1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     }
149   }
150 
151   auto *BV = dyn_cast<BuildVectorSDNode>(N);
152   if (!BV)
153     return false;
154 
155   APInt SplatUndef;
156   unsigned SplatBitSize;
157   bool HasUndefs;
158   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
159   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
160                              EltSize) &&
161          EltSize == SplatBitSize;
162 }
163 
164 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
165 // specializations of the more general isConstantSplatVector()?
166 
167 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
168   // Look through a bit convert.
169   while (N->getOpcode() == ISD::BITCAST)
170     N = N->getOperand(0).getNode();
171 
172   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
173 
174   unsigned i = 0, e = N->getNumOperands();
175 
176   // Skip over all of the undef values.
177   while (i != e && N->getOperand(i).isUndef())
178     ++i;
179 
180   // Do not accept an all-undef vector.
181   if (i == e) return false;
182 
183   // Do not accept build_vectors that aren't all constants or which have non-~0
184   // elements. We have to be a bit careful here, as the type of the constant
185   // may not be the same as the type of the vector elements due to type
186   // legalization (the elements are promoted to a legal type for the target and
187   // a vector of a type may be legal when the base element type is not).
188   // We only want to check enough bits to cover the vector elements, because
189   // we care if the resultant vector is all ones, not whether the individual
190   // constants are.
191   SDValue NotZero = N->getOperand(i);
192   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
193   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
194     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
195       return false;
196   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
197     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
198       return false;
199   } else
200     return false;
201 
202   // Okay, we have at least one ~0 value, check to see if the rest match or are
203   // undefs. Even with the above element type twiddling, this should be OK, as
204   // the same type legalization should have applied to all the elements.
205   for (++i; i != e; ++i)
206     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
207       return false;
208   return true;
209 }
210 
211 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
212   // Look through a bit convert.
213   while (N->getOpcode() == ISD::BITCAST)
214     N = N->getOperand(0).getNode();
215 
216   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
217 
218   bool IsAllUndef = true;
219   for (const SDValue &Op : N->op_values()) {
220     if (Op.isUndef())
221       continue;
222     IsAllUndef = false;
223     // Do not accept build_vectors that aren't all constants or which have non-0
224     // elements. We have to be a bit careful here, as the type of the constant
225     // may not be the same as the type of the vector elements due to type
226     // legalization (the elements are promoted to a legal type for the target
227     // and a vector of a type may be legal when the base element type is not).
228     // We only want to check enough bits to cover the vector elements, because
229     // we care if the resultant vector is all zeros, not whether the individual
230     // constants are.
231     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
232     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
233       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
234         return false;
235     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
236       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
237         return false;
238     } else
239       return false;
240   }
241 
242   // Do not accept an all-undef vector.
243   if (IsAllUndef)
244     return false;
245   return true;
246 }
247 
248 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
249   if (N->getOpcode() != ISD::BUILD_VECTOR)
250     return false;
251 
252   for (const SDValue &Op : N->op_values()) {
253     if (Op.isUndef())
254       continue;
255     if (!isa<ConstantSDNode>(Op))
256       return false;
257   }
258   return true;
259 }
260 
261 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
262   if (N->getOpcode() != ISD::BUILD_VECTOR)
263     return false;
264 
265   for (const SDValue &Op : N->op_values()) {
266     if (Op.isUndef())
267       continue;
268     if (!isa<ConstantFPSDNode>(Op))
269       return false;
270   }
271   return true;
272 }
273 
274 bool ISD::allOperandsUndef(const SDNode *N) {
275   // Return false if the node has no operands.
276   // This is "logically inconsistent" with the definition of "all" but
277   // is probably the desired behavior.
278   if (N->getNumOperands() == 0)
279     return false;
280   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
281 }
282 
283 bool ISD::matchUnaryPredicate(SDValue Op,
284                               std::function<bool(ConstantSDNode *)> Match,
285                               bool AllowUndefs) {
286   // FIXME: Add support for scalar UNDEF cases?
287   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
288     return Match(Cst);
289 
290   // FIXME: Add support for vector UNDEF cases?
291   if (ISD::BUILD_VECTOR != Op.getOpcode())
292     return false;
293 
294   EVT SVT = Op.getValueType().getScalarType();
295   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
296     if (AllowUndefs && Op.getOperand(i).isUndef()) {
297       if (!Match(nullptr))
298         return false;
299       continue;
300     }
301 
302     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
303     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
304       return false;
305   }
306   return true;
307 }
308 
309 bool ISD::matchBinaryPredicate(
310     SDValue LHS, SDValue RHS,
311     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
312     bool AllowUndefs, bool AllowTypeMismatch) {
313   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
314     return false;
315 
316   // TODO: Add support for scalar UNDEF cases?
317   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
318     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
319       return Match(LHSCst, RHSCst);
320 
321   // TODO: Add support for vector UNDEF cases?
322   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
323       ISD::BUILD_VECTOR != RHS.getOpcode())
324     return false;
325 
326   EVT SVT = LHS.getValueType().getScalarType();
327   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
328     SDValue LHSOp = LHS.getOperand(i);
329     SDValue RHSOp = RHS.getOperand(i);
330     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
331     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
332     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
333     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
334     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
335       return false;
336     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
337                                LHSOp.getValueType() != RHSOp.getValueType()))
338       return false;
339     if (!Match(LHSCst, RHSCst))
340       return false;
341   }
342   return true;
343 }
344 
345 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
346   switch (VecReduceOpcode) {
347   default:
348     llvm_unreachable("Expected VECREDUCE opcode");
349   case ISD::VECREDUCE_FADD:
350   case ISD::VECREDUCE_SEQ_FADD:
351     return ISD::FADD;
352   case ISD::VECREDUCE_FMUL:
353   case ISD::VECREDUCE_SEQ_FMUL:
354     return ISD::FMUL;
355   case ISD::VECREDUCE_ADD:
356     return ISD::ADD;
357   case ISD::VECREDUCE_MUL:
358     return ISD::MUL;
359   case ISD::VECREDUCE_AND:
360     return ISD::AND;
361   case ISD::VECREDUCE_OR:
362     return ISD::OR;
363   case ISD::VECREDUCE_XOR:
364     return ISD::XOR;
365   case ISD::VECREDUCE_SMAX:
366     return ISD::SMAX;
367   case ISD::VECREDUCE_SMIN:
368     return ISD::SMIN;
369   case ISD::VECREDUCE_UMAX:
370     return ISD::UMAX;
371   case ISD::VECREDUCE_UMIN:
372     return ISD::UMIN;
373   case ISD::VECREDUCE_FMAX:
374     return ISD::FMAXNUM;
375   case ISD::VECREDUCE_FMIN:
376     return ISD::FMINNUM;
377   }
378 }
379 
380 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
381   switch (ExtType) {
382   case ISD::EXTLOAD:
383     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
384   case ISD::SEXTLOAD:
385     return ISD::SIGN_EXTEND;
386   case ISD::ZEXTLOAD:
387     return ISD::ZERO_EXTEND;
388   default:
389     break;
390   }
391 
392   llvm_unreachable("Invalid LoadExtType");
393 }
394 
395 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
396   // To perform this operation, we just need to swap the L and G bits of the
397   // operation.
398   unsigned OldL = (Operation >> 2) & 1;
399   unsigned OldG = (Operation >> 1) & 1;
400   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
401                        (OldL << 1) |       // New G bit
402                        (OldG << 2));       // New L bit.
403 }
404 
405 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
406   unsigned Operation = Op;
407   if (isIntegerLike)
408     Operation ^= 7;   // Flip L, G, E bits, but not U.
409   else
410     Operation ^= 15;  // Flip all of the condition bits.
411 
412   if (Operation > ISD::SETTRUE2)
413     Operation &= ~8;  // Don't let N and U bits get set.
414 
415   return ISD::CondCode(Operation);
416 }
417 
418 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
419   return getSetCCInverseImpl(Op, Type.isInteger());
420 }
421 
422 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
423                                                bool isIntegerLike) {
424   return getSetCCInverseImpl(Op, isIntegerLike);
425 }
426 
427 /// For an integer comparison, return 1 if the comparison is a signed operation
428 /// and 2 if the result is an unsigned comparison. Return zero if the operation
429 /// does not depend on the sign of the input (setne and seteq).
430 static int isSignedOp(ISD::CondCode Opcode) {
431   switch (Opcode) {
432   default: llvm_unreachable("Illegal integer setcc operation!");
433   case ISD::SETEQ:
434   case ISD::SETNE: return 0;
435   case ISD::SETLT:
436   case ISD::SETLE:
437   case ISD::SETGT:
438   case ISD::SETGE: return 1;
439   case ISD::SETULT:
440   case ISD::SETULE:
441   case ISD::SETUGT:
442   case ISD::SETUGE: return 2;
443   }
444 }
445 
446 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
447                                        EVT Type) {
448   bool IsInteger = Type.isInteger();
449   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
450     // Cannot fold a signed integer setcc with an unsigned integer setcc.
451     return ISD::SETCC_INVALID;
452 
453   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
454 
455   // If the N and U bits get set, then the resultant comparison DOES suddenly
456   // care about orderedness, and it is true when ordered.
457   if (Op > ISD::SETTRUE2)
458     Op &= ~16;     // Clear the U bit if the N bit is set.
459 
460   // Canonicalize illegal integer setcc's.
461   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
462     Op = ISD::SETNE;
463 
464   return ISD::CondCode(Op);
465 }
466 
467 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
468                                         EVT Type) {
469   bool IsInteger = Type.isInteger();
470   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
471     // Cannot fold a signed setcc with an unsigned setcc.
472     return ISD::SETCC_INVALID;
473 
474   // Combine all of the condition bits.
475   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
476 
477   // Canonicalize illegal integer setcc's.
478   if (IsInteger) {
479     switch (Result) {
480     default: break;
481     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
482     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
483     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
484     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
485     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
486     }
487   }
488 
489   return Result;
490 }
491 
492 //===----------------------------------------------------------------------===//
493 //                           SDNode Profile Support
494 //===----------------------------------------------------------------------===//
495 
496 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
497 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
498   ID.AddInteger(OpC);
499 }
500 
501 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
502 /// solely with their pointer.
503 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
504   ID.AddPointer(VTList.VTs);
505 }
506 
507 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
508 static void AddNodeIDOperands(FoldingSetNodeID &ID,
509                               ArrayRef<SDValue> Ops) {
510   for (auto& Op : Ops) {
511     ID.AddPointer(Op.getNode());
512     ID.AddInteger(Op.getResNo());
513   }
514 }
515 
516 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
517 static void AddNodeIDOperands(FoldingSetNodeID &ID,
518                               ArrayRef<SDUse> Ops) {
519   for (auto& Op : Ops) {
520     ID.AddPointer(Op.getNode());
521     ID.AddInteger(Op.getResNo());
522   }
523 }
524 
525 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
526                           SDVTList VTList, ArrayRef<SDValue> OpList) {
527   AddNodeIDOpcode(ID, OpC);
528   AddNodeIDValueTypes(ID, VTList);
529   AddNodeIDOperands(ID, OpList);
530 }
531 
532 /// If this is an SDNode with special info, add this info to the NodeID data.
533 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
534   switch (N->getOpcode()) {
535   case ISD::TargetExternalSymbol:
536   case ISD::ExternalSymbol:
537   case ISD::MCSymbol:
538     llvm_unreachable("Should only be used on nodes with operands");
539   default: break;  // Normal nodes don't need extra info.
540   case ISD::TargetConstant:
541   case ISD::Constant: {
542     const ConstantSDNode *C = cast<ConstantSDNode>(N);
543     ID.AddPointer(C->getConstantIntValue());
544     ID.AddBoolean(C->isOpaque());
545     break;
546   }
547   case ISD::TargetConstantFP:
548   case ISD::ConstantFP:
549     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
550     break;
551   case ISD::TargetGlobalAddress:
552   case ISD::GlobalAddress:
553   case ISD::TargetGlobalTLSAddress:
554   case ISD::GlobalTLSAddress: {
555     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
556     ID.AddPointer(GA->getGlobal());
557     ID.AddInteger(GA->getOffset());
558     ID.AddInteger(GA->getTargetFlags());
559     break;
560   }
561   case ISD::BasicBlock:
562     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
563     break;
564   case ISD::Register:
565     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
566     break;
567   case ISD::RegisterMask:
568     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
569     break;
570   case ISD::SRCVALUE:
571     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
572     break;
573   case ISD::FrameIndex:
574   case ISD::TargetFrameIndex:
575     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
576     break;
577   case ISD::LIFETIME_START:
578   case ISD::LIFETIME_END:
579     if (cast<LifetimeSDNode>(N)->hasOffset()) {
580       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
581       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
582     }
583     break;
584   case ISD::PSEUDO_PROBE:
585     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
586     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
587     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
588     break;
589   case ISD::JumpTable:
590   case ISD::TargetJumpTable:
591     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
592     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
593     break;
594   case ISD::ConstantPool:
595   case ISD::TargetConstantPool: {
596     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
597     ID.AddInteger(CP->getAlign().value());
598     ID.AddInteger(CP->getOffset());
599     if (CP->isMachineConstantPoolEntry())
600       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
601     else
602       ID.AddPointer(CP->getConstVal());
603     ID.AddInteger(CP->getTargetFlags());
604     break;
605   }
606   case ISD::TargetIndex: {
607     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
608     ID.AddInteger(TI->getIndex());
609     ID.AddInteger(TI->getOffset());
610     ID.AddInteger(TI->getTargetFlags());
611     break;
612   }
613   case ISD::LOAD: {
614     const LoadSDNode *LD = cast<LoadSDNode>(N);
615     ID.AddInteger(LD->getMemoryVT().getRawBits());
616     ID.AddInteger(LD->getRawSubclassData());
617     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
618     break;
619   }
620   case ISD::STORE: {
621     const StoreSDNode *ST = cast<StoreSDNode>(N);
622     ID.AddInteger(ST->getMemoryVT().getRawBits());
623     ID.AddInteger(ST->getRawSubclassData());
624     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
625     break;
626   }
627   case ISD::MLOAD: {
628     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
629     ID.AddInteger(MLD->getMemoryVT().getRawBits());
630     ID.AddInteger(MLD->getRawSubclassData());
631     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
632     break;
633   }
634   case ISD::MSTORE: {
635     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
636     ID.AddInteger(MST->getMemoryVT().getRawBits());
637     ID.AddInteger(MST->getRawSubclassData());
638     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
639     break;
640   }
641   case ISD::MGATHER: {
642     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
643     ID.AddInteger(MG->getMemoryVT().getRawBits());
644     ID.AddInteger(MG->getRawSubclassData());
645     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
646     break;
647   }
648   case ISD::MSCATTER: {
649     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
650     ID.AddInteger(MS->getMemoryVT().getRawBits());
651     ID.AddInteger(MS->getRawSubclassData());
652     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
653     break;
654   }
655   case ISD::ATOMIC_CMP_SWAP:
656   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
657   case ISD::ATOMIC_SWAP:
658   case ISD::ATOMIC_LOAD_ADD:
659   case ISD::ATOMIC_LOAD_SUB:
660   case ISD::ATOMIC_LOAD_AND:
661   case ISD::ATOMIC_LOAD_CLR:
662   case ISD::ATOMIC_LOAD_OR:
663   case ISD::ATOMIC_LOAD_XOR:
664   case ISD::ATOMIC_LOAD_NAND:
665   case ISD::ATOMIC_LOAD_MIN:
666   case ISD::ATOMIC_LOAD_MAX:
667   case ISD::ATOMIC_LOAD_UMIN:
668   case ISD::ATOMIC_LOAD_UMAX:
669   case ISD::ATOMIC_LOAD:
670   case ISD::ATOMIC_STORE: {
671     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
672     ID.AddInteger(AT->getMemoryVT().getRawBits());
673     ID.AddInteger(AT->getRawSubclassData());
674     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
675     break;
676   }
677   case ISD::PREFETCH: {
678     const MemSDNode *PF = cast<MemSDNode>(N);
679     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
680     break;
681   }
682   case ISD::VECTOR_SHUFFLE: {
683     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
684     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
685          i != e; ++i)
686       ID.AddInteger(SVN->getMaskElt(i));
687     break;
688   }
689   case ISD::TargetBlockAddress:
690   case ISD::BlockAddress: {
691     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
692     ID.AddPointer(BA->getBlockAddress());
693     ID.AddInteger(BA->getOffset());
694     ID.AddInteger(BA->getTargetFlags());
695     break;
696   }
697   } // end switch (N->getOpcode())
698 
699   // Target specific memory nodes could also have address spaces to check.
700   if (N->isTargetMemoryOpcode())
701     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
702 }
703 
704 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
705 /// data.
706 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
707   AddNodeIDOpcode(ID, N->getOpcode());
708   // Add the return value info.
709   AddNodeIDValueTypes(ID, N->getVTList());
710   // Add the operand info.
711   AddNodeIDOperands(ID, N->ops());
712 
713   // Handle SDNode leafs with special info.
714   AddNodeIDCustom(ID, N);
715 }
716 
717 //===----------------------------------------------------------------------===//
718 //                              SelectionDAG Class
719 //===----------------------------------------------------------------------===//
720 
721 /// doNotCSE - Return true if CSE should not be performed for this node.
722 static bool doNotCSE(SDNode *N) {
723   if (N->getValueType(0) == MVT::Glue)
724     return true; // Never CSE anything that produces a flag.
725 
726   switch (N->getOpcode()) {
727   default: break;
728   case ISD::HANDLENODE:
729   case ISD::EH_LABEL:
730     return true;   // Never CSE these nodes.
731   }
732 
733   // Check that remaining values produced are not flags.
734   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
735     if (N->getValueType(i) == MVT::Glue)
736       return true; // Never CSE anything that produces a flag.
737 
738   return false;
739 }
740 
741 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
742 /// SelectionDAG.
743 void SelectionDAG::RemoveDeadNodes() {
744   // Create a dummy node (which is not added to allnodes), that adds a reference
745   // to the root node, preventing it from being deleted.
746   HandleSDNode Dummy(getRoot());
747 
748   SmallVector<SDNode*, 128> DeadNodes;
749 
750   // Add all obviously-dead nodes to the DeadNodes worklist.
751   for (SDNode &Node : allnodes())
752     if (Node.use_empty())
753       DeadNodes.push_back(&Node);
754 
755   RemoveDeadNodes(DeadNodes);
756 
757   // If the root changed (e.g. it was a dead load, update the root).
758   setRoot(Dummy.getValue());
759 }
760 
761 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
762 /// given list, and any nodes that become unreachable as a result.
763 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
764 
765   // Process the worklist, deleting the nodes and adding their uses to the
766   // worklist.
767   while (!DeadNodes.empty()) {
768     SDNode *N = DeadNodes.pop_back_val();
769     // Skip to next node if we've already managed to delete the node. This could
770     // happen if replacing a node causes a node previously added to the node to
771     // be deleted.
772     if (N->getOpcode() == ISD::DELETED_NODE)
773       continue;
774 
775     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
776       DUL->NodeDeleted(N, nullptr);
777 
778     // Take the node out of the appropriate CSE map.
779     RemoveNodeFromCSEMaps(N);
780 
781     // Next, brutally remove the operand list.  This is safe to do, as there are
782     // no cycles in the graph.
783     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
784       SDUse &Use = *I++;
785       SDNode *Operand = Use.getNode();
786       Use.set(SDValue());
787 
788       // Now that we removed this operand, see if there are no uses of it left.
789       if (Operand->use_empty())
790         DeadNodes.push_back(Operand);
791     }
792 
793     DeallocateNode(N);
794   }
795 }
796 
797 void SelectionDAG::RemoveDeadNode(SDNode *N){
798   SmallVector<SDNode*, 16> DeadNodes(1, N);
799 
800   // Create a dummy node that adds a reference to the root node, preventing
801   // it from being deleted.  (This matters if the root is an operand of the
802   // dead node.)
803   HandleSDNode Dummy(getRoot());
804 
805   RemoveDeadNodes(DeadNodes);
806 }
807 
808 void SelectionDAG::DeleteNode(SDNode *N) {
809   // First take this out of the appropriate CSE map.
810   RemoveNodeFromCSEMaps(N);
811 
812   // Finally, remove uses due to operands of this node, remove from the
813   // AllNodes list, and delete the node.
814   DeleteNodeNotInCSEMaps(N);
815 }
816 
817 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
818   assert(N->getIterator() != AllNodes.begin() &&
819          "Cannot delete the entry node!");
820   assert(N->use_empty() && "Cannot delete a node that is not dead!");
821 
822   // Drop all of the operands and decrement used node's use counts.
823   N->DropOperands();
824 
825   DeallocateNode(N);
826 }
827 
828 void SDDbgInfo::erase(const SDNode *Node) {
829   DbgValMapType::iterator I = DbgValMap.find(Node);
830   if (I == DbgValMap.end())
831     return;
832   for (auto &Val: I->second)
833     Val->setIsInvalidated();
834   DbgValMap.erase(I);
835 }
836 
837 void SelectionDAG::DeallocateNode(SDNode *N) {
838   // If we have operands, deallocate them.
839   removeOperands(N);
840 
841   NodeAllocator.Deallocate(AllNodes.remove(N));
842 
843   // Set the opcode to DELETED_NODE to help catch bugs when node
844   // memory is reallocated.
845   // FIXME: There are places in SDag that have grown a dependency on the opcode
846   // value in the released node.
847   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
848   N->NodeType = ISD::DELETED_NODE;
849 
850   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
851   // them and forget about that node.
852   DbgInfo->erase(N);
853 }
854 
855 #ifndef NDEBUG
856 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
857 static void VerifySDNode(SDNode *N) {
858   switch (N->getOpcode()) {
859   default:
860     break;
861   case ISD::BUILD_PAIR: {
862     EVT VT = N->getValueType(0);
863     assert(N->getNumValues() == 1 && "Too many results!");
864     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
865            "Wrong return type!");
866     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
867     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
868            "Mismatched operand types!");
869     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
870            "Wrong operand type!");
871     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
872            "Wrong return type size");
873     break;
874   }
875   case ISD::BUILD_VECTOR: {
876     assert(N->getNumValues() == 1 && "Too many results!");
877     assert(N->getValueType(0).isVector() && "Wrong return type!");
878     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
879            "Wrong number of operands!");
880     EVT EltVT = N->getValueType(0).getVectorElementType();
881     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
882       assert((I->getValueType() == EltVT ||
883              (EltVT.isInteger() && I->getValueType().isInteger() &&
884               EltVT.bitsLE(I->getValueType()))) &&
885             "Wrong operand type!");
886       assert(I->getValueType() == N->getOperand(0).getValueType() &&
887              "Operands must all have the same type");
888     }
889     break;
890   }
891   }
892 }
893 #endif // NDEBUG
894 
895 /// Insert a newly allocated node into the DAG.
896 ///
897 /// Handles insertion into the all nodes list and CSE map, as well as
898 /// verification and other common operations when a new node is allocated.
899 void SelectionDAG::InsertNode(SDNode *N) {
900   AllNodes.push_back(N);
901 #ifndef NDEBUG
902   N->PersistentId = NextPersistentId++;
903   VerifySDNode(N);
904 #endif
905   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
906     DUL->NodeInserted(N);
907 }
908 
909 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
910 /// correspond to it.  This is useful when we're about to delete or repurpose
911 /// the node.  We don't want future request for structurally identical nodes
912 /// to return N anymore.
913 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
914   bool Erased = false;
915   switch (N->getOpcode()) {
916   case ISD::HANDLENODE: return false;  // noop.
917   case ISD::CONDCODE:
918     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
919            "Cond code doesn't exist!");
920     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
921     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
922     break;
923   case ISD::ExternalSymbol:
924     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
925     break;
926   case ISD::TargetExternalSymbol: {
927     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
928     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
929         ESN->getSymbol(), ESN->getTargetFlags()));
930     break;
931   }
932   case ISD::MCSymbol: {
933     auto *MCSN = cast<MCSymbolSDNode>(N);
934     Erased = MCSymbols.erase(MCSN->getMCSymbol());
935     break;
936   }
937   case ISD::VALUETYPE: {
938     EVT VT = cast<VTSDNode>(N)->getVT();
939     if (VT.isExtended()) {
940       Erased = ExtendedValueTypeNodes.erase(VT);
941     } else {
942       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
943       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
944     }
945     break;
946   }
947   default:
948     // Remove it from the CSE Map.
949     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
950     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
951     Erased = CSEMap.RemoveNode(N);
952     break;
953   }
954 #ifndef NDEBUG
955   // Verify that the node was actually in one of the CSE maps, unless it has a
956   // flag result (which cannot be CSE'd) or is one of the special cases that are
957   // not subject to CSE.
958   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
959       !N->isMachineOpcode() && !doNotCSE(N)) {
960     N->dump(this);
961     dbgs() << "\n";
962     llvm_unreachable("Node is not in map!");
963   }
964 #endif
965   return Erased;
966 }
967 
968 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
969 /// maps and modified in place. Add it back to the CSE maps, unless an identical
970 /// node already exists, in which case transfer all its users to the existing
971 /// node. This transfer can potentially trigger recursive merging.
972 void
973 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
974   // For node types that aren't CSE'd, just act as if no identical node
975   // already exists.
976   if (!doNotCSE(N)) {
977     SDNode *Existing = CSEMap.GetOrInsertNode(N);
978     if (Existing != N) {
979       // If there was already an existing matching node, use ReplaceAllUsesWith
980       // to replace the dead one with the existing one.  This can cause
981       // recursive merging of other unrelated nodes down the line.
982       ReplaceAllUsesWith(N, Existing);
983 
984       // N is now dead. Inform the listeners and delete it.
985       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
986         DUL->NodeDeleted(N, Existing);
987       DeleteNodeNotInCSEMaps(N);
988       return;
989     }
990   }
991 
992   // If the node doesn't already exist, we updated it.  Inform listeners.
993   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
994     DUL->NodeUpdated(N);
995 }
996 
997 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
998 /// were replaced with those specified.  If this node is never memoized,
999 /// return null, otherwise return a pointer to the slot it would take.  If a
1000 /// node already exists with these operands, the slot will be non-null.
1001 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1002                                            void *&InsertPos) {
1003   if (doNotCSE(N))
1004     return nullptr;
1005 
1006   SDValue Ops[] = { Op };
1007   FoldingSetNodeID ID;
1008   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1009   AddNodeIDCustom(ID, N);
1010   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1011   if (Node)
1012     Node->intersectFlagsWith(N->getFlags());
1013   return Node;
1014 }
1015 
1016 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1017 /// were replaced with those specified.  If this node is never memoized,
1018 /// return null, otherwise return a pointer to the slot it would take.  If a
1019 /// node already exists with these operands, the slot will be non-null.
1020 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1021                                            SDValue Op1, SDValue Op2,
1022                                            void *&InsertPos) {
1023   if (doNotCSE(N))
1024     return nullptr;
1025 
1026   SDValue Ops[] = { Op1, Op2 };
1027   FoldingSetNodeID ID;
1028   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1029   AddNodeIDCustom(ID, N);
1030   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1031   if (Node)
1032     Node->intersectFlagsWith(N->getFlags());
1033   return Node;
1034 }
1035 
1036 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1037 /// were replaced with those specified.  If this node is never memoized,
1038 /// return null, otherwise return a pointer to the slot it would take.  If a
1039 /// node already exists with these operands, the slot will be non-null.
1040 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1041                                            void *&InsertPos) {
1042   if (doNotCSE(N))
1043     return nullptr;
1044 
1045   FoldingSetNodeID ID;
1046   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1047   AddNodeIDCustom(ID, N);
1048   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1049   if (Node)
1050     Node->intersectFlagsWith(N->getFlags());
1051   return Node;
1052 }
1053 
1054 Align SelectionDAG::getEVTAlign(EVT VT) const {
1055   Type *Ty = VT == MVT::iPTR ?
1056                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1057                    VT.getTypeForEVT(*getContext());
1058 
1059   return getDataLayout().getABITypeAlign(Ty);
1060 }
1061 
1062 // EntryNode could meaningfully have debug info if we can find it...
1063 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1064     : TM(tm), OptLevel(OL),
1065       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1066       Root(getEntryNode()) {
1067   InsertNode(&EntryNode);
1068   DbgInfo = new SDDbgInfo();
1069 }
1070 
1071 void SelectionDAG::init(MachineFunction &NewMF,
1072                         OptimizationRemarkEmitter &NewORE,
1073                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1074                         LegacyDivergenceAnalysis * Divergence,
1075                         ProfileSummaryInfo *PSIin,
1076                         BlockFrequencyInfo *BFIin) {
1077   MF = &NewMF;
1078   SDAGISelPass = PassPtr;
1079   ORE = &NewORE;
1080   TLI = getSubtarget().getTargetLowering();
1081   TSI = getSubtarget().getSelectionDAGInfo();
1082   LibInfo = LibraryInfo;
1083   Context = &MF->getFunction().getContext();
1084   DA = Divergence;
1085   PSI = PSIin;
1086   BFI = BFIin;
1087 }
1088 
1089 SelectionDAG::~SelectionDAG() {
1090   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1091   allnodes_clear();
1092   OperandRecycler.clear(OperandAllocator);
1093   delete DbgInfo;
1094 }
1095 
1096 bool SelectionDAG::shouldOptForSize() const {
1097   return MF->getFunction().hasOptSize() ||
1098       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1099 }
1100 
1101 void SelectionDAG::allnodes_clear() {
1102   assert(&*AllNodes.begin() == &EntryNode);
1103   AllNodes.remove(AllNodes.begin());
1104   while (!AllNodes.empty())
1105     DeallocateNode(&AllNodes.front());
1106 #ifndef NDEBUG
1107   NextPersistentId = 0;
1108 #endif
1109 }
1110 
1111 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1112                                           void *&InsertPos) {
1113   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1114   if (N) {
1115     switch (N->getOpcode()) {
1116     default: break;
1117     case ISD::Constant:
1118     case ISD::ConstantFP:
1119       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1120                        "debug location.  Use another overload.");
1121     }
1122   }
1123   return N;
1124 }
1125 
1126 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1127                                           const SDLoc &DL, void *&InsertPos) {
1128   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1129   if (N) {
1130     switch (N->getOpcode()) {
1131     case ISD::Constant:
1132     case ISD::ConstantFP:
1133       // Erase debug location from the node if the node is used at several
1134       // different places. Do not propagate one location to all uses as it
1135       // will cause a worse single stepping debugging experience.
1136       if (N->getDebugLoc() != DL.getDebugLoc())
1137         N->setDebugLoc(DebugLoc());
1138       break;
1139     default:
1140       // When the node's point of use is located earlier in the instruction
1141       // sequence than its prior point of use, update its debug info to the
1142       // earlier location.
1143       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1144         N->setDebugLoc(DL.getDebugLoc());
1145       break;
1146     }
1147   }
1148   return N;
1149 }
1150 
1151 void SelectionDAG::clear() {
1152   allnodes_clear();
1153   OperandRecycler.clear(OperandAllocator);
1154   OperandAllocator.Reset();
1155   CSEMap.clear();
1156 
1157   ExtendedValueTypeNodes.clear();
1158   ExternalSymbols.clear();
1159   TargetExternalSymbols.clear();
1160   MCSymbols.clear();
1161   SDCallSiteDbgInfo.clear();
1162   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1163             static_cast<CondCodeSDNode*>(nullptr));
1164   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1165             static_cast<SDNode*>(nullptr));
1166 
1167   EntryNode.UseList = nullptr;
1168   InsertNode(&EntryNode);
1169   Root = getEntryNode();
1170   DbgInfo->clear();
1171 }
1172 
1173 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1174   return VT.bitsGT(Op.getValueType())
1175              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1176              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1177 }
1178 
1179 std::pair<SDValue, SDValue>
1180 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1181                                        const SDLoc &DL, EVT VT) {
1182   assert(!VT.bitsEq(Op.getValueType()) &&
1183          "Strict no-op FP extend/round not allowed.");
1184   SDValue Res =
1185       VT.bitsGT(Op.getValueType())
1186           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1187           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1188                     {Chain, Op, getIntPtrConstant(0, DL)});
1189 
1190   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1191 }
1192 
1193 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1194   return VT.bitsGT(Op.getValueType()) ?
1195     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1196     getNode(ISD::TRUNCATE, DL, VT, Op);
1197 }
1198 
1199 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1200   return VT.bitsGT(Op.getValueType()) ?
1201     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1202     getNode(ISD::TRUNCATE, DL, VT, Op);
1203 }
1204 
1205 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1206   return VT.bitsGT(Op.getValueType()) ?
1207     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1208     getNode(ISD::TRUNCATE, DL, VT, Op);
1209 }
1210 
1211 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1212                                         EVT OpVT) {
1213   if (VT.bitsLE(Op.getValueType()))
1214     return getNode(ISD::TRUNCATE, SL, VT, Op);
1215 
1216   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1217   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1218 }
1219 
1220 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1221   EVT OpVT = Op.getValueType();
1222   assert(VT.isInteger() && OpVT.isInteger() &&
1223          "Cannot getZeroExtendInReg FP types");
1224   assert(VT.isVector() == OpVT.isVector() &&
1225          "getZeroExtendInReg type should be vector iff the operand "
1226          "type is vector!");
1227   assert((!VT.isVector() ||
1228           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1229          "Vector element counts must match in getZeroExtendInReg");
1230   assert(VT.bitsLE(OpVT) && "Not extending!");
1231   if (OpVT == VT)
1232     return Op;
1233   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1234                                    VT.getScalarSizeInBits());
1235   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1236 }
1237 
1238 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1239   // Only unsigned pointer semantics are supported right now. In the future this
1240   // might delegate to TLI to check pointer signedness.
1241   return getZExtOrTrunc(Op, DL, VT);
1242 }
1243 
1244 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1245   // Only unsigned pointer semantics are supported right now. In the future this
1246   // might delegate to TLI to check pointer signedness.
1247   return getZeroExtendInReg(Op, DL, VT);
1248 }
1249 
1250 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1251 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1252   EVT EltVT = VT.getScalarType();
1253   SDValue NegOne =
1254     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1255   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1256 }
1257 
1258 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1259   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1260   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1261 }
1262 
1263 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1264                                       EVT OpVT) {
1265   if (!V)
1266     return getConstant(0, DL, VT);
1267 
1268   switch (TLI->getBooleanContents(OpVT)) {
1269   case TargetLowering::ZeroOrOneBooleanContent:
1270   case TargetLowering::UndefinedBooleanContent:
1271     return getConstant(1, DL, VT);
1272   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1273     return getAllOnesConstant(DL, VT);
1274   }
1275   llvm_unreachable("Unexpected boolean content enum!");
1276 }
1277 
1278 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1279                                   bool isT, bool isO) {
1280   EVT EltVT = VT.getScalarType();
1281   assert((EltVT.getSizeInBits() >= 64 ||
1282          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1283          "getConstant with a uint64_t value that doesn't fit in the type!");
1284   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1285 }
1286 
1287 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1288                                   bool isT, bool isO) {
1289   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1290 }
1291 
1292 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1293                                   EVT VT, bool isT, bool isO) {
1294   assert(VT.isInteger() && "Cannot create FP integer constant!");
1295 
1296   EVT EltVT = VT.getScalarType();
1297   const ConstantInt *Elt = &Val;
1298 
1299   // In some cases the vector type is legal but the element type is illegal and
1300   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1301   // inserted value (the type does not need to match the vector element type).
1302   // Any extra bits introduced will be truncated away.
1303   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1304       TargetLowering::TypePromoteInteger) {
1305    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1306    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1307    Elt = ConstantInt::get(*getContext(), NewVal);
1308   }
1309   // In other cases the element type is illegal and needs to be expanded, for
1310   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1311   // the value into n parts and use a vector type with n-times the elements.
1312   // Then bitcast to the type requested.
1313   // Legalizing constants too early makes the DAGCombiner's job harder so we
1314   // only legalize if the DAG tells us we must produce legal types.
1315   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1316            TLI->getTypeAction(*getContext(), EltVT) ==
1317            TargetLowering::TypeExpandInteger) {
1318     const APInt &NewVal = Elt->getValue();
1319     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1320     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1321     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1322     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1323 
1324     // Check the temporary vector is the correct size. If this fails then
1325     // getTypeToTransformTo() probably returned a type whose size (in bits)
1326     // isn't a power-of-2 factor of the requested type size.
1327     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1328 
1329     SmallVector<SDValue, 2> EltParts;
1330     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1331       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1332                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1333                                      ViaEltVT, isT, isO));
1334     }
1335 
1336     // EltParts is currently in little endian order. If we actually want
1337     // big-endian order then reverse it now.
1338     if (getDataLayout().isBigEndian())
1339       std::reverse(EltParts.begin(), EltParts.end());
1340 
1341     // The elements must be reversed when the element order is different
1342     // to the endianness of the elements (because the BITCAST is itself a
1343     // vector shuffle in this situation). However, we do not need any code to
1344     // perform this reversal because getConstant() is producing a vector
1345     // splat.
1346     // This situation occurs in MIPS MSA.
1347 
1348     SmallVector<SDValue, 8> Ops;
1349     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1350       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1351 
1352     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1353     return V;
1354   }
1355 
1356   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1357          "APInt size does not match type size!");
1358   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1359   FoldingSetNodeID ID;
1360   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1361   ID.AddPointer(Elt);
1362   ID.AddBoolean(isO);
1363   void *IP = nullptr;
1364   SDNode *N = nullptr;
1365   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1366     if (!VT.isVector())
1367       return SDValue(N, 0);
1368 
1369   if (!N) {
1370     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1371     CSEMap.InsertNode(N, IP);
1372     InsertNode(N);
1373     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1374   }
1375 
1376   SDValue Result(N, 0);
1377   if (VT.isScalableVector())
1378     Result = getSplatVector(VT, DL, Result);
1379   else if (VT.isVector())
1380     Result = getSplatBuildVector(VT, DL, Result);
1381 
1382   return Result;
1383 }
1384 
1385 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1386                                         bool isTarget) {
1387   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1388 }
1389 
1390 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1391                                              const SDLoc &DL, bool LegalTypes) {
1392   assert(VT.isInteger() && "Shift amount is not an integer type!");
1393   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1394   return getConstant(Val, DL, ShiftVT);
1395 }
1396 
1397 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1398                                            bool isTarget) {
1399   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1400 }
1401 
1402 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1403                                     bool isTarget) {
1404   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1405 }
1406 
1407 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1408                                     EVT VT, bool isTarget) {
1409   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1410 
1411   EVT EltVT = VT.getScalarType();
1412 
1413   // Do the map lookup using the actual bit pattern for the floating point
1414   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1415   // we don't have issues with SNANs.
1416   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1417   FoldingSetNodeID ID;
1418   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1419   ID.AddPointer(&V);
1420   void *IP = nullptr;
1421   SDNode *N = nullptr;
1422   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1423     if (!VT.isVector())
1424       return SDValue(N, 0);
1425 
1426   if (!N) {
1427     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1428     CSEMap.InsertNode(N, IP);
1429     InsertNode(N);
1430   }
1431 
1432   SDValue Result(N, 0);
1433   if (VT.isScalableVector())
1434     Result = getSplatVector(VT, DL, Result);
1435   else if (VT.isVector())
1436     Result = getSplatBuildVector(VT, DL, Result);
1437   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1438   return Result;
1439 }
1440 
1441 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1442                                     bool isTarget) {
1443   EVT EltVT = VT.getScalarType();
1444   if (EltVT == MVT::f32)
1445     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1446   else if (EltVT == MVT::f64)
1447     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1448   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1449            EltVT == MVT::f16 || EltVT == MVT::bf16) {
1450     bool Ignored;
1451     APFloat APF = APFloat(Val);
1452     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1453                 &Ignored);
1454     return getConstantFP(APF, DL, VT, isTarget);
1455   } else
1456     llvm_unreachable("Unsupported type in getConstantFP");
1457 }
1458 
1459 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1460                                        EVT VT, int64_t Offset, bool isTargetGA,
1461                                        unsigned TargetFlags) {
1462   assert((TargetFlags == 0 || isTargetGA) &&
1463          "Cannot set target flags on target-independent globals");
1464 
1465   // Truncate (with sign-extension) the offset value to the pointer size.
1466   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1467   if (BitWidth < 64)
1468     Offset = SignExtend64(Offset, BitWidth);
1469 
1470   unsigned Opc;
1471   if (GV->isThreadLocal())
1472     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1473   else
1474     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1475 
1476   FoldingSetNodeID ID;
1477   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1478   ID.AddPointer(GV);
1479   ID.AddInteger(Offset);
1480   ID.AddInteger(TargetFlags);
1481   void *IP = nullptr;
1482   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1483     return SDValue(E, 0);
1484 
1485   auto *N = newSDNode<GlobalAddressSDNode>(
1486       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1487   CSEMap.InsertNode(N, IP);
1488     InsertNode(N);
1489   return SDValue(N, 0);
1490 }
1491 
1492 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1493   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1494   FoldingSetNodeID ID;
1495   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1496   ID.AddInteger(FI);
1497   void *IP = nullptr;
1498   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1499     return SDValue(E, 0);
1500 
1501   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1502   CSEMap.InsertNode(N, IP);
1503   InsertNode(N);
1504   return SDValue(N, 0);
1505 }
1506 
1507 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1508                                    unsigned TargetFlags) {
1509   assert((TargetFlags == 0 || isTarget) &&
1510          "Cannot set target flags on target-independent jump tables");
1511   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1512   FoldingSetNodeID ID;
1513   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1514   ID.AddInteger(JTI);
1515   ID.AddInteger(TargetFlags);
1516   void *IP = nullptr;
1517   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1518     return SDValue(E, 0);
1519 
1520   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1521   CSEMap.InsertNode(N, IP);
1522   InsertNode(N);
1523   return SDValue(N, 0);
1524 }
1525 
1526 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1527                                       MaybeAlign Alignment, int Offset,
1528                                       bool isTarget, unsigned TargetFlags) {
1529   assert((TargetFlags == 0 || isTarget) &&
1530          "Cannot set target flags on target-independent globals");
1531   if (!Alignment)
1532     Alignment = shouldOptForSize()
1533                     ? getDataLayout().getABITypeAlign(C->getType())
1534                     : getDataLayout().getPrefTypeAlign(C->getType());
1535   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1536   FoldingSetNodeID ID;
1537   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1538   ID.AddInteger(Alignment->value());
1539   ID.AddInteger(Offset);
1540   ID.AddPointer(C);
1541   ID.AddInteger(TargetFlags);
1542   void *IP = nullptr;
1543   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1544     return SDValue(E, 0);
1545 
1546   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1547                                           TargetFlags);
1548   CSEMap.InsertNode(N, IP);
1549   InsertNode(N);
1550   SDValue V = SDValue(N, 0);
1551   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1552   return V;
1553 }
1554 
1555 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1556                                       MaybeAlign Alignment, int Offset,
1557                                       bool isTarget, unsigned TargetFlags) {
1558   assert((TargetFlags == 0 || isTarget) &&
1559          "Cannot set target flags on target-independent globals");
1560   if (!Alignment)
1561     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1562   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1563   FoldingSetNodeID ID;
1564   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1565   ID.AddInteger(Alignment->value());
1566   ID.AddInteger(Offset);
1567   C->addSelectionDAGCSEId(ID);
1568   ID.AddInteger(TargetFlags);
1569   void *IP = nullptr;
1570   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1571     return SDValue(E, 0);
1572 
1573   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1574                                           TargetFlags);
1575   CSEMap.InsertNode(N, IP);
1576   InsertNode(N);
1577   return SDValue(N, 0);
1578 }
1579 
1580 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1581                                      unsigned TargetFlags) {
1582   FoldingSetNodeID ID;
1583   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1584   ID.AddInteger(Index);
1585   ID.AddInteger(Offset);
1586   ID.AddInteger(TargetFlags);
1587   void *IP = nullptr;
1588   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1589     return SDValue(E, 0);
1590 
1591   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1592   CSEMap.InsertNode(N, IP);
1593   InsertNode(N);
1594   return SDValue(N, 0);
1595 }
1596 
1597 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1598   FoldingSetNodeID ID;
1599   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1600   ID.AddPointer(MBB);
1601   void *IP = nullptr;
1602   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1603     return SDValue(E, 0);
1604 
1605   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1606   CSEMap.InsertNode(N, IP);
1607   InsertNode(N);
1608   return SDValue(N, 0);
1609 }
1610 
1611 SDValue SelectionDAG::getValueType(EVT VT) {
1612   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1613       ValueTypeNodes.size())
1614     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1615 
1616   SDNode *&N = VT.isExtended() ?
1617     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1618 
1619   if (N) return SDValue(N, 0);
1620   N = newSDNode<VTSDNode>(VT);
1621   InsertNode(N);
1622   return SDValue(N, 0);
1623 }
1624 
1625 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1626   SDNode *&N = ExternalSymbols[Sym];
1627   if (N) return SDValue(N, 0);
1628   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1629   InsertNode(N);
1630   return SDValue(N, 0);
1631 }
1632 
1633 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1634   SDNode *&N = MCSymbols[Sym];
1635   if (N)
1636     return SDValue(N, 0);
1637   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1638   InsertNode(N);
1639   return SDValue(N, 0);
1640 }
1641 
1642 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1643                                               unsigned TargetFlags) {
1644   SDNode *&N =
1645       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1646   if (N) return SDValue(N, 0);
1647   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1648   InsertNode(N);
1649   return SDValue(N, 0);
1650 }
1651 
1652 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1653   if ((unsigned)Cond >= CondCodeNodes.size())
1654     CondCodeNodes.resize(Cond+1);
1655 
1656   if (!CondCodeNodes[Cond]) {
1657     auto *N = newSDNode<CondCodeSDNode>(Cond);
1658     CondCodeNodes[Cond] = N;
1659     InsertNode(N);
1660   }
1661 
1662   return SDValue(CondCodeNodes[Cond], 0);
1663 }
1664 
1665 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1666 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1667 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1668   std::swap(N1, N2);
1669   ShuffleVectorSDNode::commuteMask(M);
1670 }
1671 
1672 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1673                                        SDValue N2, ArrayRef<int> Mask) {
1674   assert(VT.getVectorNumElements() == Mask.size() &&
1675            "Must have the same number of vector elements as mask elements!");
1676   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1677          "Invalid VECTOR_SHUFFLE");
1678 
1679   // Canonicalize shuffle undef, undef -> undef
1680   if (N1.isUndef() && N2.isUndef())
1681     return getUNDEF(VT);
1682 
1683   // Validate that all indices in Mask are within the range of the elements
1684   // input to the shuffle.
1685   int NElts = Mask.size();
1686   assert(llvm::all_of(Mask,
1687                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1688          "Index out of range");
1689 
1690   // Copy the mask so we can do any needed cleanup.
1691   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1692 
1693   // Canonicalize shuffle v, v -> v, undef
1694   if (N1 == N2) {
1695     N2 = getUNDEF(VT);
1696     for (int i = 0; i != NElts; ++i)
1697       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1698   }
1699 
1700   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1701   if (N1.isUndef())
1702     commuteShuffle(N1, N2, MaskVec);
1703 
1704   if (TLI->hasVectorBlend()) {
1705     // If shuffling a splat, try to blend the splat instead. We do this here so
1706     // that even when this arises during lowering we don't have to re-handle it.
1707     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1708       BitVector UndefElements;
1709       SDValue Splat = BV->getSplatValue(&UndefElements);
1710       if (!Splat)
1711         return;
1712 
1713       for (int i = 0; i < NElts; ++i) {
1714         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1715           continue;
1716 
1717         // If this input comes from undef, mark it as such.
1718         if (UndefElements[MaskVec[i] - Offset]) {
1719           MaskVec[i] = -1;
1720           continue;
1721         }
1722 
1723         // If we can blend a non-undef lane, use that instead.
1724         if (!UndefElements[i])
1725           MaskVec[i] = i + Offset;
1726       }
1727     };
1728     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1729       BlendSplat(N1BV, 0);
1730     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1731       BlendSplat(N2BV, NElts);
1732   }
1733 
1734   // Canonicalize all index into lhs, -> shuffle lhs, undef
1735   // Canonicalize all index into rhs, -> shuffle rhs, undef
1736   bool AllLHS = true, AllRHS = true;
1737   bool N2Undef = N2.isUndef();
1738   for (int i = 0; i != NElts; ++i) {
1739     if (MaskVec[i] >= NElts) {
1740       if (N2Undef)
1741         MaskVec[i] = -1;
1742       else
1743         AllLHS = false;
1744     } else if (MaskVec[i] >= 0) {
1745       AllRHS = false;
1746     }
1747   }
1748   if (AllLHS && AllRHS)
1749     return getUNDEF(VT);
1750   if (AllLHS && !N2Undef)
1751     N2 = getUNDEF(VT);
1752   if (AllRHS) {
1753     N1 = getUNDEF(VT);
1754     commuteShuffle(N1, N2, MaskVec);
1755   }
1756   // Reset our undef status after accounting for the mask.
1757   N2Undef = N2.isUndef();
1758   // Re-check whether both sides ended up undef.
1759   if (N1.isUndef() && N2Undef)
1760     return getUNDEF(VT);
1761 
1762   // If Identity shuffle return that node.
1763   bool Identity = true, AllSame = true;
1764   for (int i = 0; i != NElts; ++i) {
1765     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1766     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1767   }
1768   if (Identity && NElts)
1769     return N1;
1770 
1771   // Shuffling a constant splat doesn't change the result.
1772   if (N2Undef) {
1773     SDValue V = N1;
1774 
1775     // Look through any bitcasts. We check that these don't change the number
1776     // (and size) of elements and just changes their types.
1777     while (V.getOpcode() == ISD::BITCAST)
1778       V = V->getOperand(0);
1779 
1780     // A splat should always show up as a build vector node.
1781     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1782       BitVector UndefElements;
1783       SDValue Splat = BV->getSplatValue(&UndefElements);
1784       // If this is a splat of an undef, shuffling it is also undef.
1785       if (Splat && Splat.isUndef())
1786         return getUNDEF(VT);
1787 
1788       bool SameNumElts =
1789           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1790 
1791       // We only have a splat which can skip shuffles if there is a splatted
1792       // value and no undef lanes rearranged by the shuffle.
1793       if (Splat && UndefElements.none()) {
1794         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1795         // number of elements match or the value splatted is a zero constant.
1796         if (SameNumElts)
1797           return N1;
1798         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1799           if (C->isNullValue())
1800             return N1;
1801       }
1802 
1803       // If the shuffle itself creates a splat, build the vector directly.
1804       if (AllSame && SameNumElts) {
1805         EVT BuildVT = BV->getValueType(0);
1806         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1807         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1808 
1809         // We may have jumped through bitcasts, so the type of the
1810         // BUILD_VECTOR may not match the type of the shuffle.
1811         if (BuildVT != VT)
1812           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1813         return NewBV;
1814       }
1815     }
1816   }
1817 
1818   FoldingSetNodeID ID;
1819   SDValue Ops[2] = { N1, N2 };
1820   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1821   for (int i = 0; i != NElts; ++i)
1822     ID.AddInteger(MaskVec[i]);
1823 
1824   void* IP = nullptr;
1825   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1826     return SDValue(E, 0);
1827 
1828   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1829   // SDNode doesn't have access to it.  This memory will be "leaked" when
1830   // the node is deallocated, but recovered when the NodeAllocator is released.
1831   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1832   llvm::copy(MaskVec, MaskAlloc);
1833 
1834   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1835                                            dl.getDebugLoc(), MaskAlloc);
1836   createOperands(N, Ops);
1837 
1838   CSEMap.InsertNode(N, IP);
1839   InsertNode(N);
1840   SDValue V = SDValue(N, 0);
1841   NewSDValueDbgMsg(V, "Creating new node: ", this);
1842   return V;
1843 }
1844 
1845 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1846   EVT VT = SV.getValueType(0);
1847   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1848   ShuffleVectorSDNode::commuteMask(MaskVec);
1849 
1850   SDValue Op0 = SV.getOperand(0);
1851   SDValue Op1 = SV.getOperand(1);
1852   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1853 }
1854 
1855 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1856   FoldingSetNodeID ID;
1857   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1858   ID.AddInteger(RegNo);
1859   void *IP = nullptr;
1860   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1861     return SDValue(E, 0);
1862 
1863   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1864   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1865   CSEMap.InsertNode(N, IP);
1866   InsertNode(N);
1867   return SDValue(N, 0);
1868 }
1869 
1870 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1871   FoldingSetNodeID ID;
1872   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1873   ID.AddPointer(RegMask);
1874   void *IP = nullptr;
1875   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1876     return SDValue(E, 0);
1877 
1878   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1879   CSEMap.InsertNode(N, IP);
1880   InsertNode(N);
1881   return SDValue(N, 0);
1882 }
1883 
1884 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1885                                  MCSymbol *Label) {
1886   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1887 }
1888 
1889 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1890                                    SDValue Root, MCSymbol *Label) {
1891   FoldingSetNodeID ID;
1892   SDValue Ops[] = { Root };
1893   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1894   ID.AddPointer(Label);
1895   void *IP = nullptr;
1896   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1897     return SDValue(E, 0);
1898 
1899   auto *N =
1900       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1901   createOperands(N, Ops);
1902 
1903   CSEMap.InsertNode(N, IP);
1904   InsertNode(N);
1905   return SDValue(N, 0);
1906 }
1907 
1908 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1909                                       int64_t Offset, bool isTarget,
1910                                       unsigned TargetFlags) {
1911   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1912 
1913   FoldingSetNodeID ID;
1914   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1915   ID.AddPointer(BA);
1916   ID.AddInteger(Offset);
1917   ID.AddInteger(TargetFlags);
1918   void *IP = nullptr;
1919   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1920     return SDValue(E, 0);
1921 
1922   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1923   CSEMap.InsertNode(N, IP);
1924   InsertNode(N);
1925   return SDValue(N, 0);
1926 }
1927 
1928 SDValue SelectionDAG::getSrcValue(const Value *V) {
1929   FoldingSetNodeID ID;
1930   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1931   ID.AddPointer(V);
1932 
1933   void *IP = nullptr;
1934   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1935     return SDValue(E, 0);
1936 
1937   auto *N = newSDNode<SrcValueSDNode>(V);
1938   CSEMap.InsertNode(N, IP);
1939   InsertNode(N);
1940   return SDValue(N, 0);
1941 }
1942 
1943 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1944   FoldingSetNodeID ID;
1945   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1946   ID.AddPointer(MD);
1947 
1948   void *IP = nullptr;
1949   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1950     return SDValue(E, 0);
1951 
1952   auto *N = newSDNode<MDNodeSDNode>(MD);
1953   CSEMap.InsertNode(N, IP);
1954   InsertNode(N);
1955   return SDValue(N, 0);
1956 }
1957 
1958 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1959   if (VT == V.getValueType())
1960     return V;
1961 
1962   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1963 }
1964 
1965 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1966                                        unsigned SrcAS, unsigned DestAS) {
1967   SDValue Ops[] = {Ptr};
1968   FoldingSetNodeID ID;
1969   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1970   ID.AddInteger(SrcAS);
1971   ID.AddInteger(DestAS);
1972 
1973   void *IP = nullptr;
1974   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1975     return SDValue(E, 0);
1976 
1977   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1978                                            VT, SrcAS, DestAS);
1979   createOperands(N, Ops);
1980 
1981   CSEMap.InsertNode(N, IP);
1982   InsertNode(N);
1983   return SDValue(N, 0);
1984 }
1985 
1986 SDValue SelectionDAG::getFreeze(SDValue V) {
1987   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
1988 }
1989 
1990 /// getShiftAmountOperand - Return the specified value casted to
1991 /// the target's desired shift amount type.
1992 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1993   EVT OpTy = Op.getValueType();
1994   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1995   if (OpTy == ShTy || OpTy.isVector()) return Op;
1996 
1997   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1998 }
1999 
2000 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2001   SDLoc dl(Node);
2002   const TargetLowering &TLI = getTargetLoweringInfo();
2003   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2004   EVT VT = Node->getValueType(0);
2005   SDValue Tmp1 = Node->getOperand(0);
2006   SDValue Tmp2 = Node->getOperand(1);
2007   const MaybeAlign MA(Node->getConstantOperandVal(3));
2008 
2009   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2010                                Tmp2, MachinePointerInfo(V));
2011   SDValue VAList = VAListLoad;
2012 
2013   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2014     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2015                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2016 
2017     VAList =
2018         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2019                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2020   }
2021 
2022   // Increment the pointer, VAList, to the next vaarg
2023   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2024                  getConstant(getDataLayout().getTypeAllocSize(
2025                                                VT.getTypeForEVT(*getContext())),
2026                              dl, VAList.getValueType()));
2027   // Store the incremented VAList to the legalized pointer
2028   Tmp1 =
2029       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2030   // Load the actual argument out of the pointer VAList
2031   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2032 }
2033 
2034 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2035   SDLoc dl(Node);
2036   const TargetLowering &TLI = getTargetLoweringInfo();
2037   // This defaults to loading a pointer from the input and storing it to the
2038   // output, returning the chain.
2039   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2040   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2041   SDValue Tmp1 =
2042       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2043               Node->getOperand(2), MachinePointerInfo(VS));
2044   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2045                   MachinePointerInfo(VD));
2046 }
2047 
2048 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2049   const DataLayout &DL = getDataLayout();
2050   Type *Ty = VT.getTypeForEVT(*getContext());
2051   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2052 
2053   if (TLI->isTypeLegal(VT) || !VT.isVector())
2054     return RedAlign;
2055 
2056   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2057   const Align StackAlign = TFI->getStackAlign();
2058 
2059   // See if we can choose a smaller ABI alignment in cases where it's an
2060   // illegal vector type that will get broken down.
2061   if (RedAlign > StackAlign) {
2062     EVT IntermediateVT;
2063     MVT RegisterVT;
2064     unsigned NumIntermediates;
2065     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2066                                 NumIntermediates, RegisterVT);
2067     Ty = IntermediateVT.getTypeForEVT(*getContext());
2068     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2069     if (RedAlign2 < RedAlign)
2070       RedAlign = RedAlign2;
2071   }
2072 
2073   return RedAlign;
2074 }
2075 
2076 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2077   MachineFrameInfo &MFI = MF->getFrameInfo();
2078   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2079   int StackID = 0;
2080   if (Bytes.isScalable())
2081     StackID = TFI->getStackIDForScalableVectors();
2082   // The stack id gives an indication of whether the object is scalable or
2083   // not, so it's safe to pass in the minimum size here.
2084   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2085                                        false, nullptr, StackID);
2086   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2087 }
2088 
2089 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2090   Type *Ty = VT.getTypeForEVT(*getContext());
2091   Align StackAlign =
2092       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2093   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2094 }
2095 
2096 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2097   TypeSize VT1Size = VT1.getStoreSize();
2098   TypeSize VT2Size = VT2.getStoreSize();
2099   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2100          "Don't know how to choose the maximum size when creating a stack "
2101          "temporary");
2102   TypeSize Bytes =
2103       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2104 
2105   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2106   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2107   const DataLayout &DL = getDataLayout();
2108   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2109   return CreateStackTemporary(Bytes, Align);
2110 }
2111 
2112 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2113                                 ISD::CondCode Cond, const SDLoc &dl) {
2114   EVT OpVT = N1.getValueType();
2115 
2116   // These setcc operations always fold.
2117   switch (Cond) {
2118   default: break;
2119   case ISD::SETFALSE:
2120   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2121   case ISD::SETTRUE:
2122   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2123 
2124   case ISD::SETOEQ:
2125   case ISD::SETOGT:
2126   case ISD::SETOGE:
2127   case ISD::SETOLT:
2128   case ISD::SETOLE:
2129   case ISD::SETONE:
2130   case ISD::SETO:
2131   case ISD::SETUO:
2132   case ISD::SETUEQ:
2133   case ISD::SETUNE:
2134     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2135     break;
2136   }
2137 
2138   if (OpVT.isInteger()) {
2139     // For EQ and NE, we can always pick a value for the undef to make the
2140     // predicate pass or fail, so we can return undef.
2141     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2142     // icmp eq/ne X, undef -> undef.
2143     if ((N1.isUndef() || N2.isUndef()) &&
2144         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2145       return getUNDEF(VT);
2146 
2147     // If both operands are undef, we can return undef for int comparison.
2148     // icmp undef, undef -> undef.
2149     if (N1.isUndef() && N2.isUndef())
2150       return getUNDEF(VT);
2151 
2152     // icmp X, X -> true/false
2153     // icmp X, undef -> true/false because undef could be X.
2154     if (N1 == N2)
2155       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2156   }
2157 
2158   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2159     const APInt &C2 = N2C->getAPIntValue();
2160     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2161       const APInt &C1 = N1C->getAPIntValue();
2162 
2163       switch (Cond) {
2164       default: llvm_unreachable("Unknown integer setcc!");
2165       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2166       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2167       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2168       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2169       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2170       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2171       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2172       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2173       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2174       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2175       }
2176     }
2177   }
2178 
2179   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2180   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2181 
2182   if (N1CFP && N2CFP) {
2183     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2184     switch (Cond) {
2185     default: break;
2186     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2187                         return getUNDEF(VT);
2188                       LLVM_FALLTHROUGH;
2189     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2190                                              OpVT);
2191     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2192                         return getUNDEF(VT);
2193                       LLVM_FALLTHROUGH;
2194     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2195                                              R==APFloat::cmpLessThan, dl, VT,
2196                                              OpVT);
2197     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2198                         return getUNDEF(VT);
2199                       LLVM_FALLTHROUGH;
2200     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2201                                              OpVT);
2202     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2203                         return getUNDEF(VT);
2204                       LLVM_FALLTHROUGH;
2205     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2206                                              VT, OpVT);
2207     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2208                         return getUNDEF(VT);
2209                       LLVM_FALLTHROUGH;
2210     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2211                                              R==APFloat::cmpEqual, dl, VT,
2212                                              OpVT);
2213     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2214                         return getUNDEF(VT);
2215                       LLVM_FALLTHROUGH;
2216     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2217                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2218     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2219                                              OpVT);
2220     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2221                                              OpVT);
2222     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2223                                              R==APFloat::cmpEqual, dl, VT,
2224                                              OpVT);
2225     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2226                                              OpVT);
2227     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2228                                              R==APFloat::cmpLessThan, dl, VT,
2229                                              OpVT);
2230     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2231                                              R==APFloat::cmpUnordered, dl, VT,
2232                                              OpVT);
2233     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2234                                              VT, OpVT);
2235     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2236                                              OpVT);
2237     }
2238   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2239     // Ensure that the constant occurs on the RHS.
2240     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2241     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2242       return SDValue();
2243     return getSetCC(dl, VT, N2, N1, SwappedCond);
2244   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2245              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2246     // If an operand is known to be a nan (or undef that could be a nan), we can
2247     // fold it.
2248     // Choosing NaN for the undef will always make unordered comparison succeed
2249     // and ordered comparison fails.
2250     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2251     switch (ISD::getUnorderedFlavor(Cond)) {
2252     default:
2253       llvm_unreachable("Unknown flavor!");
2254     case 0: // Known false.
2255       return getBoolConstant(false, dl, VT, OpVT);
2256     case 1: // Known true.
2257       return getBoolConstant(true, dl, VT, OpVT);
2258     case 2: // Undefined.
2259       return getUNDEF(VT);
2260     }
2261   }
2262 
2263   // Could not fold it.
2264   return SDValue();
2265 }
2266 
2267 /// See if the specified operand can be simplified with the knowledge that only
2268 /// the bits specified by DemandedBits are used.
2269 /// TODO: really we should be making this into the DAG equivalent of
2270 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2271 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2272   EVT VT = V.getValueType();
2273 
2274   if (VT.isScalableVector())
2275     return SDValue();
2276 
2277   APInt DemandedElts = VT.isVector()
2278                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2279                            : APInt(1, 1);
2280   return GetDemandedBits(V, DemandedBits, DemandedElts);
2281 }
2282 
2283 /// See if the specified operand can be simplified with the knowledge that only
2284 /// the bits specified by DemandedBits are used in the elements specified by
2285 /// DemandedElts.
2286 /// TODO: really we should be making this into the DAG equivalent of
2287 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2288 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2289                                       const APInt &DemandedElts) {
2290   switch (V.getOpcode()) {
2291   default:
2292     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2293                                                 *this, 0);
2294   case ISD::Constant: {
2295     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2296     APInt NewVal = CVal & DemandedBits;
2297     if (NewVal != CVal)
2298       return getConstant(NewVal, SDLoc(V), V.getValueType());
2299     break;
2300   }
2301   case ISD::SRL:
2302     // Only look at single-use SRLs.
2303     if (!V.getNode()->hasOneUse())
2304       break;
2305     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2306       // See if we can recursively simplify the LHS.
2307       unsigned Amt = RHSC->getZExtValue();
2308 
2309       // Watch out for shift count overflow though.
2310       if (Amt >= DemandedBits.getBitWidth())
2311         break;
2312       APInt SrcDemandedBits = DemandedBits << Amt;
2313       if (SDValue SimplifyLHS =
2314               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2315         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2316                        V.getOperand(1));
2317     }
2318     break;
2319   }
2320   return SDValue();
2321 }
2322 
2323 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2324 /// use this predicate to simplify operations downstream.
2325 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2326   unsigned BitWidth = Op.getScalarValueSizeInBits();
2327   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2328 }
2329 
2330 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2331 /// this predicate to simplify operations downstream.  Mask is known to be zero
2332 /// for bits that V cannot have.
2333 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2334                                      unsigned Depth) const {
2335   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2336 }
2337 
2338 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2339 /// DemandedElts.  We use this predicate to simplify operations downstream.
2340 /// Mask is known to be zero for bits that V cannot have.
2341 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2342                                      const APInt &DemandedElts,
2343                                      unsigned Depth) const {
2344   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2345 }
2346 
2347 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2348 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2349                                         unsigned Depth) const {
2350   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2351 }
2352 
2353 /// isSplatValue - Return true if the vector V has the same value
2354 /// across all DemandedElts. For scalable vectors it does not make
2355 /// sense to specify which elements are demanded or undefined, therefore
2356 /// they are simply ignored.
2357 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2358                                 APInt &UndefElts) {
2359   EVT VT = V.getValueType();
2360   assert(VT.isVector() && "Vector type expected");
2361 
2362   if (!VT.isScalableVector() && !DemandedElts)
2363     return false; // No demanded elts, better to assume we don't know anything.
2364 
2365   // Deal with some common cases here that work for both fixed and scalable
2366   // vector types.
2367   switch (V.getOpcode()) {
2368   case ISD::SPLAT_VECTOR:
2369     UndefElts = V.getOperand(0).isUndef()
2370                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2371                     : APInt(DemandedElts.getBitWidth(), 0);
2372     return true;
2373   case ISD::ADD:
2374   case ISD::SUB:
2375   case ISD::AND: {
2376     APInt UndefLHS, UndefRHS;
2377     SDValue LHS = V.getOperand(0);
2378     SDValue RHS = V.getOperand(1);
2379     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2380         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2381       UndefElts = UndefLHS | UndefRHS;
2382       return true;
2383     }
2384     break;
2385   }
2386   case ISD::TRUNCATE:
2387   case ISD::SIGN_EXTEND:
2388   case ISD::ZERO_EXTEND:
2389     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts);
2390   }
2391 
2392   // We don't support other cases than those above for scalable vectors at
2393   // the moment.
2394   if (VT.isScalableVector())
2395     return false;
2396 
2397   unsigned NumElts = VT.getVectorNumElements();
2398   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2399   UndefElts = APInt::getNullValue(NumElts);
2400 
2401   switch (V.getOpcode()) {
2402   case ISD::BUILD_VECTOR: {
2403     SDValue Scl;
2404     for (unsigned i = 0; i != NumElts; ++i) {
2405       SDValue Op = V.getOperand(i);
2406       if (Op.isUndef()) {
2407         UndefElts.setBit(i);
2408         continue;
2409       }
2410       if (!DemandedElts[i])
2411         continue;
2412       if (Scl && Scl != Op)
2413         return false;
2414       Scl = Op;
2415     }
2416     return true;
2417   }
2418   case ISD::VECTOR_SHUFFLE: {
2419     // Check if this is a shuffle node doing a splat.
2420     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2421     int SplatIndex = -1;
2422     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2423     for (int i = 0; i != (int)NumElts; ++i) {
2424       int M = Mask[i];
2425       if (M < 0) {
2426         UndefElts.setBit(i);
2427         continue;
2428       }
2429       if (!DemandedElts[i])
2430         continue;
2431       if (0 <= SplatIndex && SplatIndex != M)
2432         return false;
2433       SplatIndex = M;
2434     }
2435     return true;
2436   }
2437   case ISD::EXTRACT_SUBVECTOR: {
2438     // Offset the demanded elts by the subvector index.
2439     SDValue Src = V.getOperand(0);
2440     uint64_t Idx = V.getConstantOperandVal(1);
2441     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2442     APInt UndefSrcElts;
2443     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2444     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) {
2445       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2446       return true;
2447     }
2448     break;
2449   }
2450   }
2451 
2452   return false;
2453 }
2454 
2455 /// Helper wrapper to main isSplatValue function.
2456 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2457   EVT VT = V.getValueType();
2458   assert(VT.isVector() && "Vector type expected");
2459 
2460   APInt UndefElts;
2461   APInt DemandedElts;
2462 
2463   // For now we don't support this with scalable vectors.
2464   if (!VT.isScalableVector())
2465     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2466   return isSplatValue(V, DemandedElts, UndefElts) &&
2467          (AllowUndefs || !UndefElts);
2468 }
2469 
2470 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2471   V = peekThroughExtractSubvectors(V);
2472 
2473   EVT VT = V.getValueType();
2474   unsigned Opcode = V.getOpcode();
2475   switch (Opcode) {
2476   default: {
2477     APInt UndefElts;
2478     APInt DemandedElts;
2479 
2480     if (!VT.isScalableVector())
2481       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2482 
2483     if (isSplatValue(V, DemandedElts, UndefElts)) {
2484       if (VT.isScalableVector()) {
2485         // DemandedElts and UndefElts are ignored for scalable vectors, since
2486         // the only supported cases are SPLAT_VECTOR nodes.
2487         SplatIdx = 0;
2488       } else {
2489         // Handle case where all demanded elements are UNDEF.
2490         if (DemandedElts.isSubsetOf(UndefElts)) {
2491           SplatIdx = 0;
2492           return getUNDEF(VT);
2493         }
2494         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2495       }
2496       return V;
2497     }
2498     break;
2499   }
2500   case ISD::SPLAT_VECTOR:
2501     SplatIdx = 0;
2502     return V;
2503   case ISD::VECTOR_SHUFFLE: {
2504     if (VT.isScalableVector())
2505       return SDValue();
2506 
2507     // Check if this is a shuffle node doing a splat.
2508     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2509     // getTargetVShiftNode currently struggles without the splat source.
2510     auto *SVN = cast<ShuffleVectorSDNode>(V);
2511     if (!SVN->isSplat())
2512       break;
2513     int Idx = SVN->getSplatIndex();
2514     int NumElts = V.getValueType().getVectorNumElements();
2515     SplatIdx = Idx % NumElts;
2516     return V.getOperand(Idx / NumElts);
2517   }
2518   }
2519 
2520   return SDValue();
2521 }
2522 
2523 SDValue SelectionDAG::getSplatValue(SDValue V) {
2524   int SplatIdx;
2525   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2526     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2527                    SrcVector.getValueType().getScalarType(), SrcVector,
2528                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2529   return SDValue();
2530 }
2531 
2532 const APInt *
2533 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2534                                           const APInt &DemandedElts) const {
2535   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2536           V.getOpcode() == ISD::SRA) &&
2537          "Unknown shift node");
2538   unsigned BitWidth = V.getScalarValueSizeInBits();
2539   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2540     // Shifting more than the bitwidth is not valid.
2541     const APInt &ShAmt = SA->getAPIntValue();
2542     if (ShAmt.ult(BitWidth))
2543       return &ShAmt;
2544   }
2545   return nullptr;
2546 }
2547 
2548 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2549     SDValue V, const APInt &DemandedElts) const {
2550   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2551           V.getOpcode() == ISD::SRA) &&
2552          "Unknown shift node");
2553   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2554     return ValidAmt;
2555   unsigned BitWidth = V.getScalarValueSizeInBits();
2556   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2557   if (!BV)
2558     return nullptr;
2559   const APInt *MinShAmt = nullptr;
2560   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2561     if (!DemandedElts[i])
2562       continue;
2563     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2564     if (!SA)
2565       return nullptr;
2566     // Shifting more than the bitwidth is not valid.
2567     const APInt &ShAmt = SA->getAPIntValue();
2568     if (ShAmt.uge(BitWidth))
2569       return nullptr;
2570     if (MinShAmt && MinShAmt->ule(ShAmt))
2571       continue;
2572     MinShAmt = &ShAmt;
2573   }
2574   return MinShAmt;
2575 }
2576 
2577 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2578     SDValue V, const APInt &DemandedElts) const {
2579   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2580           V.getOpcode() == ISD::SRA) &&
2581          "Unknown shift node");
2582   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2583     return ValidAmt;
2584   unsigned BitWidth = V.getScalarValueSizeInBits();
2585   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2586   if (!BV)
2587     return nullptr;
2588   const APInt *MaxShAmt = nullptr;
2589   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2590     if (!DemandedElts[i])
2591       continue;
2592     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2593     if (!SA)
2594       return nullptr;
2595     // Shifting more than the bitwidth is not valid.
2596     const APInt &ShAmt = SA->getAPIntValue();
2597     if (ShAmt.uge(BitWidth))
2598       return nullptr;
2599     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2600       continue;
2601     MaxShAmt = &ShAmt;
2602   }
2603   return MaxShAmt;
2604 }
2605 
2606 /// Determine which bits of Op are known to be either zero or one and return
2607 /// them in Known. For vectors, the known bits are those that are shared by
2608 /// every vector element.
2609 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2610   EVT VT = Op.getValueType();
2611 
2612   // TOOD: Until we have a plan for how to represent demanded elements for
2613   // scalable vectors, we can just bail out for now.
2614   if (Op.getValueType().isScalableVector()) {
2615     unsigned BitWidth = Op.getScalarValueSizeInBits();
2616     return KnownBits(BitWidth);
2617   }
2618 
2619   APInt DemandedElts = VT.isVector()
2620                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2621                            : APInt(1, 1);
2622   return computeKnownBits(Op, DemandedElts, Depth);
2623 }
2624 
2625 /// Determine which bits of Op are known to be either zero or one and return
2626 /// them in Known. The DemandedElts argument allows us to only collect the known
2627 /// bits that are shared by the requested vector elements.
2628 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2629                                          unsigned Depth) const {
2630   unsigned BitWidth = Op.getScalarValueSizeInBits();
2631 
2632   KnownBits Known(BitWidth);   // Don't know anything.
2633 
2634   // TOOD: Until we have a plan for how to represent demanded elements for
2635   // scalable vectors, we can just bail out for now.
2636   if (Op.getValueType().isScalableVector())
2637     return Known;
2638 
2639   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2640     // We know all of the bits for a constant!
2641     return KnownBits::makeConstant(C->getAPIntValue());
2642   }
2643   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2644     // We know all of the bits for a constant fp!
2645     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2646   }
2647 
2648   if (Depth >= MaxRecursionDepth)
2649     return Known;  // Limit search depth.
2650 
2651   KnownBits Known2;
2652   unsigned NumElts = DemandedElts.getBitWidth();
2653   assert((!Op.getValueType().isVector() ||
2654           NumElts == Op.getValueType().getVectorNumElements()) &&
2655          "Unexpected vector size");
2656 
2657   if (!DemandedElts)
2658     return Known;  // No demanded elts, better to assume we don't know anything.
2659 
2660   unsigned Opcode = Op.getOpcode();
2661   switch (Opcode) {
2662   case ISD::BUILD_VECTOR:
2663     // Collect the known bits that are shared by every demanded vector element.
2664     Known.Zero.setAllBits(); Known.One.setAllBits();
2665     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2666       if (!DemandedElts[i])
2667         continue;
2668 
2669       SDValue SrcOp = Op.getOperand(i);
2670       Known2 = computeKnownBits(SrcOp, Depth + 1);
2671 
2672       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2673       if (SrcOp.getValueSizeInBits() != BitWidth) {
2674         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2675                "Expected BUILD_VECTOR implicit truncation");
2676         Known2 = Known2.trunc(BitWidth);
2677       }
2678 
2679       // Known bits are the values that are shared by every demanded element.
2680       Known = KnownBits::commonBits(Known, Known2);
2681 
2682       // If we don't know any bits, early out.
2683       if (Known.isUnknown())
2684         break;
2685     }
2686     break;
2687   case ISD::VECTOR_SHUFFLE: {
2688     // Collect the known bits that are shared by every vector element referenced
2689     // by the shuffle.
2690     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2691     Known.Zero.setAllBits(); Known.One.setAllBits();
2692     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2693     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2694     for (unsigned i = 0; i != NumElts; ++i) {
2695       if (!DemandedElts[i])
2696         continue;
2697 
2698       int M = SVN->getMaskElt(i);
2699       if (M < 0) {
2700         // For UNDEF elements, we don't know anything about the common state of
2701         // the shuffle result.
2702         Known.resetAll();
2703         DemandedLHS.clearAllBits();
2704         DemandedRHS.clearAllBits();
2705         break;
2706       }
2707 
2708       if ((unsigned)M < NumElts)
2709         DemandedLHS.setBit((unsigned)M % NumElts);
2710       else
2711         DemandedRHS.setBit((unsigned)M % NumElts);
2712     }
2713     // Known bits are the values that are shared by every demanded element.
2714     if (!!DemandedLHS) {
2715       SDValue LHS = Op.getOperand(0);
2716       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2717       Known = KnownBits::commonBits(Known, Known2);
2718     }
2719     // If we don't know any bits, early out.
2720     if (Known.isUnknown())
2721       break;
2722     if (!!DemandedRHS) {
2723       SDValue RHS = Op.getOperand(1);
2724       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2725       Known = KnownBits::commonBits(Known, Known2);
2726     }
2727     break;
2728   }
2729   case ISD::CONCAT_VECTORS: {
2730     // Split DemandedElts and test each of the demanded subvectors.
2731     Known.Zero.setAllBits(); Known.One.setAllBits();
2732     EVT SubVectorVT = Op.getOperand(0).getValueType();
2733     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2734     unsigned NumSubVectors = Op.getNumOperands();
2735     for (unsigned i = 0; i != NumSubVectors; ++i) {
2736       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2737       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2738       if (!!DemandedSub) {
2739         SDValue Sub = Op.getOperand(i);
2740         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2741         Known = KnownBits::commonBits(Known, Known2);
2742       }
2743       // If we don't know any bits, early out.
2744       if (Known.isUnknown())
2745         break;
2746     }
2747     break;
2748   }
2749   case ISD::INSERT_SUBVECTOR: {
2750     // Demand any elements from the subvector and the remainder from the src its
2751     // inserted into.
2752     SDValue Src = Op.getOperand(0);
2753     SDValue Sub = Op.getOperand(1);
2754     uint64_t Idx = Op.getConstantOperandVal(2);
2755     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2756     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2757     APInt DemandedSrcElts = DemandedElts;
2758     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2759 
2760     Known.One.setAllBits();
2761     Known.Zero.setAllBits();
2762     if (!!DemandedSubElts) {
2763       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2764       if (Known.isUnknown())
2765         break; // early-out.
2766     }
2767     if (!!DemandedSrcElts) {
2768       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2769       Known = KnownBits::commonBits(Known, Known2);
2770     }
2771     break;
2772   }
2773   case ISD::EXTRACT_SUBVECTOR: {
2774     // Offset the demanded elts by the subvector index.
2775     SDValue Src = Op.getOperand(0);
2776     // Bail until we can represent demanded elements for scalable vectors.
2777     if (Src.getValueType().isScalableVector())
2778       break;
2779     uint64_t Idx = Op.getConstantOperandVal(1);
2780     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2781     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2782     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2783     break;
2784   }
2785   case ISD::SCALAR_TO_VECTOR: {
2786     // We know about scalar_to_vector as much as we know about it source,
2787     // which becomes the first element of otherwise unknown vector.
2788     if (DemandedElts != 1)
2789       break;
2790 
2791     SDValue N0 = Op.getOperand(0);
2792     Known = computeKnownBits(N0, Depth + 1);
2793     if (N0.getValueSizeInBits() != BitWidth)
2794       Known = Known.trunc(BitWidth);
2795 
2796     break;
2797   }
2798   case ISD::BITCAST: {
2799     SDValue N0 = Op.getOperand(0);
2800     EVT SubVT = N0.getValueType();
2801     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2802 
2803     // Ignore bitcasts from unsupported types.
2804     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2805       break;
2806 
2807     // Fast handling of 'identity' bitcasts.
2808     if (BitWidth == SubBitWidth) {
2809       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2810       break;
2811     }
2812 
2813     bool IsLE = getDataLayout().isLittleEndian();
2814 
2815     // Bitcast 'small element' vector to 'large element' scalar/vector.
2816     if ((BitWidth % SubBitWidth) == 0) {
2817       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2818 
2819       // Collect known bits for the (larger) output by collecting the known
2820       // bits from each set of sub elements and shift these into place.
2821       // We need to separately call computeKnownBits for each set of
2822       // sub elements as the knownbits for each is likely to be different.
2823       unsigned SubScale = BitWidth / SubBitWidth;
2824       APInt SubDemandedElts(NumElts * SubScale, 0);
2825       for (unsigned i = 0; i != NumElts; ++i)
2826         if (DemandedElts[i])
2827           SubDemandedElts.setBit(i * SubScale);
2828 
2829       for (unsigned i = 0; i != SubScale; ++i) {
2830         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2831                          Depth + 1);
2832         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2833         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2834         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2835       }
2836     }
2837 
2838     // Bitcast 'large element' scalar/vector to 'small element' vector.
2839     if ((SubBitWidth % BitWidth) == 0) {
2840       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2841 
2842       // Collect known bits for the (smaller) output by collecting the known
2843       // bits from the overlapping larger input elements and extracting the
2844       // sub sections we actually care about.
2845       unsigned SubScale = SubBitWidth / BitWidth;
2846       APInt SubDemandedElts(NumElts / SubScale, 0);
2847       for (unsigned i = 0; i != NumElts; ++i)
2848         if (DemandedElts[i])
2849           SubDemandedElts.setBit(i / SubScale);
2850 
2851       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2852 
2853       Known.Zero.setAllBits(); Known.One.setAllBits();
2854       for (unsigned i = 0; i != NumElts; ++i)
2855         if (DemandedElts[i]) {
2856           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2857           unsigned Offset = (Shifts % SubScale) * BitWidth;
2858           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2859           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2860           // If we don't know any bits, early out.
2861           if (Known.isUnknown())
2862             break;
2863         }
2864     }
2865     break;
2866   }
2867   case ISD::AND:
2868     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2869     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2870 
2871     Known &= Known2;
2872     break;
2873   case ISD::OR:
2874     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2875     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2876 
2877     Known |= Known2;
2878     break;
2879   case ISD::XOR:
2880     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2881     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2882 
2883     Known ^= Known2;
2884     break;
2885   case ISD::MUL: {
2886     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2887     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2888     Known = KnownBits::computeForMul(Known, Known2);
2889     break;
2890   }
2891   case ISD::UDIV: {
2892     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2893     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2894     Known = KnownBits::udiv(Known, Known2);
2895     break;
2896   }
2897   case ISD::SELECT:
2898   case ISD::VSELECT:
2899     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2900     // If we don't know any bits, early out.
2901     if (Known.isUnknown())
2902       break;
2903     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2904 
2905     // Only known if known in both the LHS and RHS.
2906     Known = KnownBits::commonBits(Known, Known2);
2907     break;
2908   case ISD::SELECT_CC:
2909     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2910     // If we don't know any bits, early out.
2911     if (Known.isUnknown())
2912       break;
2913     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2914 
2915     // Only known if known in both the LHS and RHS.
2916     Known = KnownBits::commonBits(Known, Known2);
2917     break;
2918   case ISD::SMULO:
2919   case ISD::UMULO:
2920   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2921     if (Op.getResNo() != 1)
2922       break;
2923     // The boolean result conforms to getBooleanContents.
2924     // If we know the result of a setcc has the top bits zero, use this info.
2925     // We know that we have an integer-based boolean since these operations
2926     // are only available for integer.
2927     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2928             TargetLowering::ZeroOrOneBooleanContent &&
2929         BitWidth > 1)
2930       Known.Zero.setBitsFrom(1);
2931     break;
2932   case ISD::SETCC:
2933   case ISD::STRICT_FSETCC:
2934   case ISD::STRICT_FSETCCS: {
2935     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2936     // If we know the result of a setcc has the top bits zero, use this info.
2937     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2938             TargetLowering::ZeroOrOneBooleanContent &&
2939         BitWidth > 1)
2940       Known.Zero.setBitsFrom(1);
2941     break;
2942   }
2943   case ISD::SHL:
2944     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2945     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2946     Known = KnownBits::shl(Known, Known2);
2947 
2948     // Minimum shift low bits are known zero.
2949     if (const APInt *ShMinAmt =
2950             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2951       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2952     break;
2953   case ISD::SRL:
2954     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2955     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2956     Known = KnownBits::lshr(Known, Known2);
2957 
2958     // Minimum shift high bits are known zero.
2959     if (const APInt *ShMinAmt =
2960             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2961       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2962     break;
2963   case ISD::SRA:
2964     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2965     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2966     Known = KnownBits::ashr(Known, Known2);
2967     // TODO: Add minimum shift high known sign bits.
2968     break;
2969   case ISD::FSHL:
2970   case ISD::FSHR:
2971     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2972       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2973 
2974       // For fshl, 0-shift returns the 1st arg.
2975       // For fshr, 0-shift returns the 2nd arg.
2976       if (Amt == 0) {
2977         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2978                                  DemandedElts, Depth + 1);
2979         break;
2980       }
2981 
2982       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2983       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2984       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2985       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2986       if (Opcode == ISD::FSHL) {
2987         Known.One <<= Amt;
2988         Known.Zero <<= Amt;
2989         Known2.One.lshrInPlace(BitWidth - Amt);
2990         Known2.Zero.lshrInPlace(BitWidth - Amt);
2991       } else {
2992         Known.One <<= BitWidth - Amt;
2993         Known.Zero <<= BitWidth - Amt;
2994         Known2.One.lshrInPlace(Amt);
2995         Known2.Zero.lshrInPlace(Amt);
2996       }
2997       Known.One |= Known2.One;
2998       Known.Zero |= Known2.Zero;
2999     }
3000     break;
3001   case ISD::SIGN_EXTEND_INREG: {
3002     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3003     unsigned EBits = EVT.getScalarSizeInBits();
3004 
3005     // Sign extension.  Compute the demanded bits in the result that are not
3006     // present in the input.
3007     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
3008 
3009     APInt InSignMask = APInt::getSignMask(EBits);
3010     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
3011 
3012     // If the sign extended bits are demanded, we know that the sign
3013     // bit is demanded.
3014     InSignMask = InSignMask.zext(BitWidth);
3015     if (NewBits.getBoolValue())
3016       InputDemandedBits |= InSignMask;
3017 
3018     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3019     Known.One &= InputDemandedBits;
3020     Known.Zero &= InputDemandedBits;
3021 
3022     // If the sign bit of the input is known set or clear, then we know the
3023     // top bits of the result.
3024     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
3025       Known.Zero |= NewBits;
3026       Known.One  &= ~NewBits;
3027     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
3028       Known.One  |= NewBits;
3029       Known.Zero &= ~NewBits;
3030     } else {                              // Input sign bit unknown
3031       Known.Zero &= ~NewBits;
3032       Known.One  &= ~NewBits;
3033     }
3034     break;
3035   }
3036   case ISD::CTTZ:
3037   case ISD::CTTZ_ZERO_UNDEF: {
3038     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3039     // If we have a known 1, its position is our upper bound.
3040     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3041     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3042     Known.Zero.setBitsFrom(LowBits);
3043     break;
3044   }
3045   case ISD::CTLZ:
3046   case ISD::CTLZ_ZERO_UNDEF: {
3047     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3048     // If we have a known 1, its position is our upper bound.
3049     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3050     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3051     Known.Zero.setBitsFrom(LowBits);
3052     break;
3053   }
3054   case ISD::CTPOP: {
3055     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3056     // If we know some of the bits are zero, they can't be one.
3057     unsigned PossibleOnes = Known2.countMaxPopulation();
3058     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3059     break;
3060   }
3061   case ISD::PARITY: {
3062     // Parity returns 0 everywhere but the LSB.
3063     Known.Zero.setBitsFrom(1);
3064     break;
3065   }
3066   case ISD::LOAD: {
3067     LoadSDNode *LD = cast<LoadSDNode>(Op);
3068     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3069     if (ISD::isNON_EXTLoad(LD) && Cst) {
3070       // Determine any common known bits from the loaded constant pool value.
3071       Type *CstTy = Cst->getType();
3072       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3073         // If its a vector splat, then we can (quickly) reuse the scalar path.
3074         // NOTE: We assume all elements match and none are UNDEF.
3075         if (CstTy->isVectorTy()) {
3076           if (const Constant *Splat = Cst->getSplatValue()) {
3077             Cst = Splat;
3078             CstTy = Cst->getType();
3079           }
3080         }
3081         // TODO - do we need to handle different bitwidths?
3082         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3083           // Iterate across all vector elements finding common known bits.
3084           Known.One.setAllBits();
3085           Known.Zero.setAllBits();
3086           for (unsigned i = 0; i != NumElts; ++i) {
3087             if (!DemandedElts[i])
3088               continue;
3089             if (Constant *Elt = Cst->getAggregateElement(i)) {
3090               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3091                 const APInt &Value = CInt->getValue();
3092                 Known.One &= Value;
3093                 Known.Zero &= ~Value;
3094                 continue;
3095               }
3096               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3097                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3098                 Known.One &= Value;
3099                 Known.Zero &= ~Value;
3100                 continue;
3101               }
3102             }
3103             Known.One.clearAllBits();
3104             Known.Zero.clearAllBits();
3105             break;
3106           }
3107         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3108           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3109             const APInt &Value = CInt->getValue();
3110             Known.One = Value;
3111             Known.Zero = ~Value;
3112           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3113             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3114             Known.One = Value;
3115             Known.Zero = ~Value;
3116           }
3117         }
3118       }
3119     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3120       // If this is a ZEXTLoad and we are looking at the loaded value.
3121       EVT VT = LD->getMemoryVT();
3122       unsigned MemBits = VT.getScalarSizeInBits();
3123       Known.Zero.setBitsFrom(MemBits);
3124     } else if (const MDNode *Ranges = LD->getRanges()) {
3125       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3126         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3127     }
3128     break;
3129   }
3130   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3131     EVT InVT = Op.getOperand(0).getValueType();
3132     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3133     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3134     Known = Known.zext(BitWidth);
3135     break;
3136   }
3137   case ISD::ZERO_EXTEND: {
3138     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3139     Known = Known.zext(BitWidth);
3140     break;
3141   }
3142   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3143     EVT InVT = Op.getOperand(0).getValueType();
3144     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3145     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3146     // If the sign bit is known to be zero or one, then sext will extend
3147     // it to the top bits, else it will just zext.
3148     Known = Known.sext(BitWidth);
3149     break;
3150   }
3151   case ISD::SIGN_EXTEND: {
3152     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3153     // If the sign bit is known to be zero or one, then sext will extend
3154     // it to the top bits, else it will just zext.
3155     Known = Known.sext(BitWidth);
3156     break;
3157   }
3158   case ISD::ANY_EXTEND_VECTOR_INREG: {
3159     EVT InVT = Op.getOperand(0).getValueType();
3160     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3161     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3162     Known = Known.anyext(BitWidth);
3163     break;
3164   }
3165   case ISD::ANY_EXTEND: {
3166     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3167     Known = Known.anyext(BitWidth);
3168     break;
3169   }
3170   case ISD::TRUNCATE: {
3171     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3172     Known = Known.trunc(BitWidth);
3173     break;
3174   }
3175   case ISD::AssertZext: {
3176     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3177     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3178     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3179     Known.Zero |= (~InMask);
3180     Known.One  &= (~Known.Zero);
3181     break;
3182   }
3183   case ISD::AssertAlign: {
3184     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3185     assert(LogOfAlign != 0);
3186     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3187     // well as clearing one bits.
3188     Known.Zero.setLowBits(LogOfAlign);
3189     Known.One.clearLowBits(LogOfAlign);
3190     break;
3191   }
3192   case ISD::FGETSIGN:
3193     // All bits are zero except the low bit.
3194     Known.Zero.setBitsFrom(1);
3195     break;
3196   case ISD::USUBO:
3197   case ISD::SSUBO:
3198     if (Op.getResNo() == 1) {
3199       // If we know the result of a setcc has the top bits zero, use this info.
3200       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3201               TargetLowering::ZeroOrOneBooleanContent &&
3202           BitWidth > 1)
3203         Known.Zero.setBitsFrom(1);
3204       break;
3205     }
3206     LLVM_FALLTHROUGH;
3207   case ISD::SUB:
3208   case ISD::SUBC: {
3209     assert(Op.getResNo() == 0 &&
3210            "We only compute knownbits for the difference here.");
3211 
3212     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3213     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3214     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3215                                         Known, Known2);
3216     break;
3217   }
3218   case ISD::UADDO:
3219   case ISD::SADDO:
3220   case ISD::ADDCARRY:
3221     if (Op.getResNo() == 1) {
3222       // If we know the result of a setcc has the top bits zero, use this info.
3223       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3224               TargetLowering::ZeroOrOneBooleanContent &&
3225           BitWidth > 1)
3226         Known.Zero.setBitsFrom(1);
3227       break;
3228     }
3229     LLVM_FALLTHROUGH;
3230   case ISD::ADD:
3231   case ISD::ADDC:
3232   case ISD::ADDE: {
3233     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3234 
3235     // With ADDE and ADDCARRY, a carry bit may be added in.
3236     KnownBits Carry(1);
3237     if (Opcode == ISD::ADDE)
3238       // Can't track carry from glue, set carry to unknown.
3239       Carry.resetAll();
3240     else if (Opcode == ISD::ADDCARRY)
3241       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3242       // the trouble (how often will we find a known carry bit). And I haven't
3243       // tested this very much yet, but something like this might work:
3244       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3245       //   Carry = Carry.zextOrTrunc(1, false);
3246       Carry.resetAll();
3247     else
3248       Carry.setAllZero();
3249 
3250     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3251     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3252     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3253     break;
3254   }
3255   case ISD::SREM: {
3256     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3257     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3258     Known = KnownBits::srem(Known, Known2);
3259     break;
3260   }
3261   case ISD::UREM: {
3262     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3263     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3264     Known = KnownBits::urem(Known, Known2);
3265     break;
3266   }
3267   case ISD::EXTRACT_ELEMENT: {
3268     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3269     const unsigned Index = Op.getConstantOperandVal(1);
3270     const unsigned EltBitWidth = Op.getValueSizeInBits();
3271 
3272     // Remove low part of known bits mask
3273     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3274     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3275 
3276     // Remove high part of known bit mask
3277     Known = Known.trunc(EltBitWidth);
3278     break;
3279   }
3280   case ISD::EXTRACT_VECTOR_ELT: {
3281     SDValue InVec = Op.getOperand(0);
3282     SDValue EltNo = Op.getOperand(1);
3283     EVT VecVT = InVec.getValueType();
3284     // computeKnownBits not yet implemented for scalable vectors.
3285     if (VecVT.isScalableVector())
3286       break;
3287     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3288     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3289 
3290     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3291     // anything about the extended bits.
3292     if (BitWidth > EltBitWidth)
3293       Known = Known.trunc(EltBitWidth);
3294 
3295     // If we know the element index, just demand that vector element, else for
3296     // an unknown element index, ignore DemandedElts and demand them all.
3297     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3298     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3299     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3300       DemandedSrcElts =
3301           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3302 
3303     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3304     if (BitWidth > EltBitWidth)
3305       Known = Known.anyext(BitWidth);
3306     break;
3307   }
3308   case ISD::INSERT_VECTOR_ELT: {
3309     // If we know the element index, split the demand between the
3310     // source vector and the inserted element, otherwise assume we need
3311     // the original demanded vector elements and the value.
3312     SDValue InVec = Op.getOperand(0);
3313     SDValue InVal = Op.getOperand(1);
3314     SDValue EltNo = Op.getOperand(2);
3315     bool DemandedVal = true;
3316     APInt DemandedVecElts = DemandedElts;
3317     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3318     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3319       unsigned EltIdx = CEltNo->getZExtValue();
3320       DemandedVal = !!DemandedElts[EltIdx];
3321       DemandedVecElts.clearBit(EltIdx);
3322     }
3323     Known.One.setAllBits();
3324     Known.Zero.setAllBits();
3325     if (DemandedVal) {
3326       Known2 = computeKnownBits(InVal, Depth + 1);
3327       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3328     }
3329     if (!!DemandedVecElts) {
3330       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3331       Known = KnownBits::commonBits(Known, Known2);
3332     }
3333     break;
3334   }
3335   case ISD::BITREVERSE: {
3336     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3337     Known = Known2.reverseBits();
3338     break;
3339   }
3340   case ISD::BSWAP: {
3341     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3342     Known = Known2.byteSwap();
3343     break;
3344   }
3345   case ISD::ABS: {
3346     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3347     Known = Known2.abs();
3348     break;
3349   }
3350   case ISD::UMIN: {
3351     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3352     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3353     Known = KnownBits::umin(Known, Known2);
3354     break;
3355   }
3356   case ISD::UMAX: {
3357     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3358     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3359     Known = KnownBits::umax(Known, Known2);
3360     break;
3361   }
3362   case ISD::SMIN:
3363   case ISD::SMAX: {
3364     // If we have a clamp pattern, we know that the number of sign bits will be
3365     // the minimum of the clamp min/max range.
3366     bool IsMax = (Opcode == ISD::SMAX);
3367     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3368     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3369       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3370         CstHigh =
3371             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3372     if (CstLow && CstHigh) {
3373       if (!IsMax)
3374         std::swap(CstLow, CstHigh);
3375 
3376       const APInt &ValueLow = CstLow->getAPIntValue();
3377       const APInt &ValueHigh = CstHigh->getAPIntValue();
3378       if (ValueLow.sle(ValueHigh)) {
3379         unsigned LowSignBits = ValueLow.getNumSignBits();
3380         unsigned HighSignBits = ValueHigh.getNumSignBits();
3381         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3382         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3383           Known.One.setHighBits(MinSignBits);
3384           break;
3385         }
3386         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3387           Known.Zero.setHighBits(MinSignBits);
3388           break;
3389         }
3390       }
3391     }
3392 
3393     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3394     if (Known.isUnknown()) break; // Early-out
3395     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3396     if (IsMax)
3397       Known = KnownBits::smax(Known, Known2);
3398     else
3399       Known = KnownBits::smin(Known, Known2);
3400     break;
3401   }
3402   case ISD::FrameIndex:
3403   case ISD::TargetFrameIndex:
3404     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3405                                        Known, getMachineFunction());
3406     break;
3407 
3408   default:
3409     if (Opcode < ISD::BUILTIN_OP_END)
3410       break;
3411     LLVM_FALLTHROUGH;
3412   case ISD::INTRINSIC_WO_CHAIN:
3413   case ISD::INTRINSIC_W_CHAIN:
3414   case ISD::INTRINSIC_VOID:
3415     // Allow the target to implement this method for its nodes.
3416     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3417     break;
3418   }
3419 
3420   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3421   return Known;
3422 }
3423 
3424 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3425                                                              SDValue N1) const {
3426   // X + 0 never overflow
3427   if (isNullConstant(N1))
3428     return OFK_Never;
3429 
3430   KnownBits N1Known = computeKnownBits(N1);
3431   if (N1Known.Zero.getBoolValue()) {
3432     KnownBits N0Known = computeKnownBits(N0);
3433 
3434     bool overflow;
3435     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3436     if (!overflow)
3437       return OFK_Never;
3438   }
3439 
3440   // mulhi + 1 never overflow
3441   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3442       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3443     return OFK_Never;
3444 
3445   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3446     KnownBits N0Known = computeKnownBits(N0);
3447 
3448     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3449       return OFK_Never;
3450   }
3451 
3452   return OFK_Sometime;
3453 }
3454 
3455 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3456   EVT OpVT = Val.getValueType();
3457   unsigned BitWidth = OpVT.getScalarSizeInBits();
3458 
3459   // Is the constant a known power of 2?
3460   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3461     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3462 
3463   // A left-shift of a constant one will have exactly one bit set because
3464   // shifting the bit off the end is undefined.
3465   if (Val.getOpcode() == ISD::SHL) {
3466     auto *C = isConstOrConstSplat(Val.getOperand(0));
3467     if (C && C->getAPIntValue() == 1)
3468       return true;
3469   }
3470 
3471   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3472   // one bit set.
3473   if (Val.getOpcode() == ISD::SRL) {
3474     auto *C = isConstOrConstSplat(Val.getOperand(0));
3475     if (C && C->getAPIntValue().isSignMask())
3476       return true;
3477   }
3478 
3479   // Are all operands of a build vector constant powers of two?
3480   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3481     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3482           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3483             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3484           return false;
3485         }))
3486       return true;
3487 
3488   // More could be done here, though the above checks are enough
3489   // to handle some common cases.
3490 
3491   // Fall back to computeKnownBits to catch other known cases.
3492   KnownBits Known = computeKnownBits(Val);
3493   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3494 }
3495 
3496 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3497   EVT VT = Op.getValueType();
3498 
3499   // TODO: Assume we don't know anything for now.
3500   if (VT.isScalableVector())
3501     return 1;
3502 
3503   APInt DemandedElts = VT.isVector()
3504                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3505                            : APInt(1, 1);
3506   return ComputeNumSignBits(Op, DemandedElts, Depth);
3507 }
3508 
3509 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3510                                           unsigned Depth) const {
3511   EVT VT = Op.getValueType();
3512   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3513   unsigned VTBits = VT.getScalarSizeInBits();
3514   unsigned NumElts = DemandedElts.getBitWidth();
3515   unsigned Tmp, Tmp2;
3516   unsigned FirstAnswer = 1;
3517 
3518   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3519     const APInt &Val = C->getAPIntValue();
3520     return Val.getNumSignBits();
3521   }
3522 
3523   if (Depth >= MaxRecursionDepth)
3524     return 1;  // Limit search depth.
3525 
3526   if (!DemandedElts || VT.isScalableVector())
3527     return 1;  // No demanded elts, better to assume we don't know anything.
3528 
3529   unsigned Opcode = Op.getOpcode();
3530   switch (Opcode) {
3531   default: break;
3532   case ISD::AssertSext:
3533     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3534     return VTBits-Tmp+1;
3535   case ISD::AssertZext:
3536     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3537     return VTBits-Tmp;
3538 
3539   case ISD::BUILD_VECTOR:
3540     Tmp = VTBits;
3541     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3542       if (!DemandedElts[i])
3543         continue;
3544 
3545       SDValue SrcOp = Op.getOperand(i);
3546       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3547 
3548       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3549       if (SrcOp.getValueSizeInBits() != VTBits) {
3550         assert(SrcOp.getValueSizeInBits() > VTBits &&
3551                "Expected BUILD_VECTOR implicit truncation");
3552         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3553         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3554       }
3555       Tmp = std::min(Tmp, Tmp2);
3556     }
3557     return Tmp;
3558 
3559   case ISD::VECTOR_SHUFFLE: {
3560     // Collect the minimum number of sign bits that are shared by every vector
3561     // element referenced by the shuffle.
3562     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3563     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3564     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3565     for (unsigned i = 0; i != NumElts; ++i) {
3566       int M = SVN->getMaskElt(i);
3567       if (!DemandedElts[i])
3568         continue;
3569       // For UNDEF elements, we don't know anything about the common state of
3570       // the shuffle result.
3571       if (M < 0)
3572         return 1;
3573       if ((unsigned)M < NumElts)
3574         DemandedLHS.setBit((unsigned)M % NumElts);
3575       else
3576         DemandedRHS.setBit((unsigned)M % NumElts);
3577     }
3578     Tmp = std::numeric_limits<unsigned>::max();
3579     if (!!DemandedLHS)
3580       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3581     if (!!DemandedRHS) {
3582       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3583       Tmp = std::min(Tmp, Tmp2);
3584     }
3585     // If we don't know anything, early out and try computeKnownBits fall-back.
3586     if (Tmp == 1)
3587       break;
3588     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3589     return Tmp;
3590   }
3591 
3592   case ISD::BITCAST: {
3593     SDValue N0 = Op.getOperand(0);
3594     EVT SrcVT = N0.getValueType();
3595     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3596 
3597     // Ignore bitcasts from unsupported types..
3598     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3599       break;
3600 
3601     // Fast handling of 'identity' bitcasts.
3602     if (VTBits == SrcBits)
3603       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3604 
3605     bool IsLE = getDataLayout().isLittleEndian();
3606 
3607     // Bitcast 'large element' scalar/vector to 'small element' vector.
3608     if ((SrcBits % VTBits) == 0) {
3609       assert(VT.isVector() && "Expected bitcast to vector");
3610 
3611       unsigned Scale = SrcBits / VTBits;
3612       APInt SrcDemandedElts(NumElts / Scale, 0);
3613       for (unsigned i = 0; i != NumElts; ++i)
3614         if (DemandedElts[i])
3615           SrcDemandedElts.setBit(i / Scale);
3616 
3617       // Fast case - sign splat can be simply split across the small elements.
3618       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3619       if (Tmp == SrcBits)
3620         return VTBits;
3621 
3622       // Slow case - determine how far the sign extends into each sub-element.
3623       Tmp2 = VTBits;
3624       for (unsigned i = 0; i != NumElts; ++i)
3625         if (DemandedElts[i]) {
3626           unsigned SubOffset = i % Scale;
3627           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3628           SubOffset = SubOffset * VTBits;
3629           if (Tmp <= SubOffset)
3630             return 1;
3631           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3632         }
3633       return Tmp2;
3634     }
3635     break;
3636   }
3637 
3638   case ISD::SIGN_EXTEND:
3639     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3640     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3641   case ISD::SIGN_EXTEND_INREG:
3642     // Max of the input and what this extends.
3643     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3644     Tmp = VTBits-Tmp+1;
3645     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3646     return std::max(Tmp, Tmp2);
3647   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3648     SDValue Src = Op.getOperand(0);
3649     EVT SrcVT = Src.getValueType();
3650     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3651     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3652     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3653   }
3654   case ISD::SRA:
3655     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3656     // SRA X, C -> adds C sign bits.
3657     if (const APInt *ShAmt =
3658             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3659       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3660     return Tmp;
3661   case ISD::SHL:
3662     if (const APInt *ShAmt =
3663             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3664       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3665       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3666       if (ShAmt->ult(Tmp))
3667         return Tmp - ShAmt->getZExtValue();
3668     }
3669     break;
3670   case ISD::AND:
3671   case ISD::OR:
3672   case ISD::XOR:    // NOT is handled here.
3673     // Logical binary ops preserve the number of sign bits at the worst.
3674     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3675     if (Tmp != 1) {
3676       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3677       FirstAnswer = std::min(Tmp, Tmp2);
3678       // We computed what we know about the sign bits as our first
3679       // answer. Now proceed to the generic code that uses
3680       // computeKnownBits, and pick whichever answer is better.
3681     }
3682     break;
3683 
3684   case ISD::SELECT:
3685   case ISD::VSELECT:
3686     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3687     if (Tmp == 1) return 1;  // Early out.
3688     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3689     return std::min(Tmp, Tmp2);
3690   case ISD::SELECT_CC:
3691     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3692     if (Tmp == 1) return 1;  // Early out.
3693     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3694     return std::min(Tmp, Tmp2);
3695 
3696   case ISD::SMIN:
3697   case ISD::SMAX: {
3698     // If we have a clamp pattern, we know that the number of sign bits will be
3699     // the minimum of the clamp min/max range.
3700     bool IsMax = (Opcode == ISD::SMAX);
3701     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3702     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3703       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3704         CstHigh =
3705             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3706     if (CstLow && CstHigh) {
3707       if (!IsMax)
3708         std::swap(CstLow, CstHigh);
3709       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3710         Tmp = CstLow->getAPIntValue().getNumSignBits();
3711         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3712         return std::min(Tmp, Tmp2);
3713       }
3714     }
3715 
3716     // Fallback - just get the minimum number of sign bits of the operands.
3717     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3718     if (Tmp == 1)
3719       return 1;  // Early out.
3720     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3721     return std::min(Tmp, Tmp2);
3722   }
3723   case ISD::UMIN:
3724   case ISD::UMAX:
3725     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3726     if (Tmp == 1)
3727       return 1;  // Early out.
3728     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3729     return std::min(Tmp, Tmp2);
3730   case ISD::SADDO:
3731   case ISD::UADDO:
3732   case ISD::SSUBO:
3733   case ISD::USUBO:
3734   case ISD::SMULO:
3735   case ISD::UMULO:
3736     if (Op.getResNo() != 1)
3737       break;
3738     // The boolean result conforms to getBooleanContents.  Fall through.
3739     // If setcc returns 0/-1, all bits are sign bits.
3740     // We know that we have an integer-based boolean since these operations
3741     // are only available for integer.
3742     if (TLI->getBooleanContents(VT.isVector(), false) ==
3743         TargetLowering::ZeroOrNegativeOneBooleanContent)
3744       return VTBits;
3745     break;
3746   case ISD::SETCC:
3747   case ISD::STRICT_FSETCC:
3748   case ISD::STRICT_FSETCCS: {
3749     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3750     // If setcc returns 0/-1, all bits are sign bits.
3751     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3752         TargetLowering::ZeroOrNegativeOneBooleanContent)
3753       return VTBits;
3754     break;
3755   }
3756   case ISD::ROTL:
3757   case ISD::ROTR:
3758     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3759 
3760     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3761     if (Tmp == VTBits)
3762       return VTBits;
3763 
3764     if (ConstantSDNode *C =
3765             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3766       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3767 
3768       // Handle rotate right by N like a rotate left by 32-N.
3769       if (Opcode == ISD::ROTR)
3770         RotAmt = (VTBits - RotAmt) % VTBits;
3771 
3772       // If we aren't rotating out all of the known-in sign bits, return the
3773       // number that are left.  This handles rotl(sext(x), 1) for example.
3774       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3775     }
3776     break;
3777   case ISD::ADD:
3778   case ISD::ADDC:
3779     // Add can have at most one carry bit.  Thus we know that the output
3780     // is, at worst, one more bit than the inputs.
3781     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3782     if (Tmp == 1) return 1; // Early out.
3783 
3784     // Special case decrementing a value (ADD X, -1):
3785     if (ConstantSDNode *CRHS =
3786             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3787       if (CRHS->isAllOnesValue()) {
3788         KnownBits Known =
3789             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3790 
3791         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3792         // sign bits set.
3793         if ((Known.Zero | 1).isAllOnesValue())
3794           return VTBits;
3795 
3796         // If we are subtracting one from a positive number, there is no carry
3797         // out of the result.
3798         if (Known.isNonNegative())
3799           return Tmp;
3800       }
3801 
3802     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3803     if (Tmp2 == 1) return 1; // Early out.
3804     return std::min(Tmp, Tmp2) - 1;
3805   case ISD::SUB:
3806     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3807     if (Tmp2 == 1) return 1; // Early out.
3808 
3809     // Handle NEG.
3810     if (ConstantSDNode *CLHS =
3811             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3812       if (CLHS->isNullValue()) {
3813         KnownBits Known =
3814             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3815         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3816         // sign bits set.
3817         if ((Known.Zero | 1).isAllOnesValue())
3818           return VTBits;
3819 
3820         // If the input is known to be positive (the sign bit is known clear),
3821         // the output of the NEG has the same number of sign bits as the input.
3822         if (Known.isNonNegative())
3823           return Tmp2;
3824 
3825         // Otherwise, we treat this like a SUB.
3826       }
3827 
3828     // Sub can have at most one carry bit.  Thus we know that the output
3829     // is, at worst, one more bit than the inputs.
3830     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3831     if (Tmp == 1) return 1; // Early out.
3832     return std::min(Tmp, Tmp2) - 1;
3833   case ISD::MUL: {
3834     // The output of the Mul can be at most twice the valid bits in the inputs.
3835     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3836     if (SignBitsOp0 == 1)
3837       break;
3838     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3839     if (SignBitsOp1 == 1)
3840       break;
3841     unsigned OutValidBits =
3842         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3843     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3844   }
3845   case ISD::TRUNCATE: {
3846     // Check if the sign bits of source go down as far as the truncated value.
3847     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3848     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3849     if (NumSrcSignBits > (NumSrcBits - VTBits))
3850       return NumSrcSignBits - (NumSrcBits - VTBits);
3851     break;
3852   }
3853   case ISD::EXTRACT_ELEMENT: {
3854     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3855     const int BitWidth = Op.getValueSizeInBits();
3856     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3857 
3858     // Get reverse index (starting from 1), Op1 value indexes elements from
3859     // little end. Sign starts at big end.
3860     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3861 
3862     // If the sign portion ends in our element the subtraction gives correct
3863     // result. Otherwise it gives either negative or > bitwidth result
3864     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3865   }
3866   case ISD::INSERT_VECTOR_ELT: {
3867     // If we know the element index, split the demand between the
3868     // source vector and the inserted element, otherwise assume we need
3869     // the original demanded vector elements and the value.
3870     SDValue InVec = Op.getOperand(0);
3871     SDValue InVal = Op.getOperand(1);
3872     SDValue EltNo = Op.getOperand(2);
3873     bool DemandedVal = true;
3874     APInt DemandedVecElts = DemandedElts;
3875     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3876     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3877       unsigned EltIdx = CEltNo->getZExtValue();
3878       DemandedVal = !!DemandedElts[EltIdx];
3879       DemandedVecElts.clearBit(EltIdx);
3880     }
3881     Tmp = std::numeric_limits<unsigned>::max();
3882     if (DemandedVal) {
3883       // TODO - handle implicit truncation of inserted elements.
3884       if (InVal.getScalarValueSizeInBits() != VTBits)
3885         break;
3886       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3887       Tmp = std::min(Tmp, Tmp2);
3888     }
3889     if (!!DemandedVecElts) {
3890       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3891       Tmp = std::min(Tmp, Tmp2);
3892     }
3893     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3894     return Tmp;
3895   }
3896   case ISD::EXTRACT_VECTOR_ELT: {
3897     SDValue InVec = Op.getOperand(0);
3898     SDValue EltNo = Op.getOperand(1);
3899     EVT VecVT = InVec.getValueType();
3900     const unsigned BitWidth = Op.getValueSizeInBits();
3901     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3902     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3903 
3904     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3905     // anything about sign bits. But if the sizes match we can derive knowledge
3906     // about sign bits from the vector operand.
3907     if (BitWidth != EltBitWidth)
3908       break;
3909 
3910     // If we know the element index, just demand that vector element, else for
3911     // an unknown element index, ignore DemandedElts and demand them all.
3912     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3913     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3914     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3915       DemandedSrcElts =
3916           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3917 
3918     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3919   }
3920   case ISD::EXTRACT_SUBVECTOR: {
3921     // Offset the demanded elts by the subvector index.
3922     SDValue Src = Op.getOperand(0);
3923     // Bail until we can represent demanded elements for scalable vectors.
3924     if (Src.getValueType().isScalableVector())
3925       break;
3926     uint64_t Idx = Op.getConstantOperandVal(1);
3927     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3928     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3929     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3930   }
3931   case ISD::CONCAT_VECTORS: {
3932     // Determine the minimum number of sign bits across all demanded
3933     // elts of the input vectors. Early out if the result is already 1.
3934     Tmp = std::numeric_limits<unsigned>::max();
3935     EVT SubVectorVT = Op.getOperand(0).getValueType();
3936     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3937     unsigned NumSubVectors = Op.getNumOperands();
3938     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3939       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3940       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3941       if (!DemandedSub)
3942         continue;
3943       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3944       Tmp = std::min(Tmp, Tmp2);
3945     }
3946     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3947     return Tmp;
3948   }
3949   case ISD::INSERT_SUBVECTOR: {
3950     // Demand any elements from the subvector and the remainder from the src its
3951     // inserted into.
3952     SDValue Src = Op.getOperand(0);
3953     SDValue Sub = Op.getOperand(1);
3954     uint64_t Idx = Op.getConstantOperandVal(2);
3955     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3956     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3957     APInt DemandedSrcElts = DemandedElts;
3958     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
3959 
3960     Tmp = std::numeric_limits<unsigned>::max();
3961     if (!!DemandedSubElts) {
3962       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3963       if (Tmp == 1)
3964         return 1; // early-out
3965     }
3966     if (!!DemandedSrcElts) {
3967       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3968       Tmp = std::min(Tmp, Tmp2);
3969     }
3970     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3971     return Tmp;
3972   }
3973   }
3974 
3975   // If we are looking at the loaded value of the SDNode.
3976   if (Op.getResNo() == 0) {
3977     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3978     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3979       unsigned ExtType = LD->getExtensionType();
3980       switch (ExtType) {
3981       default: break;
3982       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3983         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3984         return VTBits - Tmp + 1;
3985       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3986         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3987         return VTBits - Tmp;
3988       case ISD::NON_EXTLOAD:
3989         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
3990           // We only need to handle vectors - computeKnownBits should handle
3991           // scalar cases.
3992           Type *CstTy = Cst->getType();
3993           if (CstTy->isVectorTy() &&
3994               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
3995             Tmp = VTBits;
3996             for (unsigned i = 0; i != NumElts; ++i) {
3997               if (!DemandedElts[i])
3998                 continue;
3999               if (Constant *Elt = Cst->getAggregateElement(i)) {
4000                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4001                   const APInt &Value = CInt->getValue();
4002                   Tmp = std::min(Tmp, Value.getNumSignBits());
4003                   continue;
4004                 }
4005                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4006                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4007                   Tmp = std::min(Tmp, Value.getNumSignBits());
4008                   continue;
4009                 }
4010               }
4011               // Unknown type. Conservatively assume no bits match sign bit.
4012               return 1;
4013             }
4014             return Tmp;
4015           }
4016         }
4017         break;
4018       }
4019     }
4020   }
4021 
4022   // Allow the target to implement this method for its nodes.
4023   if (Opcode >= ISD::BUILTIN_OP_END ||
4024       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4025       Opcode == ISD::INTRINSIC_W_CHAIN ||
4026       Opcode == ISD::INTRINSIC_VOID) {
4027     unsigned NumBits =
4028         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4029     if (NumBits > 1)
4030       FirstAnswer = std::max(FirstAnswer, NumBits);
4031   }
4032 
4033   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4034   // use this information.
4035   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4036 
4037   APInt Mask;
4038   if (Known.isNonNegative()) {        // sign bit is 0
4039     Mask = Known.Zero;
4040   } else if (Known.isNegative()) {  // sign bit is 1;
4041     Mask = Known.One;
4042   } else {
4043     // Nothing known.
4044     return FirstAnswer;
4045   }
4046 
4047   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4048   // the number of identical bits in the top of the input value.
4049   Mask <<= Mask.getBitWidth()-VTBits;
4050   return std::max(FirstAnswer, Mask.countLeadingOnes());
4051 }
4052 
4053 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4054   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4055       !isa<ConstantSDNode>(Op.getOperand(1)))
4056     return false;
4057 
4058   if (Op.getOpcode() == ISD::OR &&
4059       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4060     return false;
4061 
4062   return true;
4063 }
4064 
4065 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4066   // If we're told that NaNs won't happen, assume they won't.
4067   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4068     return true;
4069 
4070   if (Depth >= MaxRecursionDepth)
4071     return false; // Limit search depth.
4072 
4073   // TODO: Handle vectors.
4074   // If the value is a constant, we can obviously see if it is a NaN or not.
4075   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4076     return !C->getValueAPF().isNaN() ||
4077            (SNaN && !C->getValueAPF().isSignaling());
4078   }
4079 
4080   unsigned Opcode = Op.getOpcode();
4081   switch (Opcode) {
4082   case ISD::FADD:
4083   case ISD::FSUB:
4084   case ISD::FMUL:
4085   case ISD::FDIV:
4086   case ISD::FREM:
4087   case ISD::FSIN:
4088   case ISD::FCOS: {
4089     if (SNaN)
4090       return true;
4091     // TODO: Need isKnownNeverInfinity
4092     return false;
4093   }
4094   case ISD::FCANONICALIZE:
4095   case ISD::FEXP:
4096   case ISD::FEXP2:
4097   case ISD::FTRUNC:
4098   case ISD::FFLOOR:
4099   case ISD::FCEIL:
4100   case ISD::FROUND:
4101   case ISD::FROUNDEVEN:
4102   case ISD::FRINT:
4103   case ISD::FNEARBYINT: {
4104     if (SNaN)
4105       return true;
4106     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4107   }
4108   case ISD::FABS:
4109   case ISD::FNEG:
4110   case ISD::FCOPYSIGN: {
4111     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4112   }
4113   case ISD::SELECT:
4114     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4115            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4116   case ISD::FP_EXTEND:
4117   case ISD::FP_ROUND: {
4118     if (SNaN)
4119       return true;
4120     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4121   }
4122   case ISD::SINT_TO_FP:
4123   case ISD::UINT_TO_FP:
4124     return true;
4125   case ISD::FMA:
4126   case ISD::FMAD: {
4127     if (SNaN)
4128       return true;
4129     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4130            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4131            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4132   }
4133   case ISD::FSQRT: // Need is known positive
4134   case ISD::FLOG:
4135   case ISD::FLOG2:
4136   case ISD::FLOG10:
4137   case ISD::FPOWI:
4138   case ISD::FPOW: {
4139     if (SNaN)
4140       return true;
4141     // TODO: Refine on operand
4142     return false;
4143   }
4144   case ISD::FMINNUM:
4145   case ISD::FMAXNUM: {
4146     // Only one needs to be known not-nan, since it will be returned if the
4147     // other ends up being one.
4148     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4149            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4150   }
4151   case ISD::FMINNUM_IEEE:
4152   case ISD::FMAXNUM_IEEE: {
4153     if (SNaN)
4154       return true;
4155     // This can return a NaN if either operand is an sNaN, or if both operands
4156     // are NaN.
4157     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4158             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4159            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4160             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4161   }
4162   case ISD::FMINIMUM:
4163   case ISD::FMAXIMUM: {
4164     // TODO: Does this quiet or return the origina NaN as-is?
4165     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4166            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4167   }
4168   case ISD::EXTRACT_VECTOR_ELT: {
4169     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4170   }
4171   default:
4172     if (Opcode >= ISD::BUILTIN_OP_END ||
4173         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4174         Opcode == ISD::INTRINSIC_W_CHAIN ||
4175         Opcode == ISD::INTRINSIC_VOID) {
4176       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4177     }
4178 
4179     return false;
4180   }
4181 }
4182 
4183 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4184   assert(Op.getValueType().isFloatingPoint() &&
4185          "Floating point type expected");
4186 
4187   // If the value is a constant, we can obviously see if it is a zero or not.
4188   // TODO: Add BuildVector support.
4189   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4190     return !C->isZero();
4191   return false;
4192 }
4193 
4194 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4195   assert(!Op.getValueType().isFloatingPoint() &&
4196          "Floating point types unsupported - use isKnownNeverZeroFloat");
4197 
4198   // If the value is a constant, we can obviously see if it is a zero or not.
4199   if (ISD::matchUnaryPredicate(
4200           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4201     return true;
4202 
4203   // TODO: Recognize more cases here.
4204   switch (Op.getOpcode()) {
4205   default: break;
4206   case ISD::OR:
4207     if (isKnownNeverZero(Op.getOperand(1)) ||
4208         isKnownNeverZero(Op.getOperand(0)))
4209       return true;
4210     break;
4211   }
4212 
4213   return false;
4214 }
4215 
4216 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4217   // Check the obvious case.
4218   if (A == B) return true;
4219 
4220   // For for negative and positive zero.
4221   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4222     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4223       if (CA->isZero() && CB->isZero()) return true;
4224 
4225   // Otherwise they may not be equal.
4226   return false;
4227 }
4228 
4229 // FIXME: unify with llvm::haveNoCommonBitsSet.
4230 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4231 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4232   assert(A.getValueType() == B.getValueType() &&
4233          "Values must have the same type");
4234   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4235 }
4236 
4237 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4238                                 ArrayRef<SDValue> Ops,
4239                                 SelectionDAG &DAG) {
4240   int NumOps = Ops.size();
4241   assert(NumOps != 0 && "Can't build an empty vector!");
4242   assert(!VT.isScalableVector() &&
4243          "BUILD_VECTOR cannot be used with scalable types");
4244   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4245          "Incorrect element count in BUILD_VECTOR!");
4246 
4247   // BUILD_VECTOR of UNDEFs is UNDEF.
4248   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4249     return DAG.getUNDEF(VT);
4250 
4251   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4252   SDValue IdentitySrc;
4253   bool IsIdentity = true;
4254   for (int i = 0; i != NumOps; ++i) {
4255     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4256         Ops[i].getOperand(0).getValueType() != VT ||
4257         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4258         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4259         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4260       IsIdentity = false;
4261       break;
4262     }
4263     IdentitySrc = Ops[i].getOperand(0);
4264   }
4265   if (IsIdentity)
4266     return IdentitySrc;
4267 
4268   return SDValue();
4269 }
4270 
4271 /// Try to simplify vector concatenation to an input value, undef, or build
4272 /// vector.
4273 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4274                                   ArrayRef<SDValue> Ops,
4275                                   SelectionDAG &DAG) {
4276   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4277   assert(llvm::all_of(Ops,
4278                       [Ops](SDValue Op) {
4279                         return Ops[0].getValueType() == Op.getValueType();
4280                       }) &&
4281          "Concatenation of vectors with inconsistent value types!");
4282   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4283              VT.getVectorElementCount() &&
4284          "Incorrect element count in vector concatenation!");
4285 
4286   if (Ops.size() == 1)
4287     return Ops[0];
4288 
4289   // Concat of UNDEFs is UNDEF.
4290   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4291     return DAG.getUNDEF(VT);
4292 
4293   // Scan the operands and look for extract operations from a single source
4294   // that correspond to insertion at the same location via this concatenation:
4295   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4296   SDValue IdentitySrc;
4297   bool IsIdentity = true;
4298   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4299     SDValue Op = Ops[i];
4300     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4301     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4302         Op.getOperand(0).getValueType() != VT ||
4303         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4304         Op.getConstantOperandVal(1) != IdentityIndex) {
4305       IsIdentity = false;
4306       break;
4307     }
4308     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4309            "Unexpected identity source vector for concat of extracts");
4310     IdentitySrc = Op.getOperand(0);
4311   }
4312   if (IsIdentity) {
4313     assert(IdentitySrc && "Failed to set source vector of extracts");
4314     return IdentitySrc;
4315   }
4316 
4317   // The code below this point is only designed to work for fixed width
4318   // vectors, so we bail out for now.
4319   if (VT.isScalableVector())
4320     return SDValue();
4321 
4322   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4323   // simplified to one big BUILD_VECTOR.
4324   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4325   EVT SVT = VT.getScalarType();
4326   SmallVector<SDValue, 16> Elts;
4327   for (SDValue Op : Ops) {
4328     EVT OpVT = Op.getValueType();
4329     if (Op.isUndef())
4330       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4331     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4332       Elts.append(Op->op_begin(), Op->op_end());
4333     else
4334       return SDValue();
4335   }
4336 
4337   // BUILD_VECTOR requires all inputs to be of the same type, find the
4338   // maximum type and extend them all.
4339   for (SDValue Op : Elts)
4340     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4341 
4342   if (SVT.bitsGT(VT.getScalarType())) {
4343     for (SDValue &Op : Elts) {
4344       if (Op.isUndef())
4345         Op = DAG.getUNDEF(SVT);
4346       else
4347         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4348                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4349                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4350     }
4351   }
4352 
4353   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4354   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4355   return V;
4356 }
4357 
4358 /// Gets or creates the specified node.
4359 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4360   FoldingSetNodeID ID;
4361   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4362   void *IP = nullptr;
4363   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4364     return SDValue(E, 0);
4365 
4366   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4367                               getVTList(VT));
4368   CSEMap.InsertNode(N, IP);
4369 
4370   InsertNode(N);
4371   SDValue V = SDValue(N, 0);
4372   NewSDValueDbgMsg(V, "Creating new node: ", this);
4373   return V;
4374 }
4375 
4376 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4377                               SDValue Operand) {
4378   SDNodeFlags Flags;
4379   if (Inserter)
4380     Flags = Inserter->getFlags();
4381   return getNode(Opcode, DL, VT, Operand, Flags);
4382 }
4383 
4384 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4385                               SDValue Operand, const SDNodeFlags Flags) {
4386   // Constant fold unary operations with an integer constant operand. Even
4387   // opaque constant will be folded, because the folding of unary operations
4388   // doesn't create new constants with different values. Nevertheless, the
4389   // opaque flag is preserved during folding to prevent future folding with
4390   // other constants.
4391   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4392     const APInt &Val = C->getAPIntValue();
4393     switch (Opcode) {
4394     default: break;
4395     case ISD::SIGN_EXTEND:
4396       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4397                          C->isTargetOpcode(), C->isOpaque());
4398     case ISD::TRUNCATE:
4399       if (C->isOpaque())
4400         break;
4401       LLVM_FALLTHROUGH;
4402     case ISD::ANY_EXTEND:
4403     case ISD::ZERO_EXTEND:
4404       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4405                          C->isTargetOpcode(), C->isOpaque());
4406     case ISD::UINT_TO_FP:
4407     case ISD::SINT_TO_FP: {
4408       APFloat apf(EVTToAPFloatSemantics(VT),
4409                   APInt::getNullValue(VT.getSizeInBits()));
4410       (void)apf.convertFromAPInt(Val,
4411                                  Opcode==ISD::SINT_TO_FP,
4412                                  APFloat::rmNearestTiesToEven);
4413       return getConstantFP(apf, DL, VT);
4414     }
4415     case ISD::BITCAST:
4416       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4417         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4418       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4419         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4420       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4421         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4422       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4423         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4424       break;
4425     case ISD::ABS:
4426       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4427                          C->isOpaque());
4428     case ISD::BITREVERSE:
4429       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4430                          C->isOpaque());
4431     case ISD::BSWAP:
4432       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4433                          C->isOpaque());
4434     case ISD::CTPOP:
4435       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4436                          C->isOpaque());
4437     case ISD::CTLZ:
4438     case ISD::CTLZ_ZERO_UNDEF:
4439       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4440                          C->isOpaque());
4441     case ISD::CTTZ:
4442     case ISD::CTTZ_ZERO_UNDEF:
4443       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4444                          C->isOpaque());
4445     case ISD::FP16_TO_FP: {
4446       bool Ignored;
4447       APFloat FPV(APFloat::IEEEhalf(),
4448                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4449 
4450       // This can return overflow, underflow, or inexact; we don't care.
4451       // FIXME need to be more flexible about rounding mode.
4452       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4453                         APFloat::rmNearestTiesToEven, &Ignored);
4454       return getConstantFP(FPV, DL, VT);
4455     }
4456     }
4457   }
4458 
4459   // Constant fold unary operations with a floating point constant operand.
4460   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4461     APFloat V = C->getValueAPF();    // make copy
4462     switch (Opcode) {
4463     case ISD::FNEG:
4464       V.changeSign();
4465       return getConstantFP(V, DL, VT);
4466     case ISD::FABS:
4467       V.clearSign();
4468       return getConstantFP(V, DL, VT);
4469     case ISD::FCEIL: {
4470       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4471       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4472         return getConstantFP(V, DL, VT);
4473       break;
4474     }
4475     case ISD::FTRUNC: {
4476       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4477       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4478         return getConstantFP(V, DL, VT);
4479       break;
4480     }
4481     case ISD::FFLOOR: {
4482       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4483       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4484         return getConstantFP(V, DL, VT);
4485       break;
4486     }
4487     case ISD::FP_EXTEND: {
4488       bool ignored;
4489       // This can return overflow, underflow, or inexact; we don't care.
4490       // FIXME need to be more flexible about rounding mode.
4491       (void)V.convert(EVTToAPFloatSemantics(VT),
4492                       APFloat::rmNearestTiesToEven, &ignored);
4493       return getConstantFP(V, DL, VT);
4494     }
4495     case ISD::FP_TO_SINT:
4496     case ISD::FP_TO_UINT: {
4497       bool ignored;
4498       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4499       // FIXME need to be more flexible about rounding mode.
4500       APFloat::opStatus s =
4501           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4502       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4503         break;
4504       return getConstant(IntVal, DL, VT);
4505     }
4506     case ISD::BITCAST:
4507       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4508         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4509       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4510         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4511       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4512         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4513       break;
4514     case ISD::FP_TO_FP16: {
4515       bool Ignored;
4516       // This can return overflow, underflow, or inexact; we don't care.
4517       // FIXME need to be more flexible about rounding mode.
4518       (void)V.convert(APFloat::IEEEhalf(),
4519                       APFloat::rmNearestTiesToEven, &Ignored);
4520       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4521     }
4522     }
4523   }
4524 
4525   // Constant fold unary operations with a vector integer or float operand.
4526   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4527     if (BV->isConstant()) {
4528       switch (Opcode) {
4529       default:
4530         // FIXME: Entirely reasonable to perform folding of other unary
4531         // operations here as the need arises.
4532         break;
4533       case ISD::FNEG:
4534       case ISD::FABS:
4535       case ISD::FCEIL:
4536       case ISD::FTRUNC:
4537       case ISD::FFLOOR:
4538       case ISD::FP_EXTEND:
4539       case ISD::FP_TO_SINT:
4540       case ISD::FP_TO_UINT:
4541       case ISD::TRUNCATE:
4542       case ISD::ANY_EXTEND:
4543       case ISD::ZERO_EXTEND:
4544       case ISD::SIGN_EXTEND:
4545       case ISD::UINT_TO_FP:
4546       case ISD::SINT_TO_FP:
4547       case ISD::ABS:
4548       case ISD::BITREVERSE:
4549       case ISD::BSWAP:
4550       case ISD::CTLZ:
4551       case ISD::CTLZ_ZERO_UNDEF:
4552       case ISD::CTTZ:
4553       case ISD::CTTZ_ZERO_UNDEF:
4554       case ISD::CTPOP: {
4555         SDValue Ops = { Operand };
4556         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4557           return Fold;
4558       }
4559       }
4560     }
4561   }
4562 
4563   unsigned OpOpcode = Operand.getNode()->getOpcode();
4564   switch (Opcode) {
4565   case ISD::FREEZE:
4566     assert(VT == Operand.getValueType() && "Unexpected VT!");
4567     break;
4568   case ISD::TokenFactor:
4569   case ISD::MERGE_VALUES:
4570   case ISD::CONCAT_VECTORS:
4571     return Operand;         // Factor, merge or concat of one node?  No need.
4572   case ISD::BUILD_VECTOR: {
4573     // Attempt to simplify BUILD_VECTOR.
4574     SDValue Ops[] = {Operand};
4575     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4576       return V;
4577     break;
4578   }
4579   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4580   case ISD::FP_EXTEND:
4581     assert(VT.isFloatingPoint() &&
4582            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4583     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4584     assert((!VT.isVector() ||
4585             VT.getVectorElementCount() ==
4586             Operand.getValueType().getVectorElementCount()) &&
4587            "Vector element count mismatch!");
4588     assert(Operand.getValueType().bitsLT(VT) &&
4589            "Invalid fpext node, dst < src!");
4590     if (Operand.isUndef())
4591       return getUNDEF(VT);
4592     break;
4593   case ISD::FP_TO_SINT:
4594   case ISD::FP_TO_UINT:
4595     if (Operand.isUndef())
4596       return getUNDEF(VT);
4597     break;
4598   case ISD::SINT_TO_FP:
4599   case ISD::UINT_TO_FP:
4600     // [us]itofp(undef) = 0, because the result value is bounded.
4601     if (Operand.isUndef())
4602       return getConstantFP(0.0, DL, VT);
4603     break;
4604   case ISD::SIGN_EXTEND:
4605     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4606            "Invalid SIGN_EXTEND!");
4607     assert(VT.isVector() == Operand.getValueType().isVector() &&
4608            "SIGN_EXTEND result type type should be vector iff the operand "
4609            "type is vector!");
4610     if (Operand.getValueType() == VT) return Operand;   // noop extension
4611     assert((!VT.isVector() ||
4612             VT.getVectorElementCount() ==
4613                 Operand.getValueType().getVectorElementCount()) &&
4614            "Vector element count mismatch!");
4615     assert(Operand.getValueType().bitsLT(VT) &&
4616            "Invalid sext node, dst < src!");
4617     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4618       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4619     else if (OpOpcode == ISD::UNDEF)
4620       // sext(undef) = 0, because the top bits will all be the same.
4621       return getConstant(0, DL, VT);
4622     break;
4623   case ISD::ZERO_EXTEND:
4624     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4625            "Invalid ZERO_EXTEND!");
4626     assert(VT.isVector() == Operand.getValueType().isVector() &&
4627            "ZERO_EXTEND result type type should be vector iff the operand "
4628            "type is vector!");
4629     if (Operand.getValueType() == VT) return Operand;   // noop extension
4630     assert((!VT.isVector() ||
4631             VT.getVectorElementCount() ==
4632                 Operand.getValueType().getVectorElementCount()) &&
4633            "Vector element count mismatch!");
4634     assert(Operand.getValueType().bitsLT(VT) &&
4635            "Invalid zext node, dst < src!");
4636     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4637       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4638     else if (OpOpcode == ISD::UNDEF)
4639       // zext(undef) = 0, because the top bits will be zero.
4640       return getConstant(0, DL, VT);
4641     break;
4642   case ISD::ANY_EXTEND:
4643     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4644            "Invalid ANY_EXTEND!");
4645     assert(VT.isVector() == Operand.getValueType().isVector() &&
4646            "ANY_EXTEND result type type should be vector iff the operand "
4647            "type is vector!");
4648     if (Operand.getValueType() == VT) return Operand;   // noop extension
4649     assert((!VT.isVector() ||
4650             VT.getVectorElementCount() ==
4651                 Operand.getValueType().getVectorElementCount()) &&
4652            "Vector element count mismatch!");
4653     assert(Operand.getValueType().bitsLT(VT) &&
4654            "Invalid anyext node, dst < src!");
4655 
4656     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4657         OpOpcode == ISD::ANY_EXTEND)
4658       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4659       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4660     else if (OpOpcode == ISD::UNDEF)
4661       return getUNDEF(VT);
4662 
4663     // (ext (trunc x)) -> x
4664     if (OpOpcode == ISD::TRUNCATE) {
4665       SDValue OpOp = Operand.getOperand(0);
4666       if (OpOp.getValueType() == VT) {
4667         transferDbgValues(Operand, OpOp);
4668         return OpOp;
4669       }
4670     }
4671     break;
4672   case ISD::TRUNCATE:
4673     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4674            "Invalid TRUNCATE!");
4675     assert(VT.isVector() == Operand.getValueType().isVector() &&
4676            "TRUNCATE result type type should be vector iff the operand "
4677            "type is vector!");
4678     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4679     assert((!VT.isVector() ||
4680             VT.getVectorElementCount() ==
4681                 Operand.getValueType().getVectorElementCount()) &&
4682            "Vector element count mismatch!");
4683     assert(Operand.getValueType().bitsGT(VT) &&
4684            "Invalid truncate node, src < dst!");
4685     if (OpOpcode == ISD::TRUNCATE)
4686       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4687     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4688         OpOpcode == ISD::ANY_EXTEND) {
4689       // If the source is smaller than the dest, we still need an extend.
4690       if (Operand.getOperand(0).getValueType().getScalarType()
4691             .bitsLT(VT.getScalarType()))
4692         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4693       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4694         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4695       return Operand.getOperand(0);
4696     }
4697     if (OpOpcode == ISD::UNDEF)
4698       return getUNDEF(VT);
4699     break;
4700   case ISD::ANY_EXTEND_VECTOR_INREG:
4701   case ISD::ZERO_EXTEND_VECTOR_INREG:
4702   case ISD::SIGN_EXTEND_VECTOR_INREG:
4703     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4704     assert(Operand.getValueType().bitsLE(VT) &&
4705            "The input must be the same size or smaller than the result.");
4706     assert(VT.getVectorNumElements() <
4707              Operand.getValueType().getVectorNumElements() &&
4708            "The destination vector type must have fewer lanes than the input.");
4709     break;
4710   case ISD::ABS:
4711     assert(VT.isInteger() && VT == Operand.getValueType() &&
4712            "Invalid ABS!");
4713     if (OpOpcode == ISD::UNDEF)
4714       return getUNDEF(VT);
4715     break;
4716   case ISD::BSWAP:
4717     assert(VT.isInteger() && VT == Operand.getValueType() &&
4718            "Invalid BSWAP!");
4719     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4720            "BSWAP types must be a multiple of 16 bits!");
4721     if (OpOpcode == ISD::UNDEF)
4722       return getUNDEF(VT);
4723     break;
4724   case ISD::BITREVERSE:
4725     assert(VT.isInteger() && VT == Operand.getValueType() &&
4726            "Invalid BITREVERSE!");
4727     if (OpOpcode == ISD::UNDEF)
4728       return getUNDEF(VT);
4729     break;
4730   case ISD::BITCAST:
4731     // Basic sanity checking.
4732     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4733            "Cannot BITCAST between types of different sizes!");
4734     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4735     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4736       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4737     if (OpOpcode == ISD::UNDEF)
4738       return getUNDEF(VT);
4739     break;
4740   case ISD::SCALAR_TO_VECTOR:
4741     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4742            (VT.getVectorElementType() == Operand.getValueType() ||
4743             (VT.getVectorElementType().isInteger() &&
4744              Operand.getValueType().isInteger() &&
4745              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4746            "Illegal SCALAR_TO_VECTOR node!");
4747     if (OpOpcode == ISD::UNDEF)
4748       return getUNDEF(VT);
4749     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4750     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4751         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4752         Operand.getConstantOperandVal(1) == 0 &&
4753         Operand.getOperand(0).getValueType() == VT)
4754       return Operand.getOperand(0);
4755     break;
4756   case ISD::FNEG:
4757     // Negation of an unknown bag of bits is still completely undefined.
4758     if (OpOpcode == ISD::UNDEF)
4759       return getUNDEF(VT);
4760 
4761     if (OpOpcode == ISD::FNEG)  // --X -> X
4762       return Operand.getOperand(0);
4763     break;
4764   case ISD::FABS:
4765     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4766       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4767     break;
4768   case ISD::VSCALE:
4769     assert(VT == Operand.getValueType() && "Unexpected VT!");
4770     break;
4771   case ISD::VECREDUCE_SMIN:
4772   case ISD::VECREDUCE_UMAX:
4773     if (Operand.getValueType().getScalarType() == MVT::i1)
4774       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
4775     break;
4776   case ISD::VECREDUCE_SMAX:
4777   case ISD::VECREDUCE_UMIN:
4778     if (Operand.getValueType().getScalarType() == MVT::i1)
4779       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
4780     break;
4781   }
4782 
4783   SDNode *N;
4784   SDVTList VTs = getVTList(VT);
4785   SDValue Ops[] = {Operand};
4786   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4787     FoldingSetNodeID ID;
4788     AddNodeIDNode(ID, Opcode, VTs, Ops);
4789     void *IP = nullptr;
4790     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4791       E->intersectFlagsWith(Flags);
4792       return SDValue(E, 0);
4793     }
4794 
4795     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4796     N->setFlags(Flags);
4797     createOperands(N, Ops);
4798     CSEMap.InsertNode(N, IP);
4799   } else {
4800     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4801     createOperands(N, Ops);
4802   }
4803 
4804   InsertNode(N);
4805   SDValue V = SDValue(N, 0);
4806   NewSDValueDbgMsg(V, "Creating new node: ", this);
4807   return V;
4808 }
4809 
4810 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4811                                        const APInt &C2) {
4812   switch (Opcode) {
4813   case ISD::ADD:  return C1 + C2;
4814   case ISD::SUB:  return C1 - C2;
4815   case ISD::MUL:  return C1 * C2;
4816   case ISD::AND:  return C1 & C2;
4817   case ISD::OR:   return C1 | C2;
4818   case ISD::XOR:  return C1 ^ C2;
4819   case ISD::SHL:  return C1 << C2;
4820   case ISD::SRL:  return C1.lshr(C2);
4821   case ISD::SRA:  return C1.ashr(C2);
4822   case ISD::ROTL: return C1.rotl(C2);
4823   case ISD::ROTR: return C1.rotr(C2);
4824   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4825   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4826   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4827   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4828   case ISD::SADDSAT: return C1.sadd_sat(C2);
4829   case ISD::UADDSAT: return C1.uadd_sat(C2);
4830   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4831   case ISD::USUBSAT: return C1.usub_sat(C2);
4832   case ISD::UDIV:
4833     if (!C2.getBoolValue())
4834       break;
4835     return C1.udiv(C2);
4836   case ISD::UREM:
4837     if (!C2.getBoolValue())
4838       break;
4839     return C1.urem(C2);
4840   case ISD::SDIV:
4841     if (!C2.getBoolValue())
4842       break;
4843     return C1.sdiv(C2);
4844   case ISD::SREM:
4845     if (!C2.getBoolValue())
4846       break;
4847     return C1.srem(C2);
4848   }
4849   return llvm::None;
4850 }
4851 
4852 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4853                                        const GlobalAddressSDNode *GA,
4854                                        const SDNode *N2) {
4855   if (GA->getOpcode() != ISD::GlobalAddress)
4856     return SDValue();
4857   if (!TLI->isOffsetFoldingLegal(GA))
4858     return SDValue();
4859   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4860   if (!C2)
4861     return SDValue();
4862   int64_t Offset = C2->getSExtValue();
4863   switch (Opcode) {
4864   case ISD::ADD: break;
4865   case ISD::SUB: Offset = -uint64_t(Offset); break;
4866   default: return SDValue();
4867   }
4868   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4869                           GA->getOffset() + uint64_t(Offset));
4870 }
4871 
4872 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4873   switch (Opcode) {
4874   case ISD::SDIV:
4875   case ISD::UDIV:
4876   case ISD::SREM:
4877   case ISD::UREM: {
4878     // If a divisor is zero/undef or any element of a divisor vector is
4879     // zero/undef, the whole op is undef.
4880     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4881     SDValue Divisor = Ops[1];
4882     if (Divisor.isUndef() || isNullConstant(Divisor))
4883       return true;
4884 
4885     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4886            llvm::any_of(Divisor->op_values(),
4887                         [](SDValue V) { return V.isUndef() ||
4888                                         isNullConstant(V); });
4889     // TODO: Handle signed overflow.
4890   }
4891   // TODO: Handle oversized shifts.
4892   default:
4893     return false;
4894   }
4895 }
4896 
4897 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4898                                              EVT VT, ArrayRef<SDValue> Ops) {
4899   // If the opcode is a target-specific ISD node, there's nothing we can
4900   // do here and the operand rules may not line up with the below, so
4901   // bail early.
4902   if (Opcode >= ISD::BUILTIN_OP_END)
4903     return SDValue();
4904 
4905   // For now, the array Ops should only contain two values.
4906   // This enforcement will be removed once this function is merged with
4907   // FoldConstantVectorArithmetic
4908   if (Ops.size() != 2)
4909     return SDValue();
4910 
4911   if (isUndef(Opcode, Ops))
4912     return getUNDEF(VT);
4913 
4914   SDNode *N1 = Ops[0].getNode();
4915   SDNode *N2 = Ops[1].getNode();
4916 
4917   // Handle the case of two scalars.
4918   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4919     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4920       if (C1->isOpaque() || C2->isOpaque())
4921         return SDValue();
4922 
4923       Optional<APInt> FoldAttempt =
4924           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
4925       if (!FoldAttempt)
4926         return SDValue();
4927 
4928       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
4929       assert((!Folded || !VT.isVector()) &&
4930              "Can't fold vectors ops with scalar operands");
4931       return Folded;
4932     }
4933   }
4934 
4935   // fold (add Sym, c) -> Sym+c
4936   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4937     return FoldSymbolOffset(Opcode, VT, GA, N2);
4938   if (TLI->isCommutativeBinOp(Opcode))
4939     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4940       return FoldSymbolOffset(Opcode, VT, GA, N1);
4941 
4942   // TODO: All the folds below are performed lane-by-lane and assume a fixed
4943   // vector width, however we should be able to do constant folds involving
4944   // splat vector nodes too.
4945   if (VT.isScalableVector())
4946     return SDValue();
4947 
4948   // For fixed width vectors, extract each constant element and fold them
4949   // individually. Either input may be an undef value.
4950   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4951   if (!BV1 && !N1->isUndef())
4952     return SDValue();
4953   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4954   if (!BV2 && !N2->isUndef())
4955     return SDValue();
4956   // If both operands are undef, that's handled the same way as scalars.
4957   if (!BV1 && !BV2)
4958     return SDValue();
4959 
4960   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4961          "Vector binop with different number of elements in operands?");
4962 
4963   EVT SVT = VT.getScalarType();
4964   EVT LegalSVT = SVT;
4965   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4966     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4967     if (LegalSVT.bitsLT(SVT))
4968       return SDValue();
4969   }
4970   SmallVector<SDValue, 4> Outputs;
4971   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4972   for (unsigned I = 0; I != NumOps; ++I) {
4973     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4974     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4975     if (SVT.isInteger()) {
4976       if (V1->getValueType(0).bitsGT(SVT))
4977         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4978       if (V2->getValueType(0).bitsGT(SVT))
4979         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4980     }
4981 
4982     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4983       return SDValue();
4984 
4985     // Fold one vector element.
4986     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4987     if (LegalSVT != SVT)
4988       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4989 
4990     // Scalar folding only succeeded if the result is a constant or UNDEF.
4991     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4992         ScalarResult.getOpcode() != ISD::ConstantFP)
4993       return SDValue();
4994     Outputs.push_back(ScalarResult);
4995   }
4996 
4997   assert(VT.getVectorNumElements() == Outputs.size() &&
4998          "Vector size mismatch!");
4999 
5000   // We may have a vector type but a scalar result. Create a splat.
5001   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
5002 
5003   // Build a big vector out of the scalar elements we generated.
5004   return getBuildVector(VT, SDLoc(), Outputs);
5005 }
5006 
5007 // TODO: Merge with FoldConstantArithmetic
5008 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5009                                                    const SDLoc &DL, EVT VT,
5010                                                    ArrayRef<SDValue> Ops,
5011                                                    const SDNodeFlags Flags) {
5012   // If the opcode is a target-specific ISD node, there's nothing we can
5013   // do here and the operand rules may not line up with the below, so
5014   // bail early.
5015   if (Opcode >= ISD::BUILTIN_OP_END)
5016     return SDValue();
5017 
5018   if (isUndef(Opcode, Ops))
5019     return getUNDEF(VT);
5020 
5021   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5022   if (!VT.isVector())
5023     return SDValue();
5024 
5025   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5026   // vector width, however we should be able to do constant folds involving
5027   // splat vector nodes too.
5028   if (VT.isScalableVector())
5029     return SDValue();
5030 
5031   // From this point onwards all vectors are assumed to be fixed width.
5032   unsigned NumElts = VT.getVectorNumElements();
5033 
5034   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5035     return !Op.getValueType().isVector() ||
5036            Op.getValueType().getVectorNumElements() == NumElts;
5037   };
5038 
5039   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5040     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5041     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5042            (BV && BV->isConstant());
5043   };
5044 
5045   // All operands must be vector types with the same number of elements as
5046   // the result type and must be either UNDEF or a build vector of constant
5047   // or UNDEF scalars.
5048   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5049       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5050     return SDValue();
5051 
5052   // If we are comparing vectors, then the result needs to be a i1 boolean
5053   // that is then sign-extended back to the legal result type.
5054   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5055 
5056   // Find legal integer scalar type for constant promotion and
5057   // ensure that its scalar size is at least as large as source.
5058   EVT LegalSVT = VT.getScalarType();
5059   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5060     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5061     if (LegalSVT.bitsLT(VT.getScalarType()))
5062       return SDValue();
5063   }
5064 
5065   // Constant fold each scalar lane separately.
5066   SmallVector<SDValue, 4> ScalarResults;
5067   for (unsigned i = 0; i != NumElts; i++) {
5068     SmallVector<SDValue, 4> ScalarOps;
5069     for (SDValue Op : Ops) {
5070       EVT InSVT = Op.getValueType().getScalarType();
5071       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5072       if (!InBV) {
5073         // We've checked that this is UNDEF or a constant of some kind.
5074         if (Op.isUndef())
5075           ScalarOps.push_back(getUNDEF(InSVT));
5076         else
5077           ScalarOps.push_back(Op);
5078         continue;
5079       }
5080 
5081       SDValue ScalarOp = InBV->getOperand(i);
5082       EVT ScalarVT = ScalarOp.getValueType();
5083 
5084       // Build vector (integer) scalar operands may need implicit
5085       // truncation - do this before constant folding.
5086       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5087         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5088 
5089       ScalarOps.push_back(ScalarOp);
5090     }
5091 
5092     // Constant fold the scalar operands.
5093     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5094 
5095     // Legalize the (integer) scalar constant if necessary.
5096     if (LegalSVT != SVT)
5097       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5098 
5099     // Scalar folding only succeeded if the result is a constant or UNDEF.
5100     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5101         ScalarResult.getOpcode() != ISD::ConstantFP)
5102       return SDValue();
5103     ScalarResults.push_back(ScalarResult);
5104   }
5105 
5106   SDValue V = getBuildVector(VT, DL, ScalarResults);
5107   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5108   return V;
5109 }
5110 
5111 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5112                                          EVT VT, SDValue N1, SDValue N2) {
5113   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5114   //       should. That will require dealing with a potentially non-default
5115   //       rounding mode, checking the "opStatus" return value from the APFloat
5116   //       math calculations, and possibly other variations.
5117   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5118   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5119   if (N1CFP && N2CFP) {
5120     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5121     switch (Opcode) {
5122     case ISD::FADD:
5123       C1.add(C2, APFloat::rmNearestTiesToEven);
5124       return getConstantFP(C1, DL, VT);
5125     case ISD::FSUB:
5126       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5127       return getConstantFP(C1, DL, VT);
5128     case ISD::FMUL:
5129       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5130       return getConstantFP(C1, DL, VT);
5131     case ISD::FDIV:
5132       C1.divide(C2, APFloat::rmNearestTiesToEven);
5133       return getConstantFP(C1, DL, VT);
5134     case ISD::FREM:
5135       C1.mod(C2);
5136       return getConstantFP(C1, DL, VT);
5137     case ISD::FCOPYSIGN:
5138       C1.copySign(C2);
5139       return getConstantFP(C1, DL, VT);
5140     default: break;
5141     }
5142   }
5143   if (N1CFP && Opcode == ISD::FP_ROUND) {
5144     APFloat C1 = N1CFP->getValueAPF();    // make copy
5145     bool Unused;
5146     // This can return overflow, underflow, or inexact; we don't care.
5147     // FIXME need to be more flexible about rounding mode.
5148     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5149                       &Unused);
5150     return getConstantFP(C1, DL, VT);
5151   }
5152 
5153   switch (Opcode) {
5154   case ISD::FSUB:
5155     // -0.0 - undef --> undef (consistent with "fneg undef")
5156     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5157       return getUNDEF(VT);
5158     LLVM_FALLTHROUGH;
5159 
5160   case ISD::FADD:
5161   case ISD::FMUL:
5162   case ISD::FDIV:
5163   case ISD::FREM:
5164     // If both operands are undef, the result is undef. If 1 operand is undef,
5165     // the result is NaN. This should match the behavior of the IR optimizer.
5166     if (N1.isUndef() && N2.isUndef())
5167       return getUNDEF(VT);
5168     if (N1.isUndef() || N2.isUndef())
5169       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5170   }
5171   return SDValue();
5172 }
5173 
5174 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5175   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5176 
5177   // There's no need to assert on a byte-aligned pointer. All pointers are at
5178   // least byte aligned.
5179   if (A == Align(1))
5180     return Val;
5181 
5182   FoldingSetNodeID ID;
5183   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5184   ID.AddInteger(A.value());
5185 
5186   void *IP = nullptr;
5187   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5188     return SDValue(E, 0);
5189 
5190   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5191                                          Val.getValueType(), A);
5192   createOperands(N, {Val});
5193 
5194   CSEMap.InsertNode(N, IP);
5195   InsertNode(N);
5196 
5197   SDValue V(N, 0);
5198   NewSDValueDbgMsg(V, "Creating new node: ", this);
5199   return V;
5200 }
5201 
5202 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5203                               SDValue N1, SDValue N2) {
5204   SDNodeFlags Flags;
5205   if (Inserter)
5206     Flags = Inserter->getFlags();
5207   return getNode(Opcode, DL, VT, N1, N2, Flags);
5208 }
5209 
5210 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5211                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5212   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5213   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5214   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5215   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5216 
5217   // Canonicalize constant to RHS if commutative.
5218   if (TLI->isCommutativeBinOp(Opcode)) {
5219     if (N1C && !N2C) {
5220       std::swap(N1C, N2C);
5221       std::swap(N1, N2);
5222     } else if (N1CFP && !N2CFP) {
5223       std::swap(N1CFP, N2CFP);
5224       std::swap(N1, N2);
5225     }
5226   }
5227 
5228   switch (Opcode) {
5229   default: break;
5230   case ISD::TokenFactor:
5231     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5232            N2.getValueType() == MVT::Other && "Invalid token factor!");
5233     // Fold trivial token factors.
5234     if (N1.getOpcode() == ISD::EntryToken) return N2;
5235     if (N2.getOpcode() == ISD::EntryToken) return N1;
5236     if (N1 == N2) return N1;
5237     break;
5238   case ISD::BUILD_VECTOR: {
5239     // Attempt to simplify BUILD_VECTOR.
5240     SDValue Ops[] = {N1, N2};
5241     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5242       return V;
5243     break;
5244   }
5245   case ISD::CONCAT_VECTORS: {
5246     SDValue Ops[] = {N1, N2};
5247     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5248       return V;
5249     break;
5250   }
5251   case ISD::AND:
5252     assert(VT.isInteger() && "This operator does not apply to FP types!");
5253     assert(N1.getValueType() == N2.getValueType() &&
5254            N1.getValueType() == VT && "Binary operator types must match!");
5255     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5256     // worth handling here.
5257     if (N2C && N2C->isNullValue())
5258       return N2;
5259     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5260       return N1;
5261     break;
5262   case ISD::OR:
5263   case ISD::XOR:
5264   case ISD::ADD:
5265   case ISD::SUB:
5266     assert(VT.isInteger() && "This operator does not apply to FP types!");
5267     assert(N1.getValueType() == N2.getValueType() &&
5268            N1.getValueType() == VT && "Binary operator types must match!");
5269     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5270     // it's worth handling here.
5271     if (N2C && N2C->isNullValue())
5272       return N1;
5273     break;
5274   case ISD::MUL:
5275     assert(VT.isInteger() && "This operator does not apply to FP types!");
5276     assert(N1.getValueType() == N2.getValueType() &&
5277            N1.getValueType() == VT && "Binary operator types must match!");
5278     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5279       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5280       APInt N2CImm = N2C->getAPIntValue();
5281       return getVScale(DL, VT, MulImm * N2CImm);
5282     }
5283     break;
5284   case ISD::UDIV:
5285   case ISD::UREM:
5286   case ISD::MULHU:
5287   case ISD::MULHS:
5288   case ISD::SDIV:
5289   case ISD::SREM:
5290   case ISD::SADDSAT:
5291   case ISD::SSUBSAT:
5292   case ISD::UADDSAT:
5293   case ISD::USUBSAT:
5294     assert(VT.isInteger() && "This operator does not apply to FP types!");
5295     assert(N1.getValueType() == N2.getValueType() &&
5296            N1.getValueType() == VT && "Binary operator types must match!");
5297     break;
5298   case ISD::SMIN:
5299   case ISD::UMAX:
5300     assert(VT.isInteger() && "This operator does not apply to FP types!");
5301     assert(N1.getValueType() == N2.getValueType() &&
5302            N1.getValueType() == VT && "Binary operator types must match!");
5303     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5304       return getNode(ISD::OR, DL, VT, N1, N2);
5305     break;
5306   case ISD::SMAX:
5307   case ISD::UMIN:
5308     assert(VT.isInteger() && "This operator does not apply to FP types!");
5309     assert(N1.getValueType() == N2.getValueType() &&
5310            N1.getValueType() == VT && "Binary operator types must match!");
5311     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5312       return getNode(ISD::AND, DL, VT, N1, N2);
5313     break;
5314   case ISD::FADD:
5315   case ISD::FSUB:
5316   case ISD::FMUL:
5317   case ISD::FDIV:
5318   case ISD::FREM:
5319     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5320     assert(N1.getValueType() == N2.getValueType() &&
5321            N1.getValueType() == VT && "Binary operator types must match!");
5322     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5323       return V;
5324     break;
5325   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5326     assert(N1.getValueType() == VT &&
5327            N1.getValueType().isFloatingPoint() &&
5328            N2.getValueType().isFloatingPoint() &&
5329            "Invalid FCOPYSIGN!");
5330     break;
5331   case ISD::SHL:
5332     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5333       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5334       APInt ShiftImm = N2C->getAPIntValue();
5335       return getVScale(DL, VT, MulImm << ShiftImm);
5336     }
5337     LLVM_FALLTHROUGH;
5338   case ISD::SRA:
5339   case ISD::SRL:
5340     if (SDValue V = simplifyShift(N1, N2))
5341       return V;
5342     LLVM_FALLTHROUGH;
5343   case ISD::ROTL:
5344   case ISD::ROTR:
5345     assert(VT == N1.getValueType() &&
5346            "Shift operators return type must be the same as their first arg");
5347     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5348            "Shifts only work on integers");
5349     assert((!VT.isVector() || VT == N2.getValueType()) &&
5350            "Vector shift amounts must be in the same as their first arg");
5351     // Verify that the shift amount VT is big enough to hold valid shift
5352     // amounts.  This catches things like trying to shift an i1024 value by an
5353     // i8, which is easy to fall into in generic code that uses
5354     // TLI.getShiftAmount().
5355     assert(N2.getValueType().getScalarSizeInBits() >=
5356                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5357            "Invalid use of small shift amount with oversized value!");
5358 
5359     // Always fold shifts of i1 values so the code generator doesn't need to
5360     // handle them.  Since we know the size of the shift has to be less than the
5361     // size of the value, the shift/rotate count is guaranteed to be zero.
5362     if (VT == MVT::i1)
5363       return N1;
5364     if (N2C && N2C->isNullValue())
5365       return N1;
5366     break;
5367   case ISD::FP_ROUND:
5368     assert(VT.isFloatingPoint() &&
5369            N1.getValueType().isFloatingPoint() &&
5370            VT.bitsLE(N1.getValueType()) &&
5371            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5372            "Invalid FP_ROUND!");
5373     if (N1.getValueType() == VT) return N1;  // noop conversion.
5374     break;
5375   case ISD::AssertSext:
5376   case ISD::AssertZext: {
5377     EVT EVT = cast<VTSDNode>(N2)->getVT();
5378     assert(VT == N1.getValueType() && "Not an inreg extend!");
5379     assert(VT.isInteger() && EVT.isInteger() &&
5380            "Cannot *_EXTEND_INREG FP types");
5381     assert(!EVT.isVector() &&
5382            "AssertSExt/AssertZExt type should be the vector element type "
5383            "rather than the vector type!");
5384     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5385     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5386     break;
5387   }
5388   case ISD::SIGN_EXTEND_INREG: {
5389     EVT EVT = cast<VTSDNode>(N2)->getVT();
5390     assert(VT == N1.getValueType() && "Not an inreg extend!");
5391     assert(VT.isInteger() && EVT.isInteger() &&
5392            "Cannot *_EXTEND_INREG FP types");
5393     assert(EVT.isVector() == VT.isVector() &&
5394            "SIGN_EXTEND_INREG type should be vector iff the operand "
5395            "type is vector!");
5396     assert((!EVT.isVector() ||
5397             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5398            "Vector element counts must match in SIGN_EXTEND_INREG");
5399     assert(EVT.bitsLE(VT) && "Not extending!");
5400     if (EVT == VT) return N1;  // Not actually extending
5401 
5402     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5403       unsigned FromBits = EVT.getScalarSizeInBits();
5404       Val <<= Val.getBitWidth() - FromBits;
5405       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5406       return getConstant(Val, DL, ConstantVT);
5407     };
5408 
5409     if (N1C) {
5410       const APInt &Val = N1C->getAPIntValue();
5411       return SignExtendInReg(Val, VT);
5412     }
5413     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5414       SmallVector<SDValue, 8> Ops;
5415       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5416       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5417         SDValue Op = N1.getOperand(i);
5418         if (Op.isUndef()) {
5419           Ops.push_back(getUNDEF(OpVT));
5420           continue;
5421         }
5422         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5423         APInt Val = C->getAPIntValue();
5424         Ops.push_back(SignExtendInReg(Val, OpVT));
5425       }
5426       return getBuildVector(VT, DL, Ops);
5427     }
5428     break;
5429   }
5430   case ISD::EXTRACT_VECTOR_ELT:
5431     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5432            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5433              element type of the vector.");
5434 
5435     // Extract from an undefined value or using an undefined index is undefined.
5436     if (N1.isUndef() || N2.isUndef())
5437       return getUNDEF(VT);
5438 
5439     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5440     // vectors. For scalable vectors we will provide appropriate support for
5441     // dealing with arbitrary indices.
5442     if (N2C && N1.getValueType().isFixedLengthVector() &&
5443         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5444       return getUNDEF(VT);
5445 
5446     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5447     // expanding copies of large vectors from registers. This only works for
5448     // fixed length vectors, since we need to know the exact number of
5449     // elements.
5450     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5451         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5452       unsigned Factor =
5453         N1.getOperand(0).getValueType().getVectorNumElements();
5454       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5455                      N1.getOperand(N2C->getZExtValue() / Factor),
5456                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5457     }
5458 
5459     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5460     // lowering is expanding large vector constants.
5461     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5462                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5463       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5464               N1.getValueType().isFixedLengthVector()) &&
5465              "BUILD_VECTOR used for scalable vectors");
5466       unsigned Index =
5467           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5468       SDValue Elt = N1.getOperand(Index);
5469 
5470       if (VT != Elt.getValueType())
5471         // If the vector element type is not legal, the BUILD_VECTOR operands
5472         // are promoted and implicitly truncated, and the result implicitly
5473         // extended. Make that explicit here.
5474         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5475 
5476       return Elt;
5477     }
5478 
5479     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5480     // operations are lowered to scalars.
5481     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5482       // If the indices are the same, return the inserted element else
5483       // if the indices are known different, extract the element from
5484       // the original vector.
5485       SDValue N1Op2 = N1.getOperand(2);
5486       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5487 
5488       if (N1Op2C && N2C) {
5489         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5490           if (VT == N1.getOperand(1).getValueType())
5491             return N1.getOperand(1);
5492           else
5493             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5494         }
5495 
5496         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5497       }
5498     }
5499 
5500     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5501     // when vector types are scalarized and v1iX is legal.
5502     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5503     // Here we are completely ignoring the extract element index (N2),
5504     // which is fine for fixed width vectors, since any index other than 0
5505     // is undefined anyway. However, this cannot be ignored for scalable
5506     // vectors - in theory we could support this, but we don't want to do this
5507     // without a profitability check.
5508     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5509         N1.getValueType().isFixedLengthVector() &&
5510         N1.getValueType().getVectorNumElements() == 1) {
5511       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5512                      N1.getOperand(1));
5513     }
5514     break;
5515   case ISD::EXTRACT_ELEMENT:
5516     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5517     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5518            (N1.getValueType().isInteger() == VT.isInteger()) &&
5519            N1.getValueType() != VT &&
5520            "Wrong types for EXTRACT_ELEMENT!");
5521 
5522     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5523     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5524     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5525     if (N1.getOpcode() == ISD::BUILD_PAIR)
5526       return N1.getOperand(N2C->getZExtValue());
5527 
5528     // EXTRACT_ELEMENT of a constant int is also very common.
5529     if (N1C) {
5530       unsigned ElementSize = VT.getSizeInBits();
5531       unsigned Shift = ElementSize * N2C->getZExtValue();
5532       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5533       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5534     }
5535     break;
5536   case ISD::EXTRACT_SUBVECTOR:
5537     EVT N1VT = N1.getValueType();
5538     assert(VT.isVector() && N1VT.isVector() &&
5539            "Extract subvector VTs must be vectors!");
5540     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5541            "Extract subvector VTs must have the same element type!");
5542     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5543            "Cannot extract a scalable vector from a fixed length vector!");
5544     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5545             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5546            "Extract subvector must be from larger vector to smaller vector!");
5547     assert(N2C && "Extract subvector index must be a constant");
5548     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5549             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5550                 N1VT.getVectorMinNumElements()) &&
5551            "Extract subvector overflow!");
5552     assert(N2C->getAPIntValue().getBitWidth() ==
5553                TLI->getVectorIdxTy(getDataLayout())
5554                    .getSizeInBits()
5555                    .getFixedSize() &&
5556            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5557 
5558     // Trivial extraction.
5559     if (VT == N1VT)
5560       return N1;
5561 
5562     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5563     if (N1.isUndef())
5564       return getUNDEF(VT);
5565 
5566     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5567     // the concat have the same type as the extract.
5568     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5569         VT == N1.getOperand(0).getValueType()) {
5570       unsigned Factor = VT.getVectorMinNumElements();
5571       return N1.getOperand(N2C->getZExtValue() / Factor);
5572     }
5573 
5574     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5575     // during shuffle legalization.
5576     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5577         VT == N1.getOperand(1).getValueType())
5578       return N1.getOperand(1);
5579     break;
5580   }
5581 
5582   // Perform trivial constant folding.
5583   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5584     return SV;
5585 
5586   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5587     return V;
5588 
5589   // Canonicalize an UNDEF to the RHS, even over a constant.
5590   if (N1.isUndef()) {
5591     if (TLI->isCommutativeBinOp(Opcode)) {
5592       std::swap(N1, N2);
5593     } else {
5594       switch (Opcode) {
5595       case ISD::SIGN_EXTEND_INREG:
5596       case ISD::SUB:
5597         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5598       case ISD::UDIV:
5599       case ISD::SDIV:
5600       case ISD::UREM:
5601       case ISD::SREM:
5602       case ISD::SSUBSAT:
5603       case ISD::USUBSAT:
5604         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5605       }
5606     }
5607   }
5608 
5609   // Fold a bunch of operators when the RHS is undef.
5610   if (N2.isUndef()) {
5611     switch (Opcode) {
5612     case ISD::XOR:
5613       if (N1.isUndef())
5614         // Handle undef ^ undef -> 0 special case. This is a common
5615         // idiom (misuse).
5616         return getConstant(0, DL, VT);
5617       LLVM_FALLTHROUGH;
5618     case ISD::ADD:
5619     case ISD::SUB:
5620     case ISD::UDIV:
5621     case ISD::SDIV:
5622     case ISD::UREM:
5623     case ISD::SREM:
5624       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5625     case ISD::MUL:
5626     case ISD::AND:
5627     case ISD::SSUBSAT:
5628     case ISD::USUBSAT:
5629       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5630     case ISD::OR:
5631     case ISD::SADDSAT:
5632     case ISD::UADDSAT:
5633       return getAllOnesConstant(DL, VT);
5634     }
5635   }
5636 
5637   // Memoize this node if possible.
5638   SDNode *N;
5639   SDVTList VTs = getVTList(VT);
5640   SDValue Ops[] = {N1, N2};
5641   if (VT != MVT::Glue) {
5642     FoldingSetNodeID ID;
5643     AddNodeIDNode(ID, Opcode, VTs, Ops);
5644     void *IP = nullptr;
5645     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5646       E->intersectFlagsWith(Flags);
5647       return SDValue(E, 0);
5648     }
5649 
5650     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5651     N->setFlags(Flags);
5652     createOperands(N, Ops);
5653     CSEMap.InsertNode(N, IP);
5654   } else {
5655     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5656     createOperands(N, Ops);
5657   }
5658 
5659   InsertNode(N);
5660   SDValue V = SDValue(N, 0);
5661   NewSDValueDbgMsg(V, "Creating new node: ", this);
5662   return V;
5663 }
5664 
5665 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5666                               SDValue N1, SDValue N2, SDValue N3) {
5667   SDNodeFlags Flags;
5668   if (Inserter)
5669     Flags = Inserter->getFlags();
5670   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
5671 }
5672 
5673 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5674                               SDValue N1, SDValue N2, SDValue N3,
5675                               const SDNodeFlags Flags) {
5676   // Perform various simplifications.
5677   switch (Opcode) {
5678   case ISD::FMA: {
5679     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5680     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5681            N3.getValueType() == VT && "FMA types must match!");
5682     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5683     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5684     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5685     if (N1CFP && N2CFP && N3CFP) {
5686       APFloat  V1 = N1CFP->getValueAPF();
5687       const APFloat &V2 = N2CFP->getValueAPF();
5688       const APFloat &V3 = N3CFP->getValueAPF();
5689       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5690       return getConstantFP(V1, DL, VT);
5691     }
5692     break;
5693   }
5694   case ISD::BUILD_VECTOR: {
5695     // Attempt to simplify BUILD_VECTOR.
5696     SDValue Ops[] = {N1, N2, N3};
5697     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5698       return V;
5699     break;
5700   }
5701   case ISD::CONCAT_VECTORS: {
5702     SDValue Ops[] = {N1, N2, N3};
5703     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5704       return V;
5705     break;
5706   }
5707   case ISD::SETCC: {
5708     assert(VT.isInteger() && "SETCC result type must be an integer!");
5709     assert(N1.getValueType() == N2.getValueType() &&
5710            "SETCC operands must have the same type!");
5711     assert(VT.isVector() == N1.getValueType().isVector() &&
5712            "SETCC type should be vector iff the operand type is vector!");
5713     assert((!VT.isVector() || VT.getVectorElementCount() ==
5714                                   N1.getValueType().getVectorElementCount()) &&
5715            "SETCC vector element counts must match!");
5716     // Use FoldSetCC to simplify SETCC's.
5717     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5718       return V;
5719     // Vector constant folding.
5720     SDValue Ops[] = {N1, N2, N3};
5721     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5722       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5723       return V;
5724     }
5725     break;
5726   }
5727   case ISD::SELECT:
5728   case ISD::VSELECT:
5729     if (SDValue V = simplifySelect(N1, N2, N3))
5730       return V;
5731     break;
5732   case ISD::VECTOR_SHUFFLE:
5733     llvm_unreachable("should use getVectorShuffle constructor!");
5734   case ISD::INSERT_VECTOR_ELT: {
5735     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5736     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5737     // for scalable vectors where we will generate appropriate code to
5738     // deal with out-of-bounds cases correctly.
5739     if (N3C && N1.getValueType().isFixedLengthVector() &&
5740         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5741       return getUNDEF(VT);
5742 
5743     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5744     if (N3.isUndef())
5745       return getUNDEF(VT);
5746 
5747     // If the inserted element is an UNDEF, just use the input vector.
5748     if (N2.isUndef())
5749       return N1;
5750 
5751     break;
5752   }
5753   case ISD::INSERT_SUBVECTOR: {
5754     // Inserting undef into undef is still undef.
5755     if (N1.isUndef() && N2.isUndef())
5756       return getUNDEF(VT);
5757 
5758     EVT N2VT = N2.getValueType();
5759     assert(VT == N1.getValueType() &&
5760            "Dest and insert subvector source types must match!");
5761     assert(VT.isVector() && N2VT.isVector() &&
5762            "Insert subvector VTs must be vectors!");
5763     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5764            "Cannot insert a scalable vector into a fixed length vector!");
5765     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5766             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5767            "Insert subvector must be from smaller vector to larger vector!");
5768     assert(isa<ConstantSDNode>(N3) &&
5769            "Insert subvector index must be constant");
5770     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5771             (N2VT.getVectorMinNumElements() +
5772              cast<ConstantSDNode>(N3)->getZExtValue()) <=
5773                 VT.getVectorMinNumElements()) &&
5774            "Insert subvector overflow!");
5775 
5776     // Trivial insertion.
5777     if (VT == N2VT)
5778       return N2;
5779 
5780     // If this is an insert of an extracted vector into an undef vector, we
5781     // can just use the input to the extract.
5782     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5783         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5784       return N2.getOperand(0);
5785     break;
5786   }
5787   case ISD::BITCAST:
5788     // Fold bit_convert nodes from a type to themselves.
5789     if (N1.getValueType() == VT)
5790       return N1;
5791     break;
5792   }
5793 
5794   // Memoize node if it doesn't produce a flag.
5795   SDNode *N;
5796   SDVTList VTs = getVTList(VT);
5797   SDValue Ops[] = {N1, N2, N3};
5798   if (VT != MVT::Glue) {
5799     FoldingSetNodeID ID;
5800     AddNodeIDNode(ID, Opcode, VTs, Ops);
5801     void *IP = nullptr;
5802     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5803       E->intersectFlagsWith(Flags);
5804       return SDValue(E, 0);
5805     }
5806 
5807     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5808     N->setFlags(Flags);
5809     createOperands(N, Ops);
5810     CSEMap.InsertNode(N, IP);
5811   } else {
5812     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5813     createOperands(N, Ops);
5814   }
5815 
5816   InsertNode(N);
5817   SDValue V = SDValue(N, 0);
5818   NewSDValueDbgMsg(V, "Creating new node: ", this);
5819   return V;
5820 }
5821 
5822 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5823                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5824   SDValue Ops[] = { N1, N2, N3, N4 };
5825   return getNode(Opcode, DL, VT, Ops);
5826 }
5827 
5828 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5829                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5830                               SDValue N5) {
5831   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5832   return getNode(Opcode, DL, VT, Ops);
5833 }
5834 
5835 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5836 /// the incoming stack arguments to be loaded from the stack.
5837 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5838   SmallVector<SDValue, 8> ArgChains;
5839 
5840   // Include the original chain at the beginning of the list. When this is
5841   // used by target LowerCall hooks, this helps legalize find the
5842   // CALLSEQ_BEGIN node.
5843   ArgChains.push_back(Chain);
5844 
5845   // Add a chain value for each stack argument.
5846   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5847        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5848     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5849       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5850         if (FI->getIndex() < 0)
5851           ArgChains.push_back(SDValue(L, 1));
5852 
5853   // Build a tokenfactor for all the chains.
5854   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5855 }
5856 
5857 /// getMemsetValue - Vectorized representation of the memset value
5858 /// operand.
5859 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5860                               const SDLoc &dl) {
5861   assert(!Value.isUndef());
5862 
5863   unsigned NumBits = VT.getScalarSizeInBits();
5864   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5865     assert(C->getAPIntValue().getBitWidth() == 8);
5866     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5867     if (VT.isInteger()) {
5868       bool IsOpaque = VT.getSizeInBits() > 64 ||
5869           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5870       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5871     }
5872     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5873                              VT);
5874   }
5875 
5876   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5877   EVT IntVT = VT.getScalarType();
5878   if (!IntVT.isInteger())
5879     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5880 
5881   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5882   if (NumBits > 8) {
5883     // Use a multiplication with 0x010101... to extend the input to the
5884     // required length.
5885     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5886     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5887                         DAG.getConstant(Magic, dl, IntVT));
5888   }
5889 
5890   if (VT != Value.getValueType() && !VT.isInteger())
5891     Value = DAG.getBitcast(VT.getScalarType(), Value);
5892   if (VT != Value.getValueType())
5893     Value = DAG.getSplatBuildVector(VT, dl, Value);
5894 
5895   return Value;
5896 }
5897 
5898 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5899 /// used when a memcpy is turned into a memset when the source is a constant
5900 /// string ptr.
5901 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5902                                   const TargetLowering &TLI,
5903                                   const ConstantDataArraySlice &Slice) {
5904   // Handle vector with all elements zero.
5905   if (Slice.Array == nullptr) {
5906     if (VT.isInteger())
5907       return DAG.getConstant(0, dl, VT);
5908     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5909       return DAG.getConstantFP(0.0, dl, VT);
5910     else if (VT.isVector()) {
5911       unsigned NumElts = VT.getVectorNumElements();
5912       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5913       return DAG.getNode(ISD::BITCAST, dl, VT,
5914                          DAG.getConstant(0, dl,
5915                                          EVT::getVectorVT(*DAG.getContext(),
5916                                                           EltVT, NumElts)));
5917     } else
5918       llvm_unreachable("Expected type!");
5919   }
5920 
5921   assert(!VT.isVector() && "Can't handle vector type here!");
5922   unsigned NumVTBits = VT.getSizeInBits();
5923   unsigned NumVTBytes = NumVTBits / 8;
5924   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5925 
5926   APInt Val(NumVTBits, 0);
5927   if (DAG.getDataLayout().isLittleEndian()) {
5928     for (unsigned i = 0; i != NumBytes; ++i)
5929       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5930   } else {
5931     for (unsigned i = 0; i != NumBytes; ++i)
5932       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5933   }
5934 
5935   // If the "cost" of materializing the integer immediate is less than the cost
5936   // of a load, then it is cost effective to turn the load into the immediate.
5937   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5938   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5939     return DAG.getConstant(Val, dl, VT);
5940   return SDValue(nullptr, 0);
5941 }
5942 
5943 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
5944                                            const SDLoc &DL,
5945                                            const SDNodeFlags Flags) {
5946   EVT VT = Base.getValueType();
5947   SDValue Index;
5948 
5949   if (Offset.isScalable())
5950     Index = getVScale(DL, Base.getValueType(),
5951                       APInt(Base.getValueSizeInBits().getFixedSize(),
5952                             Offset.getKnownMinSize()));
5953   else
5954     Index = getConstant(Offset.getFixedSize(), DL, VT);
5955 
5956   return getMemBasePlusOffset(Base, Index, DL, Flags);
5957 }
5958 
5959 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5960                                            const SDLoc &DL,
5961                                            const SDNodeFlags Flags) {
5962   assert(Offset.getValueType().isInteger());
5963   EVT BasePtrVT = Ptr.getValueType();
5964   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5965 }
5966 
5967 /// Returns true if memcpy source is constant data.
5968 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5969   uint64_t SrcDelta = 0;
5970   GlobalAddressSDNode *G = nullptr;
5971   if (Src.getOpcode() == ISD::GlobalAddress)
5972     G = cast<GlobalAddressSDNode>(Src);
5973   else if (Src.getOpcode() == ISD::ADD &&
5974            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5975            Src.getOperand(1).getOpcode() == ISD::Constant) {
5976     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5977     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5978   }
5979   if (!G)
5980     return false;
5981 
5982   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5983                                   SrcDelta + G->getOffset());
5984 }
5985 
5986 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
5987                                       SelectionDAG &DAG) {
5988   // On Darwin, -Os means optimize for size without hurting performance, so
5989   // only really optimize for size when -Oz (MinSize) is used.
5990   if (MF.getTarget().getTargetTriple().isOSDarwin())
5991     return MF.getFunction().hasMinSize();
5992   return DAG.shouldOptForSize();
5993 }
5994 
5995 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5996                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5997                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5998                           SmallVector<SDValue, 16> &OutStoreChains) {
5999   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6000   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6001   SmallVector<SDValue, 16> GluedLoadChains;
6002   for (unsigned i = From; i < To; ++i) {
6003     OutChains.push_back(OutLoadChains[i]);
6004     GluedLoadChains.push_back(OutLoadChains[i]);
6005   }
6006 
6007   // Chain for all loads.
6008   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6009                                   GluedLoadChains);
6010 
6011   for (unsigned i = From; i < To; ++i) {
6012     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6013     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6014                                   ST->getBasePtr(), ST->getMemoryVT(),
6015                                   ST->getMemOperand());
6016     OutChains.push_back(NewStore);
6017   }
6018 }
6019 
6020 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6021                                        SDValue Chain, SDValue Dst, SDValue Src,
6022                                        uint64_t Size, Align Alignment,
6023                                        bool isVol, bool AlwaysInline,
6024                                        MachinePointerInfo DstPtrInfo,
6025                                        MachinePointerInfo SrcPtrInfo) {
6026   // Turn a memcpy of undef to nop.
6027   // FIXME: We need to honor volatile even is Src is undef.
6028   if (Src.isUndef())
6029     return Chain;
6030 
6031   // Expand memcpy to a series of load and store ops if the size operand falls
6032   // below a certain threshold.
6033   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6034   // rather than maybe a humongous number of loads and stores.
6035   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6036   const DataLayout &DL = DAG.getDataLayout();
6037   LLVMContext &C = *DAG.getContext();
6038   std::vector<EVT> MemOps;
6039   bool DstAlignCanChange = false;
6040   MachineFunction &MF = DAG.getMachineFunction();
6041   MachineFrameInfo &MFI = MF.getFrameInfo();
6042   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6043   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6044   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6045     DstAlignCanChange = true;
6046   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6047   if (!SrcAlign || Alignment > *SrcAlign)
6048     SrcAlign = Alignment;
6049   assert(SrcAlign && "SrcAlign must be set");
6050   ConstantDataArraySlice Slice;
6051   // If marked as volatile, perform a copy even when marked as constant.
6052   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6053   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6054   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6055   const MemOp Op = isZeroConstant
6056                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6057                                     /*IsZeroMemset*/ true, isVol)
6058                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6059                                      *SrcAlign, isVol, CopyFromConstant);
6060   if (!TLI.findOptimalMemOpLowering(
6061           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6062           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6063     return SDValue();
6064 
6065   if (DstAlignCanChange) {
6066     Type *Ty = MemOps[0].getTypeForEVT(C);
6067     Align NewAlign = DL.getABITypeAlign(Ty);
6068 
6069     // Don't promote to an alignment that would require dynamic stack
6070     // realignment.
6071     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6072     if (!TRI->needsStackRealignment(MF))
6073       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6074         NewAlign = NewAlign / 2;
6075 
6076     if (NewAlign > Alignment) {
6077       // Give the stack frame object a larger alignment if needed.
6078       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6079         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6080       Alignment = NewAlign;
6081     }
6082   }
6083 
6084   MachineMemOperand::Flags MMOFlags =
6085       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6086   SmallVector<SDValue, 16> OutLoadChains;
6087   SmallVector<SDValue, 16> OutStoreChains;
6088   SmallVector<SDValue, 32> OutChains;
6089   unsigned NumMemOps = MemOps.size();
6090   uint64_t SrcOff = 0, DstOff = 0;
6091   for (unsigned i = 0; i != NumMemOps; ++i) {
6092     EVT VT = MemOps[i];
6093     unsigned VTSize = VT.getSizeInBits() / 8;
6094     SDValue Value, Store;
6095 
6096     if (VTSize > Size) {
6097       // Issuing an unaligned load / store pair  that overlaps with the previous
6098       // pair. Adjust the offset accordingly.
6099       assert(i == NumMemOps-1 && i != 0);
6100       SrcOff -= VTSize - Size;
6101       DstOff -= VTSize - Size;
6102     }
6103 
6104     if (CopyFromConstant &&
6105         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6106       // It's unlikely a store of a vector immediate can be done in a single
6107       // instruction. It would require a load from a constantpool first.
6108       // We only handle zero vectors here.
6109       // FIXME: Handle other cases where store of vector immediate is done in
6110       // a single instruction.
6111       ConstantDataArraySlice SubSlice;
6112       if (SrcOff < Slice.Length) {
6113         SubSlice = Slice;
6114         SubSlice.move(SrcOff);
6115       } else {
6116         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6117         SubSlice.Array = nullptr;
6118         SubSlice.Offset = 0;
6119         SubSlice.Length = VTSize;
6120       }
6121       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6122       if (Value.getNode()) {
6123         Store = DAG.getStore(
6124             Chain, dl, Value,
6125             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6126             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6127         OutChains.push_back(Store);
6128       }
6129     }
6130 
6131     if (!Store.getNode()) {
6132       // The type might not be legal for the target.  This should only happen
6133       // if the type is smaller than a legal type, as on PPC, so the right
6134       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6135       // to Load/Store if NVT==VT.
6136       // FIXME does the case above also need this?
6137       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6138       assert(NVT.bitsGE(VT));
6139 
6140       bool isDereferenceable =
6141         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6142       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6143       if (isDereferenceable)
6144         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6145 
6146       Value = DAG.getExtLoad(
6147           ISD::EXTLOAD, dl, NVT, Chain,
6148           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6149           SrcPtrInfo.getWithOffset(SrcOff), VT,
6150           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags);
6151       OutLoadChains.push_back(Value.getValue(1));
6152 
6153       Store = DAG.getTruncStore(
6154           Chain, dl, Value,
6155           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6156           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6157       OutStoreChains.push_back(Store);
6158     }
6159     SrcOff += VTSize;
6160     DstOff += VTSize;
6161     Size -= VTSize;
6162   }
6163 
6164   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6165                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6166   unsigned NumLdStInMemcpy = OutStoreChains.size();
6167 
6168   if (NumLdStInMemcpy) {
6169     // It may be that memcpy might be converted to memset if it's memcpy
6170     // of constants. In such a case, we won't have loads and stores, but
6171     // just stores. In the absence of loads, there is nothing to gang up.
6172     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6173       // If target does not care, just leave as it.
6174       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6175         OutChains.push_back(OutLoadChains[i]);
6176         OutChains.push_back(OutStoreChains[i]);
6177       }
6178     } else {
6179       // Ld/St less than/equal limit set by target.
6180       if (NumLdStInMemcpy <= GluedLdStLimit) {
6181           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6182                                         NumLdStInMemcpy, OutLoadChains,
6183                                         OutStoreChains);
6184       } else {
6185         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6186         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6187         unsigned GlueIter = 0;
6188 
6189         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6190           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6191           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6192 
6193           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6194                                        OutLoadChains, OutStoreChains);
6195           GlueIter += GluedLdStLimit;
6196         }
6197 
6198         // Residual ld/st.
6199         if (RemainingLdStInMemcpy) {
6200           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6201                                         RemainingLdStInMemcpy, OutLoadChains,
6202                                         OutStoreChains);
6203         }
6204       }
6205     }
6206   }
6207   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6208 }
6209 
6210 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6211                                         SDValue Chain, SDValue Dst, SDValue Src,
6212                                         uint64_t Size, Align Alignment,
6213                                         bool isVol, bool AlwaysInline,
6214                                         MachinePointerInfo DstPtrInfo,
6215                                         MachinePointerInfo SrcPtrInfo) {
6216   // Turn a memmove of undef to nop.
6217   // FIXME: We need to honor volatile even is Src is undef.
6218   if (Src.isUndef())
6219     return Chain;
6220 
6221   // Expand memmove to a series of load and store ops if the size operand falls
6222   // below a certain threshold.
6223   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6224   const DataLayout &DL = DAG.getDataLayout();
6225   LLVMContext &C = *DAG.getContext();
6226   std::vector<EVT> MemOps;
6227   bool DstAlignCanChange = false;
6228   MachineFunction &MF = DAG.getMachineFunction();
6229   MachineFrameInfo &MFI = MF.getFrameInfo();
6230   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6231   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6232   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6233     DstAlignCanChange = true;
6234   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6235   if (!SrcAlign || Alignment > *SrcAlign)
6236     SrcAlign = Alignment;
6237   assert(SrcAlign && "SrcAlign must be set");
6238   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6239   if (!TLI.findOptimalMemOpLowering(
6240           MemOps, Limit,
6241           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6242                       /*IsVolatile*/ true),
6243           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6244           MF.getFunction().getAttributes()))
6245     return SDValue();
6246 
6247   if (DstAlignCanChange) {
6248     Type *Ty = MemOps[0].getTypeForEVT(C);
6249     Align NewAlign = DL.getABITypeAlign(Ty);
6250     if (NewAlign > Alignment) {
6251       // Give the stack frame object a larger alignment if needed.
6252       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6253         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6254       Alignment = NewAlign;
6255     }
6256   }
6257 
6258   MachineMemOperand::Flags MMOFlags =
6259       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6260   uint64_t SrcOff = 0, DstOff = 0;
6261   SmallVector<SDValue, 8> LoadValues;
6262   SmallVector<SDValue, 8> LoadChains;
6263   SmallVector<SDValue, 8> OutChains;
6264   unsigned NumMemOps = MemOps.size();
6265   for (unsigned i = 0; i < NumMemOps; i++) {
6266     EVT VT = MemOps[i];
6267     unsigned VTSize = VT.getSizeInBits() / 8;
6268     SDValue Value;
6269 
6270     bool isDereferenceable =
6271       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6272     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6273     if (isDereferenceable)
6274       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6275 
6276     Value =
6277         DAG.getLoad(VT, dl, Chain,
6278                     DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6279                     SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags);
6280     LoadValues.push_back(Value);
6281     LoadChains.push_back(Value.getValue(1));
6282     SrcOff += VTSize;
6283   }
6284   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6285   OutChains.clear();
6286   for (unsigned i = 0; i < NumMemOps; i++) {
6287     EVT VT = MemOps[i];
6288     unsigned VTSize = VT.getSizeInBits() / 8;
6289     SDValue Store;
6290 
6291     Store =
6292         DAG.getStore(Chain, dl, LoadValues[i],
6293                      DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6294                      DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6295     OutChains.push_back(Store);
6296     DstOff += VTSize;
6297   }
6298 
6299   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6300 }
6301 
6302 /// Lower the call to 'memset' intrinsic function into a series of store
6303 /// operations.
6304 ///
6305 /// \param DAG Selection DAG where lowered code is placed.
6306 /// \param dl Link to corresponding IR location.
6307 /// \param Chain Control flow dependency.
6308 /// \param Dst Pointer to destination memory location.
6309 /// \param Src Value of byte to write into the memory.
6310 /// \param Size Number of bytes to write.
6311 /// \param Alignment Alignment of the destination in bytes.
6312 /// \param isVol True if destination is volatile.
6313 /// \param DstPtrInfo IR information on the memory pointer.
6314 /// \returns New head in the control flow, if lowering was successful, empty
6315 /// SDValue otherwise.
6316 ///
6317 /// The function tries to replace 'llvm.memset' intrinsic with several store
6318 /// operations and value calculation code. This is usually profitable for small
6319 /// memory size.
6320 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6321                                SDValue Chain, SDValue Dst, SDValue Src,
6322                                uint64_t Size, Align Alignment, bool isVol,
6323                                MachinePointerInfo DstPtrInfo) {
6324   // Turn a memset of undef to nop.
6325   // FIXME: We need to honor volatile even is Src is undef.
6326   if (Src.isUndef())
6327     return Chain;
6328 
6329   // Expand memset to a series of load/store ops if the size operand
6330   // falls below a certain threshold.
6331   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6332   std::vector<EVT> MemOps;
6333   bool DstAlignCanChange = false;
6334   MachineFunction &MF = DAG.getMachineFunction();
6335   MachineFrameInfo &MFI = MF.getFrameInfo();
6336   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6337   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6338   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6339     DstAlignCanChange = true;
6340   bool IsZeroVal =
6341     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6342   if (!TLI.findOptimalMemOpLowering(
6343           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6344           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6345           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6346     return SDValue();
6347 
6348   if (DstAlignCanChange) {
6349     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6350     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6351     if (NewAlign > Alignment) {
6352       // Give the stack frame object a larger alignment if needed.
6353       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6354         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6355       Alignment = NewAlign;
6356     }
6357   }
6358 
6359   SmallVector<SDValue, 8> OutChains;
6360   uint64_t DstOff = 0;
6361   unsigned NumMemOps = MemOps.size();
6362 
6363   // Find the largest store and generate the bit pattern for it.
6364   EVT LargestVT = MemOps[0];
6365   for (unsigned i = 1; i < NumMemOps; i++)
6366     if (MemOps[i].bitsGT(LargestVT))
6367       LargestVT = MemOps[i];
6368   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6369 
6370   for (unsigned i = 0; i < NumMemOps; i++) {
6371     EVT VT = MemOps[i];
6372     unsigned VTSize = VT.getSizeInBits() / 8;
6373     if (VTSize > Size) {
6374       // Issuing an unaligned load / store pair  that overlaps with the previous
6375       // pair. Adjust the offset accordingly.
6376       assert(i == NumMemOps-1 && i != 0);
6377       DstOff -= VTSize - Size;
6378     }
6379 
6380     // If this store is smaller than the largest store see whether we can get
6381     // the smaller value for free with a truncate.
6382     SDValue Value = MemSetValue;
6383     if (VT.bitsLT(LargestVT)) {
6384       if (!LargestVT.isVector() && !VT.isVector() &&
6385           TLI.isTruncateFree(LargestVT, VT))
6386         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6387       else
6388         Value = getMemsetValue(Src, VT, DAG, dl);
6389     }
6390     assert(Value.getValueType() == VT && "Value with wrong type.");
6391     SDValue Store = DAG.getStore(
6392         Chain, dl, Value,
6393         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6394         DstPtrInfo.getWithOffset(DstOff), Alignment,
6395         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6396     OutChains.push_back(Store);
6397     DstOff += VT.getSizeInBits() / 8;
6398     Size -= VTSize;
6399   }
6400 
6401   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6402 }
6403 
6404 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6405                                             unsigned AS) {
6406   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6407   // pointer operands can be losslessly bitcasted to pointers of address space 0
6408   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6409     report_fatal_error("cannot lower memory intrinsic in address space " +
6410                        Twine(AS));
6411   }
6412 }
6413 
6414 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6415                                 SDValue Src, SDValue Size, Align Alignment,
6416                                 bool isVol, bool AlwaysInline, bool isTailCall,
6417                                 MachinePointerInfo DstPtrInfo,
6418                                 MachinePointerInfo SrcPtrInfo) {
6419   // Check to see if we should lower the memcpy to loads and stores first.
6420   // For cases within the target-specified limits, this is the best choice.
6421   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6422   if (ConstantSize) {
6423     // Memcpy with size zero? Just return the original chain.
6424     if (ConstantSize->isNullValue())
6425       return Chain;
6426 
6427     SDValue Result = getMemcpyLoadsAndStores(
6428         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6429         isVol, false, DstPtrInfo, SrcPtrInfo);
6430     if (Result.getNode())
6431       return Result;
6432   }
6433 
6434   // Then check to see if we should lower the memcpy with target-specific
6435   // code. If the target chooses to do this, this is the next best.
6436   if (TSI) {
6437     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6438         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6439         DstPtrInfo, SrcPtrInfo);
6440     if (Result.getNode())
6441       return Result;
6442   }
6443 
6444   // If we really need inline code and the target declined to provide it,
6445   // use a (potentially long) sequence of loads and stores.
6446   if (AlwaysInline) {
6447     assert(ConstantSize && "AlwaysInline requires a constant size!");
6448     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6449                                    ConstantSize->getZExtValue(), Alignment,
6450                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6451   }
6452 
6453   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6454   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6455 
6456   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6457   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6458   // respect volatile, so they may do things like read or write memory
6459   // beyond the given memory regions. But fixing this isn't easy, and most
6460   // people don't care.
6461 
6462   // Emit a library call.
6463   TargetLowering::ArgListTy Args;
6464   TargetLowering::ArgListEntry Entry;
6465   Entry.Ty = Type::getInt8PtrTy(*getContext());
6466   Entry.Node = Dst; Args.push_back(Entry);
6467   Entry.Node = Src; Args.push_back(Entry);
6468 
6469   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6470   Entry.Node = Size; Args.push_back(Entry);
6471   // FIXME: pass in SDLoc
6472   TargetLowering::CallLoweringInfo CLI(*this);
6473   CLI.setDebugLoc(dl)
6474       .setChain(Chain)
6475       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6476                     Dst.getValueType().getTypeForEVT(*getContext()),
6477                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6478                                       TLI->getPointerTy(getDataLayout())),
6479                     std::move(Args))
6480       .setDiscardResult()
6481       .setTailCall(isTailCall);
6482 
6483   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6484   return CallResult.second;
6485 }
6486 
6487 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6488                                       SDValue Dst, unsigned DstAlign,
6489                                       SDValue Src, unsigned SrcAlign,
6490                                       SDValue Size, Type *SizeTy,
6491                                       unsigned ElemSz, bool isTailCall,
6492                                       MachinePointerInfo DstPtrInfo,
6493                                       MachinePointerInfo SrcPtrInfo) {
6494   // Emit a library call.
6495   TargetLowering::ArgListTy Args;
6496   TargetLowering::ArgListEntry Entry;
6497   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6498   Entry.Node = Dst;
6499   Args.push_back(Entry);
6500 
6501   Entry.Node = Src;
6502   Args.push_back(Entry);
6503 
6504   Entry.Ty = SizeTy;
6505   Entry.Node = Size;
6506   Args.push_back(Entry);
6507 
6508   RTLIB::Libcall LibraryCall =
6509       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6510   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6511     report_fatal_error("Unsupported element size");
6512 
6513   TargetLowering::CallLoweringInfo CLI(*this);
6514   CLI.setDebugLoc(dl)
6515       .setChain(Chain)
6516       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6517                     Type::getVoidTy(*getContext()),
6518                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6519                                       TLI->getPointerTy(getDataLayout())),
6520                     std::move(Args))
6521       .setDiscardResult()
6522       .setTailCall(isTailCall);
6523 
6524   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6525   return CallResult.second;
6526 }
6527 
6528 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6529                                  SDValue Src, SDValue Size, Align Alignment,
6530                                  bool isVol, bool isTailCall,
6531                                  MachinePointerInfo DstPtrInfo,
6532                                  MachinePointerInfo SrcPtrInfo) {
6533   // Check to see if we should lower the memmove to loads and stores first.
6534   // For cases within the target-specified limits, this is the best choice.
6535   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6536   if (ConstantSize) {
6537     // Memmove with size zero? Just return the original chain.
6538     if (ConstantSize->isNullValue())
6539       return Chain;
6540 
6541     SDValue Result = getMemmoveLoadsAndStores(
6542         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6543         isVol, false, DstPtrInfo, SrcPtrInfo);
6544     if (Result.getNode())
6545       return Result;
6546   }
6547 
6548   // Then check to see if we should lower the memmove with target-specific
6549   // code. If the target chooses to do this, this is the next best.
6550   if (TSI) {
6551     SDValue Result =
6552         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6553                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6554     if (Result.getNode())
6555       return Result;
6556   }
6557 
6558   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6559   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6560 
6561   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6562   // not be safe.  See memcpy above for more details.
6563 
6564   // Emit a library call.
6565   TargetLowering::ArgListTy Args;
6566   TargetLowering::ArgListEntry Entry;
6567   Entry.Ty = Type::getInt8PtrTy(*getContext());
6568   Entry.Node = Dst; Args.push_back(Entry);
6569   Entry.Node = Src; Args.push_back(Entry);
6570 
6571   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6572   Entry.Node = Size; Args.push_back(Entry);
6573   // FIXME:  pass in SDLoc
6574   TargetLowering::CallLoweringInfo CLI(*this);
6575   CLI.setDebugLoc(dl)
6576       .setChain(Chain)
6577       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6578                     Dst.getValueType().getTypeForEVT(*getContext()),
6579                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6580                                       TLI->getPointerTy(getDataLayout())),
6581                     std::move(Args))
6582       .setDiscardResult()
6583       .setTailCall(isTailCall);
6584 
6585   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6586   return CallResult.second;
6587 }
6588 
6589 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6590                                        SDValue Dst, unsigned DstAlign,
6591                                        SDValue Src, unsigned SrcAlign,
6592                                        SDValue Size, Type *SizeTy,
6593                                        unsigned ElemSz, bool isTailCall,
6594                                        MachinePointerInfo DstPtrInfo,
6595                                        MachinePointerInfo SrcPtrInfo) {
6596   // Emit a library call.
6597   TargetLowering::ArgListTy Args;
6598   TargetLowering::ArgListEntry Entry;
6599   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6600   Entry.Node = Dst;
6601   Args.push_back(Entry);
6602 
6603   Entry.Node = Src;
6604   Args.push_back(Entry);
6605 
6606   Entry.Ty = SizeTy;
6607   Entry.Node = Size;
6608   Args.push_back(Entry);
6609 
6610   RTLIB::Libcall LibraryCall =
6611       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6612   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6613     report_fatal_error("Unsupported element size");
6614 
6615   TargetLowering::CallLoweringInfo CLI(*this);
6616   CLI.setDebugLoc(dl)
6617       .setChain(Chain)
6618       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6619                     Type::getVoidTy(*getContext()),
6620                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6621                                       TLI->getPointerTy(getDataLayout())),
6622                     std::move(Args))
6623       .setDiscardResult()
6624       .setTailCall(isTailCall);
6625 
6626   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6627   return CallResult.second;
6628 }
6629 
6630 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6631                                 SDValue Src, SDValue Size, Align Alignment,
6632                                 bool isVol, bool isTailCall,
6633                                 MachinePointerInfo DstPtrInfo) {
6634   // Check to see if we should lower the memset to stores first.
6635   // For cases within the target-specified limits, this is the best choice.
6636   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6637   if (ConstantSize) {
6638     // Memset with size zero? Just return the original chain.
6639     if (ConstantSize->isNullValue())
6640       return Chain;
6641 
6642     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6643                                      ConstantSize->getZExtValue(), Alignment,
6644                                      isVol, DstPtrInfo);
6645 
6646     if (Result.getNode())
6647       return Result;
6648   }
6649 
6650   // Then check to see if we should lower the memset with target-specific
6651   // code. If the target chooses to do this, this is the next best.
6652   if (TSI) {
6653     SDValue Result = TSI->EmitTargetCodeForMemset(
6654         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6655     if (Result.getNode())
6656       return Result;
6657   }
6658 
6659   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6660 
6661   // Emit a library call.
6662   TargetLowering::ArgListTy Args;
6663   TargetLowering::ArgListEntry Entry;
6664   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6665   Args.push_back(Entry);
6666   Entry.Node = Src;
6667   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6668   Args.push_back(Entry);
6669   Entry.Node = Size;
6670   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6671   Args.push_back(Entry);
6672 
6673   // FIXME: pass in SDLoc
6674   TargetLowering::CallLoweringInfo CLI(*this);
6675   CLI.setDebugLoc(dl)
6676       .setChain(Chain)
6677       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6678                     Dst.getValueType().getTypeForEVT(*getContext()),
6679                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6680                                       TLI->getPointerTy(getDataLayout())),
6681                     std::move(Args))
6682       .setDiscardResult()
6683       .setTailCall(isTailCall);
6684 
6685   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6686   return CallResult.second;
6687 }
6688 
6689 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6690                                       SDValue Dst, unsigned DstAlign,
6691                                       SDValue Value, SDValue Size, Type *SizeTy,
6692                                       unsigned ElemSz, bool isTailCall,
6693                                       MachinePointerInfo DstPtrInfo) {
6694   // Emit a library call.
6695   TargetLowering::ArgListTy Args;
6696   TargetLowering::ArgListEntry Entry;
6697   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6698   Entry.Node = Dst;
6699   Args.push_back(Entry);
6700 
6701   Entry.Ty = Type::getInt8Ty(*getContext());
6702   Entry.Node = Value;
6703   Args.push_back(Entry);
6704 
6705   Entry.Ty = SizeTy;
6706   Entry.Node = Size;
6707   Args.push_back(Entry);
6708 
6709   RTLIB::Libcall LibraryCall =
6710       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6711   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6712     report_fatal_error("Unsupported element size");
6713 
6714   TargetLowering::CallLoweringInfo CLI(*this);
6715   CLI.setDebugLoc(dl)
6716       .setChain(Chain)
6717       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6718                     Type::getVoidTy(*getContext()),
6719                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6720                                       TLI->getPointerTy(getDataLayout())),
6721                     std::move(Args))
6722       .setDiscardResult()
6723       .setTailCall(isTailCall);
6724 
6725   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6726   return CallResult.second;
6727 }
6728 
6729 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6730                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6731                                 MachineMemOperand *MMO) {
6732   FoldingSetNodeID ID;
6733   ID.AddInteger(MemVT.getRawBits());
6734   AddNodeIDNode(ID, Opcode, VTList, Ops);
6735   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6736   void* IP = nullptr;
6737   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6738     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6739     return SDValue(E, 0);
6740   }
6741 
6742   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6743                                     VTList, MemVT, MMO);
6744   createOperands(N, Ops);
6745 
6746   CSEMap.InsertNode(N, IP);
6747   InsertNode(N);
6748   return SDValue(N, 0);
6749 }
6750 
6751 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6752                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6753                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6754                                        MachineMemOperand *MMO) {
6755   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6756          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6757   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6758 
6759   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6760   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6761 }
6762 
6763 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6764                                 SDValue Chain, SDValue Ptr, SDValue Val,
6765                                 MachineMemOperand *MMO) {
6766   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6767           Opcode == ISD::ATOMIC_LOAD_SUB ||
6768           Opcode == ISD::ATOMIC_LOAD_AND ||
6769           Opcode == ISD::ATOMIC_LOAD_CLR ||
6770           Opcode == ISD::ATOMIC_LOAD_OR ||
6771           Opcode == ISD::ATOMIC_LOAD_XOR ||
6772           Opcode == ISD::ATOMIC_LOAD_NAND ||
6773           Opcode == ISD::ATOMIC_LOAD_MIN ||
6774           Opcode == ISD::ATOMIC_LOAD_MAX ||
6775           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6776           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6777           Opcode == ISD::ATOMIC_LOAD_FADD ||
6778           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6779           Opcode == ISD::ATOMIC_SWAP ||
6780           Opcode == ISD::ATOMIC_STORE) &&
6781          "Invalid Atomic Op");
6782 
6783   EVT VT = Val.getValueType();
6784 
6785   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6786                                                getVTList(VT, MVT::Other);
6787   SDValue Ops[] = {Chain, Ptr, Val};
6788   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6789 }
6790 
6791 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6792                                 EVT VT, SDValue Chain, SDValue Ptr,
6793                                 MachineMemOperand *MMO) {
6794   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6795 
6796   SDVTList VTs = getVTList(VT, MVT::Other);
6797   SDValue Ops[] = {Chain, Ptr};
6798   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6799 }
6800 
6801 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6802 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6803   if (Ops.size() == 1)
6804     return Ops[0];
6805 
6806   SmallVector<EVT, 4> VTs;
6807   VTs.reserve(Ops.size());
6808   for (unsigned i = 0; i < Ops.size(); ++i)
6809     VTs.push_back(Ops[i].getValueType());
6810   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6811 }
6812 
6813 SDValue SelectionDAG::getMemIntrinsicNode(
6814     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6815     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
6816     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6817   if (!Size && MemVT.isScalableVector())
6818     Size = MemoryLocation::UnknownSize;
6819   else if (!Size)
6820     Size = MemVT.getStoreSize();
6821 
6822   MachineFunction &MF = getMachineFunction();
6823   MachineMemOperand *MMO =
6824       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
6825 
6826   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6827 }
6828 
6829 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6830                                           SDVTList VTList,
6831                                           ArrayRef<SDValue> Ops, EVT MemVT,
6832                                           MachineMemOperand *MMO) {
6833   assert((Opcode == ISD::INTRINSIC_VOID ||
6834           Opcode == ISD::INTRINSIC_W_CHAIN ||
6835           Opcode == ISD::PREFETCH ||
6836           ((int)Opcode <= std::numeric_limits<int>::max() &&
6837            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6838          "Opcode is not a memory-accessing opcode!");
6839 
6840   // Memoize the node unless it returns a flag.
6841   MemIntrinsicSDNode *N;
6842   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6843     FoldingSetNodeID ID;
6844     AddNodeIDNode(ID, Opcode, VTList, Ops);
6845     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6846         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6847     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6848     void *IP = nullptr;
6849     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6850       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6851       return SDValue(E, 0);
6852     }
6853 
6854     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6855                                       VTList, MemVT, MMO);
6856     createOperands(N, Ops);
6857 
6858   CSEMap.InsertNode(N, IP);
6859   } else {
6860     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6861                                       VTList, MemVT, MMO);
6862     createOperands(N, Ops);
6863   }
6864   InsertNode(N);
6865   SDValue V(N, 0);
6866   NewSDValueDbgMsg(V, "Creating new node: ", this);
6867   return V;
6868 }
6869 
6870 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6871                                       SDValue Chain, int FrameIndex,
6872                                       int64_t Size, int64_t Offset) {
6873   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6874   const auto VTs = getVTList(MVT::Other);
6875   SDValue Ops[2] = {
6876       Chain,
6877       getFrameIndex(FrameIndex,
6878                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6879                     true)};
6880 
6881   FoldingSetNodeID ID;
6882   AddNodeIDNode(ID, Opcode, VTs, Ops);
6883   ID.AddInteger(FrameIndex);
6884   ID.AddInteger(Size);
6885   ID.AddInteger(Offset);
6886   void *IP = nullptr;
6887   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6888     return SDValue(E, 0);
6889 
6890   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6891       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6892   createOperands(N, Ops);
6893   CSEMap.InsertNode(N, IP);
6894   InsertNode(N);
6895   SDValue V(N, 0);
6896   NewSDValueDbgMsg(V, "Creating new node: ", this);
6897   return V;
6898 }
6899 
6900 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
6901                                          uint64_t Guid, uint64_t Index,
6902                                          uint32_t Attr) {
6903   const unsigned Opcode = ISD::PSEUDO_PROBE;
6904   const auto VTs = getVTList(MVT::Other);
6905   SDValue Ops[] = {Chain};
6906   FoldingSetNodeID ID;
6907   AddNodeIDNode(ID, Opcode, VTs, Ops);
6908   ID.AddInteger(Guid);
6909   ID.AddInteger(Index);
6910   void *IP = nullptr;
6911   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
6912     return SDValue(E, 0);
6913 
6914   auto *N = newSDNode<PseudoProbeSDNode>(
6915       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
6916   createOperands(N, Ops);
6917   CSEMap.InsertNode(N, IP);
6918   InsertNode(N);
6919   SDValue V(N, 0);
6920   NewSDValueDbgMsg(V, "Creating new node: ", this);
6921   return V;
6922 }
6923 
6924 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6925 /// MachinePointerInfo record from it.  This is particularly useful because the
6926 /// code generator has many cases where it doesn't bother passing in a
6927 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6928 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6929                                            SelectionDAG &DAG, SDValue Ptr,
6930                                            int64_t Offset = 0) {
6931   // If this is FI+Offset, we can model it.
6932   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6933     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6934                                              FI->getIndex(), Offset);
6935 
6936   // If this is (FI+Offset1)+Offset2, we can model it.
6937   if (Ptr.getOpcode() != ISD::ADD ||
6938       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6939       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6940     return Info;
6941 
6942   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6943   return MachinePointerInfo::getFixedStack(
6944       DAG.getMachineFunction(), FI,
6945       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6946 }
6947 
6948 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6949 /// MachinePointerInfo record from it.  This is particularly useful because the
6950 /// code generator has many cases where it doesn't bother passing in a
6951 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6952 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6953                                            SelectionDAG &DAG, SDValue Ptr,
6954                                            SDValue OffsetOp) {
6955   // If the 'Offset' value isn't a constant, we can't handle this.
6956   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6957     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6958   if (OffsetOp.isUndef())
6959     return InferPointerInfo(Info, DAG, Ptr);
6960   return Info;
6961 }
6962 
6963 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6964                               EVT VT, const SDLoc &dl, SDValue Chain,
6965                               SDValue Ptr, SDValue Offset,
6966                               MachinePointerInfo PtrInfo, EVT MemVT,
6967                               Align Alignment,
6968                               MachineMemOperand::Flags MMOFlags,
6969                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6970   assert(Chain.getValueType() == MVT::Other &&
6971         "Invalid chain type");
6972 
6973   MMOFlags |= MachineMemOperand::MOLoad;
6974   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6975   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6976   // clients.
6977   if (PtrInfo.V.isNull())
6978     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6979 
6980   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
6981   MachineFunction &MF = getMachineFunction();
6982   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
6983                                                    Alignment, AAInfo, Ranges);
6984   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6985 }
6986 
6987 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6988                               EVT VT, const SDLoc &dl, SDValue Chain,
6989                               SDValue Ptr, SDValue Offset, EVT MemVT,
6990                               MachineMemOperand *MMO) {
6991   if (VT == MemVT) {
6992     ExtType = ISD::NON_EXTLOAD;
6993   } else if (ExtType == ISD::NON_EXTLOAD) {
6994     assert(VT == MemVT && "Non-extending load from different memory type!");
6995   } else {
6996     // Extending load.
6997     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6998            "Should only be an extending load, not truncating!");
6999     assert(VT.isInteger() == MemVT.isInteger() &&
7000            "Cannot convert from FP to Int or Int -> FP!");
7001     assert(VT.isVector() == MemVT.isVector() &&
7002            "Cannot use an ext load to convert to or from a vector!");
7003     assert((!VT.isVector() ||
7004             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7005            "Cannot use an ext load to change the number of vector elements!");
7006   }
7007 
7008   bool Indexed = AM != ISD::UNINDEXED;
7009   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7010 
7011   SDVTList VTs = Indexed ?
7012     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7013   SDValue Ops[] = { Chain, Ptr, Offset };
7014   FoldingSetNodeID ID;
7015   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7016   ID.AddInteger(MemVT.getRawBits());
7017   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7018       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7019   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7020   void *IP = nullptr;
7021   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7022     cast<LoadSDNode>(E)->refineAlignment(MMO);
7023     return SDValue(E, 0);
7024   }
7025   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7026                                   ExtType, MemVT, MMO);
7027   createOperands(N, Ops);
7028 
7029   CSEMap.InsertNode(N, IP);
7030   InsertNode(N);
7031   SDValue V(N, 0);
7032   NewSDValueDbgMsg(V, "Creating new node: ", this);
7033   return V;
7034 }
7035 
7036 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7037                               SDValue Ptr, MachinePointerInfo PtrInfo,
7038                               MaybeAlign Alignment,
7039                               MachineMemOperand::Flags MMOFlags,
7040                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7041   SDValue Undef = getUNDEF(Ptr.getValueType());
7042   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7043                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7044 }
7045 
7046 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7047                               SDValue Ptr, MachineMemOperand *MMO) {
7048   SDValue Undef = getUNDEF(Ptr.getValueType());
7049   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7050                  VT, MMO);
7051 }
7052 
7053 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7054                                  EVT VT, SDValue Chain, SDValue Ptr,
7055                                  MachinePointerInfo PtrInfo, EVT MemVT,
7056                                  MaybeAlign Alignment,
7057                                  MachineMemOperand::Flags MMOFlags,
7058                                  const AAMDNodes &AAInfo) {
7059   SDValue Undef = getUNDEF(Ptr.getValueType());
7060   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7061                  MemVT, Alignment, MMOFlags, AAInfo);
7062 }
7063 
7064 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7065                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7066                                  MachineMemOperand *MMO) {
7067   SDValue Undef = getUNDEF(Ptr.getValueType());
7068   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7069                  MemVT, MMO);
7070 }
7071 
7072 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7073                                      SDValue Base, SDValue Offset,
7074                                      ISD::MemIndexedMode AM) {
7075   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7076   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7077   // Don't propagate the invariant or dereferenceable flags.
7078   auto MMOFlags =
7079       LD->getMemOperand()->getFlags() &
7080       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7081   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7082                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7083                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7084 }
7085 
7086 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7087                                SDValue Ptr, MachinePointerInfo PtrInfo,
7088                                Align Alignment,
7089                                MachineMemOperand::Flags MMOFlags,
7090                                const AAMDNodes &AAInfo) {
7091   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7092 
7093   MMOFlags |= MachineMemOperand::MOStore;
7094   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7095 
7096   if (PtrInfo.V.isNull())
7097     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7098 
7099   MachineFunction &MF = getMachineFunction();
7100   uint64_t Size =
7101       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7102   MachineMemOperand *MMO =
7103       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7104   return getStore(Chain, dl, Val, Ptr, MMO);
7105 }
7106 
7107 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7108                                SDValue Ptr, MachineMemOperand *MMO) {
7109   assert(Chain.getValueType() == MVT::Other &&
7110         "Invalid chain type");
7111   EVT VT = Val.getValueType();
7112   SDVTList VTs = getVTList(MVT::Other);
7113   SDValue Undef = getUNDEF(Ptr.getValueType());
7114   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7115   FoldingSetNodeID ID;
7116   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7117   ID.AddInteger(VT.getRawBits());
7118   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7119       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7120   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7121   void *IP = nullptr;
7122   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7123     cast<StoreSDNode>(E)->refineAlignment(MMO);
7124     return SDValue(E, 0);
7125   }
7126   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7127                                    ISD::UNINDEXED, false, VT, MMO);
7128   createOperands(N, Ops);
7129 
7130   CSEMap.InsertNode(N, IP);
7131   InsertNode(N);
7132   SDValue V(N, 0);
7133   NewSDValueDbgMsg(V, "Creating new node: ", this);
7134   return V;
7135 }
7136 
7137 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7138                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7139                                     EVT SVT, Align Alignment,
7140                                     MachineMemOperand::Flags MMOFlags,
7141                                     const AAMDNodes &AAInfo) {
7142   assert(Chain.getValueType() == MVT::Other &&
7143         "Invalid chain type");
7144 
7145   MMOFlags |= MachineMemOperand::MOStore;
7146   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7147 
7148   if (PtrInfo.V.isNull())
7149     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7150 
7151   MachineFunction &MF = getMachineFunction();
7152   MachineMemOperand *MMO = MF.getMachineMemOperand(
7153       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7154       Alignment, AAInfo);
7155   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7156 }
7157 
7158 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7159                                     SDValue Ptr, EVT SVT,
7160                                     MachineMemOperand *MMO) {
7161   EVT VT = Val.getValueType();
7162 
7163   assert(Chain.getValueType() == MVT::Other &&
7164         "Invalid chain type");
7165   if (VT == SVT)
7166     return getStore(Chain, dl, Val, Ptr, MMO);
7167 
7168   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7169          "Should only be a truncating store, not extending!");
7170   assert(VT.isInteger() == SVT.isInteger() &&
7171          "Can't do FP-INT conversion!");
7172   assert(VT.isVector() == SVT.isVector() &&
7173          "Cannot use trunc store to convert to or from a vector!");
7174   assert((!VT.isVector() ||
7175           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7176          "Cannot use trunc store to change the number of vector elements!");
7177 
7178   SDVTList VTs = getVTList(MVT::Other);
7179   SDValue Undef = getUNDEF(Ptr.getValueType());
7180   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7181   FoldingSetNodeID ID;
7182   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7183   ID.AddInteger(SVT.getRawBits());
7184   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7185       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7186   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7187   void *IP = nullptr;
7188   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7189     cast<StoreSDNode>(E)->refineAlignment(MMO);
7190     return SDValue(E, 0);
7191   }
7192   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7193                                    ISD::UNINDEXED, true, SVT, MMO);
7194   createOperands(N, Ops);
7195 
7196   CSEMap.InsertNode(N, IP);
7197   InsertNode(N);
7198   SDValue V(N, 0);
7199   NewSDValueDbgMsg(V, "Creating new node: ", this);
7200   return V;
7201 }
7202 
7203 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7204                                       SDValue Base, SDValue Offset,
7205                                       ISD::MemIndexedMode AM) {
7206   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7207   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7208   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7209   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7210   FoldingSetNodeID ID;
7211   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7212   ID.AddInteger(ST->getMemoryVT().getRawBits());
7213   ID.AddInteger(ST->getRawSubclassData());
7214   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7215   void *IP = nullptr;
7216   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7217     return SDValue(E, 0);
7218 
7219   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7220                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7221                                    ST->getMemOperand());
7222   createOperands(N, Ops);
7223 
7224   CSEMap.InsertNode(N, IP);
7225   InsertNode(N);
7226   SDValue V(N, 0);
7227   NewSDValueDbgMsg(V, "Creating new node: ", this);
7228   return V;
7229 }
7230 
7231 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7232                                     SDValue Base, SDValue Offset, SDValue Mask,
7233                                     SDValue PassThru, EVT MemVT,
7234                                     MachineMemOperand *MMO,
7235                                     ISD::MemIndexedMode AM,
7236                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7237   bool Indexed = AM != ISD::UNINDEXED;
7238   assert((Indexed || Offset.isUndef()) &&
7239          "Unindexed masked load with an offset!");
7240   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7241                          : getVTList(VT, MVT::Other);
7242   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7243   FoldingSetNodeID ID;
7244   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7245   ID.AddInteger(MemVT.getRawBits());
7246   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7247       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7248   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7249   void *IP = nullptr;
7250   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7251     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7252     return SDValue(E, 0);
7253   }
7254   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7255                                         AM, ExtTy, isExpanding, MemVT, MMO);
7256   createOperands(N, Ops);
7257 
7258   CSEMap.InsertNode(N, IP);
7259   InsertNode(N);
7260   SDValue V(N, 0);
7261   NewSDValueDbgMsg(V, "Creating new node: ", this);
7262   return V;
7263 }
7264 
7265 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7266                                            SDValue Base, SDValue Offset,
7267                                            ISD::MemIndexedMode AM) {
7268   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7269   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7270   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7271                        Offset, LD->getMask(), LD->getPassThru(),
7272                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7273                        LD->getExtensionType(), LD->isExpandingLoad());
7274 }
7275 
7276 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7277                                      SDValue Val, SDValue Base, SDValue Offset,
7278                                      SDValue Mask, EVT MemVT,
7279                                      MachineMemOperand *MMO,
7280                                      ISD::MemIndexedMode AM, bool IsTruncating,
7281                                      bool IsCompressing) {
7282   assert(Chain.getValueType() == MVT::Other &&
7283         "Invalid chain type");
7284   bool Indexed = AM != ISD::UNINDEXED;
7285   assert((Indexed || Offset.isUndef()) &&
7286          "Unindexed masked store with an offset!");
7287   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7288                          : getVTList(MVT::Other);
7289   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7290   FoldingSetNodeID ID;
7291   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7292   ID.AddInteger(MemVT.getRawBits());
7293   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7294       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7295   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7296   void *IP = nullptr;
7297   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7298     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7299     return SDValue(E, 0);
7300   }
7301   auto *N =
7302       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7303                                    IsTruncating, IsCompressing, MemVT, MMO);
7304   createOperands(N, Ops);
7305 
7306   CSEMap.InsertNode(N, IP);
7307   InsertNode(N);
7308   SDValue V(N, 0);
7309   NewSDValueDbgMsg(V, "Creating new node: ", this);
7310   return V;
7311 }
7312 
7313 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7314                                             SDValue Base, SDValue Offset,
7315                                             ISD::MemIndexedMode AM) {
7316   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7317   assert(ST->getOffset().isUndef() &&
7318          "Masked store is already a indexed store!");
7319   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7320                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7321                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7322 }
7323 
7324 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7325                                       ArrayRef<SDValue> Ops,
7326                                       MachineMemOperand *MMO,
7327                                       ISD::MemIndexType IndexType) {
7328   assert(Ops.size() == 6 && "Incompatible number of operands");
7329 
7330   FoldingSetNodeID ID;
7331   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7332   ID.AddInteger(VT.getRawBits());
7333   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7334       dl.getIROrder(), VTs, VT, MMO, IndexType));
7335   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7336   void *IP = nullptr;
7337   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7338     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7339     return SDValue(E, 0);
7340   }
7341 
7342   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7343                                           VTs, VT, MMO, IndexType);
7344   createOperands(N, Ops);
7345 
7346   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7347          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7348   assert(N->getMask().getValueType().getVectorNumElements() ==
7349              N->getValueType(0).getVectorNumElements() &&
7350          "Vector width mismatch between mask and data");
7351   assert(N->getIndex().getValueType().getVectorNumElements() >=
7352              N->getValueType(0).getVectorNumElements() &&
7353          "Vector width mismatch between index and data");
7354   assert(isa<ConstantSDNode>(N->getScale()) &&
7355          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7356          "Scale should be a constant power of 2");
7357 
7358   CSEMap.InsertNode(N, IP);
7359   InsertNode(N);
7360   SDValue V(N, 0);
7361   NewSDValueDbgMsg(V, "Creating new node: ", this);
7362   return V;
7363 }
7364 
7365 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7366                                        ArrayRef<SDValue> Ops,
7367                                        MachineMemOperand *MMO,
7368                                        ISD::MemIndexType IndexType,
7369                                        bool IsTrunc) {
7370   assert(Ops.size() == 6 && "Incompatible number of operands");
7371 
7372   FoldingSetNodeID ID;
7373   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7374   ID.AddInteger(VT.getRawBits());
7375   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7376       dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc));
7377   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7378   void *IP = nullptr;
7379   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7380     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7381     return SDValue(E, 0);
7382   }
7383 
7384   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7385   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7386                                            VTs, VT, MMO, IndexType, IsTrunc);
7387   createOperands(N, Ops);
7388 
7389   assert(N->getMask().getValueType().getVectorElementCount() ==
7390              N->getValue().getValueType().getVectorElementCount() &&
7391          "Vector width mismatch between mask and data");
7392   assert(
7393       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7394           N->getValue().getValueType().getVectorElementCount().isScalable() &&
7395       "Scalable flags of index and data do not match");
7396   assert(ElementCount::isKnownGE(
7397              N->getIndex().getValueType().getVectorElementCount(),
7398              N->getValue().getValueType().getVectorElementCount()) &&
7399          "Vector width mismatch between index and data");
7400   assert(isa<ConstantSDNode>(N->getScale()) &&
7401          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7402          "Scale should be a constant power of 2");
7403 
7404   CSEMap.InsertNode(N, IP);
7405   InsertNode(N);
7406   SDValue V(N, 0);
7407   NewSDValueDbgMsg(V, "Creating new node: ", this);
7408   return V;
7409 }
7410 
7411 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7412   // select undef, T, F --> T (if T is a constant), otherwise F
7413   // select, ?, undef, F --> F
7414   // select, ?, T, undef --> T
7415   if (Cond.isUndef())
7416     return isConstantValueOfAnyType(T) ? T : F;
7417   if (T.isUndef())
7418     return F;
7419   if (F.isUndef())
7420     return T;
7421 
7422   // select true, T, F --> T
7423   // select false, T, F --> F
7424   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7425     return CondC->isNullValue() ? F : T;
7426 
7427   // TODO: This should simplify VSELECT with constant condition using something
7428   // like this (but check boolean contents to be complete?):
7429   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7430   //    return T;
7431   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7432   //    return F;
7433 
7434   // select ?, T, T --> T
7435   if (T == F)
7436     return T;
7437 
7438   return SDValue();
7439 }
7440 
7441 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7442   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7443   if (X.isUndef())
7444     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7445   // shift X, undef --> undef (because it may shift by the bitwidth)
7446   if (Y.isUndef())
7447     return getUNDEF(X.getValueType());
7448 
7449   // shift 0, Y --> 0
7450   // shift X, 0 --> X
7451   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7452     return X;
7453 
7454   // shift X, C >= bitwidth(X) --> undef
7455   // All vector elements must be too big (or undef) to avoid partial undefs.
7456   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7457     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7458   };
7459   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7460     return getUNDEF(X.getValueType());
7461 
7462   return SDValue();
7463 }
7464 
7465 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7466                                       SDNodeFlags Flags) {
7467   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7468   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7469   // operation is poison. That result can be relaxed to undef.
7470   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7471   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7472   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7473                 (YC && YC->getValueAPF().isNaN());
7474   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7475                 (YC && YC->getValueAPF().isInfinity());
7476 
7477   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7478     return getUNDEF(X.getValueType());
7479 
7480   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7481     return getUNDEF(X.getValueType());
7482 
7483   if (!YC)
7484     return SDValue();
7485 
7486   // X + -0.0 --> X
7487   if (Opcode == ISD::FADD)
7488     if (YC->getValueAPF().isNegZero())
7489       return X;
7490 
7491   // X - +0.0 --> X
7492   if (Opcode == ISD::FSUB)
7493     if (YC->getValueAPF().isPosZero())
7494       return X;
7495 
7496   // X * 1.0 --> X
7497   // X / 1.0 --> X
7498   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7499     if (YC->getValueAPF().isExactlyValue(1.0))
7500       return X;
7501 
7502   // X * 0.0 --> 0.0
7503   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7504     if (YC->getValueAPF().isZero())
7505       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7506 
7507   return SDValue();
7508 }
7509 
7510 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7511                                SDValue Ptr, SDValue SV, unsigned Align) {
7512   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7513   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7514 }
7515 
7516 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7517                               ArrayRef<SDUse> Ops) {
7518   switch (Ops.size()) {
7519   case 0: return getNode(Opcode, DL, VT);
7520   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7521   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7522   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7523   default: break;
7524   }
7525 
7526   // Copy from an SDUse array into an SDValue array for use with
7527   // the regular getNode logic.
7528   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7529   return getNode(Opcode, DL, VT, NewOps);
7530 }
7531 
7532 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7533                               ArrayRef<SDValue> Ops) {
7534   SDNodeFlags Flags;
7535   if (Inserter)
7536     Flags = Inserter->getFlags();
7537   return getNode(Opcode, DL, VT, Ops, Flags);
7538 }
7539 
7540 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7541                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7542   unsigned NumOps = Ops.size();
7543   switch (NumOps) {
7544   case 0: return getNode(Opcode, DL, VT);
7545   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7546   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7547   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7548   default: break;
7549   }
7550 
7551   switch (Opcode) {
7552   default: break;
7553   case ISD::BUILD_VECTOR:
7554     // Attempt to simplify BUILD_VECTOR.
7555     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7556       return V;
7557     break;
7558   case ISD::CONCAT_VECTORS:
7559     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7560       return V;
7561     break;
7562   case ISD::SELECT_CC:
7563     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7564     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7565            "LHS and RHS of condition must have same type!");
7566     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7567            "True and False arms of SelectCC must have same type!");
7568     assert(Ops[2].getValueType() == VT &&
7569            "select_cc node must be of same type as true and false value!");
7570     break;
7571   case ISD::BR_CC:
7572     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7573     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7574            "LHS/RHS of comparison should match types!");
7575     break;
7576   }
7577 
7578   // Memoize nodes.
7579   SDNode *N;
7580   SDVTList VTs = getVTList(VT);
7581 
7582   if (VT != MVT::Glue) {
7583     FoldingSetNodeID ID;
7584     AddNodeIDNode(ID, Opcode, VTs, Ops);
7585     void *IP = nullptr;
7586 
7587     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7588       return SDValue(E, 0);
7589 
7590     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7591     createOperands(N, Ops);
7592 
7593     CSEMap.InsertNode(N, IP);
7594   } else {
7595     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7596     createOperands(N, Ops);
7597   }
7598 
7599   N->setFlags(Flags);
7600   InsertNode(N);
7601   SDValue V(N, 0);
7602   NewSDValueDbgMsg(V, "Creating new node: ", this);
7603   return V;
7604 }
7605 
7606 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7607                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7608   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7609 }
7610 
7611 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7612                               ArrayRef<SDValue> Ops) {
7613   SDNodeFlags Flags;
7614   if (Inserter)
7615     Flags = Inserter->getFlags();
7616   return getNode(Opcode, DL, VTList, Ops, Flags);
7617 }
7618 
7619 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7620                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7621   if (VTList.NumVTs == 1)
7622     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7623 
7624   switch (Opcode) {
7625   case ISD::STRICT_FP_EXTEND:
7626     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7627            "Invalid STRICT_FP_EXTEND!");
7628     assert(VTList.VTs[0].isFloatingPoint() &&
7629            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7630     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7631            "STRICT_FP_EXTEND result type should be vector iff the operand "
7632            "type is vector!");
7633     assert((!VTList.VTs[0].isVector() ||
7634             VTList.VTs[0].getVectorNumElements() ==
7635             Ops[1].getValueType().getVectorNumElements()) &&
7636            "Vector element count mismatch!");
7637     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7638            "Invalid fpext node, dst <= src!");
7639     break;
7640   case ISD::STRICT_FP_ROUND:
7641     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7642     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7643            "STRICT_FP_ROUND result type should be vector iff the operand "
7644            "type is vector!");
7645     assert((!VTList.VTs[0].isVector() ||
7646             VTList.VTs[0].getVectorNumElements() ==
7647             Ops[1].getValueType().getVectorNumElements()) &&
7648            "Vector element count mismatch!");
7649     assert(VTList.VTs[0].isFloatingPoint() &&
7650            Ops[1].getValueType().isFloatingPoint() &&
7651            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7652            isa<ConstantSDNode>(Ops[2]) &&
7653            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7654             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7655            "Invalid STRICT_FP_ROUND!");
7656     break;
7657 #if 0
7658   // FIXME: figure out how to safely handle things like
7659   // int foo(int x) { return 1 << (x & 255); }
7660   // int bar() { return foo(256); }
7661   case ISD::SRA_PARTS:
7662   case ISD::SRL_PARTS:
7663   case ISD::SHL_PARTS:
7664     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7665         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7666       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7667     else if (N3.getOpcode() == ISD::AND)
7668       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7669         // If the and is only masking out bits that cannot effect the shift,
7670         // eliminate the and.
7671         unsigned NumBits = VT.getScalarSizeInBits()*2;
7672         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7673           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7674       }
7675     break;
7676 #endif
7677   }
7678 
7679   // Memoize the node unless it returns a flag.
7680   SDNode *N;
7681   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7682     FoldingSetNodeID ID;
7683     AddNodeIDNode(ID, Opcode, VTList, Ops);
7684     void *IP = nullptr;
7685     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7686       return SDValue(E, 0);
7687 
7688     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7689     createOperands(N, Ops);
7690     CSEMap.InsertNode(N, IP);
7691   } else {
7692     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7693     createOperands(N, Ops);
7694   }
7695 
7696   N->setFlags(Flags);
7697   InsertNode(N);
7698   SDValue V(N, 0);
7699   NewSDValueDbgMsg(V, "Creating new node: ", this);
7700   return V;
7701 }
7702 
7703 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7704                               SDVTList VTList) {
7705   return getNode(Opcode, DL, VTList, None);
7706 }
7707 
7708 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7709                               SDValue N1) {
7710   SDValue Ops[] = { N1 };
7711   return getNode(Opcode, DL, VTList, Ops);
7712 }
7713 
7714 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7715                               SDValue N1, SDValue N2) {
7716   SDValue Ops[] = { N1, N2 };
7717   return getNode(Opcode, DL, VTList, Ops);
7718 }
7719 
7720 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7721                               SDValue N1, SDValue N2, SDValue N3) {
7722   SDValue Ops[] = { N1, N2, N3 };
7723   return getNode(Opcode, DL, VTList, Ops);
7724 }
7725 
7726 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7727                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7728   SDValue Ops[] = { N1, N2, N3, N4 };
7729   return getNode(Opcode, DL, VTList, Ops);
7730 }
7731 
7732 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7733                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7734                               SDValue N5) {
7735   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7736   return getNode(Opcode, DL, VTList, Ops);
7737 }
7738 
7739 SDVTList SelectionDAG::getVTList(EVT VT) {
7740   return makeVTList(SDNode::getValueTypeList(VT), 1);
7741 }
7742 
7743 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7744   FoldingSetNodeID ID;
7745   ID.AddInteger(2U);
7746   ID.AddInteger(VT1.getRawBits());
7747   ID.AddInteger(VT2.getRawBits());
7748 
7749   void *IP = nullptr;
7750   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7751   if (!Result) {
7752     EVT *Array = Allocator.Allocate<EVT>(2);
7753     Array[0] = VT1;
7754     Array[1] = VT2;
7755     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7756     VTListMap.InsertNode(Result, IP);
7757   }
7758   return Result->getSDVTList();
7759 }
7760 
7761 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7762   FoldingSetNodeID ID;
7763   ID.AddInteger(3U);
7764   ID.AddInteger(VT1.getRawBits());
7765   ID.AddInteger(VT2.getRawBits());
7766   ID.AddInteger(VT3.getRawBits());
7767 
7768   void *IP = nullptr;
7769   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7770   if (!Result) {
7771     EVT *Array = Allocator.Allocate<EVT>(3);
7772     Array[0] = VT1;
7773     Array[1] = VT2;
7774     Array[2] = VT3;
7775     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7776     VTListMap.InsertNode(Result, IP);
7777   }
7778   return Result->getSDVTList();
7779 }
7780 
7781 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7782   FoldingSetNodeID ID;
7783   ID.AddInteger(4U);
7784   ID.AddInteger(VT1.getRawBits());
7785   ID.AddInteger(VT2.getRawBits());
7786   ID.AddInteger(VT3.getRawBits());
7787   ID.AddInteger(VT4.getRawBits());
7788 
7789   void *IP = nullptr;
7790   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7791   if (!Result) {
7792     EVT *Array = Allocator.Allocate<EVT>(4);
7793     Array[0] = VT1;
7794     Array[1] = VT2;
7795     Array[2] = VT3;
7796     Array[3] = VT4;
7797     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7798     VTListMap.InsertNode(Result, IP);
7799   }
7800   return Result->getSDVTList();
7801 }
7802 
7803 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7804   unsigned NumVTs = VTs.size();
7805   FoldingSetNodeID ID;
7806   ID.AddInteger(NumVTs);
7807   for (unsigned index = 0; index < NumVTs; index++) {
7808     ID.AddInteger(VTs[index].getRawBits());
7809   }
7810 
7811   void *IP = nullptr;
7812   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7813   if (!Result) {
7814     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7815     llvm::copy(VTs, Array);
7816     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7817     VTListMap.InsertNode(Result, IP);
7818   }
7819   return Result->getSDVTList();
7820 }
7821 
7822 
7823 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7824 /// specified operands.  If the resultant node already exists in the DAG,
7825 /// this does not modify the specified node, instead it returns the node that
7826 /// already exists.  If the resultant node does not exist in the DAG, the
7827 /// input node is returned.  As a degenerate case, if you specify the same
7828 /// input operands as the node already has, the input node is returned.
7829 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7830   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7831 
7832   // Check to see if there is no change.
7833   if (Op == N->getOperand(0)) return N;
7834 
7835   // See if the modified node already exists.
7836   void *InsertPos = nullptr;
7837   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7838     return Existing;
7839 
7840   // Nope it doesn't.  Remove the node from its current place in the maps.
7841   if (InsertPos)
7842     if (!RemoveNodeFromCSEMaps(N))
7843       InsertPos = nullptr;
7844 
7845   // Now we update the operands.
7846   N->OperandList[0].set(Op);
7847 
7848   updateDivergence(N);
7849   // If this gets put into a CSE map, add it.
7850   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7851   return N;
7852 }
7853 
7854 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7855   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7856 
7857   // Check to see if there is no change.
7858   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7859     return N;   // No operands changed, just return the input node.
7860 
7861   // See if the modified node already exists.
7862   void *InsertPos = nullptr;
7863   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7864     return Existing;
7865 
7866   // Nope it doesn't.  Remove the node from its current place in the maps.
7867   if (InsertPos)
7868     if (!RemoveNodeFromCSEMaps(N))
7869       InsertPos = nullptr;
7870 
7871   // Now we update the operands.
7872   if (N->OperandList[0] != Op1)
7873     N->OperandList[0].set(Op1);
7874   if (N->OperandList[1] != Op2)
7875     N->OperandList[1].set(Op2);
7876 
7877   updateDivergence(N);
7878   // If this gets put into a CSE map, add it.
7879   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7880   return N;
7881 }
7882 
7883 SDNode *SelectionDAG::
7884 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7885   SDValue Ops[] = { Op1, Op2, Op3 };
7886   return UpdateNodeOperands(N, Ops);
7887 }
7888 
7889 SDNode *SelectionDAG::
7890 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7891                    SDValue Op3, SDValue Op4) {
7892   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7893   return UpdateNodeOperands(N, Ops);
7894 }
7895 
7896 SDNode *SelectionDAG::
7897 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7898                    SDValue Op3, SDValue Op4, SDValue Op5) {
7899   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7900   return UpdateNodeOperands(N, Ops);
7901 }
7902 
7903 SDNode *SelectionDAG::
7904 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7905   unsigned NumOps = Ops.size();
7906   assert(N->getNumOperands() == NumOps &&
7907          "Update with wrong number of operands");
7908 
7909   // If no operands changed just return the input node.
7910   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7911     return N;
7912 
7913   // See if the modified node already exists.
7914   void *InsertPos = nullptr;
7915   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7916     return Existing;
7917 
7918   // Nope it doesn't.  Remove the node from its current place in the maps.
7919   if (InsertPos)
7920     if (!RemoveNodeFromCSEMaps(N))
7921       InsertPos = nullptr;
7922 
7923   // Now we update the operands.
7924   for (unsigned i = 0; i != NumOps; ++i)
7925     if (N->OperandList[i] != Ops[i])
7926       N->OperandList[i].set(Ops[i]);
7927 
7928   updateDivergence(N);
7929   // If this gets put into a CSE map, add it.
7930   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7931   return N;
7932 }
7933 
7934 /// DropOperands - Release the operands and set this node to have
7935 /// zero operands.
7936 void SDNode::DropOperands() {
7937   // Unlike the code in MorphNodeTo that does this, we don't need to
7938   // watch for dead nodes here.
7939   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7940     SDUse &Use = *I++;
7941     Use.set(SDValue());
7942   }
7943 }
7944 
7945 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7946                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7947   if (NewMemRefs.empty()) {
7948     N->clearMemRefs();
7949     return;
7950   }
7951 
7952   // Check if we can avoid allocating by storing a single reference directly.
7953   if (NewMemRefs.size() == 1) {
7954     N->MemRefs = NewMemRefs[0];
7955     N->NumMemRefs = 1;
7956     return;
7957   }
7958 
7959   MachineMemOperand **MemRefsBuffer =
7960       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7961   llvm::copy(NewMemRefs, MemRefsBuffer);
7962   N->MemRefs = MemRefsBuffer;
7963   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7964 }
7965 
7966 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7967 /// machine opcode.
7968 ///
7969 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7970                                    EVT VT) {
7971   SDVTList VTs = getVTList(VT);
7972   return SelectNodeTo(N, MachineOpc, VTs, None);
7973 }
7974 
7975 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7976                                    EVT VT, SDValue Op1) {
7977   SDVTList VTs = getVTList(VT);
7978   SDValue Ops[] = { Op1 };
7979   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7980 }
7981 
7982 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7983                                    EVT VT, SDValue Op1,
7984                                    SDValue Op2) {
7985   SDVTList VTs = getVTList(VT);
7986   SDValue Ops[] = { Op1, Op2 };
7987   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7988 }
7989 
7990 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7991                                    EVT VT, SDValue Op1,
7992                                    SDValue Op2, SDValue Op3) {
7993   SDVTList VTs = getVTList(VT);
7994   SDValue Ops[] = { Op1, Op2, Op3 };
7995   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7996 }
7997 
7998 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7999                                    EVT VT, ArrayRef<SDValue> Ops) {
8000   SDVTList VTs = getVTList(VT);
8001   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8002 }
8003 
8004 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8005                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8006   SDVTList VTs = getVTList(VT1, VT2);
8007   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8008 }
8009 
8010 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8011                                    EVT VT1, EVT VT2) {
8012   SDVTList VTs = getVTList(VT1, VT2);
8013   return SelectNodeTo(N, MachineOpc, VTs, None);
8014 }
8015 
8016 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8017                                    EVT VT1, EVT VT2, EVT VT3,
8018                                    ArrayRef<SDValue> Ops) {
8019   SDVTList VTs = getVTList(VT1, VT2, VT3);
8020   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8021 }
8022 
8023 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8024                                    EVT VT1, EVT VT2,
8025                                    SDValue Op1, SDValue Op2) {
8026   SDVTList VTs = getVTList(VT1, VT2);
8027   SDValue Ops[] = { Op1, Op2 };
8028   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8029 }
8030 
8031 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8032                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8033   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8034   // Reset the NodeID to -1.
8035   New->setNodeId(-1);
8036   if (New != N) {
8037     ReplaceAllUsesWith(N, New);
8038     RemoveDeadNode(N);
8039   }
8040   return New;
8041 }
8042 
8043 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8044 /// the line number information on the merged node since it is not possible to
8045 /// preserve the information that operation is associated with multiple lines.
8046 /// This will make the debugger working better at -O0, were there is a higher
8047 /// probability having other instructions associated with that line.
8048 ///
8049 /// For IROrder, we keep the smaller of the two
8050 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8051   DebugLoc NLoc = N->getDebugLoc();
8052   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8053     N->setDebugLoc(DebugLoc());
8054   }
8055   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8056   N->setIROrder(Order);
8057   return N;
8058 }
8059 
8060 /// MorphNodeTo - This *mutates* the specified node to have the specified
8061 /// return type, opcode, and operands.
8062 ///
8063 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8064 /// node of the specified opcode and operands, it returns that node instead of
8065 /// the current one.  Note that the SDLoc need not be the same.
8066 ///
8067 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8068 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8069 /// node, and because it doesn't require CSE recalculation for any of
8070 /// the node's users.
8071 ///
8072 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8073 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8074 /// the legalizer which maintain worklists that would need to be updated when
8075 /// deleting things.
8076 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8077                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8078   // If an identical node already exists, use it.
8079   void *IP = nullptr;
8080   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8081     FoldingSetNodeID ID;
8082     AddNodeIDNode(ID, Opc, VTs, Ops);
8083     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8084       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8085   }
8086 
8087   if (!RemoveNodeFromCSEMaps(N))
8088     IP = nullptr;
8089 
8090   // Start the morphing.
8091   N->NodeType = Opc;
8092   N->ValueList = VTs.VTs;
8093   N->NumValues = VTs.NumVTs;
8094 
8095   // Clear the operands list, updating used nodes to remove this from their
8096   // use list.  Keep track of any operands that become dead as a result.
8097   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8098   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8099     SDUse &Use = *I++;
8100     SDNode *Used = Use.getNode();
8101     Use.set(SDValue());
8102     if (Used->use_empty())
8103       DeadNodeSet.insert(Used);
8104   }
8105 
8106   // For MachineNode, initialize the memory references information.
8107   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8108     MN->clearMemRefs();
8109 
8110   // Swap for an appropriately sized array from the recycler.
8111   removeOperands(N);
8112   createOperands(N, Ops);
8113 
8114   // Delete any nodes that are still dead after adding the uses for the
8115   // new operands.
8116   if (!DeadNodeSet.empty()) {
8117     SmallVector<SDNode *, 16> DeadNodes;
8118     for (SDNode *N : DeadNodeSet)
8119       if (N->use_empty())
8120         DeadNodes.push_back(N);
8121     RemoveDeadNodes(DeadNodes);
8122   }
8123 
8124   if (IP)
8125     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8126   return N;
8127 }
8128 
8129 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8130   unsigned OrigOpc = Node->getOpcode();
8131   unsigned NewOpc;
8132   switch (OrigOpc) {
8133   default:
8134     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8135 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8136   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8137 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8138   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8139 #include "llvm/IR/ConstrainedOps.def"
8140   }
8141 
8142   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8143 
8144   // We're taking this node out of the chain, so we need to re-link things.
8145   SDValue InputChain = Node->getOperand(0);
8146   SDValue OutputChain = SDValue(Node, 1);
8147   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8148 
8149   SmallVector<SDValue, 3> Ops;
8150   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8151     Ops.push_back(Node->getOperand(i));
8152 
8153   SDVTList VTs = getVTList(Node->getValueType(0));
8154   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8155 
8156   // MorphNodeTo can operate in two ways: if an existing node with the
8157   // specified operands exists, it can just return it.  Otherwise, it
8158   // updates the node in place to have the requested operands.
8159   if (Res == Node) {
8160     // If we updated the node in place, reset the node ID.  To the isel,
8161     // this should be just like a newly allocated machine node.
8162     Res->setNodeId(-1);
8163   } else {
8164     ReplaceAllUsesWith(Node, Res);
8165     RemoveDeadNode(Node);
8166   }
8167 
8168   return Res;
8169 }
8170 
8171 /// getMachineNode - These are used for target selectors to create a new node
8172 /// with specified return type(s), MachineInstr opcode, and operands.
8173 ///
8174 /// Note that getMachineNode returns the resultant node.  If there is already a
8175 /// node of the specified opcode and operands, it returns that node instead of
8176 /// the current one.
8177 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8178                                             EVT VT) {
8179   SDVTList VTs = getVTList(VT);
8180   return getMachineNode(Opcode, dl, VTs, None);
8181 }
8182 
8183 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8184                                             EVT VT, SDValue Op1) {
8185   SDVTList VTs = getVTList(VT);
8186   SDValue Ops[] = { Op1 };
8187   return getMachineNode(Opcode, dl, VTs, Ops);
8188 }
8189 
8190 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8191                                             EVT VT, SDValue Op1, SDValue Op2) {
8192   SDVTList VTs = getVTList(VT);
8193   SDValue Ops[] = { Op1, Op2 };
8194   return getMachineNode(Opcode, dl, VTs, Ops);
8195 }
8196 
8197 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8198                                             EVT VT, SDValue Op1, SDValue Op2,
8199                                             SDValue Op3) {
8200   SDVTList VTs = getVTList(VT);
8201   SDValue Ops[] = { Op1, Op2, Op3 };
8202   return getMachineNode(Opcode, dl, VTs, Ops);
8203 }
8204 
8205 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8206                                             EVT VT, ArrayRef<SDValue> Ops) {
8207   SDVTList VTs = getVTList(VT);
8208   return getMachineNode(Opcode, dl, VTs, Ops);
8209 }
8210 
8211 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8212                                             EVT VT1, EVT VT2, SDValue Op1,
8213                                             SDValue Op2) {
8214   SDVTList VTs = getVTList(VT1, VT2);
8215   SDValue Ops[] = { Op1, Op2 };
8216   return getMachineNode(Opcode, dl, VTs, Ops);
8217 }
8218 
8219 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8220                                             EVT VT1, EVT VT2, SDValue Op1,
8221                                             SDValue Op2, SDValue Op3) {
8222   SDVTList VTs = getVTList(VT1, VT2);
8223   SDValue Ops[] = { Op1, Op2, Op3 };
8224   return getMachineNode(Opcode, dl, VTs, Ops);
8225 }
8226 
8227 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8228                                             EVT VT1, EVT VT2,
8229                                             ArrayRef<SDValue> Ops) {
8230   SDVTList VTs = getVTList(VT1, VT2);
8231   return getMachineNode(Opcode, dl, VTs, Ops);
8232 }
8233 
8234 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8235                                             EVT VT1, EVT VT2, EVT VT3,
8236                                             SDValue Op1, SDValue Op2) {
8237   SDVTList VTs = getVTList(VT1, VT2, VT3);
8238   SDValue Ops[] = { Op1, Op2 };
8239   return getMachineNode(Opcode, dl, VTs, Ops);
8240 }
8241 
8242 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8243                                             EVT VT1, EVT VT2, EVT VT3,
8244                                             SDValue Op1, SDValue Op2,
8245                                             SDValue Op3) {
8246   SDVTList VTs = getVTList(VT1, VT2, VT3);
8247   SDValue Ops[] = { Op1, Op2, Op3 };
8248   return getMachineNode(Opcode, dl, VTs, Ops);
8249 }
8250 
8251 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8252                                             EVT VT1, EVT VT2, EVT VT3,
8253                                             ArrayRef<SDValue> Ops) {
8254   SDVTList VTs = getVTList(VT1, VT2, VT3);
8255   return getMachineNode(Opcode, dl, VTs, Ops);
8256 }
8257 
8258 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8259                                             ArrayRef<EVT> ResultTys,
8260                                             ArrayRef<SDValue> Ops) {
8261   SDVTList VTs = getVTList(ResultTys);
8262   return getMachineNode(Opcode, dl, VTs, Ops);
8263 }
8264 
8265 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8266                                             SDVTList VTs,
8267                                             ArrayRef<SDValue> Ops) {
8268   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8269   MachineSDNode *N;
8270   void *IP = nullptr;
8271 
8272   if (DoCSE) {
8273     FoldingSetNodeID ID;
8274     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8275     IP = nullptr;
8276     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8277       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8278     }
8279   }
8280 
8281   // Allocate a new MachineSDNode.
8282   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8283   createOperands(N, Ops);
8284 
8285   if (DoCSE)
8286     CSEMap.InsertNode(N, IP);
8287 
8288   InsertNode(N);
8289   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8290   return N;
8291 }
8292 
8293 /// getTargetExtractSubreg - A convenience function for creating
8294 /// TargetOpcode::EXTRACT_SUBREG nodes.
8295 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8296                                              SDValue Operand) {
8297   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8298   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8299                                   VT, Operand, SRIdxVal);
8300   return SDValue(Subreg, 0);
8301 }
8302 
8303 /// getTargetInsertSubreg - A convenience function for creating
8304 /// TargetOpcode::INSERT_SUBREG nodes.
8305 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8306                                             SDValue Operand, SDValue Subreg) {
8307   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8308   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8309                                   VT, Operand, Subreg, SRIdxVal);
8310   return SDValue(Result, 0);
8311 }
8312 
8313 /// getNodeIfExists - Get the specified node if it's already available, or
8314 /// else return NULL.
8315 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8316                                       ArrayRef<SDValue> Ops) {
8317   SDNodeFlags Flags;
8318   if (Inserter)
8319     Flags = Inserter->getFlags();
8320   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8321 }
8322 
8323 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8324                                       ArrayRef<SDValue> Ops,
8325                                       const SDNodeFlags Flags) {
8326   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8327     FoldingSetNodeID ID;
8328     AddNodeIDNode(ID, Opcode, VTList, Ops);
8329     void *IP = nullptr;
8330     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8331       E->intersectFlagsWith(Flags);
8332       return E;
8333     }
8334   }
8335   return nullptr;
8336 }
8337 
8338 /// doesNodeExist - Check if a node exists without modifying its flags.
8339 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
8340                                  ArrayRef<SDValue> Ops) {
8341   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8342     FoldingSetNodeID ID;
8343     AddNodeIDNode(ID, Opcode, VTList, Ops);
8344     void *IP = nullptr;
8345     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
8346       return true;
8347   }
8348   return false;
8349 }
8350 
8351 /// getDbgValue - Creates a SDDbgValue node.
8352 ///
8353 /// SDNode
8354 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8355                                       SDNode *N, unsigned R, bool IsIndirect,
8356                                       const DebugLoc &DL, unsigned O) {
8357   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8358          "Expected inlined-at fields to agree");
8359   return new (DbgInfo->getAlloc())
8360       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8361 }
8362 
8363 /// Constant
8364 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8365                                               DIExpression *Expr,
8366                                               const Value *C,
8367                                               const DebugLoc &DL, unsigned O) {
8368   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8369          "Expected inlined-at fields to agree");
8370   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8371 }
8372 
8373 /// FrameIndex
8374 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8375                                                 DIExpression *Expr, unsigned FI,
8376                                                 bool IsIndirect,
8377                                                 const DebugLoc &DL,
8378                                                 unsigned O) {
8379   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8380          "Expected inlined-at fields to agree");
8381   return new (DbgInfo->getAlloc())
8382       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8383 }
8384 
8385 /// VReg
8386 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8387                                           DIExpression *Expr,
8388                                           unsigned VReg, bool IsIndirect,
8389                                           const DebugLoc &DL, unsigned O) {
8390   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8391          "Expected inlined-at fields to agree");
8392   return new (DbgInfo->getAlloc())
8393       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8394 }
8395 
8396 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8397                                      unsigned OffsetInBits, unsigned SizeInBits,
8398                                      bool InvalidateDbg) {
8399   SDNode *FromNode = From.getNode();
8400   SDNode *ToNode = To.getNode();
8401   assert(FromNode && ToNode && "Can't modify dbg values");
8402 
8403   // PR35338
8404   // TODO: assert(From != To && "Redundant dbg value transfer");
8405   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8406   if (From == To || FromNode == ToNode)
8407     return;
8408 
8409   if (!FromNode->getHasDebugValue())
8410     return;
8411 
8412   SmallVector<SDDbgValue *, 2> ClonedDVs;
8413   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8414     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8415       continue;
8416 
8417     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8418 
8419     // Just transfer the dbg value attached to From.
8420     if (Dbg->getResNo() != From.getResNo())
8421       continue;
8422 
8423     DIVariable *Var = Dbg->getVariable();
8424     auto *Expr = Dbg->getExpression();
8425     // If a fragment is requested, update the expression.
8426     if (SizeInBits) {
8427       // When splitting a larger (e.g., sign-extended) value whose
8428       // lower bits are described with an SDDbgValue, do not attempt
8429       // to transfer the SDDbgValue to the upper bits.
8430       if (auto FI = Expr->getFragmentInfo())
8431         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8432           continue;
8433       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8434                                                              SizeInBits);
8435       if (!Fragment)
8436         continue;
8437       Expr = *Fragment;
8438     }
8439     // Clone the SDDbgValue and move it to To.
8440     SDDbgValue *Clone = getDbgValue(
8441         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8442         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8443     ClonedDVs.push_back(Clone);
8444 
8445     if (InvalidateDbg) {
8446       // Invalidate value and indicate the SDDbgValue should not be emitted.
8447       Dbg->setIsInvalidated();
8448       Dbg->setIsEmitted();
8449     }
8450   }
8451 
8452   for (SDDbgValue *Dbg : ClonedDVs)
8453     AddDbgValue(Dbg, ToNode, false);
8454 }
8455 
8456 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8457   if (!N.getHasDebugValue())
8458     return;
8459 
8460   SmallVector<SDDbgValue *, 2> ClonedDVs;
8461   for (auto DV : GetDbgValues(&N)) {
8462     if (DV->isInvalidated())
8463       continue;
8464     switch (N.getOpcode()) {
8465     default:
8466       break;
8467     case ISD::ADD:
8468       SDValue N0 = N.getOperand(0);
8469       SDValue N1 = N.getOperand(1);
8470       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8471           isConstantIntBuildVectorOrConstantInt(N1)) {
8472         uint64_t Offset = N.getConstantOperandVal(1);
8473         // Rewrite an ADD constant node into a DIExpression. Since we are
8474         // performing arithmetic to compute the variable's *value* in the
8475         // DIExpression, we need to mark the expression with a
8476         // DW_OP_stack_value.
8477         auto *DIExpr = DV->getExpression();
8478         DIExpr =
8479             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8480         SDDbgValue *Clone =
8481             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8482                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8483         ClonedDVs.push_back(Clone);
8484         DV->setIsInvalidated();
8485         DV->setIsEmitted();
8486         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8487                    N0.getNode()->dumprFull(this);
8488                    dbgs() << " into " << *DIExpr << '\n');
8489       }
8490     }
8491   }
8492 
8493   for (SDDbgValue *Dbg : ClonedDVs)
8494     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8495 }
8496 
8497 /// Creates a SDDbgLabel node.
8498 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8499                                       const DebugLoc &DL, unsigned O) {
8500   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8501          "Expected inlined-at fields to agree");
8502   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8503 }
8504 
8505 namespace {
8506 
8507 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8508 /// pointed to by a use iterator is deleted, increment the use iterator
8509 /// so that it doesn't dangle.
8510 ///
8511 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8512   SDNode::use_iterator &UI;
8513   SDNode::use_iterator &UE;
8514 
8515   void NodeDeleted(SDNode *N, SDNode *E) override {
8516     // Increment the iterator as needed.
8517     while (UI != UE && N == *UI)
8518       ++UI;
8519   }
8520 
8521 public:
8522   RAUWUpdateListener(SelectionDAG &d,
8523                      SDNode::use_iterator &ui,
8524                      SDNode::use_iterator &ue)
8525     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8526 };
8527 
8528 } // end anonymous namespace
8529 
8530 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8531 /// This can cause recursive merging of nodes in the DAG.
8532 ///
8533 /// This version assumes From has a single result value.
8534 ///
8535 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8536   SDNode *From = FromN.getNode();
8537   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8538          "Cannot replace with this method!");
8539   assert(From != To.getNode() && "Cannot replace uses of with self");
8540 
8541   // Preserve Debug Values
8542   transferDbgValues(FromN, To);
8543 
8544   // Iterate over all the existing uses of From. New uses will be added
8545   // to the beginning of the use list, which we avoid visiting.
8546   // This specifically avoids visiting uses of From that arise while the
8547   // replacement is happening, because any such uses would be the result
8548   // of CSE: If an existing node looks like From after one of its operands
8549   // is replaced by To, we don't want to replace of all its users with To
8550   // too. See PR3018 for more info.
8551   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8552   RAUWUpdateListener Listener(*this, UI, UE);
8553   while (UI != UE) {
8554     SDNode *User = *UI;
8555 
8556     // This node is about to morph, remove its old self from the CSE maps.
8557     RemoveNodeFromCSEMaps(User);
8558 
8559     // A user can appear in a use list multiple times, and when this
8560     // happens the uses are usually next to each other in the list.
8561     // To help reduce the number of CSE recomputations, process all
8562     // the uses of this user that we can find this way.
8563     do {
8564       SDUse &Use = UI.getUse();
8565       ++UI;
8566       Use.set(To);
8567       if (To->isDivergent() != From->isDivergent())
8568         updateDivergence(User);
8569     } while (UI != UE && *UI == User);
8570     // Now that we have modified User, add it back to the CSE maps.  If it
8571     // already exists there, recursively merge the results together.
8572     AddModifiedNodeToCSEMaps(User);
8573   }
8574 
8575   // If we just RAUW'd the root, take note.
8576   if (FromN == getRoot())
8577     setRoot(To);
8578 }
8579 
8580 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8581 /// This can cause recursive merging of nodes in the DAG.
8582 ///
8583 /// This version assumes that for each value of From, there is a
8584 /// corresponding value in To in the same position with the same type.
8585 ///
8586 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8587 #ifndef NDEBUG
8588   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8589     assert((!From->hasAnyUseOfValue(i) ||
8590             From->getValueType(i) == To->getValueType(i)) &&
8591            "Cannot use this version of ReplaceAllUsesWith!");
8592 #endif
8593 
8594   // Handle the trivial case.
8595   if (From == To)
8596     return;
8597 
8598   // Preserve Debug Info. Only do this if there's a use.
8599   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8600     if (From->hasAnyUseOfValue(i)) {
8601       assert((i < To->getNumValues()) && "Invalid To location");
8602       transferDbgValues(SDValue(From, i), SDValue(To, i));
8603     }
8604 
8605   // Iterate over just the existing users of From. See the comments in
8606   // the ReplaceAllUsesWith above.
8607   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8608   RAUWUpdateListener Listener(*this, UI, UE);
8609   while (UI != UE) {
8610     SDNode *User = *UI;
8611 
8612     // This node is about to morph, remove its old self from the CSE maps.
8613     RemoveNodeFromCSEMaps(User);
8614 
8615     // A user can appear in a use list multiple times, and when this
8616     // happens the uses are usually next to each other in the list.
8617     // To help reduce the number of CSE recomputations, process all
8618     // the uses of this user that we can find this way.
8619     do {
8620       SDUse &Use = UI.getUse();
8621       ++UI;
8622       Use.setNode(To);
8623       if (To->isDivergent() != From->isDivergent())
8624         updateDivergence(User);
8625     } while (UI != UE && *UI == User);
8626 
8627     // Now that we have modified User, add it back to the CSE maps.  If it
8628     // already exists there, recursively merge the results together.
8629     AddModifiedNodeToCSEMaps(User);
8630   }
8631 
8632   // If we just RAUW'd the root, take note.
8633   if (From == getRoot().getNode())
8634     setRoot(SDValue(To, getRoot().getResNo()));
8635 }
8636 
8637 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8638 /// This can cause recursive merging of nodes in the DAG.
8639 ///
8640 /// This version can replace From with any result values.  To must match the
8641 /// number and types of values returned by From.
8642 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8643   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8644     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8645 
8646   // Preserve Debug Info.
8647   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8648     transferDbgValues(SDValue(From, i), To[i]);
8649 
8650   // Iterate over just the existing users of From. See the comments in
8651   // the ReplaceAllUsesWith above.
8652   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8653   RAUWUpdateListener Listener(*this, UI, UE);
8654   while (UI != UE) {
8655     SDNode *User = *UI;
8656 
8657     // This node is about to morph, remove its old self from the CSE maps.
8658     RemoveNodeFromCSEMaps(User);
8659 
8660     // A user can appear in a use list multiple times, and when this happens the
8661     // uses are usually next to each other in the list.  To help reduce the
8662     // number of CSE and divergence recomputations, process all the uses of this
8663     // user that we can find this way.
8664     bool To_IsDivergent = false;
8665     do {
8666       SDUse &Use = UI.getUse();
8667       const SDValue &ToOp = To[Use.getResNo()];
8668       ++UI;
8669       Use.set(ToOp);
8670       To_IsDivergent |= ToOp->isDivergent();
8671     } while (UI != UE && *UI == User);
8672 
8673     if (To_IsDivergent != From->isDivergent())
8674       updateDivergence(User);
8675 
8676     // Now that we have modified User, add it back to the CSE maps.  If it
8677     // already exists there, recursively merge the results together.
8678     AddModifiedNodeToCSEMaps(User);
8679   }
8680 
8681   // If we just RAUW'd the root, take note.
8682   if (From == getRoot().getNode())
8683     setRoot(SDValue(To[getRoot().getResNo()]));
8684 }
8685 
8686 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8687 /// uses of other values produced by From.getNode() alone.  The Deleted
8688 /// vector is handled the same way as for ReplaceAllUsesWith.
8689 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8690   // Handle the really simple, really trivial case efficiently.
8691   if (From == To) return;
8692 
8693   // Handle the simple, trivial, case efficiently.
8694   if (From.getNode()->getNumValues() == 1) {
8695     ReplaceAllUsesWith(From, To);
8696     return;
8697   }
8698 
8699   // Preserve Debug Info.
8700   transferDbgValues(From, To);
8701 
8702   // Iterate over just the existing users of From. See the comments in
8703   // the ReplaceAllUsesWith above.
8704   SDNode::use_iterator UI = From.getNode()->use_begin(),
8705                        UE = From.getNode()->use_end();
8706   RAUWUpdateListener Listener(*this, UI, UE);
8707   while (UI != UE) {
8708     SDNode *User = *UI;
8709     bool UserRemovedFromCSEMaps = false;
8710 
8711     // A user can appear in a use list multiple times, and when this
8712     // happens the uses are usually next to each other in the list.
8713     // To help reduce the number of CSE recomputations, process all
8714     // the uses of this user that we can find this way.
8715     do {
8716       SDUse &Use = UI.getUse();
8717 
8718       // Skip uses of different values from the same node.
8719       if (Use.getResNo() != From.getResNo()) {
8720         ++UI;
8721         continue;
8722       }
8723 
8724       // If this node hasn't been modified yet, it's still in the CSE maps,
8725       // so remove its old self from the CSE maps.
8726       if (!UserRemovedFromCSEMaps) {
8727         RemoveNodeFromCSEMaps(User);
8728         UserRemovedFromCSEMaps = true;
8729       }
8730 
8731       ++UI;
8732       Use.set(To);
8733       if (To->isDivergent() != From->isDivergent())
8734         updateDivergence(User);
8735     } while (UI != UE && *UI == User);
8736     // We are iterating over all uses of the From node, so if a use
8737     // doesn't use the specific value, no changes are made.
8738     if (!UserRemovedFromCSEMaps)
8739       continue;
8740 
8741     // Now that we have modified User, add it back to the CSE maps.  If it
8742     // already exists there, recursively merge the results together.
8743     AddModifiedNodeToCSEMaps(User);
8744   }
8745 
8746   // If we just RAUW'd the root, take note.
8747   if (From == getRoot())
8748     setRoot(To);
8749 }
8750 
8751 namespace {
8752 
8753   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8754   /// to record information about a use.
8755   struct UseMemo {
8756     SDNode *User;
8757     unsigned Index;
8758     SDUse *Use;
8759   };
8760 
8761   /// operator< - Sort Memos by User.
8762   bool operator<(const UseMemo &L, const UseMemo &R) {
8763     return (intptr_t)L.User < (intptr_t)R.User;
8764   }
8765 
8766 } // end anonymous namespace
8767 
8768 bool SelectionDAG::calculateDivergence(SDNode *N) {
8769   if (TLI->isSDNodeAlwaysUniform(N)) {
8770     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
8771            "Conflicting divergence information!");
8772     return false;
8773   }
8774   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
8775     return true;
8776   for (auto &Op : N->ops()) {
8777     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
8778       return true;
8779   }
8780   return false;
8781 }
8782 
8783 void SelectionDAG::updateDivergence(SDNode *N) {
8784   SmallVector<SDNode *, 16> Worklist(1, N);
8785   do {
8786     N = Worklist.pop_back_val();
8787     bool IsDivergent = calculateDivergence(N);
8788     if (N->SDNodeBits.IsDivergent != IsDivergent) {
8789       N->SDNodeBits.IsDivergent = IsDivergent;
8790       Worklist.insert(Worklist.end(), N->use_begin(), N->use_end());
8791     }
8792   } while (!Worklist.empty());
8793 }
8794 
8795 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8796   DenseMap<SDNode *, unsigned> Degree;
8797   Order.reserve(AllNodes.size());
8798   for (auto &N : allnodes()) {
8799     unsigned NOps = N.getNumOperands();
8800     Degree[&N] = NOps;
8801     if (0 == NOps)
8802       Order.push_back(&N);
8803   }
8804   for (size_t I = 0; I != Order.size(); ++I) {
8805     SDNode *N = Order[I];
8806     for (auto U : N->uses()) {
8807       unsigned &UnsortedOps = Degree[U];
8808       if (0 == --UnsortedOps)
8809         Order.push_back(U);
8810     }
8811   }
8812 }
8813 
8814 #ifndef NDEBUG
8815 void SelectionDAG::VerifyDAGDiverence() {
8816   std::vector<SDNode *> TopoOrder;
8817   CreateTopologicalOrder(TopoOrder);
8818   for (auto *N : TopoOrder) {
8819     assert(calculateDivergence(N) == N->isDivergent() &&
8820            "Divergence bit inconsistency detected");
8821   }
8822 }
8823 #endif
8824 
8825 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8826 /// uses of other values produced by From.getNode() alone.  The same value
8827 /// may appear in both the From and To list.  The Deleted vector is
8828 /// handled the same way as for ReplaceAllUsesWith.
8829 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8830                                               const SDValue *To,
8831                                               unsigned Num){
8832   // Handle the simple, trivial case efficiently.
8833   if (Num == 1)
8834     return ReplaceAllUsesOfValueWith(*From, *To);
8835 
8836   transferDbgValues(*From, *To);
8837 
8838   // Read up all the uses and make records of them. This helps
8839   // processing new uses that are introduced during the
8840   // replacement process.
8841   SmallVector<UseMemo, 4> Uses;
8842   for (unsigned i = 0; i != Num; ++i) {
8843     unsigned FromResNo = From[i].getResNo();
8844     SDNode *FromNode = From[i].getNode();
8845     for (SDNode::use_iterator UI = FromNode->use_begin(),
8846          E = FromNode->use_end(); UI != E; ++UI) {
8847       SDUse &Use = UI.getUse();
8848       if (Use.getResNo() == FromResNo) {
8849         UseMemo Memo = { *UI, i, &Use };
8850         Uses.push_back(Memo);
8851       }
8852     }
8853   }
8854 
8855   // Sort the uses, so that all the uses from a given User are together.
8856   llvm::sort(Uses);
8857 
8858   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8859        UseIndex != UseIndexEnd; ) {
8860     // We know that this user uses some value of From.  If it is the right
8861     // value, update it.
8862     SDNode *User = Uses[UseIndex].User;
8863 
8864     // This node is about to morph, remove its old self from the CSE maps.
8865     RemoveNodeFromCSEMaps(User);
8866 
8867     // The Uses array is sorted, so all the uses for a given User
8868     // are next to each other in the list.
8869     // To help reduce the number of CSE recomputations, process all
8870     // the uses of this user that we can find this way.
8871     do {
8872       unsigned i = Uses[UseIndex].Index;
8873       SDUse &Use = *Uses[UseIndex].Use;
8874       ++UseIndex;
8875 
8876       Use.set(To[i]);
8877     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8878 
8879     // Now that we have modified User, add it back to the CSE maps.  If it
8880     // already exists there, recursively merge the results together.
8881     AddModifiedNodeToCSEMaps(User);
8882   }
8883 }
8884 
8885 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8886 /// based on their topological order. It returns the maximum id and a vector
8887 /// of the SDNodes* in assigned order by reference.
8888 unsigned SelectionDAG::AssignTopologicalOrder() {
8889   unsigned DAGSize = 0;
8890 
8891   // SortedPos tracks the progress of the algorithm. Nodes before it are
8892   // sorted, nodes after it are unsorted. When the algorithm completes
8893   // it is at the end of the list.
8894   allnodes_iterator SortedPos = allnodes_begin();
8895 
8896   // Visit all the nodes. Move nodes with no operands to the front of
8897   // the list immediately. Annotate nodes that do have operands with their
8898   // operand count. Before we do this, the Node Id fields of the nodes
8899   // may contain arbitrary values. After, the Node Id fields for nodes
8900   // before SortedPos will contain the topological sort index, and the
8901   // Node Id fields for nodes At SortedPos and after will contain the
8902   // count of outstanding operands.
8903   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8904     SDNode *N = &*I++;
8905     checkForCycles(N, this);
8906     unsigned Degree = N->getNumOperands();
8907     if (Degree == 0) {
8908       // A node with no uses, add it to the result array immediately.
8909       N->setNodeId(DAGSize++);
8910       allnodes_iterator Q(N);
8911       if (Q != SortedPos)
8912         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8913       assert(SortedPos != AllNodes.end() && "Overran node list");
8914       ++SortedPos;
8915     } else {
8916       // Temporarily use the Node Id as scratch space for the degree count.
8917       N->setNodeId(Degree);
8918     }
8919   }
8920 
8921   // Visit all the nodes. As we iterate, move nodes into sorted order,
8922   // such that by the time the end is reached all nodes will be sorted.
8923   for (SDNode &Node : allnodes()) {
8924     SDNode *N = &Node;
8925     checkForCycles(N, this);
8926     // N is in sorted position, so all its uses have one less operand
8927     // that needs to be sorted.
8928     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8929          UI != UE; ++UI) {
8930       SDNode *P = *UI;
8931       unsigned Degree = P->getNodeId();
8932       assert(Degree != 0 && "Invalid node degree");
8933       --Degree;
8934       if (Degree == 0) {
8935         // All of P's operands are sorted, so P may sorted now.
8936         P->setNodeId(DAGSize++);
8937         if (P->getIterator() != SortedPos)
8938           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8939         assert(SortedPos != AllNodes.end() && "Overran node list");
8940         ++SortedPos;
8941       } else {
8942         // Update P's outstanding operand count.
8943         P->setNodeId(Degree);
8944       }
8945     }
8946     if (Node.getIterator() == SortedPos) {
8947 #ifndef NDEBUG
8948       allnodes_iterator I(N);
8949       SDNode *S = &*++I;
8950       dbgs() << "Overran sorted position:\n";
8951       S->dumprFull(this); dbgs() << "\n";
8952       dbgs() << "Checking if this is due to cycles\n";
8953       checkForCycles(this, true);
8954 #endif
8955       llvm_unreachable(nullptr);
8956     }
8957   }
8958 
8959   assert(SortedPos == AllNodes.end() &&
8960          "Topological sort incomplete!");
8961   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8962          "First node in topological sort is not the entry token!");
8963   assert(AllNodes.front().getNodeId() == 0 &&
8964          "First node in topological sort has non-zero id!");
8965   assert(AllNodes.front().getNumOperands() == 0 &&
8966          "First node in topological sort has operands!");
8967   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8968          "Last node in topologic sort has unexpected id!");
8969   assert(AllNodes.back().use_empty() &&
8970          "Last node in topologic sort has users!");
8971   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8972   return DAGSize;
8973 }
8974 
8975 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8976 /// value is produced by SD.
8977 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8978   if (SD) {
8979     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8980     SD->setHasDebugValue(true);
8981   }
8982   DbgInfo->add(DB, SD, isParameter);
8983 }
8984 
8985 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8986   DbgInfo->add(DB);
8987 }
8988 
8989 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8990                                                    SDValue NewMemOp) {
8991   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8992   // The new memory operation must have the same position as the old load in
8993   // terms of memory dependency. Create a TokenFactor for the old load and new
8994   // memory operation and update uses of the old load's output chain to use that
8995   // TokenFactor.
8996   SDValue OldChain = SDValue(OldLoad, 1);
8997   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8998   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8999     return NewChain;
9000 
9001   SDValue TokenFactor =
9002       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
9003   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9004   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
9005   return TokenFactor;
9006 }
9007 
9008 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9009                                                      Function **OutFunction) {
9010   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9011 
9012   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9013   auto *Module = MF->getFunction().getParent();
9014   auto *Function = Module->getFunction(Symbol);
9015 
9016   if (OutFunction != nullptr)
9017       *OutFunction = Function;
9018 
9019   if (Function != nullptr) {
9020     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9021     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9022   }
9023 
9024   std::string ErrorStr;
9025   raw_string_ostream ErrorFormatter(ErrorStr);
9026 
9027   ErrorFormatter << "Undefined external symbol ";
9028   ErrorFormatter << '"' << Symbol << '"';
9029   ErrorFormatter.flush();
9030 
9031   report_fatal_error(ErrorStr);
9032 }
9033 
9034 //===----------------------------------------------------------------------===//
9035 //                              SDNode Class
9036 //===----------------------------------------------------------------------===//
9037 
9038 bool llvm::isNullConstant(SDValue V) {
9039   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9040   return Const != nullptr && Const->isNullValue();
9041 }
9042 
9043 bool llvm::isNullFPConstant(SDValue V) {
9044   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9045   return Const != nullptr && Const->isZero() && !Const->isNegative();
9046 }
9047 
9048 bool llvm::isAllOnesConstant(SDValue V) {
9049   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9050   return Const != nullptr && Const->isAllOnesValue();
9051 }
9052 
9053 bool llvm::isOneConstant(SDValue V) {
9054   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9055   return Const != nullptr && Const->isOne();
9056 }
9057 
9058 SDValue llvm::peekThroughBitcasts(SDValue V) {
9059   while (V.getOpcode() == ISD::BITCAST)
9060     V = V.getOperand(0);
9061   return V;
9062 }
9063 
9064 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9065   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9066     V = V.getOperand(0);
9067   return V;
9068 }
9069 
9070 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9071   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9072     V = V.getOperand(0);
9073   return V;
9074 }
9075 
9076 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9077   if (V.getOpcode() != ISD::XOR)
9078     return false;
9079   V = peekThroughBitcasts(V.getOperand(1));
9080   unsigned NumBits = V.getScalarValueSizeInBits();
9081   ConstantSDNode *C =
9082       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9083   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9084 }
9085 
9086 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9087                                           bool AllowTruncation) {
9088   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9089     return CN;
9090 
9091   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9092     BitVector UndefElements;
9093     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9094 
9095     // BuildVectors can truncate their operands. Ignore that case here unless
9096     // AllowTruncation is set.
9097     if (CN && (UndefElements.none() || AllowUndefs)) {
9098       EVT CVT = CN->getValueType(0);
9099       EVT NSVT = N.getValueType().getScalarType();
9100       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9101       if (AllowTruncation || (CVT == NSVT))
9102         return CN;
9103     }
9104   }
9105 
9106   return nullptr;
9107 }
9108 
9109 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9110                                           bool AllowUndefs,
9111                                           bool AllowTruncation) {
9112   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9113     return CN;
9114 
9115   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9116     BitVector UndefElements;
9117     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9118 
9119     // BuildVectors can truncate their operands. Ignore that case here unless
9120     // AllowTruncation is set.
9121     if (CN && (UndefElements.none() || AllowUndefs)) {
9122       EVT CVT = CN->getValueType(0);
9123       EVT NSVT = N.getValueType().getScalarType();
9124       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9125       if (AllowTruncation || (CVT == NSVT))
9126         return CN;
9127     }
9128   }
9129 
9130   return nullptr;
9131 }
9132 
9133 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9134   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9135     return CN;
9136 
9137   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9138     BitVector UndefElements;
9139     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9140     if (CN && (UndefElements.none() || AllowUndefs))
9141       return CN;
9142   }
9143 
9144   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9145     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9146       return CN;
9147 
9148   return nullptr;
9149 }
9150 
9151 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9152                                               const APInt &DemandedElts,
9153                                               bool AllowUndefs) {
9154   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9155     return CN;
9156 
9157   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9158     BitVector UndefElements;
9159     ConstantFPSDNode *CN =
9160         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9161     if (CN && (UndefElements.none() || AllowUndefs))
9162       return CN;
9163   }
9164 
9165   return nullptr;
9166 }
9167 
9168 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9169   // TODO: may want to use peekThroughBitcast() here.
9170   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9171   return C && C->isNullValue();
9172 }
9173 
9174 bool llvm::isOneOrOneSplat(SDValue N) {
9175   // TODO: may want to use peekThroughBitcast() here.
9176   unsigned BitWidth = N.getScalarValueSizeInBits();
9177   ConstantSDNode *C = isConstOrConstSplat(N);
9178   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9179 }
9180 
9181 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
9182   N = peekThroughBitcasts(N);
9183   unsigned BitWidth = N.getScalarValueSizeInBits();
9184   ConstantSDNode *C = isConstOrConstSplat(N);
9185   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9186 }
9187 
9188 HandleSDNode::~HandleSDNode() {
9189   DropOperands();
9190 }
9191 
9192 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9193                                          const DebugLoc &DL,
9194                                          const GlobalValue *GA, EVT VT,
9195                                          int64_t o, unsigned TF)
9196     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9197   TheGlobal = GA;
9198 }
9199 
9200 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9201                                          EVT VT, unsigned SrcAS,
9202                                          unsigned DestAS)
9203     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9204       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9205 
9206 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9207                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9208     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9209   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9210   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9211   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9212   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9213 
9214   // We check here that the size of the memory operand fits within the size of
9215   // the MMO. This is because the MMO might indicate only a possible address
9216   // range instead of specifying the affected memory addresses precisely.
9217   // TODO: Make MachineMemOperands aware of scalable vectors.
9218   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9219          "Size mismatch!");
9220 }
9221 
9222 /// Profile - Gather unique data for the node.
9223 ///
9224 void SDNode::Profile(FoldingSetNodeID &ID) const {
9225   AddNodeIDNode(ID, this);
9226 }
9227 
9228 namespace {
9229 
9230   struct EVTArray {
9231     std::vector<EVT> VTs;
9232 
9233     EVTArray() {
9234       VTs.reserve(MVT::LAST_VALUETYPE);
9235       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9236         VTs.push_back(MVT((MVT::SimpleValueType)i));
9237     }
9238   };
9239 
9240 } // end anonymous namespace
9241 
9242 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9243 static ManagedStatic<EVTArray> SimpleVTArray;
9244 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9245 
9246 /// getValueTypeList - Return a pointer to the specified value type.
9247 ///
9248 const EVT *SDNode::getValueTypeList(EVT VT) {
9249   if (VT.isExtended()) {
9250     sys::SmartScopedLock<true> Lock(*VTMutex);
9251     return &(*EVTs->insert(VT).first);
9252   } else {
9253     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9254            "Value type out of range!");
9255     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9256   }
9257 }
9258 
9259 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9260 /// indicated value.  This method ignores uses of other values defined by this
9261 /// operation.
9262 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9263   assert(Value < getNumValues() && "Bad value!");
9264 
9265   // TODO: Only iterate over uses of a given value of the node
9266   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9267     if (UI.getUse().getResNo() == Value) {
9268       if (NUses == 0)
9269         return false;
9270       --NUses;
9271     }
9272   }
9273 
9274   // Found exactly the right number of uses?
9275   return NUses == 0;
9276 }
9277 
9278 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9279 /// value. This method ignores uses of other values defined by this operation.
9280 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9281   assert(Value < getNumValues() && "Bad value!");
9282 
9283   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9284     if (UI.getUse().getResNo() == Value)
9285       return true;
9286 
9287   return false;
9288 }
9289 
9290 /// isOnlyUserOf - Return true if this node is the only use of N.
9291 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9292   bool Seen = false;
9293   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9294     SDNode *User = *I;
9295     if (User == this)
9296       Seen = true;
9297     else
9298       return false;
9299   }
9300 
9301   return Seen;
9302 }
9303 
9304 /// Return true if the only users of N are contained in Nodes.
9305 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9306   bool Seen = false;
9307   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9308     SDNode *User = *I;
9309     if (llvm::is_contained(Nodes, User))
9310       Seen = true;
9311     else
9312       return false;
9313   }
9314 
9315   return Seen;
9316 }
9317 
9318 /// isOperand - Return true if this node is an operand of N.
9319 bool SDValue::isOperandOf(const SDNode *N) const {
9320   return is_contained(N->op_values(), *this);
9321 }
9322 
9323 bool SDNode::isOperandOf(const SDNode *N) const {
9324   return any_of(N->op_values(),
9325                 [this](SDValue Op) { return this == Op.getNode(); });
9326 }
9327 
9328 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9329 /// be a chain) reaches the specified operand without crossing any
9330 /// side-effecting instructions on any chain path.  In practice, this looks
9331 /// through token factors and non-volatile loads.  In order to remain efficient,
9332 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9333 ///
9334 /// Note that we only need to examine chains when we're searching for
9335 /// side-effects; SelectionDAG requires that all side-effects are represented
9336 /// by chains, even if another operand would force a specific ordering. This
9337 /// constraint is necessary to allow transformations like splitting loads.
9338 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9339                                              unsigned Depth) const {
9340   if (*this == Dest) return true;
9341 
9342   // Don't search too deeply, we just want to be able to see through
9343   // TokenFactor's etc.
9344   if (Depth == 0) return false;
9345 
9346   // If this is a token factor, all inputs to the TF happen in parallel.
9347   if (getOpcode() == ISD::TokenFactor) {
9348     // First, try a shallow search.
9349     if (is_contained((*this)->ops(), Dest)) {
9350       // We found the chain we want as an operand of this TokenFactor.
9351       // Essentially, we reach the chain without side-effects if we could
9352       // serialize the TokenFactor into a simple chain of operations with
9353       // Dest as the last operation. This is automatically true if the
9354       // chain has one use: there are no other ordering constraints.
9355       // If the chain has more than one use, we give up: some other
9356       // use of Dest might force a side-effect between Dest and the current
9357       // node.
9358       if (Dest.hasOneUse())
9359         return true;
9360     }
9361     // Next, try a deep search: check whether every operand of the TokenFactor
9362     // reaches Dest.
9363     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9364       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9365     });
9366   }
9367 
9368   // Loads don't have side effects, look through them.
9369   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9370     if (Ld->isUnordered())
9371       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9372   }
9373   return false;
9374 }
9375 
9376 bool SDNode::hasPredecessor(const SDNode *N) const {
9377   SmallPtrSet<const SDNode *, 32> Visited;
9378   SmallVector<const SDNode *, 16> Worklist;
9379   Worklist.push_back(this);
9380   return hasPredecessorHelper(N, Visited, Worklist);
9381 }
9382 
9383 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9384   this->Flags.intersectWith(Flags);
9385 }
9386 
9387 SDValue
9388 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9389                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9390                                   bool AllowPartials) {
9391   // The pattern must end in an extract from index 0.
9392   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9393       !isNullConstant(Extract->getOperand(1)))
9394     return SDValue();
9395 
9396   // Match against one of the candidate binary ops.
9397   SDValue Op = Extract->getOperand(0);
9398   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9399         return Op.getOpcode() == unsigned(BinOp);
9400       }))
9401     return SDValue();
9402 
9403   // Floating-point reductions may require relaxed constraints on the final step
9404   // of the reduction because they may reorder intermediate operations.
9405   unsigned CandidateBinOp = Op.getOpcode();
9406   if (Op.getValueType().isFloatingPoint()) {
9407     SDNodeFlags Flags = Op->getFlags();
9408     switch (CandidateBinOp) {
9409     case ISD::FADD:
9410       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9411         return SDValue();
9412       break;
9413     default:
9414       llvm_unreachable("Unhandled FP opcode for binop reduction");
9415     }
9416   }
9417 
9418   // Matching failed - attempt to see if we did enough stages that a partial
9419   // reduction from a subvector is possible.
9420   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9421     if (!AllowPartials || !Op)
9422       return SDValue();
9423     EVT OpVT = Op.getValueType();
9424     EVT OpSVT = OpVT.getScalarType();
9425     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9426     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9427       return SDValue();
9428     BinOp = (ISD::NodeType)CandidateBinOp;
9429     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9430                    getVectorIdxConstant(0, SDLoc(Op)));
9431   };
9432 
9433   // At each stage, we're looking for something that looks like:
9434   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9435   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9436   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9437   // %a = binop <8 x i32> %op, %s
9438   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9439   // we expect something like:
9440   // <4,5,6,7,u,u,u,u>
9441   // <2,3,u,u,u,u,u,u>
9442   // <1,u,u,u,u,u,u,u>
9443   // While a partial reduction match would be:
9444   // <2,3,u,u,u,u,u,u>
9445   // <1,u,u,u,u,u,u,u>
9446   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9447   SDValue PrevOp;
9448   for (unsigned i = 0; i < Stages; ++i) {
9449     unsigned MaskEnd = (1 << i);
9450 
9451     if (Op.getOpcode() != CandidateBinOp)
9452       return PartialReduction(PrevOp, MaskEnd);
9453 
9454     SDValue Op0 = Op.getOperand(0);
9455     SDValue Op1 = Op.getOperand(1);
9456 
9457     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9458     if (Shuffle) {
9459       Op = Op1;
9460     } else {
9461       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9462       Op = Op0;
9463     }
9464 
9465     // The first operand of the shuffle should be the same as the other operand
9466     // of the binop.
9467     if (!Shuffle || Shuffle->getOperand(0) != Op)
9468       return PartialReduction(PrevOp, MaskEnd);
9469 
9470     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9471     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9472       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9473         return PartialReduction(PrevOp, MaskEnd);
9474 
9475     PrevOp = Op;
9476   }
9477 
9478   // Handle subvector reductions, which tend to appear after the shuffle
9479   // reduction stages.
9480   while (Op.getOpcode() == CandidateBinOp) {
9481     unsigned NumElts = Op.getValueType().getVectorNumElements();
9482     SDValue Op0 = Op.getOperand(0);
9483     SDValue Op1 = Op.getOperand(1);
9484     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9485         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9486         Op0.getOperand(0) != Op1.getOperand(0))
9487       break;
9488     SDValue Src = Op0.getOperand(0);
9489     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9490     if (NumSrcElts != (2 * NumElts))
9491       break;
9492     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9493           Op1.getConstantOperandAPInt(1) == NumElts) &&
9494         !(Op1.getConstantOperandAPInt(1) == 0 &&
9495           Op0.getConstantOperandAPInt(1) == NumElts))
9496       break;
9497     Op = Src;
9498   }
9499 
9500   BinOp = (ISD::NodeType)CandidateBinOp;
9501   return Op;
9502 }
9503 
9504 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9505   assert(N->getNumValues() == 1 &&
9506          "Can't unroll a vector with multiple results!");
9507 
9508   EVT VT = N->getValueType(0);
9509   unsigned NE = VT.getVectorNumElements();
9510   EVT EltVT = VT.getVectorElementType();
9511   SDLoc dl(N);
9512 
9513   SmallVector<SDValue, 8> Scalars;
9514   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9515 
9516   // If ResNE is 0, fully unroll the vector op.
9517   if (ResNE == 0)
9518     ResNE = NE;
9519   else if (NE > ResNE)
9520     NE = ResNE;
9521 
9522   unsigned i;
9523   for (i= 0; i != NE; ++i) {
9524     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9525       SDValue Operand = N->getOperand(j);
9526       EVT OperandVT = Operand.getValueType();
9527       if (OperandVT.isVector()) {
9528         // A vector operand; extract a single element.
9529         EVT OperandEltVT = OperandVT.getVectorElementType();
9530         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9531                               Operand, getVectorIdxConstant(i, dl));
9532       } else {
9533         // A scalar operand; just use it as is.
9534         Operands[j] = Operand;
9535       }
9536     }
9537 
9538     switch (N->getOpcode()) {
9539     default: {
9540       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9541                                 N->getFlags()));
9542       break;
9543     }
9544     case ISD::VSELECT:
9545       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9546       break;
9547     case ISD::SHL:
9548     case ISD::SRA:
9549     case ISD::SRL:
9550     case ISD::ROTL:
9551     case ISD::ROTR:
9552       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9553                                getShiftAmountOperand(Operands[0].getValueType(),
9554                                                      Operands[1])));
9555       break;
9556     case ISD::SIGN_EXTEND_INREG: {
9557       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9558       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9559                                 Operands[0],
9560                                 getValueType(ExtVT)));
9561     }
9562     }
9563   }
9564 
9565   for (; i < ResNE; ++i)
9566     Scalars.push_back(getUNDEF(EltVT));
9567 
9568   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9569   return getBuildVector(VecVT, dl, Scalars);
9570 }
9571 
9572 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9573     SDNode *N, unsigned ResNE) {
9574   unsigned Opcode = N->getOpcode();
9575   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9576           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9577           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9578          "Expected an overflow opcode");
9579 
9580   EVT ResVT = N->getValueType(0);
9581   EVT OvVT = N->getValueType(1);
9582   EVT ResEltVT = ResVT.getVectorElementType();
9583   EVT OvEltVT = OvVT.getVectorElementType();
9584   SDLoc dl(N);
9585 
9586   // If ResNE is 0, fully unroll the vector op.
9587   unsigned NE = ResVT.getVectorNumElements();
9588   if (ResNE == 0)
9589     ResNE = NE;
9590   else if (NE > ResNE)
9591     NE = ResNE;
9592 
9593   SmallVector<SDValue, 8> LHSScalars;
9594   SmallVector<SDValue, 8> RHSScalars;
9595   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9596   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9597 
9598   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9599   SDVTList VTs = getVTList(ResEltVT, SVT);
9600   SmallVector<SDValue, 8> ResScalars;
9601   SmallVector<SDValue, 8> OvScalars;
9602   for (unsigned i = 0; i < NE; ++i) {
9603     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9604     SDValue Ov =
9605         getSelect(dl, OvEltVT, Res.getValue(1),
9606                   getBoolConstant(true, dl, OvEltVT, ResVT),
9607                   getConstant(0, dl, OvEltVT));
9608 
9609     ResScalars.push_back(Res);
9610     OvScalars.push_back(Ov);
9611   }
9612 
9613   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9614   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9615 
9616   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9617   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9618   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9619                         getBuildVector(NewOvVT, dl, OvScalars));
9620 }
9621 
9622 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9623                                                   LoadSDNode *Base,
9624                                                   unsigned Bytes,
9625                                                   int Dist) const {
9626   if (LD->isVolatile() || Base->isVolatile())
9627     return false;
9628   // TODO: probably too restrictive for atomics, revisit
9629   if (!LD->isSimple())
9630     return false;
9631   if (LD->isIndexed() || Base->isIndexed())
9632     return false;
9633   if (LD->getChain() != Base->getChain())
9634     return false;
9635   EVT VT = LD->getValueType(0);
9636   if (VT.getSizeInBits() / 8 != Bytes)
9637     return false;
9638 
9639   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9640   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9641 
9642   int64_t Offset = 0;
9643   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9644     return (Dist * Bytes == Offset);
9645   return false;
9646 }
9647 
9648 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9649 /// if it cannot be inferred.
9650 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9651   // If this is a GlobalAddress + cst, return the alignment.
9652   const GlobalValue *GV = nullptr;
9653   int64_t GVOffset = 0;
9654   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9655     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9656     KnownBits Known(PtrWidth);
9657     llvm::computeKnownBits(GV, Known, getDataLayout());
9658     unsigned AlignBits = Known.countMinTrailingZeros();
9659     if (AlignBits)
9660       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9661   }
9662 
9663   // If this is a direct reference to a stack slot, use information about the
9664   // stack slot's alignment.
9665   int FrameIdx = INT_MIN;
9666   int64_t FrameOffset = 0;
9667   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9668     FrameIdx = FI->getIndex();
9669   } else if (isBaseWithConstantOffset(Ptr) &&
9670              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9671     // Handle FI+Cst
9672     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9673     FrameOffset = Ptr.getConstantOperandVal(1);
9674   }
9675 
9676   if (FrameIdx != INT_MIN) {
9677     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9678     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
9679   }
9680 
9681   return None;
9682 }
9683 
9684 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9685 /// which is split (or expanded) into two not necessarily identical pieces.
9686 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9687   // Currently all types are split in half.
9688   EVT LoVT, HiVT;
9689   if (!VT.isVector())
9690     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9691   else
9692     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9693 
9694   return std::make_pair(LoVT, HiVT);
9695 }
9696 
9697 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
9698 /// type, dependent on an enveloping VT that has been split into two identical
9699 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
9700 std::pair<EVT, EVT>
9701 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
9702                                        bool *HiIsEmpty) const {
9703   EVT EltTp = VT.getVectorElementType();
9704   // Examples:
9705   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
9706   //   custom VL=9  with enveloping VL=8/8 yields 8/1
9707   //   custom VL=10 with enveloping VL=8/8 yields 8/2
9708   //   etc.
9709   ElementCount VTNumElts = VT.getVectorElementCount();
9710   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
9711   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
9712          "Mixing fixed width and scalable vectors when enveloping a type");
9713   EVT LoVT, HiVT;
9714   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
9715     LoVT = EnvVT;
9716     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
9717     *HiIsEmpty = false;
9718   } else {
9719     // Flag that hi type has zero storage size, but return split envelop type
9720     // (this would be easier if vector types with zero elements were allowed).
9721     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
9722     HiVT = EnvVT;
9723     *HiIsEmpty = true;
9724   }
9725   return std::make_pair(LoVT, HiVT);
9726 }
9727 
9728 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9729 /// low/high part.
9730 std::pair<SDValue, SDValue>
9731 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9732                           const EVT &HiVT) {
9733   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
9734          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
9735          "Splitting vector with an invalid mixture of fixed and scalable "
9736          "vector types");
9737   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
9738              N.getValueType().getVectorMinNumElements() &&
9739          "More vector elements requested than available!");
9740   SDValue Lo, Hi;
9741   Lo =
9742       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9743   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
9744   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
9745   // IDX with the runtime scaling factor of the result vector type. For
9746   // fixed-width result vectors, that runtime scaling factor is 1.
9747   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9748                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
9749   return std::make_pair(Lo, Hi);
9750 }
9751 
9752 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9753 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9754   EVT VT = N.getValueType();
9755   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9756                                 NextPowerOf2(VT.getVectorNumElements()));
9757   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9758                  getVectorIdxConstant(0, DL));
9759 }
9760 
9761 void SelectionDAG::ExtractVectorElements(SDValue Op,
9762                                          SmallVectorImpl<SDValue> &Args,
9763                                          unsigned Start, unsigned Count,
9764                                          EVT EltVT) {
9765   EVT VT = Op.getValueType();
9766   if (Count == 0)
9767     Count = VT.getVectorNumElements();
9768   if (EltVT == EVT())
9769     EltVT = VT.getVectorElementType();
9770   SDLoc SL(Op);
9771   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9772     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9773                            getVectorIdxConstant(i, SL)));
9774   }
9775 }
9776 
9777 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9778 unsigned GlobalAddressSDNode::getAddressSpace() const {
9779   return getGlobal()->getType()->getAddressSpace();
9780 }
9781 
9782 Type *ConstantPoolSDNode::getType() const {
9783   if (isMachineConstantPoolEntry())
9784     return Val.MachineCPVal->getType();
9785   return Val.ConstVal->getType();
9786 }
9787 
9788 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9789                                         unsigned &SplatBitSize,
9790                                         bool &HasAnyUndefs,
9791                                         unsigned MinSplatBits,
9792                                         bool IsBigEndian) const {
9793   EVT VT = getValueType(0);
9794   assert(VT.isVector() && "Expected a vector type");
9795   unsigned VecWidth = VT.getSizeInBits();
9796   if (MinSplatBits > VecWidth)
9797     return false;
9798 
9799   // FIXME: The widths are based on this node's type, but build vectors can
9800   // truncate their operands.
9801   SplatValue = APInt(VecWidth, 0);
9802   SplatUndef = APInt(VecWidth, 0);
9803 
9804   // Get the bits. Bits with undefined values (when the corresponding element
9805   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9806   // in SplatValue. If any of the values are not constant, give up and return
9807   // false.
9808   unsigned int NumOps = getNumOperands();
9809   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9810   unsigned EltWidth = VT.getScalarSizeInBits();
9811 
9812   for (unsigned j = 0; j < NumOps; ++j) {
9813     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9814     SDValue OpVal = getOperand(i);
9815     unsigned BitPos = j * EltWidth;
9816 
9817     if (OpVal.isUndef())
9818       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9819     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9820       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9821     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9822       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9823     else
9824       return false;
9825   }
9826 
9827   // The build_vector is all constants or undefs. Find the smallest element
9828   // size that splats the vector.
9829   HasAnyUndefs = (SplatUndef != 0);
9830 
9831   // FIXME: This does not work for vectors with elements less than 8 bits.
9832   while (VecWidth > 8) {
9833     unsigned HalfSize = VecWidth / 2;
9834     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9835     APInt LowValue = SplatValue.trunc(HalfSize);
9836     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9837     APInt LowUndef = SplatUndef.trunc(HalfSize);
9838 
9839     // If the two halves do not match (ignoring undef bits), stop here.
9840     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9841         MinSplatBits > HalfSize)
9842       break;
9843 
9844     SplatValue = HighValue | LowValue;
9845     SplatUndef = HighUndef & LowUndef;
9846 
9847     VecWidth = HalfSize;
9848   }
9849 
9850   SplatBitSize = VecWidth;
9851   return true;
9852 }
9853 
9854 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9855                                          BitVector *UndefElements) const {
9856   unsigned NumOps = getNumOperands();
9857   if (UndefElements) {
9858     UndefElements->clear();
9859     UndefElements->resize(NumOps);
9860   }
9861   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
9862   if (!DemandedElts)
9863     return SDValue();
9864   SDValue Splatted;
9865   for (unsigned i = 0; i != NumOps; ++i) {
9866     if (!DemandedElts[i])
9867       continue;
9868     SDValue Op = getOperand(i);
9869     if (Op.isUndef()) {
9870       if (UndefElements)
9871         (*UndefElements)[i] = true;
9872     } else if (!Splatted) {
9873       Splatted = Op;
9874     } else if (Splatted != Op) {
9875       return SDValue();
9876     }
9877   }
9878 
9879   if (!Splatted) {
9880     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9881     assert(getOperand(FirstDemandedIdx).isUndef() &&
9882            "Can only have a splat without a constant for all undefs.");
9883     return getOperand(FirstDemandedIdx);
9884   }
9885 
9886   return Splatted;
9887 }
9888 
9889 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9890   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9891   return getSplatValue(DemandedElts, UndefElements);
9892 }
9893 
9894 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
9895                                             SmallVectorImpl<SDValue> &Sequence,
9896                                             BitVector *UndefElements) const {
9897   unsigned NumOps = getNumOperands();
9898   Sequence.clear();
9899   if (UndefElements) {
9900     UndefElements->clear();
9901     UndefElements->resize(NumOps);
9902   }
9903   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
9904   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
9905     return false;
9906 
9907   // Set the undefs even if we don't find a sequence (like getSplatValue).
9908   if (UndefElements)
9909     for (unsigned I = 0; I != NumOps; ++I)
9910       if (DemandedElts[I] && getOperand(I).isUndef())
9911         (*UndefElements)[I] = true;
9912 
9913   // Iteratively widen the sequence length looking for repetitions.
9914   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
9915     Sequence.append(SeqLen, SDValue());
9916     for (unsigned I = 0; I != NumOps; ++I) {
9917       if (!DemandedElts[I])
9918         continue;
9919       SDValue &SeqOp = Sequence[I % SeqLen];
9920       SDValue Op = getOperand(I);
9921       if (Op.isUndef()) {
9922         if (!SeqOp)
9923           SeqOp = Op;
9924         continue;
9925       }
9926       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
9927         Sequence.clear();
9928         break;
9929       }
9930       SeqOp = Op;
9931     }
9932     if (!Sequence.empty())
9933       return true;
9934   }
9935 
9936   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
9937   return false;
9938 }
9939 
9940 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
9941                                             BitVector *UndefElements) const {
9942   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9943   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
9944 }
9945 
9946 ConstantSDNode *
9947 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9948                                         BitVector *UndefElements) const {
9949   return dyn_cast_or_null<ConstantSDNode>(
9950       getSplatValue(DemandedElts, UndefElements));
9951 }
9952 
9953 ConstantSDNode *
9954 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9955   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9956 }
9957 
9958 ConstantFPSDNode *
9959 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9960                                           BitVector *UndefElements) const {
9961   return dyn_cast_or_null<ConstantFPSDNode>(
9962       getSplatValue(DemandedElts, UndefElements));
9963 }
9964 
9965 ConstantFPSDNode *
9966 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9967   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9968 }
9969 
9970 int32_t
9971 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9972                                                    uint32_t BitWidth) const {
9973   if (ConstantFPSDNode *CN =
9974           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9975     bool IsExact;
9976     APSInt IntVal(BitWidth);
9977     const APFloat &APF = CN->getValueAPF();
9978     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9979             APFloat::opOK ||
9980         !IsExact)
9981       return -1;
9982 
9983     return IntVal.exactLogBase2();
9984   }
9985   return -1;
9986 }
9987 
9988 bool BuildVectorSDNode::isConstant() const {
9989   for (const SDValue &Op : op_values()) {
9990     unsigned Opc = Op.getOpcode();
9991     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9992       return false;
9993   }
9994   return true;
9995 }
9996 
9997 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9998   // Find the first non-undef value in the shuffle mask.
9999   unsigned i, e;
10000   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10001     /* search */;
10002 
10003   // If all elements are undefined, this shuffle can be considered a splat
10004   // (although it should eventually get simplified away completely).
10005   if (i == e)
10006     return true;
10007 
10008   // Make sure all remaining elements are either undef or the same as the first
10009   // non-undef value.
10010   for (int Idx = Mask[i]; i != e; ++i)
10011     if (Mask[i] >= 0 && Mask[i] != Idx)
10012       return false;
10013   return true;
10014 }
10015 
10016 // Returns the SDNode if it is a constant integer BuildVector
10017 // or constant integer.
10018 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
10019   if (isa<ConstantSDNode>(N))
10020     return N.getNode();
10021   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10022     return N.getNode();
10023   // Treat a GlobalAddress supporting constant offset folding as a
10024   // constant integer.
10025   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10026     if (GA->getOpcode() == ISD::GlobalAddress &&
10027         TLI->isOffsetFoldingLegal(GA))
10028       return GA;
10029   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10030       isa<ConstantSDNode>(N.getOperand(0)))
10031     return N.getNode();
10032   return nullptr;
10033 }
10034 
10035 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
10036   if (isa<ConstantFPSDNode>(N))
10037     return N.getNode();
10038 
10039   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10040     return N.getNode();
10041 
10042   return nullptr;
10043 }
10044 
10045 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10046   assert(!Node->OperandList && "Node already has operands");
10047   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10048          "too many operands to fit into SDNode");
10049   SDUse *Ops = OperandRecycler.allocate(
10050       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10051 
10052   bool IsDivergent = false;
10053   for (unsigned I = 0; I != Vals.size(); ++I) {
10054     Ops[I].setUser(Node);
10055     Ops[I].setInitial(Vals[I]);
10056     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10057       IsDivergent |= Ops[I].getNode()->isDivergent();
10058   }
10059   Node->NumOperands = Vals.size();
10060   Node->OperandList = Ops;
10061   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10062     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10063     Node->SDNodeBits.IsDivergent = IsDivergent;
10064   }
10065   checkForCycles(Node);
10066 }
10067 
10068 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10069                                      SmallVectorImpl<SDValue> &Vals) {
10070   size_t Limit = SDNode::getMaxNumOperands();
10071   while (Vals.size() > Limit) {
10072     unsigned SliceIdx = Vals.size() - Limit;
10073     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10074     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10075     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10076     Vals.emplace_back(NewTF);
10077   }
10078   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10079 }
10080 
10081 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10082                                         EVT VT, SDNodeFlags Flags) {
10083   switch (Opcode) {
10084   default:
10085     return SDValue();
10086   case ISD::ADD:
10087   case ISD::OR:
10088   case ISD::XOR:
10089   case ISD::UMAX:
10090     return getConstant(0, DL, VT);
10091   case ISD::MUL:
10092     return getConstant(1, DL, VT);
10093   case ISD::AND:
10094   case ISD::UMIN:
10095     return getAllOnesConstant(DL, VT);
10096   case ISD::SMAX:
10097     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
10098   case ISD::SMIN:
10099     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
10100   case ISD::FADD:
10101     return getConstantFP(-0.0, DL, VT);
10102   case ISD::FMUL:
10103     return getConstantFP(1.0, DL, VT);
10104   case ISD::FMINNUM:
10105   case ISD::FMAXNUM: {
10106     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
10107     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
10108     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
10109                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
10110                         APFloat::getLargest(Semantics);
10111     if (Opcode == ISD::FMAXNUM)
10112       NeutralAF.changeSign();
10113 
10114     return getConstantFP(NeutralAF, DL, VT);
10115   }
10116   }
10117 }
10118 
10119 #ifndef NDEBUG
10120 static void checkForCyclesHelper(const SDNode *N,
10121                                  SmallPtrSetImpl<const SDNode*> &Visited,
10122                                  SmallPtrSetImpl<const SDNode*> &Checked,
10123                                  const llvm::SelectionDAG *DAG) {
10124   // If this node has already been checked, don't check it again.
10125   if (Checked.count(N))
10126     return;
10127 
10128   // If a node has already been visited on this depth-first walk, reject it as
10129   // a cycle.
10130   if (!Visited.insert(N).second) {
10131     errs() << "Detected cycle in SelectionDAG\n";
10132     dbgs() << "Offending node:\n";
10133     N->dumprFull(DAG); dbgs() << "\n";
10134     abort();
10135   }
10136 
10137   for (const SDValue &Op : N->op_values())
10138     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10139 
10140   Checked.insert(N);
10141   Visited.erase(N);
10142 }
10143 #endif
10144 
10145 void llvm::checkForCycles(const llvm::SDNode *N,
10146                           const llvm::SelectionDAG *DAG,
10147                           bool force) {
10148 #ifndef NDEBUG
10149   bool check = force;
10150 #ifdef EXPENSIVE_CHECKS
10151   check = true;
10152 #endif  // EXPENSIVE_CHECKS
10153   if (check) {
10154     assert(N && "Checking nonexistent SDNode");
10155     SmallPtrSet<const SDNode*, 32> visited;
10156     SmallPtrSet<const SDNode*, 32> checked;
10157     checkForCyclesHelper(N, visited, checked, DAG);
10158   }
10159 #endif  // !NDEBUG
10160 }
10161 
10162 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10163   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10164 }
10165