1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/CodeGen/ISDOpcodes.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/RuntimeLibcalls.h"
35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CodeGen.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/KnownBits.h"
59 #include "llvm/Support/MachineValueType.h"
60 #include "llvm/Support/ManagedStatic.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/Mutex.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <cstdlib>
70 #include <limits>
71 #include <set>
72 #include <string>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 
78 /// makeVTList - Return an instance of the SDVTList struct initialized with the
79 /// specified members.
80 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
81   SDVTList Res = {VTs, NumVTs};
82   return Res;
83 }
84 
85 // Default null implementations of the callbacks.
86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
88 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
89 
90 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
91 
92 #define DEBUG_TYPE "selectiondag"
93 
94 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
95        cl::Hidden, cl::init(true),
96        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
97 
98 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
99        cl::desc("Number limit for gluing ld/st of memcpy."),
100        cl::Hidden, cl::init(0));
101 
102 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
103   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
104 }
105 
106 //===----------------------------------------------------------------------===//
107 //                              ConstantFPSDNode Class
108 //===----------------------------------------------------------------------===//
109 
110 /// isExactlyValue - We don't rely on operator== working on double values, as
111 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
112 /// As such, this method can be used to do an exact bit-for-bit comparison of
113 /// two floating point values.
114 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
115   return getValueAPF().bitwiseIsEqual(V);
116 }
117 
118 bool ConstantFPSDNode::isValueValidForType(EVT VT,
119                                            const APFloat& Val) {
120   assert(VT.isFloatingPoint() && "Can only convert between FP types");
121 
122   // convert modifies in place, so make a copy.
123   APFloat Val2 = APFloat(Val);
124   bool losesInfo;
125   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
126                       APFloat::rmNearestTiesToEven,
127                       &losesInfo);
128   return !losesInfo;
129 }
130 
131 //===----------------------------------------------------------------------===//
132 //                              ISD Namespace
133 //===----------------------------------------------------------------------===//
134 
135 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
136   auto *BV = dyn_cast<BuildVectorSDNode>(N);
137   if (!BV)
138     return false;
139 
140   APInt SplatUndef;
141   unsigned SplatBitSize;
142   bool HasUndefs;
143   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
144   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
145                              EltSize) &&
146          EltSize == SplatBitSize;
147 }
148 
149 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
150 // specializations of the more general isConstantSplatVector()?
151 
152 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
153   // Look through a bit convert.
154   while (N->getOpcode() == ISD::BITCAST)
155     N = N->getOperand(0).getNode();
156 
157   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158 
159   unsigned i = 0, e = N->getNumOperands();
160 
161   // Skip over all of the undef values.
162   while (i != e && N->getOperand(i).isUndef())
163     ++i;
164 
165   // Do not accept an all-undef vector.
166   if (i == e) return false;
167 
168   // Do not accept build_vectors that aren't all constants or which have non-~0
169   // elements. We have to be a bit careful here, as the type of the constant
170   // may not be the same as the type of the vector elements due to type
171   // legalization (the elements are promoted to a legal type for the target and
172   // a vector of a type may be legal when the base element type is not).
173   // We only want to check enough bits to cover the vector elements, because
174   // we care if the resultant vector is all ones, not whether the individual
175   // constants are.
176   SDValue NotZero = N->getOperand(i);
177   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
178   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
179     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
180       return false;
181   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
182     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
183       return false;
184   } else
185     return false;
186 
187   // Okay, we have at least one ~0 value, check to see if the rest match or are
188   // undefs. Even with the above element type twiddling, this should be OK, as
189   // the same type legalization should have applied to all the elements.
190   for (++i; i != e; ++i)
191     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
192       return false;
193   return true;
194 }
195 
196 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
197   // Look through a bit convert.
198   while (N->getOpcode() == ISD::BITCAST)
199     N = N->getOperand(0).getNode();
200 
201   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
202 
203   bool IsAllUndef = true;
204   for (const SDValue &Op : N->op_values()) {
205     if (Op.isUndef())
206       continue;
207     IsAllUndef = false;
208     // Do not accept build_vectors that aren't all constants or which have non-0
209     // elements. We have to be a bit careful here, as the type of the constant
210     // may not be the same as the type of the vector elements due to type
211     // legalization (the elements are promoted to a legal type for the target
212     // and a vector of a type may be legal when the base element type is not).
213     // We only want to check enough bits to cover the vector elements, because
214     // we care if the resultant vector is all zeros, not whether the individual
215     // constants are.
216     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
217     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
218       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
219         return false;
220     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
221       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
222         return false;
223     } else
224       return false;
225   }
226 
227   // Do not accept an all-undef vector.
228   if (IsAllUndef)
229     return false;
230   return true;
231 }
232 
233 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
234   if (N->getOpcode() != ISD::BUILD_VECTOR)
235     return false;
236 
237   for (const SDValue &Op : N->op_values()) {
238     if (Op.isUndef())
239       continue;
240     if (!isa<ConstantSDNode>(Op))
241       return false;
242   }
243   return true;
244 }
245 
246 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
247   if (N->getOpcode() != ISD::BUILD_VECTOR)
248     return false;
249 
250   for (const SDValue &Op : N->op_values()) {
251     if (Op.isUndef())
252       continue;
253     if (!isa<ConstantFPSDNode>(Op))
254       return false;
255   }
256   return true;
257 }
258 
259 bool ISD::allOperandsUndef(const SDNode *N) {
260   // Return false if the node has no operands.
261   // This is "logically inconsistent" with the definition of "all" but
262   // is probably the desired behavior.
263   if (N->getNumOperands() == 0)
264     return false;
265   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
266 }
267 
268 bool ISD::matchUnaryPredicate(SDValue Op,
269                               std::function<bool(ConstantSDNode *)> Match,
270                               bool AllowUndefs) {
271   // FIXME: Add support for scalar UNDEF cases?
272   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
273     return Match(Cst);
274 
275   // FIXME: Add support for vector UNDEF cases?
276   if (ISD::BUILD_VECTOR != Op.getOpcode())
277     return false;
278 
279   EVT SVT = Op.getValueType().getScalarType();
280   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
281     if (AllowUndefs && Op.getOperand(i).isUndef()) {
282       if (!Match(nullptr))
283         return false;
284       continue;
285     }
286 
287     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
288     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
289       return false;
290   }
291   return true;
292 }
293 
294 bool ISD::matchBinaryPredicate(
295     SDValue LHS, SDValue RHS,
296     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
297     bool AllowUndefs, bool AllowTypeMismatch) {
298   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
299     return false;
300 
301   // TODO: Add support for scalar UNDEF cases?
302   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
303     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
304       return Match(LHSCst, RHSCst);
305 
306   // TODO: Add support for vector UNDEF cases?
307   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
308       ISD::BUILD_VECTOR != RHS.getOpcode())
309     return false;
310 
311   EVT SVT = LHS.getValueType().getScalarType();
312   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
313     SDValue LHSOp = LHS.getOperand(i);
314     SDValue RHSOp = RHS.getOperand(i);
315     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
316     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
317     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
318     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
319     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
320       return false;
321     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
322                                LHSOp.getValueType() != RHSOp.getValueType()))
323       return false;
324     if (!Match(LHSCst, RHSCst))
325       return false;
326   }
327   return true;
328 }
329 
330 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
331   switch (ExtType) {
332   case ISD::EXTLOAD:
333     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
334   case ISD::SEXTLOAD:
335     return ISD::SIGN_EXTEND;
336   case ISD::ZEXTLOAD:
337     return ISD::ZERO_EXTEND;
338   default:
339     break;
340   }
341 
342   llvm_unreachable("Invalid LoadExtType");
343 }
344 
345 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
346   // To perform this operation, we just need to swap the L and G bits of the
347   // operation.
348   unsigned OldL = (Operation >> 2) & 1;
349   unsigned OldG = (Operation >> 1) & 1;
350   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
351                        (OldL << 1) |       // New G bit
352                        (OldG << 2));       // New L bit.
353 }
354 
355 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
356   unsigned Operation = Op;
357   if (isInteger)
358     Operation ^= 7;   // Flip L, G, E bits, but not U.
359   else
360     Operation ^= 15;  // Flip all of the condition bits.
361 
362   if (Operation > ISD::SETTRUE2)
363     Operation &= ~8;  // Don't let N and U bits get set.
364 
365   return ISD::CondCode(Operation);
366 }
367 
368 /// For an integer comparison, return 1 if the comparison is a signed operation
369 /// and 2 if the result is an unsigned comparison. Return zero if the operation
370 /// does not depend on the sign of the input (setne and seteq).
371 static int isSignedOp(ISD::CondCode Opcode) {
372   switch (Opcode) {
373   default: llvm_unreachable("Illegal integer setcc operation!");
374   case ISD::SETEQ:
375   case ISD::SETNE: return 0;
376   case ISD::SETLT:
377   case ISD::SETLE:
378   case ISD::SETGT:
379   case ISD::SETGE: return 1;
380   case ISD::SETULT:
381   case ISD::SETULE:
382   case ISD::SETUGT:
383   case ISD::SETUGE: return 2;
384   }
385 }
386 
387 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
388                                        bool IsInteger) {
389   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
390     // Cannot fold a signed integer setcc with an unsigned integer setcc.
391     return ISD::SETCC_INVALID;
392 
393   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
394 
395   // If the N and U bits get set, then the resultant comparison DOES suddenly
396   // care about orderedness, and it is true when ordered.
397   if (Op > ISD::SETTRUE2)
398     Op &= ~16;     // Clear the U bit if the N bit is set.
399 
400   // Canonicalize illegal integer setcc's.
401   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
402     Op = ISD::SETNE;
403 
404   return ISD::CondCode(Op);
405 }
406 
407 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
408                                         bool IsInteger) {
409   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
410     // Cannot fold a signed setcc with an unsigned setcc.
411     return ISD::SETCC_INVALID;
412 
413   // Combine all of the condition bits.
414   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
415 
416   // Canonicalize illegal integer setcc's.
417   if (IsInteger) {
418     switch (Result) {
419     default: break;
420     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
421     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
422     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
423     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
424     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
425     }
426   }
427 
428   return Result;
429 }
430 
431 //===----------------------------------------------------------------------===//
432 //                           SDNode Profile Support
433 //===----------------------------------------------------------------------===//
434 
435 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
436 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
437   ID.AddInteger(OpC);
438 }
439 
440 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
441 /// solely with their pointer.
442 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
443   ID.AddPointer(VTList.VTs);
444 }
445 
446 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
447 static void AddNodeIDOperands(FoldingSetNodeID &ID,
448                               ArrayRef<SDValue> Ops) {
449   for (auto& Op : Ops) {
450     ID.AddPointer(Op.getNode());
451     ID.AddInteger(Op.getResNo());
452   }
453 }
454 
455 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
456 static void AddNodeIDOperands(FoldingSetNodeID &ID,
457                               ArrayRef<SDUse> Ops) {
458   for (auto& Op : Ops) {
459     ID.AddPointer(Op.getNode());
460     ID.AddInteger(Op.getResNo());
461   }
462 }
463 
464 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
465                           SDVTList VTList, ArrayRef<SDValue> OpList) {
466   AddNodeIDOpcode(ID, OpC);
467   AddNodeIDValueTypes(ID, VTList);
468   AddNodeIDOperands(ID, OpList);
469 }
470 
471 /// If this is an SDNode with special info, add this info to the NodeID data.
472 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
473   switch (N->getOpcode()) {
474   case ISD::TargetExternalSymbol:
475   case ISD::ExternalSymbol:
476   case ISD::MCSymbol:
477     llvm_unreachable("Should only be used on nodes with operands");
478   default: break;  // Normal nodes don't need extra info.
479   case ISD::TargetConstant:
480   case ISD::Constant: {
481     const ConstantSDNode *C = cast<ConstantSDNode>(N);
482     ID.AddPointer(C->getConstantIntValue());
483     ID.AddBoolean(C->isOpaque());
484     break;
485   }
486   case ISD::TargetConstantFP:
487   case ISD::ConstantFP:
488     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
489     break;
490   case ISD::TargetGlobalAddress:
491   case ISD::GlobalAddress:
492   case ISD::TargetGlobalTLSAddress:
493   case ISD::GlobalTLSAddress: {
494     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
495     ID.AddPointer(GA->getGlobal());
496     ID.AddInteger(GA->getOffset());
497     ID.AddInteger(GA->getTargetFlags());
498     break;
499   }
500   case ISD::BasicBlock:
501     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
502     break;
503   case ISD::Register:
504     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
505     break;
506   case ISD::RegisterMask:
507     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
508     break;
509   case ISD::SRCVALUE:
510     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
511     break;
512   case ISD::FrameIndex:
513   case ISD::TargetFrameIndex:
514     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
515     break;
516   case ISD::LIFETIME_START:
517   case ISD::LIFETIME_END:
518     if (cast<LifetimeSDNode>(N)->hasOffset()) {
519       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
520       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
521     }
522     break;
523   case ISD::JumpTable:
524   case ISD::TargetJumpTable:
525     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
526     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
527     break;
528   case ISD::ConstantPool:
529   case ISD::TargetConstantPool: {
530     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
531     ID.AddInteger(CP->getAlignment());
532     ID.AddInteger(CP->getOffset());
533     if (CP->isMachineConstantPoolEntry())
534       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
535     else
536       ID.AddPointer(CP->getConstVal());
537     ID.AddInteger(CP->getTargetFlags());
538     break;
539   }
540   case ISD::TargetIndex: {
541     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
542     ID.AddInteger(TI->getIndex());
543     ID.AddInteger(TI->getOffset());
544     ID.AddInteger(TI->getTargetFlags());
545     break;
546   }
547   case ISD::LOAD: {
548     const LoadSDNode *LD = cast<LoadSDNode>(N);
549     ID.AddInteger(LD->getMemoryVT().getRawBits());
550     ID.AddInteger(LD->getRawSubclassData());
551     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
552     break;
553   }
554   case ISD::STORE: {
555     const StoreSDNode *ST = cast<StoreSDNode>(N);
556     ID.AddInteger(ST->getMemoryVT().getRawBits());
557     ID.AddInteger(ST->getRawSubclassData());
558     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
559     break;
560   }
561   case ISD::MLOAD: {
562     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
563     ID.AddInteger(MLD->getMemoryVT().getRawBits());
564     ID.AddInteger(MLD->getRawSubclassData());
565     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
566     break;
567   }
568   case ISD::MSTORE: {
569     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
570     ID.AddInteger(MST->getMemoryVT().getRawBits());
571     ID.AddInteger(MST->getRawSubclassData());
572     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
573     break;
574   }
575   case ISD::MGATHER: {
576     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
577     ID.AddInteger(MG->getMemoryVT().getRawBits());
578     ID.AddInteger(MG->getRawSubclassData());
579     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
580     break;
581   }
582   case ISD::MSCATTER: {
583     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
584     ID.AddInteger(MS->getMemoryVT().getRawBits());
585     ID.AddInteger(MS->getRawSubclassData());
586     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
587     break;
588   }
589   case ISD::ATOMIC_CMP_SWAP:
590   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
591   case ISD::ATOMIC_SWAP:
592   case ISD::ATOMIC_LOAD_ADD:
593   case ISD::ATOMIC_LOAD_SUB:
594   case ISD::ATOMIC_LOAD_AND:
595   case ISD::ATOMIC_LOAD_CLR:
596   case ISD::ATOMIC_LOAD_OR:
597   case ISD::ATOMIC_LOAD_XOR:
598   case ISD::ATOMIC_LOAD_NAND:
599   case ISD::ATOMIC_LOAD_MIN:
600   case ISD::ATOMIC_LOAD_MAX:
601   case ISD::ATOMIC_LOAD_UMIN:
602   case ISD::ATOMIC_LOAD_UMAX:
603   case ISD::ATOMIC_LOAD:
604   case ISD::ATOMIC_STORE: {
605     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
606     ID.AddInteger(AT->getMemoryVT().getRawBits());
607     ID.AddInteger(AT->getRawSubclassData());
608     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
609     break;
610   }
611   case ISD::PREFETCH: {
612     const MemSDNode *PF = cast<MemSDNode>(N);
613     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
614     break;
615   }
616   case ISD::VECTOR_SHUFFLE: {
617     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
618     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
619          i != e; ++i)
620       ID.AddInteger(SVN->getMaskElt(i));
621     break;
622   }
623   case ISD::TargetBlockAddress:
624   case ISD::BlockAddress: {
625     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
626     ID.AddPointer(BA->getBlockAddress());
627     ID.AddInteger(BA->getOffset());
628     ID.AddInteger(BA->getTargetFlags());
629     break;
630   }
631   } // end switch (N->getOpcode())
632 
633   // Target specific memory nodes could also have address spaces to check.
634   if (N->isTargetMemoryOpcode())
635     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
636 }
637 
638 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
639 /// data.
640 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
641   AddNodeIDOpcode(ID, N->getOpcode());
642   // Add the return value info.
643   AddNodeIDValueTypes(ID, N->getVTList());
644   // Add the operand info.
645   AddNodeIDOperands(ID, N->ops());
646 
647   // Handle SDNode leafs with special info.
648   AddNodeIDCustom(ID, N);
649 }
650 
651 //===----------------------------------------------------------------------===//
652 //                              SelectionDAG Class
653 //===----------------------------------------------------------------------===//
654 
655 /// doNotCSE - Return true if CSE should not be performed for this node.
656 static bool doNotCSE(SDNode *N) {
657   if (N->getValueType(0) == MVT::Glue)
658     return true; // Never CSE anything that produces a flag.
659 
660   switch (N->getOpcode()) {
661   default: break;
662   case ISD::HANDLENODE:
663   case ISD::EH_LABEL:
664     return true;   // Never CSE these nodes.
665   }
666 
667   // Check that remaining values produced are not flags.
668   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
669     if (N->getValueType(i) == MVT::Glue)
670       return true; // Never CSE anything that produces a flag.
671 
672   return false;
673 }
674 
675 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
676 /// SelectionDAG.
677 void SelectionDAG::RemoveDeadNodes() {
678   // Create a dummy node (which is not added to allnodes), that adds a reference
679   // to the root node, preventing it from being deleted.
680   HandleSDNode Dummy(getRoot());
681 
682   SmallVector<SDNode*, 128> DeadNodes;
683 
684   // Add all obviously-dead nodes to the DeadNodes worklist.
685   for (SDNode &Node : allnodes())
686     if (Node.use_empty())
687       DeadNodes.push_back(&Node);
688 
689   RemoveDeadNodes(DeadNodes);
690 
691   // If the root changed (e.g. it was a dead load, update the root).
692   setRoot(Dummy.getValue());
693 }
694 
695 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
696 /// given list, and any nodes that become unreachable as a result.
697 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
698 
699   // Process the worklist, deleting the nodes and adding their uses to the
700   // worklist.
701   while (!DeadNodes.empty()) {
702     SDNode *N = DeadNodes.pop_back_val();
703     // Skip to next node if we've already managed to delete the node. This could
704     // happen if replacing a node causes a node previously added to the node to
705     // be deleted.
706     if (N->getOpcode() == ISD::DELETED_NODE)
707       continue;
708 
709     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
710       DUL->NodeDeleted(N, nullptr);
711 
712     // Take the node out of the appropriate CSE map.
713     RemoveNodeFromCSEMaps(N);
714 
715     // Next, brutally remove the operand list.  This is safe to do, as there are
716     // no cycles in the graph.
717     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
718       SDUse &Use = *I++;
719       SDNode *Operand = Use.getNode();
720       Use.set(SDValue());
721 
722       // Now that we removed this operand, see if there are no uses of it left.
723       if (Operand->use_empty())
724         DeadNodes.push_back(Operand);
725     }
726 
727     DeallocateNode(N);
728   }
729 }
730 
731 void SelectionDAG::RemoveDeadNode(SDNode *N){
732   SmallVector<SDNode*, 16> DeadNodes(1, N);
733 
734   // Create a dummy node that adds a reference to the root node, preventing
735   // it from being deleted.  (This matters if the root is an operand of the
736   // dead node.)
737   HandleSDNode Dummy(getRoot());
738 
739   RemoveDeadNodes(DeadNodes);
740 }
741 
742 void SelectionDAG::DeleteNode(SDNode *N) {
743   // First take this out of the appropriate CSE map.
744   RemoveNodeFromCSEMaps(N);
745 
746   // Finally, remove uses due to operands of this node, remove from the
747   // AllNodes list, and delete the node.
748   DeleteNodeNotInCSEMaps(N);
749 }
750 
751 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
752   assert(N->getIterator() != AllNodes.begin() &&
753          "Cannot delete the entry node!");
754   assert(N->use_empty() && "Cannot delete a node that is not dead!");
755 
756   // Drop all of the operands and decrement used node's use counts.
757   N->DropOperands();
758 
759   DeallocateNode(N);
760 }
761 
762 void SDDbgInfo::erase(const SDNode *Node) {
763   DbgValMapType::iterator I = DbgValMap.find(Node);
764   if (I == DbgValMap.end())
765     return;
766   for (auto &Val: I->second)
767     Val->setIsInvalidated();
768   DbgValMap.erase(I);
769 }
770 
771 void SelectionDAG::DeallocateNode(SDNode *N) {
772   // If we have operands, deallocate them.
773   removeOperands(N);
774 
775   NodeAllocator.Deallocate(AllNodes.remove(N));
776 
777   // Set the opcode to DELETED_NODE to help catch bugs when node
778   // memory is reallocated.
779   // FIXME: There are places in SDag that have grown a dependency on the opcode
780   // value in the released node.
781   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
782   N->NodeType = ISD::DELETED_NODE;
783 
784   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
785   // them and forget about that node.
786   DbgInfo->erase(N);
787 }
788 
789 #ifndef NDEBUG
790 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
791 static void VerifySDNode(SDNode *N) {
792   switch (N->getOpcode()) {
793   default:
794     break;
795   case ISD::BUILD_PAIR: {
796     EVT VT = N->getValueType(0);
797     assert(N->getNumValues() == 1 && "Too many results!");
798     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
799            "Wrong return type!");
800     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
801     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
802            "Mismatched operand types!");
803     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
804            "Wrong operand type!");
805     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
806            "Wrong return type size");
807     break;
808   }
809   case ISD::BUILD_VECTOR: {
810     assert(N->getNumValues() == 1 && "Too many results!");
811     assert(N->getValueType(0).isVector() && "Wrong return type!");
812     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
813            "Wrong number of operands!");
814     EVT EltVT = N->getValueType(0).getVectorElementType();
815     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
816       assert((I->getValueType() == EltVT ||
817              (EltVT.isInteger() && I->getValueType().isInteger() &&
818               EltVT.bitsLE(I->getValueType()))) &&
819             "Wrong operand type!");
820       assert(I->getValueType() == N->getOperand(0).getValueType() &&
821              "Operands must all have the same type");
822     }
823     break;
824   }
825   }
826 }
827 #endif // NDEBUG
828 
829 /// Insert a newly allocated node into the DAG.
830 ///
831 /// Handles insertion into the all nodes list and CSE map, as well as
832 /// verification and other common operations when a new node is allocated.
833 void SelectionDAG::InsertNode(SDNode *N) {
834   AllNodes.push_back(N);
835 #ifndef NDEBUG
836   N->PersistentId = NextPersistentId++;
837   VerifySDNode(N);
838 #endif
839   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
840     DUL->NodeInserted(N);
841 }
842 
843 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
844 /// correspond to it.  This is useful when we're about to delete or repurpose
845 /// the node.  We don't want future request for structurally identical nodes
846 /// to return N anymore.
847 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
848   bool Erased = false;
849   switch (N->getOpcode()) {
850   case ISD::HANDLENODE: return false;  // noop.
851   case ISD::CONDCODE:
852     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
853            "Cond code doesn't exist!");
854     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
855     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
856     break;
857   case ISD::ExternalSymbol:
858     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
859     break;
860   case ISD::TargetExternalSymbol: {
861     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
862     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
863         ESN->getSymbol(), ESN->getTargetFlags()));
864     break;
865   }
866   case ISD::MCSymbol: {
867     auto *MCSN = cast<MCSymbolSDNode>(N);
868     Erased = MCSymbols.erase(MCSN->getMCSymbol());
869     break;
870   }
871   case ISD::VALUETYPE: {
872     EVT VT = cast<VTSDNode>(N)->getVT();
873     if (VT.isExtended()) {
874       Erased = ExtendedValueTypeNodes.erase(VT);
875     } else {
876       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
877       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
878     }
879     break;
880   }
881   default:
882     // Remove it from the CSE Map.
883     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
884     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
885     Erased = CSEMap.RemoveNode(N);
886     break;
887   }
888 #ifndef NDEBUG
889   // Verify that the node was actually in one of the CSE maps, unless it has a
890   // flag result (which cannot be CSE'd) or is one of the special cases that are
891   // not subject to CSE.
892   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
893       !N->isMachineOpcode() && !doNotCSE(N)) {
894     N->dump(this);
895     dbgs() << "\n";
896     llvm_unreachable("Node is not in map!");
897   }
898 #endif
899   return Erased;
900 }
901 
902 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
903 /// maps and modified in place. Add it back to the CSE maps, unless an identical
904 /// node already exists, in which case transfer all its users to the existing
905 /// node. This transfer can potentially trigger recursive merging.
906 void
907 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
908   // For node types that aren't CSE'd, just act as if no identical node
909   // already exists.
910   if (!doNotCSE(N)) {
911     SDNode *Existing = CSEMap.GetOrInsertNode(N);
912     if (Existing != N) {
913       // If there was already an existing matching node, use ReplaceAllUsesWith
914       // to replace the dead one with the existing one.  This can cause
915       // recursive merging of other unrelated nodes down the line.
916       ReplaceAllUsesWith(N, Existing);
917 
918       // N is now dead. Inform the listeners and delete it.
919       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
920         DUL->NodeDeleted(N, Existing);
921       DeleteNodeNotInCSEMaps(N);
922       return;
923     }
924   }
925 
926   // If the node doesn't already exist, we updated it.  Inform listeners.
927   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
928     DUL->NodeUpdated(N);
929 }
930 
931 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
932 /// were replaced with those specified.  If this node is never memoized,
933 /// return null, otherwise return a pointer to the slot it would take.  If a
934 /// node already exists with these operands, the slot will be non-null.
935 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
936                                            void *&InsertPos) {
937   if (doNotCSE(N))
938     return nullptr;
939 
940   SDValue Ops[] = { Op };
941   FoldingSetNodeID ID;
942   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
943   AddNodeIDCustom(ID, N);
944   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
945   if (Node)
946     Node->intersectFlagsWith(N->getFlags());
947   return Node;
948 }
949 
950 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
951 /// were replaced with those specified.  If this node is never memoized,
952 /// return null, otherwise return a pointer to the slot it would take.  If a
953 /// node already exists with these operands, the slot will be non-null.
954 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
955                                            SDValue Op1, SDValue Op2,
956                                            void *&InsertPos) {
957   if (doNotCSE(N))
958     return nullptr;
959 
960   SDValue Ops[] = { Op1, Op2 };
961   FoldingSetNodeID ID;
962   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
963   AddNodeIDCustom(ID, N);
964   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
965   if (Node)
966     Node->intersectFlagsWith(N->getFlags());
967   return Node;
968 }
969 
970 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
971 /// were replaced with those specified.  If this node is never memoized,
972 /// return null, otherwise return a pointer to the slot it would take.  If a
973 /// node already exists with these operands, the slot will be non-null.
974 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
975                                            void *&InsertPos) {
976   if (doNotCSE(N))
977     return nullptr;
978 
979   FoldingSetNodeID ID;
980   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
981   AddNodeIDCustom(ID, N);
982   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
983   if (Node)
984     Node->intersectFlagsWith(N->getFlags());
985   return Node;
986 }
987 
988 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
989   Type *Ty = VT == MVT::iPTR ?
990                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
991                    VT.getTypeForEVT(*getContext());
992 
993   return getDataLayout().getABITypeAlignment(Ty);
994 }
995 
996 // EntryNode could meaningfully have debug info if we can find it...
997 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
998     : TM(tm), OptLevel(OL),
999       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1000       Root(getEntryNode()) {
1001   InsertNode(&EntryNode);
1002   DbgInfo = new SDDbgInfo();
1003 }
1004 
1005 void SelectionDAG::init(MachineFunction &NewMF,
1006                         OptimizationRemarkEmitter &NewORE,
1007                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1008                         LegacyDivergenceAnalysis * Divergence) {
1009   MF = &NewMF;
1010   SDAGISelPass = PassPtr;
1011   ORE = &NewORE;
1012   TLI = getSubtarget().getTargetLowering();
1013   TSI = getSubtarget().getSelectionDAGInfo();
1014   LibInfo = LibraryInfo;
1015   Context = &MF->getFunction().getContext();
1016   DA = Divergence;
1017 }
1018 
1019 SelectionDAG::~SelectionDAG() {
1020   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1021   allnodes_clear();
1022   OperandRecycler.clear(OperandAllocator);
1023   delete DbgInfo;
1024 }
1025 
1026 void SelectionDAG::allnodes_clear() {
1027   assert(&*AllNodes.begin() == &EntryNode);
1028   AllNodes.remove(AllNodes.begin());
1029   while (!AllNodes.empty())
1030     DeallocateNode(&AllNodes.front());
1031 #ifndef NDEBUG
1032   NextPersistentId = 0;
1033 #endif
1034 }
1035 
1036 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1037                                           void *&InsertPos) {
1038   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1039   if (N) {
1040     switch (N->getOpcode()) {
1041     default: break;
1042     case ISD::Constant:
1043     case ISD::ConstantFP:
1044       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1045                        "debug location.  Use another overload.");
1046     }
1047   }
1048   return N;
1049 }
1050 
1051 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1052                                           const SDLoc &DL, void *&InsertPos) {
1053   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1054   if (N) {
1055     switch (N->getOpcode()) {
1056     case ISD::Constant:
1057     case ISD::ConstantFP:
1058       // Erase debug location from the node if the node is used at several
1059       // different places. Do not propagate one location to all uses as it
1060       // will cause a worse single stepping debugging experience.
1061       if (N->getDebugLoc() != DL.getDebugLoc())
1062         N->setDebugLoc(DebugLoc());
1063       break;
1064     default:
1065       // When the node's point of use is located earlier in the instruction
1066       // sequence than its prior point of use, update its debug info to the
1067       // earlier location.
1068       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1069         N->setDebugLoc(DL.getDebugLoc());
1070       break;
1071     }
1072   }
1073   return N;
1074 }
1075 
1076 void SelectionDAG::clear() {
1077   allnodes_clear();
1078   OperandRecycler.clear(OperandAllocator);
1079   OperandAllocator.Reset();
1080   CSEMap.clear();
1081 
1082   ExtendedValueTypeNodes.clear();
1083   ExternalSymbols.clear();
1084   TargetExternalSymbols.clear();
1085   MCSymbols.clear();
1086   SDCallSiteDbgInfo.clear();
1087   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1088             static_cast<CondCodeSDNode*>(nullptr));
1089   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1090             static_cast<SDNode*>(nullptr));
1091 
1092   EntryNode.UseList = nullptr;
1093   InsertNode(&EntryNode);
1094   Root = getEntryNode();
1095   DbgInfo->clear();
1096 }
1097 
1098 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1099   return VT.bitsGT(Op.getValueType())
1100              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1101              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1102 }
1103 
1104 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1105   return VT.bitsGT(Op.getValueType()) ?
1106     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1107     getNode(ISD::TRUNCATE, DL, VT, Op);
1108 }
1109 
1110 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1111   return VT.bitsGT(Op.getValueType()) ?
1112     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1113     getNode(ISD::TRUNCATE, DL, VT, Op);
1114 }
1115 
1116 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1117   return VT.bitsGT(Op.getValueType()) ?
1118     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1119     getNode(ISD::TRUNCATE, DL, VT, Op);
1120 }
1121 
1122 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1123                                         EVT OpVT) {
1124   if (VT.bitsLE(Op.getValueType()))
1125     return getNode(ISD::TRUNCATE, SL, VT, Op);
1126 
1127   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1128   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1129 }
1130 
1131 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1132   assert(!VT.isVector() &&
1133          "getZeroExtendInReg should use the vector element type instead of "
1134          "the vector type!");
1135   if (Op.getValueType().getScalarType() == VT) return Op;
1136   unsigned BitWidth = Op.getScalarValueSizeInBits();
1137   APInt Imm = APInt::getLowBitsSet(BitWidth,
1138                                    VT.getSizeInBits());
1139   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1140                  getConstant(Imm, DL, Op.getValueType()));
1141 }
1142 
1143 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1144   // Only unsigned pointer semantics are supported right now. In the future this
1145   // might delegate to TLI to check pointer signedness.
1146   return getZExtOrTrunc(Op, DL, VT);
1147 }
1148 
1149 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1150   // Only unsigned pointer semantics are supported right now. In the future this
1151   // might delegate to TLI to check pointer signedness.
1152   return getZeroExtendInReg(Op, DL, VT);
1153 }
1154 
1155 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1156 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1157   EVT EltVT = VT.getScalarType();
1158   SDValue NegOne =
1159     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1160   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1161 }
1162 
1163 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1164   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1165   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1166 }
1167 
1168 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1169                                       EVT OpVT) {
1170   if (!V)
1171     return getConstant(0, DL, VT);
1172 
1173   switch (TLI->getBooleanContents(OpVT)) {
1174   case TargetLowering::ZeroOrOneBooleanContent:
1175   case TargetLowering::UndefinedBooleanContent:
1176     return getConstant(1, DL, VT);
1177   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1178     return getAllOnesConstant(DL, VT);
1179   }
1180   llvm_unreachable("Unexpected boolean content enum!");
1181 }
1182 
1183 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1184                                   bool isT, bool isO) {
1185   EVT EltVT = VT.getScalarType();
1186   assert((EltVT.getSizeInBits() >= 64 ||
1187          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1188          "getConstant with a uint64_t value that doesn't fit in the type!");
1189   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1190 }
1191 
1192 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1193                                   bool isT, bool isO) {
1194   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1195 }
1196 
1197 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1198                                   EVT VT, bool isT, bool isO) {
1199   assert(VT.isInteger() && "Cannot create FP integer constant!");
1200 
1201   EVT EltVT = VT.getScalarType();
1202   const ConstantInt *Elt = &Val;
1203 
1204   // In some cases the vector type is legal but the element type is illegal and
1205   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1206   // inserted value (the type does not need to match the vector element type).
1207   // Any extra bits introduced will be truncated away.
1208   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1209       TargetLowering::TypePromoteInteger) {
1210    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1211    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1212    Elt = ConstantInt::get(*getContext(), NewVal);
1213   }
1214   // In other cases the element type is illegal and needs to be expanded, for
1215   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1216   // the value into n parts and use a vector type with n-times the elements.
1217   // Then bitcast to the type requested.
1218   // Legalizing constants too early makes the DAGCombiner's job harder so we
1219   // only legalize if the DAG tells us we must produce legal types.
1220   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1221            TLI->getTypeAction(*getContext(), EltVT) ==
1222            TargetLowering::TypeExpandInteger) {
1223     const APInt &NewVal = Elt->getValue();
1224     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1225     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1226     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1227     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1228 
1229     // Check the temporary vector is the correct size. If this fails then
1230     // getTypeToTransformTo() probably returned a type whose size (in bits)
1231     // isn't a power-of-2 factor of the requested type size.
1232     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1233 
1234     SmallVector<SDValue, 2> EltParts;
1235     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1236       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1237                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1238                                      ViaEltVT, isT, isO));
1239     }
1240 
1241     // EltParts is currently in little endian order. If we actually want
1242     // big-endian order then reverse it now.
1243     if (getDataLayout().isBigEndian())
1244       std::reverse(EltParts.begin(), EltParts.end());
1245 
1246     // The elements must be reversed when the element order is different
1247     // to the endianness of the elements (because the BITCAST is itself a
1248     // vector shuffle in this situation). However, we do not need any code to
1249     // perform this reversal because getConstant() is producing a vector
1250     // splat.
1251     // This situation occurs in MIPS MSA.
1252 
1253     SmallVector<SDValue, 8> Ops;
1254     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1255       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1256 
1257     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1258     return V;
1259   }
1260 
1261   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1262          "APInt size does not match type size!");
1263   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1264   FoldingSetNodeID ID;
1265   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1266   ID.AddPointer(Elt);
1267   ID.AddBoolean(isO);
1268   void *IP = nullptr;
1269   SDNode *N = nullptr;
1270   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1271     if (!VT.isVector())
1272       return SDValue(N, 0);
1273 
1274   if (!N) {
1275     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1276     CSEMap.InsertNode(N, IP);
1277     InsertNode(N);
1278     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1279   }
1280 
1281   SDValue Result(N, 0);
1282   if (VT.isVector())
1283     Result = getSplatBuildVector(VT, DL, Result);
1284 
1285   return Result;
1286 }
1287 
1288 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1289                                         bool isTarget) {
1290   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1291 }
1292 
1293 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1294                                              const SDLoc &DL, bool LegalTypes) {
1295   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1296   return getConstant(Val, DL, ShiftVT);
1297 }
1298 
1299 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1300                                     bool isTarget) {
1301   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1302 }
1303 
1304 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1305                                     EVT VT, bool isTarget) {
1306   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1307 
1308   EVT EltVT = VT.getScalarType();
1309 
1310   // Do the map lookup using the actual bit pattern for the floating point
1311   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1312   // we don't have issues with SNANs.
1313   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1314   FoldingSetNodeID ID;
1315   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1316   ID.AddPointer(&V);
1317   void *IP = nullptr;
1318   SDNode *N = nullptr;
1319   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1320     if (!VT.isVector())
1321       return SDValue(N, 0);
1322 
1323   if (!N) {
1324     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1325     CSEMap.InsertNode(N, IP);
1326     InsertNode(N);
1327   }
1328 
1329   SDValue Result(N, 0);
1330   if (VT.isVector())
1331     Result = getSplatBuildVector(VT, DL, Result);
1332   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1333   return Result;
1334 }
1335 
1336 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1337                                     bool isTarget) {
1338   EVT EltVT = VT.getScalarType();
1339   if (EltVT == MVT::f32)
1340     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1341   else if (EltVT == MVT::f64)
1342     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1343   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1344            EltVT == MVT::f16) {
1345     bool Ignored;
1346     APFloat APF = APFloat(Val);
1347     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1348                 &Ignored);
1349     return getConstantFP(APF, DL, VT, isTarget);
1350   } else
1351     llvm_unreachable("Unsupported type in getConstantFP");
1352 }
1353 
1354 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1355                                        EVT VT, int64_t Offset, bool isTargetGA,
1356                                        unsigned TargetFlags) {
1357   assert((TargetFlags == 0 || isTargetGA) &&
1358          "Cannot set target flags on target-independent globals");
1359 
1360   // Truncate (with sign-extension) the offset value to the pointer size.
1361   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1362   if (BitWidth < 64)
1363     Offset = SignExtend64(Offset, BitWidth);
1364 
1365   unsigned Opc;
1366   if (GV->isThreadLocal())
1367     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1368   else
1369     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1370 
1371   FoldingSetNodeID ID;
1372   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1373   ID.AddPointer(GV);
1374   ID.AddInteger(Offset);
1375   ID.AddInteger(TargetFlags);
1376   void *IP = nullptr;
1377   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1378     return SDValue(E, 0);
1379 
1380   auto *N = newSDNode<GlobalAddressSDNode>(
1381       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1382   CSEMap.InsertNode(N, IP);
1383     InsertNode(N);
1384   return SDValue(N, 0);
1385 }
1386 
1387 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1388   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1389   FoldingSetNodeID ID;
1390   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1391   ID.AddInteger(FI);
1392   void *IP = nullptr;
1393   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1394     return SDValue(E, 0);
1395 
1396   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1397   CSEMap.InsertNode(N, IP);
1398   InsertNode(N);
1399   return SDValue(N, 0);
1400 }
1401 
1402 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1403                                    unsigned TargetFlags) {
1404   assert((TargetFlags == 0 || isTarget) &&
1405          "Cannot set target flags on target-independent jump tables");
1406   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1407   FoldingSetNodeID ID;
1408   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1409   ID.AddInteger(JTI);
1410   ID.AddInteger(TargetFlags);
1411   void *IP = nullptr;
1412   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1413     return SDValue(E, 0);
1414 
1415   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1416   CSEMap.InsertNode(N, IP);
1417   InsertNode(N);
1418   return SDValue(N, 0);
1419 }
1420 
1421 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1422                                       unsigned Alignment, int Offset,
1423                                       bool isTarget,
1424                                       unsigned TargetFlags) {
1425   assert((TargetFlags == 0 || isTarget) &&
1426          "Cannot set target flags on target-independent globals");
1427   if (Alignment == 0)
1428     Alignment = MF->getFunction().hasOptSize()
1429                     ? getDataLayout().getABITypeAlignment(C->getType())
1430                     : getDataLayout().getPrefTypeAlignment(C->getType());
1431   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1432   FoldingSetNodeID ID;
1433   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1434   ID.AddInteger(Alignment);
1435   ID.AddInteger(Offset);
1436   ID.AddPointer(C);
1437   ID.AddInteger(TargetFlags);
1438   void *IP = nullptr;
1439   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1440     return SDValue(E, 0);
1441 
1442   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1443                                           TargetFlags);
1444   CSEMap.InsertNode(N, IP);
1445   InsertNode(N);
1446   return SDValue(N, 0);
1447 }
1448 
1449 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1450                                       unsigned Alignment, int Offset,
1451                                       bool isTarget,
1452                                       unsigned TargetFlags) {
1453   assert((TargetFlags == 0 || isTarget) &&
1454          "Cannot set target flags on target-independent globals");
1455   if (Alignment == 0)
1456     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1457   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1458   FoldingSetNodeID ID;
1459   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1460   ID.AddInteger(Alignment);
1461   ID.AddInteger(Offset);
1462   C->addSelectionDAGCSEId(ID);
1463   ID.AddInteger(TargetFlags);
1464   void *IP = nullptr;
1465   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1466     return SDValue(E, 0);
1467 
1468   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1469                                           TargetFlags);
1470   CSEMap.InsertNode(N, IP);
1471   InsertNode(N);
1472   return SDValue(N, 0);
1473 }
1474 
1475 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1476                                      unsigned TargetFlags) {
1477   FoldingSetNodeID ID;
1478   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1479   ID.AddInteger(Index);
1480   ID.AddInteger(Offset);
1481   ID.AddInteger(TargetFlags);
1482   void *IP = nullptr;
1483   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1484     return SDValue(E, 0);
1485 
1486   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1487   CSEMap.InsertNode(N, IP);
1488   InsertNode(N);
1489   return SDValue(N, 0);
1490 }
1491 
1492 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1493   FoldingSetNodeID ID;
1494   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1495   ID.AddPointer(MBB);
1496   void *IP = nullptr;
1497   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1498     return SDValue(E, 0);
1499 
1500   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1501   CSEMap.InsertNode(N, IP);
1502   InsertNode(N);
1503   return SDValue(N, 0);
1504 }
1505 
1506 SDValue SelectionDAG::getValueType(EVT VT) {
1507   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1508       ValueTypeNodes.size())
1509     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1510 
1511   SDNode *&N = VT.isExtended() ?
1512     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1513 
1514   if (N) return SDValue(N, 0);
1515   N = newSDNode<VTSDNode>(VT);
1516   InsertNode(N);
1517   return SDValue(N, 0);
1518 }
1519 
1520 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1521   SDNode *&N = ExternalSymbols[Sym];
1522   if (N) return SDValue(N, 0);
1523   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1524   InsertNode(N);
1525   return SDValue(N, 0);
1526 }
1527 
1528 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1529   SDNode *&N = MCSymbols[Sym];
1530   if (N)
1531     return SDValue(N, 0);
1532   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1533   InsertNode(N);
1534   return SDValue(N, 0);
1535 }
1536 
1537 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1538                                               unsigned TargetFlags) {
1539   SDNode *&N =
1540       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1541   if (N) return SDValue(N, 0);
1542   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1543   InsertNode(N);
1544   return SDValue(N, 0);
1545 }
1546 
1547 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1548   if ((unsigned)Cond >= CondCodeNodes.size())
1549     CondCodeNodes.resize(Cond+1);
1550 
1551   if (!CondCodeNodes[Cond]) {
1552     auto *N = newSDNode<CondCodeSDNode>(Cond);
1553     CondCodeNodes[Cond] = N;
1554     InsertNode(N);
1555   }
1556 
1557   return SDValue(CondCodeNodes[Cond], 0);
1558 }
1559 
1560 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1561 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1562 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1563   std::swap(N1, N2);
1564   ShuffleVectorSDNode::commuteMask(M);
1565 }
1566 
1567 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1568                                        SDValue N2, ArrayRef<int> Mask) {
1569   assert(VT.getVectorNumElements() == Mask.size() &&
1570            "Must have the same number of vector elements as mask elements!");
1571   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1572          "Invalid VECTOR_SHUFFLE");
1573 
1574   // Canonicalize shuffle undef, undef -> undef
1575   if (N1.isUndef() && N2.isUndef())
1576     return getUNDEF(VT);
1577 
1578   // Validate that all indices in Mask are within the range of the elements
1579   // input to the shuffle.
1580   int NElts = Mask.size();
1581   assert(llvm::all_of(Mask,
1582                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1583          "Index out of range");
1584 
1585   // Copy the mask so we can do any needed cleanup.
1586   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1587 
1588   // Canonicalize shuffle v, v -> v, undef
1589   if (N1 == N2) {
1590     N2 = getUNDEF(VT);
1591     for (int i = 0; i != NElts; ++i)
1592       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1593   }
1594 
1595   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1596   if (N1.isUndef())
1597     commuteShuffle(N1, N2, MaskVec);
1598 
1599   if (TLI->hasVectorBlend()) {
1600     // If shuffling a splat, try to blend the splat instead. We do this here so
1601     // that even when this arises during lowering we don't have to re-handle it.
1602     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1603       BitVector UndefElements;
1604       SDValue Splat = BV->getSplatValue(&UndefElements);
1605       if (!Splat)
1606         return;
1607 
1608       for (int i = 0; i < NElts; ++i) {
1609         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1610           continue;
1611 
1612         // If this input comes from undef, mark it as such.
1613         if (UndefElements[MaskVec[i] - Offset]) {
1614           MaskVec[i] = -1;
1615           continue;
1616         }
1617 
1618         // If we can blend a non-undef lane, use that instead.
1619         if (!UndefElements[i])
1620           MaskVec[i] = i + Offset;
1621       }
1622     };
1623     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1624       BlendSplat(N1BV, 0);
1625     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1626       BlendSplat(N2BV, NElts);
1627   }
1628 
1629   // Canonicalize all index into lhs, -> shuffle lhs, undef
1630   // Canonicalize all index into rhs, -> shuffle rhs, undef
1631   bool AllLHS = true, AllRHS = true;
1632   bool N2Undef = N2.isUndef();
1633   for (int i = 0; i != NElts; ++i) {
1634     if (MaskVec[i] >= NElts) {
1635       if (N2Undef)
1636         MaskVec[i] = -1;
1637       else
1638         AllLHS = false;
1639     } else if (MaskVec[i] >= 0) {
1640       AllRHS = false;
1641     }
1642   }
1643   if (AllLHS && AllRHS)
1644     return getUNDEF(VT);
1645   if (AllLHS && !N2Undef)
1646     N2 = getUNDEF(VT);
1647   if (AllRHS) {
1648     N1 = getUNDEF(VT);
1649     commuteShuffle(N1, N2, MaskVec);
1650   }
1651   // Reset our undef status after accounting for the mask.
1652   N2Undef = N2.isUndef();
1653   // Re-check whether both sides ended up undef.
1654   if (N1.isUndef() && N2Undef)
1655     return getUNDEF(VT);
1656 
1657   // If Identity shuffle return that node.
1658   bool Identity = true, AllSame = true;
1659   for (int i = 0; i != NElts; ++i) {
1660     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1661     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1662   }
1663   if (Identity && NElts)
1664     return N1;
1665 
1666   // Shuffling a constant splat doesn't change the result.
1667   if (N2Undef) {
1668     SDValue V = N1;
1669 
1670     // Look through any bitcasts. We check that these don't change the number
1671     // (and size) of elements and just changes their types.
1672     while (V.getOpcode() == ISD::BITCAST)
1673       V = V->getOperand(0);
1674 
1675     // A splat should always show up as a build vector node.
1676     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1677       BitVector UndefElements;
1678       SDValue Splat = BV->getSplatValue(&UndefElements);
1679       // If this is a splat of an undef, shuffling it is also undef.
1680       if (Splat && Splat.isUndef())
1681         return getUNDEF(VT);
1682 
1683       bool SameNumElts =
1684           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1685 
1686       // We only have a splat which can skip shuffles if there is a splatted
1687       // value and no undef lanes rearranged by the shuffle.
1688       if (Splat && UndefElements.none()) {
1689         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1690         // number of elements match or the value splatted is a zero constant.
1691         if (SameNumElts)
1692           return N1;
1693         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1694           if (C->isNullValue())
1695             return N1;
1696       }
1697 
1698       // If the shuffle itself creates a splat, build the vector directly.
1699       if (AllSame && SameNumElts) {
1700         EVT BuildVT = BV->getValueType(0);
1701         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1702         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1703 
1704         // We may have jumped through bitcasts, so the type of the
1705         // BUILD_VECTOR may not match the type of the shuffle.
1706         if (BuildVT != VT)
1707           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1708         return NewBV;
1709       }
1710     }
1711   }
1712 
1713   FoldingSetNodeID ID;
1714   SDValue Ops[2] = { N1, N2 };
1715   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1716   for (int i = 0; i != NElts; ++i)
1717     ID.AddInteger(MaskVec[i]);
1718 
1719   void* IP = nullptr;
1720   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1721     return SDValue(E, 0);
1722 
1723   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1724   // SDNode doesn't have access to it.  This memory will be "leaked" when
1725   // the node is deallocated, but recovered when the NodeAllocator is released.
1726   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1727   llvm::copy(MaskVec, MaskAlloc);
1728 
1729   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1730                                            dl.getDebugLoc(), MaskAlloc);
1731   createOperands(N, Ops);
1732 
1733   CSEMap.InsertNode(N, IP);
1734   InsertNode(N);
1735   SDValue V = SDValue(N, 0);
1736   NewSDValueDbgMsg(V, "Creating new node: ", this);
1737   return V;
1738 }
1739 
1740 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1741   EVT VT = SV.getValueType(0);
1742   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1743   ShuffleVectorSDNode::commuteMask(MaskVec);
1744 
1745   SDValue Op0 = SV.getOperand(0);
1746   SDValue Op1 = SV.getOperand(1);
1747   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1748 }
1749 
1750 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1751   FoldingSetNodeID ID;
1752   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1753   ID.AddInteger(RegNo);
1754   void *IP = nullptr;
1755   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1756     return SDValue(E, 0);
1757 
1758   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1759   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1760   CSEMap.InsertNode(N, IP);
1761   InsertNode(N);
1762   return SDValue(N, 0);
1763 }
1764 
1765 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1766   FoldingSetNodeID ID;
1767   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1768   ID.AddPointer(RegMask);
1769   void *IP = nullptr;
1770   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1771     return SDValue(E, 0);
1772 
1773   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1774   CSEMap.InsertNode(N, IP);
1775   InsertNode(N);
1776   return SDValue(N, 0);
1777 }
1778 
1779 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1780                                  MCSymbol *Label) {
1781   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1782 }
1783 
1784 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1785                                    SDValue Root, MCSymbol *Label) {
1786   FoldingSetNodeID ID;
1787   SDValue Ops[] = { Root };
1788   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1789   ID.AddPointer(Label);
1790   void *IP = nullptr;
1791   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1792     return SDValue(E, 0);
1793 
1794   auto *N =
1795       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1796   createOperands(N, Ops);
1797 
1798   CSEMap.InsertNode(N, IP);
1799   InsertNode(N);
1800   return SDValue(N, 0);
1801 }
1802 
1803 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1804                                       int64_t Offset, bool isTarget,
1805                                       unsigned TargetFlags) {
1806   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1807 
1808   FoldingSetNodeID ID;
1809   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1810   ID.AddPointer(BA);
1811   ID.AddInteger(Offset);
1812   ID.AddInteger(TargetFlags);
1813   void *IP = nullptr;
1814   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1815     return SDValue(E, 0);
1816 
1817   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1818   CSEMap.InsertNode(N, IP);
1819   InsertNode(N);
1820   return SDValue(N, 0);
1821 }
1822 
1823 SDValue SelectionDAG::getSrcValue(const Value *V) {
1824   assert((!V || V->getType()->isPointerTy()) &&
1825          "SrcValue is not a pointer?");
1826 
1827   FoldingSetNodeID ID;
1828   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1829   ID.AddPointer(V);
1830 
1831   void *IP = nullptr;
1832   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1833     return SDValue(E, 0);
1834 
1835   auto *N = newSDNode<SrcValueSDNode>(V);
1836   CSEMap.InsertNode(N, IP);
1837   InsertNode(N);
1838   return SDValue(N, 0);
1839 }
1840 
1841 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1842   FoldingSetNodeID ID;
1843   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1844   ID.AddPointer(MD);
1845 
1846   void *IP = nullptr;
1847   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1848     return SDValue(E, 0);
1849 
1850   auto *N = newSDNode<MDNodeSDNode>(MD);
1851   CSEMap.InsertNode(N, IP);
1852   InsertNode(N);
1853   return SDValue(N, 0);
1854 }
1855 
1856 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1857   if (VT == V.getValueType())
1858     return V;
1859 
1860   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1861 }
1862 
1863 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1864                                        unsigned SrcAS, unsigned DestAS) {
1865   SDValue Ops[] = {Ptr};
1866   FoldingSetNodeID ID;
1867   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1868   ID.AddInteger(SrcAS);
1869   ID.AddInteger(DestAS);
1870 
1871   void *IP = nullptr;
1872   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1873     return SDValue(E, 0);
1874 
1875   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1876                                            VT, SrcAS, DestAS);
1877   createOperands(N, Ops);
1878 
1879   CSEMap.InsertNode(N, IP);
1880   InsertNode(N);
1881   return SDValue(N, 0);
1882 }
1883 
1884 /// getShiftAmountOperand - Return the specified value casted to
1885 /// the target's desired shift amount type.
1886 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1887   EVT OpTy = Op.getValueType();
1888   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1889   if (OpTy == ShTy || OpTy.isVector()) return Op;
1890 
1891   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1892 }
1893 
1894 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1895   SDLoc dl(Node);
1896   const TargetLowering &TLI = getTargetLoweringInfo();
1897   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1898   EVT VT = Node->getValueType(0);
1899   SDValue Tmp1 = Node->getOperand(0);
1900   SDValue Tmp2 = Node->getOperand(1);
1901   unsigned Align = Node->getConstantOperandVal(3);
1902 
1903   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1904                                Tmp2, MachinePointerInfo(V));
1905   SDValue VAList = VAListLoad;
1906 
1907   if (Align > TLI.getMinStackArgumentAlignment()) {
1908     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1909 
1910     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1911                      getConstant(Align - 1, dl, VAList.getValueType()));
1912 
1913     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1914                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1915   }
1916 
1917   // Increment the pointer, VAList, to the next vaarg
1918   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1919                  getConstant(getDataLayout().getTypeAllocSize(
1920                                                VT.getTypeForEVT(*getContext())),
1921                              dl, VAList.getValueType()));
1922   // Store the incremented VAList to the legalized pointer
1923   Tmp1 =
1924       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1925   // Load the actual argument out of the pointer VAList
1926   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1927 }
1928 
1929 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1930   SDLoc dl(Node);
1931   const TargetLowering &TLI = getTargetLoweringInfo();
1932   // This defaults to loading a pointer from the input and storing it to the
1933   // output, returning the chain.
1934   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1935   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1936   SDValue Tmp1 =
1937       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1938               Node->getOperand(2), MachinePointerInfo(VS));
1939   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1940                   MachinePointerInfo(VD));
1941 }
1942 
1943 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1944   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1945   unsigned ByteSize = VT.getStoreSize();
1946   Type *Ty = VT.getTypeForEVT(*getContext());
1947   unsigned StackAlign =
1948       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1949 
1950   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1951   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1952 }
1953 
1954 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1955   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1956   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1957   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1958   const DataLayout &DL = getDataLayout();
1959   unsigned Align =
1960       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1961 
1962   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1963   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1964   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1965 }
1966 
1967 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1968                                 ISD::CondCode Cond, const SDLoc &dl) {
1969   EVT OpVT = N1.getValueType();
1970 
1971   // These setcc operations always fold.
1972   switch (Cond) {
1973   default: break;
1974   case ISD::SETFALSE:
1975   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
1976   case ISD::SETTRUE:
1977   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
1978 
1979   case ISD::SETOEQ:
1980   case ISD::SETOGT:
1981   case ISD::SETOGE:
1982   case ISD::SETOLT:
1983   case ISD::SETOLE:
1984   case ISD::SETONE:
1985   case ISD::SETO:
1986   case ISD::SETUO:
1987   case ISD::SETUEQ:
1988   case ISD::SETUNE:
1989     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
1990     break;
1991   }
1992 
1993   if (OpVT.isInteger()) {
1994     // For EQ and NE, we can always pick a value for the undef to make the
1995     // predicate pass or fail, so we can return undef.
1996     // Matches behavior in llvm::ConstantFoldCompareInstruction.
1997     // icmp eq/ne X, undef -> undef.
1998     if ((N1.isUndef() || N2.isUndef()) &&
1999         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2000       return getUNDEF(VT);
2001 
2002     // If both operands are undef, we can return undef for int comparison.
2003     // icmp undef, undef -> undef.
2004     if (N1.isUndef() && N2.isUndef())
2005       return getUNDEF(VT);
2006 
2007     // icmp X, X -> true/false
2008     // icmp X, undef -> true/false because undef could be X.
2009     if (N1 == N2)
2010       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2011   }
2012 
2013   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2014     const APInt &C2 = N2C->getAPIntValue();
2015     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2016       const APInt &C1 = N1C->getAPIntValue();
2017 
2018       switch (Cond) {
2019       default: llvm_unreachable("Unknown integer setcc!");
2020       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2021       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2022       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2023       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2024       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2025       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2026       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2027       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2028       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2029       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2030       }
2031     }
2032   }
2033 
2034   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2035   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2036 
2037   if (N1CFP && N2CFP) {
2038     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2039     switch (Cond) {
2040     default: break;
2041     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2042                         return getUNDEF(VT);
2043                       LLVM_FALLTHROUGH;
2044     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2045                                              OpVT);
2046     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2047                         return getUNDEF(VT);
2048                       LLVM_FALLTHROUGH;
2049     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2050                                              R==APFloat::cmpLessThan, dl, VT,
2051                                              OpVT);
2052     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2053                         return getUNDEF(VT);
2054                       LLVM_FALLTHROUGH;
2055     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2056                                              OpVT);
2057     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2058                         return getUNDEF(VT);
2059                       LLVM_FALLTHROUGH;
2060     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2061                                              VT, OpVT);
2062     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2063                         return getUNDEF(VT);
2064                       LLVM_FALLTHROUGH;
2065     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2066                                              R==APFloat::cmpEqual, dl, VT,
2067                                              OpVT);
2068     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2069                         return getUNDEF(VT);
2070                       LLVM_FALLTHROUGH;
2071     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2072                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2073     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2074                                              OpVT);
2075     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2076                                              OpVT);
2077     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2078                                              R==APFloat::cmpEqual, dl, VT,
2079                                              OpVT);
2080     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2081                                              OpVT);
2082     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2083                                              R==APFloat::cmpLessThan, dl, VT,
2084                                              OpVT);
2085     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2086                                              R==APFloat::cmpUnordered, dl, VT,
2087                                              OpVT);
2088     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2089                                              VT, OpVT);
2090     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2091                                              OpVT);
2092     }
2093   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2094     // Ensure that the constant occurs on the RHS.
2095     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2096     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2097       return SDValue();
2098     return getSetCC(dl, VT, N2, N1, SwappedCond);
2099   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2100              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2101     // If an operand is known to be a nan (or undef that could be a nan), we can
2102     // fold it.
2103     // Choosing NaN for the undef will always make unordered comparison succeed
2104     // and ordered comparison fails.
2105     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2106     switch (ISD::getUnorderedFlavor(Cond)) {
2107     default:
2108       llvm_unreachable("Unknown flavor!");
2109     case 0: // Known false.
2110       return getBoolConstant(false, dl, VT, OpVT);
2111     case 1: // Known true.
2112       return getBoolConstant(true, dl, VT, OpVT);
2113     case 2: // Undefined.
2114       return getUNDEF(VT);
2115     }
2116   }
2117 
2118   // Could not fold it.
2119   return SDValue();
2120 }
2121 
2122 /// See if the specified operand can be simplified with the knowledge that only
2123 /// the bits specified by DemandedBits are used.
2124 /// TODO: really we should be making this into the DAG equivalent of
2125 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2126 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2127   EVT VT = V.getValueType();
2128   APInt DemandedElts = VT.isVector()
2129                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2130                            : APInt(1, 1);
2131   return GetDemandedBits(V, DemandedBits, DemandedElts);
2132 }
2133 
2134 /// See if the specified operand can be simplified with the knowledge that only
2135 /// the bits specified by DemandedBits are used in the elements specified by
2136 /// DemandedElts.
2137 /// TODO: really we should be making this into the DAG equivalent of
2138 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2139 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2140                                       const APInt &DemandedElts) {
2141   switch (V.getOpcode()) {
2142   default:
2143     break;
2144   case ISD::Constant: {
2145     auto *CV = cast<ConstantSDNode>(V.getNode());
2146     assert(CV && "Const value should be ConstSDNode.");
2147     const APInt &CVal = CV->getAPIntValue();
2148     APInt NewVal = CVal & DemandedBits;
2149     if (NewVal != CVal)
2150       return getConstant(NewVal, SDLoc(V), V.getValueType());
2151     break;
2152   }
2153   case ISD::OR:
2154   case ISD::XOR:
2155   case ISD::SIGN_EXTEND_INREG:
2156     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2157                                                 *this, 0);
2158   case ISD::SRL:
2159     // Only look at single-use SRLs.
2160     if (!V.getNode()->hasOneUse())
2161       break;
2162     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2163       // See if we can recursively simplify the LHS.
2164       unsigned Amt = RHSC->getZExtValue();
2165 
2166       // Watch out for shift count overflow though.
2167       if (Amt >= DemandedBits.getBitWidth())
2168         break;
2169       APInt SrcDemandedBits = DemandedBits << Amt;
2170       if (SDValue SimplifyLHS =
2171               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2172         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2173                        V.getOperand(1));
2174     }
2175     break;
2176   case ISD::AND: {
2177     // X & -1 -> X (ignoring bits which aren't demanded).
2178     // Also handle the case where masked out bits in X are known to be zero.
2179     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2180       const APInt &AndVal = RHSC->getAPIntValue();
2181       if (DemandedBits.isSubsetOf(AndVal) ||
2182           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2183                                   AndVal))
2184         return V.getOperand(0);
2185     }
2186     break;
2187   }
2188   case ISD::ANY_EXTEND: {
2189     SDValue Src = V.getOperand(0);
2190     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2191     // Being conservative here - only peek through if we only demand bits in the
2192     // non-extended source (even though the extended bits are technically
2193     // undef).
2194     if (DemandedBits.getActiveBits() > SrcBitWidth)
2195       break;
2196     APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth);
2197     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits))
2198       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2199     break;
2200   }
2201   }
2202   return SDValue();
2203 }
2204 
2205 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2206 /// use this predicate to simplify operations downstream.
2207 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2208   unsigned BitWidth = Op.getScalarValueSizeInBits();
2209   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2210 }
2211 
2212 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2213 /// this predicate to simplify operations downstream.  Mask is known to be zero
2214 /// for bits that V cannot have.
2215 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2216                                      unsigned Depth) const {
2217   EVT VT = V.getValueType();
2218   APInt DemandedElts = VT.isVector()
2219                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2220                            : APInt(1, 1);
2221   return MaskedValueIsZero(V, Mask, DemandedElts, Depth);
2222 }
2223 
2224 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2225 /// DemandedElts.  We use this predicate to simplify operations downstream.
2226 /// Mask is known to be zero for bits that V cannot have.
2227 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2228                                      const APInt &DemandedElts,
2229                                      unsigned Depth) const {
2230   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2231 }
2232 
2233 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2234 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2235                                         unsigned Depth) const {
2236   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2237 }
2238 
2239 /// isSplatValue - Return true if the vector V has the same value
2240 /// across all DemandedElts.
2241 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2242                                 APInt &UndefElts) {
2243   if (!DemandedElts)
2244     return false; // No demanded elts, better to assume we don't know anything.
2245 
2246   EVT VT = V.getValueType();
2247   assert(VT.isVector() && "Vector type expected");
2248 
2249   unsigned NumElts = VT.getVectorNumElements();
2250   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2251   UndefElts = APInt::getNullValue(NumElts);
2252 
2253   switch (V.getOpcode()) {
2254   case ISD::BUILD_VECTOR: {
2255     SDValue Scl;
2256     for (unsigned i = 0; i != NumElts; ++i) {
2257       SDValue Op = V.getOperand(i);
2258       if (Op.isUndef()) {
2259         UndefElts.setBit(i);
2260         continue;
2261       }
2262       if (!DemandedElts[i])
2263         continue;
2264       if (Scl && Scl != Op)
2265         return false;
2266       Scl = Op;
2267     }
2268     return true;
2269   }
2270   case ISD::VECTOR_SHUFFLE: {
2271     // Check if this is a shuffle node doing a splat.
2272     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2273     int SplatIndex = -1;
2274     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2275     for (int i = 0; i != (int)NumElts; ++i) {
2276       int M = Mask[i];
2277       if (M < 0) {
2278         UndefElts.setBit(i);
2279         continue;
2280       }
2281       if (!DemandedElts[i])
2282         continue;
2283       if (0 <= SplatIndex && SplatIndex != M)
2284         return false;
2285       SplatIndex = M;
2286     }
2287     return true;
2288   }
2289   case ISD::EXTRACT_SUBVECTOR: {
2290     SDValue Src = V.getOperand(0);
2291     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2292     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2293     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2294       // Offset the demanded elts by the subvector index.
2295       uint64_t Idx = SubIdx->getZExtValue();
2296       APInt UndefSrcElts;
2297       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2298       if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2299         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2300         return true;
2301       }
2302     }
2303     break;
2304   }
2305   case ISD::ADD:
2306   case ISD::SUB:
2307   case ISD::AND: {
2308     APInt UndefLHS, UndefRHS;
2309     SDValue LHS = V.getOperand(0);
2310     SDValue RHS = V.getOperand(1);
2311     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2312         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2313       UndefElts = UndefLHS | UndefRHS;
2314       return true;
2315     }
2316     break;
2317   }
2318   }
2319 
2320   return false;
2321 }
2322 
2323 /// Helper wrapper to main isSplatValue function.
2324 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2325   EVT VT = V.getValueType();
2326   assert(VT.isVector() && "Vector type expected");
2327   unsigned NumElts = VT.getVectorNumElements();
2328 
2329   APInt UndefElts;
2330   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2331   return isSplatValue(V, DemandedElts, UndefElts) &&
2332          (AllowUndefs || !UndefElts);
2333 }
2334 
2335 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2336   V = peekThroughExtractSubvectors(V);
2337 
2338   EVT VT = V.getValueType();
2339   unsigned Opcode = V.getOpcode();
2340   switch (Opcode) {
2341   default: {
2342     APInt UndefElts;
2343     APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2344     if (isSplatValue(V, DemandedElts, UndefElts)) {
2345       // Handle case where all demanded elements are UNDEF.
2346       if (DemandedElts.isSubsetOf(UndefElts)) {
2347         SplatIdx = 0;
2348         return getUNDEF(VT);
2349       }
2350       SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2351       return V;
2352     }
2353     break;
2354   }
2355   case ISD::VECTOR_SHUFFLE: {
2356     // Check if this is a shuffle node doing a splat.
2357     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2358     // getTargetVShiftNode currently struggles without the splat source.
2359     auto *SVN = cast<ShuffleVectorSDNode>(V);
2360     if (!SVN->isSplat())
2361       break;
2362     int Idx = SVN->getSplatIndex();
2363     int NumElts = V.getValueType().getVectorNumElements();
2364     SplatIdx = Idx % NumElts;
2365     return V.getOperand(Idx / NumElts);
2366   }
2367   }
2368 
2369   return SDValue();
2370 }
2371 
2372 SDValue SelectionDAG::getSplatValue(SDValue V) {
2373   int SplatIdx;
2374   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2375     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2376                    SrcVector.getValueType().getScalarType(), SrcVector,
2377                    getIntPtrConstant(SplatIdx, SDLoc(V)));
2378   return SDValue();
2379 }
2380 
2381 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2382 /// is less than the element bit-width of the shift node, return it.
2383 static const APInt *getValidShiftAmountConstant(SDValue V) {
2384   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2385     // Shifting more than the bitwidth is not valid.
2386     const APInt &ShAmt = SA->getAPIntValue();
2387     if (ShAmt.ult(V.getScalarValueSizeInBits()))
2388       return &ShAmt;
2389   }
2390   return nullptr;
2391 }
2392 
2393 /// Determine which bits of Op are known to be either zero or one and return
2394 /// them in Known. For vectors, the known bits are those that are shared by
2395 /// every vector element.
2396 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2397   EVT VT = Op.getValueType();
2398   APInt DemandedElts = VT.isVector()
2399                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2400                            : APInt(1, 1);
2401   return computeKnownBits(Op, DemandedElts, Depth);
2402 }
2403 
2404 /// Determine which bits of Op are known to be either zero or one and return
2405 /// them in Known. The DemandedElts argument allows us to only collect the known
2406 /// bits that are shared by the requested vector elements.
2407 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2408                                          unsigned Depth) const {
2409   unsigned BitWidth = Op.getScalarValueSizeInBits();
2410 
2411   KnownBits Known(BitWidth);   // Don't know anything.
2412 
2413   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2414     // We know all of the bits for a constant!
2415     Known.One = C->getAPIntValue();
2416     Known.Zero = ~Known.One;
2417     return Known;
2418   }
2419   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2420     // We know all of the bits for a constant fp!
2421     Known.One = C->getValueAPF().bitcastToAPInt();
2422     Known.Zero = ~Known.One;
2423     return Known;
2424   }
2425 
2426   if (Depth >= 6)
2427     return Known;  // Limit search depth.
2428 
2429   KnownBits Known2;
2430   unsigned NumElts = DemandedElts.getBitWidth();
2431   assert((!Op.getValueType().isVector() ||
2432           NumElts == Op.getValueType().getVectorNumElements()) &&
2433          "Unexpected vector size");
2434 
2435   if (!DemandedElts)
2436     return Known;  // No demanded elts, better to assume we don't know anything.
2437 
2438   unsigned Opcode = Op.getOpcode();
2439   switch (Opcode) {
2440   case ISD::BUILD_VECTOR:
2441     // Collect the known bits that are shared by every demanded vector element.
2442     Known.Zero.setAllBits(); Known.One.setAllBits();
2443     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2444       if (!DemandedElts[i])
2445         continue;
2446 
2447       SDValue SrcOp = Op.getOperand(i);
2448       Known2 = computeKnownBits(SrcOp, Depth + 1);
2449 
2450       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2451       if (SrcOp.getValueSizeInBits() != BitWidth) {
2452         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2453                "Expected BUILD_VECTOR implicit truncation");
2454         Known2 = Known2.trunc(BitWidth);
2455       }
2456 
2457       // Known bits are the values that are shared by every demanded element.
2458       Known.One &= Known2.One;
2459       Known.Zero &= Known2.Zero;
2460 
2461       // If we don't know any bits, early out.
2462       if (Known.isUnknown())
2463         break;
2464     }
2465     break;
2466   case ISD::VECTOR_SHUFFLE: {
2467     // Collect the known bits that are shared by every vector element referenced
2468     // by the shuffle.
2469     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2470     Known.Zero.setAllBits(); Known.One.setAllBits();
2471     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2472     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2473     for (unsigned i = 0; i != NumElts; ++i) {
2474       if (!DemandedElts[i])
2475         continue;
2476 
2477       int M = SVN->getMaskElt(i);
2478       if (M < 0) {
2479         // For UNDEF elements, we don't know anything about the common state of
2480         // the shuffle result.
2481         Known.resetAll();
2482         DemandedLHS.clearAllBits();
2483         DemandedRHS.clearAllBits();
2484         break;
2485       }
2486 
2487       if ((unsigned)M < NumElts)
2488         DemandedLHS.setBit((unsigned)M % NumElts);
2489       else
2490         DemandedRHS.setBit((unsigned)M % NumElts);
2491     }
2492     // Known bits are the values that are shared by every demanded element.
2493     if (!!DemandedLHS) {
2494       SDValue LHS = Op.getOperand(0);
2495       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2496       Known.One &= Known2.One;
2497       Known.Zero &= Known2.Zero;
2498     }
2499     // If we don't know any bits, early out.
2500     if (Known.isUnknown())
2501       break;
2502     if (!!DemandedRHS) {
2503       SDValue RHS = Op.getOperand(1);
2504       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2505       Known.One &= Known2.One;
2506       Known.Zero &= Known2.Zero;
2507     }
2508     break;
2509   }
2510   case ISD::CONCAT_VECTORS: {
2511     // Split DemandedElts and test each of the demanded subvectors.
2512     Known.Zero.setAllBits(); Known.One.setAllBits();
2513     EVT SubVectorVT = Op.getOperand(0).getValueType();
2514     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2515     unsigned NumSubVectors = Op.getNumOperands();
2516     for (unsigned i = 0; i != NumSubVectors; ++i) {
2517       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2518       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2519       if (!!DemandedSub) {
2520         SDValue Sub = Op.getOperand(i);
2521         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2522         Known.One &= Known2.One;
2523         Known.Zero &= Known2.Zero;
2524       }
2525       // If we don't know any bits, early out.
2526       if (Known.isUnknown())
2527         break;
2528     }
2529     break;
2530   }
2531   case ISD::INSERT_SUBVECTOR: {
2532     // If we know the element index, demand any elements from the subvector and
2533     // the remainder from the src its inserted into, otherwise demand them all.
2534     SDValue Src = Op.getOperand(0);
2535     SDValue Sub = Op.getOperand(1);
2536     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2537     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2538     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2539       Known.One.setAllBits();
2540       Known.Zero.setAllBits();
2541       uint64_t Idx = SubIdx->getZExtValue();
2542       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2543       if (!!DemandedSubElts) {
2544         Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2545         if (Known.isUnknown())
2546           break; // early-out.
2547       }
2548       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2549       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2550       if (!!DemandedSrcElts) {
2551         Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2552         Known.One &= Known2.One;
2553         Known.Zero &= Known2.Zero;
2554       }
2555     } else {
2556       Known = computeKnownBits(Sub, Depth + 1);
2557       if (Known.isUnknown())
2558         break; // early-out.
2559       Known2 = computeKnownBits(Src, Depth + 1);
2560       Known.One &= Known2.One;
2561       Known.Zero &= Known2.Zero;
2562     }
2563     break;
2564   }
2565   case ISD::EXTRACT_SUBVECTOR: {
2566     // If we know the element index, just demand that subvector elements,
2567     // otherwise demand them all.
2568     SDValue Src = Op.getOperand(0);
2569     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2570     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2571     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2572       // Offset the demanded elts by the subvector index.
2573       uint64_t Idx = SubIdx->getZExtValue();
2574       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2575       Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2576     } else {
2577       Known = computeKnownBits(Src, Depth + 1);
2578     }
2579     break;
2580   }
2581   case ISD::SCALAR_TO_VECTOR: {
2582     // We know about scalar_to_vector as much as we know about it source,
2583     // which becomes the first element of otherwise unknown vector.
2584     if (DemandedElts != 1)
2585       break;
2586 
2587     SDValue N0 = Op.getOperand(0);
2588     Known = computeKnownBits(N0, Depth + 1);
2589     if (N0.getValueSizeInBits() != BitWidth)
2590       Known = Known.trunc(BitWidth);
2591 
2592     break;
2593   }
2594   case ISD::BITCAST: {
2595     SDValue N0 = Op.getOperand(0);
2596     EVT SubVT = N0.getValueType();
2597     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2598 
2599     // Ignore bitcasts from unsupported types.
2600     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2601       break;
2602 
2603     // Fast handling of 'identity' bitcasts.
2604     if (BitWidth == SubBitWidth) {
2605       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2606       break;
2607     }
2608 
2609     bool IsLE = getDataLayout().isLittleEndian();
2610 
2611     // Bitcast 'small element' vector to 'large element' scalar/vector.
2612     if ((BitWidth % SubBitWidth) == 0) {
2613       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2614 
2615       // Collect known bits for the (larger) output by collecting the known
2616       // bits from each set of sub elements and shift these into place.
2617       // We need to separately call computeKnownBits for each set of
2618       // sub elements as the knownbits for each is likely to be different.
2619       unsigned SubScale = BitWidth / SubBitWidth;
2620       APInt SubDemandedElts(NumElts * SubScale, 0);
2621       for (unsigned i = 0; i != NumElts; ++i)
2622         if (DemandedElts[i])
2623           SubDemandedElts.setBit(i * SubScale);
2624 
2625       for (unsigned i = 0; i != SubScale; ++i) {
2626         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2627                          Depth + 1);
2628         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2629         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2630         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2631       }
2632     }
2633 
2634     // Bitcast 'large element' scalar/vector to 'small element' vector.
2635     if ((SubBitWidth % BitWidth) == 0) {
2636       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2637 
2638       // Collect known bits for the (smaller) output by collecting the known
2639       // bits from the overlapping larger input elements and extracting the
2640       // sub sections we actually care about.
2641       unsigned SubScale = SubBitWidth / BitWidth;
2642       APInt SubDemandedElts(NumElts / SubScale, 0);
2643       for (unsigned i = 0; i != NumElts; ++i)
2644         if (DemandedElts[i])
2645           SubDemandedElts.setBit(i / SubScale);
2646 
2647       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2648 
2649       Known.Zero.setAllBits(); Known.One.setAllBits();
2650       for (unsigned i = 0; i != NumElts; ++i)
2651         if (DemandedElts[i]) {
2652           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2653           unsigned Offset = (Shifts % SubScale) * BitWidth;
2654           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2655           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2656           // If we don't know any bits, early out.
2657           if (Known.isUnknown())
2658             break;
2659         }
2660     }
2661     break;
2662   }
2663   case ISD::AND:
2664     // If either the LHS or the RHS are Zero, the result is zero.
2665     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2666     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2667 
2668     // Output known-1 bits are only known if set in both the LHS & RHS.
2669     Known.One &= Known2.One;
2670     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2671     Known.Zero |= Known2.Zero;
2672     break;
2673   case ISD::OR:
2674     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2675     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2676 
2677     // Output known-0 bits are only known if clear in both the LHS & RHS.
2678     Known.Zero &= Known2.Zero;
2679     // Output known-1 are known to be set if set in either the LHS | RHS.
2680     Known.One |= Known2.One;
2681     break;
2682   case ISD::XOR: {
2683     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2684     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2685 
2686     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2687     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2688     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2689     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2690     Known.Zero = KnownZeroOut;
2691     break;
2692   }
2693   case ISD::MUL: {
2694     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2695     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2696 
2697     // If low bits are zero in either operand, output low known-0 bits.
2698     // Also compute a conservative estimate for high known-0 bits.
2699     // More trickiness is possible, but this is sufficient for the
2700     // interesting case of alignment computation.
2701     unsigned TrailZ = Known.countMinTrailingZeros() +
2702                       Known2.countMinTrailingZeros();
2703     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2704                                Known2.countMinLeadingZeros(),
2705                                BitWidth) - BitWidth;
2706 
2707     Known.resetAll();
2708     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2709     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2710     break;
2711   }
2712   case ISD::UDIV: {
2713     // For the purposes of computing leading zeros we can conservatively
2714     // treat a udiv as a logical right shift by the power of 2 known to
2715     // be less than the denominator.
2716     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2717     unsigned LeadZ = Known2.countMinLeadingZeros();
2718 
2719     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2720     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2721     if (RHSMaxLeadingZeros != BitWidth)
2722       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2723 
2724     Known.Zero.setHighBits(LeadZ);
2725     break;
2726   }
2727   case ISD::SELECT:
2728   case ISD::VSELECT:
2729     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2730     // If we don't know any bits, early out.
2731     if (Known.isUnknown())
2732       break;
2733     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2734 
2735     // Only known if known in both the LHS and RHS.
2736     Known.One &= Known2.One;
2737     Known.Zero &= Known2.Zero;
2738     break;
2739   case ISD::SELECT_CC:
2740     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2741     // If we don't know any bits, early out.
2742     if (Known.isUnknown())
2743       break;
2744     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2745 
2746     // Only known if known in both the LHS and RHS.
2747     Known.One &= Known2.One;
2748     Known.Zero &= Known2.Zero;
2749     break;
2750   case ISD::SMULO:
2751   case ISD::UMULO:
2752   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2753     if (Op.getResNo() != 1)
2754       break;
2755     // The boolean result conforms to getBooleanContents.
2756     // If we know the result of a setcc has the top bits zero, use this info.
2757     // We know that we have an integer-based boolean since these operations
2758     // are only available for integer.
2759     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2760             TargetLowering::ZeroOrOneBooleanContent &&
2761         BitWidth > 1)
2762       Known.Zero.setBitsFrom(1);
2763     break;
2764   case ISD::SETCC:
2765     // If we know the result of a setcc has the top bits zero, use this info.
2766     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2767             TargetLowering::ZeroOrOneBooleanContent &&
2768         BitWidth > 1)
2769       Known.Zero.setBitsFrom(1);
2770     break;
2771   case ISD::SHL:
2772     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2773       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2774       unsigned Shift = ShAmt->getZExtValue();
2775       Known.Zero <<= Shift;
2776       Known.One <<= Shift;
2777       // Low bits are known zero.
2778       Known.Zero.setLowBits(Shift);
2779     }
2780     break;
2781   case ISD::SRL:
2782     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2783       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2784       unsigned Shift = ShAmt->getZExtValue();
2785       Known.Zero.lshrInPlace(Shift);
2786       Known.One.lshrInPlace(Shift);
2787       // High bits are known zero.
2788       Known.Zero.setHighBits(Shift);
2789     } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
2790       // If the shift amount is a vector of constants see if we can bound
2791       // the number of upper zero bits.
2792       unsigned ShiftAmountMin = BitWidth;
2793       for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
2794         if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
2795           const APInt &ShAmt = C->getAPIntValue();
2796           if (ShAmt.ult(BitWidth)) {
2797             ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
2798                                                 ShAmt.getZExtValue());
2799             continue;
2800           }
2801         }
2802         // Don't know anything.
2803         ShiftAmountMin = 0;
2804         break;
2805       }
2806 
2807       Known.Zero.setHighBits(ShiftAmountMin);
2808     }
2809     break;
2810   case ISD::SRA:
2811     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2812       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2813       unsigned Shift = ShAmt->getZExtValue();
2814       // Sign extend known zero/one bit (else is unknown).
2815       Known.Zero.ashrInPlace(Shift);
2816       Known.One.ashrInPlace(Shift);
2817     }
2818     break;
2819   case ISD::FSHL:
2820   case ISD::FSHR:
2821     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2822       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2823 
2824       // For fshl, 0-shift returns the 1st arg.
2825       // For fshr, 0-shift returns the 2nd arg.
2826       if (Amt == 0) {
2827         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2828                                  DemandedElts, Depth + 1);
2829         break;
2830       }
2831 
2832       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2833       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2834       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2835       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2836       if (Opcode == ISD::FSHL) {
2837         Known.One <<= Amt;
2838         Known.Zero <<= Amt;
2839         Known2.One.lshrInPlace(BitWidth - Amt);
2840         Known2.Zero.lshrInPlace(BitWidth - Amt);
2841       } else {
2842         Known.One <<= BitWidth - Amt;
2843         Known.Zero <<= BitWidth - Amt;
2844         Known2.One.lshrInPlace(Amt);
2845         Known2.Zero.lshrInPlace(Amt);
2846       }
2847       Known.One |= Known2.One;
2848       Known.Zero |= Known2.Zero;
2849     }
2850     break;
2851   case ISD::SIGN_EXTEND_INREG: {
2852     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2853     unsigned EBits = EVT.getScalarSizeInBits();
2854 
2855     // Sign extension.  Compute the demanded bits in the result that are not
2856     // present in the input.
2857     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2858 
2859     APInt InSignMask = APInt::getSignMask(EBits);
2860     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2861 
2862     // If the sign extended bits are demanded, we know that the sign
2863     // bit is demanded.
2864     InSignMask = InSignMask.zext(BitWidth);
2865     if (NewBits.getBoolValue())
2866       InputDemandedBits |= InSignMask;
2867 
2868     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2869     Known.One &= InputDemandedBits;
2870     Known.Zero &= InputDemandedBits;
2871 
2872     // If the sign bit of the input is known set or clear, then we know the
2873     // top bits of the result.
2874     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2875       Known.Zero |= NewBits;
2876       Known.One  &= ~NewBits;
2877     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2878       Known.One  |= NewBits;
2879       Known.Zero &= ~NewBits;
2880     } else {                              // Input sign bit unknown
2881       Known.Zero &= ~NewBits;
2882       Known.One  &= ~NewBits;
2883     }
2884     break;
2885   }
2886   case ISD::CTTZ:
2887   case ISD::CTTZ_ZERO_UNDEF: {
2888     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2889     // If we have a known 1, its position is our upper bound.
2890     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2891     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2892     Known.Zero.setBitsFrom(LowBits);
2893     break;
2894   }
2895   case ISD::CTLZ:
2896   case ISD::CTLZ_ZERO_UNDEF: {
2897     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2898     // If we have a known 1, its position is our upper bound.
2899     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2900     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2901     Known.Zero.setBitsFrom(LowBits);
2902     break;
2903   }
2904   case ISD::CTPOP: {
2905     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2906     // If we know some of the bits are zero, they can't be one.
2907     unsigned PossibleOnes = Known2.countMaxPopulation();
2908     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2909     break;
2910   }
2911   case ISD::LOAD: {
2912     LoadSDNode *LD = cast<LoadSDNode>(Op);
2913     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
2914     if (ISD::isNON_EXTLoad(LD) && Cst) {
2915       // Determine any common known bits from the loaded constant pool value.
2916       Type *CstTy = Cst->getType();
2917       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
2918         // If its a vector splat, then we can (quickly) reuse the scalar path.
2919         // NOTE: We assume all elements match and none are UNDEF.
2920         if (CstTy->isVectorTy()) {
2921           if (const Constant *Splat = Cst->getSplatValue()) {
2922             Cst = Splat;
2923             CstTy = Cst->getType();
2924           }
2925         }
2926         // TODO - do we need to handle different bitwidths?
2927         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
2928           // Iterate across all vector elements finding common known bits.
2929           Known.One.setAllBits();
2930           Known.Zero.setAllBits();
2931           for (unsigned i = 0; i != NumElts; ++i) {
2932             if (!DemandedElts[i])
2933               continue;
2934             if (Constant *Elt = Cst->getAggregateElement(i)) {
2935               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
2936                 const APInt &Value = CInt->getValue();
2937                 Known.One &= Value;
2938                 Known.Zero &= ~Value;
2939                 continue;
2940               }
2941               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
2942                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
2943                 Known.One &= Value;
2944                 Known.Zero &= ~Value;
2945                 continue;
2946               }
2947             }
2948             Known.One.clearAllBits();
2949             Known.Zero.clearAllBits();
2950             break;
2951           }
2952         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
2953           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
2954             const APInt &Value = CInt->getValue();
2955             Known.One = Value;
2956             Known.Zero = ~Value;
2957           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
2958             APInt Value = CFP->getValueAPF().bitcastToAPInt();
2959             Known.One = Value;
2960             Known.Zero = ~Value;
2961           }
2962         }
2963       }
2964     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2965       // If this is a ZEXTLoad and we are looking at the loaded value.
2966       EVT VT = LD->getMemoryVT();
2967       unsigned MemBits = VT.getScalarSizeInBits();
2968       Known.Zero.setBitsFrom(MemBits);
2969     } else if (const MDNode *Ranges = LD->getRanges()) {
2970       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2971         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2972     }
2973     break;
2974   }
2975   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2976     EVT InVT = Op.getOperand(0).getValueType();
2977     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2978     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2979     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2980     break;
2981   }
2982   case ISD::ZERO_EXTEND: {
2983     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2984     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2985     break;
2986   }
2987   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2988     EVT InVT = Op.getOperand(0).getValueType();
2989     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2990     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2991     // If the sign bit is known to be zero or one, then sext will extend
2992     // it to the top bits, else it will just zext.
2993     Known = Known.sext(BitWidth);
2994     break;
2995   }
2996   case ISD::SIGN_EXTEND: {
2997     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2998     // If the sign bit is known to be zero or one, then sext will extend
2999     // it to the top bits, else it will just zext.
3000     Known = Known.sext(BitWidth);
3001     break;
3002   }
3003   case ISD::ANY_EXTEND: {
3004     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3005     Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
3006     break;
3007   }
3008   case ISD::TRUNCATE: {
3009     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3010     Known = Known.trunc(BitWidth);
3011     break;
3012   }
3013   case ISD::AssertZext: {
3014     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3015     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3016     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3017     Known.Zero |= (~InMask);
3018     Known.One  &= (~Known.Zero);
3019     break;
3020   }
3021   case ISD::FGETSIGN:
3022     // All bits are zero except the low bit.
3023     Known.Zero.setBitsFrom(1);
3024     break;
3025   case ISD::USUBO:
3026   case ISD::SSUBO:
3027     if (Op.getResNo() == 1) {
3028       // If we know the result of a setcc has the top bits zero, use this info.
3029       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3030               TargetLowering::ZeroOrOneBooleanContent &&
3031           BitWidth > 1)
3032         Known.Zero.setBitsFrom(1);
3033       break;
3034     }
3035     LLVM_FALLTHROUGH;
3036   case ISD::SUB:
3037   case ISD::SUBC: {
3038     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3039     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3040     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3041                                         Known, Known2);
3042     break;
3043   }
3044   case ISD::UADDO:
3045   case ISD::SADDO:
3046   case ISD::ADDCARRY:
3047     if (Op.getResNo() == 1) {
3048       // If we know the result of a setcc has the top bits zero, use this info.
3049       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3050               TargetLowering::ZeroOrOneBooleanContent &&
3051           BitWidth > 1)
3052         Known.Zero.setBitsFrom(1);
3053       break;
3054     }
3055     LLVM_FALLTHROUGH;
3056   case ISD::ADD:
3057   case ISD::ADDC:
3058   case ISD::ADDE: {
3059     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3060 
3061     // With ADDE and ADDCARRY, a carry bit may be added in.
3062     KnownBits Carry(1);
3063     if (Opcode == ISD::ADDE)
3064       // Can't track carry from glue, set carry to unknown.
3065       Carry.resetAll();
3066     else if (Opcode == ISD::ADDCARRY)
3067       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3068       // the trouble (how often will we find a known carry bit). And I haven't
3069       // tested this very much yet, but something like this might work:
3070       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3071       //   Carry = Carry.zextOrTrunc(1, false);
3072       Carry.resetAll();
3073     else
3074       Carry.setAllZero();
3075 
3076     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3077     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3078     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3079     break;
3080   }
3081   case ISD::SREM:
3082     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3083       const APInt &RA = Rem->getAPIntValue().abs();
3084       if (RA.isPowerOf2()) {
3085         APInt LowBits = RA - 1;
3086         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3087 
3088         // The low bits of the first operand are unchanged by the srem.
3089         Known.Zero = Known2.Zero & LowBits;
3090         Known.One = Known2.One & LowBits;
3091 
3092         // If the first operand is non-negative or has all low bits zero, then
3093         // the upper bits are all zero.
3094         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3095           Known.Zero |= ~LowBits;
3096 
3097         // If the first operand is negative and not all low bits are zero, then
3098         // the upper bits are all one.
3099         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3100           Known.One |= ~LowBits;
3101         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3102       }
3103     }
3104     break;
3105   case ISD::UREM: {
3106     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3107       const APInt &RA = Rem->getAPIntValue();
3108       if (RA.isPowerOf2()) {
3109         APInt LowBits = (RA - 1);
3110         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3111 
3112         // The upper bits are all zero, the lower ones are unchanged.
3113         Known.Zero = Known2.Zero | ~LowBits;
3114         Known.One = Known2.One & LowBits;
3115         break;
3116       }
3117     }
3118 
3119     // Since the result is less than or equal to either operand, any leading
3120     // zero bits in either operand must also exist in the result.
3121     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3122     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3123 
3124     uint32_t Leaders =
3125         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3126     Known.resetAll();
3127     Known.Zero.setHighBits(Leaders);
3128     break;
3129   }
3130   case ISD::EXTRACT_ELEMENT: {
3131     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3132     const unsigned Index = Op.getConstantOperandVal(1);
3133     const unsigned EltBitWidth = Op.getValueSizeInBits();
3134 
3135     // Remove low part of known bits mask
3136     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3137     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3138 
3139     // Remove high part of known bit mask
3140     Known = Known.trunc(EltBitWidth);
3141     break;
3142   }
3143   case ISD::EXTRACT_VECTOR_ELT: {
3144     SDValue InVec = Op.getOperand(0);
3145     SDValue EltNo = Op.getOperand(1);
3146     EVT VecVT = InVec.getValueType();
3147     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3148     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3149     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3150     // anything about the extended bits.
3151     if (BitWidth > EltBitWidth)
3152       Known = Known.trunc(EltBitWidth);
3153     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3154     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
3155       // If we know the element index, just demand that vector element.
3156       unsigned Idx = ConstEltNo->getZExtValue();
3157       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
3158       Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
3159     } else {
3160       // Unknown element index, so ignore DemandedElts and demand them all.
3161       Known = computeKnownBits(InVec, Depth + 1);
3162     }
3163     if (BitWidth > EltBitWidth)
3164       Known = Known.zext(BitWidth, false /* => any extend */);
3165     break;
3166   }
3167   case ISD::INSERT_VECTOR_ELT: {
3168     SDValue InVec = Op.getOperand(0);
3169     SDValue InVal = Op.getOperand(1);
3170     SDValue EltNo = Op.getOperand(2);
3171 
3172     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3173     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3174       // If we know the element index, split the demand between the
3175       // source vector and the inserted element.
3176       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
3177       unsigned EltIdx = CEltNo->getZExtValue();
3178 
3179       // If we demand the inserted element then add its common known bits.
3180       if (DemandedElts[EltIdx]) {
3181         Known2 = computeKnownBits(InVal, Depth + 1);
3182         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3183         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3184       }
3185 
3186       // If we demand the source vector then add its common known bits, ensuring
3187       // that we don't demand the inserted element.
3188       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
3189       if (!!VectorElts) {
3190         Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
3191         Known.One &= Known2.One;
3192         Known.Zero &= Known2.Zero;
3193       }
3194     } else {
3195       // Unknown element index, so ignore DemandedElts and demand them all.
3196       Known = computeKnownBits(InVec, Depth + 1);
3197       Known2 = computeKnownBits(InVal, Depth + 1);
3198       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3199       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3200     }
3201     break;
3202   }
3203   case ISD::BITREVERSE: {
3204     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3205     Known.Zero = Known2.Zero.reverseBits();
3206     Known.One = Known2.One.reverseBits();
3207     break;
3208   }
3209   case ISD::BSWAP: {
3210     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3211     Known.Zero = Known2.Zero.byteSwap();
3212     Known.One = Known2.One.byteSwap();
3213     break;
3214   }
3215   case ISD::ABS: {
3216     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3217 
3218     // If the source's MSB is zero then we know the rest of the bits already.
3219     if (Known2.isNonNegative()) {
3220       Known.Zero = Known2.Zero;
3221       Known.One = Known2.One;
3222       break;
3223     }
3224 
3225     // We only know that the absolute values's MSB will be zero iff there is
3226     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3227     Known2.One.clearSignBit();
3228     if (Known2.One.getBoolValue()) {
3229       Known.Zero = APInt::getSignMask(BitWidth);
3230       break;
3231     }
3232     break;
3233   }
3234   case ISD::UMIN: {
3235     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3236     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3237 
3238     // UMIN - we know that the result will have the maximum of the
3239     // known zero leading bits of the inputs.
3240     unsigned LeadZero = Known.countMinLeadingZeros();
3241     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3242 
3243     Known.Zero &= Known2.Zero;
3244     Known.One &= Known2.One;
3245     Known.Zero.setHighBits(LeadZero);
3246     break;
3247   }
3248   case ISD::UMAX: {
3249     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3250     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3251 
3252     // UMAX - we know that the result will have the maximum of the
3253     // known one leading bits of the inputs.
3254     unsigned LeadOne = Known.countMinLeadingOnes();
3255     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3256 
3257     Known.Zero &= Known2.Zero;
3258     Known.One &= Known2.One;
3259     Known.One.setHighBits(LeadOne);
3260     break;
3261   }
3262   case ISD::SMIN:
3263   case ISD::SMAX: {
3264     // If we have a clamp pattern, we know that the number of sign bits will be
3265     // the minimum of the clamp min/max range.
3266     bool IsMax = (Opcode == ISD::SMAX);
3267     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3268     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3269       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3270         CstHigh =
3271             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3272     if (CstLow && CstHigh) {
3273       if (!IsMax)
3274         std::swap(CstLow, CstHigh);
3275 
3276       const APInt &ValueLow = CstLow->getAPIntValue();
3277       const APInt &ValueHigh = CstHigh->getAPIntValue();
3278       if (ValueLow.sle(ValueHigh)) {
3279         unsigned LowSignBits = ValueLow.getNumSignBits();
3280         unsigned HighSignBits = ValueHigh.getNumSignBits();
3281         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3282         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3283           Known.One.setHighBits(MinSignBits);
3284           break;
3285         }
3286         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3287           Known.Zero.setHighBits(MinSignBits);
3288           break;
3289         }
3290       }
3291     }
3292 
3293     // Fallback - just get the shared known bits of the operands.
3294     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3295     if (Known.isUnknown()) break; // Early-out
3296     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3297     Known.Zero &= Known2.Zero;
3298     Known.One &= Known2.One;
3299     break;
3300   }
3301   case ISD::FrameIndex:
3302   case ISD::TargetFrameIndex:
3303     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3304     break;
3305 
3306   default:
3307     if (Opcode < ISD::BUILTIN_OP_END)
3308       break;
3309     LLVM_FALLTHROUGH;
3310   case ISD::INTRINSIC_WO_CHAIN:
3311   case ISD::INTRINSIC_W_CHAIN:
3312   case ISD::INTRINSIC_VOID:
3313     // Allow the target to implement this method for its nodes.
3314     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3315     break;
3316   }
3317 
3318   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3319   return Known;
3320 }
3321 
3322 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3323                                                              SDValue N1) const {
3324   // X + 0 never overflow
3325   if (isNullConstant(N1))
3326     return OFK_Never;
3327 
3328   KnownBits N1Known = computeKnownBits(N1);
3329   if (N1Known.Zero.getBoolValue()) {
3330     KnownBits N0Known = computeKnownBits(N0);
3331 
3332     bool overflow;
3333     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
3334     if (!overflow)
3335       return OFK_Never;
3336   }
3337 
3338   // mulhi + 1 never overflow
3339   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3340       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
3341     return OFK_Never;
3342 
3343   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3344     KnownBits N0Known = computeKnownBits(N0);
3345 
3346     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
3347       return OFK_Never;
3348   }
3349 
3350   return OFK_Sometime;
3351 }
3352 
3353 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3354   EVT OpVT = Val.getValueType();
3355   unsigned BitWidth = OpVT.getScalarSizeInBits();
3356 
3357   // Is the constant a known power of 2?
3358   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3359     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3360 
3361   // A left-shift of a constant one will have exactly one bit set because
3362   // shifting the bit off the end is undefined.
3363   if (Val.getOpcode() == ISD::SHL) {
3364     auto *C = isConstOrConstSplat(Val.getOperand(0));
3365     if (C && C->getAPIntValue() == 1)
3366       return true;
3367   }
3368 
3369   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3370   // one bit set.
3371   if (Val.getOpcode() == ISD::SRL) {
3372     auto *C = isConstOrConstSplat(Val.getOperand(0));
3373     if (C && C->getAPIntValue().isSignMask())
3374       return true;
3375   }
3376 
3377   // Are all operands of a build vector constant powers of two?
3378   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3379     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3380           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3381             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3382           return false;
3383         }))
3384       return true;
3385 
3386   // More could be done here, though the above checks are enough
3387   // to handle some common cases.
3388 
3389   // Fall back to computeKnownBits to catch other known cases.
3390   KnownBits Known = computeKnownBits(Val);
3391   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3392 }
3393 
3394 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3395   EVT VT = Op.getValueType();
3396   APInt DemandedElts = VT.isVector()
3397                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3398                            : APInt(1, 1);
3399   return ComputeNumSignBits(Op, DemandedElts, Depth);
3400 }
3401 
3402 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3403                                           unsigned Depth) const {
3404   EVT VT = Op.getValueType();
3405   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3406   unsigned VTBits = VT.getScalarSizeInBits();
3407   unsigned NumElts = DemandedElts.getBitWidth();
3408   unsigned Tmp, Tmp2;
3409   unsigned FirstAnswer = 1;
3410 
3411   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3412     const APInt &Val = C->getAPIntValue();
3413     return Val.getNumSignBits();
3414   }
3415 
3416   if (Depth >= 6)
3417     return 1;  // Limit search depth.
3418 
3419   if (!DemandedElts)
3420     return 1;  // No demanded elts, better to assume we don't know anything.
3421 
3422   unsigned Opcode = Op.getOpcode();
3423   switch (Opcode) {
3424   default: break;
3425   case ISD::AssertSext:
3426     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3427     return VTBits-Tmp+1;
3428   case ISD::AssertZext:
3429     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3430     return VTBits-Tmp;
3431 
3432   case ISD::BUILD_VECTOR:
3433     Tmp = VTBits;
3434     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3435       if (!DemandedElts[i])
3436         continue;
3437 
3438       SDValue SrcOp = Op.getOperand(i);
3439       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3440 
3441       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3442       if (SrcOp.getValueSizeInBits() != VTBits) {
3443         assert(SrcOp.getValueSizeInBits() > VTBits &&
3444                "Expected BUILD_VECTOR implicit truncation");
3445         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3446         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3447       }
3448       Tmp = std::min(Tmp, Tmp2);
3449     }
3450     return Tmp;
3451 
3452   case ISD::VECTOR_SHUFFLE: {
3453     // Collect the minimum number of sign bits that are shared by every vector
3454     // element referenced by the shuffle.
3455     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3456     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3457     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3458     for (unsigned i = 0; i != NumElts; ++i) {
3459       int M = SVN->getMaskElt(i);
3460       if (!DemandedElts[i])
3461         continue;
3462       // For UNDEF elements, we don't know anything about the common state of
3463       // the shuffle result.
3464       if (M < 0)
3465         return 1;
3466       if ((unsigned)M < NumElts)
3467         DemandedLHS.setBit((unsigned)M % NumElts);
3468       else
3469         DemandedRHS.setBit((unsigned)M % NumElts);
3470     }
3471     Tmp = std::numeric_limits<unsigned>::max();
3472     if (!!DemandedLHS)
3473       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3474     if (!!DemandedRHS) {
3475       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3476       Tmp = std::min(Tmp, Tmp2);
3477     }
3478     // If we don't know anything, early out and try computeKnownBits fall-back.
3479     if (Tmp == 1)
3480       break;
3481     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3482     return Tmp;
3483   }
3484 
3485   case ISD::BITCAST: {
3486     SDValue N0 = Op.getOperand(0);
3487     EVT SrcVT = N0.getValueType();
3488     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3489 
3490     // Ignore bitcasts from unsupported types..
3491     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3492       break;
3493 
3494     // Fast handling of 'identity' bitcasts.
3495     if (VTBits == SrcBits)
3496       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3497 
3498     bool IsLE = getDataLayout().isLittleEndian();
3499 
3500     // Bitcast 'large element' scalar/vector to 'small element' vector.
3501     if ((SrcBits % VTBits) == 0) {
3502       assert(VT.isVector() && "Expected bitcast to vector");
3503 
3504       unsigned Scale = SrcBits / VTBits;
3505       APInt SrcDemandedElts(NumElts / Scale, 0);
3506       for (unsigned i = 0; i != NumElts; ++i)
3507         if (DemandedElts[i])
3508           SrcDemandedElts.setBit(i / Scale);
3509 
3510       // Fast case - sign splat can be simply split across the small elements.
3511       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3512       if (Tmp == SrcBits)
3513         return VTBits;
3514 
3515       // Slow case - determine how far the sign extends into each sub-element.
3516       Tmp2 = VTBits;
3517       for (unsigned i = 0; i != NumElts; ++i)
3518         if (DemandedElts[i]) {
3519           unsigned SubOffset = i % Scale;
3520           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3521           SubOffset = SubOffset * VTBits;
3522           if (Tmp <= SubOffset)
3523             return 1;
3524           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3525         }
3526       return Tmp2;
3527     }
3528     break;
3529   }
3530 
3531   case ISD::SIGN_EXTEND:
3532     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3533     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3534   case ISD::SIGN_EXTEND_INREG:
3535     // Max of the input and what this extends.
3536     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3537     Tmp = VTBits-Tmp+1;
3538     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3539     return std::max(Tmp, Tmp2);
3540   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3541     SDValue Src = Op.getOperand(0);
3542     EVT SrcVT = Src.getValueType();
3543     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3544     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3545     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3546   }
3547 
3548   case ISD::SRA:
3549     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3550     // SRA X, C   -> adds C sign bits.
3551     if (ConstantSDNode *C =
3552             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3553       APInt ShiftVal = C->getAPIntValue();
3554       ShiftVal += Tmp;
3555       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3556     }
3557     return Tmp;
3558   case ISD::SHL:
3559     if (ConstantSDNode *C =
3560             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3561       // shl destroys sign bits.
3562       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3563       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3564           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3565       return Tmp - C->getZExtValue();
3566     }
3567     break;
3568   case ISD::AND:
3569   case ISD::OR:
3570   case ISD::XOR:    // NOT is handled here.
3571     // Logical binary ops preserve the number of sign bits at the worst.
3572     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3573     if (Tmp != 1) {
3574       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3575       FirstAnswer = std::min(Tmp, Tmp2);
3576       // We computed what we know about the sign bits as our first
3577       // answer. Now proceed to the generic code that uses
3578       // computeKnownBits, and pick whichever answer is better.
3579     }
3580     break;
3581 
3582   case ISD::SELECT:
3583   case ISD::VSELECT:
3584     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3585     if (Tmp == 1) return 1;  // Early out.
3586     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3587     return std::min(Tmp, Tmp2);
3588   case ISD::SELECT_CC:
3589     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3590     if (Tmp == 1) return 1;  // Early out.
3591     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3592     return std::min(Tmp, Tmp2);
3593 
3594   case ISD::SMIN:
3595   case ISD::SMAX: {
3596     // If we have a clamp pattern, we know that the number of sign bits will be
3597     // the minimum of the clamp min/max range.
3598     bool IsMax = (Opcode == ISD::SMAX);
3599     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3600     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3601       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3602         CstHigh =
3603             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3604     if (CstLow && CstHigh) {
3605       if (!IsMax)
3606         std::swap(CstLow, CstHigh);
3607       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3608         Tmp = CstLow->getAPIntValue().getNumSignBits();
3609         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3610         return std::min(Tmp, Tmp2);
3611       }
3612     }
3613 
3614     // Fallback - just get the minimum number of sign bits of the operands.
3615     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3616     if (Tmp == 1)
3617       return 1;  // Early out.
3618     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3619     return std::min(Tmp, Tmp2);
3620   }
3621   case ISD::UMIN:
3622   case ISD::UMAX:
3623     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3624     if (Tmp == 1)
3625       return 1;  // Early out.
3626     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3627     return std::min(Tmp, Tmp2);
3628   case ISD::SADDO:
3629   case ISD::UADDO:
3630   case ISD::SSUBO:
3631   case ISD::USUBO:
3632   case ISD::SMULO:
3633   case ISD::UMULO:
3634     if (Op.getResNo() != 1)
3635       break;
3636     // The boolean result conforms to getBooleanContents.  Fall through.
3637     // If setcc returns 0/-1, all bits are sign bits.
3638     // We know that we have an integer-based boolean since these operations
3639     // are only available for integer.
3640     if (TLI->getBooleanContents(VT.isVector(), false) ==
3641         TargetLowering::ZeroOrNegativeOneBooleanContent)
3642       return VTBits;
3643     break;
3644   case ISD::SETCC:
3645     // If setcc returns 0/-1, all bits are sign bits.
3646     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3647         TargetLowering::ZeroOrNegativeOneBooleanContent)
3648       return VTBits;
3649     break;
3650   case ISD::ROTL:
3651   case ISD::ROTR:
3652     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3653       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3654 
3655       // Handle rotate right by N like a rotate left by 32-N.
3656       if (Opcode == ISD::ROTR)
3657         RotAmt = (VTBits - RotAmt) % VTBits;
3658 
3659       // If we aren't rotating out all of the known-in sign bits, return the
3660       // number that are left.  This handles rotl(sext(x), 1) for example.
3661       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3662       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3663     }
3664     break;
3665   case ISD::ADD:
3666   case ISD::ADDC:
3667     // Add can have at most one carry bit.  Thus we know that the output
3668     // is, at worst, one more bit than the inputs.
3669     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3670     if (Tmp == 1) return 1;  // Early out.
3671 
3672     // Special case decrementing a value (ADD X, -1):
3673     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3674       if (CRHS->isAllOnesValue()) {
3675         KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3676 
3677         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3678         // sign bits set.
3679         if ((Known.Zero | 1).isAllOnesValue())
3680           return VTBits;
3681 
3682         // If we are subtracting one from a positive number, there is no carry
3683         // out of the result.
3684         if (Known.isNonNegative())
3685           return Tmp;
3686       }
3687 
3688     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3689     if (Tmp2 == 1) return 1;
3690     return std::min(Tmp, Tmp2)-1;
3691 
3692   case ISD::SUB:
3693     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3694     if (Tmp2 == 1) return 1;
3695 
3696     // Handle NEG.
3697     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3698       if (CLHS->isNullValue()) {
3699         KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3700         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3701         // sign bits set.
3702         if ((Known.Zero | 1).isAllOnesValue())
3703           return VTBits;
3704 
3705         // If the input is known to be positive (the sign bit is known clear),
3706         // the output of the NEG has the same number of sign bits as the input.
3707         if (Known.isNonNegative())
3708           return Tmp2;
3709 
3710         // Otherwise, we treat this like a SUB.
3711       }
3712 
3713     // Sub can have at most one carry bit.  Thus we know that the output
3714     // is, at worst, one more bit than the inputs.
3715     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3716     if (Tmp == 1) return 1;  // Early out.
3717     return std::min(Tmp, Tmp2)-1;
3718   case ISD::TRUNCATE: {
3719     // Check if the sign bits of source go down as far as the truncated value.
3720     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3721     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3722     if (NumSrcSignBits > (NumSrcBits - VTBits))
3723       return NumSrcSignBits - (NumSrcBits - VTBits);
3724     break;
3725   }
3726   case ISD::EXTRACT_ELEMENT: {
3727     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3728     const int BitWidth = Op.getValueSizeInBits();
3729     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3730 
3731     // Get reverse index (starting from 1), Op1 value indexes elements from
3732     // little end. Sign starts at big end.
3733     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3734 
3735     // If the sign portion ends in our element the subtraction gives correct
3736     // result. Otherwise it gives either negative or > bitwidth result
3737     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3738   }
3739   case ISD::INSERT_VECTOR_ELT: {
3740     SDValue InVec = Op.getOperand(0);
3741     SDValue InVal = Op.getOperand(1);
3742     SDValue EltNo = Op.getOperand(2);
3743 
3744     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3745     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3746       // If we know the element index, split the demand between the
3747       // source vector and the inserted element.
3748       unsigned EltIdx = CEltNo->getZExtValue();
3749 
3750       // If we demand the inserted element then get its sign bits.
3751       Tmp = std::numeric_limits<unsigned>::max();
3752       if (DemandedElts[EltIdx]) {
3753         // TODO - handle implicit truncation of inserted elements.
3754         if (InVal.getScalarValueSizeInBits() != VTBits)
3755           break;
3756         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3757       }
3758 
3759       // If we demand the source vector then get its sign bits, and determine
3760       // the minimum.
3761       APInt VectorElts = DemandedElts;
3762       VectorElts.clearBit(EltIdx);
3763       if (!!VectorElts) {
3764         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3765         Tmp = std::min(Tmp, Tmp2);
3766       }
3767     } else {
3768       // Unknown element index, so ignore DemandedElts and demand them all.
3769       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3770       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3771       Tmp = std::min(Tmp, Tmp2);
3772     }
3773     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3774     return Tmp;
3775   }
3776   case ISD::EXTRACT_VECTOR_ELT: {
3777     SDValue InVec = Op.getOperand(0);
3778     SDValue EltNo = Op.getOperand(1);
3779     EVT VecVT = InVec.getValueType();
3780     const unsigned BitWidth = Op.getValueSizeInBits();
3781     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3782     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3783 
3784     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3785     // anything about sign bits. But if the sizes match we can derive knowledge
3786     // about sign bits from the vector operand.
3787     if (BitWidth != EltBitWidth)
3788       break;
3789 
3790     // If we know the element index, just demand that vector element, else for
3791     // an unknown element index, ignore DemandedElts and demand them all.
3792     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3793     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3794     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3795       DemandedSrcElts =
3796           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3797 
3798     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3799   }
3800   case ISD::EXTRACT_SUBVECTOR: {
3801     // If we know the element index, just demand that subvector elements,
3802     // otherwise demand them all.
3803     SDValue Src = Op.getOperand(0);
3804     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3805     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3806     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3807       // Offset the demanded elts by the subvector index.
3808       uint64_t Idx = SubIdx->getZExtValue();
3809       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3810       return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3811     }
3812     return ComputeNumSignBits(Src, Depth + 1);
3813   }
3814   case ISD::CONCAT_VECTORS: {
3815     // Determine the minimum number of sign bits across all demanded
3816     // elts of the input vectors. Early out if the result is already 1.
3817     Tmp = std::numeric_limits<unsigned>::max();
3818     EVT SubVectorVT = Op.getOperand(0).getValueType();
3819     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3820     unsigned NumSubVectors = Op.getNumOperands();
3821     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3822       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3823       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3824       if (!DemandedSub)
3825         continue;
3826       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3827       Tmp = std::min(Tmp, Tmp2);
3828     }
3829     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3830     return Tmp;
3831   }
3832   case ISD::INSERT_SUBVECTOR: {
3833     // If we know the element index, demand any elements from the subvector and
3834     // the remainder from the src its inserted into, otherwise demand them all.
3835     SDValue Src = Op.getOperand(0);
3836     SDValue Sub = Op.getOperand(1);
3837     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3838     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3839     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3840       Tmp = std::numeric_limits<unsigned>::max();
3841       uint64_t Idx = SubIdx->getZExtValue();
3842       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3843       if (!!DemandedSubElts) {
3844         Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3845         if (Tmp == 1) return 1; // early-out
3846       }
3847       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
3848       APInt DemandedSrcElts = DemandedElts & ~SubMask;
3849       if (!!DemandedSrcElts) {
3850         Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3851         Tmp = std::min(Tmp, Tmp2);
3852       }
3853       assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3854       return Tmp;
3855     }
3856 
3857     // Not able to determine the index so just assume worst case.
3858     Tmp = ComputeNumSignBits(Sub, Depth + 1);
3859     if (Tmp == 1) return 1; // early-out
3860     Tmp2 = ComputeNumSignBits(Src, Depth + 1);
3861     Tmp = std::min(Tmp, Tmp2);
3862     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3863     return Tmp;
3864   }
3865   }
3866 
3867   // If we are looking at the loaded value of the SDNode.
3868   if (Op.getResNo() == 0) {
3869     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3870     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3871       unsigned ExtType = LD->getExtensionType();
3872       switch (ExtType) {
3873       default: break;
3874       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3875         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3876         return VTBits - Tmp + 1;
3877       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3878         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3879         return VTBits - Tmp;
3880       case ISD::NON_EXTLOAD:
3881         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
3882           // We only need to handle vectors - computeKnownBits should handle
3883           // scalar cases.
3884           Type *CstTy = Cst->getType();
3885           if (CstTy->isVectorTy() &&
3886               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
3887             Tmp = VTBits;
3888             for (unsigned i = 0; i != NumElts; ++i) {
3889               if (!DemandedElts[i])
3890                 continue;
3891               if (Constant *Elt = Cst->getAggregateElement(i)) {
3892                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3893                   const APInt &Value = CInt->getValue();
3894                   Tmp = std::min(Tmp, Value.getNumSignBits());
3895                   continue;
3896                 }
3897                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3898                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
3899                   Tmp = std::min(Tmp, Value.getNumSignBits());
3900                   continue;
3901                 }
3902               }
3903               // Unknown type. Conservatively assume no bits match sign bit.
3904               return 1;
3905             }
3906             return Tmp;
3907           }
3908         }
3909         break;
3910       }
3911     }
3912   }
3913 
3914   // Allow the target to implement this method for its nodes.
3915   if (Opcode >= ISD::BUILTIN_OP_END ||
3916       Opcode == ISD::INTRINSIC_WO_CHAIN ||
3917       Opcode == ISD::INTRINSIC_W_CHAIN ||
3918       Opcode == ISD::INTRINSIC_VOID) {
3919     unsigned NumBits =
3920         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3921     if (NumBits > 1)
3922       FirstAnswer = std::max(FirstAnswer, NumBits);
3923   }
3924 
3925   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3926   // use this information.
3927   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
3928 
3929   APInt Mask;
3930   if (Known.isNonNegative()) {        // sign bit is 0
3931     Mask = Known.Zero;
3932   } else if (Known.isNegative()) {  // sign bit is 1;
3933     Mask = Known.One;
3934   } else {
3935     // Nothing known.
3936     return FirstAnswer;
3937   }
3938 
3939   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3940   // the number of identical bits in the top of the input value.
3941   Mask = ~Mask;
3942   Mask <<= Mask.getBitWidth()-VTBits;
3943   // Return # leading zeros.  We use 'min' here in case Val was zero before
3944   // shifting.  We don't want to return '64' as for an i32 "0".
3945   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3946 }
3947 
3948 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3949   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3950       !isa<ConstantSDNode>(Op.getOperand(1)))
3951     return false;
3952 
3953   if (Op.getOpcode() == ISD::OR &&
3954       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
3955     return false;
3956 
3957   return true;
3958 }
3959 
3960 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
3961   // If we're told that NaNs won't happen, assume they won't.
3962   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
3963     return true;
3964 
3965   if (Depth >= 6)
3966     return false; // Limit search depth.
3967 
3968   // TODO: Handle vectors.
3969   // If the value is a constant, we can obviously see if it is a NaN or not.
3970   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
3971     return !C->getValueAPF().isNaN() ||
3972            (SNaN && !C->getValueAPF().isSignaling());
3973   }
3974 
3975   unsigned Opcode = Op.getOpcode();
3976   switch (Opcode) {
3977   case ISD::FADD:
3978   case ISD::FSUB:
3979   case ISD::FMUL:
3980   case ISD::FDIV:
3981   case ISD::FREM:
3982   case ISD::FSIN:
3983   case ISD::FCOS: {
3984     if (SNaN)
3985       return true;
3986     // TODO: Need isKnownNeverInfinity
3987     return false;
3988   }
3989   case ISD::FCANONICALIZE:
3990   case ISD::FEXP:
3991   case ISD::FEXP2:
3992   case ISD::FTRUNC:
3993   case ISD::FFLOOR:
3994   case ISD::FCEIL:
3995   case ISD::FROUND:
3996   case ISD::FRINT:
3997   case ISD::FNEARBYINT: {
3998     if (SNaN)
3999       return true;
4000     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4001   }
4002   case ISD::FABS:
4003   case ISD::FNEG:
4004   case ISD::FCOPYSIGN: {
4005     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4006   }
4007   case ISD::SELECT:
4008     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4009            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4010   case ISD::FP_EXTEND:
4011   case ISD::FP_ROUND: {
4012     if (SNaN)
4013       return true;
4014     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4015   }
4016   case ISD::SINT_TO_FP:
4017   case ISD::UINT_TO_FP:
4018     return true;
4019   case ISD::FMA:
4020   case ISD::FMAD: {
4021     if (SNaN)
4022       return true;
4023     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4024            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4025            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4026   }
4027   case ISD::FSQRT: // Need is known positive
4028   case ISD::FLOG:
4029   case ISD::FLOG2:
4030   case ISD::FLOG10:
4031   case ISD::FPOWI:
4032   case ISD::FPOW: {
4033     if (SNaN)
4034       return true;
4035     // TODO: Refine on operand
4036     return false;
4037   }
4038   case ISD::FMINNUM:
4039   case ISD::FMAXNUM: {
4040     // Only one needs to be known not-nan, since it will be returned if the
4041     // other ends up being one.
4042     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4043            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4044   }
4045   case ISD::FMINNUM_IEEE:
4046   case ISD::FMAXNUM_IEEE: {
4047     if (SNaN)
4048       return true;
4049     // This can return a NaN if either operand is an sNaN, or if both operands
4050     // are NaN.
4051     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4052             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4053            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4054             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4055   }
4056   case ISD::FMINIMUM:
4057   case ISD::FMAXIMUM: {
4058     // TODO: Does this quiet or return the origina NaN as-is?
4059     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4060            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4061   }
4062   case ISD::EXTRACT_VECTOR_ELT: {
4063     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4064   }
4065   default:
4066     if (Opcode >= ISD::BUILTIN_OP_END ||
4067         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4068         Opcode == ISD::INTRINSIC_W_CHAIN ||
4069         Opcode == ISD::INTRINSIC_VOID) {
4070       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4071     }
4072 
4073     return false;
4074   }
4075 }
4076 
4077 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4078   assert(Op.getValueType().isFloatingPoint() &&
4079          "Floating point type expected");
4080 
4081   // If the value is a constant, we can obviously see if it is a zero or not.
4082   // TODO: Add BuildVector support.
4083   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4084     return !C->isZero();
4085   return false;
4086 }
4087 
4088 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4089   assert(!Op.getValueType().isFloatingPoint() &&
4090          "Floating point types unsupported - use isKnownNeverZeroFloat");
4091 
4092   // If the value is a constant, we can obviously see if it is a zero or not.
4093   if (ISD::matchUnaryPredicate(
4094           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4095     return true;
4096 
4097   // TODO: Recognize more cases here.
4098   switch (Op.getOpcode()) {
4099   default: break;
4100   case ISD::OR:
4101     if (isKnownNeverZero(Op.getOperand(1)) ||
4102         isKnownNeverZero(Op.getOperand(0)))
4103       return true;
4104     break;
4105   }
4106 
4107   return false;
4108 }
4109 
4110 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4111   // Check the obvious case.
4112   if (A == B) return true;
4113 
4114   // For for negative and positive zero.
4115   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4116     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4117       if (CA->isZero() && CB->isZero()) return true;
4118 
4119   // Otherwise they may not be equal.
4120   return false;
4121 }
4122 
4123 // FIXME: unify with llvm::haveNoCommonBitsSet.
4124 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4125 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4126   assert(A.getValueType() == B.getValueType() &&
4127          "Values must have the same type");
4128   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4129 }
4130 
4131 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4132                                 ArrayRef<SDValue> Ops,
4133                                 SelectionDAG &DAG) {
4134   int NumOps = Ops.size();
4135   assert(NumOps != 0 && "Can't build an empty vector!");
4136   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4137          "Incorrect element count in BUILD_VECTOR!");
4138 
4139   // BUILD_VECTOR of UNDEFs is UNDEF.
4140   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4141     return DAG.getUNDEF(VT);
4142 
4143   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4144   SDValue IdentitySrc;
4145   bool IsIdentity = true;
4146   for (int i = 0; i != NumOps; ++i) {
4147     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4148         Ops[i].getOperand(0).getValueType() != VT ||
4149         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4150         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4151         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4152       IsIdentity = false;
4153       break;
4154     }
4155     IdentitySrc = Ops[i].getOperand(0);
4156   }
4157   if (IsIdentity)
4158     return IdentitySrc;
4159 
4160   return SDValue();
4161 }
4162 
4163 /// Try to simplify vector concatenation to an input value, undef, or build
4164 /// vector.
4165 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4166                                   ArrayRef<SDValue> Ops,
4167                                   SelectionDAG &DAG) {
4168   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4169   assert(llvm::all_of(Ops,
4170                       [Ops](SDValue Op) {
4171                         return Ops[0].getValueType() == Op.getValueType();
4172                       }) &&
4173          "Concatenation of vectors with inconsistent value types!");
4174   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4175              VT.getVectorNumElements() &&
4176          "Incorrect element count in vector concatenation!");
4177 
4178   if (Ops.size() == 1)
4179     return Ops[0];
4180 
4181   // Concat of UNDEFs is UNDEF.
4182   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4183     return DAG.getUNDEF(VT);
4184 
4185   // Scan the operands and look for extract operations from a single source
4186   // that correspond to insertion at the same location via this concatenation:
4187   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4188   SDValue IdentitySrc;
4189   bool IsIdentity = true;
4190   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4191     SDValue Op = Ops[i];
4192     unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements();
4193     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4194         Op.getOperand(0).getValueType() != VT ||
4195         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4196         !isa<ConstantSDNode>(Op.getOperand(1)) ||
4197         Op.getConstantOperandVal(1) != IdentityIndex) {
4198       IsIdentity = false;
4199       break;
4200     }
4201     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4202            "Unexpected identity source vector for concat of extracts");
4203     IdentitySrc = Op.getOperand(0);
4204   }
4205   if (IsIdentity) {
4206     assert(IdentitySrc && "Failed to set source vector of extracts");
4207     return IdentitySrc;
4208   }
4209 
4210   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4211   // simplified to one big BUILD_VECTOR.
4212   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4213   EVT SVT = VT.getScalarType();
4214   SmallVector<SDValue, 16> Elts;
4215   for (SDValue Op : Ops) {
4216     EVT OpVT = Op.getValueType();
4217     if (Op.isUndef())
4218       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4219     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4220       Elts.append(Op->op_begin(), Op->op_end());
4221     else
4222       return SDValue();
4223   }
4224 
4225   // BUILD_VECTOR requires all inputs to be of the same type, find the
4226   // maximum type and extend them all.
4227   for (SDValue Op : Elts)
4228     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4229 
4230   if (SVT.bitsGT(VT.getScalarType()))
4231     for (SDValue &Op : Elts)
4232       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4233                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4234                : DAG.getSExtOrTrunc(Op, DL, SVT);
4235 
4236   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4237   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4238   return V;
4239 }
4240 
4241 /// Gets or creates the specified node.
4242 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4243   FoldingSetNodeID ID;
4244   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4245   void *IP = nullptr;
4246   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4247     return SDValue(E, 0);
4248 
4249   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4250                               getVTList(VT));
4251   CSEMap.InsertNode(N, IP);
4252 
4253   InsertNode(N);
4254   SDValue V = SDValue(N, 0);
4255   NewSDValueDbgMsg(V, "Creating new node: ", this);
4256   return V;
4257 }
4258 
4259 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4260                               SDValue Operand, const SDNodeFlags Flags) {
4261   // Constant fold unary operations with an integer constant operand. Even
4262   // opaque constant will be folded, because the folding of unary operations
4263   // doesn't create new constants with different values. Nevertheless, the
4264   // opaque flag is preserved during folding to prevent future folding with
4265   // other constants.
4266   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4267     const APInt &Val = C->getAPIntValue();
4268     switch (Opcode) {
4269     default: break;
4270     case ISD::SIGN_EXTEND:
4271       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4272                          C->isTargetOpcode(), C->isOpaque());
4273     case ISD::TRUNCATE:
4274       if (C->isOpaque())
4275         break;
4276       LLVM_FALLTHROUGH;
4277     case ISD::ANY_EXTEND:
4278     case ISD::ZERO_EXTEND:
4279       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4280                          C->isTargetOpcode(), C->isOpaque());
4281     case ISD::UINT_TO_FP:
4282     case ISD::SINT_TO_FP: {
4283       APFloat apf(EVTToAPFloatSemantics(VT),
4284                   APInt::getNullValue(VT.getSizeInBits()));
4285       (void)apf.convertFromAPInt(Val,
4286                                  Opcode==ISD::SINT_TO_FP,
4287                                  APFloat::rmNearestTiesToEven);
4288       return getConstantFP(apf, DL, VT);
4289     }
4290     case ISD::BITCAST:
4291       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4292         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4293       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4294         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4295       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4296         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4297       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4298         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4299       break;
4300     case ISD::ABS:
4301       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4302                          C->isOpaque());
4303     case ISD::BITREVERSE:
4304       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4305                          C->isOpaque());
4306     case ISD::BSWAP:
4307       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4308                          C->isOpaque());
4309     case ISD::CTPOP:
4310       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4311                          C->isOpaque());
4312     case ISD::CTLZ:
4313     case ISD::CTLZ_ZERO_UNDEF:
4314       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4315                          C->isOpaque());
4316     case ISD::CTTZ:
4317     case ISD::CTTZ_ZERO_UNDEF:
4318       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4319                          C->isOpaque());
4320     case ISD::FP16_TO_FP: {
4321       bool Ignored;
4322       APFloat FPV(APFloat::IEEEhalf(),
4323                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4324 
4325       // This can return overflow, underflow, or inexact; we don't care.
4326       // FIXME need to be more flexible about rounding mode.
4327       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4328                         APFloat::rmNearestTiesToEven, &Ignored);
4329       return getConstantFP(FPV, DL, VT);
4330     }
4331     }
4332   }
4333 
4334   // Constant fold unary operations with a floating point constant operand.
4335   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4336     APFloat V = C->getValueAPF();    // make copy
4337     switch (Opcode) {
4338     case ISD::FNEG:
4339       V.changeSign();
4340       return getConstantFP(V, DL, VT);
4341     case ISD::FABS:
4342       V.clearSign();
4343       return getConstantFP(V, DL, VT);
4344     case ISD::FCEIL: {
4345       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4346       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4347         return getConstantFP(V, DL, VT);
4348       break;
4349     }
4350     case ISD::FTRUNC: {
4351       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4352       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4353         return getConstantFP(V, DL, VT);
4354       break;
4355     }
4356     case ISD::FFLOOR: {
4357       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4358       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4359         return getConstantFP(V, DL, VT);
4360       break;
4361     }
4362     case ISD::FP_EXTEND: {
4363       bool ignored;
4364       // This can return overflow, underflow, or inexact; we don't care.
4365       // FIXME need to be more flexible about rounding mode.
4366       (void)V.convert(EVTToAPFloatSemantics(VT),
4367                       APFloat::rmNearestTiesToEven, &ignored);
4368       return getConstantFP(V, DL, VT);
4369     }
4370     case ISD::FP_TO_SINT:
4371     case ISD::FP_TO_UINT: {
4372       bool ignored;
4373       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4374       // FIXME need to be more flexible about rounding mode.
4375       APFloat::opStatus s =
4376           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4377       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4378         break;
4379       return getConstant(IntVal, DL, VT);
4380     }
4381     case ISD::BITCAST:
4382       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4383         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4384       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4385         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4386       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4387         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4388       break;
4389     case ISD::FP_TO_FP16: {
4390       bool Ignored;
4391       // This can return overflow, underflow, or inexact; we don't care.
4392       // FIXME need to be more flexible about rounding mode.
4393       (void)V.convert(APFloat::IEEEhalf(),
4394                       APFloat::rmNearestTiesToEven, &Ignored);
4395       return getConstant(V.bitcastToAPInt(), DL, VT);
4396     }
4397     }
4398   }
4399 
4400   // Constant fold unary operations with a vector integer or float operand.
4401   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4402     if (BV->isConstant()) {
4403       switch (Opcode) {
4404       default:
4405         // FIXME: Entirely reasonable to perform folding of other unary
4406         // operations here as the need arises.
4407         break;
4408       case ISD::FNEG:
4409       case ISD::FABS:
4410       case ISD::FCEIL:
4411       case ISD::FTRUNC:
4412       case ISD::FFLOOR:
4413       case ISD::FP_EXTEND:
4414       case ISD::FP_TO_SINT:
4415       case ISD::FP_TO_UINT:
4416       case ISD::TRUNCATE:
4417       case ISD::ANY_EXTEND:
4418       case ISD::ZERO_EXTEND:
4419       case ISD::SIGN_EXTEND:
4420       case ISD::UINT_TO_FP:
4421       case ISD::SINT_TO_FP:
4422       case ISD::ABS:
4423       case ISD::BITREVERSE:
4424       case ISD::BSWAP:
4425       case ISD::CTLZ:
4426       case ISD::CTLZ_ZERO_UNDEF:
4427       case ISD::CTTZ:
4428       case ISD::CTTZ_ZERO_UNDEF:
4429       case ISD::CTPOP: {
4430         SDValue Ops = { Operand };
4431         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4432           return Fold;
4433       }
4434       }
4435     }
4436   }
4437 
4438   unsigned OpOpcode = Operand.getNode()->getOpcode();
4439   switch (Opcode) {
4440   case ISD::TokenFactor:
4441   case ISD::MERGE_VALUES:
4442   case ISD::CONCAT_VECTORS:
4443     return Operand;         // Factor, merge or concat of one node?  No need.
4444   case ISD::BUILD_VECTOR: {
4445     // Attempt to simplify BUILD_VECTOR.
4446     SDValue Ops[] = {Operand};
4447     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4448       return V;
4449     break;
4450   }
4451   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4452   case ISD::FP_EXTEND:
4453     assert(VT.isFloatingPoint() &&
4454            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4455     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4456     assert((!VT.isVector() ||
4457             VT.getVectorNumElements() ==
4458             Operand.getValueType().getVectorNumElements()) &&
4459            "Vector element count mismatch!");
4460     assert(Operand.getValueType().bitsLT(VT) &&
4461            "Invalid fpext node, dst < src!");
4462     if (Operand.isUndef())
4463       return getUNDEF(VT);
4464     break;
4465   case ISD::FP_TO_SINT:
4466   case ISD::FP_TO_UINT:
4467     if (Operand.isUndef())
4468       return getUNDEF(VT);
4469     break;
4470   case ISD::SINT_TO_FP:
4471   case ISD::UINT_TO_FP:
4472     // [us]itofp(undef) = 0, because the result value is bounded.
4473     if (Operand.isUndef())
4474       return getConstantFP(0.0, DL, VT);
4475     break;
4476   case ISD::SIGN_EXTEND:
4477     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4478            "Invalid SIGN_EXTEND!");
4479     assert(VT.isVector() == Operand.getValueType().isVector() &&
4480            "SIGN_EXTEND result type type should be vector iff the operand "
4481            "type is vector!");
4482     if (Operand.getValueType() == VT) return Operand;   // noop extension
4483     assert((!VT.isVector() ||
4484             VT.getVectorNumElements() ==
4485             Operand.getValueType().getVectorNumElements()) &&
4486            "Vector element count mismatch!");
4487     assert(Operand.getValueType().bitsLT(VT) &&
4488            "Invalid sext node, dst < src!");
4489     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4490       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4491     else if (OpOpcode == ISD::UNDEF)
4492       // sext(undef) = 0, because the top bits will all be the same.
4493       return getConstant(0, DL, VT);
4494     break;
4495   case ISD::ZERO_EXTEND:
4496     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4497            "Invalid ZERO_EXTEND!");
4498     assert(VT.isVector() == Operand.getValueType().isVector() &&
4499            "ZERO_EXTEND result type type should be vector iff the operand "
4500            "type is vector!");
4501     if (Operand.getValueType() == VT) return Operand;   // noop extension
4502     assert((!VT.isVector() ||
4503             VT.getVectorNumElements() ==
4504             Operand.getValueType().getVectorNumElements()) &&
4505            "Vector element count mismatch!");
4506     assert(Operand.getValueType().bitsLT(VT) &&
4507            "Invalid zext node, dst < src!");
4508     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4509       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4510     else if (OpOpcode == ISD::UNDEF)
4511       // zext(undef) = 0, because the top bits will be zero.
4512       return getConstant(0, DL, VT);
4513     break;
4514   case ISD::ANY_EXTEND:
4515     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4516            "Invalid ANY_EXTEND!");
4517     assert(VT.isVector() == Operand.getValueType().isVector() &&
4518            "ANY_EXTEND result type type should be vector iff the operand "
4519            "type is vector!");
4520     if (Operand.getValueType() == VT) return Operand;   // noop extension
4521     assert((!VT.isVector() ||
4522             VT.getVectorNumElements() ==
4523             Operand.getValueType().getVectorNumElements()) &&
4524            "Vector element count mismatch!");
4525     assert(Operand.getValueType().bitsLT(VT) &&
4526            "Invalid anyext node, dst < src!");
4527 
4528     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4529         OpOpcode == ISD::ANY_EXTEND)
4530       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4531       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4532     else if (OpOpcode == ISD::UNDEF)
4533       return getUNDEF(VT);
4534 
4535     // (ext (trunc x)) -> x
4536     if (OpOpcode == ISD::TRUNCATE) {
4537       SDValue OpOp = Operand.getOperand(0);
4538       if (OpOp.getValueType() == VT) {
4539         transferDbgValues(Operand, OpOp);
4540         return OpOp;
4541       }
4542     }
4543     break;
4544   case ISD::TRUNCATE:
4545     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4546            "Invalid TRUNCATE!");
4547     assert(VT.isVector() == Operand.getValueType().isVector() &&
4548            "TRUNCATE result type type should be vector iff the operand "
4549            "type is vector!");
4550     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4551     assert((!VT.isVector() ||
4552             VT.getVectorNumElements() ==
4553             Operand.getValueType().getVectorNumElements()) &&
4554            "Vector element count mismatch!");
4555     assert(Operand.getValueType().bitsGT(VT) &&
4556            "Invalid truncate node, src < dst!");
4557     if (OpOpcode == ISD::TRUNCATE)
4558       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4559     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4560         OpOpcode == ISD::ANY_EXTEND) {
4561       // If the source is smaller than the dest, we still need an extend.
4562       if (Operand.getOperand(0).getValueType().getScalarType()
4563             .bitsLT(VT.getScalarType()))
4564         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4565       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4566         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4567       return Operand.getOperand(0);
4568     }
4569     if (OpOpcode == ISD::UNDEF)
4570       return getUNDEF(VT);
4571     break;
4572   case ISD::ANY_EXTEND_VECTOR_INREG:
4573   case ISD::ZERO_EXTEND_VECTOR_INREG:
4574   case ISD::SIGN_EXTEND_VECTOR_INREG:
4575     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4576     assert(Operand.getValueType().bitsLE(VT) &&
4577            "The input must be the same size or smaller than the result.");
4578     assert(VT.getVectorNumElements() <
4579              Operand.getValueType().getVectorNumElements() &&
4580            "The destination vector type must have fewer lanes than the input.");
4581     break;
4582   case ISD::ABS:
4583     assert(VT.isInteger() && VT == Operand.getValueType() &&
4584            "Invalid ABS!");
4585     if (OpOpcode == ISD::UNDEF)
4586       return getUNDEF(VT);
4587     break;
4588   case ISD::BSWAP:
4589     assert(VT.isInteger() && VT == Operand.getValueType() &&
4590            "Invalid BSWAP!");
4591     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4592            "BSWAP types must be a multiple of 16 bits!");
4593     if (OpOpcode == ISD::UNDEF)
4594       return getUNDEF(VT);
4595     break;
4596   case ISD::BITREVERSE:
4597     assert(VT.isInteger() && VT == Operand.getValueType() &&
4598            "Invalid BITREVERSE!");
4599     if (OpOpcode == ISD::UNDEF)
4600       return getUNDEF(VT);
4601     break;
4602   case ISD::BITCAST:
4603     // Basic sanity checking.
4604     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4605            "Cannot BITCAST between types of different sizes!");
4606     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4607     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4608       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4609     if (OpOpcode == ISD::UNDEF)
4610       return getUNDEF(VT);
4611     break;
4612   case ISD::SCALAR_TO_VECTOR:
4613     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4614            (VT.getVectorElementType() == Operand.getValueType() ||
4615             (VT.getVectorElementType().isInteger() &&
4616              Operand.getValueType().isInteger() &&
4617              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4618            "Illegal SCALAR_TO_VECTOR node!");
4619     if (OpOpcode == ISD::UNDEF)
4620       return getUNDEF(VT);
4621     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4622     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4623         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4624         Operand.getConstantOperandVal(1) == 0 &&
4625         Operand.getOperand(0).getValueType() == VT)
4626       return Operand.getOperand(0);
4627     break;
4628   case ISD::FNEG:
4629     // Negation of an unknown bag of bits is still completely undefined.
4630     if (OpOpcode == ISD::UNDEF)
4631       return getUNDEF(VT);
4632 
4633     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4634     if ((getTarget().Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) &&
4635         OpOpcode == ISD::FSUB)
4636       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
4637                      Operand.getOperand(0), Flags);
4638     if (OpOpcode == ISD::FNEG)  // --X -> X
4639       return Operand.getOperand(0);
4640     break;
4641   case ISD::FABS:
4642     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4643       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4644     break;
4645   }
4646 
4647   SDNode *N;
4648   SDVTList VTs = getVTList(VT);
4649   SDValue Ops[] = {Operand};
4650   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4651     FoldingSetNodeID ID;
4652     AddNodeIDNode(ID, Opcode, VTs, Ops);
4653     void *IP = nullptr;
4654     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4655       E->intersectFlagsWith(Flags);
4656       return SDValue(E, 0);
4657     }
4658 
4659     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4660     N->setFlags(Flags);
4661     createOperands(N, Ops);
4662     CSEMap.InsertNode(N, IP);
4663   } else {
4664     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4665     createOperands(N, Ops);
4666   }
4667 
4668   InsertNode(N);
4669   SDValue V = SDValue(N, 0);
4670   NewSDValueDbgMsg(V, "Creating new node: ", this);
4671   return V;
4672 }
4673 
4674 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
4675                                         const APInt &C2) {
4676   switch (Opcode) {
4677   case ISD::ADD:  return std::make_pair(C1 + C2, true);
4678   case ISD::SUB:  return std::make_pair(C1 - C2, true);
4679   case ISD::MUL:  return std::make_pair(C1 * C2, true);
4680   case ISD::AND:  return std::make_pair(C1 & C2, true);
4681   case ISD::OR:   return std::make_pair(C1 | C2, true);
4682   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
4683   case ISD::SHL:  return std::make_pair(C1 << C2, true);
4684   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
4685   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
4686   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
4687   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
4688   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
4689   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
4690   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
4691   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
4692   case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true);
4693   case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true);
4694   case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true);
4695   case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true);
4696   case ISD::UDIV:
4697     if (!C2.getBoolValue())
4698       break;
4699     return std::make_pair(C1.udiv(C2), true);
4700   case ISD::UREM:
4701     if (!C2.getBoolValue())
4702       break;
4703     return std::make_pair(C1.urem(C2), true);
4704   case ISD::SDIV:
4705     if (!C2.getBoolValue())
4706       break;
4707     return std::make_pair(C1.sdiv(C2), true);
4708   case ISD::SREM:
4709     if (!C2.getBoolValue())
4710       break;
4711     return std::make_pair(C1.srem(C2), true);
4712   }
4713   return std::make_pair(APInt(1, 0), false);
4714 }
4715 
4716 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4717                                              EVT VT, const ConstantSDNode *C1,
4718                                              const ConstantSDNode *C2) {
4719   if (C1->isOpaque() || C2->isOpaque())
4720     return SDValue();
4721 
4722   std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(),
4723                                             C2->getAPIntValue());
4724   if (!Folded.second)
4725     return SDValue();
4726   return getConstant(Folded.first, DL, VT);
4727 }
4728 
4729 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4730                                        const GlobalAddressSDNode *GA,
4731                                        const SDNode *N2) {
4732   if (GA->getOpcode() != ISD::GlobalAddress)
4733     return SDValue();
4734   if (!TLI->isOffsetFoldingLegal(GA))
4735     return SDValue();
4736   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4737   if (!C2)
4738     return SDValue();
4739   int64_t Offset = C2->getSExtValue();
4740   switch (Opcode) {
4741   case ISD::ADD: break;
4742   case ISD::SUB: Offset = -uint64_t(Offset); break;
4743   default: return SDValue();
4744   }
4745   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4746                           GA->getOffset() + uint64_t(Offset));
4747 }
4748 
4749 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4750   switch (Opcode) {
4751   case ISD::SDIV:
4752   case ISD::UDIV:
4753   case ISD::SREM:
4754   case ISD::UREM: {
4755     // If a divisor is zero/undef or any element of a divisor vector is
4756     // zero/undef, the whole op is undef.
4757     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4758     SDValue Divisor = Ops[1];
4759     if (Divisor.isUndef() || isNullConstant(Divisor))
4760       return true;
4761 
4762     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4763            llvm::any_of(Divisor->op_values(),
4764                         [](SDValue V) { return V.isUndef() ||
4765                                         isNullConstant(V); });
4766     // TODO: Handle signed overflow.
4767   }
4768   // TODO: Handle oversized shifts.
4769   default:
4770     return false;
4771   }
4772 }
4773 
4774 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4775                                              EVT VT, SDNode *N1, SDNode *N2) {
4776   // If the opcode is a target-specific ISD node, there's nothing we can
4777   // do here and the operand rules may not line up with the below, so
4778   // bail early.
4779   if (Opcode >= ISD::BUILTIN_OP_END)
4780     return SDValue();
4781 
4782   if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)}))
4783     return getUNDEF(VT);
4784 
4785   // Handle the case of two scalars.
4786   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4787     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4788       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
4789       assert((!Folded || !VT.isVector()) &&
4790              "Can't fold vectors ops with scalar operands");
4791       return Folded;
4792     }
4793   }
4794 
4795   // fold (add Sym, c) -> Sym+c
4796   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4797     return FoldSymbolOffset(Opcode, VT, GA, N2);
4798   if (TLI->isCommutativeBinOp(Opcode))
4799     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4800       return FoldSymbolOffset(Opcode, VT, GA, N1);
4801 
4802   // For vectors, extract each constant element and fold them individually.
4803   // Either input may be an undef value.
4804   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4805   if (!BV1 && !N1->isUndef())
4806     return SDValue();
4807   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4808   if (!BV2 && !N2->isUndef())
4809     return SDValue();
4810   // If both operands are undef, that's handled the same way as scalars.
4811   if (!BV1 && !BV2)
4812     return SDValue();
4813 
4814   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4815          "Vector binop with different number of elements in operands?");
4816 
4817   EVT SVT = VT.getScalarType();
4818   EVT LegalSVT = SVT;
4819   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4820     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4821     if (LegalSVT.bitsLT(SVT))
4822       return SDValue();
4823   }
4824   SmallVector<SDValue, 4> Outputs;
4825   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4826   for (unsigned I = 0; I != NumOps; ++I) {
4827     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4828     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4829     if (SVT.isInteger()) {
4830       if (V1->getValueType(0).bitsGT(SVT))
4831         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4832       if (V2->getValueType(0).bitsGT(SVT))
4833         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4834     }
4835 
4836     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4837       return SDValue();
4838 
4839     // Fold one vector element.
4840     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4841     if (LegalSVT != SVT)
4842       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4843 
4844     // Scalar folding only succeeded if the result is a constant or UNDEF.
4845     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4846         ScalarResult.getOpcode() != ISD::ConstantFP)
4847       return SDValue();
4848     Outputs.push_back(ScalarResult);
4849   }
4850 
4851   assert(VT.getVectorNumElements() == Outputs.size() &&
4852          "Vector size mismatch!");
4853 
4854   // We may have a vector type but a scalar result. Create a splat.
4855   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4856 
4857   // Build a big vector out of the scalar elements we generated.
4858   return getBuildVector(VT, SDLoc(), Outputs);
4859 }
4860 
4861 // TODO: Merge with FoldConstantArithmetic
4862 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4863                                                    const SDLoc &DL, EVT VT,
4864                                                    ArrayRef<SDValue> Ops,
4865                                                    const SDNodeFlags Flags) {
4866   // If the opcode is a target-specific ISD node, there's nothing we can
4867   // do here and the operand rules may not line up with the below, so
4868   // bail early.
4869   if (Opcode >= ISD::BUILTIN_OP_END)
4870     return SDValue();
4871 
4872   if (isUndef(Opcode, Ops))
4873     return getUNDEF(VT);
4874 
4875   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4876   if (!VT.isVector())
4877     return SDValue();
4878 
4879   unsigned NumElts = VT.getVectorNumElements();
4880 
4881   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4882     return !Op.getValueType().isVector() ||
4883            Op.getValueType().getVectorNumElements() == NumElts;
4884   };
4885 
4886   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4887     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4888     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4889            (BV && BV->isConstant());
4890   };
4891 
4892   // All operands must be vector types with the same number of elements as
4893   // the result type and must be either UNDEF or a build vector of constant
4894   // or UNDEF scalars.
4895   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4896       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4897     return SDValue();
4898 
4899   // If we are comparing vectors, then the result needs to be a i1 boolean
4900   // that is then sign-extended back to the legal result type.
4901   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4902 
4903   // Find legal integer scalar type for constant promotion and
4904   // ensure that its scalar size is at least as large as source.
4905   EVT LegalSVT = VT.getScalarType();
4906   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4907     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4908     if (LegalSVT.bitsLT(VT.getScalarType()))
4909       return SDValue();
4910   }
4911 
4912   // Constant fold each scalar lane separately.
4913   SmallVector<SDValue, 4> ScalarResults;
4914   for (unsigned i = 0; i != NumElts; i++) {
4915     SmallVector<SDValue, 4> ScalarOps;
4916     for (SDValue Op : Ops) {
4917       EVT InSVT = Op.getValueType().getScalarType();
4918       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4919       if (!InBV) {
4920         // We've checked that this is UNDEF or a constant of some kind.
4921         if (Op.isUndef())
4922           ScalarOps.push_back(getUNDEF(InSVT));
4923         else
4924           ScalarOps.push_back(Op);
4925         continue;
4926       }
4927 
4928       SDValue ScalarOp = InBV->getOperand(i);
4929       EVT ScalarVT = ScalarOp.getValueType();
4930 
4931       // Build vector (integer) scalar operands may need implicit
4932       // truncation - do this before constant folding.
4933       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4934         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4935 
4936       ScalarOps.push_back(ScalarOp);
4937     }
4938 
4939     // Constant fold the scalar operands.
4940     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4941 
4942     // Legalize the (integer) scalar constant if necessary.
4943     if (LegalSVT != SVT)
4944       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4945 
4946     // Scalar folding only succeeded if the result is a constant or UNDEF.
4947     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4948         ScalarResult.getOpcode() != ISD::ConstantFP)
4949       return SDValue();
4950     ScalarResults.push_back(ScalarResult);
4951   }
4952 
4953   SDValue V = getBuildVector(VT, DL, ScalarResults);
4954   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4955   return V;
4956 }
4957 
4958 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
4959                                          EVT VT, SDValue N1, SDValue N2) {
4960   // TODO: We don't do any constant folding for strict FP opcodes here, but we
4961   //       should. That will require dealing with a potentially non-default
4962   //       rounding mode, checking the "opStatus" return value from the APFloat
4963   //       math calculations, and possibly other variations.
4964   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
4965   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
4966   if (N1CFP && N2CFP) {
4967     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
4968     switch (Opcode) {
4969     case ISD::FADD:
4970       C1.add(C2, APFloat::rmNearestTiesToEven);
4971       return getConstantFP(C1, DL, VT);
4972     case ISD::FSUB:
4973       C1.subtract(C2, APFloat::rmNearestTiesToEven);
4974       return getConstantFP(C1, DL, VT);
4975     case ISD::FMUL:
4976       C1.multiply(C2, APFloat::rmNearestTiesToEven);
4977       return getConstantFP(C1, DL, VT);
4978     case ISD::FDIV:
4979       C1.divide(C2, APFloat::rmNearestTiesToEven);
4980       return getConstantFP(C1, DL, VT);
4981     case ISD::FREM:
4982       C1.mod(C2);
4983       return getConstantFP(C1, DL, VT);
4984     case ISD::FCOPYSIGN:
4985       C1.copySign(C2);
4986       return getConstantFP(C1, DL, VT);
4987     default: break;
4988     }
4989   }
4990   if (N1CFP && Opcode == ISD::FP_ROUND) {
4991     APFloat C1 = N1CFP->getValueAPF();    // make copy
4992     bool Unused;
4993     // This can return overflow, underflow, or inexact; we don't care.
4994     // FIXME need to be more flexible about rounding mode.
4995     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
4996                       &Unused);
4997     return getConstantFP(C1, DL, VT);
4998   }
4999 
5000   switch (Opcode) {
5001   case ISD::FADD:
5002   case ISD::FSUB:
5003   case ISD::FMUL:
5004   case ISD::FDIV:
5005   case ISD::FREM:
5006     // If both operands are undef, the result is undef. If 1 operand is undef,
5007     // the result is NaN. This should match the behavior of the IR optimizer.
5008     if (N1.isUndef() && N2.isUndef())
5009       return getUNDEF(VT);
5010     if (N1.isUndef() || N2.isUndef())
5011       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5012   }
5013   return SDValue();
5014 }
5015 
5016 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5017                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5018   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5019   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5020   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5021   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5022 
5023   // Canonicalize constant to RHS if commutative.
5024   if (TLI->isCommutativeBinOp(Opcode)) {
5025     if (N1C && !N2C) {
5026       std::swap(N1C, N2C);
5027       std::swap(N1, N2);
5028     } else if (N1CFP && !N2CFP) {
5029       std::swap(N1CFP, N2CFP);
5030       std::swap(N1, N2);
5031     }
5032   }
5033 
5034   switch (Opcode) {
5035   default: break;
5036   case ISD::TokenFactor:
5037     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5038            N2.getValueType() == MVT::Other && "Invalid token factor!");
5039     // Fold trivial token factors.
5040     if (N1.getOpcode() == ISD::EntryToken) return N2;
5041     if (N2.getOpcode() == ISD::EntryToken) return N1;
5042     if (N1 == N2) return N1;
5043     break;
5044   case ISD::BUILD_VECTOR: {
5045     // Attempt to simplify BUILD_VECTOR.
5046     SDValue Ops[] = {N1, N2};
5047     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5048       return V;
5049     break;
5050   }
5051   case ISD::CONCAT_VECTORS: {
5052     SDValue Ops[] = {N1, N2};
5053     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5054       return V;
5055     break;
5056   }
5057   case ISD::AND:
5058     assert(VT.isInteger() && "This operator does not apply to FP types!");
5059     assert(N1.getValueType() == N2.getValueType() &&
5060            N1.getValueType() == VT && "Binary operator types must match!");
5061     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5062     // worth handling here.
5063     if (N2C && N2C->isNullValue())
5064       return N2;
5065     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5066       return N1;
5067     break;
5068   case ISD::OR:
5069   case ISD::XOR:
5070   case ISD::ADD:
5071   case ISD::SUB:
5072     assert(VT.isInteger() && "This operator does not apply to FP types!");
5073     assert(N1.getValueType() == N2.getValueType() &&
5074            N1.getValueType() == VT && "Binary operator types must match!");
5075     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5076     // it's worth handling here.
5077     if (N2C && N2C->isNullValue())
5078       return N1;
5079     break;
5080   case ISD::UDIV:
5081   case ISD::UREM:
5082   case ISD::MULHU:
5083   case ISD::MULHS:
5084   case ISD::MUL:
5085   case ISD::SDIV:
5086   case ISD::SREM:
5087   case ISD::SMIN:
5088   case ISD::SMAX:
5089   case ISD::UMIN:
5090   case ISD::UMAX:
5091   case ISD::SADDSAT:
5092   case ISD::SSUBSAT:
5093   case ISD::UADDSAT:
5094   case ISD::USUBSAT:
5095     assert(VT.isInteger() && "This operator does not apply to FP types!");
5096     assert(N1.getValueType() == N2.getValueType() &&
5097            N1.getValueType() == VT && "Binary operator types must match!");
5098     break;
5099   case ISD::FADD:
5100   case ISD::FSUB:
5101   case ISD::FMUL:
5102   case ISD::FDIV:
5103   case ISD::FREM:
5104     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5105     assert(N1.getValueType() == N2.getValueType() &&
5106            N1.getValueType() == VT && "Binary operator types must match!");
5107     if (SDValue V = simplifyFPBinop(Opcode, N1, N2))
5108       return V;
5109     break;
5110   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5111     assert(N1.getValueType() == VT &&
5112            N1.getValueType().isFloatingPoint() &&
5113            N2.getValueType().isFloatingPoint() &&
5114            "Invalid FCOPYSIGN!");
5115     break;
5116   case ISD::SHL:
5117   case ISD::SRA:
5118   case ISD::SRL:
5119     if (SDValue V = simplifyShift(N1, N2))
5120       return V;
5121     LLVM_FALLTHROUGH;
5122   case ISD::ROTL:
5123   case ISD::ROTR:
5124     assert(VT == N1.getValueType() &&
5125            "Shift operators return type must be the same as their first arg");
5126     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5127            "Shifts only work on integers");
5128     assert((!VT.isVector() || VT == N2.getValueType()) &&
5129            "Vector shift amounts must be in the same as their first arg");
5130     // Verify that the shift amount VT is big enough to hold valid shift
5131     // amounts.  This catches things like trying to shift an i1024 value by an
5132     // i8, which is easy to fall into in generic code that uses
5133     // TLI.getShiftAmount().
5134     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
5135            "Invalid use of small shift amount with oversized value!");
5136 
5137     // Always fold shifts of i1 values so the code generator doesn't need to
5138     // handle them.  Since we know the size of the shift has to be less than the
5139     // size of the value, the shift/rotate count is guaranteed to be zero.
5140     if (VT == MVT::i1)
5141       return N1;
5142     if (N2C && N2C->isNullValue())
5143       return N1;
5144     break;
5145   case ISD::FP_ROUND_INREG: {
5146     EVT EVT = cast<VTSDNode>(N2)->getVT();
5147     assert(VT == N1.getValueType() && "Not an inreg round!");
5148     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
5149            "Cannot FP_ROUND_INREG integer types");
5150     assert(EVT.isVector() == VT.isVector() &&
5151            "FP_ROUND_INREG type should be vector iff the operand "
5152            "type is vector!");
5153     assert((!EVT.isVector() ||
5154             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5155            "Vector element counts must match in FP_ROUND_INREG");
5156     assert(EVT.bitsLE(VT) && "Not rounding down!");
5157     (void)EVT;
5158     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
5159     break;
5160   }
5161   case ISD::FP_ROUND:
5162     assert(VT.isFloatingPoint() &&
5163            N1.getValueType().isFloatingPoint() &&
5164            VT.bitsLE(N1.getValueType()) &&
5165            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5166            "Invalid FP_ROUND!");
5167     if (N1.getValueType() == VT) return N1;  // noop conversion.
5168     break;
5169   case ISD::AssertSext:
5170   case ISD::AssertZext: {
5171     EVT EVT = cast<VTSDNode>(N2)->getVT();
5172     assert(VT == N1.getValueType() && "Not an inreg extend!");
5173     assert(VT.isInteger() && EVT.isInteger() &&
5174            "Cannot *_EXTEND_INREG FP types");
5175     assert(!EVT.isVector() &&
5176            "AssertSExt/AssertZExt type should be the vector element type "
5177            "rather than the vector type!");
5178     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5179     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5180     break;
5181   }
5182   case ISD::SIGN_EXTEND_INREG: {
5183     EVT EVT = cast<VTSDNode>(N2)->getVT();
5184     assert(VT == N1.getValueType() && "Not an inreg extend!");
5185     assert(VT.isInteger() && EVT.isInteger() &&
5186            "Cannot *_EXTEND_INREG FP types");
5187     assert(EVT.isVector() == VT.isVector() &&
5188            "SIGN_EXTEND_INREG type should be vector iff the operand "
5189            "type is vector!");
5190     assert((!EVT.isVector() ||
5191             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5192            "Vector element counts must match in SIGN_EXTEND_INREG");
5193     assert(EVT.bitsLE(VT) && "Not extending!");
5194     if (EVT == VT) return N1;  // Not actually extending
5195 
5196     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5197       unsigned FromBits = EVT.getScalarSizeInBits();
5198       Val <<= Val.getBitWidth() - FromBits;
5199       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5200       return getConstant(Val, DL, ConstantVT);
5201     };
5202 
5203     if (N1C) {
5204       const APInt &Val = N1C->getAPIntValue();
5205       return SignExtendInReg(Val, VT);
5206     }
5207     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5208       SmallVector<SDValue, 8> Ops;
5209       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5210       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5211         SDValue Op = N1.getOperand(i);
5212         if (Op.isUndef()) {
5213           Ops.push_back(getUNDEF(OpVT));
5214           continue;
5215         }
5216         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5217         APInt Val = C->getAPIntValue();
5218         Ops.push_back(SignExtendInReg(Val, OpVT));
5219       }
5220       return getBuildVector(VT, DL, Ops);
5221     }
5222     break;
5223   }
5224   case ISD::EXTRACT_VECTOR_ELT:
5225     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5226            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5227              element type of the vector.");
5228 
5229     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
5230     if (N1.isUndef())
5231       return getUNDEF(VT);
5232 
5233     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5234     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5235       return getUNDEF(VT);
5236 
5237     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5238     // expanding copies of large vectors from registers.
5239     if (N2C &&
5240         N1.getOpcode() == ISD::CONCAT_VECTORS &&
5241         N1.getNumOperands() > 0) {
5242       unsigned Factor =
5243         N1.getOperand(0).getValueType().getVectorNumElements();
5244       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5245                      N1.getOperand(N2C->getZExtValue() / Factor),
5246                      getConstant(N2C->getZExtValue() % Factor, DL,
5247                                  N2.getValueType()));
5248     }
5249 
5250     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5251     // expanding large vector constants.
5252     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5253       SDValue Elt = N1.getOperand(N2C->getZExtValue());
5254 
5255       if (VT != Elt.getValueType())
5256         // If the vector element type is not legal, the BUILD_VECTOR operands
5257         // are promoted and implicitly truncated, and the result implicitly
5258         // extended. Make that explicit here.
5259         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5260 
5261       return Elt;
5262     }
5263 
5264     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5265     // operations are lowered to scalars.
5266     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5267       // If the indices are the same, return the inserted element else
5268       // if the indices are known different, extract the element from
5269       // the original vector.
5270       SDValue N1Op2 = N1.getOperand(2);
5271       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5272 
5273       if (N1Op2C && N2C) {
5274         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5275           if (VT == N1.getOperand(1).getValueType())
5276             return N1.getOperand(1);
5277           else
5278             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5279         }
5280 
5281         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5282       }
5283     }
5284 
5285     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5286     // when vector types are scalarized and v1iX is legal.
5287     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5288     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5289         N1.getValueType().getVectorNumElements() == 1) {
5290       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5291                      N1.getOperand(1));
5292     }
5293     break;
5294   case ISD::EXTRACT_ELEMENT:
5295     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5296     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5297            (N1.getValueType().isInteger() == VT.isInteger()) &&
5298            N1.getValueType() != VT &&
5299            "Wrong types for EXTRACT_ELEMENT!");
5300 
5301     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5302     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5303     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5304     if (N1.getOpcode() == ISD::BUILD_PAIR)
5305       return N1.getOperand(N2C->getZExtValue());
5306 
5307     // EXTRACT_ELEMENT of a constant int is also very common.
5308     if (N1C) {
5309       unsigned ElementSize = VT.getSizeInBits();
5310       unsigned Shift = ElementSize * N2C->getZExtValue();
5311       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5312       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5313     }
5314     break;
5315   case ISD::EXTRACT_SUBVECTOR:
5316     if (VT.isSimple() && N1.getValueType().isSimple()) {
5317       assert(VT.isVector() && N1.getValueType().isVector() &&
5318              "Extract subvector VTs must be a vectors!");
5319       assert(VT.getVectorElementType() ==
5320              N1.getValueType().getVectorElementType() &&
5321              "Extract subvector VTs must have the same element type!");
5322       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5323              "Extract subvector must be from larger vector to smaller vector!");
5324 
5325       if (N2C) {
5326         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5327                 <= N1.getValueType().getVectorNumElements())
5328                && "Extract subvector overflow!");
5329       }
5330 
5331       // Trivial extraction.
5332       if (VT.getSimpleVT() == N1.getSimpleValueType())
5333         return N1;
5334 
5335       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5336       if (N1.isUndef())
5337         return getUNDEF(VT);
5338 
5339       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5340       // the concat have the same type as the extract.
5341       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5342           N1.getNumOperands() > 0 &&
5343           VT == N1.getOperand(0).getValueType()) {
5344         unsigned Factor = VT.getVectorNumElements();
5345         return N1.getOperand(N2C->getZExtValue() / Factor);
5346       }
5347 
5348       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5349       // during shuffle legalization.
5350       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5351           VT == N1.getOperand(1).getValueType())
5352         return N1.getOperand(1);
5353     }
5354     break;
5355   }
5356 
5357   // Perform trivial constant folding.
5358   if (SDValue SV =
5359           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
5360     return SV;
5361 
5362   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5363     return V;
5364 
5365   // Canonicalize an UNDEF to the RHS, even over a constant.
5366   if (N1.isUndef()) {
5367     if (TLI->isCommutativeBinOp(Opcode)) {
5368       std::swap(N1, N2);
5369     } else {
5370       switch (Opcode) {
5371       case ISD::FP_ROUND_INREG:
5372       case ISD::SIGN_EXTEND_INREG:
5373       case ISD::SUB:
5374         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5375       case ISD::UDIV:
5376       case ISD::SDIV:
5377       case ISD::UREM:
5378       case ISD::SREM:
5379       case ISD::SSUBSAT:
5380       case ISD::USUBSAT:
5381         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5382       }
5383     }
5384   }
5385 
5386   // Fold a bunch of operators when the RHS is undef.
5387   if (N2.isUndef()) {
5388     switch (Opcode) {
5389     case ISD::XOR:
5390       if (N1.isUndef())
5391         // Handle undef ^ undef -> 0 special case. This is a common
5392         // idiom (misuse).
5393         return getConstant(0, DL, VT);
5394       LLVM_FALLTHROUGH;
5395     case ISD::ADD:
5396     case ISD::SUB:
5397     case ISD::UDIV:
5398     case ISD::SDIV:
5399     case ISD::UREM:
5400     case ISD::SREM:
5401       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5402     case ISD::MUL:
5403     case ISD::AND:
5404     case ISD::SSUBSAT:
5405     case ISD::USUBSAT:
5406       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5407     case ISD::OR:
5408     case ISD::SADDSAT:
5409     case ISD::UADDSAT:
5410       return getAllOnesConstant(DL, VT);
5411     }
5412   }
5413 
5414   // Memoize this node if possible.
5415   SDNode *N;
5416   SDVTList VTs = getVTList(VT);
5417   SDValue Ops[] = {N1, N2};
5418   if (VT != MVT::Glue) {
5419     FoldingSetNodeID ID;
5420     AddNodeIDNode(ID, Opcode, VTs, Ops);
5421     void *IP = nullptr;
5422     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5423       E->intersectFlagsWith(Flags);
5424       return SDValue(E, 0);
5425     }
5426 
5427     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5428     N->setFlags(Flags);
5429     createOperands(N, Ops);
5430     CSEMap.InsertNode(N, IP);
5431   } else {
5432     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5433     createOperands(N, Ops);
5434   }
5435 
5436   InsertNode(N);
5437   SDValue V = SDValue(N, 0);
5438   NewSDValueDbgMsg(V, "Creating new node: ", this);
5439   return V;
5440 }
5441 
5442 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5443                               SDValue N1, SDValue N2, SDValue N3,
5444                               const SDNodeFlags Flags) {
5445   // Perform various simplifications.
5446   switch (Opcode) {
5447   case ISD::FMA: {
5448     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5449     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5450            N3.getValueType() == VT && "FMA types must match!");
5451     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5452     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5453     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5454     if (N1CFP && N2CFP && N3CFP) {
5455       APFloat  V1 = N1CFP->getValueAPF();
5456       const APFloat &V2 = N2CFP->getValueAPF();
5457       const APFloat &V3 = N3CFP->getValueAPF();
5458       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5459       return getConstantFP(V1, DL, VT);
5460     }
5461     break;
5462   }
5463   case ISD::BUILD_VECTOR: {
5464     // Attempt to simplify BUILD_VECTOR.
5465     SDValue Ops[] = {N1, N2, N3};
5466     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5467       return V;
5468     break;
5469   }
5470   case ISD::CONCAT_VECTORS: {
5471     SDValue Ops[] = {N1, N2, N3};
5472     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5473       return V;
5474     break;
5475   }
5476   case ISD::SETCC: {
5477     assert(VT.isInteger() && "SETCC result type must be an integer!");
5478     assert(N1.getValueType() == N2.getValueType() &&
5479            "SETCC operands must have the same type!");
5480     assert(VT.isVector() == N1.getValueType().isVector() &&
5481            "SETCC type should be vector iff the operand type is vector!");
5482     assert((!VT.isVector() ||
5483             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5484            "SETCC vector element counts must match!");
5485     // Use FoldSetCC to simplify SETCC's.
5486     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5487       return V;
5488     // Vector constant folding.
5489     SDValue Ops[] = {N1, N2, N3};
5490     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5491       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5492       return V;
5493     }
5494     break;
5495   }
5496   case ISD::SELECT:
5497   case ISD::VSELECT:
5498     if (SDValue V = simplifySelect(N1, N2, N3))
5499       return V;
5500     break;
5501   case ISD::VECTOR_SHUFFLE:
5502     llvm_unreachable("should use getVectorShuffle constructor!");
5503   case ISD::INSERT_VECTOR_ELT: {
5504     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5505     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5506     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5507       return getUNDEF(VT);
5508     break;
5509   }
5510   case ISD::INSERT_SUBVECTOR: {
5511     // Inserting undef into undef is still undef.
5512     if (N1.isUndef() && N2.isUndef())
5513       return getUNDEF(VT);
5514     SDValue Index = N3;
5515     if (VT.isSimple() && N1.getValueType().isSimple()
5516         && N2.getValueType().isSimple()) {
5517       assert(VT.isVector() && N1.getValueType().isVector() &&
5518              N2.getValueType().isVector() &&
5519              "Insert subvector VTs must be a vectors");
5520       assert(VT == N1.getValueType() &&
5521              "Dest and insert subvector source types must match!");
5522       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5523              "Insert subvector must be from smaller vector to larger vector!");
5524       if (isa<ConstantSDNode>(Index)) {
5525         assert((N2.getValueType().getVectorNumElements() +
5526                 cast<ConstantSDNode>(Index)->getZExtValue()
5527                 <= VT.getVectorNumElements())
5528                && "Insert subvector overflow!");
5529       }
5530 
5531       // Trivial insertion.
5532       if (VT.getSimpleVT() == N2.getSimpleValueType())
5533         return N2;
5534 
5535       // If this is an insert of an extracted vector into an undef vector, we
5536       // can just use the input to the extract.
5537       if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5538           N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5539         return N2.getOperand(0);
5540     }
5541     break;
5542   }
5543   case ISD::BITCAST:
5544     // Fold bit_convert nodes from a type to themselves.
5545     if (N1.getValueType() == VT)
5546       return N1;
5547     break;
5548   }
5549 
5550   // Memoize node if it doesn't produce a flag.
5551   SDNode *N;
5552   SDVTList VTs = getVTList(VT);
5553   SDValue Ops[] = {N1, N2, N3};
5554   if (VT != MVT::Glue) {
5555     FoldingSetNodeID ID;
5556     AddNodeIDNode(ID, Opcode, VTs, Ops);
5557     void *IP = nullptr;
5558     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5559       E->intersectFlagsWith(Flags);
5560       return SDValue(E, 0);
5561     }
5562 
5563     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5564     N->setFlags(Flags);
5565     createOperands(N, Ops);
5566     CSEMap.InsertNode(N, IP);
5567   } else {
5568     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5569     createOperands(N, Ops);
5570   }
5571 
5572   InsertNode(N);
5573   SDValue V = SDValue(N, 0);
5574   NewSDValueDbgMsg(V, "Creating new node: ", this);
5575   return V;
5576 }
5577 
5578 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5579                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5580   SDValue Ops[] = { N1, N2, N3, N4 };
5581   return getNode(Opcode, DL, VT, Ops);
5582 }
5583 
5584 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5585                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5586                               SDValue N5) {
5587   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5588   return getNode(Opcode, DL, VT, Ops);
5589 }
5590 
5591 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5592 /// the incoming stack arguments to be loaded from the stack.
5593 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5594   SmallVector<SDValue, 8> ArgChains;
5595 
5596   // Include the original chain at the beginning of the list. When this is
5597   // used by target LowerCall hooks, this helps legalize find the
5598   // CALLSEQ_BEGIN node.
5599   ArgChains.push_back(Chain);
5600 
5601   // Add a chain value for each stack argument.
5602   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5603        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5604     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5605       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5606         if (FI->getIndex() < 0)
5607           ArgChains.push_back(SDValue(L, 1));
5608 
5609   // Build a tokenfactor for all the chains.
5610   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5611 }
5612 
5613 /// getMemsetValue - Vectorized representation of the memset value
5614 /// operand.
5615 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5616                               const SDLoc &dl) {
5617   assert(!Value.isUndef());
5618 
5619   unsigned NumBits = VT.getScalarSizeInBits();
5620   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5621     assert(C->getAPIntValue().getBitWidth() == 8);
5622     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5623     if (VT.isInteger()) {
5624       bool IsOpaque = VT.getSizeInBits() > 64 ||
5625           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5626       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5627     }
5628     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5629                              VT);
5630   }
5631 
5632   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5633   EVT IntVT = VT.getScalarType();
5634   if (!IntVT.isInteger())
5635     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5636 
5637   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5638   if (NumBits > 8) {
5639     // Use a multiplication with 0x010101... to extend the input to the
5640     // required length.
5641     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5642     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5643                         DAG.getConstant(Magic, dl, IntVT));
5644   }
5645 
5646   if (VT != Value.getValueType() && !VT.isInteger())
5647     Value = DAG.getBitcast(VT.getScalarType(), Value);
5648   if (VT != Value.getValueType())
5649     Value = DAG.getSplatBuildVector(VT, dl, Value);
5650 
5651   return Value;
5652 }
5653 
5654 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5655 /// used when a memcpy is turned into a memset when the source is a constant
5656 /// string ptr.
5657 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5658                                   const TargetLowering &TLI,
5659                                   const ConstantDataArraySlice &Slice) {
5660   // Handle vector with all elements zero.
5661   if (Slice.Array == nullptr) {
5662     if (VT.isInteger())
5663       return DAG.getConstant(0, dl, VT);
5664     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5665       return DAG.getConstantFP(0.0, dl, VT);
5666     else if (VT.isVector()) {
5667       unsigned NumElts = VT.getVectorNumElements();
5668       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5669       return DAG.getNode(ISD::BITCAST, dl, VT,
5670                          DAG.getConstant(0, dl,
5671                                          EVT::getVectorVT(*DAG.getContext(),
5672                                                           EltVT, NumElts)));
5673     } else
5674       llvm_unreachable("Expected type!");
5675   }
5676 
5677   assert(!VT.isVector() && "Can't handle vector type here!");
5678   unsigned NumVTBits = VT.getSizeInBits();
5679   unsigned NumVTBytes = NumVTBits / 8;
5680   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5681 
5682   APInt Val(NumVTBits, 0);
5683   if (DAG.getDataLayout().isLittleEndian()) {
5684     for (unsigned i = 0; i != NumBytes; ++i)
5685       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5686   } else {
5687     for (unsigned i = 0; i != NumBytes; ++i)
5688       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5689   }
5690 
5691   // If the "cost" of materializing the integer immediate is less than the cost
5692   // of a load, then it is cost effective to turn the load into the immediate.
5693   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5694   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5695     return DAG.getConstant(Val, dl, VT);
5696   return SDValue(nullptr, 0);
5697 }
5698 
5699 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
5700                                            const SDLoc &DL) {
5701   EVT VT = Base.getValueType();
5702   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
5703 }
5704 
5705 /// Returns true if memcpy source is constant data.
5706 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5707   uint64_t SrcDelta = 0;
5708   GlobalAddressSDNode *G = nullptr;
5709   if (Src.getOpcode() == ISD::GlobalAddress)
5710     G = cast<GlobalAddressSDNode>(Src);
5711   else if (Src.getOpcode() == ISD::ADD &&
5712            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5713            Src.getOperand(1).getOpcode() == ISD::Constant) {
5714     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5715     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5716   }
5717   if (!G)
5718     return false;
5719 
5720   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5721                                   SrcDelta + G->getOffset());
5722 }
5723 
5724 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5725   // On Darwin, -Os means optimize for size without hurting performance, so
5726   // only really optimize for size when -Oz (MinSize) is used.
5727   if (MF.getTarget().getTargetTriple().isOSDarwin())
5728     return MF.getFunction().hasMinSize();
5729   return MF.getFunction().hasOptSize();
5730 }
5731 
5732 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5733                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5734                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5735                           SmallVector<SDValue, 16> &OutStoreChains) {
5736   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5737   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5738   SmallVector<SDValue, 16> GluedLoadChains;
5739   for (unsigned i = From; i < To; ++i) {
5740     OutChains.push_back(OutLoadChains[i]);
5741     GluedLoadChains.push_back(OutLoadChains[i]);
5742   }
5743 
5744   // Chain for all loads.
5745   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5746                                   GluedLoadChains);
5747 
5748   for (unsigned i = From; i < To; ++i) {
5749     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5750     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5751                                   ST->getBasePtr(), ST->getMemoryVT(),
5752                                   ST->getMemOperand());
5753     OutChains.push_back(NewStore);
5754   }
5755 }
5756 
5757 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5758                                        SDValue Chain, SDValue Dst, SDValue Src,
5759                                        uint64_t Size, unsigned Align,
5760                                        bool isVol, bool AlwaysInline,
5761                                        MachinePointerInfo DstPtrInfo,
5762                                        MachinePointerInfo SrcPtrInfo) {
5763   // Turn a memcpy of undef to nop.
5764   // FIXME: We need to honor volatile even is Src is undef.
5765   if (Src.isUndef())
5766     return Chain;
5767 
5768   // Expand memcpy to a series of load and store ops if the size operand falls
5769   // below a certain threshold.
5770   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5771   // rather than maybe a humongous number of loads and stores.
5772   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5773   const DataLayout &DL = DAG.getDataLayout();
5774   LLVMContext &C = *DAG.getContext();
5775   std::vector<EVT> MemOps;
5776   bool DstAlignCanChange = false;
5777   MachineFunction &MF = DAG.getMachineFunction();
5778   MachineFrameInfo &MFI = MF.getFrameInfo();
5779   bool OptSize = shouldLowerMemFuncForSize(MF);
5780   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5781   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5782     DstAlignCanChange = true;
5783   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5784   if (Align > SrcAlign)
5785     SrcAlign = Align;
5786   ConstantDataArraySlice Slice;
5787   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5788   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5789   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5790 
5791   if (!TLI.findOptimalMemOpLowering(
5792           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align),
5793           (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false,
5794           /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant,
5795           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(),
5796           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
5797     return SDValue();
5798 
5799   if (DstAlignCanChange) {
5800     Type *Ty = MemOps[0].getTypeForEVT(C);
5801     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5802 
5803     // Don't promote to an alignment that would require dynamic stack
5804     // realignment.
5805     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5806     if (!TRI->needsStackRealignment(MF))
5807       while (NewAlign > Align &&
5808              DL.exceedsNaturalStackAlignment(llvm::Align(NewAlign)))
5809           NewAlign /= 2;
5810 
5811     if (NewAlign > Align) {
5812       // Give the stack frame object a larger alignment if needed.
5813       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5814         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5815       Align = NewAlign;
5816     }
5817   }
5818 
5819   MachineMemOperand::Flags MMOFlags =
5820       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5821   SmallVector<SDValue, 16> OutLoadChains;
5822   SmallVector<SDValue, 16> OutStoreChains;
5823   SmallVector<SDValue, 32> OutChains;
5824   unsigned NumMemOps = MemOps.size();
5825   uint64_t SrcOff = 0, DstOff = 0;
5826   for (unsigned i = 0; i != NumMemOps; ++i) {
5827     EVT VT = MemOps[i];
5828     unsigned VTSize = VT.getSizeInBits() / 8;
5829     SDValue Value, Store;
5830 
5831     if (VTSize > Size) {
5832       // Issuing an unaligned load / store pair  that overlaps with the previous
5833       // pair. Adjust the offset accordingly.
5834       assert(i == NumMemOps-1 && i != 0);
5835       SrcOff -= VTSize - Size;
5836       DstOff -= VTSize - Size;
5837     }
5838 
5839     if (CopyFromConstant &&
5840         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5841       // It's unlikely a store of a vector immediate can be done in a single
5842       // instruction. It would require a load from a constantpool first.
5843       // We only handle zero vectors here.
5844       // FIXME: Handle other cases where store of vector immediate is done in
5845       // a single instruction.
5846       ConstantDataArraySlice SubSlice;
5847       if (SrcOff < Slice.Length) {
5848         SubSlice = Slice;
5849         SubSlice.move(SrcOff);
5850       } else {
5851         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5852         SubSlice.Array = nullptr;
5853         SubSlice.Offset = 0;
5854         SubSlice.Length = VTSize;
5855       }
5856       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5857       if (Value.getNode()) {
5858         Store = DAG.getStore(Chain, dl, Value,
5859                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5860                              DstPtrInfo.getWithOffset(DstOff), Align,
5861                              MMOFlags);
5862         OutChains.push_back(Store);
5863       }
5864     }
5865 
5866     if (!Store.getNode()) {
5867       // The type might not be legal for the target.  This should only happen
5868       // if the type is smaller than a legal type, as on PPC, so the right
5869       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5870       // to Load/Store if NVT==VT.
5871       // FIXME does the case above also need this?
5872       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5873       assert(NVT.bitsGE(VT));
5874 
5875       bool isDereferenceable =
5876         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5877       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5878       if (isDereferenceable)
5879         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5880 
5881       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5882                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5883                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5884                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5885       OutLoadChains.push_back(Value.getValue(1));
5886 
5887       Store = DAG.getTruncStore(
5888           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5889           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5890       OutStoreChains.push_back(Store);
5891     }
5892     SrcOff += VTSize;
5893     DstOff += VTSize;
5894     Size -= VTSize;
5895   }
5896 
5897   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
5898                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
5899   unsigned NumLdStInMemcpy = OutStoreChains.size();
5900 
5901   if (NumLdStInMemcpy) {
5902     // It may be that memcpy might be converted to memset if it's memcpy
5903     // of constants. In such a case, we won't have loads and stores, but
5904     // just stores. In the absence of loads, there is nothing to gang up.
5905     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
5906       // If target does not care, just leave as it.
5907       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
5908         OutChains.push_back(OutLoadChains[i]);
5909         OutChains.push_back(OutStoreChains[i]);
5910       }
5911     } else {
5912       // Ld/St less than/equal limit set by target.
5913       if (NumLdStInMemcpy <= GluedLdStLimit) {
5914           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5915                                         NumLdStInMemcpy, OutLoadChains,
5916                                         OutStoreChains);
5917       } else {
5918         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
5919         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
5920         unsigned GlueIter = 0;
5921 
5922         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
5923           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
5924           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
5925 
5926           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
5927                                        OutLoadChains, OutStoreChains);
5928           GlueIter += GluedLdStLimit;
5929         }
5930 
5931         // Residual ld/st.
5932         if (RemainingLdStInMemcpy) {
5933           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5934                                         RemainingLdStInMemcpy, OutLoadChains,
5935                                         OutStoreChains);
5936         }
5937       }
5938     }
5939   }
5940   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5941 }
5942 
5943 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5944                                         SDValue Chain, SDValue Dst, SDValue Src,
5945                                         uint64_t Size, unsigned Align,
5946                                         bool isVol, bool AlwaysInline,
5947                                         MachinePointerInfo DstPtrInfo,
5948                                         MachinePointerInfo SrcPtrInfo) {
5949   // Turn a memmove of undef to nop.
5950   // FIXME: We need to honor volatile even is Src is undef.
5951   if (Src.isUndef())
5952     return Chain;
5953 
5954   // Expand memmove to a series of load and store ops if the size operand falls
5955   // below a certain threshold.
5956   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5957   const DataLayout &DL = DAG.getDataLayout();
5958   LLVMContext &C = *DAG.getContext();
5959   std::vector<EVT> MemOps;
5960   bool DstAlignCanChange = false;
5961   MachineFunction &MF = DAG.getMachineFunction();
5962   MachineFrameInfo &MFI = MF.getFrameInfo();
5963   bool OptSize = shouldLowerMemFuncForSize(MF);
5964   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5965   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5966     DstAlignCanChange = true;
5967   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5968   if (Align > SrcAlign)
5969     SrcAlign = Align;
5970   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5971   // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in
5972   // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the
5973   // correct code.
5974   bool AllowOverlap = false;
5975   if (!TLI.findOptimalMemOpLowering(
5976           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign,
5977           /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
5978           AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
5979           MF.getFunction().getAttributes()))
5980     return SDValue();
5981 
5982   if (DstAlignCanChange) {
5983     Type *Ty = MemOps[0].getTypeForEVT(C);
5984     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5985     if (NewAlign > Align) {
5986       // Give the stack frame object a larger alignment if needed.
5987       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5988         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5989       Align = NewAlign;
5990     }
5991   }
5992 
5993   MachineMemOperand::Flags MMOFlags =
5994       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5995   uint64_t SrcOff = 0, DstOff = 0;
5996   SmallVector<SDValue, 8> LoadValues;
5997   SmallVector<SDValue, 8> LoadChains;
5998   SmallVector<SDValue, 8> OutChains;
5999   unsigned NumMemOps = MemOps.size();
6000   for (unsigned i = 0; i < NumMemOps; i++) {
6001     EVT VT = MemOps[i];
6002     unsigned VTSize = VT.getSizeInBits() / 8;
6003     SDValue Value;
6004 
6005     bool isDereferenceable =
6006       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6007     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6008     if (isDereferenceable)
6009       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6010 
6011     Value =
6012         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6013                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
6014     LoadValues.push_back(Value);
6015     LoadChains.push_back(Value.getValue(1));
6016     SrcOff += VTSize;
6017   }
6018   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6019   OutChains.clear();
6020   for (unsigned i = 0; i < NumMemOps; i++) {
6021     EVT VT = MemOps[i];
6022     unsigned VTSize = VT.getSizeInBits() / 8;
6023     SDValue Store;
6024 
6025     Store = DAG.getStore(Chain, dl, LoadValues[i],
6026                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6027                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
6028     OutChains.push_back(Store);
6029     DstOff += VTSize;
6030   }
6031 
6032   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6033 }
6034 
6035 /// Lower the call to 'memset' intrinsic function into a series of store
6036 /// operations.
6037 ///
6038 /// \param DAG Selection DAG where lowered code is placed.
6039 /// \param dl Link to corresponding IR location.
6040 /// \param Chain Control flow dependency.
6041 /// \param Dst Pointer to destination memory location.
6042 /// \param Src Value of byte to write into the memory.
6043 /// \param Size Number of bytes to write.
6044 /// \param Align Alignment of the destination in bytes.
6045 /// \param isVol True if destination is volatile.
6046 /// \param DstPtrInfo IR information on the memory pointer.
6047 /// \returns New head in the control flow, if lowering was successful, empty
6048 /// SDValue otherwise.
6049 ///
6050 /// The function tries to replace 'llvm.memset' intrinsic with several store
6051 /// operations and value calculation code. This is usually profitable for small
6052 /// memory size.
6053 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6054                                SDValue Chain, SDValue Dst, SDValue Src,
6055                                uint64_t Size, unsigned Align, bool isVol,
6056                                MachinePointerInfo DstPtrInfo) {
6057   // Turn a memset of undef to nop.
6058   // FIXME: We need to honor volatile even is Src is undef.
6059   if (Src.isUndef())
6060     return Chain;
6061 
6062   // Expand memset to a series of load/store ops if the size operand
6063   // falls below a certain threshold.
6064   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6065   std::vector<EVT> MemOps;
6066   bool DstAlignCanChange = false;
6067   MachineFunction &MF = DAG.getMachineFunction();
6068   MachineFrameInfo &MFI = MF.getFrameInfo();
6069   bool OptSize = shouldLowerMemFuncForSize(MF);
6070   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6071   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6072     DstAlignCanChange = true;
6073   bool IsZeroVal =
6074     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6075   if (!TLI.findOptimalMemOpLowering(
6076           MemOps, TLI.getMaxStoresPerMemset(OptSize), Size,
6077           (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true,
6078           /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false,
6079           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u,
6080           MF.getFunction().getAttributes()))
6081     return SDValue();
6082 
6083   if (DstAlignCanChange) {
6084     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6085     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
6086     if (NewAlign > Align) {
6087       // Give the stack frame object a larger alignment if needed.
6088       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
6089         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6090       Align = NewAlign;
6091     }
6092   }
6093 
6094   SmallVector<SDValue, 8> OutChains;
6095   uint64_t DstOff = 0;
6096   unsigned NumMemOps = MemOps.size();
6097 
6098   // Find the largest store and generate the bit pattern for it.
6099   EVT LargestVT = MemOps[0];
6100   for (unsigned i = 1; i < NumMemOps; i++)
6101     if (MemOps[i].bitsGT(LargestVT))
6102       LargestVT = MemOps[i];
6103   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6104 
6105   for (unsigned i = 0; i < NumMemOps; i++) {
6106     EVT VT = MemOps[i];
6107     unsigned VTSize = VT.getSizeInBits() / 8;
6108     if (VTSize > Size) {
6109       // Issuing an unaligned load / store pair  that overlaps with the previous
6110       // pair. Adjust the offset accordingly.
6111       assert(i == NumMemOps-1 && i != 0);
6112       DstOff -= VTSize - Size;
6113     }
6114 
6115     // If this store is smaller than the largest store see whether we can get
6116     // the smaller value for free with a truncate.
6117     SDValue Value = MemSetValue;
6118     if (VT.bitsLT(LargestVT)) {
6119       if (!LargestVT.isVector() && !VT.isVector() &&
6120           TLI.isTruncateFree(LargestVT, VT))
6121         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6122       else
6123         Value = getMemsetValue(Src, VT, DAG, dl);
6124     }
6125     assert(Value.getValueType() == VT && "Value with wrong type.");
6126     SDValue Store = DAG.getStore(
6127         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6128         DstPtrInfo.getWithOffset(DstOff), Align,
6129         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6130     OutChains.push_back(Store);
6131     DstOff += VT.getSizeInBits() / 8;
6132     Size -= VTSize;
6133   }
6134 
6135   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6136 }
6137 
6138 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6139                                             unsigned AS) {
6140   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6141   // pointer operands can be losslessly bitcasted to pointers of address space 0
6142   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6143     report_fatal_error("cannot lower memory intrinsic in address space " +
6144                        Twine(AS));
6145   }
6146 }
6147 
6148 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6149                                 SDValue Src, SDValue Size, unsigned Align,
6150                                 bool isVol, bool AlwaysInline, bool isTailCall,
6151                                 MachinePointerInfo DstPtrInfo,
6152                                 MachinePointerInfo SrcPtrInfo) {
6153   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6154 
6155   // Check to see if we should lower the memcpy to loads and stores first.
6156   // For cases within the target-specified limits, this is the best choice.
6157   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6158   if (ConstantSize) {
6159     // Memcpy with size zero? Just return the original chain.
6160     if (ConstantSize->isNullValue())
6161       return Chain;
6162 
6163     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6164                                              ConstantSize->getZExtValue(),Align,
6165                                 isVol, false, DstPtrInfo, SrcPtrInfo);
6166     if (Result.getNode())
6167       return Result;
6168   }
6169 
6170   // Then check to see if we should lower the memcpy with target-specific
6171   // code. If the target chooses to do this, this is the next best.
6172   if (TSI) {
6173     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6174         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
6175         DstPtrInfo, SrcPtrInfo);
6176     if (Result.getNode())
6177       return Result;
6178   }
6179 
6180   // If we really need inline code and the target declined to provide it,
6181   // use a (potentially long) sequence of loads and stores.
6182   if (AlwaysInline) {
6183     assert(ConstantSize && "AlwaysInline requires a constant size!");
6184     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6185                                    ConstantSize->getZExtValue(), Align, isVol,
6186                                    true, DstPtrInfo, SrcPtrInfo);
6187   }
6188 
6189   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6190   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6191 
6192   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6193   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6194   // respect volatile, so they may do things like read or write memory
6195   // beyond the given memory regions. But fixing this isn't easy, and most
6196   // people don't care.
6197 
6198   // Emit a library call.
6199   TargetLowering::ArgListTy Args;
6200   TargetLowering::ArgListEntry Entry;
6201   Entry.Ty = Type::getInt8PtrTy(*getContext());
6202   Entry.Node = Dst; Args.push_back(Entry);
6203   Entry.Node = Src; Args.push_back(Entry);
6204 
6205   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6206   Entry.Node = Size; Args.push_back(Entry);
6207   // FIXME: pass in SDLoc
6208   TargetLowering::CallLoweringInfo CLI(*this);
6209   CLI.setDebugLoc(dl)
6210       .setChain(Chain)
6211       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6212                     Dst.getValueType().getTypeForEVT(*getContext()),
6213                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6214                                       TLI->getPointerTy(getDataLayout())),
6215                     std::move(Args))
6216       .setDiscardResult()
6217       .setTailCall(isTailCall);
6218 
6219   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6220   return CallResult.second;
6221 }
6222 
6223 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6224                                       SDValue Dst, unsigned DstAlign,
6225                                       SDValue Src, unsigned SrcAlign,
6226                                       SDValue Size, Type *SizeTy,
6227                                       unsigned ElemSz, bool isTailCall,
6228                                       MachinePointerInfo DstPtrInfo,
6229                                       MachinePointerInfo SrcPtrInfo) {
6230   // Emit a library call.
6231   TargetLowering::ArgListTy Args;
6232   TargetLowering::ArgListEntry Entry;
6233   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6234   Entry.Node = Dst;
6235   Args.push_back(Entry);
6236 
6237   Entry.Node = Src;
6238   Args.push_back(Entry);
6239 
6240   Entry.Ty = SizeTy;
6241   Entry.Node = Size;
6242   Args.push_back(Entry);
6243 
6244   RTLIB::Libcall LibraryCall =
6245       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6246   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6247     report_fatal_error("Unsupported element size");
6248 
6249   TargetLowering::CallLoweringInfo CLI(*this);
6250   CLI.setDebugLoc(dl)
6251       .setChain(Chain)
6252       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6253                     Type::getVoidTy(*getContext()),
6254                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6255                                       TLI->getPointerTy(getDataLayout())),
6256                     std::move(Args))
6257       .setDiscardResult()
6258       .setTailCall(isTailCall);
6259 
6260   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6261   return CallResult.second;
6262 }
6263 
6264 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6265                                  SDValue Src, SDValue Size, unsigned Align,
6266                                  bool isVol, bool isTailCall,
6267                                  MachinePointerInfo DstPtrInfo,
6268                                  MachinePointerInfo SrcPtrInfo) {
6269   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6270 
6271   // Check to see if we should lower the memmove to loads and stores first.
6272   // For cases within the target-specified limits, this is the best choice.
6273   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6274   if (ConstantSize) {
6275     // Memmove with size zero? Just return the original chain.
6276     if (ConstantSize->isNullValue())
6277       return Chain;
6278 
6279     SDValue Result =
6280       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
6281                                ConstantSize->getZExtValue(), Align, isVol,
6282                                false, DstPtrInfo, SrcPtrInfo);
6283     if (Result.getNode())
6284       return Result;
6285   }
6286 
6287   // Then check to see if we should lower the memmove with target-specific
6288   // code. If the target chooses to do this, this is the next best.
6289   if (TSI) {
6290     SDValue Result = TSI->EmitTargetCodeForMemmove(
6291         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
6292     if (Result.getNode())
6293       return Result;
6294   }
6295 
6296   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6297   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6298 
6299   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6300   // not be safe.  See memcpy above for more details.
6301 
6302   // Emit a library call.
6303   TargetLowering::ArgListTy Args;
6304   TargetLowering::ArgListEntry Entry;
6305   Entry.Ty = Type::getInt8PtrTy(*getContext());
6306   Entry.Node = Dst; Args.push_back(Entry);
6307   Entry.Node = Src; Args.push_back(Entry);
6308 
6309   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6310   Entry.Node = Size; Args.push_back(Entry);
6311   // FIXME:  pass in SDLoc
6312   TargetLowering::CallLoweringInfo CLI(*this);
6313   CLI.setDebugLoc(dl)
6314       .setChain(Chain)
6315       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6316                     Dst.getValueType().getTypeForEVT(*getContext()),
6317                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6318                                       TLI->getPointerTy(getDataLayout())),
6319                     std::move(Args))
6320       .setDiscardResult()
6321       .setTailCall(isTailCall);
6322 
6323   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6324   return CallResult.second;
6325 }
6326 
6327 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6328                                        SDValue Dst, unsigned DstAlign,
6329                                        SDValue Src, unsigned SrcAlign,
6330                                        SDValue Size, Type *SizeTy,
6331                                        unsigned ElemSz, bool isTailCall,
6332                                        MachinePointerInfo DstPtrInfo,
6333                                        MachinePointerInfo SrcPtrInfo) {
6334   // Emit a library call.
6335   TargetLowering::ArgListTy Args;
6336   TargetLowering::ArgListEntry Entry;
6337   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6338   Entry.Node = Dst;
6339   Args.push_back(Entry);
6340 
6341   Entry.Node = Src;
6342   Args.push_back(Entry);
6343 
6344   Entry.Ty = SizeTy;
6345   Entry.Node = Size;
6346   Args.push_back(Entry);
6347 
6348   RTLIB::Libcall LibraryCall =
6349       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6350   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6351     report_fatal_error("Unsupported element size");
6352 
6353   TargetLowering::CallLoweringInfo CLI(*this);
6354   CLI.setDebugLoc(dl)
6355       .setChain(Chain)
6356       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6357                     Type::getVoidTy(*getContext()),
6358                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6359                                       TLI->getPointerTy(getDataLayout())),
6360                     std::move(Args))
6361       .setDiscardResult()
6362       .setTailCall(isTailCall);
6363 
6364   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6365   return CallResult.second;
6366 }
6367 
6368 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6369                                 SDValue Src, SDValue Size, unsigned Align,
6370                                 bool isVol, bool isTailCall,
6371                                 MachinePointerInfo DstPtrInfo) {
6372   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6373 
6374   // Check to see if we should lower the memset to stores first.
6375   // For cases within the target-specified limits, this is the best choice.
6376   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6377   if (ConstantSize) {
6378     // Memset with size zero? Just return the original chain.
6379     if (ConstantSize->isNullValue())
6380       return Chain;
6381 
6382     SDValue Result =
6383       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6384                       Align, isVol, DstPtrInfo);
6385 
6386     if (Result.getNode())
6387       return Result;
6388   }
6389 
6390   // Then check to see if we should lower the memset with target-specific
6391   // code. If the target chooses to do this, this is the next best.
6392   if (TSI) {
6393     SDValue Result = TSI->EmitTargetCodeForMemset(
6394         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6395     if (Result.getNode())
6396       return Result;
6397   }
6398 
6399   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6400 
6401   // Emit a library call.
6402   TargetLowering::ArgListTy Args;
6403   TargetLowering::ArgListEntry Entry;
6404   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6405   Args.push_back(Entry);
6406   Entry.Node = Src;
6407   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6408   Args.push_back(Entry);
6409   Entry.Node = Size;
6410   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6411   Args.push_back(Entry);
6412 
6413   // FIXME: pass in SDLoc
6414   TargetLowering::CallLoweringInfo CLI(*this);
6415   CLI.setDebugLoc(dl)
6416       .setChain(Chain)
6417       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6418                     Dst.getValueType().getTypeForEVT(*getContext()),
6419                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6420                                       TLI->getPointerTy(getDataLayout())),
6421                     std::move(Args))
6422       .setDiscardResult()
6423       .setTailCall(isTailCall);
6424 
6425   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6426   return CallResult.second;
6427 }
6428 
6429 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6430                                       SDValue Dst, unsigned DstAlign,
6431                                       SDValue Value, SDValue Size, Type *SizeTy,
6432                                       unsigned ElemSz, bool isTailCall,
6433                                       MachinePointerInfo DstPtrInfo) {
6434   // Emit a library call.
6435   TargetLowering::ArgListTy Args;
6436   TargetLowering::ArgListEntry Entry;
6437   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6438   Entry.Node = Dst;
6439   Args.push_back(Entry);
6440 
6441   Entry.Ty = Type::getInt8Ty(*getContext());
6442   Entry.Node = Value;
6443   Args.push_back(Entry);
6444 
6445   Entry.Ty = SizeTy;
6446   Entry.Node = Size;
6447   Args.push_back(Entry);
6448 
6449   RTLIB::Libcall LibraryCall =
6450       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6451   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6452     report_fatal_error("Unsupported element size");
6453 
6454   TargetLowering::CallLoweringInfo CLI(*this);
6455   CLI.setDebugLoc(dl)
6456       .setChain(Chain)
6457       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6458                     Type::getVoidTy(*getContext()),
6459                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6460                                       TLI->getPointerTy(getDataLayout())),
6461                     std::move(Args))
6462       .setDiscardResult()
6463       .setTailCall(isTailCall);
6464 
6465   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6466   return CallResult.second;
6467 }
6468 
6469 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6470                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6471                                 MachineMemOperand *MMO) {
6472   FoldingSetNodeID ID;
6473   ID.AddInteger(MemVT.getRawBits());
6474   AddNodeIDNode(ID, Opcode, VTList, Ops);
6475   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6476   void* IP = nullptr;
6477   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6478     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6479     return SDValue(E, 0);
6480   }
6481 
6482   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6483                                     VTList, MemVT, MMO);
6484   createOperands(N, Ops);
6485 
6486   CSEMap.InsertNode(N, IP);
6487   InsertNode(N);
6488   return SDValue(N, 0);
6489 }
6490 
6491 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6492                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6493                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6494                                        MachineMemOperand *MMO) {
6495   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6496          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6497   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6498 
6499   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6500   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6501 }
6502 
6503 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6504                                 SDValue Chain, SDValue Ptr, SDValue Val,
6505                                 MachineMemOperand *MMO) {
6506   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6507           Opcode == ISD::ATOMIC_LOAD_SUB ||
6508           Opcode == ISD::ATOMIC_LOAD_AND ||
6509           Opcode == ISD::ATOMIC_LOAD_CLR ||
6510           Opcode == ISD::ATOMIC_LOAD_OR ||
6511           Opcode == ISD::ATOMIC_LOAD_XOR ||
6512           Opcode == ISD::ATOMIC_LOAD_NAND ||
6513           Opcode == ISD::ATOMIC_LOAD_MIN ||
6514           Opcode == ISD::ATOMIC_LOAD_MAX ||
6515           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6516           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6517           Opcode == ISD::ATOMIC_LOAD_FADD ||
6518           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6519           Opcode == ISD::ATOMIC_SWAP ||
6520           Opcode == ISD::ATOMIC_STORE) &&
6521          "Invalid Atomic Op");
6522 
6523   EVT VT = Val.getValueType();
6524 
6525   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6526                                                getVTList(VT, MVT::Other);
6527   SDValue Ops[] = {Chain, Ptr, Val};
6528   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6529 }
6530 
6531 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6532                                 EVT VT, SDValue Chain, SDValue Ptr,
6533                                 MachineMemOperand *MMO) {
6534   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6535 
6536   SDVTList VTs = getVTList(VT, MVT::Other);
6537   SDValue Ops[] = {Chain, Ptr};
6538   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6539 }
6540 
6541 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6542 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6543   if (Ops.size() == 1)
6544     return Ops[0];
6545 
6546   SmallVector<EVT, 4> VTs;
6547   VTs.reserve(Ops.size());
6548   for (unsigned i = 0; i < Ops.size(); ++i)
6549     VTs.push_back(Ops[i].getValueType());
6550   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6551 }
6552 
6553 SDValue SelectionDAG::getMemIntrinsicNode(
6554     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6555     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6556     MachineMemOperand::Flags Flags, unsigned Size, const AAMDNodes &AAInfo) {
6557   if (Align == 0)  // Ensure that codegen never sees alignment 0
6558     Align = getEVTAlignment(MemVT);
6559 
6560   if (!Size)
6561     Size = MemVT.getStoreSize();
6562 
6563   MachineFunction &MF = getMachineFunction();
6564   MachineMemOperand *MMO =
6565       MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo);
6566 
6567   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6568 }
6569 
6570 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6571                                           SDVTList VTList,
6572                                           ArrayRef<SDValue> Ops, EVT MemVT,
6573                                           MachineMemOperand *MMO) {
6574   assert((Opcode == ISD::INTRINSIC_VOID ||
6575           Opcode == ISD::INTRINSIC_W_CHAIN ||
6576           Opcode == ISD::PREFETCH ||
6577           Opcode == ISD::LIFETIME_START ||
6578           Opcode == ISD::LIFETIME_END ||
6579           ((int)Opcode <= std::numeric_limits<int>::max() &&
6580            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6581          "Opcode is not a memory-accessing opcode!");
6582 
6583   // Memoize the node unless it returns a flag.
6584   MemIntrinsicSDNode *N;
6585   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6586     FoldingSetNodeID ID;
6587     AddNodeIDNode(ID, Opcode, VTList, Ops);
6588     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6589         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6590     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6591     void *IP = nullptr;
6592     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6593       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6594       return SDValue(E, 0);
6595     }
6596 
6597     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6598                                       VTList, MemVT, MMO);
6599     createOperands(N, Ops);
6600 
6601   CSEMap.InsertNode(N, IP);
6602   } else {
6603     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6604                                       VTList, MemVT, MMO);
6605     createOperands(N, Ops);
6606   }
6607   InsertNode(N);
6608   SDValue V(N, 0);
6609   NewSDValueDbgMsg(V, "Creating new node: ", this);
6610   return V;
6611 }
6612 
6613 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6614                                       SDValue Chain, int FrameIndex,
6615                                       int64_t Size, int64_t Offset) {
6616   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6617   const auto VTs = getVTList(MVT::Other);
6618   SDValue Ops[2] = {
6619       Chain,
6620       getFrameIndex(FrameIndex,
6621                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6622                     true)};
6623 
6624   FoldingSetNodeID ID;
6625   AddNodeIDNode(ID, Opcode, VTs, Ops);
6626   ID.AddInteger(FrameIndex);
6627   ID.AddInteger(Size);
6628   ID.AddInteger(Offset);
6629   void *IP = nullptr;
6630   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6631     return SDValue(E, 0);
6632 
6633   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6634       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6635   createOperands(N, Ops);
6636   CSEMap.InsertNode(N, IP);
6637   InsertNode(N);
6638   SDValue V(N, 0);
6639   NewSDValueDbgMsg(V, "Creating new node: ", this);
6640   return V;
6641 }
6642 
6643 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6644 /// MachinePointerInfo record from it.  This is particularly useful because the
6645 /// code generator has many cases where it doesn't bother passing in a
6646 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6647 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6648                                            SelectionDAG &DAG, SDValue Ptr,
6649                                            int64_t Offset = 0) {
6650   // If this is FI+Offset, we can model it.
6651   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6652     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6653                                              FI->getIndex(), Offset);
6654 
6655   // If this is (FI+Offset1)+Offset2, we can model it.
6656   if (Ptr.getOpcode() != ISD::ADD ||
6657       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6658       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6659     return Info;
6660 
6661   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6662   return MachinePointerInfo::getFixedStack(
6663       DAG.getMachineFunction(), FI,
6664       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6665 }
6666 
6667 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6668 /// MachinePointerInfo record from it.  This is particularly useful because the
6669 /// code generator has many cases where it doesn't bother passing in a
6670 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6671 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6672                                            SelectionDAG &DAG, SDValue Ptr,
6673                                            SDValue OffsetOp) {
6674   // If the 'Offset' value isn't a constant, we can't handle this.
6675   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6676     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6677   if (OffsetOp.isUndef())
6678     return InferPointerInfo(Info, DAG, Ptr);
6679   return Info;
6680 }
6681 
6682 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6683                               EVT VT, const SDLoc &dl, SDValue Chain,
6684                               SDValue Ptr, SDValue Offset,
6685                               MachinePointerInfo PtrInfo, EVT MemVT,
6686                               unsigned Alignment,
6687                               MachineMemOperand::Flags MMOFlags,
6688                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6689   assert(Chain.getValueType() == MVT::Other &&
6690         "Invalid chain type");
6691   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6692     Alignment = getEVTAlignment(MemVT);
6693 
6694   MMOFlags |= MachineMemOperand::MOLoad;
6695   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6696   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6697   // clients.
6698   if (PtrInfo.V.isNull())
6699     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6700 
6701   MachineFunction &MF = getMachineFunction();
6702   MachineMemOperand *MMO = MF.getMachineMemOperand(
6703       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6704   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6705 }
6706 
6707 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6708                               EVT VT, const SDLoc &dl, SDValue Chain,
6709                               SDValue Ptr, SDValue Offset, EVT MemVT,
6710                               MachineMemOperand *MMO) {
6711   if (VT == MemVT) {
6712     ExtType = ISD::NON_EXTLOAD;
6713   } else if (ExtType == ISD::NON_EXTLOAD) {
6714     assert(VT == MemVT && "Non-extending load from different memory type!");
6715   } else {
6716     // Extending load.
6717     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6718            "Should only be an extending load, not truncating!");
6719     assert(VT.isInteger() == MemVT.isInteger() &&
6720            "Cannot convert from FP to Int or Int -> FP!");
6721     assert(VT.isVector() == MemVT.isVector() &&
6722            "Cannot use an ext load to convert to or from a vector!");
6723     assert((!VT.isVector() ||
6724             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6725            "Cannot use an ext load to change the number of vector elements!");
6726   }
6727 
6728   bool Indexed = AM != ISD::UNINDEXED;
6729   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6730 
6731   SDVTList VTs = Indexed ?
6732     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6733   SDValue Ops[] = { Chain, Ptr, Offset };
6734   FoldingSetNodeID ID;
6735   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6736   ID.AddInteger(MemVT.getRawBits());
6737   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6738       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6739   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6740   void *IP = nullptr;
6741   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6742     cast<LoadSDNode>(E)->refineAlignment(MMO);
6743     return SDValue(E, 0);
6744   }
6745   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6746                                   ExtType, MemVT, MMO);
6747   createOperands(N, Ops);
6748 
6749   CSEMap.InsertNode(N, IP);
6750   InsertNode(N);
6751   SDValue V(N, 0);
6752   NewSDValueDbgMsg(V, "Creating new node: ", this);
6753   return V;
6754 }
6755 
6756 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6757                               SDValue Ptr, MachinePointerInfo PtrInfo,
6758                               unsigned Alignment,
6759                               MachineMemOperand::Flags MMOFlags,
6760                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6761   SDValue Undef = getUNDEF(Ptr.getValueType());
6762   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6763                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6764 }
6765 
6766 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6767                               SDValue Ptr, MachineMemOperand *MMO) {
6768   SDValue Undef = getUNDEF(Ptr.getValueType());
6769   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6770                  VT, MMO);
6771 }
6772 
6773 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6774                                  EVT VT, SDValue Chain, SDValue Ptr,
6775                                  MachinePointerInfo PtrInfo, EVT MemVT,
6776                                  unsigned Alignment,
6777                                  MachineMemOperand::Flags MMOFlags,
6778                                  const AAMDNodes &AAInfo) {
6779   SDValue Undef = getUNDEF(Ptr.getValueType());
6780   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6781                  MemVT, Alignment, MMOFlags, AAInfo);
6782 }
6783 
6784 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6785                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6786                                  MachineMemOperand *MMO) {
6787   SDValue Undef = getUNDEF(Ptr.getValueType());
6788   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6789                  MemVT, MMO);
6790 }
6791 
6792 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6793                                      SDValue Base, SDValue Offset,
6794                                      ISD::MemIndexedMode AM) {
6795   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6796   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6797   // Don't propagate the invariant or dereferenceable flags.
6798   auto MMOFlags =
6799       LD->getMemOperand()->getFlags() &
6800       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6801   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6802                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6803                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6804                  LD->getAAInfo());
6805 }
6806 
6807 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6808                                SDValue Ptr, MachinePointerInfo PtrInfo,
6809                                unsigned Alignment,
6810                                MachineMemOperand::Flags MMOFlags,
6811                                const AAMDNodes &AAInfo) {
6812   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6813   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6814     Alignment = getEVTAlignment(Val.getValueType());
6815 
6816   MMOFlags |= MachineMemOperand::MOStore;
6817   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6818 
6819   if (PtrInfo.V.isNull())
6820     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6821 
6822   MachineFunction &MF = getMachineFunction();
6823   MachineMemOperand *MMO = MF.getMachineMemOperand(
6824       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6825   return getStore(Chain, dl, Val, Ptr, MMO);
6826 }
6827 
6828 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6829                                SDValue Ptr, MachineMemOperand *MMO) {
6830   assert(Chain.getValueType() == MVT::Other &&
6831         "Invalid chain type");
6832   EVT VT = Val.getValueType();
6833   SDVTList VTs = getVTList(MVT::Other);
6834   SDValue Undef = getUNDEF(Ptr.getValueType());
6835   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6836   FoldingSetNodeID ID;
6837   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6838   ID.AddInteger(VT.getRawBits());
6839   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6840       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6841   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6842   void *IP = nullptr;
6843   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6844     cast<StoreSDNode>(E)->refineAlignment(MMO);
6845     return SDValue(E, 0);
6846   }
6847   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6848                                    ISD::UNINDEXED, false, VT, MMO);
6849   createOperands(N, Ops);
6850 
6851   CSEMap.InsertNode(N, IP);
6852   InsertNode(N);
6853   SDValue V(N, 0);
6854   NewSDValueDbgMsg(V, "Creating new node: ", this);
6855   return V;
6856 }
6857 
6858 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6859                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6860                                     EVT SVT, unsigned Alignment,
6861                                     MachineMemOperand::Flags MMOFlags,
6862                                     const AAMDNodes &AAInfo) {
6863   assert(Chain.getValueType() == MVT::Other &&
6864         "Invalid chain type");
6865   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6866     Alignment = getEVTAlignment(SVT);
6867 
6868   MMOFlags |= MachineMemOperand::MOStore;
6869   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6870 
6871   if (PtrInfo.V.isNull())
6872     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6873 
6874   MachineFunction &MF = getMachineFunction();
6875   MachineMemOperand *MMO = MF.getMachineMemOperand(
6876       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6877   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6878 }
6879 
6880 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6881                                     SDValue Ptr, EVT SVT,
6882                                     MachineMemOperand *MMO) {
6883   EVT VT = Val.getValueType();
6884 
6885   assert(Chain.getValueType() == MVT::Other &&
6886         "Invalid chain type");
6887   if (VT == SVT)
6888     return getStore(Chain, dl, Val, Ptr, MMO);
6889 
6890   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6891          "Should only be a truncating store, not extending!");
6892   assert(VT.isInteger() == SVT.isInteger() &&
6893          "Can't do FP-INT conversion!");
6894   assert(VT.isVector() == SVT.isVector() &&
6895          "Cannot use trunc store to convert to or from a vector!");
6896   assert((!VT.isVector() ||
6897           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6898          "Cannot use trunc store to change the number of vector elements!");
6899 
6900   SDVTList VTs = getVTList(MVT::Other);
6901   SDValue Undef = getUNDEF(Ptr.getValueType());
6902   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6903   FoldingSetNodeID ID;
6904   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6905   ID.AddInteger(SVT.getRawBits());
6906   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6907       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6908   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6909   void *IP = nullptr;
6910   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6911     cast<StoreSDNode>(E)->refineAlignment(MMO);
6912     return SDValue(E, 0);
6913   }
6914   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6915                                    ISD::UNINDEXED, true, SVT, MMO);
6916   createOperands(N, Ops);
6917 
6918   CSEMap.InsertNode(N, IP);
6919   InsertNode(N);
6920   SDValue V(N, 0);
6921   NewSDValueDbgMsg(V, "Creating new node: ", this);
6922   return V;
6923 }
6924 
6925 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6926                                       SDValue Base, SDValue Offset,
6927                                       ISD::MemIndexedMode AM) {
6928   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6929   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6930   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6931   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6932   FoldingSetNodeID ID;
6933   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6934   ID.AddInteger(ST->getMemoryVT().getRawBits());
6935   ID.AddInteger(ST->getRawSubclassData());
6936   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6937   void *IP = nullptr;
6938   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6939     return SDValue(E, 0);
6940 
6941   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6942                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6943                                    ST->getMemOperand());
6944   createOperands(N, Ops);
6945 
6946   CSEMap.InsertNode(N, IP);
6947   InsertNode(N);
6948   SDValue V(N, 0);
6949   NewSDValueDbgMsg(V, "Creating new node: ", this);
6950   return V;
6951 }
6952 
6953 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6954                                     SDValue Ptr, SDValue Mask, SDValue PassThru,
6955                                     EVT MemVT, MachineMemOperand *MMO,
6956                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6957   SDVTList VTs = getVTList(VT, MVT::Other);
6958   SDValue Ops[] = { Chain, Ptr, Mask, PassThru };
6959   FoldingSetNodeID ID;
6960   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6961   ID.AddInteger(MemVT.getRawBits());
6962   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6963       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6964   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6965   void *IP = nullptr;
6966   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6967     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6968     return SDValue(E, 0);
6969   }
6970   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6971                                         ExtTy, isExpanding, MemVT, MMO);
6972   createOperands(N, Ops);
6973 
6974   CSEMap.InsertNode(N, IP);
6975   InsertNode(N);
6976   SDValue V(N, 0);
6977   NewSDValueDbgMsg(V, "Creating new node: ", this);
6978   return V;
6979 }
6980 
6981 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6982                                      SDValue Val, SDValue Ptr, SDValue Mask,
6983                                      EVT MemVT, MachineMemOperand *MMO,
6984                                      bool IsTruncating, bool IsCompressing) {
6985   assert(Chain.getValueType() == MVT::Other &&
6986         "Invalid chain type");
6987   SDVTList VTs = getVTList(MVT::Other);
6988   SDValue Ops[] = { Chain, Val, Ptr, Mask };
6989   FoldingSetNodeID ID;
6990   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6991   ID.AddInteger(MemVT.getRawBits());
6992   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6993       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6994   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6995   void *IP = nullptr;
6996   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6997     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6998     return SDValue(E, 0);
6999   }
7000   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7001                                          IsTruncating, IsCompressing, MemVT, MMO);
7002   createOperands(N, Ops);
7003 
7004   CSEMap.InsertNode(N, IP);
7005   InsertNode(N);
7006   SDValue V(N, 0);
7007   NewSDValueDbgMsg(V, "Creating new node: ", this);
7008   return V;
7009 }
7010 
7011 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7012                                       ArrayRef<SDValue> Ops,
7013                                       MachineMemOperand *MMO,
7014                                       ISD::MemIndexType IndexType) {
7015   assert(Ops.size() == 6 && "Incompatible number of operands");
7016 
7017   FoldingSetNodeID ID;
7018   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7019   ID.AddInteger(VT.getRawBits());
7020   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7021       dl.getIROrder(), VTs, VT, MMO, IndexType));
7022   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7023   void *IP = nullptr;
7024   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7025     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7026     return SDValue(E, 0);
7027   }
7028 
7029   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7030                                           VTs, VT, MMO, IndexType);
7031   createOperands(N, Ops);
7032 
7033   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7034          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7035   assert(N->getMask().getValueType().getVectorNumElements() ==
7036              N->getValueType(0).getVectorNumElements() &&
7037          "Vector width mismatch between mask and data");
7038   assert(N->getIndex().getValueType().getVectorNumElements() >=
7039              N->getValueType(0).getVectorNumElements() &&
7040          "Vector width mismatch between index and data");
7041   assert(isa<ConstantSDNode>(N->getScale()) &&
7042          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7043          "Scale should be a constant power of 2");
7044 
7045   CSEMap.InsertNode(N, IP);
7046   InsertNode(N);
7047   SDValue V(N, 0);
7048   NewSDValueDbgMsg(V, "Creating new node: ", this);
7049   return V;
7050 }
7051 
7052 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7053                                        ArrayRef<SDValue> Ops,
7054                                        MachineMemOperand *MMO,
7055                                        ISD::MemIndexType IndexType) {
7056   assert(Ops.size() == 6 && "Incompatible number of operands");
7057 
7058   FoldingSetNodeID ID;
7059   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7060   ID.AddInteger(VT.getRawBits());
7061   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7062       dl.getIROrder(), VTs, VT, MMO, IndexType));
7063   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7064   void *IP = nullptr;
7065   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7066     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7067     return SDValue(E, 0);
7068   }
7069   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7070                                            VTs, VT, MMO, IndexType);
7071   createOperands(N, Ops);
7072 
7073   assert(N->getMask().getValueType().getVectorNumElements() ==
7074              N->getValue().getValueType().getVectorNumElements() &&
7075          "Vector width mismatch between mask and data");
7076   assert(N->getIndex().getValueType().getVectorNumElements() >=
7077              N->getValue().getValueType().getVectorNumElements() &&
7078          "Vector width mismatch between index and data");
7079   assert(isa<ConstantSDNode>(N->getScale()) &&
7080          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7081          "Scale should be a constant power of 2");
7082 
7083   CSEMap.InsertNode(N, IP);
7084   InsertNode(N);
7085   SDValue V(N, 0);
7086   NewSDValueDbgMsg(V, "Creating new node: ", this);
7087   return V;
7088 }
7089 
7090 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7091   // select undef, T, F --> T (if T is a constant), otherwise F
7092   // select, ?, undef, F --> F
7093   // select, ?, T, undef --> T
7094   if (Cond.isUndef())
7095     return isConstantValueOfAnyType(T) ? T : F;
7096   if (T.isUndef())
7097     return F;
7098   if (F.isUndef())
7099     return T;
7100 
7101   // select true, T, F --> T
7102   // select false, T, F --> F
7103   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7104     return CondC->isNullValue() ? F : T;
7105 
7106   // TODO: This should simplify VSELECT with constant condition using something
7107   // like this (but check boolean contents to be complete?):
7108   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7109   //    return T;
7110   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7111   //    return F;
7112 
7113   // select ?, T, T --> T
7114   if (T == F)
7115     return T;
7116 
7117   return SDValue();
7118 }
7119 
7120 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7121   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7122   if (X.isUndef())
7123     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7124   // shift X, undef --> undef (because it may shift by the bitwidth)
7125   if (Y.isUndef())
7126     return getUNDEF(X.getValueType());
7127 
7128   // shift 0, Y --> 0
7129   // shift X, 0 --> X
7130   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7131     return X;
7132 
7133   // shift X, C >= bitwidth(X) --> undef
7134   // All vector elements must be too big (or undef) to avoid partial undefs.
7135   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7136     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7137   };
7138   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7139     return getUNDEF(X.getValueType());
7140 
7141   return SDValue();
7142 }
7143 
7144 // TODO: Use fast-math-flags to enable more simplifications.
7145 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) {
7146   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7147   if (!YC)
7148     return SDValue();
7149 
7150   // X + -0.0 --> X
7151   if (Opcode == ISD::FADD)
7152     if (YC->getValueAPF().isNegZero())
7153       return X;
7154 
7155   // X - +0.0 --> X
7156   if (Opcode == ISD::FSUB)
7157     if (YC->getValueAPF().isPosZero())
7158       return X;
7159 
7160   // X * 1.0 --> X
7161   // X / 1.0 --> X
7162   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7163     if (YC->getValueAPF().isExactlyValue(1.0))
7164       return X;
7165 
7166   return SDValue();
7167 }
7168 
7169 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7170                                SDValue Ptr, SDValue SV, unsigned Align) {
7171   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7172   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7173 }
7174 
7175 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7176                               ArrayRef<SDUse> Ops) {
7177   switch (Ops.size()) {
7178   case 0: return getNode(Opcode, DL, VT);
7179   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7180   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7181   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7182   default: break;
7183   }
7184 
7185   // Copy from an SDUse array into an SDValue array for use with
7186   // the regular getNode logic.
7187   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7188   return getNode(Opcode, DL, VT, NewOps);
7189 }
7190 
7191 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7192                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7193   unsigned NumOps = Ops.size();
7194   switch (NumOps) {
7195   case 0: return getNode(Opcode, DL, VT);
7196   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7197   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7198   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7199   default: break;
7200   }
7201 
7202   switch (Opcode) {
7203   default: break;
7204   case ISD::BUILD_VECTOR:
7205     // Attempt to simplify BUILD_VECTOR.
7206     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7207       return V;
7208     break;
7209   case ISD::CONCAT_VECTORS:
7210     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7211       return V;
7212     break;
7213   case ISD::SELECT_CC:
7214     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7215     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7216            "LHS and RHS of condition must have same type!");
7217     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7218            "True and False arms of SelectCC must have same type!");
7219     assert(Ops[2].getValueType() == VT &&
7220            "select_cc node must be of same type as true and false value!");
7221     break;
7222   case ISD::BR_CC:
7223     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7224     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7225            "LHS/RHS of comparison should match types!");
7226     break;
7227   }
7228 
7229   // Memoize nodes.
7230   SDNode *N;
7231   SDVTList VTs = getVTList(VT);
7232 
7233   if (VT != MVT::Glue) {
7234     FoldingSetNodeID ID;
7235     AddNodeIDNode(ID, Opcode, VTs, Ops);
7236     void *IP = nullptr;
7237 
7238     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7239       return SDValue(E, 0);
7240 
7241     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7242     createOperands(N, Ops);
7243 
7244     CSEMap.InsertNode(N, IP);
7245   } else {
7246     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7247     createOperands(N, Ops);
7248   }
7249 
7250   InsertNode(N);
7251   SDValue V(N, 0);
7252   NewSDValueDbgMsg(V, "Creating new node: ", this);
7253   return V;
7254 }
7255 
7256 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7257                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7258   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7259 }
7260 
7261 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7262                               ArrayRef<SDValue> Ops) {
7263   if (VTList.NumVTs == 1)
7264     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7265 
7266 #if 0
7267   switch (Opcode) {
7268   // FIXME: figure out how to safely handle things like
7269   // int foo(int x) { return 1 << (x & 255); }
7270   // int bar() { return foo(256); }
7271   case ISD::SRA_PARTS:
7272   case ISD::SRL_PARTS:
7273   case ISD::SHL_PARTS:
7274     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7275         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7276       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7277     else if (N3.getOpcode() == ISD::AND)
7278       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7279         // If the and is only masking out bits that cannot effect the shift,
7280         // eliminate the and.
7281         unsigned NumBits = VT.getScalarSizeInBits()*2;
7282         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7283           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7284       }
7285     break;
7286   }
7287 #endif
7288 
7289   // Memoize the node unless it returns a flag.
7290   SDNode *N;
7291   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7292     FoldingSetNodeID ID;
7293     AddNodeIDNode(ID, Opcode, VTList, Ops);
7294     void *IP = nullptr;
7295     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7296       return SDValue(E, 0);
7297 
7298     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7299     createOperands(N, Ops);
7300     CSEMap.InsertNode(N, IP);
7301   } else {
7302     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7303     createOperands(N, Ops);
7304   }
7305   InsertNode(N);
7306   SDValue V(N, 0);
7307   NewSDValueDbgMsg(V, "Creating new node: ", this);
7308   return V;
7309 }
7310 
7311 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7312                               SDVTList VTList) {
7313   return getNode(Opcode, DL, VTList, None);
7314 }
7315 
7316 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7317                               SDValue N1) {
7318   SDValue Ops[] = { N1 };
7319   return getNode(Opcode, DL, VTList, Ops);
7320 }
7321 
7322 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7323                               SDValue N1, SDValue N2) {
7324   SDValue Ops[] = { N1, N2 };
7325   return getNode(Opcode, DL, VTList, Ops);
7326 }
7327 
7328 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7329                               SDValue N1, SDValue N2, SDValue N3) {
7330   SDValue Ops[] = { N1, N2, N3 };
7331   return getNode(Opcode, DL, VTList, Ops);
7332 }
7333 
7334 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7335                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7336   SDValue Ops[] = { N1, N2, N3, N4 };
7337   return getNode(Opcode, DL, VTList, Ops);
7338 }
7339 
7340 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7341                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7342                               SDValue N5) {
7343   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7344   return getNode(Opcode, DL, VTList, Ops);
7345 }
7346 
7347 SDVTList SelectionDAG::getVTList(EVT VT) {
7348   return makeVTList(SDNode::getValueTypeList(VT), 1);
7349 }
7350 
7351 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7352   FoldingSetNodeID ID;
7353   ID.AddInteger(2U);
7354   ID.AddInteger(VT1.getRawBits());
7355   ID.AddInteger(VT2.getRawBits());
7356 
7357   void *IP = nullptr;
7358   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7359   if (!Result) {
7360     EVT *Array = Allocator.Allocate<EVT>(2);
7361     Array[0] = VT1;
7362     Array[1] = VT2;
7363     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7364     VTListMap.InsertNode(Result, IP);
7365   }
7366   return Result->getSDVTList();
7367 }
7368 
7369 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7370   FoldingSetNodeID ID;
7371   ID.AddInteger(3U);
7372   ID.AddInteger(VT1.getRawBits());
7373   ID.AddInteger(VT2.getRawBits());
7374   ID.AddInteger(VT3.getRawBits());
7375 
7376   void *IP = nullptr;
7377   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7378   if (!Result) {
7379     EVT *Array = Allocator.Allocate<EVT>(3);
7380     Array[0] = VT1;
7381     Array[1] = VT2;
7382     Array[2] = VT3;
7383     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7384     VTListMap.InsertNode(Result, IP);
7385   }
7386   return Result->getSDVTList();
7387 }
7388 
7389 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7390   FoldingSetNodeID ID;
7391   ID.AddInteger(4U);
7392   ID.AddInteger(VT1.getRawBits());
7393   ID.AddInteger(VT2.getRawBits());
7394   ID.AddInteger(VT3.getRawBits());
7395   ID.AddInteger(VT4.getRawBits());
7396 
7397   void *IP = nullptr;
7398   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7399   if (!Result) {
7400     EVT *Array = Allocator.Allocate<EVT>(4);
7401     Array[0] = VT1;
7402     Array[1] = VT2;
7403     Array[2] = VT3;
7404     Array[3] = VT4;
7405     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7406     VTListMap.InsertNode(Result, IP);
7407   }
7408   return Result->getSDVTList();
7409 }
7410 
7411 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7412   unsigned NumVTs = VTs.size();
7413   FoldingSetNodeID ID;
7414   ID.AddInteger(NumVTs);
7415   for (unsigned index = 0; index < NumVTs; index++) {
7416     ID.AddInteger(VTs[index].getRawBits());
7417   }
7418 
7419   void *IP = nullptr;
7420   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7421   if (!Result) {
7422     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7423     llvm::copy(VTs, Array);
7424     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7425     VTListMap.InsertNode(Result, IP);
7426   }
7427   return Result->getSDVTList();
7428 }
7429 
7430 
7431 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7432 /// specified operands.  If the resultant node already exists in the DAG,
7433 /// this does not modify the specified node, instead it returns the node that
7434 /// already exists.  If the resultant node does not exist in the DAG, the
7435 /// input node is returned.  As a degenerate case, if you specify the same
7436 /// input operands as the node already has, the input node is returned.
7437 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7438   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7439 
7440   // Check to see if there is no change.
7441   if (Op == N->getOperand(0)) return N;
7442 
7443   // See if the modified node already exists.
7444   void *InsertPos = nullptr;
7445   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7446     return Existing;
7447 
7448   // Nope it doesn't.  Remove the node from its current place in the maps.
7449   if (InsertPos)
7450     if (!RemoveNodeFromCSEMaps(N))
7451       InsertPos = nullptr;
7452 
7453   // Now we update the operands.
7454   N->OperandList[0].set(Op);
7455 
7456   updateDivergence(N);
7457   // If this gets put into a CSE map, add it.
7458   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7459   return N;
7460 }
7461 
7462 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7463   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7464 
7465   // Check to see if there is no change.
7466   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7467     return N;   // No operands changed, just return the input node.
7468 
7469   // See if the modified node already exists.
7470   void *InsertPos = nullptr;
7471   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7472     return Existing;
7473 
7474   // Nope it doesn't.  Remove the node from its current place in the maps.
7475   if (InsertPos)
7476     if (!RemoveNodeFromCSEMaps(N))
7477       InsertPos = nullptr;
7478 
7479   // Now we update the operands.
7480   if (N->OperandList[0] != Op1)
7481     N->OperandList[0].set(Op1);
7482   if (N->OperandList[1] != Op2)
7483     N->OperandList[1].set(Op2);
7484 
7485   updateDivergence(N);
7486   // If this gets put into a CSE map, add it.
7487   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7488   return N;
7489 }
7490 
7491 SDNode *SelectionDAG::
7492 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7493   SDValue Ops[] = { Op1, Op2, Op3 };
7494   return UpdateNodeOperands(N, Ops);
7495 }
7496 
7497 SDNode *SelectionDAG::
7498 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7499                    SDValue Op3, SDValue Op4) {
7500   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7501   return UpdateNodeOperands(N, Ops);
7502 }
7503 
7504 SDNode *SelectionDAG::
7505 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7506                    SDValue Op3, SDValue Op4, SDValue Op5) {
7507   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7508   return UpdateNodeOperands(N, Ops);
7509 }
7510 
7511 SDNode *SelectionDAG::
7512 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7513   unsigned NumOps = Ops.size();
7514   assert(N->getNumOperands() == NumOps &&
7515          "Update with wrong number of operands");
7516 
7517   // If no operands changed just return the input node.
7518   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7519     return N;
7520 
7521   // See if the modified node already exists.
7522   void *InsertPos = nullptr;
7523   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7524     return Existing;
7525 
7526   // Nope it doesn't.  Remove the node from its current place in the maps.
7527   if (InsertPos)
7528     if (!RemoveNodeFromCSEMaps(N))
7529       InsertPos = nullptr;
7530 
7531   // Now we update the operands.
7532   for (unsigned i = 0; i != NumOps; ++i)
7533     if (N->OperandList[i] != Ops[i])
7534       N->OperandList[i].set(Ops[i]);
7535 
7536   updateDivergence(N);
7537   // If this gets put into a CSE map, add it.
7538   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7539   return N;
7540 }
7541 
7542 /// DropOperands - Release the operands and set this node to have
7543 /// zero operands.
7544 void SDNode::DropOperands() {
7545   // Unlike the code in MorphNodeTo that does this, we don't need to
7546   // watch for dead nodes here.
7547   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7548     SDUse &Use = *I++;
7549     Use.set(SDValue());
7550   }
7551 }
7552 
7553 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7554                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7555   if (NewMemRefs.empty()) {
7556     N->clearMemRefs();
7557     return;
7558   }
7559 
7560   // Check if we can avoid allocating by storing a single reference directly.
7561   if (NewMemRefs.size() == 1) {
7562     N->MemRefs = NewMemRefs[0];
7563     N->NumMemRefs = 1;
7564     return;
7565   }
7566 
7567   MachineMemOperand **MemRefsBuffer =
7568       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7569   llvm::copy(NewMemRefs, MemRefsBuffer);
7570   N->MemRefs = MemRefsBuffer;
7571   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7572 }
7573 
7574 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7575 /// machine opcode.
7576 ///
7577 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7578                                    EVT VT) {
7579   SDVTList VTs = getVTList(VT);
7580   return SelectNodeTo(N, MachineOpc, VTs, None);
7581 }
7582 
7583 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7584                                    EVT VT, SDValue Op1) {
7585   SDVTList VTs = getVTList(VT);
7586   SDValue Ops[] = { Op1 };
7587   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7588 }
7589 
7590 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7591                                    EVT VT, SDValue Op1,
7592                                    SDValue Op2) {
7593   SDVTList VTs = getVTList(VT);
7594   SDValue Ops[] = { Op1, Op2 };
7595   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7596 }
7597 
7598 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7599                                    EVT VT, SDValue Op1,
7600                                    SDValue Op2, SDValue Op3) {
7601   SDVTList VTs = getVTList(VT);
7602   SDValue Ops[] = { Op1, Op2, Op3 };
7603   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7604 }
7605 
7606 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7607                                    EVT VT, ArrayRef<SDValue> Ops) {
7608   SDVTList VTs = getVTList(VT);
7609   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7610 }
7611 
7612 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7613                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7614   SDVTList VTs = getVTList(VT1, VT2);
7615   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7616 }
7617 
7618 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7619                                    EVT VT1, EVT VT2) {
7620   SDVTList VTs = getVTList(VT1, VT2);
7621   return SelectNodeTo(N, MachineOpc, VTs, None);
7622 }
7623 
7624 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7625                                    EVT VT1, EVT VT2, EVT VT3,
7626                                    ArrayRef<SDValue> Ops) {
7627   SDVTList VTs = getVTList(VT1, VT2, VT3);
7628   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7629 }
7630 
7631 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7632                                    EVT VT1, EVT VT2,
7633                                    SDValue Op1, SDValue Op2) {
7634   SDVTList VTs = getVTList(VT1, VT2);
7635   SDValue Ops[] = { Op1, Op2 };
7636   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7637 }
7638 
7639 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7640                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7641   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7642   // Reset the NodeID to -1.
7643   New->setNodeId(-1);
7644   if (New != N) {
7645     ReplaceAllUsesWith(N, New);
7646     RemoveDeadNode(N);
7647   }
7648   return New;
7649 }
7650 
7651 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7652 /// the line number information on the merged node since it is not possible to
7653 /// preserve the information that operation is associated with multiple lines.
7654 /// This will make the debugger working better at -O0, were there is a higher
7655 /// probability having other instructions associated with that line.
7656 ///
7657 /// For IROrder, we keep the smaller of the two
7658 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7659   DebugLoc NLoc = N->getDebugLoc();
7660   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7661     N->setDebugLoc(DebugLoc());
7662   }
7663   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7664   N->setIROrder(Order);
7665   return N;
7666 }
7667 
7668 /// MorphNodeTo - This *mutates* the specified node to have the specified
7669 /// return type, opcode, and operands.
7670 ///
7671 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7672 /// node of the specified opcode and operands, it returns that node instead of
7673 /// the current one.  Note that the SDLoc need not be the same.
7674 ///
7675 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7676 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7677 /// node, and because it doesn't require CSE recalculation for any of
7678 /// the node's users.
7679 ///
7680 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7681 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7682 /// the legalizer which maintain worklists that would need to be updated when
7683 /// deleting things.
7684 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7685                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7686   // If an identical node already exists, use it.
7687   void *IP = nullptr;
7688   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7689     FoldingSetNodeID ID;
7690     AddNodeIDNode(ID, Opc, VTs, Ops);
7691     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7692       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7693   }
7694 
7695   if (!RemoveNodeFromCSEMaps(N))
7696     IP = nullptr;
7697 
7698   // Start the morphing.
7699   N->NodeType = Opc;
7700   N->ValueList = VTs.VTs;
7701   N->NumValues = VTs.NumVTs;
7702 
7703   // Clear the operands list, updating used nodes to remove this from their
7704   // use list.  Keep track of any operands that become dead as a result.
7705   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7706   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7707     SDUse &Use = *I++;
7708     SDNode *Used = Use.getNode();
7709     Use.set(SDValue());
7710     if (Used->use_empty())
7711       DeadNodeSet.insert(Used);
7712   }
7713 
7714   // For MachineNode, initialize the memory references information.
7715   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7716     MN->clearMemRefs();
7717 
7718   // Swap for an appropriately sized array from the recycler.
7719   removeOperands(N);
7720   createOperands(N, Ops);
7721 
7722   // Delete any nodes that are still dead after adding the uses for the
7723   // new operands.
7724   if (!DeadNodeSet.empty()) {
7725     SmallVector<SDNode *, 16> DeadNodes;
7726     for (SDNode *N : DeadNodeSet)
7727       if (N->use_empty())
7728         DeadNodes.push_back(N);
7729     RemoveDeadNodes(DeadNodes);
7730   }
7731 
7732   if (IP)
7733     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7734   return N;
7735 }
7736 
7737 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7738   unsigned OrigOpc = Node->getOpcode();
7739   unsigned NewOpc;
7740   switch (OrigOpc) {
7741   default:
7742     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7743   case ISD::STRICT_FADD:       NewOpc = ISD::FADD;       break;
7744   case ISD::STRICT_FSUB:       NewOpc = ISD::FSUB;       break;
7745   case ISD::STRICT_FMUL:       NewOpc = ISD::FMUL;       break;
7746   case ISD::STRICT_FDIV:       NewOpc = ISD::FDIV;       break;
7747   case ISD::STRICT_FREM:       NewOpc = ISD::FREM;       break;
7748   case ISD::STRICT_FMA:        NewOpc = ISD::FMA;        break;
7749   case ISD::STRICT_FSQRT:      NewOpc = ISD::FSQRT;      break;
7750   case ISD::STRICT_FPOW:       NewOpc = ISD::FPOW;       break;
7751   case ISD::STRICT_FPOWI:      NewOpc = ISD::FPOWI;      break;
7752   case ISD::STRICT_FSIN:       NewOpc = ISD::FSIN;       break;
7753   case ISD::STRICT_FCOS:       NewOpc = ISD::FCOS;       break;
7754   case ISD::STRICT_FEXP:       NewOpc = ISD::FEXP;       break;
7755   case ISD::STRICT_FEXP2:      NewOpc = ISD::FEXP2;      break;
7756   case ISD::STRICT_FLOG:       NewOpc = ISD::FLOG;       break;
7757   case ISD::STRICT_FLOG10:     NewOpc = ISD::FLOG10;     break;
7758   case ISD::STRICT_FLOG2:      NewOpc = ISD::FLOG2;      break;
7759   case ISD::STRICT_FRINT:      NewOpc = ISD::FRINT;      break;
7760   case ISD::STRICT_FNEARBYINT: NewOpc = ISD::FNEARBYINT; break;
7761   case ISD::STRICT_FMAXNUM:    NewOpc = ISD::FMAXNUM;    break;
7762   case ISD::STRICT_FMINNUM:    NewOpc = ISD::FMINNUM;    break;
7763   case ISD::STRICT_FCEIL:      NewOpc = ISD::FCEIL;      break;
7764   case ISD::STRICT_FFLOOR:     NewOpc = ISD::FFLOOR;     break;
7765   case ISD::STRICT_FROUND:     NewOpc = ISD::FROUND;     break;
7766   case ISD::STRICT_FTRUNC:     NewOpc = ISD::FTRUNC;     break;
7767   case ISD::STRICT_FP_ROUND:   NewOpc = ISD::FP_ROUND;   break;
7768   case ISD::STRICT_FP_EXTEND:  NewOpc = ISD::FP_EXTEND;  break;
7769   }
7770 
7771   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
7772 
7773   // We're taking this node out of the chain, so we need to re-link things.
7774   SDValue InputChain = Node->getOperand(0);
7775   SDValue OutputChain = SDValue(Node, 1);
7776   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7777 
7778   SmallVector<SDValue, 3> Ops;
7779   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
7780     Ops.push_back(Node->getOperand(i));
7781 
7782   SDVTList VTs = getVTList(Node->getValueType(0));
7783   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
7784 
7785   // MorphNodeTo can operate in two ways: if an existing node with the
7786   // specified operands exists, it can just return it.  Otherwise, it
7787   // updates the node in place to have the requested operands.
7788   if (Res == Node) {
7789     // If we updated the node in place, reset the node ID.  To the isel,
7790     // this should be just like a newly allocated machine node.
7791     Res->setNodeId(-1);
7792   } else {
7793     ReplaceAllUsesWith(Node, Res);
7794     RemoveDeadNode(Node);
7795   }
7796 
7797   return Res;
7798 }
7799 
7800 /// getMachineNode - These are used for target selectors to create a new node
7801 /// with specified return type(s), MachineInstr opcode, and operands.
7802 ///
7803 /// Note that getMachineNode returns the resultant node.  If there is already a
7804 /// node of the specified opcode and operands, it returns that node instead of
7805 /// the current one.
7806 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7807                                             EVT VT) {
7808   SDVTList VTs = getVTList(VT);
7809   return getMachineNode(Opcode, dl, VTs, None);
7810 }
7811 
7812 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7813                                             EVT VT, SDValue Op1) {
7814   SDVTList VTs = getVTList(VT);
7815   SDValue Ops[] = { Op1 };
7816   return getMachineNode(Opcode, dl, VTs, Ops);
7817 }
7818 
7819 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7820                                             EVT VT, SDValue Op1, SDValue Op2) {
7821   SDVTList VTs = getVTList(VT);
7822   SDValue Ops[] = { Op1, Op2 };
7823   return getMachineNode(Opcode, dl, VTs, Ops);
7824 }
7825 
7826 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7827                                             EVT VT, SDValue Op1, SDValue Op2,
7828                                             SDValue Op3) {
7829   SDVTList VTs = getVTList(VT);
7830   SDValue Ops[] = { Op1, Op2, Op3 };
7831   return getMachineNode(Opcode, dl, VTs, Ops);
7832 }
7833 
7834 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7835                                             EVT VT, ArrayRef<SDValue> Ops) {
7836   SDVTList VTs = getVTList(VT);
7837   return getMachineNode(Opcode, dl, VTs, Ops);
7838 }
7839 
7840 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7841                                             EVT VT1, EVT VT2, SDValue Op1,
7842                                             SDValue Op2) {
7843   SDVTList VTs = getVTList(VT1, VT2);
7844   SDValue Ops[] = { Op1, Op2 };
7845   return getMachineNode(Opcode, dl, VTs, Ops);
7846 }
7847 
7848 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7849                                             EVT VT1, EVT VT2, SDValue Op1,
7850                                             SDValue Op2, SDValue Op3) {
7851   SDVTList VTs = getVTList(VT1, VT2);
7852   SDValue Ops[] = { Op1, Op2, Op3 };
7853   return getMachineNode(Opcode, dl, VTs, Ops);
7854 }
7855 
7856 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7857                                             EVT VT1, EVT VT2,
7858                                             ArrayRef<SDValue> Ops) {
7859   SDVTList VTs = getVTList(VT1, VT2);
7860   return getMachineNode(Opcode, dl, VTs, Ops);
7861 }
7862 
7863 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7864                                             EVT VT1, EVT VT2, EVT VT3,
7865                                             SDValue Op1, SDValue Op2) {
7866   SDVTList VTs = getVTList(VT1, VT2, VT3);
7867   SDValue Ops[] = { Op1, Op2 };
7868   return getMachineNode(Opcode, dl, VTs, Ops);
7869 }
7870 
7871 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7872                                             EVT VT1, EVT VT2, EVT VT3,
7873                                             SDValue Op1, SDValue Op2,
7874                                             SDValue Op3) {
7875   SDVTList VTs = getVTList(VT1, VT2, VT3);
7876   SDValue Ops[] = { Op1, Op2, Op3 };
7877   return getMachineNode(Opcode, dl, VTs, Ops);
7878 }
7879 
7880 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7881                                             EVT VT1, EVT VT2, EVT VT3,
7882                                             ArrayRef<SDValue> Ops) {
7883   SDVTList VTs = getVTList(VT1, VT2, VT3);
7884   return getMachineNode(Opcode, dl, VTs, Ops);
7885 }
7886 
7887 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7888                                             ArrayRef<EVT> ResultTys,
7889                                             ArrayRef<SDValue> Ops) {
7890   SDVTList VTs = getVTList(ResultTys);
7891   return getMachineNode(Opcode, dl, VTs, Ops);
7892 }
7893 
7894 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
7895                                             SDVTList VTs,
7896                                             ArrayRef<SDValue> Ops) {
7897   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
7898   MachineSDNode *N;
7899   void *IP = nullptr;
7900 
7901   if (DoCSE) {
7902     FoldingSetNodeID ID;
7903     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
7904     IP = nullptr;
7905     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7906       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
7907     }
7908   }
7909 
7910   // Allocate a new MachineSDNode.
7911   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7912   createOperands(N, Ops);
7913 
7914   if (DoCSE)
7915     CSEMap.InsertNode(N, IP);
7916 
7917   InsertNode(N);
7918   return N;
7919 }
7920 
7921 /// getTargetExtractSubreg - A convenience function for creating
7922 /// TargetOpcode::EXTRACT_SUBREG nodes.
7923 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7924                                              SDValue Operand) {
7925   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7926   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7927                                   VT, Operand, SRIdxVal);
7928   return SDValue(Subreg, 0);
7929 }
7930 
7931 /// getTargetInsertSubreg - A convenience function for creating
7932 /// TargetOpcode::INSERT_SUBREG nodes.
7933 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7934                                             SDValue Operand, SDValue Subreg) {
7935   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7936   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7937                                   VT, Operand, Subreg, SRIdxVal);
7938   return SDValue(Result, 0);
7939 }
7940 
7941 /// getNodeIfExists - Get the specified node if it's already available, or
7942 /// else return NULL.
7943 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7944                                       ArrayRef<SDValue> Ops,
7945                                       const SDNodeFlags Flags) {
7946   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7947     FoldingSetNodeID ID;
7948     AddNodeIDNode(ID, Opcode, VTList, Ops);
7949     void *IP = nullptr;
7950     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7951       E->intersectFlagsWith(Flags);
7952       return E;
7953     }
7954   }
7955   return nullptr;
7956 }
7957 
7958 /// getDbgValue - Creates a SDDbgValue node.
7959 ///
7960 /// SDNode
7961 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7962                                       SDNode *N, unsigned R, bool IsIndirect,
7963                                       const DebugLoc &DL, unsigned O) {
7964   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7965          "Expected inlined-at fields to agree");
7966   return new (DbgInfo->getAlloc())
7967       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7968 }
7969 
7970 /// Constant
7971 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7972                                               DIExpression *Expr,
7973                                               const Value *C,
7974                                               const DebugLoc &DL, unsigned O) {
7975   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7976          "Expected inlined-at fields to agree");
7977   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7978 }
7979 
7980 /// FrameIndex
7981 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7982                                                 DIExpression *Expr, unsigned FI,
7983                                                 bool IsIndirect,
7984                                                 const DebugLoc &DL,
7985                                                 unsigned O) {
7986   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7987          "Expected inlined-at fields to agree");
7988   return new (DbgInfo->getAlloc())
7989       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
7990 }
7991 
7992 /// VReg
7993 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
7994                                           DIExpression *Expr,
7995                                           unsigned VReg, bool IsIndirect,
7996                                           const DebugLoc &DL, unsigned O) {
7997   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7998          "Expected inlined-at fields to agree");
7999   return new (DbgInfo->getAlloc())
8000       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8001 }
8002 
8003 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8004                                      unsigned OffsetInBits, unsigned SizeInBits,
8005                                      bool InvalidateDbg) {
8006   SDNode *FromNode = From.getNode();
8007   SDNode *ToNode = To.getNode();
8008   assert(FromNode && ToNode && "Can't modify dbg values");
8009 
8010   // PR35338
8011   // TODO: assert(From != To && "Redundant dbg value transfer");
8012   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8013   if (From == To || FromNode == ToNode)
8014     return;
8015 
8016   if (!FromNode->getHasDebugValue())
8017     return;
8018 
8019   SmallVector<SDDbgValue *, 2> ClonedDVs;
8020   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8021     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8022       continue;
8023 
8024     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8025 
8026     // Just transfer the dbg value attached to From.
8027     if (Dbg->getResNo() != From.getResNo())
8028       continue;
8029 
8030     DIVariable *Var = Dbg->getVariable();
8031     auto *Expr = Dbg->getExpression();
8032     // If a fragment is requested, update the expression.
8033     if (SizeInBits) {
8034       // When splitting a larger (e.g., sign-extended) value whose
8035       // lower bits are described with an SDDbgValue, do not attempt
8036       // to transfer the SDDbgValue to the upper bits.
8037       if (auto FI = Expr->getFragmentInfo())
8038         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8039           continue;
8040       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8041                                                              SizeInBits);
8042       if (!Fragment)
8043         continue;
8044       Expr = *Fragment;
8045     }
8046     // Clone the SDDbgValue and move it to To.
8047     SDDbgValue *Clone =
8048         getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
8049                     Dbg->getDebugLoc(), Dbg->getOrder());
8050     ClonedDVs.push_back(Clone);
8051 
8052     if (InvalidateDbg) {
8053       // Invalidate value and indicate the SDDbgValue should not be emitted.
8054       Dbg->setIsInvalidated();
8055       Dbg->setIsEmitted();
8056     }
8057   }
8058 
8059   for (SDDbgValue *Dbg : ClonedDVs)
8060     AddDbgValue(Dbg, ToNode, false);
8061 }
8062 
8063 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8064   if (!N.getHasDebugValue())
8065     return;
8066 
8067   SmallVector<SDDbgValue *, 2> ClonedDVs;
8068   for (auto DV : GetDbgValues(&N)) {
8069     if (DV->isInvalidated())
8070       continue;
8071     switch (N.getOpcode()) {
8072     default:
8073       break;
8074     case ISD::ADD:
8075       SDValue N0 = N.getOperand(0);
8076       SDValue N1 = N.getOperand(1);
8077       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8078           isConstantIntBuildVectorOrConstantInt(N1)) {
8079         uint64_t Offset = N.getConstantOperandVal(1);
8080         // Rewrite an ADD constant node into a DIExpression. Since we are
8081         // performing arithmetic to compute the variable's *value* in the
8082         // DIExpression, we need to mark the expression with a
8083         // DW_OP_stack_value.
8084         auto *DIExpr = DV->getExpression();
8085         DIExpr =
8086             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8087         SDDbgValue *Clone =
8088             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8089                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8090         ClonedDVs.push_back(Clone);
8091         DV->setIsInvalidated();
8092         DV->setIsEmitted();
8093         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8094                    N0.getNode()->dumprFull(this);
8095                    dbgs() << " into " << *DIExpr << '\n');
8096       }
8097     }
8098   }
8099 
8100   for (SDDbgValue *Dbg : ClonedDVs)
8101     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8102 }
8103 
8104 /// Creates a SDDbgLabel node.
8105 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8106                                       const DebugLoc &DL, unsigned O) {
8107   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8108          "Expected inlined-at fields to agree");
8109   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8110 }
8111 
8112 namespace {
8113 
8114 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8115 /// pointed to by a use iterator is deleted, increment the use iterator
8116 /// so that it doesn't dangle.
8117 ///
8118 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8119   SDNode::use_iterator &UI;
8120   SDNode::use_iterator &UE;
8121 
8122   void NodeDeleted(SDNode *N, SDNode *E) override {
8123     // Increment the iterator as needed.
8124     while (UI != UE && N == *UI)
8125       ++UI;
8126   }
8127 
8128 public:
8129   RAUWUpdateListener(SelectionDAG &d,
8130                      SDNode::use_iterator &ui,
8131                      SDNode::use_iterator &ue)
8132     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8133 };
8134 
8135 } // end anonymous namespace
8136 
8137 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8138 /// This can cause recursive merging of nodes in the DAG.
8139 ///
8140 /// This version assumes From has a single result value.
8141 ///
8142 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8143   SDNode *From = FromN.getNode();
8144   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8145          "Cannot replace with this method!");
8146   assert(From != To.getNode() && "Cannot replace uses of with self");
8147 
8148   // Preserve Debug Values
8149   transferDbgValues(FromN, To);
8150 
8151   // Iterate over all the existing uses of From. New uses will be added
8152   // to the beginning of the use list, which we avoid visiting.
8153   // This specifically avoids visiting uses of From that arise while the
8154   // replacement is happening, because any such uses would be the result
8155   // of CSE: If an existing node looks like From after one of its operands
8156   // is replaced by To, we don't want to replace of all its users with To
8157   // too. See PR3018 for more info.
8158   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8159   RAUWUpdateListener Listener(*this, UI, UE);
8160   while (UI != UE) {
8161     SDNode *User = *UI;
8162 
8163     // This node is about to morph, remove its old self from the CSE maps.
8164     RemoveNodeFromCSEMaps(User);
8165 
8166     // A user can appear in a use list multiple times, and when this
8167     // happens the uses are usually next to each other in the list.
8168     // To help reduce the number of CSE recomputations, process all
8169     // the uses of this user that we can find this way.
8170     do {
8171       SDUse &Use = UI.getUse();
8172       ++UI;
8173       Use.set(To);
8174       if (To->isDivergent() != From->isDivergent())
8175         updateDivergence(User);
8176     } while (UI != UE && *UI == User);
8177     // Now that we have modified User, add it back to the CSE maps.  If it
8178     // already exists there, recursively merge the results together.
8179     AddModifiedNodeToCSEMaps(User);
8180   }
8181 
8182   // If we just RAUW'd the root, take note.
8183   if (FromN == getRoot())
8184     setRoot(To);
8185 }
8186 
8187 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8188 /// This can cause recursive merging of nodes in the DAG.
8189 ///
8190 /// This version assumes that for each value of From, there is a
8191 /// corresponding value in To in the same position with the same type.
8192 ///
8193 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8194 #ifndef NDEBUG
8195   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8196     assert((!From->hasAnyUseOfValue(i) ||
8197             From->getValueType(i) == To->getValueType(i)) &&
8198            "Cannot use this version of ReplaceAllUsesWith!");
8199 #endif
8200 
8201   // Handle the trivial case.
8202   if (From == To)
8203     return;
8204 
8205   // Preserve Debug Info. Only do this if there's a use.
8206   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8207     if (From->hasAnyUseOfValue(i)) {
8208       assert((i < To->getNumValues()) && "Invalid To location");
8209       transferDbgValues(SDValue(From, i), SDValue(To, i));
8210     }
8211 
8212   // Iterate over just the existing users of From. See the comments in
8213   // the ReplaceAllUsesWith above.
8214   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8215   RAUWUpdateListener Listener(*this, UI, UE);
8216   while (UI != UE) {
8217     SDNode *User = *UI;
8218 
8219     // This node is about to morph, remove its old self from the CSE maps.
8220     RemoveNodeFromCSEMaps(User);
8221 
8222     // A user can appear in a use list multiple times, and when this
8223     // happens the uses are usually next to each other in the list.
8224     // To help reduce the number of CSE recomputations, process all
8225     // the uses of this user that we can find this way.
8226     do {
8227       SDUse &Use = UI.getUse();
8228       ++UI;
8229       Use.setNode(To);
8230       if (To->isDivergent() != From->isDivergent())
8231         updateDivergence(User);
8232     } while (UI != UE && *UI == User);
8233 
8234     // Now that we have modified User, add it back to the CSE maps.  If it
8235     // already exists there, recursively merge the results together.
8236     AddModifiedNodeToCSEMaps(User);
8237   }
8238 
8239   // If we just RAUW'd the root, take note.
8240   if (From == getRoot().getNode())
8241     setRoot(SDValue(To, getRoot().getResNo()));
8242 }
8243 
8244 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8245 /// This can cause recursive merging of nodes in the DAG.
8246 ///
8247 /// This version can replace From with any result values.  To must match the
8248 /// number and types of values returned by From.
8249 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8250   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8251     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8252 
8253   // Preserve Debug Info.
8254   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8255     transferDbgValues(SDValue(From, i), To[i]);
8256 
8257   // Iterate over just the existing users of From. See the comments in
8258   // the ReplaceAllUsesWith above.
8259   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8260   RAUWUpdateListener Listener(*this, UI, UE);
8261   while (UI != UE) {
8262     SDNode *User = *UI;
8263 
8264     // This node is about to morph, remove its old self from the CSE maps.
8265     RemoveNodeFromCSEMaps(User);
8266 
8267     // A user can appear in a use list multiple times, and when this happens the
8268     // uses are usually next to each other in the list.  To help reduce the
8269     // number of CSE and divergence recomputations, process all the uses of this
8270     // user that we can find this way.
8271     bool To_IsDivergent = false;
8272     do {
8273       SDUse &Use = UI.getUse();
8274       const SDValue &ToOp = To[Use.getResNo()];
8275       ++UI;
8276       Use.set(ToOp);
8277       To_IsDivergent |= ToOp->isDivergent();
8278     } while (UI != UE && *UI == User);
8279 
8280     if (To_IsDivergent != From->isDivergent())
8281       updateDivergence(User);
8282 
8283     // Now that we have modified User, add it back to the CSE maps.  If it
8284     // already exists there, recursively merge the results together.
8285     AddModifiedNodeToCSEMaps(User);
8286   }
8287 
8288   // If we just RAUW'd the root, take note.
8289   if (From == getRoot().getNode())
8290     setRoot(SDValue(To[getRoot().getResNo()]));
8291 }
8292 
8293 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8294 /// uses of other values produced by From.getNode() alone.  The Deleted
8295 /// vector is handled the same way as for ReplaceAllUsesWith.
8296 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8297   // Handle the really simple, really trivial case efficiently.
8298   if (From == To) return;
8299 
8300   // Handle the simple, trivial, case efficiently.
8301   if (From.getNode()->getNumValues() == 1) {
8302     ReplaceAllUsesWith(From, To);
8303     return;
8304   }
8305 
8306   // Preserve Debug Info.
8307   transferDbgValues(From, To);
8308 
8309   // Iterate over just the existing users of From. See the comments in
8310   // the ReplaceAllUsesWith above.
8311   SDNode::use_iterator UI = From.getNode()->use_begin(),
8312                        UE = From.getNode()->use_end();
8313   RAUWUpdateListener Listener(*this, UI, UE);
8314   while (UI != UE) {
8315     SDNode *User = *UI;
8316     bool UserRemovedFromCSEMaps = false;
8317 
8318     // A user can appear in a use list multiple times, and when this
8319     // happens the uses are usually next to each other in the list.
8320     // To help reduce the number of CSE recomputations, process all
8321     // the uses of this user that we can find this way.
8322     do {
8323       SDUse &Use = UI.getUse();
8324 
8325       // Skip uses of different values from the same node.
8326       if (Use.getResNo() != From.getResNo()) {
8327         ++UI;
8328         continue;
8329       }
8330 
8331       // If this node hasn't been modified yet, it's still in the CSE maps,
8332       // so remove its old self from the CSE maps.
8333       if (!UserRemovedFromCSEMaps) {
8334         RemoveNodeFromCSEMaps(User);
8335         UserRemovedFromCSEMaps = true;
8336       }
8337 
8338       ++UI;
8339       Use.set(To);
8340       if (To->isDivergent() != From->isDivergent())
8341         updateDivergence(User);
8342     } while (UI != UE && *UI == User);
8343     // We are iterating over all uses of the From node, so if a use
8344     // doesn't use the specific value, no changes are made.
8345     if (!UserRemovedFromCSEMaps)
8346       continue;
8347 
8348     // Now that we have modified User, add it back to the CSE maps.  If it
8349     // already exists there, recursively merge the results together.
8350     AddModifiedNodeToCSEMaps(User);
8351   }
8352 
8353   // If we just RAUW'd the root, take note.
8354   if (From == getRoot())
8355     setRoot(To);
8356 }
8357 
8358 namespace {
8359 
8360   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8361   /// to record information about a use.
8362   struct UseMemo {
8363     SDNode *User;
8364     unsigned Index;
8365     SDUse *Use;
8366   };
8367 
8368   /// operator< - Sort Memos by User.
8369   bool operator<(const UseMemo &L, const UseMemo &R) {
8370     return (intptr_t)L.User < (intptr_t)R.User;
8371   }
8372 
8373 } // end anonymous namespace
8374 
8375 void SelectionDAG::updateDivergence(SDNode * N)
8376 {
8377   if (TLI->isSDNodeAlwaysUniform(N))
8378     return;
8379   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8380   for (auto &Op : N->ops()) {
8381     if (Op.Val.getValueType() != MVT::Other)
8382       IsDivergent |= Op.getNode()->isDivergent();
8383   }
8384   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8385     N->SDNodeBits.IsDivergent = IsDivergent;
8386     for (auto U : N->uses()) {
8387       updateDivergence(U);
8388     }
8389   }
8390 }
8391 
8392 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8393   DenseMap<SDNode *, unsigned> Degree;
8394   Order.reserve(AllNodes.size());
8395   for (auto &N : allnodes()) {
8396     unsigned NOps = N.getNumOperands();
8397     Degree[&N] = NOps;
8398     if (0 == NOps)
8399       Order.push_back(&N);
8400   }
8401   for (size_t I = 0; I != Order.size(); ++I) {
8402     SDNode *N = Order[I];
8403     for (auto U : N->uses()) {
8404       unsigned &UnsortedOps = Degree[U];
8405       if (0 == --UnsortedOps)
8406         Order.push_back(U);
8407     }
8408   }
8409 }
8410 
8411 #ifndef NDEBUG
8412 void SelectionDAG::VerifyDAGDiverence() {
8413   std::vector<SDNode *> TopoOrder;
8414   CreateTopologicalOrder(TopoOrder);
8415   const TargetLowering &TLI = getTargetLoweringInfo();
8416   DenseMap<const SDNode *, bool> DivergenceMap;
8417   for (auto &N : allnodes()) {
8418     DivergenceMap[&N] = false;
8419   }
8420   for (auto N : TopoOrder) {
8421     bool IsDivergent = DivergenceMap[N];
8422     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8423     for (auto &Op : N->ops()) {
8424       if (Op.Val.getValueType() != MVT::Other)
8425         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8426     }
8427     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8428       DivergenceMap[N] = true;
8429     }
8430   }
8431   for (auto &N : allnodes()) {
8432     (void)N;
8433     assert(DivergenceMap[&N] == N.isDivergent() &&
8434            "Divergence bit inconsistency detected\n");
8435   }
8436 }
8437 #endif
8438 
8439 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8440 /// uses of other values produced by From.getNode() alone.  The same value
8441 /// may appear in both the From and To list.  The Deleted vector is
8442 /// handled the same way as for ReplaceAllUsesWith.
8443 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8444                                               const SDValue *To,
8445                                               unsigned Num){
8446   // Handle the simple, trivial case efficiently.
8447   if (Num == 1)
8448     return ReplaceAllUsesOfValueWith(*From, *To);
8449 
8450   transferDbgValues(*From, *To);
8451 
8452   // Read up all the uses and make records of them. This helps
8453   // processing new uses that are introduced during the
8454   // replacement process.
8455   SmallVector<UseMemo, 4> Uses;
8456   for (unsigned i = 0; i != Num; ++i) {
8457     unsigned FromResNo = From[i].getResNo();
8458     SDNode *FromNode = From[i].getNode();
8459     for (SDNode::use_iterator UI = FromNode->use_begin(),
8460          E = FromNode->use_end(); UI != E; ++UI) {
8461       SDUse &Use = UI.getUse();
8462       if (Use.getResNo() == FromResNo) {
8463         UseMemo Memo = { *UI, i, &Use };
8464         Uses.push_back(Memo);
8465       }
8466     }
8467   }
8468 
8469   // Sort the uses, so that all the uses from a given User are together.
8470   llvm::sort(Uses);
8471 
8472   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8473        UseIndex != UseIndexEnd; ) {
8474     // We know that this user uses some value of From.  If it is the right
8475     // value, update it.
8476     SDNode *User = Uses[UseIndex].User;
8477 
8478     // This node is about to morph, remove its old self from the CSE maps.
8479     RemoveNodeFromCSEMaps(User);
8480 
8481     // The Uses array is sorted, so all the uses for a given User
8482     // are next to each other in the list.
8483     // To help reduce the number of CSE recomputations, process all
8484     // the uses of this user that we can find this way.
8485     do {
8486       unsigned i = Uses[UseIndex].Index;
8487       SDUse &Use = *Uses[UseIndex].Use;
8488       ++UseIndex;
8489 
8490       Use.set(To[i]);
8491     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8492 
8493     // Now that we have modified User, add it back to the CSE maps.  If it
8494     // already exists there, recursively merge the results together.
8495     AddModifiedNodeToCSEMaps(User);
8496   }
8497 }
8498 
8499 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8500 /// based on their topological order. It returns the maximum id and a vector
8501 /// of the SDNodes* in assigned order by reference.
8502 unsigned SelectionDAG::AssignTopologicalOrder() {
8503   unsigned DAGSize = 0;
8504 
8505   // SortedPos tracks the progress of the algorithm. Nodes before it are
8506   // sorted, nodes after it are unsorted. When the algorithm completes
8507   // it is at the end of the list.
8508   allnodes_iterator SortedPos = allnodes_begin();
8509 
8510   // Visit all the nodes. Move nodes with no operands to the front of
8511   // the list immediately. Annotate nodes that do have operands with their
8512   // operand count. Before we do this, the Node Id fields of the nodes
8513   // may contain arbitrary values. After, the Node Id fields for nodes
8514   // before SortedPos will contain the topological sort index, and the
8515   // Node Id fields for nodes At SortedPos and after will contain the
8516   // count of outstanding operands.
8517   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8518     SDNode *N = &*I++;
8519     checkForCycles(N, this);
8520     unsigned Degree = N->getNumOperands();
8521     if (Degree == 0) {
8522       // A node with no uses, add it to the result array immediately.
8523       N->setNodeId(DAGSize++);
8524       allnodes_iterator Q(N);
8525       if (Q != SortedPos)
8526         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8527       assert(SortedPos != AllNodes.end() && "Overran node list");
8528       ++SortedPos;
8529     } else {
8530       // Temporarily use the Node Id as scratch space for the degree count.
8531       N->setNodeId(Degree);
8532     }
8533   }
8534 
8535   // Visit all the nodes. As we iterate, move nodes into sorted order,
8536   // such that by the time the end is reached all nodes will be sorted.
8537   for (SDNode &Node : allnodes()) {
8538     SDNode *N = &Node;
8539     checkForCycles(N, this);
8540     // N is in sorted position, so all its uses have one less operand
8541     // that needs to be sorted.
8542     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8543          UI != UE; ++UI) {
8544       SDNode *P = *UI;
8545       unsigned Degree = P->getNodeId();
8546       assert(Degree != 0 && "Invalid node degree");
8547       --Degree;
8548       if (Degree == 0) {
8549         // All of P's operands are sorted, so P may sorted now.
8550         P->setNodeId(DAGSize++);
8551         if (P->getIterator() != SortedPos)
8552           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8553         assert(SortedPos != AllNodes.end() && "Overran node list");
8554         ++SortedPos;
8555       } else {
8556         // Update P's outstanding operand count.
8557         P->setNodeId(Degree);
8558       }
8559     }
8560     if (Node.getIterator() == SortedPos) {
8561 #ifndef NDEBUG
8562       allnodes_iterator I(N);
8563       SDNode *S = &*++I;
8564       dbgs() << "Overran sorted position:\n";
8565       S->dumprFull(this); dbgs() << "\n";
8566       dbgs() << "Checking if this is due to cycles\n";
8567       checkForCycles(this, true);
8568 #endif
8569       llvm_unreachable(nullptr);
8570     }
8571   }
8572 
8573   assert(SortedPos == AllNodes.end() &&
8574          "Topological sort incomplete!");
8575   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8576          "First node in topological sort is not the entry token!");
8577   assert(AllNodes.front().getNodeId() == 0 &&
8578          "First node in topological sort has non-zero id!");
8579   assert(AllNodes.front().getNumOperands() == 0 &&
8580          "First node in topological sort has operands!");
8581   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8582          "Last node in topologic sort has unexpected id!");
8583   assert(AllNodes.back().use_empty() &&
8584          "Last node in topologic sort has users!");
8585   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8586   return DAGSize;
8587 }
8588 
8589 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8590 /// value is produced by SD.
8591 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8592   if (SD) {
8593     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8594     SD->setHasDebugValue(true);
8595   }
8596   DbgInfo->add(DB, SD, isParameter);
8597 }
8598 
8599 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8600   DbgInfo->add(DB);
8601 }
8602 
8603 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8604                                                    SDValue NewMemOp) {
8605   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8606   // The new memory operation must have the same position as the old load in
8607   // terms of memory dependency. Create a TokenFactor for the old load and new
8608   // memory operation and update uses of the old load's output chain to use that
8609   // TokenFactor.
8610   SDValue OldChain = SDValue(OldLoad, 1);
8611   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8612   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8613     return NewChain;
8614 
8615   SDValue TokenFactor =
8616       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8617   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8618   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8619   return TokenFactor;
8620 }
8621 
8622 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8623                                                      Function **OutFunction) {
8624   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8625 
8626   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8627   auto *Module = MF->getFunction().getParent();
8628   auto *Function = Module->getFunction(Symbol);
8629 
8630   if (OutFunction != nullptr)
8631       *OutFunction = Function;
8632 
8633   if (Function != nullptr) {
8634     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8635     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8636   }
8637 
8638   std::string ErrorStr;
8639   raw_string_ostream ErrorFormatter(ErrorStr);
8640 
8641   ErrorFormatter << "Undefined external symbol ";
8642   ErrorFormatter << '"' << Symbol << '"';
8643   ErrorFormatter.flush();
8644 
8645   report_fatal_error(ErrorStr);
8646 }
8647 
8648 //===----------------------------------------------------------------------===//
8649 //                              SDNode Class
8650 //===----------------------------------------------------------------------===//
8651 
8652 bool llvm::isNullConstant(SDValue V) {
8653   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8654   return Const != nullptr && Const->isNullValue();
8655 }
8656 
8657 bool llvm::isNullFPConstant(SDValue V) {
8658   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8659   return Const != nullptr && Const->isZero() && !Const->isNegative();
8660 }
8661 
8662 bool llvm::isAllOnesConstant(SDValue V) {
8663   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8664   return Const != nullptr && Const->isAllOnesValue();
8665 }
8666 
8667 bool llvm::isOneConstant(SDValue V) {
8668   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8669   return Const != nullptr && Const->isOne();
8670 }
8671 
8672 SDValue llvm::peekThroughBitcasts(SDValue V) {
8673   while (V.getOpcode() == ISD::BITCAST)
8674     V = V.getOperand(0);
8675   return V;
8676 }
8677 
8678 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8679   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8680     V = V.getOperand(0);
8681   return V;
8682 }
8683 
8684 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8685   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8686     V = V.getOperand(0);
8687   return V;
8688 }
8689 
8690 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8691   if (V.getOpcode() != ISD::XOR)
8692     return false;
8693   V = peekThroughBitcasts(V.getOperand(1));
8694   unsigned NumBits = V.getScalarValueSizeInBits();
8695   ConstantSDNode *C =
8696       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
8697   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
8698 }
8699 
8700 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
8701                                           bool AllowTruncation) {
8702   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8703     return CN;
8704 
8705   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8706     BitVector UndefElements;
8707     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8708 
8709     // BuildVectors can truncate their operands. Ignore that case here unless
8710     // AllowTruncation is set.
8711     if (CN && (UndefElements.none() || AllowUndefs)) {
8712       EVT CVT = CN->getValueType(0);
8713       EVT NSVT = N.getValueType().getScalarType();
8714       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8715       if (AllowTruncation || (CVT == NSVT))
8716         return CN;
8717     }
8718   }
8719 
8720   return nullptr;
8721 }
8722 
8723 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8724                                           bool AllowUndefs,
8725                                           bool AllowTruncation) {
8726   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8727     return CN;
8728 
8729   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8730     BitVector UndefElements;
8731     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8732 
8733     // BuildVectors can truncate their operands. Ignore that case here unless
8734     // AllowTruncation is set.
8735     if (CN && (UndefElements.none() || AllowUndefs)) {
8736       EVT CVT = CN->getValueType(0);
8737       EVT NSVT = N.getValueType().getScalarType();
8738       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8739       if (AllowTruncation || (CVT == NSVT))
8740         return CN;
8741     }
8742   }
8743 
8744   return nullptr;
8745 }
8746 
8747 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8748   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8749     return CN;
8750 
8751   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8752     BitVector UndefElements;
8753     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8754     if (CN && (UndefElements.none() || AllowUndefs))
8755       return CN;
8756   }
8757 
8758   return nullptr;
8759 }
8760 
8761 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8762                                               const APInt &DemandedElts,
8763                                               bool AllowUndefs) {
8764   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8765     return CN;
8766 
8767   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8768     BitVector UndefElements;
8769     ConstantFPSDNode *CN =
8770         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8771     if (CN && (UndefElements.none() || AllowUndefs))
8772       return CN;
8773   }
8774 
8775   return nullptr;
8776 }
8777 
8778 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8779   // TODO: may want to use peekThroughBitcast() here.
8780   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8781   return C && C->isNullValue();
8782 }
8783 
8784 bool llvm::isOneOrOneSplat(SDValue N) {
8785   // TODO: may want to use peekThroughBitcast() here.
8786   unsigned BitWidth = N.getScalarValueSizeInBits();
8787   ConstantSDNode *C = isConstOrConstSplat(N);
8788   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8789 }
8790 
8791 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8792   N = peekThroughBitcasts(N);
8793   unsigned BitWidth = N.getScalarValueSizeInBits();
8794   ConstantSDNode *C = isConstOrConstSplat(N);
8795   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8796 }
8797 
8798 HandleSDNode::~HandleSDNode() {
8799   DropOperands();
8800 }
8801 
8802 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8803                                          const DebugLoc &DL,
8804                                          const GlobalValue *GA, EVT VT,
8805                                          int64_t o, unsigned TF)
8806     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8807   TheGlobal = GA;
8808 }
8809 
8810 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8811                                          EVT VT, unsigned SrcAS,
8812                                          unsigned DestAS)
8813     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8814       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8815 
8816 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8817                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8818     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8819   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8820   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8821   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8822   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8823 
8824   // We check here that the size of the memory operand fits within the size of
8825   // the MMO. This is because the MMO might indicate only a possible address
8826   // range instead of specifying the affected memory addresses precisely.
8827   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
8828 }
8829 
8830 /// Profile - Gather unique data for the node.
8831 ///
8832 void SDNode::Profile(FoldingSetNodeID &ID) const {
8833   AddNodeIDNode(ID, this);
8834 }
8835 
8836 namespace {
8837 
8838   struct EVTArray {
8839     std::vector<EVT> VTs;
8840 
8841     EVTArray() {
8842       VTs.reserve(MVT::LAST_VALUETYPE);
8843       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
8844         VTs.push_back(MVT((MVT::SimpleValueType)i));
8845     }
8846   };
8847 
8848 } // end anonymous namespace
8849 
8850 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
8851 static ManagedStatic<EVTArray> SimpleVTArray;
8852 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
8853 
8854 /// getValueTypeList - Return a pointer to the specified value type.
8855 ///
8856 const EVT *SDNode::getValueTypeList(EVT VT) {
8857   if (VT.isExtended()) {
8858     sys::SmartScopedLock<true> Lock(*VTMutex);
8859     return &(*EVTs->insert(VT).first);
8860   } else {
8861     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
8862            "Value type out of range!");
8863     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
8864   }
8865 }
8866 
8867 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8868 /// indicated value.  This method ignores uses of other values defined by this
8869 /// operation.
8870 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
8871   assert(Value < getNumValues() && "Bad value!");
8872 
8873   // TODO: Only iterate over uses of a given value of the node
8874   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
8875     if (UI.getUse().getResNo() == Value) {
8876       if (NUses == 0)
8877         return false;
8878       --NUses;
8879     }
8880   }
8881 
8882   // Found exactly the right number of uses?
8883   return NUses == 0;
8884 }
8885 
8886 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8887 /// value. This method ignores uses of other values defined by this operation.
8888 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
8889   assert(Value < getNumValues() && "Bad value!");
8890 
8891   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
8892     if (UI.getUse().getResNo() == Value)
8893       return true;
8894 
8895   return false;
8896 }
8897 
8898 /// isOnlyUserOf - Return true if this node is the only use of N.
8899 bool SDNode::isOnlyUserOf(const SDNode *N) const {
8900   bool Seen = false;
8901   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8902     SDNode *User = *I;
8903     if (User == this)
8904       Seen = true;
8905     else
8906       return false;
8907   }
8908 
8909   return Seen;
8910 }
8911 
8912 /// Return true if the only users of N are contained in Nodes.
8913 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
8914   bool Seen = false;
8915   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8916     SDNode *User = *I;
8917     if (llvm::any_of(Nodes,
8918                      [&User](const SDNode *Node) { return User == Node; }))
8919       Seen = true;
8920     else
8921       return false;
8922   }
8923 
8924   return Seen;
8925 }
8926 
8927 /// isOperand - Return true if this node is an operand of N.
8928 bool SDValue::isOperandOf(const SDNode *N) const {
8929   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
8930 }
8931 
8932 bool SDNode::isOperandOf(const SDNode *N) const {
8933   return any_of(N->op_values(),
8934                 [this](SDValue Op) { return this == Op.getNode(); });
8935 }
8936 
8937 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8938 /// be a chain) reaches the specified operand without crossing any
8939 /// side-effecting instructions on any chain path.  In practice, this looks
8940 /// through token factors and non-volatile loads.  In order to remain efficient,
8941 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8942 ///
8943 /// Note that we only need to examine chains when we're searching for
8944 /// side-effects; SelectionDAG requires that all side-effects are represented
8945 /// by chains, even if another operand would force a specific ordering. This
8946 /// constraint is necessary to allow transformations like splitting loads.
8947 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
8948                                              unsigned Depth) const {
8949   if (*this == Dest) return true;
8950 
8951   // Don't search too deeply, we just want to be able to see through
8952   // TokenFactor's etc.
8953   if (Depth == 0) return false;
8954 
8955   // If this is a token factor, all inputs to the TF happen in parallel.
8956   if (getOpcode() == ISD::TokenFactor) {
8957     // First, try a shallow search.
8958     if (is_contained((*this)->ops(), Dest)) {
8959       // We found the chain we want as an operand of this TokenFactor.
8960       // Essentially, we reach the chain without side-effects if we could
8961       // serialize the TokenFactor into a simple chain of operations with
8962       // Dest as the last operation. This is automatically true if the
8963       // chain has one use: there are no other ordering constraints.
8964       // If the chain has more than one use, we give up: some other
8965       // use of Dest might force a side-effect between Dest and the current
8966       // node.
8967       if (Dest.hasOneUse())
8968         return true;
8969     }
8970     // Next, try a deep search: check whether every operand of the TokenFactor
8971     // reaches Dest.
8972     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
8973       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
8974     });
8975   }
8976 
8977   // Loads don't have side effects, look through them.
8978   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
8979     if (!Ld->isVolatile())
8980       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
8981   }
8982   return false;
8983 }
8984 
8985 bool SDNode::hasPredecessor(const SDNode *N) const {
8986   SmallPtrSet<const SDNode *, 32> Visited;
8987   SmallVector<const SDNode *, 16> Worklist;
8988   Worklist.push_back(this);
8989   return hasPredecessorHelper(N, Visited, Worklist);
8990 }
8991 
8992 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
8993   this->Flags.intersectWith(Flags);
8994 }
8995 
8996 SDValue
8997 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
8998                                   ArrayRef<ISD::NodeType> CandidateBinOps,
8999                                   bool AllowPartials) {
9000   // The pattern must end in an extract from index 0.
9001   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9002       !isNullConstant(Extract->getOperand(1)))
9003     return SDValue();
9004 
9005   SDValue Op = Extract->getOperand(0);
9006   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9007 
9008   // Match against one of the candidate binary ops.
9009   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9010         return Op.getOpcode() == unsigned(BinOp);
9011       }))
9012     return SDValue();
9013   unsigned CandidateBinOp = Op.getOpcode();
9014 
9015   // Matching failed - attempt to see if we did enough stages that a partial
9016   // reduction from a subvector is possible.
9017   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9018     if (!AllowPartials || !Op)
9019       return SDValue();
9020     EVT OpVT = Op.getValueType();
9021     EVT OpSVT = OpVT.getScalarType();
9022     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9023     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9024       return SDValue();
9025     BinOp = (ISD::NodeType)CandidateBinOp;
9026     return getNode(
9027         ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9028         getConstant(0, SDLoc(Op), TLI->getVectorIdxTy(getDataLayout())));
9029   };
9030 
9031   // At each stage, we're looking for something that looks like:
9032   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9033   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9034   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9035   // %a = binop <8 x i32> %op, %s
9036   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9037   // we expect something like:
9038   // <4,5,6,7,u,u,u,u>
9039   // <2,3,u,u,u,u,u,u>
9040   // <1,u,u,u,u,u,u,u>
9041   // While a partial reduction match would be:
9042   // <2,3,u,u,u,u,u,u>
9043   // <1,u,u,u,u,u,u,u>
9044   SDValue PrevOp;
9045   for (unsigned i = 0; i < Stages; ++i) {
9046     unsigned MaskEnd = (1 << i);
9047 
9048     if (Op.getOpcode() != CandidateBinOp)
9049       return PartialReduction(PrevOp, MaskEnd);
9050 
9051     SDValue Op0 = Op.getOperand(0);
9052     SDValue Op1 = Op.getOperand(1);
9053 
9054     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9055     if (Shuffle) {
9056       Op = Op1;
9057     } else {
9058       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9059       Op = Op0;
9060     }
9061 
9062     // The first operand of the shuffle should be the same as the other operand
9063     // of the binop.
9064     if (!Shuffle || Shuffle->getOperand(0) != Op)
9065       return PartialReduction(PrevOp, MaskEnd);
9066 
9067     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9068     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9069       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9070         return PartialReduction(PrevOp, MaskEnd);
9071 
9072     PrevOp = Op;
9073   }
9074 
9075   BinOp = (ISD::NodeType)CandidateBinOp;
9076   return Op;
9077 }
9078 
9079 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9080   assert(N->getNumValues() == 1 &&
9081          "Can't unroll a vector with multiple results!");
9082 
9083   EVT VT = N->getValueType(0);
9084   unsigned NE = VT.getVectorNumElements();
9085   EVT EltVT = VT.getVectorElementType();
9086   SDLoc dl(N);
9087 
9088   SmallVector<SDValue, 8> Scalars;
9089   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9090 
9091   // If ResNE is 0, fully unroll the vector op.
9092   if (ResNE == 0)
9093     ResNE = NE;
9094   else if (NE > ResNE)
9095     NE = ResNE;
9096 
9097   unsigned i;
9098   for (i= 0; i != NE; ++i) {
9099     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9100       SDValue Operand = N->getOperand(j);
9101       EVT OperandVT = Operand.getValueType();
9102       if (OperandVT.isVector()) {
9103         // A vector operand; extract a single element.
9104         EVT OperandEltVT = OperandVT.getVectorElementType();
9105         Operands[j] =
9106             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
9107                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
9108       } else {
9109         // A scalar operand; just use it as is.
9110         Operands[j] = Operand;
9111       }
9112     }
9113 
9114     switch (N->getOpcode()) {
9115     default: {
9116       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9117                                 N->getFlags()));
9118       break;
9119     }
9120     case ISD::VSELECT:
9121       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9122       break;
9123     case ISD::SHL:
9124     case ISD::SRA:
9125     case ISD::SRL:
9126     case ISD::ROTL:
9127     case ISD::ROTR:
9128       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9129                                getShiftAmountOperand(Operands[0].getValueType(),
9130                                                      Operands[1])));
9131       break;
9132     case ISD::SIGN_EXTEND_INREG:
9133     case ISD::FP_ROUND_INREG: {
9134       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9135       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9136                                 Operands[0],
9137                                 getValueType(ExtVT)));
9138     }
9139     }
9140   }
9141 
9142   for (; i < ResNE; ++i)
9143     Scalars.push_back(getUNDEF(EltVT));
9144 
9145   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9146   return getBuildVector(VecVT, dl, Scalars);
9147 }
9148 
9149 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9150     SDNode *N, unsigned ResNE) {
9151   unsigned Opcode = N->getOpcode();
9152   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9153           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9154           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9155          "Expected an overflow opcode");
9156 
9157   EVT ResVT = N->getValueType(0);
9158   EVT OvVT = N->getValueType(1);
9159   EVT ResEltVT = ResVT.getVectorElementType();
9160   EVT OvEltVT = OvVT.getVectorElementType();
9161   SDLoc dl(N);
9162 
9163   // If ResNE is 0, fully unroll the vector op.
9164   unsigned NE = ResVT.getVectorNumElements();
9165   if (ResNE == 0)
9166     ResNE = NE;
9167   else if (NE > ResNE)
9168     NE = ResNE;
9169 
9170   SmallVector<SDValue, 8> LHSScalars;
9171   SmallVector<SDValue, 8> RHSScalars;
9172   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9173   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9174 
9175   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9176   SDVTList VTs = getVTList(ResEltVT, SVT);
9177   SmallVector<SDValue, 8> ResScalars;
9178   SmallVector<SDValue, 8> OvScalars;
9179   for (unsigned i = 0; i < NE; ++i) {
9180     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9181     SDValue Ov =
9182         getSelect(dl, OvEltVT, Res.getValue(1),
9183                   getBoolConstant(true, dl, OvEltVT, ResVT),
9184                   getConstant(0, dl, OvEltVT));
9185 
9186     ResScalars.push_back(Res);
9187     OvScalars.push_back(Ov);
9188   }
9189 
9190   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9191   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9192 
9193   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9194   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9195   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9196                         getBuildVector(NewOvVT, dl, OvScalars));
9197 }
9198 
9199 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9200                                                   LoadSDNode *Base,
9201                                                   unsigned Bytes,
9202                                                   int Dist) const {
9203   if (LD->isVolatile() || Base->isVolatile())
9204     return false;
9205   if (LD->isIndexed() || Base->isIndexed())
9206     return false;
9207   if (LD->getChain() != Base->getChain())
9208     return false;
9209   EVT VT = LD->getValueType(0);
9210   if (VT.getSizeInBits() / 8 != Bytes)
9211     return false;
9212 
9213   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9214   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9215 
9216   int64_t Offset = 0;
9217   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9218     return (Dist * Bytes == Offset);
9219   return false;
9220 }
9221 
9222 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9223 /// it cannot be inferred.
9224 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9225   // If this is a GlobalAddress + cst, return the alignment.
9226   const GlobalValue *GV;
9227   int64_t GVOffset = 0;
9228   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9229     unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
9230     KnownBits Known(IdxWidth);
9231     llvm::computeKnownBits(GV, Known, getDataLayout());
9232     unsigned AlignBits = Known.countMinTrailingZeros();
9233     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9234     if (Align)
9235       return MinAlign(Align, GVOffset);
9236   }
9237 
9238   // If this is a direct reference to a stack slot, use information about the
9239   // stack slot's alignment.
9240   int FrameIdx = INT_MIN;
9241   int64_t FrameOffset = 0;
9242   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9243     FrameIdx = FI->getIndex();
9244   } else if (isBaseWithConstantOffset(Ptr) &&
9245              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9246     // Handle FI+Cst
9247     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9248     FrameOffset = Ptr.getConstantOperandVal(1);
9249   }
9250 
9251   if (FrameIdx != INT_MIN) {
9252     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9253     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9254                                     FrameOffset);
9255     return FIInfoAlign;
9256   }
9257 
9258   return 0;
9259 }
9260 
9261 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9262 /// which is split (or expanded) into two not necessarily identical pieces.
9263 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9264   // Currently all types are split in half.
9265   EVT LoVT, HiVT;
9266   if (!VT.isVector())
9267     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9268   else
9269     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9270 
9271   return std::make_pair(LoVT, HiVT);
9272 }
9273 
9274 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9275 /// low/high part.
9276 std::pair<SDValue, SDValue>
9277 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9278                           const EVT &HiVT) {
9279   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9280          N.getValueType().getVectorNumElements() &&
9281          "More vector elements requested than available!");
9282   SDValue Lo, Hi;
9283   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
9284                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9285   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9286                getConstant(LoVT.getVectorNumElements(), DL,
9287                            TLI->getVectorIdxTy(getDataLayout())));
9288   return std::make_pair(Lo, Hi);
9289 }
9290 
9291 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9292 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9293   EVT VT = N.getValueType();
9294   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9295                                 NextPowerOf2(VT.getVectorNumElements()));
9296   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9297                  getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9298 }
9299 
9300 void SelectionDAG::ExtractVectorElements(SDValue Op,
9301                                          SmallVectorImpl<SDValue> &Args,
9302                                          unsigned Start, unsigned Count) {
9303   EVT VT = Op.getValueType();
9304   if (Count == 0)
9305     Count = VT.getVectorNumElements();
9306 
9307   EVT EltVT = VT.getVectorElementType();
9308   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
9309   SDLoc SL(Op);
9310   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9311     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9312                            Op, getConstant(i, SL, IdxTy)));
9313   }
9314 }
9315 
9316 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9317 unsigned GlobalAddressSDNode::getAddressSpace() const {
9318   return getGlobal()->getType()->getAddressSpace();
9319 }
9320 
9321 Type *ConstantPoolSDNode::getType() const {
9322   if (isMachineConstantPoolEntry())
9323     return Val.MachineCPVal->getType();
9324   return Val.ConstVal->getType();
9325 }
9326 
9327 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9328                                         unsigned &SplatBitSize,
9329                                         bool &HasAnyUndefs,
9330                                         unsigned MinSplatBits,
9331                                         bool IsBigEndian) const {
9332   EVT VT = getValueType(0);
9333   assert(VT.isVector() && "Expected a vector type");
9334   unsigned VecWidth = VT.getSizeInBits();
9335   if (MinSplatBits > VecWidth)
9336     return false;
9337 
9338   // FIXME: The widths are based on this node's type, but build vectors can
9339   // truncate their operands.
9340   SplatValue = APInt(VecWidth, 0);
9341   SplatUndef = APInt(VecWidth, 0);
9342 
9343   // Get the bits. Bits with undefined values (when the corresponding element
9344   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9345   // in SplatValue. If any of the values are not constant, give up and return
9346   // false.
9347   unsigned int NumOps = getNumOperands();
9348   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9349   unsigned EltWidth = VT.getScalarSizeInBits();
9350 
9351   for (unsigned j = 0; j < NumOps; ++j) {
9352     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9353     SDValue OpVal = getOperand(i);
9354     unsigned BitPos = j * EltWidth;
9355 
9356     if (OpVal.isUndef())
9357       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9358     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9359       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9360     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9361       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9362     else
9363       return false;
9364   }
9365 
9366   // The build_vector is all constants or undefs. Find the smallest element
9367   // size that splats the vector.
9368   HasAnyUndefs = (SplatUndef != 0);
9369 
9370   // FIXME: This does not work for vectors with elements less than 8 bits.
9371   while (VecWidth > 8) {
9372     unsigned HalfSize = VecWidth / 2;
9373     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9374     APInt LowValue = SplatValue.trunc(HalfSize);
9375     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9376     APInt LowUndef = SplatUndef.trunc(HalfSize);
9377 
9378     // If the two halves do not match (ignoring undef bits), stop here.
9379     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9380         MinSplatBits > HalfSize)
9381       break;
9382 
9383     SplatValue = HighValue | LowValue;
9384     SplatUndef = HighUndef & LowUndef;
9385 
9386     VecWidth = HalfSize;
9387   }
9388 
9389   SplatBitSize = VecWidth;
9390   return true;
9391 }
9392 
9393 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9394                                          BitVector *UndefElements) const {
9395   if (UndefElements) {
9396     UndefElements->clear();
9397     UndefElements->resize(getNumOperands());
9398   }
9399   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9400          "Unexpected vector size");
9401   if (!DemandedElts)
9402     return SDValue();
9403   SDValue Splatted;
9404   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9405     if (!DemandedElts[i])
9406       continue;
9407     SDValue Op = getOperand(i);
9408     if (Op.isUndef()) {
9409       if (UndefElements)
9410         (*UndefElements)[i] = true;
9411     } else if (!Splatted) {
9412       Splatted = Op;
9413     } else if (Splatted != Op) {
9414       return SDValue();
9415     }
9416   }
9417 
9418   if (!Splatted) {
9419     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9420     assert(getOperand(FirstDemandedIdx).isUndef() &&
9421            "Can only have a splat without a constant for all undefs.");
9422     return getOperand(FirstDemandedIdx);
9423   }
9424 
9425   return Splatted;
9426 }
9427 
9428 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9429   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9430   return getSplatValue(DemandedElts, UndefElements);
9431 }
9432 
9433 ConstantSDNode *
9434 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9435                                         BitVector *UndefElements) const {
9436   return dyn_cast_or_null<ConstantSDNode>(
9437       getSplatValue(DemandedElts, UndefElements));
9438 }
9439 
9440 ConstantSDNode *
9441 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9442   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9443 }
9444 
9445 ConstantFPSDNode *
9446 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9447                                           BitVector *UndefElements) const {
9448   return dyn_cast_or_null<ConstantFPSDNode>(
9449       getSplatValue(DemandedElts, UndefElements));
9450 }
9451 
9452 ConstantFPSDNode *
9453 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9454   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9455 }
9456 
9457 int32_t
9458 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9459                                                    uint32_t BitWidth) const {
9460   if (ConstantFPSDNode *CN =
9461           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9462     bool IsExact;
9463     APSInt IntVal(BitWidth);
9464     const APFloat &APF = CN->getValueAPF();
9465     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9466             APFloat::opOK ||
9467         !IsExact)
9468       return -1;
9469 
9470     return IntVal.exactLogBase2();
9471   }
9472   return -1;
9473 }
9474 
9475 bool BuildVectorSDNode::isConstant() const {
9476   for (const SDValue &Op : op_values()) {
9477     unsigned Opc = Op.getOpcode();
9478     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9479       return false;
9480   }
9481   return true;
9482 }
9483 
9484 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9485   // Find the first non-undef value in the shuffle mask.
9486   unsigned i, e;
9487   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9488     /* search */;
9489 
9490   // If all elements are undefined, this shuffle can be considered a splat
9491   // (although it should eventually get simplified away completely).
9492   if (i == e)
9493     return true;
9494 
9495   // Make sure all remaining elements are either undef or the same as the first
9496   // non-undef value.
9497   for (int Idx = Mask[i]; i != e; ++i)
9498     if (Mask[i] >= 0 && Mask[i] != Idx)
9499       return false;
9500   return true;
9501 }
9502 
9503 // Returns the SDNode if it is a constant integer BuildVector
9504 // or constant integer.
9505 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9506   if (isa<ConstantSDNode>(N))
9507     return N.getNode();
9508   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9509     return N.getNode();
9510   // Treat a GlobalAddress supporting constant offset folding as a
9511   // constant integer.
9512   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9513     if (GA->getOpcode() == ISD::GlobalAddress &&
9514         TLI->isOffsetFoldingLegal(GA))
9515       return GA;
9516   return nullptr;
9517 }
9518 
9519 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9520   if (isa<ConstantFPSDNode>(N))
9521     return N.getNode();
9522 
9523   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9524     return N.getNode();
9525 
9526   return nullptr;
9527 }
9528 
9529 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9530   assert(!Node->OperandList && "Node already has operands");
9531   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9532          "too many operands to fit into SDNode");
9533   SDUse *Ops = OperandRecycler.allocate(
9534       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9535 
9536   bool IsDivergent = false;
9537   for (unsigned I = 0; I != Vals.size(); ++I) {
9538     Ops[I].setUser(Node);
9539     Ops[I].setInitial(Vals[I]);
9540     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9541       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9542   }
9543   Node->NumOperands = Vals.size();
9544   Node->OperandList = Ops;
9545   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9546   if (!TLI->isSDNodeAlwaysUniform(Node))
9547     Node->SDNodeBits.IsDivergent = IsDivergent;
9548   checkForCycles(Node);
9549 }
9550 
9551 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9552                                      SmallVectorImpl<SDValue> &Vals) {
9553   size_t Limit = SDNode::getMaxNumOperands();
9554   while (Vals.size() > Limit) {
9555     unsigned SliceIdx = Vals.size() - Limit;
9556     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9557     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9558     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9559     Vals.emplace_back(NewTF);
9560   }
9561   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9562 }
9563 
9564 #ifndef NDEBUG
9565 static void checkForCyclesHelper(const SDNode *N,
9566                                  SmallPtrSetImpl<const SDNode*> &Visited,
9567                                  SmallPtrSetImpl<const SDNode*> &Checked,
9568                                  const llvm::SelectionDAG *DAG) {
9569   // If this node has already been checked, don't check it again.
9570   if (Checked.count(N))
9571     return;
9572 
9573   // If a node has already been visited on this depth-first walk, reject it as
9574   // a cycle.
9575   if (!Visited.insert(N).second) {
9576     errs() << "Detected cycle in SelectionDAG\n";
9577     dbgs() << "Offending node:\n";
9578     N->dumprFull(DAG); dbgs() << "\n";
9579     abort();
9580   }
9581 
9582   for (const SDValue &Op : N->op_values())
9583     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9584 
9585   Checked.insert(N);
9586   Visited.erase(N);
9587 }
9588 #endif
9589 
9590 void llvm::checkForCycles(const llvm::SDNode *N,
9591                           const llvm::SelectionDAG *DAG,
9592                           bool force) {
9593 #ifndef NDEBUG
9594   bool check = force;
9595 #ifdef EXPENSIVE_CHECKS
9596   check = true;
9597 #endif  // EXPENSIVE_CHECKS
9598   if (check) {
9599     assert(N && "Checking nonexistent SDNode");
9600     SmallPtrSet<const SDNode*, 32> visited;
9601     SmallPtrSet<const SDNode*, 32> checked;
9602     checkForCyclesHelper(N, visited, checked, DAG);
9603   }
9604 #endif  // !NDEBUG
9605 }
9606 
9607 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9608   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9609 }
9610