can conservatively
2796     // treat a udiv as a logical right shift by the power of 2 known to
2797     // be less than the denominator.
2798     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2799     unsigned LeadZ = Known2.countMinLeadingZeros();
2800 
2801     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2802     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2803     if (RHSMaxLeadingZeros != BitWidth)
2804       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2805 
2806     Known.Zero.setHighBits(LeadZ);
2807     break;
2808   }
2809   case ISD::SELECT:
2810   case ISD::VSELECT:
2811     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2812     // If we don't know any bits, early out.
2813     if (Known.isUnknown())
2814       break;
2815     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2816 
2817     // Only known if known in both the LHS and RHS.
2818     Known.One &= Known2.One;
2819     Known.Zero &= Known2.Zero;
2820     break;
2821   case ISD::SELECT_CC:
2822     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2823     // If we don't know any bits, early out.
2824     if (Known.isUnknown())
2825       break;
2826     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2827 
2828     // Only known if known in both the LHS and RHS.
2829     Known.One &= Known2.One;
2830     Known.Zero &= Known2.Zero;
2831     break;
2832   case ISD::SMULO:
2833   case ISD::UMULO:
2834   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2835     if (Op.getResNo() != 1)
2836       break;
2837     // The boolean result conforms to getBooleanContents.
2838     // If we know the result of a setcc has the top bits zero, use this info.
2839     // We know that we have an integer-based boolean since these operations
2840     // are only available for integer.
2841     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2842             TargetLowering::ZeroOrOneBooleanContent &&
2843         BitWidth > 1)
2844       Known.Zero.setBitsFrom(1);
2845     break;
2846   case ISD::SETCC:
2847   case ISD::STRICT_FSETCC:
2848   case ISD::STRICT_FSETCCS: {
2849     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2850     // If we know the result of a setcc has the top bits zero, use this info.
2851     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2852             TargetLowering::ZeroOrOneBooleanContent &&
2853         BitWidth > 1)
2854       Known.Zero.setBitsFrom(1);
2855     break;
2856   }
2857   case ISD::SHL:
2858     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2859 
2860     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2861       unsigned Shift = ShAmt->getZExtValue();
2862       Known.Zero <<= Shift;
2863       Known.One <<= Shift;
2864       // Low bits are known zero.
2865       Known.Zero.setLowBits(Shift);
2866       break;
2867     }
2868 
2869     // No matter the shift amount, the trailing zeros will stay zero.
2870     Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros());
2871     Known.One.clearAllBits();
2872 
2873     // Minimum shift low bits are known zero.
2874     if (const APInt *ShMinAmt =
2875             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2876       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2877     break;
2878   case ISD::SRL:
2879     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2880 
2881     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2882       unsigned Shift = ShAmt->getZExtValue();
2883       Known.Zero.lshrInPlace(Shift);
2884       Known.One.lshrInPlace(Shift);
2885       // High bits are known zero.
2886       Known.Zero.setHighBits(Shift);
2887       break;
2888     }
2889 
2890     // No matter the shift amount, the leading zeros will stay zero.
2891     Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros());
2892     Known.One.clearAllBits();
2893 
2894     // Minimum shift high bits are known zero.
2895     if (const APInt *ShMinAmt =
2896             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2897       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2898     break;
2899   case ISD::SRA:
2900     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2901       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2902       unsigned Shift = ShAmt->getZExtValue();
2903       // Sign extend known zero/one bit (else is unknown).
2904       Known.Zero.ashrInPlace(Shift);
2905       Known.One.ashrInPlace(Shift);
2906     }
2907     break;
2908   case ISD::FSHL:
2909   case ISD::FSHR:
2910     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2911       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2912 
2913       // For fshl, 0-shift returns the 1st arg.
2914       // For fshr, 0-shift returns the 2nd arg.
2915       if (Amt == 0) {
2916         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2917                                  DemandedElts, Depth + 1);
2918         break;
2919       }
2920 
2921       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2922       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2923       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2924       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2925       if (Opcode == ISD::FSHL) {
2926         Known.One <<= Amt;
2927         Known.Zero <<= Amt;
2928         Known2.One.lshrInPlace(BitWidth - Amt);
2929         Known2.Zero.lshrInPlace(BitWidth - Amt);
2930       } else {
2931         Known.One <<= BitWidth - Amt;
2932         Known.Zero <<= BitWidth - Amt;
2933         Known2.One.lshrInPlace(Amt);
2934         Known2.Zero.lshrInPlace(Amt);
2935       }
2936       Known.One |= Known2.One;
2937       Known.Zero |= Known2.Zero;
2938     }
2939     break;
2940   case ISD::SIGN_EXTEND_INREG: {
2941     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2942     unsigned EBits = EVT.getScalarSizeInBits();
2943 
2944     // Sign extension.  Compute the demanded bits in the result that are not
2945     // present in the input.
2946     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2947 
2948     APInt InSignMask = APInt::getSignMask(EBits);
2949     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2950 
2951     // If the sign extended bits are demanded, we know that the sign
2952     // bit is demanded.
2953     InSignMask = InSignMask.zext(BitWidth);
2954     if (NewBits.getBoolValue())
2955       InputDemandedBits |= InSignMask;
2956 
2957     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2958     Known.One &= InputDemandedBits;
2959     Known.Zero &= InputDemandedBits;
2960 
2961     // If the sign bit of the input is known set or clear, then we know the
2962     // top bits of the result.
2963     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2964       Known.Zero |= NewBits;
2965       Known.One  &= ~NewBits;
2966     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2967       Known.One  |= NewBits;
2968       Known.Zero &= ~NewBits;
2969     } else {                              // Input sign bit unknown
2970       Known.Zero &= ~NewBits;
2971       Known.One  &= ~NewBits;
2972     }
2973     break;
2974   }
2975   case ISD::CTTZ:
2976   case ISD::CTTZ_ZERO_UNDEF: {
2977     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2978     // If we have a known 1, its position is our upper bound.
2979     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2980     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2981     Known.Zero.setBitsFrom(LowBits);
2982     break;
2983   }
2984   case ISD::CTLZ:
2985   case ISD::CTLZ_ZERO_UNDEF: {
2986     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2987     // If we have a known 1, its position is our upper bound.
2988     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2989     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2990     Known.Zero.setBitsFrom(LowBits);
2991     break;
2992   }
2993   case ISD::CTPOP: {
2994     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2995     // If we know some of the bits are zero, they can't be one.
2996     unsigned PossibleOnes = Known2.countMaxPopulation();
2997     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2998     break;
2999   }
3000   case ISD::LOAD: {
3001     LoadSDNode *LD = cast<LoadSDNode>(Op);
3002     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3003     if (ISD::isNON_EXTLoad(LD) && Cst) {
3004       // Determine any common known bits from the loaded constant pool value.
3005       Type *CstTy = Cst->getType();
3006       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3007         // If its a vector splat, then we can (quickly) reuse the scalar path.
3008         // NOTE: We assume all elements match and none are UNDEF.
3009         if (CstTy->isVectorTy()) {
3010           if (const Constant *Splat = Cst->getSplatValue()) {
3011             Cst = Splat;
3012             CstTy = Cst->getType();
3013           }
3014         }
3015         // TODO - do we need to handle different bitwidths?
3016         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3017           // Iterate across all vector elements finding common known bits.
3018           Known.One.setAllBits();
3019           Known.Zero.setAllBits();
3020           for (unsigned i = 0; i != NumElts; ++i) {
3021             if (!DemandedElts[i])
3022               continue;
3023             if (Constant *Elt = Cst->getAggregateElement(i)) {
3024               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3025                 const APInt &Value = CInt->getValue();
3026                 Known.One &= Value;
3027                 Known.Zero &= ~Value;
3028                 continue;
3029               }
3030               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3031                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3032                 Known.One &= Value;
3033                 Known.Zero &= ~Value;
3034                 continue;
3035               }
3036             }
3037             Known.One.clearAllBits();
3038             Known.Zero.clearAllBits();
3039             break;
3040           }
3041         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3042           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3043             const APInt &Value = CInt->getValue();
3044             Known.One = Value;
3045             Known.Zero = ~Value;
3046           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3047             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3048             Known.One = Value;
3049             Known.Zero = ~Value;
3050           }
3051         }
3052       }
3053     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3054       // If this is a ZEXTLoad and we are looking at the loaded value.
3055       EVT VT = LD->getMemoryVT();
3056       unsigned MemBits = VT.getScalarSizeInBits();
3057       Known.Zero.setBitsFrom(MemBits);
3058     } else if (const MDNode *Ranges = LD->getRanges()) {
3059       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3060         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3061     }
3062     break;
3063   }
3064   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3065     EVT InVT = Op.getOperand(0).getValueType();
3066     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3067     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3068     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
3069     break;
3070   }
3071   case ISD::ZERO_EXTEND: {
3072     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3073     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
3074     break;
3075   }
3076   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3077     EVT InVT = Op.getOperand(0).getValueType();
3078     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3079     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3080     // If the sign bit is known to be zero or one, then sext will extend
3081     // it to the top bits, else it will just zext.
3082     Known = Known.sext(BitWidth);
3083     break;
3084   }
3085   case ISD::SIGN_EXTEND: {
3086     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3087     // If the sign bit is known to be zero or one, then sext will extend
3088     // it to the top bits, else it will just zext.
3089     Known = Known.sext(BitWidth);
3090     break;
3091   }
3092   case ISD::ANY_EXTEND_VECTOR_INREG: {
3093     EVT InVT = Op.getOperand(0).getValueType();
3094     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3095     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3096     Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
3097     break;
3098   }
3099   case ISD::ANY_EXTEND: {
3100     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3101     Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
3102     break;
3103   }
3104   case ISD::TRUNCATE: {
3105     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3106     Known = Known.trunc(BitWidth);
3107     break;
3108   }
3109   case ISD::AssertZext: {
3110     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3111     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3112     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3113     Known.Zero |= (~InMask);
3114     Known.One  &= (~Known.Zero);
3115     break;
3116   }
3117   case ISD::FGETSIGN:
3118     // All bits are zero except the low bit.
3119     Known.Zero.setBitsFrom(1);
3120     break;
3121   case ISD::USUBO:
3122   case ISD::SSUBO:
3123     if (Op.getResNo() == 1) {
3124       // If we know the result of a setcc has the top bits zero, use this info.
3125       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3126               TargetLowering::ZeroOrOneBooleanContent &&
3127           BitWidth > 1)
3128         Known.Zero.setBitsFrom(1);
3129       break;
3130     }
3131     LLVM_FALLTHROUGH;
3132   case ISD::SUB:
3133   case ISD::SUBC: {
3134     assert(Op.getResNo() == 0 &&
3135            "We only compute knownbits for the difference here.");
3136 
3137     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3138     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3139     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3140                                         Known, Known2);
3141     break;
3142   }
3143   case ISD::UADDO:
3144   case ISD::SADDO:
3145   case ISD::ADDCARRY:
3146     if (Op.getResNo() == 1) {
3147       // If we know the result of a setcc has the top bits zero, use this info.
3148       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3149               TargetLowering::ZeroOrOneBooleanContent &&
3150           BitWidth > 1)
3151         Known.Zero.setBitsFrom(1);
3152       break;
3153     }
3154     LLVM_FALLTHROUGH;
3155   case ISD::ADD:
3156   case ISD::ADDC:
3157   case ISD::ADDE: {
3158     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3159 
3160     // With ADDE and ADDCARRY, a carry bit may be added in.
3161     KnownBits Carry(1);
3162     if (Opcode == ISD::ADDE)
3163       // Can't track carry from glue, set carry to unknown.
3164       Carry.resetAll();
3165     else if (Opcode == ISD::ADDCARRY)
3166       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3167       // the trouble (how often will we find a known carry bit). And I haven't
3168       // tested this very much yet, but something like this might work:
3169       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3170       //   Carry = Carry.zextOrTrunc(1, false);
3171       Carry.resetAll();
3172     else
3173       Carry.setAllZero();
3174 
3175     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3176     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3177     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3178     break;
3179   }
3180   case ISD::SREM:
3181     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3182       const APInt &RA = Rem->getAPIntValue().abs();
3183       if (RA.isPowerOf2()) {
3184         APInt LowBits = RA - 1;
3185         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3186 
3187         // The low bits of the first operand are unchanged by the srem.
3188         Known.Zero = Known2.Zero & LowBits;
3189         Known.One = Known2.One & LowBits;
3190 
3191         // If the first operand is non-negative or has all low bits zero, then
3192         // the upper bits are all zero.
3193         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3194           Known.Zero |= ~LowBits;
3195 
3196         // If the first operand is negative and not all low bits are zero, then
3197         // the upper bits are all one.
3198         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3199           Known.One |= ~LowBits;
3200         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3201       }
3202     }
3203     break;
3204   case ISD::UREM: {
3205     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3206       const APInt &RA = Rem->getAPIntValue();
3207       if (RA.isPowerOf2()) {
3208         APInt LowBits = (RA - 1);
3209         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3210 
3211         // The upper bits are all zero, the lower ones are unchanged.
3212         Known.Zero = Known2.Zero | ~LowBits;
3213         Known.One = Known2.One & LowBits;
3214         break;
3215       }
3216     }
3217 
3218     // Since the result is less than or equal to either operand, any leading
3219     // zero bits in either operand must also exist in the result.
3220     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3221     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3222 
3223     uint32_t Leaders =
3224         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3225     Known.resetAll();
3226     Known.Zero.setHighBits(Leaders);
3227     break;
3228   }
3229   case ISD::EXTRACT_ELEMENT: {
3230     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3231     const unsigned Index = Op.getConstantOperandVal(1);
3232     const unsigned EltBitWidth = Op.getValueSizeInBits();
3233 
3234     // Remove low part of known bits mask
3235     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3236     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3237 
3238     // Remove high part of known bit mask
3239     Known = Known.trunc(EltBitWidth);
3240     break;
3241   }
3242   case ISD::EXTRACT_VECTOR_ELT: {
3243     SDValue InVec = Op.getOperand(0);
3244     SDValue EltNo = Op.getOperand(1);
3245     EVT VecVT = InVec.getValueType();
3246     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3247     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3248     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3249     // anything about the extended bits.
3250     if (BitWidth > EltBitWidth)
3251       Known = Known.trunc(EltBitWidth);
3252     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3253     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
3254       // If we know the element index, just demand that vector element.
3255       unsigned Idx = ConstEltNo->getZExtValue();
3256       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
3257       Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
3258     } else {
3259       // Unknown element index, so ignore DemandedElts and demand them all.
3260       Known = computeKnownBits(InVec, Depth + 1);
3261     }
3262     if (BitWidth > EltBitWidth)
3263       Known = Known.zext(BitWidth, false /* => any extend */);
3264     break;
3265   }
3266   case ISD::INSERT_VECTOR_ELT: {
3267     SDValue InVec = Op.getOperand(0);
3268     SDValue InVal = Op.getOperand(1);
3269     SDValue EltNo = Op.getOperand(2);
3270 
3271     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3272     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3273       // If we know the element index, split the demand between the
3274       // source vector and the inserted element.
3275       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
3276       unsigned EltIdx = CEltNo->getZExtValue();
3277 
3278       // If we demand the inserted element then add its common known bits.
3279       if (DemandedElts[EltIdx]) {
3280         Known2 = computeKnownBits(InVal, Depth + 1);
3281         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3282         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3283       }
3284 
3285       // If we demand the source vector then add its common known bits, ensuring
3286       // that we don't demand the inserted element.
3287       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
3288       if (!!VectorElts) {
3289         Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
3290         Known.One &= Known2.One;
3291         Known.Zero &= Known2.Zero;
3292       }
3293     } else {
3294       // Unknown element index, so ignore DemandedElts and demand them all.
3295       Known = computeKnownBits(InVec, Depth + 1);
3296       Known2 = computeKnownBits(InVal, Depth + 1);
3297       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3298       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3299     }
3300     break;
3301   }
3302   case ISD::BITREVERSE: {
3303     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3304     Known.Zero = Known2.Zero.reverseBits();
3305     Known.One = Known2.One.reverseBits();
3306     break;
3307   }
3308   case ISD::BSWAP: {
3309     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3310     Known.Zero = Known2.Zero.byteSwap();
3311     Known.One = Known2.One.byteSwap();
3312     break;
3313   }
3314   case ISD::ABS: {
3315     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3316 
3317     // If the source's MSB is zero then we know the rest of the bits already.
3318     if (Known2.isNonNegative()) {
3319       Known.Zero = Known2.Zero;
3320       Known.One = Known2.One;
3321       break;
3322     }
3323 
3324     // We only know that the absolute values's MSB will be zero iff there is
3325     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3326     Known2.One.clearSignBit();
3327     if (Known2.One.getBoolValue()) {
3328       Known.Zero = APInt::getSignMask(BitWidth);
3329       break;
3330     }
3331     break;
3332   }
3333   case ISD::UMIN: {
3334     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3335     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3336 
3337     // UMIN - we know that the result will have the maximum of the
3338     // known zero leading bits of the inputs.
3339     unsigned LeadZero = Known.countMinLeadingZeros();
3340     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3341 
3342     Known.Zero &= Known2.Zero;
3343     Known.One &= Known2.One;
3344     Known.Zero.setHighBits(LeadZero);
3345     break;
3346   }
3347   case ISD::UMAX: {
3348     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3349     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3350 
3351     // UMAX - we know that the result will have the maximum of the
3352     // known one leading bits of the inputs.
3353     unsigned LeadOne = Known.countMinLeadingOnes();
3354     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3355 
3356     Known.Zero &= Known2.Zero;
3357     Known.One &= Known2.One;
3358     Known.One.setHighBits(LeadOne);
3359     break;
3360   }
3361   case ISD::SMIN:
3362   case ISD::SMAX: {
3363     // If we have a clamp pattern, we know that the number of sign bits will be
3364     // the minimum of the clamp min/max range.
3365     bool IsMax = (Opcode == ISD::SMAX);
3366     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3367     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3368       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3369         CstHigh =
3370             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3371     if (CstLow && CstHigh) {
3372       if (!IsMax)
3373         std::swap(CstLow, CstHigh);
3374 
3375       const APInt &ValueLow = CstLow->getAPIntValue();
3376       const APInt &ValueHigh = CstHigh->getAPIntValue();
3377       if (ValueLow.sle(ValueHigh)) {
3378         unsigned LowSignBits = ValueLow.getNumSignBits();
3379         unsigned HighSignBits = ValueHigh.getNumSignBits();
3380         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3381         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3382           Known.One.setHighBits(MinSignBits);
3383           break;
3384         }
3385         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3386           Known.Zero.setHighBits(MinSignBits);
3387           break;
3388         }
3389       }
3390     }
3391 
3392     // Fallback - just get the shared known bits of the operands.
3393     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3394     if (Known.isUnknown()) break; // Early-out
3395     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3396     Known.Zero &= Known2.Zero;
3397     Known.One &= Known2.One;
3398     break;
3399   }
3400   case ISD::FrameIndex:
3401   case ISD::TargetFrameIndex:
3402     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3403     break;
3404 
3405   default:
3406     if (Opcode < ISD::BUILTIN_OP_END)
3407       break;
3408     LLVM_FALLTHROUGH;
3409   case ISD::INTRINSIC_WO_CHAIN:
3410   case ISD::INTRINSIC_W_CHAIN:
3411   case ISD::INTRINSIC_VOID:
3412     // Allow the target to implement this method for its nodes.
3413     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3414     break;
3415   }
3416 
3417   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3418   return Known;
3419 }
3420 
3421 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3422                                                              SDValue N1) const {
3423   // X + 0 never overflow
3424   if (isNullConstant(N1))
3425     return OFK_Never;
3426 
3427   KnownBits N1Known = computeKnownBits(N1);
3428   if (N1Known.Zero.getBoolValue()) {
3429     KnownBits N0Known = computeKnownBits(N0);
3430 
3431     bool overflow;
3432     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3433     if (!overflow)
3434       return OFK_Never;
3435   }
3436 
3437   // mulhi + 1 never overflow
3438   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3439       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3440     return OFK_Never;
3441 
3442   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3443     KnownBits N0Known = computeKnownBits(N0);
3444 
3445     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3446       return OFK_Never;
3447   }
3448 
3449   return OFK_Sometime;
3450 }
3451 
3452 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3453   EVT OpVT = Val.getValueType();
3454   unsigned BitWidth = OpVT.getScalarSizeInBits();
3455 
3456   // Is the constant a known power of 2?
3457   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3458     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3459 
3460   // A left-shift of a constant one will have exactly one bit set because
3461   // shifting the bit off the end is undefined.
3462   if (Val.getOpcode() == ISD::SHL) {
3463     auto *C = isConstOrConstSplat(Val.getOperand(0));
3464     if (C && C->getAPIntValue() == 1)
3465       return true;
3466   }
3467 
3468   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3469   // one bit set.
3470   if (Val.getOpcode() == ISD::SRL) {
3471     auto *C = isConstOrConstSplat(Val.getOperand(0));
3472     if (C && C->getAPIntValue().isSignMask())
3473       return true;
3474   }
3475 
3476   // Are all operands of a build vector constant powers of two?
3477   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3478     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3479           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3480             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3481           return false;
3482         }))
3483       return true;
3484 
3485   // More could be done here, though the above checks are enough
3486   // to handle some common cases.
3487 
3488   // Fall back to computeKnownBits to catch other known cases.
3489   KnownBits Known = computeKnownBits(Val);
3490   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3491 }
3492 
3493 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3494   EVT VT = Op.getValueType();
3495   APInt DemandedElts = VT.isVector()
3496                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3497                            : APInt(1, 1);
3498   return ComputeNumSignBits(Op, DemandedElts, Depth);
3499 }
3500 
3501 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3502                                           unsigned Depth) const {
3503   EVT VT = Op.getValueType();
3504   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3505   unsigned VTBits = VT.getScalarSizeInBits();
3506   unsigned NumElts = DemandedElts.getBitWidth();
3507   unsigned Tmp, Tmp2;
3508   unsigned FirstAnswer = 1;
3509 
3510   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3511     const APInt &Val = C->getAPIntValue();
3512     return Val.getNumSignBits();
3513   }
3514 
3515   if (Depth >= MaxRecursionDepth)
3516     return 1;  // Limit search depth.
3517 
3518   if (!DemandedElts)
3519     return 1;  // No demanded elts, better to assume we don't know anything.
3520 
3521   unsigned Opcode = Op.getOpcode();
3522   switch (Opcode) {
3523   default: break;
3524   case ISD::AssertSext:
3525     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3526     return VTBits-Tmp+1;
3527   case ISD::AssertZext:
3528     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3529     return VTBits-Tmp;
3530 
3531   case ISD::BUILD_VECTOR:
3532     Tmp = VTBits;
3533     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3534       if (!DemandedElts[i])
3535         continue;
3536 
3537       SDValue SrcOp = Op.getOperand(i);
3538       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3539 
3540       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3541       if (SrcOp.getValueSizeInBits() != VTBits) {
3542         assert(SrcOp.getValueSizeInBits() > VTBits &&
3543                "Expected BUILD_VECTOR implicit truncation");
3544         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3545         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3546       }
3547       Tmp = std::min(Tmp, Tmp2);
3548     }
3549     return Tmp;
3550 
3551   case ISD::VECTOR_SHUFFLE: {
3552     // Collect the minimum number of sign bits that are shared by every vector
3553     // element referenced by the shuffle.
3554     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3555     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3556     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3557     for (unsigned i = 0; i != NumElts; ++i) {
3558       int M = SVN->getMaskElt(i);
3559       if (!DemandedElts[i])
3560         continue;
3561       // For UNDEF elements, we don't know anything about the common state of
3562       // the shuffle result.
3563       if (M < 0)
3564         return 1;
3565       if ((unsigned)M < NumElts)
3566         DemandedLHS.setBit((unsigned)M % NumElts);
3567       else
3568         DemandedRHS.setBit((unsigned)M % NumElts);
3569     }
3570     Tmp = std::numeric_limits<unsigned>::max();
3571     if (!!DemandedLHS)
3572       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3573     if (!!DemandedRHS) {
3574       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3575       Tmp = std::min(Tmp, Tmp2);
3576     }
3577     // If we don't know anything, early out and try computeKnownBits fall-back.
3578     if (Tmp == 1)
3579       break;
3580     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3581     return Tmp;
3582   }
3583 
3584   case ISD::BITCAST: {
3585     SDValue N0 = Op.getOperand(0);
3586     EVT SrcVT = N0.getValueType();
3587     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3588 
3589     // Ignore bitcasts from unsupported types..
3590     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3591       break;
3592 
3593     // Fast handling of 'identity' bitcasts.
3594     if (VTBits == SrcBits)
3595       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3596 
3597     bool IsLE = getDataLayout().isLittleEndian();
3598 
3599     // Bitcast 'large element' scalar/vector to 'small element' vector.
3600     if ((SrcBits % VTBits) == 0) {
3601       assert(VT.isVector() && "Expected bitcast to vector");
3602 
3603       unsigned Scale = SrcBits / VTBits;
3604       APInt SrcDemandedElts(NumElts / Scale, 0);
3605       for (unsigned i = 0; i != NumElts; ++i)
3606         if (DemandedElts[i])
3607           SrcDemandedElts.setBit(i / Scale);
3608 
3609       // Fast case - sign splat can be simply split across the small elements.
3610       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3611       if (Tmp == SrcBits)
3612         return VTBits;
3613 
3614       // Slow case - determine how far the sign extends into each sub-element.
3615       Tmp2 = VTBits;
3616       for (unsigned i = 0; i != NumElts; ++i)
3617         if (DemandedElts[i]) {
3618           unsigned SubOffset = i % Scale;
3619           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3620           SubOffset = SubOffset * VTBits;
3621           if (Tmp <= SubOffset)
3622             return 1;
3623           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3624         }
3625       return Tmp2;
3626     }
3627     break;
3628   }
3629 
3630   case ISD::SIGN_EXTEND:
3631     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3632     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3633   case ISD::SIGN_EXTEND_INREG:
3634     // Max of the input and what this extends.
3635     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3636     Tmp = VTBits-Tmp+1;
3637     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3638     return std::max(Tmp, Tmp2);
3639   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3640     SDValue Src = Op.getOperand(0);
3641     EVT SrcVT = Src.getValueType();
3642     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3643     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3644     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3645   }
3646   case ISD::SRA:
3647     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3648     // SRA X, C -> adds C sign bits.
3649     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts))
3650       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3651     else if (const APInt *ShAmt =
3652                  getValidMinimumShiftAmountConstant(Op, DemandedElts))
3653       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3654     return Tmp;
3655   case ISD::SHL:
3656     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
3657       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3658       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3659       if (ShAmt->ult(Tmp))
3660         return Tmp - ShAmt->getZExtValue();
3661     } else if (const APInt *ShAmt =
3662                    getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3663       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3664       if (ShAmt->ult(Tmp))
3665         return Tmp - ShAmt->getZExtValue();
3666     }
3667     break;
3668   case ISD::AND:
3669   case ISD::OR:
3670   case ISD::XOR:    // NOT is handled here.
3671     // Logical binary ops preserve the number of sign bits at the worst.
3672     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3673     if (Tmp != 1) {
3674       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3675       FirstAnswer = std::min(Tmp, Tmp2);
3676       // We computed what we know about the sign bits as our first
3677       // answer. Now proceed to the generic code that uses
3678       // computeKnownBits, and pick whichever answer is better.
3679     }
3680     break;
3681 
3682   case ISD::SELECT:
3683   case ISD::VSELECT:
3684     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3685     if (Tmp == 1) return 1;  // Early out.
3686     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3687     return std::min(Tmp, Tmp2);
3688   case ISD::SELECT_CC:
3689     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3690     if (Tmp == 1) return 1;  // Early out.
3691     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3692     return std::min(Tmp, Tmp2);
3693 
3694   case ISD::SMIN:
3695   case ISD::SMAX: {
3696     // If we have a clamp pattern, we know that the number of sign bits will be
3697     // the minimum of the clamp min/max range.
3698     bool IsMax = (Opcode == ISD::SMAX);
3699     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3700     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3701       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3702         CstHigh =
3703             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3704     if (CstLow && CstHigh) {
3705       if (!IsMax)
3706         std::swap(CstLow, CstHigh);
3707       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3708         Tmp = CstLow->getAPIntValue().getNumSignBits();
3709         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3710         return std::min(Tmp, Tmp2);
3711       }
3712     }
3713 
3714     // Fallback - just get the minimum number of sign bits of the operands.
3715     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3716     if (Tmp == 1)
3717       return 1;  // Early out.
3718     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3719     return std::min(Tmp, Tmp2);
3720   }
3721   case ISD::UMIN:
3722   case ISD::UMAX:
3723     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3724     if (Tmp == 1)
3725       return 1;  // Early out.
3726     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3727     return std::min(Tmp, Tmp2);
3728   case ISD::SADDO:
3729   case ISD::UADDO:
3730   case ISD::SSUBO:
3731   case ISD::USUBO:
3732   case ISD::SMULO:
3733   case ISD::UMULO:
3734     if (Op.getResNo() != 1)
3735       break;
3736     // The boolean result conforms to getBooleanContents.  Fall through.
3737     // If setcc returns 0/-1, all bits are sign bits.
3738     // We know that we have an integer-based boolean since these operations
3739     // are only available for integer.
3740     if (TLI->getBooleanContents(VT.isVector(), false) ==
3741         TargetLowering::ZeroOrNegativeOneBooleanContent)
3742       return VTBits;
3743     break;
3744   case ISD::SETCC:
3745   case ISD::STRICT_FSETCC:
3746   case ISD::STRICT_FSETCCS: {
3747     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3748     // If setcc returns 0/-1, all bits are sign bits.
3749     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3750         TargetLowering::ZeroOrNegativeOneBooleanContent)
3751       return VTBits;
3752     break;
3753   }
3754   case ISD::ROTL:
3755   case ISD::ROTR:
3756     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3757       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3758 
3759       // Handle rotate right by N like a rotate left by 32-N.
3760       if (Opcode == ISD::ROTR)
3761         RotAmt = (VTBits - RotAmt) % VTBits;
3762 
3763       // If we aren't rotating out all of the known-in sign bits, return the
3764       // number that are left.  This handles rotl(sext(x), 1) for example.
3765       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3766       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3767     }
3768     break;
3769   case ISD::ADD:
3770   case ISD::ADDC:
3771     // Add can have at most one carry bit.  Thus we know that the output
3772     // is, at worst, one more bit than the inputs.
3773     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3774     if (Tmp == 1) return 1;  // Early out.
3775 
3776     // Special case decrementing a value (ADD X, -1):
3777     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3778       if (CRHS->isAllOnesValue()) {
3779         KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3780 
3781         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3782         // sign bits set.
3783         if ((Known.Zero | 1).isAllOnesValue())
3784           return VTBits;
3785 
3786         // If we are subtracting one from a positive number, there is no carry
3787         // out of the result.
3788         if (Known.isNonNegative())
3789           return Tmp;
3790       }
3791 
3792     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3793     if (Tmp2 == 1) return 1;
3794     return std::min(Tmp, Tmp2)-1;
3795 
3796   case ISD::SUB:
3797     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3798     if (Tmp2 == 1) return 1;
3799 
3800     // Handle NEG.
3801     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3802       if (CLHS->isNullValue()) {
3803         KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3804         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3805         // sign bits set.
3806         if ((Known.Zero | 1).isAllOnesValue())
3807           return VTBits;
3808 
3809         // If the input is known to be positive (the sign bit is known clear),
3810         // the output of the NEG has the same number of sign bits as the input.
3811         if (Known.isNonNegative())
3812           return Tmp2;
3813 
3814         // Otherwise, we treat this like a SUB.
3815       }
3816 
3817     // Sub can have at most one carry bit.  Thus we know that the output
3818     // is, at worst, one more bit than the inputs.
3819     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3820     if (Tmp == 1) return 1;  // Early out.
3821     return std::min(Tmp, Tmp2)-1;
3822   case ISD::MUL: {
3823     // The output of the Mul can be at most twice the valid bits in the inputs.
3824     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3825     if (SignBitsOp0 == 1)
3826       break;
3827     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3828     if (SignBitsOp1 == 1)
3829       break;
3830     unsigned OutValidBits =
3831         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3832     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3833   }
3834   case ISD::TRUNCATE: {
3835     // Check if the sign bits of source go down as far as the truncated value.
3836     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3837     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3838     if (NumSrcSignBits > (NumSrcBits - VTBits))
3839       return NumSrcSignBits - (NumSrcBits - VTBits);
3840     break;
3841   }
3842   case ISD::EXTRACT_ELEMENT: {
3843     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3844     const int BitWidth = Op.getValueSizeInBits();
3845     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3846 
3847     // Get reverse index (starting from 1), Op1 value indexes elements from
3848     // little end. Sign starts at big end.
3849     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3850 
3851     // If the sign portion ends in our element the subtraction gives correct
3852     // result. Otherwise it gives either negative or > bitwidth result
3853     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3854   }
3855   case ISD::INSERT_VECTOR_ELT: {
3856     SDValue InVec = Op.getOperand(0);
3857     SDValue InVal = Op.getOperand(1);
3858     SDValue EltNo = Op.getOperand(2);
3859 
3860     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3861     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3862       // If we know the element index, split the demand between the
3863       // source vector and the inserted element.
3864       unsigned EltIdx = CEltNo->getZExtValue();
3865 
3866       // If we demand the inserted element then get its sign bits.
3867       Tmp = std::numeric_limits<unsigned>::max();
3868       if (DemandedElts[EltIdx]) {
3869         // TODO - handle implicit truncation of inserted elements.
3870         if (InVal.getScalarValueSizeInBits() != VTBits)
3871           break;
3872         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3873       }
3874 
3875       // If we demand the source vector then get its sign bits, and determine
3876       // the minimum.
3877       APInt VectorElts = DemandedElts;
3878       VectorElts.clearBit(EltIdx);
3879       if (!!VectorElts) {
3880         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3881         Tmp = std::min(Tmp, Tmp2);
3882       }
3883     } else {
3884       // Unknown element index, so ignore DemandedElts and demand them all.
3885       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3886       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3887       Tmp = std::min(Tmp, Tmp2);
3888     }
3889     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3890     return Tmp;
3891   }
3892   case ISD::EXTRACT_VECTOR_ELT: {
3893     SDValue InVec = Op.getOperand(0);
3894     SDValue EltNo = Op.getOperand(1);
3895     EVT VecVT = InVec.getValueType();
3896     const unsigned BitWidth = Op.getValueSizeInBits();
3897     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3898     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3899 
3900     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3901     // anything about sign bits. But if the sizes match we can derive knowledge
3902     // about sign bits from the vector operand.
3903     if (BitWidth != EltBitWidth)
3904       break;
3905 
3906     // If we know the element index, just demand that vector element, else for
3907     // an unknown element index, ignore DemandedElts and demand them all.
3908     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3909     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3910     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3911       DemandedSrcElts =
3912           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3913 
3914     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3915   }
3916   case ISD::EXTRACT_SUBVECTOR: {
3917     // If we know the element index, just demand that subvector elements,
3918     // otherwise demand them all.
3919     SDValue Src = Op.getOperand(0);
3920     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3921     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3922     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
3923     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3924       // Offset the demanded elts by the subvector index.
3925       uint64_t Idx = SubIdx->getZExtValue();
3926       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3927     }
3928     return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3929   }
3930   case ISD::CONCAT_VECTORS: {
3931     // Determine the minimum number of sign bits across all demanded
3932     // elts of the input vectors. Early out if the result is already 1.
3933     Tmp = std::numeric_limits<unsigned>::max();
3934     EVT SubVectorVT = Op.getOperand(0).getValueType();
3935     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3936     unsigned NumSubVectors = Op.getNumOperands();
3937     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3938       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3939       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3940       if (!DemandedSub)
3941         continue;
3942       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3943       Tmp = std::min(Tmp, Tmp2);
3944     }
3945     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3946     return Tmp;
3947   }
3948   case ISD::INSERT_SUBVECTOR: {
3949     // If we know the element index, demand any elements from the subvector and
3950     // the remainder from the src its inserted into, otherwise demand them all.
3951     SDValue Src = Op.getOperand(0);
3952     SDValue Sub = Op.getOperand(1);
3953     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3954     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3955     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3956       Tmp = std::numeric_limits<unsigned>::max();
3957       uint64_t Idx = SubIdx->getZExtValue();
3958       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3959       if (!!DemandedSubElts) {
3960         Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3961         if (Tmp == 1) return 1; // early-out
3962       }
3963       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
3964       APInt DemandedSrcElts = DemandedElts & ~SubMask;
3965       if (!!DemandedSrcElts) {
3966         Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3967         Tmp = std::min(Tmp, Tmp2);
3968       }
3969       assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3970       return Tmp;
3971     }
3972 
3973     // Not able to determine the index so just assume worst case.
3974     Tmp = ComputeNumSignBits(Sub, Depth + 1);
3975     if (Tmp == 1) return 1; // early-out
3976     Tmp2 = ComputeNumSignBits(Src, Depth + 1);
3977     Tmp = std::min(Tmp, Tmp2);
3978     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3979     return Tmp;
3980   }
3981   }
3982 
3983   // If we are looking at the loaded value of the SDNode.
3984   if (Op.getResNo() == 0) {
3985     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3986     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3987       unsigned ExtType = LD->getExtensionType();
3988       switch (ExtType) {
3989       default: break;
3990       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3991         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3992         return VTBits - Tmp + 1;
3993       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3994         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3995         return VTBits - Tmp;
3996       case ISD::NON_EXTLOAD:
3997         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
3998           // We only need to handle vectors - computeKnownBits should handle
3999           // scalar cases.
4000           Type *CstTy = Cst->getType();
4001           if (CstTy->isVectorTy() &&
4002               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4003             Tmp = VTBits;
4004             for (unsigned i = 0; i != NumElts; ++i) {
4005               if (!DemandedElts[i])
4006                 continue;
4007               if (Constant *Elt = Cst->getAggregateElement(i)) {
4008                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4009                   const APInt &Value = CInt->getValue();
4010                   Tmp = std::min(Tmp, Value.getNumSignBits());
4011                   continue;
4012                 }
4013                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4014                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4015                   Tmp = std::min(Tmp, Value.getNumSignBits());
4016                   continue;
4017                 }
4018               }
4019               // Unknown type. Conservatively assume no bits match sign bit.
4020               return 1;
4021             }
4022             return Tmp;
4023           }
4024         }
4025         break;
4026       }
4027     }
4028   }
4029 
4030   // Allow the target to implement this method for its nodes.
4031   if (Opcode >= ISD::BUILTIN_OP_END ||
4032       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4033       Opcode == ISD::INTRINSIC_W_CHAIN ||
4034       Opcode == ISD::INTRINSIC_VOID) {
4035     unsigned NumBits =
4036         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4037     if (NumBits > 1)
4038       FirstAnswer = std::max(FirstAnswer, NumBits);
4039   }
4040 
4041   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4042   // use this information.
4043   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4044 
4045   APInt Mask;
4046   if (Known.isNonNegative()) {        // sign bit is 0
4047     Mask = Known.Zero;
4048   } else if (Known.isNegative()) {  // sign bit is 1;
4049     Mask = Known.One;
4050   } else {
4051     // Nothing known.
4052     return FirstAnswer;
4053   }
4054 
4055   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
4056   // the number of identical bits in the top of the input value.
4057   Mask = ~Mask;
4058   Mask <<= Mask.getBitWidth()-VTBits;
4059   // Return # leading zeros.  We use 'min' here in case Val was zero before
4060   // shifting.  We don't want to return '64' as for an i32 "0".
4061   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
4062 }
4063 
4064 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4065   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4066       !isa<ConstantSDNode>(Op.getOperand(1)))
4067     return false;
4068 
4069   if (Op.getOpcode() == ISD::OR &&
4070       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4071     return false;
4072 
4073   return true;
4074 }
4075 
4076 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4077   // If we're told that NaNs won't happen, assume they won't.
4078   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4079     return true;
4080 
4081   if (Depth >= MaxRecursionDepth)
4082     return false; // Limit search depth.
4083 
4084   // TODO: Handle vectors.
4085   // If the value is a constant, we can obviously see if it is a NaN or not.
4086   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4087     return !C->getValueAPF().isNaN() ||
4088            (SNaN && !C->getValueAPF().isSignaling());
4089   }
4090 
4091   unsigned Opcode = Op.getOpcode();
4092   switch (Opcode) {
4093   case ISD::FADD:
4094   case ISD::FSUB:
4095   case ISD::FMUL:
4096   case ISD::FDIV:
4097   case ISD::FREM:
4098   case ISD::FSIN:
4099   case ISD::FCOS: {
4100     if (SNaN)
4101       return true;
4102     // TODO: Need isKnownNeverInfinity
4103     return false;
4104   }
4105   case ISD::FCANONICALIZE:
4106   case ISD::FEXP:
4107   case ISD::FEXP2:
4108   case ISD::FTRUNC:
4109   case ISD::FFLOOR:
4110   case ISD::FCEIL:
4111   case ISD::FROUND:
4112   case ISD::FRINT:
4113   case ISD::FNEARBYINT: {
4114     if (SNaN)
4115       return true;
4116     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4117   }
4118   case ISD::FABS:
4119   case ISD::FNEG:
4120   case ISD::FCOPYSIGN: {
4121     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4122   }
4123   case ISD::SELECT:
4124     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4125            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4126   case ISD::FP_EXTEND:
4127   case ISD::FP_ROUND: {
4128     if (SNaN)
4129       return true;
4130     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4131   }
4132   case ISD::SINT_TO_FP:
4133   case ISD::UINT_TO_FP:
4134     return true;
4135   case ISD::FMA:
4136   case ISD::FMAD: {
4137     if (SNaN)
4138       return true;
4139     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4140            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4141            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4142   }
4143   case ISD::FSQRT: // Need is known positive
4144   case ISD::FLOG:
4145   case ISD::FLOG2:
4146   case ISD::FLOG10:
4147   case ISD::FPOWI:
4148   case ISD::FPOW: {
4149     if (SNaN)
4150       return true;
4151     // TODO: Refine on operand
4152     return false;
4153   }
4154   case ISD::FMINNUM:
4155   case ISD::FMAXNUM: {
4156     // Only one needs to be known not-nan, since it will be returned if the
4157     // other ends up being one.
4158     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4159            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4160   }
4161   case ISD::FMINNUM_IEEE:
4162   case ISD::FMAXNUM_IEEE: {
4163     if (SNaN)
4164       return true;
4165     // This can return a NaN if either operand is an sNaN, or if both operands
4166     // are NaN.
4167     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4168             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4169            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4170             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4171   }
4172   case ISD::FMINIMUM:
4173   case ISD::FMAXIMUM: {
4174     // TODO: Does this quiet or return the origina NaN as-is?
4175     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4176            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4177   }
4178   case ISD::EXTRACT_VECTOR_ELT: {
4179     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4180   }
4181   default:
4182     if (Opcode >= ISD::BUILTIN_OP_END ||
4183         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4184         Opcode == ISD::INTRINSIC_W_CHAIN ||
4185         Opcode == ISD::INTRINSIC_VOID) {
4186       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4187     }
4188 
4189     return false;
4190   }
4191 }
4192 
4193 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4194   assert(Op.getValueType().isFloatingPoint() &&
4195          "Floating point type expected");
4196 
4197   // If the value is a constant, we can obviously see if it is a zero or not.
4198   // TODO: Add BuildVector support.
4199   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4200     return !C->isZero();
4201   return false;
4202 }
4203 
4204 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4205   assert(!Op.getValueType().isFloatingPoint() &&
4206          "Floating point types unsupported - use isKnownNeverZeroFloat");
4207 
4208   // If the value is a constant, we can obviously see if it is a zero or not.
4209   if (ISD::matchUnaryPredicate(
4210           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4211     return true;
4212 
4213   // TODO: Recognize more cases here.
4214   switch (Op.getOpcode()) {
4215   default: break;
4216   case ISD::OR:
4217     if (isKnownNeverZero(Op.getOperand(1)) ||
4218         isKnownNeverZero(Op.getOperand(0)))
4219       return true;
4220     break;
4221   }
4222 
4223   return false;
4224 }
4225 
4226 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4227   // Check the obvious case.
4228   if (A == B) return true;
4229 
4230   // For for negative and positive zero.
4231   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4232     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4233       if (CA->isZero() && CB->isZero()) return true;
4234 
4235   // Otherwise they may not be equal.
4236   return false;
4237 }
4238 
4239 // FIXME: unify with llvm::haveNoCommonBitsSet.
4240 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4241 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4242   assert(A.getValueType() == B.getValueType() &&
4243          "Values must have the same type");
4244   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4245 }
4246 
4247 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4248                                 ArrayRef<SDValue> Ops,
4249                                 SelectionDAG &DAG) {
4250   int NumOps = Ops.size();
4251   assert(NumOps != 0 && "Can't build an empty vector!");
4252   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4253          "Incorrect element count in BUILD_VECTOR!");
4254 
4255   // BUILD_VECTOR of UNDEFs is UNDEF.
4256   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4257     return DAG.getUNDEF(VT);
4258 
4259   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4260   SDValue IdentitySrc;
4261   bool IsIdentity = true;
4262   for (int i = 0; i != NumOps; ++i) {
4263     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4264         Ops[i].getOperand(0).getValueType() != VT ||
4265         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4266         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4267         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4268       IsIdentity = false;
4269       break;
4270     }
4271     IdentitySrc = Ops[i].getOperand(0);
4272   }
4273   if (IsIdentity)
4274     return IdentitySrc;
4275 
4276   return SDValue();
4277 }
4278 
4279 /// Try to simplify vector concatenation to an input value, undef, or build
4280 /// vector.
4281 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4282                                   ArrayRef<SDValue> Ops,
4283                                   SelectionDAG &DAG) {
4284   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4285   assert(llvm::all_of(Ops,
4286                       [Ops](SDValue Op) {
4287                         return Ops[0].getValueType() == Op.getValueType();
4288                       }) &&
4289          "Concatenation of vectors with inconsistent value types!");
4290   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4291              VT.getVectorNumElements() &&
4292          "Incorrect element count in vector concatenation!");
4293 
4294   if (Ops.size() == 1)
4295     return Ops[0];
4296 
4297   // Concat of UNDEFs is UNDEF.
4298   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4299     return DAG.getUNDEF(VT);
4300 
4301   // Scan the operands and look for extract operations from a single source
4302   // that correspond to insertion at the same location via this concatenation:
4303   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4304   SDValue IdentitySrc;
4305   bool IsIdentity = true;
4306   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4307     SDValue Op = Ops[i];
4308     unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements();
4309     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4310         Op.getOperand(0).getValueType() != VT ||
4311         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4312         !isa<ConstantSDNode>(Op.getOperand(1)) ||
4313         Op.getConstantOperandVal(1) != IdentityIndex) {
4314       IsIdentity = false;
4315       break;
4316     }
4317     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4318            "Unexpected identity source vector for concat of extracts");
4319     IdentitySrc = Op.getOperand(0);
4320   }
4321   if (IsIdentity) {
4322     assert(IdentitySrc && "Failed to set source vector of extracts");
4323     return IdentitySrc;
4324   }
4325 
4326   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4327   // simplified to one big BUILD_VECTOR.
4328   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4329   EVT SVT = VT.getScalarType();
4330   SmallVector<SDValue, 16> Elts;
4331   for (SDValue Op : Ops) {
4332     EVT OpVT = Op.getValueType();
4333     if (Op.isUndef())
4334       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4335     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4336       Elts.append(Op->op_begin(), Op->op_end());
4337     else
4338       return SDValue();
4339   }
4340 
4341   // BUILD_VECTOR requires all inputs to be of the same type, find the
4342   // maximum type and extend them all.
4343   for (SDValue Op : Elts)
4344     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4345 
4346   if (SVT.bitsGT(VT.getScalarType()))
4347     for (SDValue &Op : Elts)
4348       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4349                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4350                : DAG.getSExtOrTrunc(Op, DL, SVT);
4351 
4352   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4353   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4354   return V;
4355 }
4356 
4357 /// Gets or creates the specified node.
4358 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4359   FoldingSetNodeID ID;
4360   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4361   void *IP = nullptr;
4362   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4363     return SDValue(E, 0);
4364 
4365   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4366                               getVTList(VT));
4367   CSEMap.InsertNode(N, IP);
4368 
4369   InsertNode(N);
4370   SDValue V = SDValue(N, 0);
4371   NewSDValueDbgMsg(V, "Creating new node: ", this);
4372   return V;
4373 }
4374 
4375 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4376                               SDValue Operand, const SDNodeFlags Flags) {
4377   // Constant fold unary operations with an integer constant operand. Even
4378   // opaque constant will be folded, because the folding of unary operations
4379   // doesn't create new constants with different values. Nevertheless, the
4380   // opaque flag is preserved during folding to prevent future folding with
4381   // other constants.
4382   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4383     const APInt &Val = C->getAPIntValue();
4384     switch (Opcode) {
4385     default: break;
4386     case ISD::SIGN_EXTEND:
4387       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4388                          C->isTargetOpcode(), C->isOpaque());
4389     case ISD::TRUNCATE:
4390       if (C->isOpaque())
4391         break;
4392       LLVM_FALLTHROUGH;
4393     case ISD::ANY_EXTEND:
4394     case ISD::ZERO_EXTEND:
4395       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4396                          C->isTargetOpcode(), C->isOpaque());
4397     case ISD::UINT_TO_FP:
4398     case ISD::SINT_TO_FP: {
4399       APFloat apf(EVTToAPFloatSemantics(VT),
4400                   APInt::getNullValue(VT.getSizeInBits()));
4401       (void)apf.convertFromAPInt(Val,
4402                                  Opcode==ISD::SINT_TO_FP,
4403                                  APFloat::rmNearestTiesToEven);
4404       return getConstantFP(apf, DL, VT);
4405     }
4406     case ISD::BITCAST:
4407       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4408         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4409       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4410         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4411       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4412         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4413       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4414         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4415       break;
4416     case ISD::ABS:
4417       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4418                          C->isOpaque());
4419     case ISD::BITREVERSE:
4420       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4421                          C->isOpaque());
4422     case ISD::BSWAP:
4423       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4424                          C->isOpaque());
4425     case ISD::CTPOP:
4426       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4427                          C->isOpaque());
4428     case ISD::CTLZ:
4429     case ISD::CTLZ_ZERO_UNDEF:
4430       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4431                          C->isOpaque());
4432     case ISD::CTTZ:
4433     case ISD::CTTZ_ZERO_UNDEF:
4434       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4435                          C->isOpaque());
4436     case ISD::FP16_TO_FP: {
4437       bool Ignored;
4438       APFloat FPV(APFloat::IEEEhalf(),
4439                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4440 
4441       // This can return overflow, underflow, or inexact; we don't care.
4442       // FIXME need to be more flexible about rounding mode.
4443       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4444                         APFloat::rmNearestTiesToEven, &Ignored);
4445       return getConstantFP(FPV, DL, VT);
4446     }
4447     }
4448   }
4449 
4450   // Constant fold unary operations with a floating point constant operand.
4451   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4452     APFloat V = C->getValueAPF();    // make copy
4453     switch (Opcode) {
4454     case ISD::FNEG:
4455       V.changeSign();
4456       return getConstantFP(V, DL, VT);
4457     case ISD::FABS:
4458       V.clearSign();
4459       return getConstantFP(V, DL, VT);
4460     case ISD::FCEIL: {
4461       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4462       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4463         return getConstantFP(V, DL, VT);
4464       break;
4465     }
4466     case ISD::FTRUNC: {
4467       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4468       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4469         return getConstantFP(V, DL, VT);
4470       break;
4471     }
4472     case ISD::FFLOOR: {
4473       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4474       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4475         return getConstantFP(V, DL, VT);
4476       break;
4477     }
4478     case ISD::FP_EXTEND: {
4479       bool ignored;
4480       // This can return overflow, underflow, or inexact; we don't care.
4481       // FIXME need to be more flexible about rounding mode.
4482       (void)V.convert(EVTToAPFloatSemantics(VT),
4483                       APFloat::rmNearestTiesToEven, &ignored);
4484       return getConstantFP(V, DL, VT);
4485     }
4486     case ISD::FP_TO_SINT:
4487     case ISD::FP_TO_UINT: {
4488       bool ignored;
4489       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4490       // FIXME need to be more flexible about rounding mode.
4491       APFloat::opStatus s =
4492           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4493       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4494         break;
4495       return getConstant(IntVal, DL, VT);
4496     }
4497     case ISD::BITCAST:
4498       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4499         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4500       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4501         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4502       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4503         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4504       break;
4505     case ISD::FP_TO_FP16: {
4506       bool Ignored;
4507       // This can return overflow, underflow, or inexact; we don't care.
4508       // FIXME need to be more flexible about rounding mode.
4509       (void)V.convert(APFloat::IEEEhalf(),
4510                       APFloat::rmNearestTiesToEven, &Ignored);
4511       return getConstant(V.bitcastToAPInt(), DL, VT);
4512     }
4513     }
4514   }
4515 
4516   // Constant fold unary operations with a vector integer or float operand.
4517   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4518     if (BV->isConstant()) {
4519       switch (Opcode) {
4520       default:
4521         // FIXME: Entirely reasonable to perform folding of other unary
4522         // operations here as the need arises.
4523         break;
4524       case ISD::FNEG:
4525       case ISD::FABS:
4526       case ISD::FCEIL:
4527       case ISD::FTRUNC:
4528       case ISD::FFLOOR:
4529       case ISD::FP_EXTEND:
4530       case ISD::FP_TO_SINT:
4531       case ISD::FP_TO_UINT:
4532       case ISD::TRUNCATE:
4533       case ISD::ANY_EXTEND:
4534       case ISD::ZERO_EXTEND:
4535       case ISD::SIGN_EXTEND:
4536       case ISD::UINT_TO_FP:
4537       case ISD::SINT_TO_FP:
4538       case ISD::ABS:
4539       case ISD::BITREVERSE:
4540       case ISD::BSWAP:
4541       case ISD::CTLZ:
4542       case ISD::CTLZ_ZERO_UNDEF:
4543       case ISD::CTTZ:
4544       case ISD::CTTZ_ZERO_UNDEF:
4545       case ISD::CTPOP: {
4546         SDValue Ops = { Operand };
4547         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4548           return Fold;
4549       }
4550       }
4551     }
4552   }
4553 
4554   unsigned OpOpcode = Operand.getNode()->getOpcode();
4555   switch (Opcode) {
4556   case ISD::TokenFactor:
4557   case ISD::MERGE_VALUES:
4558   case ISD::CONCAT_VECTORS:
4559     return Operand;         // Factor, merge or concat of one node?  No need.
4560   case ISD::BUILD_VECTOR: {
4561     // Attempt to simplify BUILD_VECTOR.
4562     SDValue Ops[] = {Operand};
4563     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4564       return V;
4565     break;
4566   }
4567   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4568   case ISD::FP_EXTEND:
4569     assert(VT.isFloatingPoint() &&
4570            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4571     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4572     assert((!VT.isVector() ||
4573             VT.getVectorNumElements() ==
4574             Operand.getValueType().getVectorNumElements()) &&
4575            "Vector element count mismatch!");
4576     assert(Operand.getValueType().bitsLT(VT) &&
4577            "Invalid fpext node, dst < src!");
4578     if (Operand.isUndef())
4579       return getUNDEF(VT);
4580     break;
4581   case ISD::FP_TO_SINT:
4582   case ISD::FP_TO_UINT:
4583     if (Operand.isUndef())
4584       return getUNDEF(VT);
4585     break;
4586   case ISD::SINT_TO_FP:
4587   case ISD::UINT_TO_FP:
4588     // [us]itofp(undef) = 0, because the result value is bounded.
4589     if (Operand.isUndef())
4590       return getConstantFP(0.0, DL, VT);
4591     break;
4592   case ISD::SIGN_EXTEND:
4593     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4594            "Invalid SIGN_EXTEND!");
4595     assert(VT.isVector() == Operand.getValueType().isVector() &&
4596            "SIGN_EXTEND result type type should be vector iff the operand "
4597            "type is vector!");
4598     if (Operand.getValueType() == VT) return Operand;   // noop extension
4599     assert((!VT.isVector() ||
4600             VT.getVectorNumElements() ==
4601             Operand.getValueType().getVectorNumElements()) &&
4602            "Vector element count mismatch!");
4603     assert(Operand.getValueType().bitsLT(VT) &&
4604            "Invalid sext node, dst < src!");
4605     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4606       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4607     else if (OpOpcode == ISD::UNDEF)
4608       // sext(undef) = 0, because the top bits will all be the same.
4609       return getConstant(0, DL, VT);
4610     break;
4611   case ISD::ZERO_EXTEND:
4612     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4613            "Invalid ZERO_EXTEND!");
4614     assert(VT.isVector() == Operand.getValueType().isVector() &&
4615            "ZERO_EXTEND result type type should be vector iff the operand "
4616            "type is vector!");
4617     if (Operand.getValueType() == VT) return Operand;   // noop extension
4618     assert((!VT.isVector() ||
4619             VT.getVectorNumElements() ==
4620             Operand.getValueType().getVectorNumElements()) &&
4621            "Vector element count mismatch!");
4622     assert(Operand.getValueType().bitsLT(VT) &&
4623            "Invalid zext node, dst < src!");
4624     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4625       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4626     else if (OpOpcode == ISD::UNDEF)
4627       // zext(undef) = 0, because the top bits will be zero.
4628       return getConstant(0, DL, VT);
4629     break;
4630   case ISD::ANY_EXTEND:
4631     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4632            "Invalid ANY_EXTEND!");
4633     assert(VT.isVector() == Operand.getValueType().isVector() &&
4634            "ANY_EXTEND result type type should be vector iff the operand "
4635            "type is vector!");
4636     if (Operand.getValueType() == VT) return Operand;   // noop extension
4637     assert((!VT.isVector() ||
4638             VT.getVectorNumElements() ==
4639             Operand.getValueType().getVectorNumElements()) &&
4640            "Vector element count mismatch!");
4641     assert(Operand.getValueType().bitsLT(VT) &&
4642            "Invalid anyext node, dst < src!");
4643 
4644     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4645         OpOpcode == ISD::ANY_EXTEND)
4646       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4647       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4648     else if (OpOpcode == ISD::UNDEF)
4649       return getUNDEF(VT);
4650 
4651     // (ext (trunc x)) -> x
4652     if (OpOpcode == ISD::TRUNCATE) {
4653       SDValue OpOp = Operand.getOperand(0);
4654       if (OpOp.getValueType() == VT) {
4655         transferDbgValues(Operand, OpOp);
4656         return OpOp;
4657       }
4658     }
4659     break;
4660   case ISD::TRUNCATE:
4661     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4662            "Invalid TRUNCATE!");
4663     assert(VT.isVector() == Operand.getValueType().isVector() &&
4664            "TRUNCATE result type type should be vector iff the operand "
4665            "type is vector!");
4666     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4667     assert((!VT.isVector() ||
4668             VT.getVectorNumElements() ==
4669             Operand.getValueType().getVectorNumElements()) &&
4670            "Vector element count mismatch!");
4671     assert(Operand.getValueType().bitsGT(VT) &&
4672            "Invalid truncate node, src < dst!");
4673     if (OpOpcode == ISD::TRUNCATE)
4674       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4675     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4676         OpOpcode == ISD::ANY_EXTEND) {
4677       // If the source is smaller than the dest, we still need an extend.
4678       if (Operand.getOperand(0).getValueType().getScalarType()
4679             .bitsLT(VT.getScalarType()))
4680         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4681       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4682         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4683       return Operand.getOperand(0);
4684     }
4685     if (OpOpcode == ISD::UNDEF)
4686       return getUNDEF(VT);
4687     break;
4688   case ISD::ANY_EXTEND_VECTOR_INREG:
4689   case ISD::ZERO_EXTEND_VECTOR_INREG:
4690   case ISD::SIGN_EXTEND_VECTOR_INREG:
4691     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4692     assert(Operand.getValueType().bitsLE(VT) &&
4693            "The input must be the same size or smaller than the result.");
4694     assert(VT.getVectorNumElements() <
4695              Operand.getValueType().getVectorNumElements() &&
4696            "The destination vector type must have fewer lanes than the input.");
4697     break;
4698   case ISD::ABS:
4699     assert(VT.isInteger() && VT == Operand.getValueType() &&
4700            "Invalid ABS!");
4701     if (OpOpcode == ISD::UNDEF)
4702       return getUNDEF(VT);
4703     break;
4704   case ISD::BSWAP:
4705     assert(VT.isInteger() && VT == Operand.getValueType() &&
4706            "Invalid BSWAP!");
4707     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4708            "BSWAP types must be a multiple of 16 bits!");
4709     if (OpOpcode == ISD::UNDEF)
4710       return getUNDEF(VT);
4711     break;
4712   case ISD::BITREVERSE:
4713     assert(VT.isInteger() && VT == Operand.getValueType() &&
4714            "Invalid BITREVERSE!");
4715     if (OpOpcode == ISD::UNDEF)
4716       return getUNDEF(VT);
4717     break;
4718   case ISD::BITCAST:
4719     // Basic sanity checking.
4720     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4721            "Cannot BITCAST between types of different sizes!");
4722     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4723     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4724       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4725     if (OpOpcode == ISD::UNDEF)
4726       return getUNDEF(VT);
4727     break;
4728   case ISD::SCALAR_TO_VECTOR:
4729     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4730            (VT.getVectorElementType() == Operand.getValueType() ||
4731             (VT.getVectorElementType().isInteger() &&
4732              Operand.getValueType().isInteger() &&
4733              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4734            "Illegal SCALAR_TO_VECTOR node!");
4735     if (OpOpcode == ISD::UNDEF)
4736       return getUNDEF(VT);
4737     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4738     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4739         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4740         Operand.getConstantOperandVal(1) == 0 &&
4741         Operand.getOperand(0).getValueType() == VT)
4742       return Operand.getOperand(0);
4743     break;
4744   case ISD::FNEG:
4745     // Negation of an unknown bag of bits is still completely undefined.
4746     if (OpOpcode == ISD::UNDEF)
4747       return getUNDEF(VT);
4748 
4749     if (OpOpcode == ISD::FNEG)  // --X -> X
4750       return Operand.getOperand(0);
4751     break;
4752   case ISD::FABS:
4753     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4754       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4755     break;
4756   }
4757 
4758   SDNode *N;
4759   SDVTList VTs = getVTList(VT);
4760   SDValue Ops[] = {Operand};
4761   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4762     FoldingSetNodeID ID;
4763     AddNodeIDNode(ID, Opcode, VTs, Ops);
4764     void *IP = nullptr;
4765     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4766       E->intersectFlagsWith(Flags);
4767       return SDValue(E, 0);
4768     }
4769 
4770     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4771     N->setFlags(Flags);
4772     createOperands(N, Ops);
4773     CSEMap.InsertNode(N, IP);
4774   } else {
4775     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4776     createOperands(N, Ops);
4777   }
4778 
4779   InsertNode(N);
4780   SDValue V = SDValue(N, 0);
4781   NewSDValueDbgMsg(V, "Creating new node: ", this);
4782   return V;
4783 }
4784 
4785 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4786                                        const APInt &C2) {
4787   switch (Opcode) {
4788   case ISD::ADD:  return C1 + C2;
4789   case ISD::SUB:  return C1 - C2;
4790   case ISD::MUL:  return C1 * C2;
4791   case ISD::AND:  return C1 & C2;
4792   case ISD::OR:   return C1 | C2;
4793   case ISD::XOR:  return C1 ^ C2;
4794   case ISD::SHL:  return C1 << C2;
4795   case ISD::SRL:  return C1.lshr(C2);
4796   case ISD::SRA:  return C1.ashr(C2);
4797   case ISD::ROTL: return C1.rotl(C2);
4798   case ISD::ROTR: return C1.rotr(C2);
4799   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4800   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4801   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4802   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4803   case ISD::SADDSAT: return C1.sadd_sat(C2);
4804   case ISD::UADDSAT: return C1.uadd_sat(C2);
4805   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4806   case ISD::USUBSAT: return C1.usub_sat(C2);
4807   case ISD::UDIV:
4808     if (!C2.getBoolValue())
4809       break;
4810     return C1.udiv(C2);
4811   case ISD::UREM:
4812     if (!C2.getBoolValue())
4813       break;
4814     return C1.urem(C2);
4815   case ISD::SDIV:
4816     if (!C2.getBoolValue())
4817       break;
4818     return C1.sdiv(C2);
4819   case ISD::SREM:
4820     if (!C2.getBoolValue())
4821       break;
4822     return C1.srem(C2);
4823   }
4824   return llvm::None;
4825 }
4826 
4827 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4828                                              EVT VT, const ConstantSDNode *C1,
4829                                              const ConstantSDNode *C2) {
4830   if (C1->isOpaque() || C2->isOpaque())
4831     return SDValue();
4832   if (Optional<APInt> Folded =
4833           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()))
4834     return getConstant(Folded.getValue(), DL, VT);
4835   return SDValue();
4836 }
4837 
4838 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4839                                        const GlobalAddressSDNode *GA,
4840                                        const SDNode *N2) {
4841   if (GA->getOpcode() != ISD::GlobalAddress)
4842     return SDValue();
4843   if (!TLI->isOffsetFoldingLegal(GA))
4844     return SDValue();
4845   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4846   if (!C2)
4847     return SDValue();
4848   int64_t Offset = C2->getSExtValue();
4849   switch (Opcode) {
4850   case ISD::ADD: break;
4851   case ISD::SUB: Offset = -uint64_t(Offset); break;
4852   default: return SDValue();
4853   }
4854   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4855                           GA->getOffset() + uint64_t(Offset));
4856 }
4857 
4858 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4859   switch (Opcode) {
4860   case ISD::SDIV:
4861   case ISD::UDIV:
4862   case ISD::SREM:
4863   case ISD::UREM: {
4864     // If a divisor is zero/undef or any element of a divisor vector is
4865     // zero/undef, the whole op is undef.
4866     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4867     SDValue Divisor = Ops[1];
4868     if (Divisor.isUndef() || isNullConstant(Divisor))
4869       return true;
4870 
4871     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4872            llvm::any_of(Divisor->op_values(),
4873                         [](SDValue V) { return V.isUndef() ||
4874                                         isNullConstant(V); });
4875     // TODO: Handle signed overflow.
4876   }
4877   // TODO: Handle oversized shifts.
4878   default:
4879     return false;
4880   }
4881 }
4882 
4883 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4884                                              EVT VT, SDNode *N1, SDNode *N2) {
4885   // If the opcode is a target-specific ISD node, there's nothing we can
4886   // do here and the operand rules may not line up with the below, so
4887   // bail early.
4888   if (Opcode >= ISD::BUILTIN_OP_END)
4889     return SDValue();
4890 
4891   if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)}))
4892     return getUNDEF(VT);
4893 
4894   // Handle the case of two scalars.
4895   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4896     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4897       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
4898       assert((!Folded || !VT.isVector()) &&
4899              "Can't fold vectors ops with scalar operands");
4900       return Folded;
4901     }
4902   }
4903 
4904   // fold (add Sym, c) -> Sym+c
4905   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4906     return FoldSymbolOffset(Opcode, VT, GA, N2);
4907   if (TLI->isCommutativeBinOp(Opcode))
4908     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4909       return FoldSymbolOffset(Opcode, VT, GA, N1);
4910 
4911   // For vectors, extract each constant element and fold them individually.
4912   // Either input may be an undef value.
4913   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4914   if (!BV1 && !N1->isUndef())
4915     return SDValue();
4916   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4917   if (!BV2 && !N2->isUndef())
4918     return SDValue();
4919   // If both operands are undef, that's handled the same way as scalars.
4920   if (!BV1 && !BV2)
4921     return SDValue();
4922 
4923   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4924          "Vector binop with different number of elements in operands?");
4925 
4926   EVT SVT = VT.getScalarType();
4927   EVT LegalSVT = SVT;
4928   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4929     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4930     if (LegalSVT.bitsLT(SVT))
4931       return SDValue();
4932   }
4933   SmallVector<SDValue, 4> Outputs;
4934   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4935   for (unsigned I = 0; I != NumOps; ++I) {
4936     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4937     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4938     if (SVT.isInteger()) {
4939       if (V1->getValueType(0).bitsGT(SVT))
4940         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4941       if (V2->getValueType(0).bitsGT(SVT))
4942         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4943     }
4944 
4945     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4946       return SDValue();
4947 
4948     // Fold one vector element.
4949     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4950     if (LegalSVT != SVT)
4951       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4952 
4953     // Scalar folding only succeeded if the result is a constant or UNDEF.
4954     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4955         ScalarResult.getOpcode() != ISD::ConstantFP)
4956       return SDValue();
4957     Outputs.push_back(ScalarResult);
4958   }
4959 
4960   assert(VT.getVectorNumElements() == Outputs.size() &&
4961          "Vector size mismatch!");
4962 
4963   // We may have a vector type but a scalar result. Create a splat.
4964   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4965 
4966   // Build a big vector out of the scalar elements we generated.
4967   return getBuildVector(VT, SDLoc(), Outputs);
4968 }
4969 
4970 // TODO: Merge with FoldConstantArithmetic
4971 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4972                                                    const SDLoc &DL, EVT VT,
4973                                                    ArrayRef<SDValue> Ops,
4974                                                    const SDNodeFlags Flags) {
4975   // If the opcode is a target-specific ISD node, there's nothing we can
4976   // do here and the operand rules may not line up with the below, so
4977   // bail early.
4978   if (Opcode >= ISD::BUILTIN_OP_END)
4979     return SDValue();
4980 
4981   if (isUndef(Opcode, Ops))
4982     return getUNDEF(VT);
4983 
4984   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4985   if (!VT.isVector())
4986     return SDValue();
4987 
4988   unsigned NumElts = VT.getVectorNumElements();
4989 
4990   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4991     return !Op.getValueType().isVector() ||
4992            Op.getValueType().getVectorNumElements() == NumElts;
4993   };
4994 
4995   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4996     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4997     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4998            (BV && BV->isConstant());
4999   };
5000 
5001   // All operands must be vector types with the same number of elements as
5002   // the result type and must be either UNDEF or a build vector of constant
5003   // or UNDEF scalars.
5004   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5005       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5006     return SDValue();
5007 
5008   // If we are comparing vectors, then the result needs to be a i1 boolean
5009   // that is then sign-extended back to the legal result type.
5010   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5011 
5012   // Find legal integer scalar type for constant promotion and
5013   // ensure that its scalar size is at least as large as source.
5014   EVT LegalSVT = VT.getScalarType();
5015   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5016     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5017     if (LegalSVT.bitsLT(VT.getScalarType()))
5018       return SDValue();
5019   }
5020 
5021   // Constant fold each scalar lane separately.
5022   SmallVector<SDValue, 4> ScalarResults;
5023   for (unsigned i = 0; i != NumElts; i++) {
5024     SmallVector<SDValue, 4> ScalarOps;
5025     for (SDValue Op : Ops) {
5026       EVT InSVT = Op.getValueType().getScalarType();
5027       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5028       if (!InBV) {
5029         // We've checked that this is UNDEF or a constant of some kind.
5030         if (Op.isUndef())
5031           ScalarOps.push_back(getUNDEF(InSVT));
5032         else
5033           ScalarOps.push_back(Op);
5034         continue;
5035       }
5036 
5037       SDValue ScalarOp = InBV->getOperand(i);
5038       EVT ScalarVT = ScalarOp.getValueType();
5039 
5040       // Build vector (integer) scalar operands may need implicit
5041       // truncation - do this before constant folding.
5042       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5043         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5044 
5045       ScalarOps.push_back(ScalarOp);
5046     }
5047 
5048     // Constant fold the scalar operands.
5049     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5050 
5051     // Legalize the (integer) scalar constant if necessary.
5052     if (LegalSVT != SVT)
5053       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5054 
5055     // Scalar folding only succeeded if the result is a constant or UNDEF.
5056     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5057         ScalarResult.getOpcode() != ISD::ConstantFP)
5058       return SDValue();
5059     ScalarResults.push_back(ScalarResult);
5060   }
5061 
5062   SDValue V = getBuildVector(VT, DL, ScalarResults);
5063   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5064   return V;
5065 }
5066 
5067 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5068                                          EVT VT, SDValue N1, SDValue N2) {
5069   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5070   //       should. That will require dealing with a potentially non-default
5071   //       rounding mode, checking the "opStatus" return value from the APFloat
5072   //       math calculations, and possibly other variations.
5073   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5074   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5075   if (N1CFP && N2CFP) {
5076     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5077     switch (Opcode) {
5078     case ISD::FADD:
5079       C1.add(C2, APFloat::rmNearestTiesToEven);
5080       return getConstantFP(C1, DL, VT);
5081     case ISD::FSUB:
5082       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5083       return getConstantFP(C1, DL, VT);
5084     case ISD::FMUL:
5085       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5086       return getConstantFP(C1, DL, VT);
5087     case ISD::FDIV:
5088       C1.divide(C2, APFloat::rmNearestTiesToEven);
5089       return getConstantFP(C1, DL, VT);
5090     case ISD::FREM:
5091       C1.mod(C2);
5092       return getConstantFP(C1, DL, VT);
5093     case ISD::FCOPYSIGN:
5094       C1.copySign(C2);
5095       return getConstantFP(C1, DL, VT);
5096     default: break;
5097     }
5098   }
5099   if (N1CFP && Opcode == ISD::FP_ROUND) {
5100     APFloat C1 = N1CFP->getValueAPF();    // make copy
5101     bool Unused;
5102     // This can return overflow, underflow, or inexact; we don't care.
5103     // FIXME need to be more flexible about rounding mode.
5104     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5105                       &Unused);
5106     return getConstantFP(C1, DL, VT);
5107   }
5108 
5109   switch (Opcode) {
5110   case ISD::FADD:
5111   case ISD::FSUB:
5112   case ISD::FMUL:
5113   case ISD::FDIV:
5114   case ISD::FREM:
5115     // If both operands are undef, the result is undef. If 1 operand is undef,
5116     // the result is NaN. This should match the behavior of the IR optimizer.
5117     if (N1.isUndef() && N2.isUndef())
5118       return getUNDEF(VT);
5119     if (N1.isUndef() || N2.isUndef())
5120       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5121   }
5122   return SDValue();
5123 }
5124 
5125 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5126                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5127   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5128   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5129   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5130   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5131 
5132   // Canonicalize constant to RHS if commutative.
5133   if (TLI->isCommutativeBinOp(Opcode)) {
5134     if (N1C && !N2C) {
5135       std::swap(N1C, N2C);
5136       std::swap(N1, N2);
5137     } else if (N1CFP && !N2CFP) {
5138       std::swap(N1CFP, N2CFP);
5139       std::swap(N1, N2);
5140     }
5141   }
5142 
5143   switch (Opcode) {
5144   default: break;
5145   case ISD::TokenFactor:
5146     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5147            N2.getValueType() == MVT::Other && "Invalid token factor!");
5148     // Fold trivial token factors.
5149     if (N1.getOpcode() == ISD::EntryToken) return N2;
5150     if (N2.getOpcode() == ISD::EntryToken) return N1;
5151     if (N1 == N2) return N1;
5152     break;
5153   case ISD::BUILD_VECTOR: {
5154     // Attempt to simplify BUILD_VECTOR.
5155     SDValue Ops[] = {N1, N2};
5156     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5157       return V;
5158     break;
5159   }
5160   case ISD::CONCAT_VECTORS: {
5161     SDValue Ops[] = {N1, N2};
5162     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5163       return V;
5164     break;
5165   }
5166   case ISD::AND:
5167     assert(VT.isInteger() && "This operator does not apply to FP types!");
5168     assert(N1.getValueType() == N2.getValueType() &&
5169            N1.getValueType() == VT && "Binary operator types must match!");
5170     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5171     // worth handling here.
5172     if (N2C && N2C->isNullValue())
5173       return N2;
5174     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5175       return N1;
5176     break;
5177   case ISD::OR:
5178   case ISD::XOR:
5179   case ISD::ADD:
5180   case ISD::SUB:
5181     assert(VT.isInteger() && "This operator does not apply to FP types!");
5182     assert(N1.getValueType() == N2.getValueType() &&
5183            N1.getValueType() == VT && "Binary operator types must match!");
5184     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5185     // it's worth handling here.
5186     if (N2C && N2C->isNullValue())
5187       return N1;
5188     break;
5189   case ISD::MUL:
5190     assert(VT.isInteger() && "This operator does not apply to FP types!");
5191     assert(N1.getValueType() == N2.getValueType() &&
5192            N1.getValueType() == VT && "Binary operator types must match!");
5193     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5194       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5195       APInt N2CImm = N2C->getAPIntValue();
5196       return getVScale(DL, VT, MulImm * N2CImm);
5197     }
5198     break;
5199   case ISD::UDIV:
5200   case ISD::UREM:
5201   case ISD::MULHU:
5202   case ISD::MULHS:
5203   case ISD::SDIV:
5204   case ISD::SREM:
5205   case ISD::SMIN:
5206   case ISD::SMAX:
5207   case ISD::UMIN:
5208   case ISD::UMAX:
5209   case ISD::SADDSAT:
5210   case ISD::SSUBSAT:
5211   case ISD::UADDSAT:
5212   case ISD::USUBSAT:
5213     assert(VT.isInteger() && "This operator does not apply to FP types!");
5214     assert(N1.getValueType() == N2.getValueType() &&
5215            N1.getValueType() == VT && "Binary operator types must match!");
5216     break;
5217   case ISD::FADD:
5218   case ISD::FSUB:
5219   case ISD::FMUL:
5220   case ISD::FDIV:
5221   case ISD::FREM:
5222     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5223     assert(N1.getValueType() == N2.getValueType() &&
5224            N1.getValueType() == VT && "Binary operator types must match!");
5225     if (SDValue V = simplifyFPBinop(Opcode, N1, N2))
5226       return V;
5227     break;
5228   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5229     assert(N1.getValueType() == VT &&
5230            N1.getValueType().isFloatingPoint() &&
5231            N2.getValueType().isFloatingPoint() &&
5232            "Invalid FCOPYSIGN!");
5233     break;
5234   case ISD::SHL:
5235     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5236       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5237       APInt ShiftImm = N2C->getAPIntValue();
5238       return getVScale(DL, VT, MulImm << ShiftImm);
5239     }
5240     LLVM_FALLTHROUGH;
5241   case ISD::SRA:
5242   case ISD::SRL:
5243     if (SDValue V = simplifyShift(N1, N2))
5244       return V;
5245     LLVM_FALLTHROUGH;
5246   case ISD::ROTL:
5247   case ISD::ROTR:
5248     assert(VT == N1.getValueType() &&
5249            "Shift operators return type must be the same as their first arg");
5250     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5251            "Shifts only work on integers");
5252     assert((!VT.isVector() || VT == N2.getValueType()) &&
5253            "Vector shift amounts must be in the same as their first arg");
5254     // Verify that the shift amount VT is big enough to hold valid shift
5255     // amounts.  This catches things like trying to shift an i1024 value by an
5256     // i8, which is easy to fall into in generic code that uses
5257     // TLI.getShiftAmount().
5258     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
5259            "Invalid use of small shift amount with oversized value!");
5260 
5261     // Always fold shifts of i1 values so the code generator doesn't need to
5262     // handle them.  Since we know the size of the shift has to be less than the
5263     // size of the value, the shift/rotate count is guaranteed to be zero.
5264     if (VT == MVT::i1)
5265       return N1;
5266     if (N2C && N2C->isNullValue())
5267       return N1;
5268     break;
5269   case ISD::FP_ROUND:
5270     assert(VT.isFloatingPoint() &&
5271            N1.getValueType().isFloatingPoint() &&
5272            VT.bitsLE(N1.getValueType()) &&
5273            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5274            "Invalid FP_ROUND!");
5275     if (N1.getValueType() == VT) return N1;  // noop conversion.
5276     break;
5277   case ISD::AssertSext:
5278   case ISD::AssertZext: {
5279     EVT EVT = cast<VTSDNode>(N2)->getVT();
5280     assert(VT == N1.getValueType() && "Not an inreg extend!");
5281     assert(VT.isInteger() && EVT.isInteger() &&
5282            "Cannot *_EXTEND_INREG FP types");
5283     assert(!EVT.isVector() &&
5284            "AssertSExt/AssertZExt type should be the vector element type "
5285            "rather than the vector type!");
5286     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5287     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5288     break;
5289   }
5290   case ISD::SIGN_EXTEND_INREG: {
5291     EVT EVT = cast<VTSDNode>(N2)->getVT();
5292     assert(VT == N1.getValueType() && "Not an inreg extend!");
5293     assert(VT.isInteger() && EVT.isInteger() &&
5294            "Cannot *_EXTEND_INREG FP types");
5295     assert(EVT.isVector() == VT.isVector() &&
5296            "SIGN_EXTEND_INREG type should be vector iff the operand "
5297            "type is vector!");
5298     assert((!EVT.isVector() ||
5299             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5300            "Vector element counts must match in SIGN_EXTEND_INREG");
5301     assert(EVT.bitsLE(VT) && "Not extending!");
5302     if (EVT == VT) return N1;  // Not actually extending
5303 
5304     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5305       unsigned FromBits = EVT.getScalarSizeInBits();
5306       Val <<= Val.getBitWidth() - FromBits;
5307       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5308       return getConstant(Val, DL, ConstantVT);
5309     };
5310 
5311     if (N1C) {
5312       const APInt &Val = N1C->getAPIntValue();
5313       return SignExtendInReg(Val, VT);
5314     }
5315     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5316       SmallVector<SDValue, 8> Ops;
5317       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5318       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5319         SDValue Op = N1.getOperand(i);
5320         if (Op.isUndef()) {
5321           Ops.push_back(getUNDEF(OpVT));
5322           continue;
5323         }
5324         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5325         APInt Val = C->getAPIntValue();
5326         Ops.push_back(SignExtendInReg(Val, OpVT));
5327       }
5328       return getBuildVector(VT, DL, Ops);
5329     }
5330     break;
5331   }
5332   case ISD::EXTRACT_VECTOR_ELT:
5333     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5334            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5335              element type of the vector.");
5336 
5337     // Extract from an undefined value or using an undefined index is undefined.
5338     if (N1.isUndef() || N2.isUndef())
5339       return getUNDEF(VT);
5340 
5341     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5342     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5343       return getUNDEF(VT);
5344 
5345     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5346     // expanding copies of large vectors from registers.
5347     if (N2C &&
5348         N1.getOpcode() == ISD::CONCAT_VECTORS &&
5349         N1.getNumOperands() > 0) {
5350       unsigned Factor =
5351         N1.getOperand(0).getValueType().getVectorNumElements();
5352       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5353                      N1.getOperand(N2C->getZExtValue() / Factor),
5354                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5355     }
5356 
5357     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5358     // expanding large vector constants.
5359     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5360       SDValue Elt = N1.getOperand(N2C->getZExtValue());
5361 
5362       if (VT != Elt.getValueType())
5363         // If the vector element type is not legal, the BUILD_VECTOR operands
5364         // are promoted and implicitly truncated, and the result implicitly
5365         // extended. Make that explicit here.
5366         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5367 
5368       return Elt;
5369     }
5370 
5371     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5372     // operations are lowered to scalars.
5373     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5374       // If the indices are the same, return the inserted element else
5375       // if the indices are known different, extract the element from
5376       // the original vector.
5377       SDValue N1Op2 = N1.getOperand(2);
5378       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5379 
5380       if (N1Op2C && N2C) {
5381         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5382           if (VT == N1.getOperand(1).getValueType())
5383             return N1.getOperand(1);
5384           else
5385             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5386         }
5387 
5388         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5389       }
5390     }
5391 
5392     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5393     // when vector types are scalarized and v1iX is legal.
5394     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5395     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5396         N1.getValueType().getVectorNumElements() == 1) {
5397       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5398                      N1.getOperand(1));
5399     }
5400     break;
5401   case ISD::EXTRACT_ELEMENT:
5402     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5403     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5404            (N1.getValueType().isInteger() == VT.isInteger()) &&
5405            N1.getValueType() != VT &&
5406            "Wrong types for EXTRACT_ELEMENT!");
5407 
5408     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5409     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5410     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5411     if (N1.getOpcode() == ISD::BUILD_PAIR)
5412       return N1.getOperand(N2C->getZExtValue());
5413 
5414     // EXTRACT_ELEMENT of a constant int is also very common.
5415     if (N1C) {
5416       unsigned ElementSize = VT.getSizeInBits();
5417       unsigned Shift = ElementSize * N2C->getZExtValue();
5418       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5419       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5420     }
5421     break;
5422   case ISD::EXTRACT_SUBVECTOR:
5423     if (VT.isSimple() && N1.getValueType().isSimple()) {
5424       assert(VT.isVector() && N1.getValueType().isVector() &&
5425              "Extract subvector VTs must be a vectors!");
5426       assert(VT.getVectorElementType() ==
5427              N1.getValueType().getVectorElementType() &&
5428              "Extract subvector VTs must have the same element type!");
5429       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5430              "Extract subvector must be from larger vector to smaller vector!");
5431 
5432       if (N2C) {
5433         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5434                 <= N1.getValueType().getVectorNumElements())
5435                && "Extract subvector overflow!");
5436       }
5437 
5438       // Trivial extraction.
5439       if (VT.getSimpleVT() == N1.getSimpleValueType())
5440         return N1;
5441 
5442       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5443       if (N1.isUndef())
5444         return getUNDEF(VT);
5445 
5446       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5447       // the concat have the same type as the extract.
5448       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5449           N1.getNumOperands() > 0 &&
5450           VT == N1.getOperand(0).getValueType()) {
5451         unsigned Factor = VT.getVectorNumElements();
5452         return N1.getOperand(N2C->getZExtValue() / Factor);
5453       }
5454 
5455       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5456       // during shuffle legalization.
5457       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5458           VT == N1.getOperand(1).getValueType())
5459         return N1.getOperand(1);
5460     }
5461     break;
5462   }
5463 
5464   // Perform trivial constant folding.
5465   if (SDValue SV =
5466           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
5467     return SV;
5468 
5469   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5470     return V;
5471 
5472   // Canonicalize an UNDEF to the RHS, even over a constant.
5473   if (N1.isUndef()) {
5474     if (TLI->isCommutativeBinOp(Opcode)) {
5475       std::swap(N1, N2);
5476     } else {
5477       switch (Opcode) {
5478       case ISD::SIGN_EXTEND_INREG:
5479       case ISD::SUB:
5480         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5481       case ISD::UDIV:
5482       case ISD::SDIV:
5483       case ISD::UREM:
5484       case ISD::SREM:
5485       case ISD::SSUBSAT:
5486       case ISD::USUBSAT:
5487         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5488       }
5489     }
5490   }
5491 
5492   // Fold a bunch of operators when the RHS is undef.
5493   if (N2.isUndef()) {
5494     switch (Opcode) {
5495     case ISD::XOR:
5496       if (N1.isUndef())
5497         // Handle undef ^ undef -> 0 special case. This is a common
5498         // idiom (misuse).
5499         return getConstant(0, DL, VT);
5500       LLVM_FALLTHROUGH;
5501     case ISD::ADD:
5502     case ISD::SUB:
5503     case ISD::UDIV:
5504     case ISD::SDIV:
5505     case ISD::UREM:
5506     case ISD::SREM:
5507       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5508     case ISD::MUL:
5509     case ISD::AND:
5510     case ISD::SSUBSAT:
5511     case ISD::USUBSAT:
5512       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5513     case ISD::OR:
5514     case ISD::SADDSAT:
5515     case ISD::UADDSAT:
5516       return getAllOnesConstant(DL, VT);
5517     }
5518   }
5519 
5520   // Memoize this node if possible.
5521   SDNode *N;
5522   SDVTList VTs = getVTList(VT);
5523   SDValue Ops[] = {N1, N2};
5524   if (VT != MVT::Glue) {
5525     FoldingSetNodeID ID;
5526     AddNodeIDNode(ID, Opcode, VTs, Ops);
5527     void *IP = nullptr;
5528     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5529       E->intersectFlagsWith(Flags);
5530       return SDValue(E, 0);
5531     }
5532 
5533     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5534     N->setFlags(Flags);
5535     createOperands(N, Ops);
5536     CSEMap.InsertNode(N, IP);
5537   } else {
5538     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5539     createOperands(N, Ops);
5540   }
5541 
5542   InsertNode(N);
5543   SDValue V = SDValue(N, 0);
5544   NewSDValueDbgMsg(V, "Creating new node: ", this);
5545   return V;
5546 }
5547 
5548 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5549                               SDValue N1, SDValue N2, SDValue N3,
5550                               const SDNodeFlags Flags) {
5551   // Perform various simplifications.
5552   switch (Opcode) {
5553   case ISD::FMA: {
5554     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5555     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5556            N3.getValueType() == VT && "FMA types must match!");
5557     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5558     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5559     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5560     if (N1CFP && N2CFP && N3CFP) {
5561       APFloat  V1 = N1CFP->getValueAPF();
5562       const APFloat &V2 = N2CFP->getValueAPF();
5563       const APFloat &V3 = N3CFP->getValueAPF();
5564       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5565       return getConstantFP(V1, DL, VT);
5566     }
5567     break;
5568   }
5569   case ISD::BUILD_VECTOR: {
5570     // Attempt to simplify BUILD_VECTOR.
5571     SDValue Ops[] = {N1, N2, N3};
5572     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5573       return V;
5574     break;
5575   }
5576   case ISD::CONCAT_VECTORS: {
5577     SDValue Ops[] = {N1, N2, N3};
5578     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5579       return V;
5580     break;
5581   }
5582   case ISD::SETCC: {
5583     assert(VT.isInteger() && "SETCC result type must be an integer!");
5584     assert(N1.getValueType() == N2.getValueType() &&
5585            "SETCC operands must have the same type!");
5586     assert(VT.isVector() == N1.getValueType().isVector() &&
5587            "SETCC type should be vector iff the operand type is vector!");
5588     assert((!VT.isVector() ||
5589             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5590            "SETCC vector element counts must match!");
5591     // Use FoldSetCC to simplify SETCC's.
5592     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5593       return V;
5594     // Vector constant folding.
5595     SDValue Ops[] = {N1, N2, N3};
5596     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5597       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5598       return V;
5599     }
5600     break;
5601   }
5602   case ISD::SELECT:
5603   case ISD::VSELECT:
5604     if (SDValue V = simplifySelect(N1, N2, N3))
5605       return V;
5606     break;
5607   case ISD::VECTOR_SHUFFLE:
5608     llvm_unreachable("should use getVectorShuffle constructor!");
5609   case ISD::INSERT_VECTOR_ELT: {
5610     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5611     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5612     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5613       return getUNDEF(VT);
5614 
5615     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5616     if (N3.isUndef())
5617       return getUNDEF(VT);
5618 
5619     // If the inserted element is an UNDEF, just use the input vector.
5620     if (N2.isUndef())
5621       return N1;
5622 
5623     break;
5624   }
5625   case ISD::INSERT_SUBVECTOR: {
5626     // Inserting undef into undef is still undef.
5627     if (N1.isUndef() && N2.isUndef())
5628       return getUNDEF(VT);
5629     SDValue Index = N3;
5630     if (VT.isSimple() && N1.getValueType().isSimple()
5631         && N2.getValueType().isSimple()) {
5632       assert(VT.isVector() && N1.getValueType().isVector() &&
5633              N2.getValueType().isVector() &&
5634              "Insert subvector VTs must be a vectors");
5635       assert(VT == N1.getValueType() &&
5636              "Dest and insert subvector source types must match!");
5637       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5638              "Insert subvector must be from smaller vector to larger vector!");
5639       if (isa<ConstantSDNode>(Index)) {
5640         assert((N2.getValueType().getVectorNumElements() +
5641                 cast<ConstantSDNode>(Index)->getZExtValue()
5642                 <= VT.getVectorNumElements())
5643                && "Insert subvector overflow!");
5644       }
5645 
5646       // Trivial insertion.
5647       if (VT.getSimpleVT() == N2.getSimpleValueType())
5648         return N2;
5649 
5650       // If this is an insert of an extracted vector into an undef vector, we
5651       // can just use the input to the extract.
5652       if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5653           N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5654         return N2.getOperand(0);
5655     }
5656     break;
5657   }
5658   case ISD::BITCAST:
5659     // Fold bit_convert nodes from a type to themselves.
5660     if (N1.getValueType() == VT)
5661       return N1;
5662     break;
5663   }
5664 
5665   // Memoize node if it doesn't produce a flag.
5666   SDNode *N;
5667   SDVTList VTs = getVTList(VT);
5668   SDValue Ops[] = {N1, N2, N3};
5669   if (VT != MVT::Glue) {
5670     FoldingSetNodeID ID;
5671     AddNodeIDNode(ID, Opcode, VTs, Ops);
5672     void *IP = nullptr;
5673     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5674       E->intersectFlagsWith(Flags);
5675       return SDValue(E, 0);
5676     }
5677 
5678     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5679     N->setFlags(Flags);
5680     createOperands(N, Ops);
5681     CSEMap.InsertNode(N, IP);
5682   } else {
5683     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5684     createOperands(N, Ops);
5685   }
5686 
5687   InsertNode(N);
5688   SDValue V = SDValue(N, 0);
5689   NewSDValueDbgMsg(V, "Creating new node: ", this);
5690   return V;
5691 }
5692 
5693 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5694                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5695   SDValue Ops[] = { N1, N2, N3, N4 };
5696   return getNode(Opcode, DL, VT, Ops);
5697 }
5698 
5699 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5700                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5701                               SDValue N5) {
5702   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5703   return getNode(Opcode, DL, VT, Ops);
5704 }
5705 
5706 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5707 /// the incoming stack arguments to be loaded from the stack.
5708 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5709   SmallVector<SDValue, 8> ArgChains;
5710 
5711   // Include the original chain at the beginning of the list. When this is
5712   // used by target LowerCall hooks, this helps legalize find the
5713   // CALLSEQ_BEGIN node.
5714   ArgChains.push_back(Chain);
5715 
5716   // Add a chain value for each stack argument.
5717   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5718        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5719     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5720       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5721         if (FI->getIndex() < 0)
5722           ArgChains.push_back(SDValue(L, 1));
5723 
5724   // Build a tokenfactor for all the chains.
5725   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5726 }
5727 
5728 /// getMemsetValue - Vectorized representation of the memset value
5729 /// operand.
5730 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5731                               const SDLoc &dl) {
5732   assert(!Value.isUndef());
5733 
5734   unsigned NumBits = VT.getScalarSizeInBits();
5735   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5736     assert(C->getAPIntValue().getBitWidth() == 8);
5737     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5738     if (VT.isInteger()) {
5739       bool IsOpaque = VT.getSizeInBits() > 64 ||
5740           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5741       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5742     }
5743     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5744                              VT);
5745   }
5746 
5747   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5748   EVT IntVT = VT.getScalarType();
5749   if (!IntVT.isInteger())
5750     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5751 
5752   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5753   if (NumBits > 8) {
5754     // Use a multiplication with 0x010101... to extend the input to the
5755     // required length.
5756     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5757     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5758                         DAG.getConstant(Magic, dl, IntVT));
5759   }
5760 
5761   if (VT != Value.getValueType() && !VT.isInteger())
5762     Value = DAG.getBitcast(VT.getScalarType(), Value);
5763   if (VT != Value.getValueType())
5764     Value = DAG.getSplatBuildVector(VT, dl, Value);
5765 
5766   return Value;
5767 }
5768 
5769 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5770 /// used when a memcpy is turned into a memset when the source is a constant
5771 /// string ptr.
5772 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5773                                   const TargetLowering &TLI,
5774                                   const ConstantDataArraySlice &Slice) {
5775   // Handle vector with all elements zero.
5776   if (Slice.Array == nullptr) {
5777     if (VT.isInteger())
5778       return DAG.getConstant(0, dl, VT);
5779     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5780       return DAG.getConstantFP(0.0, dl, VT);
5781     else if (VT.isVector()) {
5782       unsigned NumElts = VT.getVectorNumElements();
5783       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5784       return DAG.getNode(ISD::BITCAST, dl, VT,
5785                          DAG.getConstant(0, dl,
5786                                          EVT::getVectorVT(*DAG.getContext(),
5787                                                           EltVT, NumElts)));
5788     } else
5789       llvm_unreachable("Expected type!");
5790   }
5791 
5792   assert(!VT.isVector() && "Can't handle vector type here!");
5793   unsigned NumVTBits = VT.getSizeInBits();
5794   unsigned NumVTBytes = NumVTBits / 8;
5795   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5796 
5797   APInt Val(NumVTBits, 0);
5798   if (DAG.getDataLayout().isLittleEndian()) {
5799     for (unsigned i = 0; i != NumBytes; ++i)
5800       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5801   } else {
5802     for (unsigned i = 0; i != NumBytes; ++i)
5803       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5804   }
5805 
5806   // If the "cost" of materializing the integer immediate is less than the cost
5807   // of a load, then it is cost effective to turn the load into the immediate.
5808   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5809   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5810     return DAG.getConstant(Val, dl, VT);
5811   return SDValue(nullptr, 0);
5812 }
5813 
5814 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset,
5815                                            const SDLoc &DL,
5816                                            const SDNodeFlags Flags) {
5817   EVT VT = Base.getValueType();
5818   return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags);
5819 }
5820 
5821 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5822                                            const SDLoc &DL,
5823                                            const SDNodeFlags Flags) {
5824   assert(Offset.getValueType().isInteger());
5825   EVT BasePtrVT = Ptr.getValueType();
5826   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5827 }
5828 
5829 /// Returns true if memcpy source is constant data.
5830 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5831   uint64_t SrcDelta = 0;
5832   GlobalAddressSDNode *G = nullptr;
5833   if (Src.getOpcode() == ISD::GlobalAddress)
5834     G = cast<GlobalAddressSDNode>(Src);
5835   else if (Src.getOpcode() == ISD::ADD &&
5836            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5837            Src.getOperand(1).getOpcode() == ISD::Constant) {
5838     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5839     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5840   }
5841   if (!G)
5842     return false;
5843 
5844   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5845                                   SrcDelta + G->getOffset());
5846 }
5847 
5848 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
5849                                       SelectionDAG &DAG) {
5850   // On Darwin, -Os means optimize for size without hurting performance, so
5851   // only really optimize for size when -Oz (MinSize) is used.
5852   if (MF.getTarget().getTargetTriple().isOSDarwin())
5853     return MF.getFunction().hasMinSize();
5854   return DAG.shouldOptForSize();
5855 }
5856 
5857 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5858                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5859                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5860                           SmallVector<SDValue, 16> &OutStoreChains) {
5861   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5862   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5863   SmallVector<SDValue, 16> GluedLoadChains;
5864   for (unsigned i = From; i < To; ++i) {
5865     OutChains.push_back(OutLoadChains[i]);
5866     GluedLoadChains.push_back(OutLoadChains[i]);
5867   }
5868 
5869   // Chain for all loads.
5870   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5871                                   GluedLoadChains);
5872 
5873   for (unsigned i = From; i < To; ++i) {
5874     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5875     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5876                                   ST->getBasePtr(), ST->getMemoryVT(),
5877                                   ST->getMemOperand());
5878     OutChains.push_back(NewStore);
5879   }
5880 }
5881 
5882 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5883                                        SDValue Chain, SDValue Dst, SDValue Src,
5884                                        uint64_t Size, unsigned Alignment,
5885                                        bool isVol, bool AlwaysInline,
5886                                        MachinePointerInfo DstPtrInfo,
5887                                        MachinePointerInfo SrcPtrInfo) {
5888   // Turn a memcpy of undef to nop.
5889   // FIXME: We need to honor volatile even is Src is undef.
5890   if (Src.isUndef())
5891     return Chain;
5892 
5893   // Expand memcpy to a series of load and store ops if the size operand falls
5894   // below a certain threshold.
5895   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5896   // rather than maybe a humongous number of loads and stores.
5897   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5898   const DataLayout &DL = DAG.getDataLayout();
5899   LLVMContext &C = *DAG.getContext();
5900   std::vector<EVT> MemOps;
5901   bool DstAlignCanChange = false;
5902   MachineFunction &MF = DAG.getMachineFunction();
5903   MachineFrameInfo &MFI = MF.getFrameInfo();
5904   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
5905   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5906   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5907     DstAlignCanChange = true;
5908   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5909   if (Alignment > SrcAlign)
5910     SrcAlign = Alignment;
5911   ConstantDataArraySlice Slice;
5912   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5913   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5914   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5915 
5916   if (!TLI.findOptimalMemOpLowering(
5917           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Alignment),
5918           (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false,
5919           /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant,
5920           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(),
5921           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
5922     return SDValue();
5923 
5924   if (DstAlignCanChange) {
5925     Type *Ty = MemOps[0].getTypeForEVT(C);
5926     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5927 
5928     // Don't promote to an alignment that would require dynamic stack
5929     // realignment.
5930     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5931     if (!TRI->needsStackRealignment(MF))
5932       while (NewAlign > Alignment &&
5933              DL.exceedsNaturalStackAlignment(Align(NewAlign)))
5934         NewAlign /= 2;
5935 
5936     if (NewAlign > Alignment) {
5937       // Give the stack frame object a larger alignment if needed.
5938       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5939         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5940       Alignment = NewAlign;
5941     }
5942   }
5943 
5944   MachineMemOperand::Flags MMOFlags =
5945       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5946   SmallVector<SDValue, 16> OutLoadChains;
5947   SmallVector<SDValue, 16> OutStoreChains;
5948   SmallVector<SDValue, 32> OutChains;
5949   unsigned NumMemOps = MemOps.size();
5950   uint64_t SrcOff = 0, DstOff = 0;
5951   for (unsigned i = 0; i != NumMemOps; ++i) {
5952     EVT VT = MemOps[i];
5953     unsigned VTSize = VT.getSizeInBits() / 8;
5954     SDValue Value, Store;
5955 
5956     if (VTSize > Size) {
5957       // Issuing an unaligned load / store pair  that overlaps with the previous
5958       // pair. Adjust the offset accordingly.
5959       assert(i == NumMemOps-1 && i != 0);
5960       SrcOff -= VTSize - Size;
5961       DstOff -= VTSize - Size;
5962     }
5963 
5964     if (CopyFromConstant &&
5965         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5966       // It's unlikely a store of a vector immediate can be done in a single
5967       // instruction. It would require a load from a constantpool first.
5968       // We only handle zero vectors here.
5969       // FIXME: Handle other cases where store of vector immediate is done in
5970       // a single instruction.
5971       ConstantDataArraySlice SubSlice;
5972       if (SrcOff < Slice.Length) {
5973         SubSlice = Slice;
5974         SubSlice.move(SrcOff);
5975       } else {
5976         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5977         SubSlice.Array = nullptr;
5978         SubSlice.Offset = 0;
5979         SubSlice.Length = VTSize;
5980       }
5981       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5982       if (Value.getNode()) {
5983         Store = DAG.getStore(
5984             Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5985             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
5986         OutChains.push_back(Store);
5987       }
5988     }
5989 
5990     if (!Store.getNode()) {
5991       // The type might not be legal for the target.  This should only happen
5992       // if the type is smaller than a legal type, as on PPC, so the right
5993       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5994       // to Load/Store if NVT==VT.
5995       // FIXME does the case above also need this?
5996       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5997       assert(NVT.bitsGE(VT));
5998 
5999       bool isDereferenceable =
6000         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6001       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6002       if (isDereferenceable)
6003         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6004 
6005       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
6006                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6007                              SrcPtrInfo.getWithOffset(SrcOff), VT,
6008                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
6009       OutLoadChains.push_back(Value.getValue(1));
6010 
6011       Store = DAG.getTruncStore(
6012           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6013           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6014       OutStoreChains.push_back(Store);
6015     }
6016     SrcOff += VTSize;
6017     DstOff += VTSize;
6018     Size -= VTSize;
6019   }
6020 
6021   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6022                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6023   unsigned NumLdStInMemcpy = OutStoreChains.size();
6024 
6025   if (NumLdStInMemcpy) {
6026     // It may be that memcpy might be converted to memset if it's memcpy
6027     // of constants. In such a case, we won't have loads and stores, but
6028     // just stores. In the absence of loads, there is nothing to gang up.
6029     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6030       // If target does not care, just leave as it.
6031       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6032         OutChains.push_back(OutLoadChains[i]);
6033         OutChains.push_back(OutStoreChains[i]);
6034       }
6035     } else {
6036       // Ld/St less than/equal limit set by target.
6037       if (NumLdStInMemcpy <= GluedLdStLimit) {
6038           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6039                                         NumLdStInMemcpy, OutLoadChains,
6040                                         OutStoreChains);
6041       } else {
6042         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6043         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6044         unsigned GlueIter = 0;
6045 
6046         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6047           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6048           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6049 
6050           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6051                                        OutLoadChains, OutStoreChains);
6052           GlueIter += GluedLdStLimit;
6053         }
6054 
6055         // Residual ld/st.
6056         if (RemainingLdStInMemcpy) {
6057           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6058                                         RemainingLdStInMemcpy, OutLoadChains,
6059                                         OutStoreChains);
6060         }
6061       }
6062     }
6063   }
6064   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6065 }
6066 
6067 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6068                                         SDValue Chain, SDValue Dst, SDValue Src,
6069                                         uint64_t Size, unsigned Align,
6070                                         bool isVol, bool AlwaysInline,
6071                                         MachinePointerInfo DstPtrInfo,
6072                                         MachinePointerInfo SrcPtrInfo) {
6073   // Turn a memmove of undef to nop.
6074   // FIXME: We need to honor volatile even is Src is undef.
6075   if (Src.isUndef())
6076     return Chain;
6077 
6078   // Expand memmove to a series of load and store ops if the size operand falls
6079   // below a certain threshold.
6080   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6081   const DataLayout &DL = DAG.getDataLayout();
6082   LLVMContext &C = *DAG.getContext();
6083   std::vector<EVT> MemOps;
6084   bool DstAlignCanChange = false;
6085   MachineFunction &MF = DAG.getMachineFunction();
6086   MachineFrameInfo &MFI = MF.getFrameInfo();
6087   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6088   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6089   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6090     DstAlignCanChange = true;
6091   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6092   if (Align > SrcAlign)
6093     SrcAlign = Align;
6094   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6095   // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in
6096   // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the
6097   // correct code.
6098   bool AllowOverlap = false;
6099   if (!TLI.findOptimalMemOpLowering(
6100           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign,
6101           /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
6102           AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6103           MF.getFunction().getAttributes()))
6104     return SDValue();
6105 
6106   if (DstAlignCanChange) {
6107     Type *Ty = MemOps[0].getTypeForEVT(C);
6108     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
6109     if (NewAlign > Align) {
6110       // Give the stack frame object a larger alignment if needed.
6111       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
6112         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6113       Align = NewAlign;
6114     }
6115   }
6116 
6117   MachineMemOperand::Flags MMOFlags =
6118       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6119   uint64_t SrcOff = 0, DstOff = 0;
6120   SmallVector<SDValue, 8> LoadValues;
6121   SmallVector<SDValue, 8> LoadChains;
6122   SmallVector<SDValue, 8> OutChains;
6123   unsigned NumMemOps = MemOps.size();
6124   for (unsigned i = 0; i < NumMemOps; i++) {
6125     EVT VT = MemOps[i];
6126     unsigned VTSize = VT.getSizeInBits() / 8;
6127     SDValue Value;
6128 
6129     bool isDereferenceable =
6130       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6131     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6132     if (isDereferenceable)
6133       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6134 
6135     Value =
6136         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6137                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
6138     LoadValues.push_back(Value);
6139     LoadChains.push_back(Value.getValue(1));
6140     SrcOff += VTSize;
6141   }
6142   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6143   OutChains.clear();
6144   for (unsigned i = 0; i < NumMemOps; i++) {
6145     EVT VT = MemOps[i];
6146     unsigned VTSize = VT.getSizeInBits() / 8;
6147     SDValue Store;
6148 
6149     Store = DAG.getStore(Chain, dl, LoadValues[i],
6150                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6151                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
6152     OutChains.push_back(Store);
6153     DstOff += VTSize;
6154   }
6155 
6156   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6157 }
6158 
6159 /// Lower the call to 'memset' intrinsic function into a series of store
6160 /// operations.
6161 ///
6162 /// \param DAG Selection DAG where lowered code is placed.
6163 /// \param dl Link to corresponding IR location.
6164 /// \param Chain Control flow dependency.
6165 /// \param Dst Pointer to destination memory location.
6166 /// \param Src Value of byte to write into the memory.
6167 /// \param Size Number of bytes to write.
6168 /// \param Align Alignment of the destination in bytes.
6169 /// \param isVol True if destination is volatile.
6170 /// \param DstPtrInfo IR information on the memory pointer.
6171 /// \returns New head in the control flow, if lowering was successful, empty
6172 /// SDValue otherwise.
6173 ///
6174 /// The function tries to replace 'llvm.memset' intrinsic with several store
6175 /// operations and value calculation code. This is usually profitable for small
6176 /// memory size.
6177 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6178                                SDValue Chain, SDValue Dst, SDValue Src,
6179                                uint64_t Size, unsigned Align, bool isVol,
6180                                MachinePointerInfo DstPtrInfo) {
6181   // Turn a memset of undef to nop.
6182   // FIXME: We need to honor volatile even is Src is undef.
6183   if (Src.isUndef())
6184     return Chain;
6185 
6186   // Expand memset to a series of load/store ops if the size operand
6187   // falls below a certain threshold.
6188   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6189   std::vector<EVT> MemOps;
6190   bool DstAlignCanChange = false;
6191   MachineFunction &MF = DAG.getMachineFunction();
6192   MachineFrameInfo &MFI = MF.getFrameInfo();
6193   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6194   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6195   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6196     DstAlignCanChange = true;
6197   bool IsZeroVal =
6198     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6199   if (!TLI.findOptimalMemOpLowering(
6200           MemOps, TLI.getMaxStoresPerMemset(OptSize), Size,
6201           (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true,
6202           /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false,
6203           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u,
6204           MF.getFunction().getAttributes()))
6205     return SDValue();
6206 
6207   if (DstAlignCanChange) {
6208     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6209     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
6210     if (NewAlign > Align) {
6211       // Give the stack frame object a larger alignment if needed.
6212       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
6213         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6214       Align = NewAlign;
6215     }
6216   }
6217 
6218   SmallVector<SDValue, 8> OutChains;
6219   uint64_t DstOff = 0;
6220   unsigned NumMemOps = MemOps.size();
6221 
6222   // Find the largest store and generate the bit pattern for it.
6223   EVT LargestVT = MemOps[0];
6224   for (unsigned i = 1; i < NumMemOps; i++)
6225     if (MemOps[i].bitsGT(LargestVT))
6226       LargestVT = MemOps[i];
6227   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6228 
6229   for (unsigned i = 0; i < NumMemOps; i++) {
6230     EVT VT = MemOps[i];
6231     unsigned VTSize = VT.getSizeInBits() / 8;
6232     if (VTSize > Size) {
6233       // Issuing an unaligned load / store pair  that overlaps with the previous
6234       // pair. Adjust the offset accordingly.
6235       assert(i == NumMemOps-1 && i != 0);
6236       DstOff -= VTSize - Size;
6237     }
6238 
6239     // If this store is smaller than the largest store see whether we can get
6240     // the smaller value for free with a truncate.
6241     SDValue Value = MemSetValue;
6242     if (VT.bitsLT(LargestVT)) {
6243       if (!LargestVT.isVector() && !VT.isVector() &&
6244           TLI.isTruncateFree(LargestVT, VT))
6245         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6246       else
6247         Value = getMemsetValue(Src, VT, DAG, dl);
6248     }
6249     assert(Value.getValueType() == VT && "Value with wrong type.");
6250     SDValue Store = DAG.getStore(
6251         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6252         DstPtrInfo.getWithOffset(DstOff), Align,
6253         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6254     OutChains.push_back(Store);
6255     DstOff += VT.getSizeInBits() / 8;
6256     Size -= VTSize;
6257   }
6258 
6259   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6260 }
6261 
6262 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6263                                             unsigned AS) {
6264   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6265   // pointer operands can be losslessly bitcasted to pointers of address space 0
6266   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6267     report_fatal_error("cannot lower memory intrinsic in address space " +
6268                        Twine(AS));
6269   }
6270 }
6271 
6272 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6273                                 SDValue Src, SDValue Size, unsigned Align,
6274                                 bool isVol, bool AlwaysInline, bool isTailCall,
6275                                 MachinePointerInfo DstPtrInfo,
6276                                 MachinePointerInfo SrcPtrInfo) {
6277   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6278 
6279   // Check to see if we should lower the memcpy to loads and stores first.
6280   // For cases within the target-specified limits, this is the best choice.
6281   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6282   if (ConstantSize) {
6283     // Memcpy with size zero? Just return the original chain.
6284     if (ConstantSize->isNullValue())
6285       return Chain;
6286 
6287     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6288                                              ConstantSize->getZExtValue(),Align,
6289                                 isVol, false, DstPtrInfo, SrcPtrInfo);
6290     if (Result.getNode())
6291       return Result;
6292   }
6293 
6294   // Then check to see if we should lower the memcpy with target-specific
6295   // code. If the target chooses to do this, this is the next best.
6296   if (TSI) {
6297     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6298         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
6299         DstPtrInfo, SrcPtrInfo);
6300     if (Result.getNode())
6301       return Result;
6302   }
6303 
6304   // If we really need inline code and the target declined to provide it,
6305   // use a (potentially long) sequence of loads and stores.
6306   if (AlwaysInline) {
6307     assert(ConstantSize && "AlwaysInline requires a constant size!");
6308     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6309                                    ConstantSize->getZExtValue(), Align, isVol,
6310                                    true, DstPtrInfo, SrcPtrInfo);
6311   }
6312 
6313   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6314   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6315 
6316   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6317   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6318   // respect volatile, so they may do things like read or write memory
6319   // beyond the given memory regions. But fixing this isn't easy, and most
6320   // people don't care.
6321 
6322   // Emit a library call.
6323   TargetLowering::ArgListTy Args;
6324   TargetLowering::ArgListEntry Entry;
6325   Entry.Ty = Type::getInt8PtrTy(*getContext());
6326   Entry.Node = Dst; Args.push_back(Entry);
6327   Entry.Node = Src; Args.push_back(Entry);
6328 
6329   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6330   Entry.Node = Size; Args.push_back(Entry);
6331   // FIXME: pass in SDLoc
6332   TargetLowering::CallLoweringInfo CLI(*this);
6333   CLI.setDebugLoc(dl)
6334       .setChain(Chain)
6335       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6336                     Dst.getValueType().getTypeForEVT(*getContext()),
6337                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6338                                       TLI->getPointerTy(getDataLayout())),
6339                     std::move(Args))
6340       .setDiscardResult()
6341       .setTailCall(isTailCall);
6342 
6343   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6344   return CallResult.second;
6345 }
6346 
6347 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6348                                       SDValue Dst, unsigned DstAlign,
6349                                       SDValue Src, unsigned SrcAlign,
6350                                       SDValue Size, Type *SizeTy,
6351                                       unsigned ElemSz, bool isTailCall,
6352                                       MachinePointerInfo DstPtrInfo,
6353                                       MachinePointerInfo SrcPtrInfo) {
6354   // Emit a library call.
6355   TargetLowering::ArgListTy Args;
6356   TargetLowering::ArgListEntry Entry;
6357   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6358   Entry.Node = Dst;
6359   Args.push_back(Entry);
6360 
6361   Entry.Node = Src;
6362   Args.push_back(Entry);
6363 
6364   Entry.Ty = SizeTy;
6365   Entry.Node = Size;
6366   Args.push_back(Entry);
6367 
6368   RTLIB::Libcall LibraryCall =
6369       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6370   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6371     report_fatal_error("Unsupported element size");
6372 
6373   TargetLowering::CallLoweringInfo CLI(*this);
6374   CLI.setDebugLoc(dl)
6375       .setChain(Chain)
6376       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6377                     Type::getVoidTy(*getContext()),
6378                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6379                                       TLI->getPointerTy(getDataLayout())),
6380                     std::move(Args))
6381       .setDiscardResult()
6382       .setTailCall(isTailCall);
6383 
6384   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6385   return CallResult.second;
6386 }
6387 
6388 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6389                                  SDValue Src, SDValue Size, unsigned Align,
6390                                  bool isVol, bool isTailCall,
6391                                  MachinePointerInfo DstPtrInfo,
6392                                  MachinePointerInfo SrcPtrInfo) {
6393   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6394 
6395   // Check to see if we should lower the memmove to loads and stores first.
6396   // For cases within the target-specified limits, this is the best choice.
6397   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6398   if (ConstantSize) {
6399     // Memmove with size zero? Just return the original chain.
6400     if (ConstantSize->isNullValue())
6401       return Chain;
6402 
6403     SDValue Result =
6404       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
6405                                ConstantSize->getZExtValue(), Align, isVol,
6406                                false, DstPtrInfo, SrcPtrInfo);
6407     if (Result.getNode())
6408       return Result;
6409   }
6410 
6411   // Then check to see if we should lower the memmove with target-specific
6412   // code. If the target chooses to do this, this is the next best.
6413   if (TSI) {
6414     SDValue Result = TSI->EmitTargetCodeForMemmove(
6415         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
6416     if (Result.getNode())
6417       return Result;
6418   }
6419 
6420   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6421   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6422 
6423   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6424   // not be safe.  See memcpy above for more details.
6425 
6426   // Emit a library call.
6427   TargetLowering::ArgListTy Args;
6428   TargetLowering::ArgListEntry Entry;
6429   Entry.Ty = Type::getInt8PtrTy(*getContext());
6430   Entry.Node = Dst; Args.push_back(Entry);
6431   Entry.Node = Src; Args.push_back(Entry);
6432 
6433   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6434   Entry.Node = Size; Args.push_back(Entry);
6435   // FIXME:  pass in SDLoc
6436   TargetLowering::CallLoweringInfo CLI(*this);
6437   CLI.setDebugLoc(dl)
6438       .setChain(Chain)
6439       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6440                     Dst.getValueType().getTypeForEVT(*getContext()),
6441                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6442                                       TLI->getPointerTy(getDataLayout())),
6443                     std::move(Args))
6444       .setDiscardResult()
6445       .setTailCall(isTailCall);
6446 
6447   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6448   return CallResult.second;
6449 }
6450 
6451 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6452                                        SDValue Dst, unsigned DstAlign,
6453                                        SDValue Src, unsigned SrcAlign,
6454                                        SDValue Size, Type *SizeTy,
6455                                        unsigned ElemSz, bool isTailCall,
6456                                        MachinePointerInfo DstPtrInfo,
6457                                        MachinePointerInfo SrcPtrInfo) {
6458   // Emit a library call.
6459   TargetLowering::ArgListTy Args;
6460   TargetLowering::ArgListEntry Entry;
6461   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6462   Entry.Node = Dst;
6463   Args.push_back(Entry);
6464 
6465   Entry.Node = Src;
6466   Args.push_back(Entry);
6467 
6468   Entry.Ty = SizeTy;
6469   Entry.Node = Size;
6470   Args.push_back(Entry);
6471 
6472   RTLIB::Libcall LibraryCall =
6473       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6474   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6475     report_fatal_error("Unsupported element size");
6476 
6477   TargetLowering::CallLoweringInfo CLI(*this);
6478   CLI.setDebugLoc(dl)
6479       .setChain(Chain)
6480       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6481                     Type::getVoidTy(*getContext()),
6482                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6483                                       TLI->getPointerTy(getDataLayout())),
6484                     std::move(Args))
6485       .setDiscardResult()
6486       .setTailCall(isTailCall);
6487 
6488   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6489   return CallResult.second;
6490 }
6491 
6492 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6493                                 SDValue Src, SDValue Size, unsigned Align,
6494                                 bool isVol, bool isTailCall,
6495                                 MachinePointerInfo DstPtrInfo) {
6496   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6497 
6498   // Check to see if we should lower the memset to stores first.
6499   // For cases within the target-specified limits, this is the best choice.
6500   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6501   if (ConstantSize) {
6502     // Memset with size zero? Just return the original chain.
6503     if (ConstantSize->isNullValue())
6504       return Chain;
6505 
6506     SDValue Result =
6507       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6508                       Align, isVol, DstPtrInfo);
6509 
6510     if (Result.getNode())
6511       return Result;
6512   }
6513 
6514   // Then check to see if we should lower the memset with target-specific
6515   // code. If the target chooses to do this, this is the next best.
6516   if (TSI) {
6517     SDValue Result = TSI->EmitTargetCodeForMemset(
6518         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6519     if (Result.getNode())
6520       return Result;
6521   }
6522 
6523   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6524 
6525   // Emit a library call.
6526   TargetLowering::ArgListTy Args;
6527   TargetLowering::ArgListEntry Entry;
6528   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6529   Args.push_back(Entry);
6530   Entry.Node = Src;
6531   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6532   Args.push_back(Entry);
6533   Entry.Node = Size;
6534   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6535   Args.push_back(Entry);
6536 
6537   // FIXME: pass in SDLoc
6538   TargetLowering::CallLoweringInfo CLI(*this);
6539   CLI.setDebugLoc(dl)
6540       .setChain(Chain)
6541       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6542                     Dst.getValueType().getTypeForEVT(*getContext()),
6543                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6544                                       TLI->getPointerTy(getDataLayout())),
6545                     std::move(Args))
6546       .setDiscardResult()
6547       .setTailCall(isTailCall);
6548 
6549   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6550   return CallResult.second;
6551 }
6552 
6553 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6554                                       SDValue Dst, unsigned DstAlign,
6555                                       SDValue Value, SDValue Size, Type *SizeTy,
6556                                       unsigned ElemSz, bool isTailCall,
6557                                       MachinePointerInfo DstPtrInfo) {
6558   // Emit a library call.
6559   TargetLowering::ArgListTy Args;
6560   TargetLowering::ArgListEntry Entry;
6561   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6562   Entry.Node = Dst;
6563   Args.push_back(Entry);
6564 
6565   Entry.Ty = Type::getInt8Ty(*getContext());
6566   Entry.Node = Value;
6567   Args.push_back(Entry);
6568 
6569   Entry.Ty = SizeTy;
6570   Entry.Node = Size;
6571   Args.push_back(Entry);
6572 
6573   RTLIB::Libcall LibraryCall =
6574       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6575   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6576     report_fatal_error("Unsupported element size");
6577 
6578   TargetLowering::CallLoweringInfo CLI(*this);
6579   CLI.setDebugLoc(dl)
6580       .setChain(Chain)
6581       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6582                     Type::getVoidTy(*getContext()),
6583                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6584                                       TLI->getPointerTy(getDataLayout())),
6585                     std::move(Args))
6586       .setDiscardResult()
6587       .setTailCall(isTailCall);
6588 
6589   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6590   return CallResult.second;
6591 }
6592 
6593 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6594                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6595                                 MachineMemOperand *MMO) {
6596   FoldingSetNodeID ID;
6597   ID.AddInteger(MemVT.getRawBits());
6598   AddNodeIDNode(ID, Opcode, VTList, Ops);
6599   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6600   void* IP = nullptr;
6601   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6602     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6603     return SDValue(E, 0);
6604   }
6605 
6606   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6607                                     VTList, MemVT, MMO);
6608   createOperands(N, Ops);
6609 
6610   CSEMap.InsertNode(N, IP);
6611   InsertNode(N);
6612   return SDValue(N, 0);
6613 }
6614 
6615 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6616                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6617                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6618                                        MachineMemOperand *MMO) {
6619   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6620          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6621   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6622 
6623   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6624   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6625 }
6626 
6627 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6628                                 SDValue Chain, SDValue Ptr, SDValue Val,
6629                                 MachineMemOperand *MMO) {
6630   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6631           Opcode == ISD::ATOMIC_LOAD_SUB ||
6632           Opcode == ISD::ATOMIC_LOAD_AND ||
6633           Opcode == ISD::ATOMIC_LOAD_CLR ||
6634           Opcode == ISD::ATOMIC_LOAD_OR ||
6635           Opcode == ISD::ATOMIC_LOAD_XOR ||
6636           Opcode == ISD::ATOMIC_LOAD_NAND ||
6637           Opcode == ISD::ATOMIC_LOAD_MIN ||
6638           Opcode == ISD::ATOMIC_LOAD_MAX ||
6639           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6640           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6641           Opcode == ISD::ATOMIC_LOAD_FADD ||
6642           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6643           Opcode == ISD::ATOMIC_SWAP ||
6644           Opcode == ISD::ATOMIC_STORE) &&
6645          "Invalid Atomic Op");
6646 
6647   EVT VT = Val.getValueType();
6648 
6649   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6650                                                getVTList(VT, MVT::Other);
6651   SDValue Ops[] = {Chain, Ptr, Val};
6652   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6653 }
6654 
6655 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6656                                 EVT VT, SDValue Chain, SDValue Ptr,
6657                                 MachineMemOperand *MMO) {
6658   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6659 
6660   SDVTList VTs = getVTList(VT, MVT::Other);
6661   SDValue Ops[] = {Chain, Ptr};
6662   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6663 }
6664 
6665 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6666 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6667   if (Ops.size() == 1)
6668     return Ops[0];
6669 
6670   SmallVector<EVT, 4> VTs;
6671   VTs.reserve(Ops.size());
6672   for (unsigned i = 0; i < Ops.size(); ++i)
6673     VTs.push_back(Ops[i].getValueType());
6674   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6675 }
6676 
6677 SDValue SelectionDAG::getMemIntrinsicNode(
6678     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6679     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6680     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6681   if (Align == 0)  // Ensure that codegen never sees alignment 0
6682     Align = getEVTAlignment(MemVT);
6683 
6684   if (!Size && MemVT.isScalableVector())
6685     Size = MemoryLocation::UnknownSize;
6686   else if (!Size)
6687     Size = MemVT.getStoreSize();
6688 
6689   MachineFunction &MF = getMachineFunction();
6690   MachineMemOperand *MMO =
6691       MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo);
6692 
6693   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6694 }
6695 
6696 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6697                                           SDVTList VTList,
6698                                           ArrayRef<SDValue> Ops, EVT MemVT,
6699                                           MachineMemOperand *MMO) {
6700   assert((Opcode == ISD::INTRINSIC_VOID ||
6701           Opcode == ISD::INTRINSIC_W_CHAIN ||
6702           Opcode == ISD::PREFETCH ||
6703           Opcode == ISD::LIFETIME_START ||
6704           Opcode == ISD::LIFETIME_END ||
6705           ((int)Opcode <= std::numeric_limits<int>::max() &&
6706            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6707          "Opcode is not a memory-accessing opcode!");
6708 
6709   // Memoize the node unless it returns a flag.
6710   MemIntrinsicSDNode *N;
6711   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6712     FoldingSetNodeID ID;
6713     AddNodeIDNode(ID, Opcode, VTList, Ops);
6714     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6715         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6716     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6717     void *IP = nullptr;
6718     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6719       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6720       return SDValue(E, 0);
6721     }
6722 
6723     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6724                                       VTList, MemVT, MMO);
6725     createOperands(N, Ops);
6726 
6727   CSEMap.InsertNode(N, IP);
6728   } else {
6729     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6730                                       VTList, MemVT, MMO);
6731     createOperands(N, Ops);
6732   }
6733   InsertNode(N);
6734   SDValue V(N, 0);
6735   NewSDValueDbgMsg(V, "Creating new node: ", this);
6736   return V;
6737 }
6738 
6739 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6740                                       SDValue Chain, int FrameIndex,
6741                                       int64_t Size, int64_t Offset) {
6742   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6743   const auto VTs = getVTList(MVT::Other);
6744   SDValue Ops[2] = {
6745       Chain,
6746       getFrameIndex(FrameIndex,
6747                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6748                     true)};
6749 
6750   FoldingSetNodeID ID;
6751   AddNodeIDNode(ID, Opcode, VTs, Ops);
6752   ID.AddInteger(FrameIndex);
6753   ID.AddInteger(Size);
6754   ID.AddInteger(Offset);
6755   void *IP = nullptr;
6756   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6757     return SDValue(E, 0);
6758 
6759   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6760       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6761   createOperands(N, Ops);
6762   CSEMap.InsertNode(N, IP);
6763   InsertNode(N);
6764   SDValue V(N, 0);
6765   NewSDValueDbgMsg(V, "Creating new node: ", this);
6766   return V;
6767 }
6768 
6769 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6770 /// MachinePointerInfo record from it.  This is particularly useful because the
6771 /// code generator has many cases where it doesn't bother passing in a
6772 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6773 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6774                                            SelectionDAG &DAG, SDValue Ptr,
6775                                            int64_t Offset = 0) {
6776   // If this is FI+Offset, we can model it.
6777   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6778     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6779                                              FI->getIndex(), Offset);
6780 
6781   // If this is (FI+Offset1)+Offset2, we can model it.
6782   if (Ptr.getOpcode() != ISD::ADD ||
6783       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6784       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6785     return Info;
6786 
6787   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6788   return MachinePointerInfo::getFixedStack(
6789       DAG.getMachineFunction(), FI,
6790       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6791 }
6792 
6793 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6794 /// MachinePointerInfo record from it.  This is particularly useful because the
6795 /// code generator has many cases where it doesn't bother passing in a
6796 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6797 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6798                                            SelectionDAG &DAG, SDValue Ptr,
6799                                            SDValue OffsetOp) {
6800   // If the 'Offset' value isn't a constant, we can't handle this.
6801   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6802     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6803   if (OffsetOp.isUndef())
6804     return InferPointerInfo(Info, DAG, Ptr);
6805   return Info;
6806 }
6807 
6808 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6809                               EVT VT, const SDLoc &dl, SDValue Chain,
6810                               SDValue Ptr, SDValue Offset,
6811                               MachinePointerInfo PtrInfo, EVT MemVT,
6812                               unsigned Alignment,
6813                               MachineMemOperand::Flags MMOFlags,
6814                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6815   assert(Chain.getValueType() == MVT::Other &&
6816         "Invalid chain type");
6817   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6818     Alignment = getEVTAlignment(MemVT);
6819 
6820   MMOFlags |= MachineMemOperand::MOLoad;
6821   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6822   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6823   // clients.
6824   if (PtrInfo.V.isNull())
6825     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6826 
6827   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
6828   MachineFunction &MF = getMachineFunction();
6829   MachineMemOperand *MMO = MF.getMachineMemOperand(
6830       PtrInfo, MMOFlags, Size, Alignment, AAInfo, Ranges);
6831   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6832 }
6833 
6834 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6835                               EVT VT, const SDLoc &dl, SDValue Chain,
6836                               SDValue Ptr, SDValue Offset, EVT MemVT,
6837                               MachineMemOperand *MMO) {
6838   if (VT == MemVT) {
6839     ExtType = ISD::NON_EXTLOAD;
6840   } else if (ExtType == ISD::NON_EXTLOAD) {
6841     assert(VT == MemVT && "Non-extending load from different memory type!");
6842   } else {
6843     // Extending load.
6844     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6845            "Should only be an extending load, not truncating!");
6846     assert(VT.isInteger() == MemVT.isInteger() &&
6847            "Cannot convert from FP to Int or Int -> FP!");
6848     assert(VT.isVector() == MemVT.isVector() &&
6849            "Cannot use an ext load to convert to or from a vector!");
6850     assert((!VT.isVector() ||
6851             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6852            "Cannot use an ext load to change the number of vector elements!");
6853   }
6854 
6855   bool Indexed = AM != ISD::UNINDEXED;
6856   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6857 
6858   SDVTList VTs = Indexed ?
6859     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6860   SDValue Ops[] = { Chain, Ptr, Offset };
6861   FoldingSetNodeID ID;
6862   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6863   ID.AddInteger(MemVT.getRawBits());
6864   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6865       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6866   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6867   void *IP = nullptr;
6868   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6869     cast<LoadSDNode>(E)->refineAlignment(MMO);
6870     return SDValue(E, 0);
6871   }
6872   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6873                                   ExtType, MemVT, MMO);
6874   createOperands(N, Ops);
6875 
6876   CSEMap.InsertNode(N, IP);
6877   InsertNode(N);
6878   SDValue V(N, 0);
6879   NewSDValueDbgMsg(V, "Creating new node: ", this);
6880   return V;
6881 }
6882 
6883 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6884                               SDValue Ptr, MachinePointerInfo PtrInfo,
6885                               unsigned Alignment,
6886                               MachineMemOperand::Flags MMOFlags,
6887                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6888   SDValue Undef = getUNDEF(Ptr.getValueType());
6889   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6890                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6891 }
6892 
6893 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6894                               SDValue Ptr, MachineMemOperand *MMO) {
6895   SDValue Undef = getUNDEF(Ptr.getValueType());
6896   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6897                  VT, MMO);
6898 }
6899 
6900 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6901                                  EVT VT, SDValue Chain, SDValue Ptr,
6902                                  MachinePointerInfo PtrInfo, EVT MemVT,
6903                                  unsigned Alignment,
6904                                  MachineMemOperand::Flags MMOFlags,
6905                                  const AAMDNodes &AAInfo) {
6906   SDValue Undef = getUNDEF(Ptr.getValueType());
6907   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6908                  MemVT, Alignment, MMOFlags, AAInfo);
6909 }
6910 
6911 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6912                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6913                                  MachineMemOperand *MMO) {
6914   SDValue Undef = getUNDEF(Ptr.getValueType());
6915   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6916                  MemVT, MMO);
6917 }
6918 
6919 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6920                                      SDValue Base, SDValue Offset,
6921                                      ISD::MemIndexedMode AM) {
6922   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6923   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6924   // Don't propagate the invariant or dereferenceable flags.
6925   auto MMOFlags =
6926       LD->getMemOperand()->getFlags() &
6927       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6928   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6929                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6930                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6931                  LD->getAAInfo());
6932 }
6933 
6934 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6935                                SDValue Ptr, MachinePointerInfo PtrInfo,
6936                                unsigned Alignment,
6937                                MachineMemOperand::Flags MMOFlags,
6938                                const AAMDNodes &AAInfo) {
6939   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6940   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6941     Alignment = getEVTAlignment(Val.getValueType());
6942 
6943   MMOFlags |= MachineMemOperand::MOStore;
6944   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6945 
6946   if (PtrInfo.V.isNull())
6947     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6948 
6949   MachineFunction &MF = getMachineFunction();
6950   uint64_t Size =
6951       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
6952   MachineMemOperand *MMO =
6953       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
6954   return getStore(Chain, dl, Val, Ptr, MMO);
6955 }
6956 
6957 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6958                                SDValue Ptr, MachineMemOperand *MMO) {
6959   assert(Chain.getValueType() == MVT::Other &&
6960         "Invalid chain type");
6961   EVT VT = Val.getValueType();
6962   SDVTList VTs = getVTList(MVT::Other);
6963   SDValue Undef = getUNDEF(Ptr.getValueType());
6964   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6965   FoldingSetNodeID ID;
6966   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6967   ID.AddInteger(VT.getRawBits());
6968   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6969       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6970   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6971   void *IP = nullptr;
6972   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6973     cast<StoreSDNode>(E)->refineAlignment(MMO);
6974     return SDValue(E, 0);
6975   }
6976   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6977                                    ISD::UNINDEXED, false, VT, MMO);
6978   createOperands(N, Ops);
6979 
6980   CSEMap.InsertNode(N, IP);
6981   InsertNode(N);
6982   SDValue V(N, 0);
6983   NewSDValueDbgMsg(V, "Creating new node: ", this);
6984   return V;
6985 }
6986 
6987 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6988                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6989                                     EVT SVT, unsigned Alignment,
6990                                     MachineMemOperand::Flags MMOFlags,
6991                                     const AAMDNodes &AAInfo) {
6992   assert(Chain.getValueType() == MVT::Other &&
6993         "Invalid chain type");
6994   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6995     Alignment = getEVTAlignment(SVT);
6996 
6997   MMOFlags |= MachineMemOperand::MOStore;
6998   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6999 
7000   if (PtrInfo.V.isNull())
7001     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7002 
7003   MachineFunction &MF = getMachineFunction();
7004   MachineMemOperand *MMO = MF.getMachineMemOperand(
7005       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
7006   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7007 }
7008 
7009 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7010                                     SDValue Ptr, EVT SVT,
7011                                     MachineMemOperand *MMO) {
7012   EVT VT = Val.getValueType();
7013 
7014   assert(Chain.getValueType() == MVT::Other &&
7015         "Invalid chain type");
7016   if (VT == SVT)
7017     return getStore(Chain, dl, Val, Ptr, MMO);
7018 
7019   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7020          "Should only be a truncating store, not extending!");
7021   assert(VT.isInteger() == SVT.isInteger() &&
7022          "Can't do FP-INT conversion!");
7023   assert(VT.isVector() == SVT.isVector() &&
7024          "Cannot use trunc store to convert to or from a vector!");
7025   assert((!VT.isVector() ||
7026           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
7027          "Cannot use trunc store to change the number of vector elements!");
7028 
7029   SDVTList VTs = getVTList(MVT::Other);
7030   SDValue Undef = getUNDEF(Ptr.getValueType());
7031   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7032   FoldingSetNodeID ID;
7033   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7034   ID.AddInteger(SVT.getRawBits());
7035   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7036       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7037   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7038   void *IP = nullptr;
7039   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7040     cast<StoreSDNode>(E)->refineAlignment(MMO);
7041     return SDValue(E, 0);
7042   }
7043   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7044                                    ISD::UNINDEXED, true, SVT, MMO);
7045   createOperands(N, Ops);
7046 
7047   CSEMap.InsertNode(N, IP);
7048   InsertNode(N);
7049   SDValue V(N, 0);
7050   NewSDValueDbgMsg(V, "Creating new node: ", this);
7051   return V;
7052 }
7053 
7054 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7055                                       SDValue Base, SDValue Offset,
7056                                       ISD::MemIndexedMode AM) {
7057   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7058   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7059   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7060   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7061   FoldingSetNodeID ID;
7062   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7063   ID.AddInteger(ST->getMemoryVT().getRawBits());
7064   ID.AddInteger(ST->getRawSubclassData());
7065   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7066   void *IP = nullptr;
7067   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7068     return SDValue(E, 0);
7069 
7070   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7071                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7072                                    ST->getMemOperand());
7073   createOperands(N, Ops);
7074 
7075   CSEMap.InsertNode(N, IP);
7076   InsertNode(N);
7077   SDValue V(N, 0);
7078   NewSDValueDbgMsg(V, "Creating new node: ", this);
7079   return V;
7080 }
7081 
7082 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7083                                     SDValue Base, SDValue Offset, SDValue Mask,
7084                                     SDValue PassThru, EVT MemVT,
7085                                     MachineMemOperand *MMO,
7086                                     ISD::MemIndexedMode AM,
7087                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7088   bool Indexed = AM != ISD::UNINDEXED;
7089   assert((Indexed || Offset.isUndef()) &&
7090          "Unindexed masked load with an offset!");
7091   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7092                          : getVTList(VT, MVT::Other);
7093   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7094   FoldingSetNodeID ID;
7095   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7096   ID.AddInteger(MemVT.getRawBits());
7097   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7098       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7099   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7100   void *IP = nullptr;
7101   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7102     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7103     return SDValue(E, 0);
7104   }
7105   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7106                                         AM, ExtTy, isExpanding, MemVT, MMO);
7107   createOperands(N, Ops);
7108 
7109   CSEMap.InsertNode(N, IP);
7110   InsertNode(N);
7111   SDValue V(N, 0);
7112   NewSDValueDbgMsg(V, "Creating new node: ", this);
7113   return V;
7114 }
7115 
7116 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7117                                            SDValue Base, SDValue Offset,
7118                                            ISD::MemIndexedMode AM) {
7119   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7120   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7121   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7122                        Offset, LD->getMask(), LD->getPassThru(),
7123                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7124                        LD->getExtensionType(), LD->isExpandingLoad());
7125 }
7126 
7127 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7128                                      SDValue Val, SDValue Base, SDValue Offset,
7129                                      SDValue Mask, EVT MemVT,
7130                                      MachineMemOperand *MMO,
7131                                      ISD::MemIndexedMode AM, bool IsTruncating,
7132                                      bool IsCompressing) {
7133   assert(Chain.getValueType() == MVT::Other &&
7134         "Invalid chain type");
7135   bool Indexed = AM != ISD::UNINDEXED;
7136   assert((Indexed || Offset.isUndef()) &&
7137          "Unindexed masked store with an offset!");
7138   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7139                          : getVTList(MVT::Other);
7140   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7141   FoldingSetNodeID ID;
7142   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7143   ID.AddInteger(MemVT.getRawBits());
7144   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7145       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7146   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7147   void *IP = nullptr;
7148   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7149     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7150     return SDValue(E, 0);
7151   }
7152   auto *N =
7153       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7154                                    IsTruncating, IsCompressing, MemVT, MMO);
7155   createOperands(N, Ops);
7156 
7157   CSEMap.InsertNode(N, IP);
7158   InsertNode(N);
7159   SDValue V(N, 0);
7160   NewSDValueDbgMsg(V, "Creating new node: ", this);
7161   return V;
7162 }
7163 
7164 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7165                                             SDValue Base, SDValue Offset,
7166                                             ISD::MemIndexedMode AM) {
7167   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7168   assert(ST->getOffset().isUndef() &&
7169          "Masked store is already a indexed store!");
7170   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7171                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7172                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7173 }
7174 
7175 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7176                                       ArrayRef<SDValue> Ops,
7177                                       MachineMemOperand *MMO,
7178                                       ISD::MemIndexType IndexType) {
7179   assert(Ops.size() == 6 && "Incompatible number of operands");
7180 
7181   FoldingSetNodeID ID;
7182   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7183   ID.AddInteger(VT.getRawBits());
7184   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7185       dl.getIROrder(), VTs, VT, MMO, IndexType));
7186   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7187   void *IP = nullptr;
7188   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7189     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7190     return SDValue(E, 0);
7191   }
7192 
7193   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7194                                           VTs, VT, MMO, IndexType);
7195   createOperands(N, Ops);
7196 
7197   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7198          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7199   assert(N->getMask().getValueType().getVectorNumElements() ==
7200              N->getValueType(0).getVectorNumElements() &&
7201          "Vector width mismatch between mask and data");
7202   assert(N->getIndex().getValueType().getVectorNumElements() >=
7203              N->getValueType(0).getVectorNumElements() &&
7204          "Vector width mismatch between index and data");
7205   assert(isa<ConstantSDNode>(N->getScale()) &&
7206          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7207          "Scale should be a constant power of 2");
7208 
7209   CSEMap.InsertNode(N, IP);
7210   InsertNode(N);
7211   SDValue V(N, 0);
7212   NewSDValueDbgMsg(V, "Creating new node: ", this);
7213   return V;
7214 }
7215 
7216 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7217                                        ArrayRef<SDValue> Ops,
7218                                        MachineMemOperand *MMO,
7219                                        ISD::MemIndexType IndexType) {
7220   assert(Ops.size() == 6 && "Incompatible number of operands");
7221 
7222   FoldingSetNodeID ID;
7223   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7224   ID.AddInteger(VT.getRawBits());
7225   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7226       dl.getIROrder(), VTs, VT, MMO, IndexType));
7227   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7228   void *IP = nullptr;
7229   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7230     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7231     return SDValue(E, 0);
7232   }
7233   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7234                                            VTs, VT, MMO, IndexType);
7235   createOperands(N, Ops);
7236 
7237   assert(N->getMask().getValueType().getVectorNumElements() ==
7238              N->getValue().getValueType().getVectorNumElements() &&
7239          "Vector width mismatch between mask and data");
7240   assert(N->getIndex().getValueType().getVectorNumElements() >=
7241              N->getValue().getValueType().getVectorNumElements() &&
7242          "Vector width mismatch between index and data");
7243   assert(isa<ConstantSDNode>(N->getScale()) &&
7244          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7245          "Scale should be a constant power of 2");
7246 
7247   CSEMap.InsertNode(N, IP);
7248   InsertNode(N);
7249   SDValue V(N, 0);
7250   NewSDValueDbgMsg(V, "Creating new node: ", this);
7251   return V;
7252 }
7253 
7254 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7255   // select undef, T, F --> T (if T is a constant), otherwise F
7256   // select, ?, undef, F --> F
7257   // select, ?, T, undef --> T
7258   if (Cond.isUndef())
7259     return isConstantValueOfAnyType(T) ? T : F;
7260   if (T.isUndef())
7261     return F;
7262   if (F.isUndef())
7263     return T;
7264 
7265   // select true, T, F --> T
7266   // select false, T, F --> F
7267   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7268     return CondC->isNullValue() ? F : T;
7269 
7270   // TODO: This should simplify VSELECT with constant condition using something
7271   // like this (but check boolean contents to be complete?):
7272   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7273   //    return T;
7274   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7275   //    return F;
7276 
7277   // select ?, T, T --> T
7278   if (T == F)
7279     return T;
7280 
7281   return SDValue();
7282 }
7283 
7284 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7285   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7286   if (X.isUndef())
7287     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7288   // shift X, undef --> undef (because it may shift by the bitwidth)
7289   if (Y.isUndef())
7290     return getUNDEF(X.getValueType());
7291 
7292   // shift 0, Y --> 0
7293   // shift X, 0 --> X
7294   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7295     return X;
7296 
7297   // shift X, C >= bitwidth(X) --> undef
7298   // All vector elements must be too big (or undef) to avoid partial undefs.
7299   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7300     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7301   };
7302   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7303     return getUNDEF(X.getValueType());
7304 
7305   return SDValue();
7306 }
7307 
7308 // TODO: Use fast-math-flags to enable more simplifications.
7309 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) {
7310   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7311   if (!YC)
7312     return SDValue();
7313 
7314   // X + -0.0 --> X
7315   if (Opcode == ISD::FADD)
7316     if (YC->getValueAPF().isNegZero())
7317       return X;
7318 
7319   // X - +0.0 --> X
7320   if (Opcode == ISD::FSUB)
7321     if (YC->getValueAPF().isPosZero())
7322       return X;
7323 
7324   // X * 1.0 --> X
7325   // X / 1.0 --> X
7326   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7327     if (YC->getValueAPF().isExactlyValue(1.0))
7328       return X;
7329 
7330   return SDValue();
7331 }
7332 
7333 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7334                                SDValue Ptr, SDValue SV, unsigned Align) {
7335   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7336   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7337 }
7338 
7339 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7340                               ArrayRef<SDUse> Ops) {
7341   switch (Ops.size()) {
7342   case 0: return getNode(Opcode, DL, VT);
7343   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7344   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7345   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7346   default: break;
7347   }
7348 
7349   // Copy from an SDUse array into an SDValue array for use with
7350   // the regular getNode logic.
7351   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7352   return getNode(Opcode, DL, VT, NewOps);
7353 }
7354 
7355 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7356                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7357   unsigned NumOps = Ops.size();
7358   switch (NumOps) {
7359   case 0: return getNode(Opcode, DL, VT);
7360   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7361   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7362   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7363   default: break;
7364   }
7365 
7366   switch (Opcode) {
7367   default: break;
7368   case ISD::BUILD_VECTOR:
7369     // Attempt to simplify BUILD_VECTOR.
7370     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7371       return V;
7372     break;
7373   case ISD::CONCAT_VECTORS:
7374     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7375       return V;
7376     break;
7377   case ISD::SELECT_CC:
7378     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7379     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7380            "LHS and RHS of condition must have same type!");
7381     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7382            "True and False arms of SelectCC must have same type!");
7383     assert(Ops[2].getValueType() == VT &&
7384            "select_cc node must be of same type as true and false value!");
7385     break;
7386   case ISD::BR_CC:
7387     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7388     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7389            "LHS/RHS of comparison should match types!");
7390     break;
7391   }
7392 
7393   // Memoize nodes.
7394   SDNode *N;
7395   SDVTList VTs = getVTList(VT);
7396 
7397   if (VT != MVT::Glue) {
7398     FoldingSetNodeID ID;
7399     AddNodeIDNode(ID, Opcode, VTs, Ops);
7400     void *IP = nullptr;
7401 
7402     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7403       return SDValue(E, 0);
7404 
7405     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7406     createOperands(N, Ops);
7407 
7408     CSEMap.InsertNode(N, IP);
7409   } else {
7410     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7411     createOperands(N, Ops);
7412   }
7413 
7414   InsertNode(N);
7415   SDValue V(N, 0);
7416   NewSDValueDbgMsg(V, "Creating new node: ", this);
7417   return V;
7418 }
7419 
7420 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7421                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7422   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7423 }
7424 
7425 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7426                               ArrayRef<SDValue> Ops) {
7427   if (VTList.NumVTs == 1)
7428     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7429 
7430   switch (Opcode) {
7431   case ISD::STRICT_FP_EXTEND:
7432     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7433            "Invalid STRICT_FP_EXTEND!");
7434     assert(VTList.VTs[0].isFloatingPoint() &&
7435            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7436     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7437            "STRICT_FP_EXTEND result type should be vector iff the operand "
7438            "type is vector!");
7439     assert((!VTList.VTs[0].isVector() ||
7440             VTList.VTs[0].getVectorNumElements() ==
7441             Ops[1].getValueType().getVectorNumElements()) &&
7442            "Vector element count mismatch!");
7443     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7444            "Invalid fpext node, dst <= src!");
7445     break;
7446   case ISD::STRICT_FP_ROUND:
7447     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7448     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7449            "STRICT_FP_ROUND result type should be vector iff the operand "
7450            "type is vector!");
7451     assert((!VTList.VTs[0].isVector() ||
7452             VTList.VTs[0].getVectorNumElements() ==
7453             Ops[1].getValueType().getVectorNumElements()) &&
7454            "Vector element count mismatch!");
7455     assert(VTList.VTs[0].isFloatingPoint() &&
7456            Ops[1].getValueType().isFloatingPoint() &&
7457            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7458            isa<ConstantSDNode>(Ops[2]) &&
7459            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7460             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7461            "Invalid STRICT_FP_ROUND!");
7462     break;
7463 #if 0
7464   // FIXME: figure out how to safely handle things like
7465   // int foo(int x) { return 1 << (x & 255); }
7466   // int bar() { return foo(256); }
7467   case ISD::SRA_PARTS:
7468   case ISD::SRL_PARTS:
7469   case ISD::SHL_PARTS:
7470     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7471         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7472       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7473     else if (N3.getOpcode() == ISD::AND)
7474       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7475         // If the and is only masking out bits that cannot effect the shift,
7476         // eliminate the and.
7477         unsigned NumBits = VT.getScalarSizeInBits()*2;
7478         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7479           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7480       }
7481     break;
7482 #endif
7483   }
7484 
7485   // Memoize the node unless it returns a flag.
7486   SDNode *N;
7487   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7488     FoldingSetNodeID ID;
7489     AddNodeIDNode(ID, Opcode, VTList, Ops);
7490     void *IP = nullptr;
7491     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7492       return SDValue(E, 0);
7493 
7494     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7495     createOperands(N, Ops);
7496     CSEMap.InsertNode(N, IP);
7497   } else {
7498     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7499     createOperands(N, Ops);
7500   }
7501   InsertNode(N);
7502   SDValue V(N, 0);
7503   NewSDValueDbgMsg(V, "Creating new node: ", this);
7504   return V;
7505 }
7506 
7507 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7508                               SDVTList VTList) {
7509   return getNode(Opcode, DL, VTList, None);
7510 }
7511 
7512 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7513                               SDValue N1) {
7514   SDValue Ops[] = { N1 };
7515   return getNode(Opcode, DL, VTList, Ops);
7516 }
7517 
7518 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7519                               SDValue N1, SDValue N2) {
7520   SDValue Ops[] = { N1, N2 };
7521   return getNode(Opcode, DL, VTList, Ops);
7522 }
7523 
7524 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7525                               SDValue N1, SDValue N2, SDValue N3) {
7526   SDValue Ops[] = { N1, N2, N3 };
7527   return getNode(Opcode, DL, VTList, Ops);
7528 }
7529 
7530 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7531                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7532   SDValue Ops[] = { N1, N2, N3, N4 };
7533   return getNode(Opcode, DL, VTList, Ops);
7534 }
7535 
7536 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7537                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7538                               SDValue N5) {
7539   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7540   return getNode(Opcode, DL, VTList, Ops);
7541 }
7542 
7543 SDVTList SelectionDAG::getVTList(EVT VT) {
7544   return makeVTList(SDNode::getValueTypeList(VT), 1);
7545 }
7546 
7547 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7548   FoldingSetNodeID ID;
7549   ID.AddInteger(2U);
7550   ID.AddInteger(VT1.getRawBits());
7551   ID.AddInteger(VT2.getRawBits());
7552 
7553   void *IP = nullptr;
7554   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7555   if (!Result) {
7556     EVT *Array = Allocator.Allocate<EVT>(2);
7557     Array[0] = VT1;
7558     Array[1] = VT2;
7559     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7560     VTListMap.InsertNode(Result, IP);
7561   }
7562   return Result->getSDVTList();
7563 }
7564 
7565 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7566   FoldingSetNodeID ID;
7567   ID.AddInteger(3U);
7568   ID.AddInteger(VT1.getRawBits());
7569   ID.AddInteger(VT2.getRawBits());
7570   ID.AddInteger(VT3.getRawBits());
7571 
7572   void *IP = nullptr;
7573   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7574   if (!Result) {
7575     EVT *Array = Allocator.Allocate<EVT>(3);
7576     Array[0] = VT1;
7577     Array[1] = VT2;
7578     Array[2] = VT3;
7579     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7580     VTListMap.InsertNode(Result, IP);
7581   }
7582   return Result->getSDVTList();
7583 }
7584 
7585 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7586   FoldingSetNodeID ID;
7587   ID.AddInteger(4U);
7588   ID.AddInteger(VT1.getRawBits());
7589   ID.AddInteger(VT2.getRawBits());
7590   ID.AddInteger(VT3.getRawBits());
7591   ID.AddInteger(VT4.getRawBits());
7592 
7593   void *IP = nullptr;
7594   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7595   if (!Result) {
7596     EVT *Array = Allocator.Allocate<EVT>(4);
7597     Array[0] = VT1;
7598     Array[1] = VT2;
7599     Array[2] = VT3;
7600     Array[3] = VT4;
7601     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7602     VTListMap.InsertNode(Result, IP);
7603   }
7604   return Result->getSDVTList();
7605 }
7606 
7607 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7608   unsigned NumVTs = VTs.size();
7609   FoldingSetNodeID ID;
7610   ID.AddInteger(NumVTs);
7611   for (unsigned index = 0; index < NumVTs; index++) {
7612     ID.AddInteger(VTs[index].getRawBits());
7613   }
7614 
7615   void *IP = nullptr;
7616   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7617   if (!Result) {
7618     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7619     llvm::copy(VTs, Array);
7620     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7621     VTListMap.InsertNode(Result, IP);
7622   }
7623   return Result->getSDVTList();
7624 }
7625 
7626 
7627 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7628 /// specified operands.  If the resultant node already exists in the DAG,
7629 /// this does not modify the specified node, instead it returns the node that
7630 /// already exists.  If the resultant node does not exist in the DAG, the
7631 /// input node is returned.  As a degenerate case, if you specify the same
7632 /// input operands as the node already has, the input node is returned.
7633 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7634   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7635 
7636   // Check to see if there is no change.
7637   if (Op == N->getOperand(0)) return N;
7638 
7639   // See if the modified node already exists.
7640   void *InsertPos = nullptr;
7641   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7642     return Existing;
7643 
7644   // Nope it doesn't.  Remove the node from its current place in the maps.
7645   if (InsertPos)
7646     if (!RemoveNodeFromCSEMaps(N))
7647       InsertPos = nullptr;
7648 
7649   // Now we update the operands.
7650   N->OperandList[0].set(Op);
7651 
7652   updateDivergence(N);
7653   // If this gets put into a CSE map, add it.
7654   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7655   return N;
7656 }
7657 
7658 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7659   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7660 
7661   // Check to see if there is no change.
7662   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7663     return N;   // No operands changed, just return the input node.
7664 
7665   // See if the modified node already exists.
7666   void *InsertPos = nullptr;
7667   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7668     return Existing;
7669 
7670   // Nope it doesn't.  Remove the node from its current place in the maps.
7671   if (InsertPos)
7672     if (!RemoveNodeFromCSEMaps(N))
7673       InsertPos = nullptr;
7674 
7675   // Now we update the operands.
7676   if (N->OperandList[0] != Op1)
7677     N->OperandList[0].set(Op1);
7678   if (N->OperandList[1] != Op2)
7679     N->OperandList[1].set(Op2);
7680 
7681   updateDivergence(N);
7682   // If this gets put into a CSE map, add it.
7683   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7684   return N;
7685 }
7686 
7687 SDNode *SelectionDAG::
7688 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7689   SDValue Ops[] = { Op1, Op2, Op3 };
7690   return UpdateNodeOperands(N, Ops);
7691 }
7692 
7693 SDNode *SelectionDAG::
7694 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7695                    SDValue Op3, SDValue Op4) {
7696   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7697   return UpdateNodeOperands(N, Ops);
7698 }
7699 
7700 SDNode *SelectionDAG::
7701 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7702                    SDValue Op3, SDValue Op4, SDValue Op5) {
7703   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7704   return UpdateNodeOperands(N, Ops);
7705 }
7706 
7707 SDNode *SelectionDAG::
7708 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7709   unsigned NumOps = Ops.size();
7710   assert(N->getNumOperands() == NumOps &&
7711          "Update with wrong number of operands");
7712 
7713   // If no operands changed just return the input node.
7714   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7715     return N;
7716 
7717   // See if the modified node already exists.
7718   void *InsertPos = nullptr;
7719   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7720     return Existing;
7721 
7722   // Nope it doesn't.  Remove the node from its current place in the maps.
7723   if (InsertPos)
7724     if (!RemoveNodeFromCSEMaps(N))
7725       InsertPos = nullptr;
7726 
7727   // Now we update the operands.
7728   for (unsigned i = 0; i != NumOps; ++i)
7729     if (N->OperandList[i] != Ops[i])
7730       N->OperandList[i].set(Ops[i]);
7731 
7732   updateDivergence(N);
7733   // If this gets put into a CSE map, add it.
7734   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7735   return N;
7736 }
7737 
7738 /// DropOperands - Release the operands and set this node to have
7739 /// zero operands.
7740 void SDNode::DropOperands() {
7741   // Unlike the code in MorphNodeTo that does this, we don't need to
7742   // watch for dead nodes here.
7743   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7744     SDUse &Use = *I++;
7745     Use.set(SDValue());
7746   }
7747 }
7748 
7749 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7750                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7751   if (NewMemRefs.empty()) {
7752     N->clearMemRefs();
7753     return;
7754   }
7755 
7756   // Check if we can avoid allocating by storing a single reference directly.
7757   if (NewMemRefs.size() == 1) {
7758     N->MemRefs = NewMemRefs[0];
7759     N->NumMemRefs = 1;
7760     return;
7761   }
7762 
7763   MachineMemOperand **MemRefsBuffer =
7764       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7765   llvm::copy(NewMemRefs, MemRefsBuffer);
7766   N->MemRefs = MemRefsBuffer;
7767   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7768 }
7769 
7770 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7771 /// machine opcode.
7772 ///
7773 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7774                                    EVT VT) {
7775   SDVTList VTs = getVTList(VT);
7776   return SelectNodeTo(N, MachineOpc, VTs, None);
7777 }
7778 
7779 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7780                                    EVT VT, SDValue Op1) {
7781   SDVTList VTs = getVTList(VT);
7782   SDValue Ops[] = { Op1 };
7783   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7784 }
7785 
7786 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7787                                    EVT VT, SDValue Op1,
7788                                    SDValue Op2) {
7789   SDVTList VTs = getVTList(VT);
7790   SDValue Ops[] = { Op1, Op2 };
7791   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7792 }
7793 
7794 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7795                                    EVT VT, SDValue Op1,
7796                                    SDValue Op2, SDValue Op3) {
7797   SDVTList VTs = getVTList(VT);
7798   SDValue Ops[] = { Op1, Op2, Op3 };
7799   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7800 }
7801 
7802 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7803                                    EVT VT, ArrayRef<SDValue> Ops) {
7804   SDVTList VTs = getVTList(VT);
7805   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7806 }
7807 
7808 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7809                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7810   SDVTList VTs = getVTList(VT1, VT2);
7811   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7812 }
7813 
7814 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7815                                    EVT VT1, EVT VT2) {
7816   SDVTList VTs = getVTList(VT1, VT2);
7817   return SelectNodeTo(N, MachineOpc, VTs, None);
7818 }
7819 
7820 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7821                                    EVT VT1, EVT VT2, EVT VT3,
7822                                    ArrayRef<SDValue> Ops) {
7823   SDVTList VTs = getVTList(VT1, VT2, VT3);
7824   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7825 }
7826 
7827 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7828                                    EVT VT1, EVT VT2,
7829                                    SDValue Op1, SDValue Op2) {
7830   SDVTList VTs = getVTList(VT1, VT2);
7831   SDValue Ops[] = { Op1, Op2 };
7832   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7833 }
7834 
7835 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7836                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7837   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7838   // Reset the NodeID to -1.
7839   New->setNodeId(-1);
7840   if (New != N) {
7841     ReplaceAllUsesWith(N, New);
7842     RemoveDeadNode(N);
7843   }
7844   return New;
7845 }
7846 
7847 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7848 /// the line number information on the merged node since it is not possible to
7849 /// preserve the information that operation is associated with multiple lines.
7850 /// This will make the debugger working better at -O0, were there is a higher
7851 /// probability having other instructions associated with that line.
7852 ///
7853 /// For IROrder, we keep the smaller of the two
7854 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7855   DebugLoc NLoc = N->getDebugLoc();
7856   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7857     N->setDebugLoc(DebugLoc());
7858   }
7859   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7860   N->setIROrder(Order);
7861   return N;
7862 }
7863 
7864 /// MorphNodeTo - This *mutates* the specified node to have the specified
7865 /// return type, opcode, and operands.
7866 ///
7867 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7868 /// node of the specified opcode and operands, it returns that node instead of
7869 /// the current one.  Note that the SDLoc need not be the same.
7870 ///
7871 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7872 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7873 /// node, and because it doesn't require CSE recalculation for any of
7874 /// the node's users.
7875 ///
7876 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7877 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7878 /// the legalizer which maintain worklists that would need to be updated when
7879 /// deleting things.
7880 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7881                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7882   // If an identical node already exists, use it.
7883   void *IP = nullptr;
7884   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7885     FoldingSetNodeID ID;
7886     AddNodeIDNode(ID, Opc, VTs, Ops);
7887     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7888       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7889   }
7890 
7891   if (!RemoveNodeFromCSEMaps(N))
7892     IP = nullptr;
7893 
7894   // Start the morphing.
7895   N->NodeType = Opc;
7896   N->ValueList = VTs.VTs;
7897   N->NumValues = VTs.NumVTs;
7898 
7899   // Clear the operands list, updating used nodes to remove this from their
7900   // use list.  Keep track of any operands that become dead as a result.
7901   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7902   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7903     SDUse &Use = *I++;
7904     SDNode *Used = Use.getNode();
7905     Use.set(SDValue());
7906     if (Used->use_empty())
7907       DeadNodeSet.insert(Used);
7908   }
7909 
7910   // For MachineNode, initialize the memory references information.
7911   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7912     MN->clearMemRefs();
7913 
7914   // Swap for an appropriately sized array from the recycler.
7915   removeOperands(N);
7916   createOperands(N, Ops);
7917 
7918   // Delete any nodes that are still dead after adding the uses for the
7919   // new operands.
7920   if (!DeadNodeSet.empty()) {
7921     SmallVector<SDNode *, 16> DeadNodes;
7922     for (SDNode *N : DeadNodeSet)
7923       if (N->use_empty())
7924         DeadNodes.push_back(N);
7925     RemoveDeadNodes(DeadNodes);
7926   }
7927 
7928   if (IP)
7929     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7930   return N;
7931 }
7932 
7933 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7934   unsigned OrigOpc = Node->getOpcode();
7935   unsigned NewOpc;
7936   switch (OrigOpc) {
7937   default:
7938     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7939 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
7940   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
7941 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7942   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
7943 #include "llvm/IR/ConstrainedOps.def"
7944   }
7945 
7946   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
7947 
7948   // We're taking this node out of the chain, so we need to re-link things.
7949   SDValue InputChain = Node->getOperand(0);
7950   SDValue OutputChain = SDValue(Node, 1);
7951   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7952 
7953   SmallVector<SDValue, 3> Ops;
7954   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
7955     Ops.push_back(Node->getOperand(i));
7956 
7957   SDVTList VTs = getVTList(Node->getValueType(0));
7958   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
7959 
7960   // MorphNodeTo can operate in two ways: if an existing node with the
7961   // specified operands exists, it can just return it.  Otherwise, it
7962   // updates the node in place to have the requested operands.
7963   if (Res == Node) {
7964     // If we updated the node in place, reset the node ID.  To the isel,
7965     // this should be just like a newly allocated machine node.
7966     Res->setNodeId(-1);
7967   } else {
7968     ReplaceAllUsesWith(Node, Res);
7969     RemoveDeadNode(Node);
7970   }
7971 
7972   return Res;
7973 }
7974 
7975 /// getMachineNode - These are used for target selectors to create a new node
7976 /// with specified return type(s), MachineInstr opcode, and operands.
7977 ///
7978 /// Note that getMachineNode returns the resultant node.  If there is already a
7979 /// node of the specified opcode and operands, it returns that node instead of
7980 /// the current one.
7981 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7982                                             EVT VT) {
7983   SDVTList VTs = getVTList(VT);
7984   return getMachineNode(Opcode, dl, VTs, None);
7985 }
7986 
7987 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7988                                             EVT VT, SDValue Op1) {
7989   SDVTList VTs = getVTList(VT);
7990   SDValue Ops[] = { Op1 };
7991   return getMachineNode(Opcode, dl, VTs, Ops);
7992 }
7993 
7994 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7995                                             EVT VT, SDValue Op1, SDValue Op2) {
7996   SDVTList VTs = getVTList(VT);
7997   SDValue Ops[] = { Op1, Op2 };
7998   return getMachineNode(Opcode, dl, VTs, Ops);
7999 }
8000 
8001 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8002                                             EVT VT, SDValue Op1, SDValue Op2,
8003                                             SDValue Op3) {
8004   SDVTList VTs = getVTList(VT);
8005   SDValue Ops[] = { Op1, Op2, Op3 };
8006   return getMachineNode(Opcode, dl, VTs, Ops);
8007 }
8008 
8009 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8010                                             EVT VT, ArrayRef<SDValue> Ops) {
8011   SDVTList VTs = getVTList(VT);
8012   return getMachineNode(Opcode, dl, VTs, Ops);
8013 }
8014 
8015 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8016                                             EVT VT1, EVT VT2, SDValue Op1,
8017                                             SDValue Op2) {
8018   SDVTList VTs = getVTList(VT1, VT2);
8019   SDValue Ops[] = { Op1, Op2 };
8020   return getMachineNode(Opcode, dl, VTs, Ops);
8021 }
8022 
8023 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8024                                             EVT VT1, EVT VT2, SDValue Op1,
8025                                             SDValue Op2, SDValue Op3) {
8026   SDVTList VTs = getVTList(VT1, VT2);
8027   SDValue Ops[] = { Op1, Op2, Op3 };
8028   return getMachineNode(Opcode, dl, VTs, Ops);
8029 }
8030 
8031 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8032                                             EVT VT1, EVT VT2,
8033                                             ArrayRef<SDValue> Ops) {
8034   SDVTList VTs = getVTList(VT1, VT2);
8035   return getMachineNode(Opcode, dl, VTs, Ops);
8036 }
8037 
8038 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8039                                             EVT VT1, EVT VT2, EVT VT3,
8040                                             SDValue Op1, SDValue Op2) {
8041   SDVTList VTs = getVTList(VT1, VT2, VT3);
8042   SDValue Ops[] = { Op1, Op2 };
8043   return getMachineNode(Opcode, dl, VTs, Ops);
8044 }
8045 
8046 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8047                                             EVT VT1, EVT VT2, EVT VT3,
8048                                             SDValue Op1, SDValue Op2,
8049                                             SDValue Op3) {
8050   SDVTList VTs = getVTList(VT1, VT2, VT3);
8051   SDValue Ops[] = { Op1, Op2, Op3 };
8052   return getMachineNode(Opcode, dl, VTs, Ops);
8053 }
8054 
8055 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8056                                             EVT VT1, EVT VT2, EVT VT3,
8057                                             ArrayRef<SDValue> Ops) {
8058   SDVTList VTs = getVTList(VT1, VT2, VT3);
8059   return getMachineNode(Opcode, dl, VTs, Ops);
8060 }
8061 
8062 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8063                                             ArrayRef<EVT> ResultTys,
8064                                             ArrayRef<SDValue> Ops) {
8065   SDVTList VTs = getVTList(ResultTys);
8066   return getMachineNode(Opcode, dl, VTs, Ops);
8067 }
8068 
8069 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8070                                             SDVTList VTs,
8071                                             ArrayRef<SDValue> Ops) {
8072   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8073   MachineSDNode *N;
8074   void *IP = nullptr;
8075 
8076   if (DoCSE) {
8077     FoldingSetNodeID ID;
8078     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8079     IP = nullptr;
8080     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8081       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8082     }
8083   }
8084 
8085   // Allocate a new MachineSDNode.
8086   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8087   createOperands(N, Ops);
8088 
8089   if (DoCSE)
8090     CSEMap.InsertNode(N, IP);
8091 
8092   InsertNode(N);
8093   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8094   return N;
8095 }
8096 
8097 /// getTargetExtractSubreg - A convenience function for creating
8098 /// TargetOpcode::EXTRACT_SUBREG nodes.
8099 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8100                                              SDValue Operand) {
8101   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8102   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8103                                   VT, Operand, SRIdxVal);
8104   return SDValue(Subreg, 0);
8105 }
8106 
8107 /// getTargetInsertSubreg - A convenience function for creating
8108 /// TargetOpcode::INSERT_SUBREG nodes.
8109 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8110                                             SDValue Operand, SDValue Subreg) {
8111   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8112   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8113                                   VT, Operand, Subreg, SRIdxVal);
8114   return SDValue(Result, 0);
8115 }
8116 
8117 /// getNodeIfExists - Get the specified node if it's already available, or
8118 /// else return NULL.
8119 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8120                                       ArrayRef<SDValue> Ops,
8121                                       const SDNodeFlags Flags) {
8122   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8123     FoldingSetNodeID ID;
8124     AddNodeIDNode(ID, Opcode, VTList, Ops);
8125     void *IP = nullptr;
8126     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8127       E->intersectFlagsWith(Flags);
8128       return E;
8129     }
8130   }
8131   return nullptr;
8132 }
8133 
8134 /// getDbgValue - Creates a SDDbgValue node.
8135 ///
8136 /// SDNode
8137 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8138                                       SDNode *N, unsigned R, bool IsIndirect,
8139                                       const DebugLoc &DL, unsigned O) {
8140   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8141          "Expected inlined-at fields to agree");
8142   return new (DbgInfo->getAlloc())
8143       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8144 }
8145 
8146 /// Constant
8147 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8148                                               DIExpression *Expr,
8149                                               const Value *C,
8150                                               const DebugLoc &DL, unsigned O) {
8151   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8152          "Expected inlined-at fields to agree");
8153   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8154 }
8155 
8156 /// FrameIndex
8157 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8158                                                 DIExpression *Expr, unsigned FI,
8159                                                 bool IsIndirect,
8160                                                 const DebugLoc &DL,
8161                                                 unsigned O) {
8162   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8163          "Expected inlined-at fields to agree");
8164   return new (DbgInfo->getAlloc())
8165       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8166 }
8167 
8168 /// VReg
8169 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8170                                           DIExpression *Expr,
8171                                           unsigned VReg, bool IsIndirect,
8172                                           const DebugLoc &DL, unsigned O) {
8173   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8174          "Expected inlined-at fields to agree");
8175   return new (DbgInfo->getAlloc())
8176       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8177 }
8178 
8179 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8180                                      unsigned OffsetInBits, unsigned SizeInBits,
8181                                      bool InvalidateDbg) {
8182   SDNode *FromNode = From.getNode();
8183   SDNode *ToNode = To.getNode();
8184   assert(FromNode && ToNode && "Can't modify dbg values");
8185 
8186   // PR35338
8187   // TODO: assert(From != To && "Redundant dbg value transfer");
8188   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8189   if (From == To || FromNode == ToNode)
8190     return;
8191 
8192   if (!FromNode->getHasDebugValue())
8193     return;
8194 
8195   SmallVector<SDDbgValue *, 2> ClonedDVs;
8196   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8197     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8198       continue;
8199 
8200     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8201 
8202     // Just transfer the dbg value attached to From.
8203     if (Dbg->getResNo() != From.getResNo())
8204       continue;
8205 
8206     DIVariable *Var = Dbg->getVariable();
8207     auto *Expr = Dbg->getExpression();
8208     // If a fragment is requested, update the expression.
8209     if (SizeInBits) {
8210       // When splitting a larger (e.g., sign-extended) value whose
8211       // lower bits are described with an SDDbgValue, do not attempt
8212       // to transfer the SDDbgValue to the upper bits.
8213       if (auto FI = Expr->getFragmentInfo())
8214         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8215           continue;
8216       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8217                                                              SizeInBits);
8218       if (!Fragment)
8219         continue;
8220       Expr = *Fragment;
8221     }
8222     // Clone the SDDbgValue and move it to To.
8223     SDDbgValue *Clone = getDbgValue(
8224         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8225         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8226     ClonedDVs.push_back(Clone);
8227 
8228     if (InvalidateDbg) {
8229       // Invalidate value and indicate the SDDbgValue should not be emitted.
8230       Dbg->setIsInvalidated();
8231       Dbg->setIsEmitted();
8232     }
8233   }
8234 
8235   for (SDDbgValue *Dbg : ClonedDVs)
8236     AddDbgValue(Dbg, ToNode, false);
8237 }
8238 
8239 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8240   if (!N.getHasDebugValue())
8241     return;
8242 
8243   SmallVector<SDDbgValue *, 2> ClonedDVs;
8244   for (auto DV : GetDbgValues(&N)) {
8245     if (DV->isInvalidated())
8246       continue;
8247     switch (N.getOpcode()) {
8248     default:
8249       break;
8250     case ISD::ADD:
8251       SDValue N0 = N.getOperand(0);
8252       SDValue N1 = N.getOperand(1);
8253       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8254           isConstantIntBuildVectorOrConstantInt(N1)) {
8255         uint64_t Offset = N.getConstantOperandVal(1);
8256         // Rewrite an ADD constant node into a DIExpression. Since we are
8257         // performing arithmetic to compute the variable's *value* in the
8258         // DIExpression, we need to mark the expression with a
8259         // DW_OP_stack_value.
8260         auto *DIExpr = DV->getExpression();
8261         DIExpr =
8262             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8263         SDDbgValue *Clone =
8264             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8265                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8266         ClonedDVs.push_back(Clone);
8267         DV->setIsInvalidated();
8268         DV->setIsEmitted();
8269         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8270                    N0.getNode()->dumprFull(this);
8271                    dbgs() << " into " << *DIExpr << '\n');
8272       }
8273     }
8274   }
8275 
8276   for (SDDbgValue *Dbg : ClonedDVs)
8277     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8278 }
8279 
8280 /// Creates a SDDbgLabel node.
8281 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8282                                       const DebugLoc &DL, unsigned O) {
8283   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8284          "Expected inlined-at fields to agree");
8285   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8286 }
8287 
8288 namespace {
8289 
8290 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8291 /// pointed to by a use iterator is deleted, increment the use iterator
8292 /// so that it doesn't dangle.
8293 ///
8294 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8295   SDNode::use_iterator &UI;
8296   SDNode::use_iterator &UE;
8297 
8298   void NodeDeleted(SDNode *N, SDNode *E) override {
8299     // Increment the iterator as needed.
8300     while (UI != UE && N == *UI)
8301       ++UI;
8302   }
8303 
8304 public:
8305   RAUWUpdateListener(SelectionDAG &d,
8306                      SDNode::use_iterator &ui,
8307                      SDNode::use_iterator &ue)
8308     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8309 };
8310 
8311 } // end anonymous namespace
8312 
8313 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8314 /// This can cause recursive merging of nodes in the DAG.
8315 ///
8316 /// This version assumes From has a single result value.
8317 ///
8318 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8319   SDNode *From = FromN.getNode();
8320   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8321          "Cannot replace with this method!");
8322   assert(From != To.getNode() && "Cannot replace uses of with self");
8323 
8324   // Preserve Debug Values
8325   transferDbgValues(FromN, To);
8326 
8327   // Iterate over all the existing uses of From. New uses will be added
8328   // to the beginning of the use list, which we avoid visiting.
8329   // This specifically avoids visiting uses of From that arise while the
8330   // replacement is happening, because any such uses would be the result
8331   // of CSE: If an existing node looks like From after one of its operands
8332   // is replaced by To, we don't want to replace of all its users with To
8333   // too. See PR3018 for more info.
8334   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8335   RAUWUpdateListener Listener(*this, UI, UE);
8336   while (UI != UE) {
8337     SDNode *User = *UI;
8338 
8339     // This node is about to morph, remove its old self from the CSE maps.
8340     RemoveNodeFromCSEMaps(User);
8341 
8342     // A user can appear in a use list multiple times, and when this
8343     // happens the uses are usually next to each other in the list.
8344     // To help reduce the number of CSE recomputations, process all
8345     // the uses of this user that we can find this way.
8346     do {
8347       SDUse &Use = UI.getUse();
8348       ++UI;
8349       Use.set(To);
8350       if (To->isDivergent() != From->isDivergent())
8351         updateDivergence(User);
8352     } while (UI != UE && *UI == User);
8353     // Now that we have modified User, add it back to the CSE maps.  If it
8354     // already exists there, recursively merge the results together.
8355     AddModifiedNodeToCSEMaps(User);
8356   }
8357 
8358   // If we just RAUW'd the root, take note.
8359   if (FromN == getRoot())
8360     setRoot(To);
8361 }
8362 
8363 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8364 /// This can cause recursive merging of nodes in the DAG.
8365 ///
8366 /// This version assumes that for each value of From, there is a
8367 /// corresponding value in To in the same position with the same type.
8368 ///
8369 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8370 #ifndef NDEBUG
8371   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8372     assert((!From->hasAnyUseOfValue(i) ||
8373             From->getValueType(i) == To->getValueType(i)) &&
8374            "Cannot use this version of ReplaceAllUsesWith!");
8375 #endif
8376 
8377   // Handle the trivial case.
8378   if (From == To)
8379     return;
8380 
8381   // Preserve Debug Info. Only do this if there's a use.
8382   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8383     if (From->hasAnyUseOfValue(i)) {
8384       assert((i < To->getNumValues()) && "Invalid To location");
8385       transferDbgValues(SDValue(From, i), SDValue(To, i));
8386     }
8387 
8388   // Iterate over just the existing users of From. See the comments in
8389   // the ReplaceAllUsesWith above.
8390   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8391   RAUWUpdateListener Listener(*this, UI, UE);
8392   while (UI != UE) {
8393     SDNode *User = *UI;
8394 
8395     // This node is about to morph, remove its old self from the CSE maps.
8396     RemoveNodeFromCSEMaps(User);
8397 
8398     // A user can appear in a use list multiple times, and when this
8399     // happens the uses are usually next to each other in the list.
8400     // To help reduce the number of CSE recomputations, process all
8401     // the uses of this user that we can find this way.
8402     do {
8403       SDUse &Use = UI.getUse();
8404       ++UI;
8405       Use.setNode(To);
8406       if (To->isDivergent() != From->isDivergent())
8407         updateDivergence(User);
8408     } while (UI != UE && *UI == User);
8409 
8410     // Now that we have modified User, add it back to the CSE maps.  If it
8411     // already exists there, recursively merge the results together.
8412     AddModifiedNodeToCSEMaps(User);
8413   }
8414 
8415   // If we just RAUW'd the root, take note.
8416   if (From == getRoot().getNode())
8417     setRoot(SDValue(To, getRoot().getResNo()));
8418 }
8419 
8420 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8421 /// This can cause recursive merging of nodes in the DAG.
8422 ///
8423 /// This version can replace From with any result values.  To must match the
8424 /// number and types of values returned by From.
8425 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8426   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8427     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8428 
8429   // Preserve Debug Info.
8430   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8431     transferDbgValues(SDValue(From, i), To[i]);
8432 
8433   // Iterate over just the existing users of From. See the comments in
8434   // the ReplaceAllUsesWith above.
8435   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8436   RAUWUpdateListener Listener(*this, UI, UE);
8437   while (UI != UE) {
8438     SDNode *User = *UI;
8439 
8440     // This node is about to morph, remove its old self from the CSE maps.
8441     RemoveNodeFromCSEMaps(User);
8442 
8443     // A user can appear in a use list multiple times, and when this happens the
8444     // uses are usually next to each other in the list.  To help reduce the
8445     // number of CSE and divergence recomputations, process all the uses of this
8446     // user that we can find this way.
8447     bool To_IsDivergent = false;
8448     do {
8449       SDUse &Use = UI.getUse();
8450       const SDValue &ToOp = To[Use.getResNo()];
8451       ++UI;
8452       Use.set(ToOp);
8453       To_IsDivergent |= ToOp->isDivergent();
8454     } while (UI != UE && *UI == User);
8455 
8456     if (To_IsDivergent != From->isDivergent())
8457       updateDivergence(User);
8458 
8459     // Now that we have modified User, add it back to the CSE maps.  If it
8460     // already exists there, recursively merge the results together.
8461     AddModifiedNodeToCSEMaps(User);
8462   }
8463 
8464   // If we just RAUW'd the root, take note.
8465   if (From == getRoot().getNode())
8466     setRoot(SDValue(To[getRoot().getResNo()]));
8467 }
8468 
8469 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8470 /// uses of other values produced by From.getNode() alone.  The Deleted
8471 /// vector is handled the same way as for ReplaceAllUsesWith.
8472 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8473   // Handle the really simple, really trivial case efficiently.
8474   if (From == To) return;
8475 
8476   // Handle the simple, trivial, case efficiently.
8477   if (From.getNode()->getNumValues() == 1) {
8478     ReplaceAllUsesWith(From, To);
8479     return;
8480   }
8481 
8482   // Preserve Debug Info.
8483   transferDbgValues(From, To);
8484 
8485   // Iterate over just the existing users of From. See the comments in
8486   // the ReplaceAllUsesWith above.
8487   SDNode::use_iterator UI = From.getNode()->use_begin(),
8488                        UE = From.getNode()->use_end();
8489   RAUWUpdateListener Listener(*this, UI, UE);
8490   while (UI != UE) {
8491     SDNode *User = *UI;
8492     bool UserRemovedFromCSEMaps = false;
8493 
8494     // A user can appear in a use list multiple times, and when this
8495     // happens the uses are usually next to each other in the list.
8496     // To help reduce the number of CSE recomputations, process all
8497     // the uses of this user that we can find this way.
8498     do {
8499       SDUse &Use = UI.getUse();
8500 
8501       // Skip uses of different values from the same node.
8502       if (Use.getResNo() != From.getResNo()) {
8503         ++UI;
8504         continue;
8505       }
8506 
8507       // If this node hasn't been modified yet, it's still in the CSE maps,
8508       // so remove its old self from the CSE maps.
8509       if (!UserRemovedFromCSEMaps) {
8510         RemoveNodeFromCSEMaps(User);
8511         UserRemovedFromCSEMaps = true;
8512       }
8513 
8514       ++UI;
8515       Use.set(To);
8516       if (To->isDivergent() != From->isDivergent())
8517         updateDivergence(User);
8518     } while (UI != UE && *UI == User);
8519     // We are iterating over all uses of the From node, so if a use
8520     // doesn't use the specific value, no changes are made.
8521     if (!UserRemovedFromCSEMaps)
8522       continue;
8523 
8524     // Now that we have modified User, add it back to the CSE maps.  If it
8525     // already exists there, recursively merge the results together.
8526     AddModifiedNodeToCSEMaps(User);
8527   }
8528 
8529   // If we just RAUW'd the root, take note.
8530   if (From == getRoot())
8531     setRoot(To);
8532 }
8533 
8534 namespace {
8535 
8536   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8537   /// to record information about a use.
8538   struct UseMemo {
8539     SDNode *User;
8540     unsigned Index;
8541     SDUse *Use;
8542   };
8543 
8544   /// operator< - Sort Memos by User.
8545   bool operator<(const UseMemo &L, const UseMemo &R) {
8546     return (intptr_t)L.User < (intptr_t)R.User;
8547   }
8548 
8549 } // end anonymous namespace
8550 
8551 void SelectionDAG::updateDivergence(SDNode * N)
8552 {
8553   if (TLI->isSDNodeAlwaysUniform(N))
8554     return;
8555   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8556   for (auto &Op : N->ops()) {
8557     if (Op.Val.getValueType() != MVT::Other)
8558       IsDivergent |= Op.getNode()->isDivergent();
8559   }
8560   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8561     N->SDNodeBits.IsDivergent = IsDivergent;
8562     for (auto U : N->uses()) {
8563       updateDivergence(U);
8564     }
8565   }
8566 }
8567 
8568 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8569   DenseMap<SDNode *, unsigned> Degree;
8570   Order.reserve(AllNodes.size());
8571   for (auto &N : allnodes()) {
8572     unsigned NOps = N.getNumOperands();
8573     Degree[&N] = NOps;
8574     if (0 == NOps)
8575       Order.push_back(&N);
8576   }
8577   for (size_t I = 0; I != Order.size(); ++I) {
8578     SDNode *N = Order[I];
8579     for (auto U : N->uses()) {
8580       unsigned &UnsortedOps = Degree[U];
8581       if (0 == --UnsortedOps)
8582         Order.push_back(U);
8583     }
8584   }
8585 }
8586 
8587 #ifndef NDEBUG
8588 void SelectionDAG::VerifyDAGDiverence() {
8589   std::vector<SDNode *> TopoOrder;
8590   CreateTopologicalOrder(TopoOrder);
8591   const TargetLowering &TLI = getTargetLoweringInfo();
8592   DenseMap<const SDNode *, bool> DivergenceMap;
8593   for (auto &N : allnodes()) {
8594     DivergenceMap[&N] = false;
8595   }
8596   for (auto N : TopoOrder) {
8597     bool IsDivergent = DivergenceMap[N];
8598     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8599     for (auto &Op : N->ops()) {
8600       if (Op.Val.getValueType() != MVT::Other)
8601         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8602     }
8603     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8604       DivergenceMap[N] = true;
8605     }
8606   }
8607   for (auto &N : allnodes()) {
8608     (void)N;
8609     assert(DivergenceMap[&N] == N.isDivergent() &&
8610            "Divergence bit inconsistency detected\n");
8611   }
8612 }
8613 #endif
8614 
8615 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8616 /// uses of other values produced by From.getNode() alone.  The same value
8617 /// may appear in both the From and To list.  The Deleted vector is
8618 /// handled the same way as for ReplaceAllUsesWith.
8619 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8620                                               const SDValue *To,
8621                                               unsigned Num){
8622   // Handle the simple, trivial case efficiently.
8623   if (Num == 1)
8624     return ReplaceAllUsesOfValueWith(*From, *To);
8625 
8626   transferDbgValues(*From, *To);
8627 
8628   // Read up all the uses and make records of them. This helps
8629   // processing new uses that are introduced during the
8630   // replacement process.
8631   SmallVector<UseMemo, 4> Uses;
8632   for (unsigned i = 0; i != Num; ++i) {
8633     unsigned FromResNo = From[i].getResNo();
8634     SDNode *FromNode = From[i].getNode();
8635     for (SDNode::use_iterator UI = FromNode->use_begin(),
8636          E = FromNode->use_end(); UI != E; ++UI) {
8637       SDUse &Use = UI.getUse();
8638       if (Use.getResNo() == FromResNo) {
8639         UseMemo Memo = { *UI, i, &Use };
8640         Uses.push_back(Memo);
8641       }
8642     }
8643   }
8644 
8645   // Sort the uses, so that all the uses from a given User are together.
8646   llvm::sort(Uses);
8647 
8648   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8649        UseIndex != UseIndexEnd; ) {
8650     // We know that this user uses some value of From.  If it is the right
8651     // value, update it.
8652     SDNode *User = Uses[UseIndex].User;
8653 
8654     // This node is about to morph, remove its old self from the CSE maps.
8655     RemoveNodeFromCSEMaps(User);
8656 
8657     // The Uses array is sorted, so all the uses for a given User
8658     // are next to each other in the list.
8659     // To help reduce the number of CSE recomputations, process all
8660     // the uses of this user that we can find this way.
8661     do {
8662       unsigned i = Uses[UseIndex].Index;
8663       SDUse &Use = *Uses[UseIndex].Use;
8664       ++UseIndex;
8665 
8666       Use.set(To[i]);
8667     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8668 
8669     // Now that we have modified User, add it back to the CSE maps.  If it
8670     // already exists there, recursively merge the results together.
8671     AddModifiedNodeToCSEMaps(User);
8672   }
8673 }
8674 
8675 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8676 /// based on their topological order. It returns the maximum id and a vector
8677 /// of the SDNodes* in assigned order by reference.
8678 unsigned SelectionDAG::AssignTopologicalOrder() {
8679   unsigned DAGSize = 0;
8680 
8681   // SortedPos tracks the progress of the algorithm. Nodes before it are
8682   // sorted, nodes after it are unsorted. When the algorithm completes
8683   // it is at the end of the list.
8684   allnodes_iterator SortedPos = allnodes_begin();
8685 
8686   // Visit all the nodes. Move nodes with no operands to the front of
8687   // the list immediately. Annotate nodes that do have operands with their
8688   // operand count. Before we do this, the Node Id fields of the nodes
8689   // may contain arbitrary values. After, the Node Id fields for nodes
8690   // before SortedPos will contain the topological sort index, and the
8691   // Node Id fields for nodes At SortedPos and after will contain the
8692   // count of outstanding operands.
8693   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8694     SDNode *N = &*I++;
8695     checkForCycles(N, this);
8696     unsigned Degree = N->getNumOperands();
8697     if (Degree == 0) {
8698       // A node with no uses, add it to the result array immediately.
8699       N->setNodeId(DAGSize++);
8700       allnodes_iterator Q(N);
8701       if (Q != SortedPos)
8702         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8703       assert(SortedPos != AllNodes.end() && "Overran node list");
8704       ++SortedPos;
8705     } else {
8706       // Temporarily use the Node Id as scratch space for the degree count.
8707       N->setNodeId(Degree);
8708     }
8709   }
8710 
8711   // Visit all the nodes. As we iterate, move nodes into sorted order,
8712   // such that by the time the end is reached all nodes will be sorted.
8713   for (SDNode &Node : allnodes()) {
8714     SDNode *N = &Node;
8715     checkForCycles(N, this);
8716     // N is in sorted position, so all its uses have one less operand
8717     // that needs to be sorted.
8718     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8719          UI != UE; ++UI) {
8720       SDNode *P = *UI;
8721       unsigned Degree = P->getNodeId();
8722       assert(Degree != 0 && "Invalid node degree");
8723       --Degree;
8724       if (Degree == 0) {
8725         // All of P's operands are sorted, so P may sorted now.
8726         P->setNodeId(DAGSize++);
8727         if (P->getIterator() != SortedPos)
8728           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8729         assert(SortedPos != AllNodes.end() && "Overran node list");
8730         ++SortedPos;
8731       } else {
8732         // Update P's outstanding operand count.
8733         P->setNodeId(Degree);
8734       }
8735     }
8736     if (Node.getIterator() == SortedPos) {
8737 #ifndef NDEBUG
8738       allnodes_iterator I(N);
8739       SDNode *S = &*++I;
8740       dbgs() << "Overran sorted position:\n";
8741       S->dumprFull(this); dbgs() << "\n";
8742       dbgs() << "Checking if this is due to cycles\n";
8743       checkForCycles(this, true);
8744 #endif
8745       llvm_unreachable(nullptr);
8746     }
8747   }
8748 
8749   assert(SortedPos == AllNodes.end() &&
8750          "Topological sort incomplete!");
8751   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8752          "First node in topological sort is not the entry token!");
8753   assert(AllNodes.front().getNodeId() == 0 &&
8754          "First node in topological sort has non-zero id!");
8755   assert(AllNodes.front().getNumOperands() == 0 &&
8756          "First node in topological sort has operands!");
8757   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8758          "Last node in topologic sort has unexpected id!");
8759   assert(AllNodes.back().use_empty() &&
8760          "Last node in topologic sort has users!");
8761   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8762   return DAGSize;
8763 }
8764 
8765 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8766 /// value is produced by SD.
8767 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8768   if (SD) {
8769     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8770     SD->setHasDebugValue(true);
8771   }
8772   DbgInfo->add(DB, SD, isParameter);
8773 }
8774 
8775 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8776   DbgInfo->add(DB);
8777 }
8778 
8779 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8780                                                    SDValue NewMemOp) {
8781   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8782   // The new memory operation must have the same position as the old load in
8783   // terms of memory dependency. Create a TokenFactor for the old load and new
8784   // memory operation and update uses of the old load's output chain to use that
8785   // TokenFactor.
8786   SDValue OldChain = SDValue(OldLoad, 1);
8787   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8788   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8789     return NewChain;
8790 
8791   SDValue TokenFactor =
8792       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8793   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8794   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8795   return TokenFactor;
8796 }
8797 
8798 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8799                                                      Function **OutFunction) {
8800   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8801 
8802   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8803   auto *Module = MF->getFunction().getParent();
8804   auto *Function = Module->getFunction(Symbol);
8805 
8806   if (OutFunction != nullptr)
8807       *OutFunction = Function;
8808 
8809   if (Function != nullptr) {
8810     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8811     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8812   }
8813 
8814   std::string ErrorStr;
8815   raw_string_ostream ErrorFormatter(ErrorStr);
8816 
8817   ErrorFormatter << "Undefined external symbol ";
8818   ErrorFormatter << '"' << Symbol << '"';
8819   ErrorFormatter.flush();
8820 
8821   report_fatal_error(ErrorStr);
8822 }
8823 
8824 //===----------------------------------------------------------------------===//
8825 //                              SDNode Class
8826 //===----------------------------------------------------------------------===//
8827 
8828 bool llvm::isNullConstant(SDValue V) {
8829   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8830   return Const != nullptr && Const->isNullValue();
8831 }
8832 
8833 bool llvm::isNullFPConstant(SDValue V) {
8834   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8835   return Const != nullptr && Const->isZero() && !Const->isNegative();
8836 }
8837 
8838 bool llvm::isAllOnesConstant(SDValue V) {
8839   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8840   return Const != nullptr && Const->isAllOnesValue();
8841 }
8842 
8843 bool llvm::isOneConstant(SDValue V) {
8844   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8845   return Const != nullptr && Const->isOne();
8846 }
8847 
8848 SDValue llvm::peekThroughBitcasts(SDValue V) {
8849   while (V.getOpcode() == ISD::BITCAST)
8850     V = V.getOperand(0);
8851   return V;
8852 }
8853 
8854 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8855   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8856     V = V.getOperand(0);
8857   return V;
8858 }
8859 
8860 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8861   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8862     V = V.getOperand(0);
8863   return V;
8864 }
8865 
8866 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8867   if (V.getOpcode() != ISD::XOR)
8868     return false;
8869   V = peekThroughBitcasts(V.getOperand(1));
8870   unsigned NumBits = V.getScalarValueSizeInBits();
8871   ConstantSDNode *C =
8872       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
8873   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
8874 }
8875 
8876 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
8877                                           bool AllowTruncation) {
8878   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8879     return CN;
8880 
8881   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8882     BitVector UndefElements;
8883     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8884 
8885     // BuildVectors can truncate their operands. Ignore that case here unless
8886     // AllowTruncation is set.
8887     if (CN && (UndefElements.none() || AllowUndefs)) {
8888       EVT CVT = CN->getValueType(0);
8889       EVT NSVT = N.getValueType().getScalarType();
8890       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8891       if (AllowTruncation || (CVT == NSVT))
8892         return CN;
8893     }
8894   }
8895 
8896   return nullptr;
8897 }
8898 
8899 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8900                                           bool AllowUndefs,
8901                                           bool AllowTruncation) {
8902   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8903     return CN;
8904 
8905   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8906     BitVector UndefElements;
8907     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8908 
8909     // BuildVectors can truncate their operands. Ignore that case here unless
8910     // AllowTruncation is set.
8911     if (CN && (UndefElements.none() || AllowUndefs)) {
8912       EVT CVT = CN->getValueType(0);
8913       EVT NSVT = N.getValueType().getScalarType();
8914       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8915       if (AllowTruncation || (CVT == NSVT))
8916         return CN;
8917     }
8918   }
8919 
8920   return nullptr;
8921 }
8922 
8923 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8924   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8925     return CN;
8926 
8927   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8928     BitVector UndefElements;
8929     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8930     if (CN && (UndefElements.none() || AllowUndefs))
8931       return CN;
8932   }
8933 
8934   return nullptr;
8935 }
8936 
8937 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8938                                               const APInt &DemandedElts,
8939                                               bool AllowUndefs) {
8940   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8941     return CN;
8942 
8943   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8944     BitVector UndefElements;
8945     ConstantFPSDNode *CN =
8946         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8947     if (CN && (UndefElements.none() || AllowUndefs))
8948       return CN;
8949   }
8950 
8951   return nullptr;
8952 }
8953 
8954 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8955   // TODO: may want to use peekThroughBitcast() here.
8956   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8957   return C && C->isNullValue();
8958 }
8959 
8960 bool llvm::isOneOrOneSplat(SDValue N) {
8961   // TODO: may want to use peekThroughBitcast() here.
8962   unsigned BitWidth = N.getScalarValueSizeInBits();
8963   ConstantSDNode *C = isConstOrConstSplat(N);
8964   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8965 }
8966 
8967 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8968   N = peekThroughBitcasts(N);
8969   unsigned BitWidth = N.getScalarValueSizeInBits();
8970   ConstantSDNode *C = isConstOrConstSplat(N);
8971   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8972 }
8973 
8974 HandleSDNode::~HandleSDNode() {
8975   DropOperands();
8976 }
8977 
8978 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8979                                          const DebugLoc &DL,
8980                                          const GlobalValue *GA, EVT VT,
8981                                          int64_t o, unsigned TF)
8982     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8983   TheGlobal = GA;
8984 }
8985 
8986 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8987                                          EVT VT, unsigned SrcAS,
8988                                          unsigned DestAS)
8989     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8990       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8991 
8992 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8993                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8994     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8995   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8996   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8997   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8998   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8999 
9000   // We check here that the size of the memory operand fits within the size of
9001   // the MMO. This is because the MMO might indicate only a possible address
9002   // range instead of specifying the affected memory addresses precisely.
9003   // TODO: Make MachineMemOperands aware of scalable vectors.
9004   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9005          "Size mismatch!");
9006 }
9007 
9008 /// Profile - Gather unique data for the node.
9009 ///
9010 void SDNode::Profile(FoldingSetNodeID &ID) const {
9011   AddNodeIDNode(ID, this);
9012 }
9013 
9014 namespace {
9015 
9016   struct EVTArray {
9017     std::vector<EVT> VTs;
9018 
9019     EVTArray() {
9020       VTs.reserve(MVT::LAST_VALUETYPE);
9021       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9022         VTs.push_back(MVT((MVT::SimpleValueType)i));
9023     }
9024   };
9025 
9026 } // end anonymous namespace
9027 
9028 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9029 static ManagedStatic<EVTArray> SimpleVTArray;
9030 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9031 
9032 /// getValueTypeList - Return a pointer to the specified value type.
9033 ///
9034 const EVT *SDNode::getValueTypeList(EVT VT) {
9035   if (VT.isExtended()) {
9036     sys::SmartScopedLock<true> Lock(*VTMutex);
9037     return &(*EVTs->insert(VT).first);
9038   } else {
9039     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9040            "Value type out of range!");
9041     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9042   }
9043 }
9044 
9045 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9046 /// indicated value.  This method ignores uses of other values defined by this
9047 /// operation.
9048 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9049   assert(Value < getNumValues() && "Bad value!");
9050 
9051   // TODO: Only iterate over uses of a given value of the node
9052   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9053     if (UI.getUse().getResNo() == Value) {
9054       if (NUses == 0)
9055         return false;
9056       --NUses;
9057     }
9058   }
9059 
9060   // Found exactly the right number of uses?
9061   return NUses == 0;
9062 }
9063 
9064 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9065 /// value. This method ignores uses of other values defined by this operation.
9066 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9067   assert(Value < getNumValues() && "Bad value!");
9068 
9069   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9070     if (UI.getUse().getResNo() == Value)
9071       return true;
9072 
9073   return false;
9074 }
9075 
9076 /// isOnlyUserOf - Return true if this node is the only use of N.
9077 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9078   bool Seen = false;
9079   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9080     SDNode *User = *I;
9081     if (User == this)
9082       Seen = true;
9083     else
9084       return false;
9085   }
9086 
9087   return Seen;
9088 }
9089 
9090 /// Return true if the only users of N are contained in Nodes.
9091 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9092   bool Seen = false;
9093   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9094     SDNode *User = *I;
9095     if (llvm::any_of(Nodes,
9096                      [&User](const SDNode *Node) { return User == Node; }))
9097       Seen = true;
9098     else
9099       return false;
9100   }
9101 
9102   return Seen;
9103 }
9104 
9105 /// isOperand - Return true if this node is an operand of N.
9106 bool SDValue::isOperandOf(const SDNode *N) const {
9107   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9108 }
9109 
9110 bool SDNode::isOperandOf(const SDNode *N) const {
9111   return any_of(N->op_values(),
9112                 [this](SDValue Op) { return this == Op.getNode(); });
9113 }
9114 
9115 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9116 /// be a chain) reaches the specified operand without crossing any
9117 /// side-effecting instructions on any chain path.  In practice, this looks
9118 /// through token factors and non-volatile loads.  In order to remain efficient,
9119 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9120 ///
9121 /// Note that we only need to examine chains when we're searching for
9122 /// side-effects; SelectionDAG requires that all side-effects are represented
9123 /// by chains, even if another operand would force a specific ordering. This
9124 /// constraint is necessary to allow transformations like splitting loads.
9125 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9126                                              unsigned Depth) const {
9127   if (*this == Dest) return true;
9128 
9129   // Don't search too deeply, we just want to be able to see through
9130   // TokenFactor's etc.
9131   if (Depth == 0) return false;
9132 
9133   // If this is a token factor, all inputs to the TF happen in parallel.
9134   if (getOpcode() == ISD::TokenFactor) {
9135     // First, try a shallow search.
9136     if (is_contained((*this)->ops(), Dest)) {
9137       // We found the chain we want as an operand of this TokenFactor.
9138       // Essentially, we reach the chain without side-effects if we could
9139       // serialize the TokenFactor into a simple chain of operations with
9140       // Dest as the last operation. This is automatically true if the
9141       // chain has one use: there are no other ordering constraints.
9142       // If the chain has more than one use, we give up: some other
9143       // use of Dest might force a side-effect between Dest and the current
9144       // node.
9145       if (Dest.hasOneUse())
9146         return true;
9147     }
9148     // Next, try a deep search: check whether every operand of the TokenFactor
9149     // reaches Dest.
9150     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9151       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9152     });
9153   }
9154 
9155   // Loads don't have side effects, look through them.
9156   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9157     if (Ld->isUnordered())
9158       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9159   }
9160   return false;
9161 }
9162 
9163 bool SDNode::hasPredecessor(const SDNode *N) const {
9164   SmallPtrSet<const SDNode *, 32> Visited;
9165   SmallVector<const SDNode *, 16> Worklist;
9166   Worklist.push_back(this);
9167   return hasPredecessorHelper(N, Visited, Worklist);
9168 }
9169 
9170 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9171   this->Flags.intersectWith(Flags);
9172 }
9173 
9174 SDValue
9175 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9176                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9177                                   bool AllowPartials) {
9178   // The pattern must end in an extract from index 0.
9179   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9180       !isNullConstant(Extract->getOperand(1)))
9181     return SDValue();
9182 
9183   // Match against one of the candidate binary ops.
9184   SDValue Op = Extract->getOperand(0);
9185   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9186         return Op.getOpcode() == unsigned(BinOp);
9187       }))
9188     return SDValue();
9189 
9190   // Floating-point reductions may require relaxed constraints on the final step
9191   // of the reduction because they may reorder intermediate operations.
9192   unsigned CandidateBinOp = Op.getOpcode();
9193   if (Op.getValueType().isFloatingPoint()) {
9194     SDNodeFlags Flags = Op->getFlags();
9195     switch (CandidateBinOp) {
9196     case ISD::FADD:
9197       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9198         return SDValue();
9199       break;
9200     default:
9201       llvm_unreachable("Unhandled FP opcode for binop reduction");
9202     }
9203   }
9204 
9205   // Matching failed - attempt to see if we did enough stages that a partial
9206   // reduction from a subvector is possible.
9207   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9208     if (!AllowPartials || !Op)
9209       return SDValue();
9210     EVT OpVT = Op.getValueType();
9211     EVT OpSVT = OpVT.getScalarType();
9212     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9213     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9214       return SDValue();
9215     BinOp = (ISD::NodeType)CandidateBinOp;
9216     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9217                    getVectorIdxConstant(0, SDLoc(Op)));
9218   };
9219 
9220   // At each stage, we're looking for something that looks like:
9221   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9222   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9223   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9224   // %a = binop <8 x i32> %op, %s
9225   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9226   // we expect something like:
9227   // <4,5,6,7,u,u,u,u>
9228   // <2,3,u,u,u,u,u,u>
9229   // <1,u,u,u,u,u,u,u>
9230   // While a partial reduction match would be:
9231   // <2,3,u,u,u,u,u,u>
9232   // <1,u,u,u,u,u,u,u>
9233   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9234   SDValue PrevOp;
9235   for (unsigned i = 0; i < Stages; ++i) {
9236     unsigned MaskEnd = (1 << i);
9237 
9238     if (Op.getOpcode() != CandidateBinOp)
9239       return PartialReduction(PrevOp, MaskEnd);
9240 
9241     SDValue Op0 = Op.getOperand(0);
9242     SDValue Op1 = Op.getOperand(1);
9243 
9244     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9245     if (Shuffle) {
9246       Op = Op1;
9247     } else {
9248       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9249       Op = Op0;
9250     }
9251 
9252     // The first operand of the shuffle should be the same as the other operand
9253     // of the binop.
9254     if (!Shuffle || Shuffle->getOperand(0) != Op)
9255       return PartialReduction(PrevOp, MaskEnd);
9256 
9257     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9258     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9259       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9260         return PartialReduction(PrevOp, MaskEnd);
9261 
9262     PrevOp = Op;
9263   }
9264 
9265   BinOp = (ISD::NodeType)CandidateBinOp;
9266   return Op;
9267 }
9268 
9269 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9270   assert(N->getNumValues() == 1 &&
9271          "Can't unroll a vector with multiple results!");
9272 
9273   EVT VT = N->getValueType(0);
9274   unsigned NE = VT.getVectorNumElements();
9275   EVT EltVT = VT.getVectorElementType();
9276   SDLoc dl(N);
9277 
9278   SmallVector<SDValue, 8> Scalars;
9279   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9280 
9281   // If ResNE is 0, fully unroll the vector op.
9282   if (ResNE == 0)
9283     ResNE = NE;
9284   else if (NE > ResNE)
9285     NE = ResNE;
9286 
9287   unsigned i;
9288   for (i= 0; i != NE; ++i) {
9289     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9290       SDValue Operand = N->getOperand(j);
9291       EVT OperandVT = Operand.getValueType();
9292       if (OperandVT.isVector()) {
9293         // A vector operand; extract a single element.
9294         EVT OperandEltVT = OperandVT.getVectorElementType();
9295         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9296                               Operand, getVectorIdxConstant(i, dl));
9297       } else {
9298         // A scalar operand; just use it as is.
9299         Operands[j] = Operand;
9300       }
9301     }
9302 
9303     switch (N->getOpcode()) {
9304     default: {
9305       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9306                                 N->getFlags()));
9307       break;
9308     }
9309     case ISD::VSELECT:
9310       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9311       break;
9312     case ISD::SHL:
9313     case ISD::SRA:
9314     case ISD::SRL:
9315     case ISD::ROTL:
9316     case ISD::ROTR:
9317       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9318                                getShiftAmountOperand(Operands[0].getValueType(),
9319                                                      Operands[1])));
9320       break;
9321     case ISD::SIGN_EXTEND_INREG: {
9322       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9323       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9324                                 Operands[0],
9325                                 getValueType(ExtVT)));
9326     }
9327     }
9328   }
9329 
9330   for (; i < ResNE; ++i)
9331     Scalars.push_back(getUNDEF(EltVT));
9332 
9333   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9334   return getBuildVector(VecVT, dl, Scalars);
9335 }
9336 
9337 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9338     SDNode *N, unsigned ResNE) {
9339   unsigned Opcode = N->getOpcode();
9340   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9341           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9342           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9343          "Expected an overflow opcode");
9344 
9345   EVT ResVT = N->getValueType(0);
9346   EVT OvVT = N->getValueType(1);
9347   EVT ResEltVT = ResVT.getVectorElementType();
9348   EVT OvEltVT = OvVT.getVectorElementType();
9349   SDLoc dl(N);
9350 
9351   // If ResNE is 0, fully unroll the vector op.
9352   unsigned NE = ResVT.getVectorNumElements();
9353   if (ResNE == 0)
9354     ResNE = NE;
9355   else if (NE > ResNE)
9356     NE = ResNE;
9357 
9358   SmallVector<SDValue, 8> LHSScalars;
9359   SmallVector<SDValue, 8> RHSScalars;
9360   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9361   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9362 
9363   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9364   SDVTList VTs = getVTList(ResEltVT, SVT);
9365   SmallVector<SDValue, 8> ResScalars;
9366   SmallVector<SDValue, 8> OvScalars;
9367   for (unsigned i = 0; i < NE; ++i) {
9368     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9369     SDValue Ov =
9370         getSelect(dl, OvEltVT, Res.getValue(1),
9371                   getBoolConstant(true, dl, OvEltVT, ResVT),
9372                   getConstant(0, dl, OvEltVT));
9373 
9374     ResScalars.push_back(Res);
9375     OvScalars.push_back(Ov);
9376   }
9377 
9378   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9379   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9380 
9381   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9382   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9383   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9384                         getBuildVector(NewOvVT, dl, OvScalars));
9385 }
9386 
9387 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9388                                                   LoadSDNode *Base,
9389                                                   unsigned Bytes,
9390                                                   int Dist) const {
9391   if (LD->isVolatile() || Base->isVolatile())
9392     return false;
9393   // TODO: probably too restrictive for atomics, revisit
9394   if (!LD->isSimple())
9395     return false;
9396   if (LD->isIndexed() || Base->isIndexed())
9397     return false;
9398   if (LD->getChain() != Base->getChain())
9399     return false;
9400   EVT VT = LD->getValueType(0);
9401   if (VT.getSizeInBits() / 8 != Bytes)
9402     return false;
9403 
9404   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9405   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9406 
9407   int64_t Offset = 0;
9408   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9409     return (Dist * Bytes == Offset);
9410   return false;
9411 }
9412 
9413 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9414 /// it cannot be inferred.
9415 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9416   // If this is a GlobalAddress + cst, return the alignment.
9417   const GlobalValue *GV = nullptr;
9418   int64_t GVOffset = 0;
9419   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9420     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9421     KnownBits Known(PtrWidth);
9422     llvm::computeKnownBits(GV, Known, getDataLayout());
9423     unsigned AlignBits = Known.countMinTrailingZeros();
9424     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9425     if (Align)
9426       return MinAlign(Align, GVOffset);
9427   }
9428 
9429   // If this is a direct reference to a stack slot, use information about the
9430   // stack slot's alignment.
9431   int FrameIdx = INT_MIN;
9432   int64_t FrameOffset = 0;
9433   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9434     FrameIdx = FI->getIndex();
9435   } else if (isBaseWithConstantOffset(Ptr) &&
9436              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9437     // Handle FI+Cst
9438     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9439     FrameOffset = Ptr.getConstantOperandVal(1);
9440   }
9441 
9442   if (FrameIdx != INT_MIN) {
9443     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9444     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9445                                     FrameOffset);
9446     return FIInfoAlign;
9447   }
9448 
9449   return 0;
9450 }
9451 
9452 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9453 /// which is split (or expanded) into two not necessarily identical pieces.
9454 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9455   // Currently all types are split in half.
9456   EVT LoVT, HiVT;
9457   if (!VT.isVector())
9458     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9459   else
9460     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9461 
9462   return std::make_pair(LoVT, HiVT);
9463 }
9464 
9465 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9466 /// low/high part.
9467 std::pair<SDValue, SDValue>
9468 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9469                           const EVT &HiVT) {
9470   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9471          N.getValueType().getVectorNumElements() &&
9472          "More vector elements requested than available!");
9473   SDValue Lo, Hi;
9474   Lo =
9475       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9476   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9477                getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
9478   return std::make_pair(Lo, Hi);
9479 }
9480 
9481 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9482 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9483   EVT VT = N.getValueType();
9484   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9485                                 NextPowerOf2(VT.getVectorNumElements()));
9486   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9487                  getVectorIdxConstant(0, DL));
9488 }
9489 
9490 void SelectionDAG::ExtractVectorElements(SDValue Op,
9491                                          SmallVectorImpl<SDValue> &Args,
9492                                          unsigned Start, unsigned Count) {
9493   EVT VT = Op.getValueType();
9494   if (Count == 0)
9495     Count = VT.getVectorNumElements();
9496 
9497   EVT EltVT = VT.getVectorElementType();
9498   SDLoc SL(Op);
9499   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9500     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9501                            getVectorIdxConstant(i, SL)));
9502   }
9503 }
9504 
9505 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9506 unsigned GlobalAddressSDNode::getAddressSpace() const {
9507   return getGlobal()->getType()->getAddressSpace();
9508 }
9509 
9510 Type *ConstantPoolSDNode::getType() const {
9511   if (isMachineConstantPoolEntry())
9512     return Val.MachineCPVal->getType();
9513   return Val.ConstVal->getType();
9514 }
9515 
9516 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9517                                         unsigned &SplatBitSize,
9518                                         bool &HasAnyUndefs,
9519                                         unsigned MinSplatBits,
9520                                         bool IsBigEndian) const {
9521   EVT VT = getValueType(0);
9522   assert(VT.isVector() && "Expected a vector type");
9523   unsigned VecWidth = VT.getSizeInBits();
9524   if (MinSplatBits > VecWidth)
9525     return false;
9526 
9527   // FIXME: The widths are based on this node's type, but build vectors can
9528   // truncate their operands.
9529   SplatValue = APInt(VecWidth, 0);
9530   SplatUndef = APInt(VecWidth, 0);
9531 
9532   // Get the bits. Bits with undefined values (when the corresponding element
9533   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9534   // in SplatValue. If any of the values are not constant, give up and return
9535   // false.
9536   unsigned int NumOps = getNumOperands();
9537   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9538   unsigned EltWidth = VT.getScalarSizeInBits();
9539 
9540   for (unsigned j = 0; j < NumOps; ++j) {
9541     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9542     SDValue OpVal = getOperand(i);
9543     unsigned BitPos = j * EltWidth;
9544 
9545     if (OpVal.isUndef())
9546       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9547     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9548       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9549     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9550       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9551     else
9552       return false;
9553   }
9554 
9555   // The build_vector is all constants or undefs. Find the smallest element
9556   // size that splats the vector.
9557   HasAnyUndefs = (SplatUndef != 0);
9558 
9559   // FIXME: This does not work for vectors with elements less than 8 bits.
9560   while (VecWidth > 8) {
9561     unsigned HalfSize = VecWidth / 2;
9562     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9563     APInt LowValue = SplatValue.trunc(HalfSize);
9564     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9565     APInt LowUndef = SplatUndef.trunc(HalfSize);
9566 
9567     // If the two halves do not match (ignoring undef bits), stop here.
9568     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9569         MinSplatBits > HalfSize)
9570       break;
9571 
9572     SplatValue = HighValue | LowValue;
9573     SplatUndef = HighUndef & LowUndef;
9574 
9575     VecWidth = HalfSize;
9576   }
9577 
9578   SplatBitSize = VecWidth;
9579   return true;
9580 }
9581 
9582 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9583                                          BitVector *UndefElements) const {
9584   if (UndefElements) {
9585     UndefElements->clear();
9586     UndefElements->resize(getNumOperands());
9587   }
9588   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9589          "Unexpected vector size");
9590   if (!DemandedElts)
9591     return SDValue();
9592   SDValue Splatted;
9593   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9594     if (!DemandedElts[i])
9595       continue;
9596     SDValue Op = getOperand(i);
9597     if (Op.isUndef()) {
9598       if (UndefElements)
9599         (*UndefElements)[i] = true;
9600     } else if (!Splatted) {
9601       Splatted = Op;
9602     } else if (Splatted != Op) {
9603       return SDValue();
9604     }
9605   }
9606 
9607   if (!Splatted) {
9608     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9609     assert(getOperand(FirstDemandedIdx).isUndef() &&
9610            "Can only have a splat without a constant for all undefs.");
9611     return getOperand(FirstDemandedIdx);
9612   }
9613 
9614   return Splatted;
9615 }
9616 
9617 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9618   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9619   return getSplatValue(DemandedElts, UndefElements);
9620 }
9621 
9622 ConstantSDNode *
9623 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9624                                         BitVector *UndefElements) const {
9625   return dyn_cast_or_null<ConstantSDNode>(
9626       getSplatValue(DemandedElts, UndefElements));
9627 }
9628 
9629 ConstantSDNode *
9630 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9631   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9632 }
9633 
9634 ConstantFPSDNode *
9635 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9636                                           BitVector *UndefElements) const {
9637   return dyn_cast_or_null<ConstantFPSDNode>(
9638       getSplatValue(DemandedElts, UndefElements));
9639 }
9640 
9641 ConstantFPSDNode *
9642 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9643   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9644 }
9645 
9646 int32_t
9647 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9648                                                    uint32_t BitWidth) const {
9649   if (ConstantFPSDNode *CN =
9650           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9651     bool IsExact;
9652     APSInt IntVal(BitWidth);
9653     const APFloat &APF = CN->getValueAPF();
9654     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9655             APFloat::opOK ||
9656         !IsExact)
9657       return -1;
9658 
9659     return IntVal.exactLogBase2();
9660   }
9661   return -1;
9662 }
9663 
9664 bool BuildVectorSDNode::isConstant() const {
9665   for (const SDValue &Op : op_values()) {
9666     unsigned Opc = Op.getOpcode();
9667     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9668       return false;
9669   }
9670   return true;
9671 }
9672 
9673 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9674   // Find the first non-undef value in the shuffle mask.
9675   unsigned i, e;
9676   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9677     /* search */;
9678 
9679   // If all elements are undefined, this shuffle can be considered a splat
9680   // (although it should eventually get simplified away completely).
9681   if (i == e)
9682     return true;
9683 
9684   // Make sure all remaining elements are either undef or the same as the first
9685   // non-undef value.
9686   for (int Idx = Mask[i]; i != e; ++i)
9687     if (Mask[i] >= 0 && Mask[i] != Idx)
9688       return false;
9689   return true;
9690 }
9691 
9692 // Returns the SDNode if it is a constant integer BuildVector
9693 // or constant integer.
9694 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9695   if (isa<ConstantSDNode>(N))
9696     return N.getNode();
9697   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9698     return N.getNode();
9699   // Treat a GlobalAddress supporting constant offset folding as a
9700   // constant integer.
9701   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9702     if (GA->getOpcode() == ISD::GlobalAddress &&
9703         TLI->isOffsetFoldingLegal(GA))
9704       return GA;
9705   return nullptr;
9706 }
9707 
9708 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9709   if (isa<ConstantFPSDNode>(N))
9710     return N.getNode();
9711 
9712   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9713     return N.getNode();
9714 
9715   return nullptr;
9716 }
9717 
9718 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9719   assert(!Node->OperandList && "Node already has operands");
9720   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9721          "too many operands to fit into SDNode");
9722   SDUse *Ops = OperandRecycler.allocate(
9723       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9724 
9725   bool IsDivergent = false;
9726   for (unsigned I = 0; I != Vals.size(); ++I) {
9727     Ops[I].setUser(Node);
9728     Ops[I].setInitial(Vals[I]);
9729     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9730       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9731   }
9732   Node->NumOperands = Vals.size();
9733   Node->OperandList = Ops;
9734   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9735   if (!TLI->isSDNodeAlwaysUniform(Node))
9736     Node->SDNodeBits.IsDivergent = IsDivergent;
9737   checkForCycles(Node);
9738 }
9739 
9740 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9741                                      SmallVectorImpl<SDValue> &Vals) {
9742   size_t Limit = SDNode::getMaxNumOperands();
9743   while (Vals.size() > Limit) {
9744     unsigned SliceIdx = Vals.size() - Limit;
9745     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9746     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9747     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9748     Vals.emplace_back(NewTF);
9749   }
9750   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9751 }
9752 
9753 #ifndef NDEBUG
9754 static void checkForCyclesHelper(const SDNode *N,
9755                                  SmallPtrSetImpl<const SDNode*> &Visited,
9756                                  SmallPtrSetImpl<const SDNode*> &Checked,
9757                                  const llvm::SelectionDAG *DAG) {
9758   // If this node has already been checked, don't check it again.
9759   if (Checked.count(N))
9760     return;
9761 
9762   // If a node has already been visited on this depth-first walk, reject it as
9763   // a cycle.
9764   if (!Visited.insert(N).second) {
9765     errs() << "Detected cycle in SelectionDAG\n";
9766     dbgs() << "Offending node:\n";
9767     N->dumprFull(DAG); dbgs() << "\n";
9768     abort();
9769   }
9770 
9771   for (const SDValue &Op : N->op_values())
9772     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9773 
9774   Checked.insert(N);
9775   Visited.erase(N);
9776 }
9777 #endif
9778 
9779 void llvm::checkForCycles(const llvm::SDNode *N,
9780                           const llvm::SelectionDAG *DAG,
9781                           bool force) {
9782 #ifndef NDEBUG
9783   bool check = force;
9784 #ifdef EXPENSIVE_CHECKS
9785   check = true;
9786 #endif  // EXPENSIVE_CHECKS
9787   if (check) {
9788     assert(N && "Checking nonexistent SDNode");
9789     SmallPtrSet<const SDNode*, 32> visited;
9790     SmallPtrSet<const SDNode*, 32> checked;
9791     checkForCyclesHelper(N, visited, checked, DAG);
9792   }
9793 #endif  // !NDEBUG
9794 }
9795 
9796 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9797   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9798 }
9799