1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 143 unsigned EltSize = 144 N->getValueType(0).getVectorElementType().getSizeInBits(); 145 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 146 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 147 return true; 148 } 149 } 150 151 auto *BV = dyn_cast<BuildVectorSDNode>(N); 152 if (!BV) 153 return false; 154 155 APInt SplatUndef; 156 unsigned SplatBitSize; 157 bool HasUndefs; 158 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 159 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 160 EltSize) && 161 EltSize == SplatBitSize; 162 } 163 164 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 165 // specializations of the more general isConstantSplatVector()? 166 167 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 168 // Look through a bit convert. 169 while (N->getOpcode() == ISD::BITCAST) 170 N = N->getOperand(0).getNode(); 171 172 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 173 174 unsigned i = 0, e = N->getNumOperands(); 175 176 // Skip over all of the undef values. 177 while (i != e && N->getOperand(i).isUndef()) 178 ++i; 179 180 // Do not accept an all-undef vector. 181 if (i == e) return false; 182 183 // Do not accept build_vectors that aren't all constants or which have non-~0 184 // elements. We have to be a bit careful here, as the type of the constant 185 // may not be the same as the type of the vector elements due to type 186 // legalization (the elements are promoted to a legal type for the target and 187 // a vector of a type may be legal when the base element type is not). 188 // We only want to check enough bits to cover the vector elements, because 189 // we care if the resultant vector is all ones, not whether the individual 190 // constants are. 191 SDValue NotZero = N->getOperand(i); 192 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 193 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 194 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 195 return false; 196 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 197 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 198 return false; 199 } else 200 return false; 201 202 // Okay, we have at least one ~0 value, check to see if the rest match or are 203 // undefs. Even with the above element type twiddling, this should be OK, as 204 // the same type legalization should have applied to all the elements. 205 for (++i; i != e; ++i) 206 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 207 return false; 208 return true; 209 } 210 211 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 212 // Look through a bit convert. 213 while (N->getOpcode() == ISD::BITCAST) 214 N = N->getOperand(0).getNode(); 215 216 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 217 218 bool IsAllUndef = true; 219 for (const SDValue &Op : N->op_values()) { 220 if (Op.isUndef()) 221 continue; 222 IsAllUndef = false; 223 // Do not accept build_vectors that aren't all constants or which have non-0 224 // elements. We have to be a bit careful here, as the type of the constant 225 // may not be the same as the type of the vector elements due to type 226 // legalization (the elements are promoted to a legal type for the target 227 // and a vector of a type may be legal when the base element type is not). 228 // We only want to check enough bits to cover the vector elements, because 229 // we care if the resultant vector is all zeros, not whether the individual 230 // constants are. 231 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 232 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 233 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 234 return false; 235 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 236 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 237 return false; 238 } else 239 return false; 240 } 241 242 // Do not accept an all-undef vector. 243 if (IsAllUndef) 244 return false; 245 return true; 246 } 247 248 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 249 if (N->getOpcode() != ISD::BUILD_VECTOR) 250 return false; 251 252 for (const SDValue &Op : N->op_values()) { 253 if (Op.isUndef()) 254 continue; 255 if (!isa<ConstantSDNode>(Op)) 256 return false; 257 } 258 return true; 259 } 260 261 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 262 if (N->getOpcode() != ISD::BUILD_VECTOR) 263 return false; 264 265 for (const SDValue &Op : N->op_values()) { 266 if (Op.isUndef()) 267 continue; 268 if (!isa<ConstantFPSDNode>(Op)) 269 return false; 270 } 271 return true; 272 } 273 274 bool ISD::allOperandsUndef(const SDNode *N) { 275 // Return false if the node has no operands. 276 // This is "logically inconsistent" with the definition of "all" but 277 // is probably the desired behavior. 278 if (N->getNumOperands() == 0) 279 return false; 280 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 281 } 282 283 bool ISD::matchUnaryPredicate(SDValue Op, 284 std::function<bool(ConstantSDNode *)> Match, 285 bool AllowUndefs) { 286 // FIXME: Add support for scalar UNDEF cases? 287 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 288 return Match(Cst); 289 290 // FIXME: Add support for vector UNDEF cases? 291 if (ISD::BUILD_VECTOR != Op.getOpcode()) 292 return false; 293 294 EVT SVT = Op.getValueType().getScalarType(); 295 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 296 if (AllowUndefs && Op.getOperand(i).isUndef()) { 297 if (!Match(nullptr)) 298 return false; 299 continue; 300 } 301 302 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 303 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 304 return false; 305 } 306 return true; 307 } 308 309 bool ISD::matchBinaryPredicate( 310 SDValue LHS, SDValue RHS, 311 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 312 bool AllowUndefs, bool AllowTypeMismatch) { 313 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 314 return false; 315 316 // TODO: Add support for scalar UNDEF cases? 317 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 318 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 319 return Match(LHSCst, RHSCst); 320 321 // TODO: Add support for vector UNDEF cases? 322 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 323 ISD::BUILD_VECTOR != RHS.getOpcode()) 324 return false; 325 326 EVT SVT = LHS.getValueType().getScalarType(); 327 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 328 SDValue LHSOp = LHS.getOperand(i); 329 SDValue RHSOp = RHS.getOperand(i); 330 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 331 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 332 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 333 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 334 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 335 return false; 336 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 337 LHSOp.getValueType() != RHSOp.getValueType())) 338 return false; 339 if (!Match(LHSCst, RHSCst)) 340 return false; 341 } 342 return true; 343 } 344 345 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 346 switch (VecReduceOpcode) { 347 default: 348 llvm_unreachable("Expected VECREDUCE opcode"); 349 case ISD::VECREDUCE_FADD: 350 case ISD::VECREDUCE_SEQ_FADD: 351 return ISD::FADD; 352 case ISD::VECREDUCE_FMUL: 353 case ISD::VECREDUCE_SEQ_FMUL: 354 return ISD::FMUL; 355 case ISD::VECREDUCE_ADD: 356 return ISD::ADD; 357 case ISD::VECREDUCE_MUL: 358 return ISD::MUL; 359 case ISD::VECREDUCE_AND: 360 return ISD::AND; 361 case ISD::VECREDUCE_OR: 362 return ISD::OR; 363 case ISD::VECREDUCE_XOR: 364 return ISD::XOR; 365 case ISD::VECREDUCE_SMAX: 366 return ISD::SMAX; 367 case ISD::VECREDUCE_SMIN: 368 return ISD::SMIN; 369 case ISD::VECREDUCE_UMAX: 370 return ISD::UMAX; 371 case ISD::VECREDUCE_UMIN: 372 return ISD::UMIN; 373 case ISD::VECREDUCE_FMAX: 374 return ISD::FMAXNUM; 375 case ISD::VECREDUCE_FMIN: 376 return ISD::FMINNUM; 377 } 378 } 379 380 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 381 switch (ExtType) { 382 case ISD::EXTLOAD: 383 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 384 case ISD::SEXTLOAD: 385 return ISD::SIGN_EXTEND; 386 case ISD::ZEXTLOAD: 387 return ISD::ZERO_EXTEND; 388 default: 389 break; 390 } 391 392 llvm_unreachable("Invalid LoadExtType"); 393 } 394 395 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 396 // To perform this operation, we just need to swap the L and G bits of the 397 // operation. 398 unsigned OldL = (Operation >> 2) & 1; 399 unsigned OldG = (Operation >> 1) & 1; 400 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 401 (OldL << 1) | // New G bit 402 (OldG << 2)); // New L bit. 403 } 404 405 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 406 unsigned Operation = Op; 407 if (isIntegerLike) 408 Operation ^= 7; // Flip L, G, E bits, but not U. 409 else 410 Operation ^= 15; // Flip all of the condition bits. 411 412 if (Operation > ISD::SETTRUE2) 413 Operation &= ~8; // Don't let N and U bits get set. 414 415 return ISD::CondCode(Operation); 416 } 417 418 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 419 return getSetCCInverseImpl(Op, Type.isInteger()); 420 } 421 422 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 423 bool isIntegerLike) { 424 return getSetCCInverseImpl(Op, isIntegerLike); 425 } 426 427 /// For an integer comparison, return 1 if the comparison is a signed operation 428 /// and 2 if the result is an unsigned comparison. Return zero if the operation 429 /// does not depend on the sign of the input (setne and seteq). 430 static int isSignedOp(ISD::CondCode Opcode) { 431 switch (Opcode) { 432 default: llvm_unreachable("Illegal integer setcc operation!"); 433 case ISD::SETEQ: 434 case ISD::SETNE: return 0; 435 case ISD::SETLT: 436 case ISD::SETLE: 437 case ISD::SETGT: 438 case ISD::SETGE: return 1; 439 case ISD::SETULT: 440 case ISD::SETULE: 441 case ISD::SETUGT: 442 case ISD::SETUGE: return 2; 443 } 444 } 445 446 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 447 EVT Type) { 448 bool IsInteger = Type.isInteger(); 449 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 450 // Cannot fold a signed integer setcc with an unsigned integer setcc. 451 return ISD::SETCC_INVALID; 452 453 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 454 455 // If the N and U bits get set, then the resultant comparison DOES suddenly 456 // care about orderedness, and it is true when ordered. 457 if (Op > ISD::SETTRUE2) 458 Op &= ~16; // Clear the U bit if the N bit is set. 459 460 // Canonicalize illegal integer setcc's. 461 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 462 Op = ISD::SETNE; 463 464 return ISD::CondCode(Op); 465 } 466 467 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 468 EVT Type) { 469 bool IsInteger = Type.isInteger(); 470 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 471 // Cannot fold a signed setcc with an unsigned setcc. 472 return ISD::SETCC_INVALID; 473 474 // Combine all of the condition bits. 475 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 476 477 // Canonicalize illegal integer setcc's. 478 if (IsInteger) { 479 switch (Result) { 480 default: break; 481 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 482 case ISD::SETOEQ: // SETEQ & SETU[LG]E 483 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 484 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 485 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 486 } 487 } 488 489 return Result; 490 } 491 492 //===----------------------------------------------------------------------===// 493 // SDNode Profile Support 494 //===----------------------------------------------------------------------===// 495 496 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 497 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 498 ID.AddInteger(OpC); 499 } 500 501 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 502 /// solely with their pointer. 503 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 504 ID.AddPointer(VTList.VTs); 505 } 506 507 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 508 static void AddNodeIDOperands(FoldingSetNodeID &ID, 509 ArrayRef<SDValue> Ops) { 510 for (auto& Op : Ops) { 511 ID.AddPointer(Op.getNode()); 512 ID.AddInteger(Op.getResNo()); 513 } 514 } 515 516 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 517 static void AddNodeIDOperands(FoldingSetNodeID &ID, 518 ArrayRef<SDUse> Ops) { 519 for (auto& Op : Ops) { 520 ID.AddPointer(Op.getNode()); 521 ID.AddInteger(Op.getResNo()); 522 } 523 } 524 525 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 526 SDVTList VTList, ArrayRef<SDValue> OpList) { 527 AddNodeIDOpcode(ID, OpC); 528 AddNodeIDValueTypes(ID, VTList); 529 AddNodeIDOperands(ID, OpList); 530 } 531 532 /// If this is an SDNode with special info, add this info to the NodeID data. 533 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 534 switch (N->getOpcode()) { 535 case ISD::TargetExternalSymbol: 536 case ISD::ExternalSymbol: 537 case ISD::MCSymbol: 538 llvm_unreachable("Should only be used on nodes with operands"); 539 default: break; // Normal nodes don't need extra info. 540 case ISD::TargetConstant: 541 case ISD::Constant: { 542 const ConstantSDNode *C = cast<ConstantSDNode>(N); 543 ID.AddPointer(C->getConstantIntValue()); 544 ID.AddBoolean(C->isOpaque()); 545 break; 546 } 547 case ISD::TargetConstantFP: 548 case ISD::ConstantFP: 549 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 550 break; 551 case ISD::TargetGlobalAddress: 552 case ISD::GlobalAddress: 553 case ISD::TargetGlobalTLSAddress: 554 case ISD::GlobalTLSAddress: { 555 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 556 ID.AddPointer(GA->getGlobal()); 557 ID.AddInteger(GA->getOffset()); 558 ID.AddInteger(GA->getTargetFlags()); 559 break; 560 } 561 case ISD::BasicBlock: 562 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 563 break; 564 case ISD::Register: 565 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 566 break; 567 case ISD::RegisterMask: 568 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 569 break; 570 case ISD::SRCVALUE: 571 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 572 break; 573 case ISD::FrameIndex: 574 case ISD::TargetFrameIndex: 575 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 576 break; 577 case ISD::LIFETIME_START: 578 case ISD::LIFETIME_END: 579 if (cast<LifetimeSDNode>(N)->hasOffset()) { 580 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 581 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 582 } 583 break; 584 case ISD::PSEUDO_PROBE: 585 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 586 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 587 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 588 break; 589 case ISD::JumpTable: 590 case ISD::TargetJumpTable: 591 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 592 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 593 break; 594 case ISD::ConstantPool: 595 case ISD::TargetConstantPool: { 596 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 597 ID.AddInteger(CP->getAlign().value()); 598 ID.AddInteger(CP->getOffset()); 599 if (CP->isMachineConstantPoolEntry()) 600 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 601 else 602 ID.AddPointer(CP->getConstVal()); 603 ID.AddInteger(CP->getTargetFlags()); 604 break; 605 } 606 case ISD::TargetIndex: { 607 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 608 ID.AddInteger(TI->getIndex()); 609 ID.AddInteger(TI->getOffset()); 610 ID.AddInteger(TI->getTargetFlags()); 611 break; 612 } 613 case ISD::LOAD: { 614 const LoadSDNode *LD = cast<LoadSDNode>(N); 615 ID.AddInteger(LD->getMemoryVT().getRawBits()); 616 ID.AddInteger(LD->getRawSubclassData()); 617 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 618 break; 619 } 620 case ISD::STORE: { 621 const StoreSDNode *ST = cast<StoreSDNode>(N); 622 ID.AddInteger(ST->getMemoryVT().getRawBits()); 623 ID.AddInteger(ST->getRawSubclassData()); 624 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 625 break; 626 } 627 case ISD::MLOAD: { 628 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 629 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 630 ID.AddInteger(MLD->getRawSubclassData()); 631 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 632 break; 633 } 634 case ISD::MSTORE: { 635 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 636 ID.AddInteger(MST->getMemoryVT().getRawBits()); 637 ID.AddInteger(MST->getRawSubclassData()); 638 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 639 break; 640 } 641 case ISD::MGATHER: { 642 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 643 ID.AddInteger(MG->getMemoryVT().getRawBits()); 644 ID.AddInteger(MG->getRawSubclassData()); 645 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 646 break; 647 } 648 case ISD::MSCATTER: { 649 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 650 ID.AddInteger(MS->getMemoryVT().getRawBits()); 651 ID.AddInteger(MS->getRawSubclassData()); 652 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 653 break; 654 } 655 case ISD::ATOMIC_CMP_SWAP: 656 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 657 case ISD::ATOMIC_SWAP: 658 case ISD::ATOMIC_LOAD_ADD: 659 case ISD::ATOMIC_LOAD_SUB: 660 case ISD::ATOMIC_LOAD_AND: 661 case ISD::ATOMIC_LOAD_CLR: 662 case ISD::ATOMIC_LOAD_OR: 663 case ISD::ATOMIC_LOAD_XOR: 664 case ISD::ATOMIC_LOAD_NAND: 665 case ISD::ATOMIC_LOAD_MIN: 666 case ISD::ATOMIC_LOAD_MAX: 667 case ISD::ATOMIC_LOAD_UMIN: 668 case ISD::ATOMIC_LOAD_UMAX: 669 case ISD::ATOMIC_LOAD: 670 case ISD::ATOMIC_STORE: { 671 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 672 ID.AddInteger(AT->getMemoryVT().getRawBits()); 673 ID.AddInteger(AT->getRawSubclassData()); 674 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 675 break; 676 } 677 case ISD::PREFETCH: { 678 const MemSDNode *PF = cast<MemSDNode>(N); 679 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 680 break; 681 } 682 case ISD::VECTOR_SHUFFLE: { 683 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 684 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 685 i != e; ++i) 686 ID.AddInteger(SVN->getMaskElt(i)); 687 break; 688 } 689 case ISD::TargetBlockAddress: 690 case ISD::BlockAddress: { 691 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 692 ID.AddPointer(BA->getBlockAddress()); 693 ID.AddInteger(BA->getOffset()); 694 ID.AddInteger(BA->getTargetFlags()); 695 break; 696 } 697 } // end switch (N->getOpcode()) 698 699 // Target specific memory nodes could also have address spaces to check. 700 if (N->isTargetMemoryOpcode()) 701 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 702 } 703 704 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 705 /// data. 706 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 707 AddNodeIDOpcode(ID, N->getOpcode()); 708 // Add the return value info. 709 AddNodeIDValueTypes(ID, N->getVTList()); 710 // Add the operand info. 711 AddNodeIDOperands(ID, N->ops()); 712 713 // Handle SDNode leafs with special info. 714 AddNodeIDCustom(ID, N); 715 } 716 717 //===----------------------------------------------------------------------===// 718 // SelectionDAG Class 719 //===----------------------------------------------------------------------===// 720 721 /// doNotCSE - Return true if CSE should not be performed for this node. 722 static bool doNotCSE(SDNode *N) { 723 if (N->getValueType(0) == MVT::Glue) 724 return true; // Never CSE anything that produces a flag. 725 726 switch (N->getOpcode()) { 727 default: break; 728 case ISD::HANDLENODE: 729 case ISD::EH_LABEL: 730 return true; // Never CSE these nodes. 731 } 732 733 // Check that remaining values produced are not flags. 734 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 735 if (N->getValueType(i) == MVT::Glue) 736 return true; // Never CSE anything that produces a flag. 737 738 return false; 739 } 740 741 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 742 /// SelectionDAG. 743 void SelectionDAG::RemoveDeadNodes() { 744 // Create a dummy node (which is not added to allnodes), that adds a reference 745 // to the root node, preventing it from being deleted. 746 HandleSDNode Dummy(getRoot()); 747 748 SmallVector<SDNode*, 128> DeadNodes; 749 750 // Add all obviously-dead nodes to the DeadNodes worklist. 751 for (SDNode &Node : allnodes()) 752 if (Node.use_empty()) 753 DeadNodes.push_back(&Node); 754 755 RemoveDeadNodes(DeadNodes); 756 757 // If the root changed (e.g. it was a dead load, update the root). 758 setRoot(Dummy.getValue()); 759 } 760 761 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 762 /// given list, and any nodes that become unreachable as a result. 763 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 764 765 // Process the worklist, deleting the nodes and adding their uses to the 766 // worklist. 767 while (!DeadNodes.empty()) { 768 SDNode *N = DeadNodes.pop_back_val(); 769 // Skip to next node if we've already managed to delete the node. This could 770 // happen if replacing a node causes a node previously added to the node to 771 // be deleted. 772 if (N->getOpcode() == ISD::DELETED_NODE) 773 continue; 774 775 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 776 DUL->NodeDeleted(N, nullptr); 777 778 // Take the node out of the appropriate CSE map. 779 RemoveNodeFromCSEMaps(N); 780 781 // Next, brutally remove the operand list. This is safe to do, as there are 782 // no cycles in the graph. 783 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 784 SDUse &Use = *I++; 785 SDNode *Operand = Use.getNode(); 786 Use.set(SDValue()); 787 788 // Now that we removed this operand, see if there are no uses of it left. 789 if (Operand->use_empty()) 790 DeadNodes.push_back(Operand); 791 } 792 793 DeallocateNode(N); 794 } 795 } 796 797 void SelectionDAG::RemoveDeadNode(SDNode *N){ 798 SmallVector<SDNode*, 16> DeadNodes(1, N); 799 800 // Create a dummy node that adds a reference to the root node, preventing 801 // it from being deleted. (This matters if the root is an operand of the 802 // dead node.) 803 HandleSDNode Dummy(getRoot()); 804 805 RemoveDeadNodes(DeadNodes); 806 } 807 808 void SelectionDAG::DeleteNode(SDNode *N) { 809 // First take this out of the appropriate CSE map. 810 RemoveNodeFromCSEMaps(N); 811 812 // Finally, remove uses due to operands of this node, remove from the 813 // AllNodes list, and delete the node. 814 DeleteNodeNotInCSEMaps(N); 815 } 816 817 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 818 assert(N->getIterator() != AllNodes.begin() && 819 "Cannot delete the entry node!"); 820 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 821 822 // Drop all of the operands and decrement used node's use counts. 823 N->DropOperands(); 824 825 DeallocateNode(N); 826 } 827 828 void SDDbgInfo::erase(const SDNode *Node) { 829 DbgValMapType::iterator I = DbgValMap.find(Node); 830 if (I == DbgValMap.end()) 831 return; 832 for (auto &Val: I->second) 833 Val->setIsInvalidated(); 834 DbgValMap.erase(I); 835 } 836 837 void SelectionDAG::DeallocateNode(SDNode *N) { 838 // If we have operands, deallocate them. 839 removeOperands(N); 840 841 NodeAllocator.Deallocate(AllNodes.remove(N)); 842 843 // Set the opcode to DELETED_NODE to help catch bugs when node 844 // memory is reallocated. 845 // FIXME: There are places in SDag that have grown a dependency on the opcode 846 // value in the released node. 847 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 848 N->NodeType = ISD::DELETED_NODE; 849 850 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 851 // them and forget about that node. 852 DbgInfo->erase(N); 853 } 854 855 #ifndef NDEBUG 856 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 857 static void VerifySDNode(SDNode *N) { 858 switch (N->getOpcode()) { 859 default: 860 break; 861 case ISD::BUILD_PAIR: { 862 EVT VT = N->getValueType(0); 863 assert(N->getNumValues() == 1 && "Too many results!"); 864 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 865 "Wrong return type!"); 866 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 867 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 868 "Mismatched operand types!"); 869 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 870 "Wrong operand type!"); 871 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 872 "Wrong return type size"); 873 break; 874 } 875 case ISD::BUILD_VECTOR: { 876 assert(N->getNumValues() == 1 && "Too many results!"); 877 assert(N->getValueType(0).isVector() && "Wrong return type!"); 878 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 879 "Wrong number of operands!"); 880 EVT EltVT = N->getValueType(0).getVectorElementType(); 881 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 882 assert((I->getValueType() == EltVT || 883 (EltVT.isInteger() && I->getValueType().isInteger() && 884 EltVT.bitsLE(I->getValueType()))) && 885 "Wrong operand type!"); 886 assert(I->getValueType() == N->getOperand(0).getValueType() && 887 "Operands must all have the same type"); 888 } 889 break; 890 } 891 } 892 } 893 #endif // NDEBUG 894 895 /// Insert a newly allocated node into the DAG. 896 /// 897 /// Handles insertion into the all nodes list and CSE map, as well as 898 /// verification and other common operations when a new node is allocated. 899 void SelectionDAG::InsertNode(SDNode *N) { 900 AllNodes.push_back(N); 901 #ifndef NDEBUG 902 N->PersistentId = NextPersistentId++; 903 VerifySDNode(N); 904 #endif 905 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 906 DUL->NodeInserted(N); 907 } 908 909 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 910 /// correspond to it. This is useful when we're about to delete or repurpose 911 /// the node. We don't want future request for structurally identical nodes 912 /// to return N anymore. 913 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 914 bool Erased = false; 915 switch (N->getOpcode()) { 916 case ISD::HANDLENODE: return false; // noop. 917 case ISD::CONDCODE: 918 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 919 "Cond code doesn't exist!"); 920 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 921 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 922 break; 923 case ISD::ExternalSymbol: 924 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 925 break; 926 case ISD::TargetExternalSymbol: { 927 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 928 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 929 ESN->getSymbol(), ESN->getTargetFlags())); 930 break; 931 } 932 case ISD::MCSymbol: { 933 auto *MCSN = cast<MCSymbolSDNode>(N); 934 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 935 break; 936 } 937 case ISD::VALUETYPE: { 938 EVT VT = cast<VTSDNode>(N)->getVT(); 939 if (VT.isExtended()) { 940 Erased = ExtendedValueTypeNodes.erase(VT); 941 } else { 942 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 943 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 944 } 945 break; 946 } 947 default: 948 // Remove it from the CSE Map. 949 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 950 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 951 Erased = CSEMap.RemoveNode(N); 952 break; 953 } 954 #ifndef NDEBUG 955 // Verify that the node was actually in one of the CSE maps, unless it has a 956 // flag result (which cannot be CSE'd) or is one of the special cases that are 957 // not subject to CSE. 958 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 959 !N->isMachineOpcode() && !doNotCSE(N)) { 960 N->dump(this); 961 dbgs() << "\n"; 962 llvm_unreachable("Node is not in map!"); 963 } 964 #endif 965 return Erased; 966 } 967 968 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 969 /// maps and modified in place. Add it back to the CSE maps, unless an identical 970 /// node already exists, in which case transfer all its users to the existing 971 /// node. This transfer can potentially trigger recursive merging. 972 void 973 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 974 // For node types that aren't CSE'd, just act as if no identical node 975 // already exists. 976 if (!doNotCSE(N)) { 977 SDNode *Existing = CSEMap.GetOrInsertNode(N); 978 if (Existing != N) { 979 // If there was already an existing matching node, use ReplaceAllUsesWith 980 // to replace the dead one with the existing one. This can cause 981 // recursive merging of other unrelated nodes down the line. 982 ReplaceAllUsesWith(N, Existing); 983 984 // N is now dead. Inform the listeners and delete it. 985 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 986 DUL->NodeDeleted(N, Existing); 987 DeleteNodeNotInCSEMaps(N); 988 return; 989 } 990 } 991 992 // If the node doesn't already exist, we updated it. Inform listeners. 993 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 994 DUL->NodeUpdated(N); 995 } 996 997 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 998 /// were replaced with those specified. If this node is never memoized, 999 /// return null, otherwise return a pointer to the slot it would take. If a 1000 /// node already exists with these operands, the slot will be non-null. 1001 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1002 void *&InsertPos) { 1003 if (doNotCSE(N)) 1004 return nullptr; 1005 1006 SDValue Ops[] = { Op }; 1007 FoldingSetNodeID ID; 1008 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1009 AddNodeIDCustom(ID, N); 1010 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1011 if (Node) 1012 Node->intersectFlagsWith(N->getFlags()); 1013 return Node; 1014 } 1015 1016 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1017 /// were replaced with those specified. If this node is never memoized, 1018 /// return null, otherwise return a pointer to the slot it would take. If a 1019 /// node already exists with these operands, the slot will be non-null. 1020 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1021 SDValue Op1, SDValue Op2, 1022 void *&InsertPos) { 1023 if (doNotCSE(N)) 1024 return nullptr; 1025 1026 SDValue Ops[] = { Op1, Op2 }; 1027 FoldingSetNodeID ID; 1028 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1029 AddNodeIDCustom(ID, N); 1030 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1031 if (Node) 1032 Node->intersectFlagsWith(N->getFlags()); 1033 return Node; 1034 } 1035 1036 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1037 /// were replaced with those specified. If this node is never memoized, 1038 /// return null, otherwise return a pointer to the slot it would take. If a 1039 /// node already exists with these operands, the slot will be non-null. 1040 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1041 void *&InsertPos) { 1042 if (doNotCSE(N)) 1043 return nullptr; 1044 1045 FoldingSetNodeID ID; 1046 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1047 AddNodeIDCustom(ID, N); 1048 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1049 if (Node) 1050 Node->intersectFlagsWith(N->getFlags()); 1051 return Node; 1052 } 1053 1054 Align SelectionDAG::getEVTAlign(EVT VT) const { 1055 Type *Ty = VT == MVT::iPTR ? 1056 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1057 VT.getTypeForEVT(*getContext()); 1058 1059 return getDataLayout().getABITypeAlign(Ty); 1060 } 1061 1062 // EntryNode could meaningfully have debug info if we can find it... 1063 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1064 : TM(tm), OptLevel(OL), 1065 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1066 Root(getEntryNode()) { 1067 InsertNode(&EntryNode); 1068 DbgInfo = new SDDbgInfo(); 1069 } 1070 1071 void SelectionDAG::init(MachineFunction &NewMF, 1072 OptimizationRemarkEmitter &NewORE, 1073 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1074 LegacyDivergenceAnalysis * Divergence, 1075 ProfileSummaryInfo *PSIin, 1076 BlockFrequencyInfo *BFIin) { 1077 MF = &NewMF; 1078 SDAGISelPass = PassPtr; 1079 ORE = &NewORE; 1080 TLI = getSubtarget().getTargetLowering(); 1081 TSI = getSubtarget().getSelectionDAGInfo(); 1082 LibInfo = LibraryInfo; 1083 Context = &MF->getFunction().getContext(); 1084 DA = Divergence; 1085 PSI = PSIin; 1086 BFI = BFIin; 1087 } 1088 1089 SelectionDAG::~SelectionDAG() { 1090 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1091 allnodes_clear(); 1092 OperandRecycler.clear(OperandAllocator); 1093 delete DbgInfo; 1094 } 1095 1096 bool SelectionDAG::shouldOptForSize() const { 1097 return MF->getFunction().hasOptSize() || 1098 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1099 } 1100 1101 void SelectionDAG::allnodes_clear() { 1102 assert(&*AllNodes.begin() == &EntryNode); 1103 AllNodes.remove(AllNodes.begin()); 1104 while (!AllNodes.empty()) 1105 DeallocateNode(&AllNodes.front()); 1106 #ifndef NDEBUG 1107 NextPersistentId = 0; 1108 #endif 1109 } 1110 1111 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1112 void *&InsertPos) { 1113 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1114 if (N) { 1115 switch (N->getOpcode()) { 1116 default: break; 1117 case ISD::Constant: 1118 case ISD::ConstantFP: 1119 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1120 "debug location. Use another overload."); 1121 } 1122 } 1123 return N; 1124 } 1125 1126 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1127 const SDLoc &DL, void *&InsertPos) { 1128 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1129 if (N) { 1130 switch (N->getOpcode()) { 1131 case ISD::Constant: 1132 case ISD::ConstantFP: 1133 // Erase debug location from the node if the node is used at several 1134 // different places. Do not propagate one location to all uses as it 1135 // will cause a worse single stepping debugging experience. 1136 if (N->getDebugLoc() != DL.getDebugLoc()) 1137 N->setDebugLoc(DebugLoc()); 1138 break; 1139 default: 1140 // When the node's point of use is located earlier in the instruction 1141 // sequence than its prior point of use, update its debug info to the 1142 // earlier location. 1143 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1144 N->setDebugLoc(DL.getDebugLoc()); 1145 break; 1146 } 1147 } 1148 return N; 1149 } 1150 1151 void SelectionDAG::clear() { 1152 allnodes_clear(); 1153 OperandRecycler.clear(OperandAllocator); 1154 OperandAllocator.Reset(); 1155 CSEMap.clear(); 1156 1157 ExtendedValueTypeNodes.clear(); 1158 ExternalSymbols.clear(); 1159 TargetExternalSymbols.clear(); 1160 MCSymbols.clear(); 1161 SDCallSiteDbgInfo.clear(); 1162 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1163 static_cast<CondCodeSDNode*>(nullptr)); 1164 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1165 static_cast<SDNode*>(nullptr)); 1166 1167 EntryNode.UseList = nullptr; 1168 InsertNode(&EntryNode); 1169 Root = getEntryNode(); 1170 DbgInfo->clear(); 1171 } 1172 1173 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1174 return VT.bitsGT(Op.getValueType()) 1175 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1176 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1177 } 1178 1179 std::pair<SDValue, SDValue> 1180 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1181 const SDLoc &DL, EVT VT) { 1182 assert(!VT.bitsEq(Op.getValueType()) && 1183 "Strict no-op FP extend/round not allowed."); 1184 SDValue Res = 1185 VT.bitsGT(Op.getValueType()) 1186 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1187 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1188 {Chain, Op, getIntPtrConstant(0, DL)}); 1189 1190 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1191 } 1192 1193 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1194 return VT.bitsGT(Op.getValueType()) ? 1195 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1196 getNode(ISD::TRUNCATE, DL, VT, Op); 1197 } 1198 1199 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1200 return VT.bitsGT(Op.getValueType()) ? 1201 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1202 getNode(ISD::TRUNCATE, DL, VT, Op); 1203 } 1204 1205 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1206 return VT.bitsGT(Op.getValueType()) ? 1207 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1208 getNode(ISD::TRUNCATE, DL, VT, Op); 1209 } 1210 1211 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1212 EVT OpVT) { 1213 if (VT.bitsLE(Op.getValueType())) 1214 return getNode(ISD::TRUNCATE, SL, VT, Op); 1215 1216 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1217 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1218 } 1219 1220 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1221 EVT OpVT = Op.getValueType(); 1222 assert(VT.isInteger() && OpVT.isInteger() && 1223 "Cannot getZeroExtendInReg FP types"); 1224 assert(VT.isVector() == OpVT.isVector() && 1225 "getZeroExtendInReg type should be vector iff the operand " 1226 "type is vector!"); 1227 assert((!VT.isVector() || 1228 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1229 "Vector element counts must match in getZeroExtendInReg"); 1230 assert(VT.bitsLE(OpVT) && "Not extending!"); 1231 if (OpVT == VT) 1232 return Op; 1233 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1234 VT.getScalarSizeInBits()); 1235 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1236 } 1237 1238 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1239 // Only unsigned pointer semantics are supported right now. In the future this 1240 // might delegate to TLI to check pointer signedness. 1241 return getZExtOrTrunc(Op, DL, VT); 1242 } 1243 1244 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1245 // Only unsigned pointer semantics are supported right now. In the future this 1246 // might delegate to TLI to check pointer signedness. 1247 return getZeroExtendInReg(Op, DL, VT); 1248 } 1249 1250 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1251 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1252 EVT EltVT = VT.getScalarType(); 1253 SDValue NegOne = 1254 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1255 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1256 } 1257 1258 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1259 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1260 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1261 } 1262 1263 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1264 EVT OpVT) { 1265 if (!V) 1266 return getConstant(0, DL, VT); 1267 1268 switch (TLI->getBooleanContents(OpVT)) { 1269 case TargetLowering::ZeroOrOneBooleanContent: 1270 case TargetLowering::UndefinedBooleanContent: 1271 return getConstant(1, DL, VT); 1272 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1273 return getAllOnesConstant(DL, VT); 1274 } 1275 llvm_unreachable("Unexpected boolean content enum!"); 1276 } 1277 1278 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1279 bool isT, bool isO) { 1280 EVT EltVT = VT.getScalarType(); 1281 assert((EltVT.getSizeInBits() >= 64 || 1282 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1283 "getConstant with a uint64_t value that doesn't fit in the type!"); 1284 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1285 } 1286 1287 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1288 bool isT, bool isO) { 1289 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1290 } 1291 1292 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1293 EVT VT, bool isT, bool isO) { 1294 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1295 1296 EVT EltVT = VT.getScalarType(); 1297 const ConstantInt *Elt = &Val; 1298 1299 // In some cases the vector type is legal but the element type is illegal and 1300 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1301 // inserted value (the type does not need to match the vector element type). 1302 // Any extra bits introduced will be truncated away. 1303 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1304 TargetLowering::TypePromoteInteger) { 1305 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1306 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1307 Elt = ConstantInt::get(*getContext(), NewVal); 1308 } 1309 // In other cases the element type is illegal and needs to be expanded, for 1310 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1311 // the value into n parts and use a vector type with n-times the elements. 1312 // Then bitcast to the type requested. 1313 // Legalizing constants too early makes the DAGCombiner's job harder so we 1314 // only legalize if the DAG tells us we must produce legal types. 1315 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1316 TLI->getTypeAction(*getContext(), EltVT) == 1317 TargetLowering::TypeExpandInteger) { 1318 const APInt &NewVal = Elt->getValue(); 1319 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1320 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1321 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1322 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1323 1324 // Check the temporary vector is the correct size. If this fails then 1325 // getTypeToTransformTo() probably returned a type whose size (in bits) 1326 // isn't a power-of-2 factor of the requested type size. 1327 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1328 1329 SmallVector<SDValue, 2> EltParts; 1330 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1331 EltParts.push_back(getConstant( 1332 NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL, 1333 ViaEltVT, isT, isO)); 1334 } 1335 1336 // EltParts is currently in little endian order. If we actually want 1337 // big-endian order then reverse it now. 1338 if (getDataLayout().isBigEndian()) 1339 std::reverse(EltParts.begin(), EltParts.end()); 1340 1341 // The elements must be reversed when the element order is different 1342 // to the endianness of the elements (because the BITCAST is itself a 1343 // vector shuffle in this situation). However, we do not need any code to 1344 // perform this reversal because getConstant() is producing a vector 1345 // splat. 1346 // This situation occurs in MIPS MSA. 1347 1348 SmallVector<SDValue, 8> Ops; 1349 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1350 llvm::append_range(Ops, EltParts); 1351 1352 SDValue V = 1353 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1354 return V; 1355 } 1356 1357 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1358 "APInt size does not match type size!"); 1359 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1360 FoldingSetNodeID ID; 1361 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1362 ID.AddPointer(Elt); 1363 ID.AddBoolean(isO); 1364 void *IP = nullptr; 1365 SDNode *N = nullptr; 1366 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1367 if (!VT.isVector()) 1368 return SDValue(N, 0); 1369 1370 if (!N) { 1371 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1372 CSEMap.InsertNode(N, IP); 1373 InsertNode(N); 1374 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1375 } 1376 1377 SDValue Result(N, 0); 1378 if (VT.isScalableVector()) 1379 Result = getSplatVector(VT, DL, Result); 1380 else if (VT.isVector()) 1381 Result = getSplatBuildVector(VT, DL, Result); 1382 1383 return Result; 1384 } 1385 1386 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1387 bool isTarget) { 1388 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1389 } 1390 1391 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1392 const SDLoc &DL, bool LegalTypes) { 1393 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1394 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1395 return getConstant(Val, DL, ShiftVT); 1396 } 1397 1398 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1399 bool isTarget) { 1400 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1401 } 1402 1403 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1404 bool isTarget) { 1405 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1406 } 1407 1408 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1409 EVT VT, bool isTarget) { 1410 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1411 1412 EVT EltVT = VT.getScalarType(); 1413 1414 // Do the map lookup using the actual bit pattern for the floating point 1415 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1416 // we don't have issues with SNANs. 1417 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1418 FoldingSetNodeID ID; 1419 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1420 ID.AddPointer(&V); 1421 void *IP = nullptr; 1422 SDNode *N = nullptr; 1423 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1424 if (!VT.isVector()) 1425 return SDValue(N, 0); 1426 1427 if (!N) { 1428 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1429 CSEMap.InsertNode(N, IP); 1430 InsertNode(N); 1431 } 1432 1433 SDValue Result(N, 0); 1434 if (VT.isScalableVector()) 1435 Result = getSplatVector(VT, DL, Result); 1436 else if (VT.isVector()) 1437 Result = getSplatBuildVector(VT, DL, Result); 1438 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1439 return Result; 1440 } 1441 1442 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1443 bool isTarget) { 1444 EVT EltVT = VT.getScalarType(); 1445 if (EltVT == MVT::f32) 1446 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1447 else if (EltVT == MVT::f64) 1448 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1449 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1450 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1451 bool Ignored; 1452 APFloat APF = APFloat(Val); 1453 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1454 &Ignored); 1455 return getConstantFP(APF, DL, VT, isTarget); 1456 } else 1457 llvm_unreachable("Unsupported type in getConstantFP"); 1458 } 1459 1460 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1461 EVT VT, int64_t Offset, bool isTargetGA, 1462 unsigned TargetFlags) { 1463 assert((TargetFlags == 0 || isTargetGA) && 1464 "Cannot set target flags on target-independent globals"); 1465 1466 // Truncate (with sign-extension) the offset value to the pointer size. 1467 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1468 if (BitWidth < 64) 1469 Offset = SignExtend64(Offset, BitWidth); 1470 1471 unsigned Opc; 1472 if (GV->isThreadLocal()) 1473 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1474 else 1475 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1476 1477 FoldingSetNodeID ID; 1478 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1479 ID.AddPointer(GV); 1480 ID.AddInteger(Offset); 1481 ID.AddInteger(TargetFlags); 1482 void *IP = nullptr; 1483 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1484 return SDValue(E, 0); 1485 1486 auto *N = newSDNode<GlobalAddressSDNode>( 1487 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1488 CSEMap.InsertNode(N, IP); 1489 InsertNode(N); 1490 return SDValue(N, 0); 1491 } 1492 1493 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1494 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1495 FoldingSetNodeID ID; 1496 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1497 ID.AddInteger(FI); 1498 void *IP = nullptr; 1499 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1500 return SDValue(E, 0); 1501 1502 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1503 CSEMap.InsertNode(N, IP); 1504 InsertNode(N); 1505 return SDValue(N, 0); 1506 } 1507 1508 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1509 unsigned TargetFlags) { 1510 assert((TargetFlags == 0 || isTarget) && 1511 "Cannot set target flags on target-independent jump tables"); 1512 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1513 FoldingSetNodeID ID; 1514 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1515 ID.AddInteger(JTI); 1516 ID.AddInteger(TargetFlags); 1517 void *IP = nullptr; 1518 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1519 return SDValue(E, 0); 1520 1521 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1522 CSEMap.InsertNode(N, IP); 1523 InsertNode(N); 1524 return SDValue(N, 0); 1525 } 1526 1527 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1528 MaybeAlign Alignment, int Offset, 1529 bool isTarget, unsigned TargetFlags) { 1530 assert((TargetFlags == 0 || isTarget) && 1531 "Cannot set target flags on target-independent globals"); 1532 if (!Alignment) 1533 Alignment = shouldOptForSize() 1534 ? getDataLayout().getABITypeAlign(C->getType()) 1535 : getDataLayout().getPrefTypeAlign(C->getType()); 1536 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1537 FoldingSetNodeID ID; 1538 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1539 ID.AddInteger(Alignment->value()); 1540 ID.AddInteger(Offset); 1541 ID.AddPointer(C); 1542 ID.AddInteger(TargetFlags); 1543 void *IP = nullptr; 1544 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1545 return SDValue(E, 0); 1546 1547 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1548 TargetFlags); 1549 CSEMap.InsertNode(N, IP); 1550 InsertNode(N); 1551 SDValue V = SDValue(N, 0); 1552 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1553 return V; 1554 } 1555 1556 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1557 MaybeAlign Alignment, int Offset, 1558 bool isTarget, unsigned TargetFlags) { 1559 assert((TargetFlags == 0 || isTarget) && 1560 "Cannot set target flags on target-independent globals"); 1561 if (!Alignment) 1562 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1563 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1564 FoldingSetNodeID ID; 1565 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1566 ID.AddInteger(Alignment->value()); 1567 ID.AddInteger(Offset); 1568 C->addSelectionDAGCSEId(ID); 1569 ID.AddInteger(TargetFlags); 1570 void *IP = nullptr; 1571 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1572 return SDValue(E, 0); 1573 1574 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1575 TargetFlags); 1576 CSEMap.InsertNode(N, IP); 1577 InsertNode(N); 1578 return SDValue(N, 0); 1579 } 1580 1581 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1582 unsigned TargetFlags) { 1583 FoldingSetNodeID ID; 1584 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1585 ID.AddInteger(Index); 1586 ID.AddInteger(Offset); 1587 ID.AddInteger(TargetFlags); 1588 void *IP = nullptr; 1589 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1590 return SDValue(E, 0); 1591 1592 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1593 CSEMap.InsertNode(N, IP); 1594 InsertNode(N); 1595 return SDValue(N, 0); 1596 } 1597 1598 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1599 FoldingSetNodeID ID; 1600 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1601 ID.AddPointer(MBB); 1602 void *IP = nullptr; 1603 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1604 return SDValue(E, 0); 1605 1606 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1607 CSEMap.InsertNode(N, IP); 1608 InsertNode(N); 1609 return SDValue(N, 0); 1610 } 1611 1612 SDValue SelectionDAG::getValueType(EVT VT) { 1613 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1614 ValueTypeNodes.size()) 1615 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1616 1617 SDNode *&N = VT.isExtended() ? 1618 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1619 1620 if (N) return SDValue(N, 0); 1621 N = newSDNode<VTSDNode>(VT); 1622 InsertNode(N); 1623 return SDValue(N, 0); 1624 } 1625 1626 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1627 SDNode *&N = ExternalSymbols[Sym]; 1628 if (N) return SDValue(N, 0); 1629 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1630 InsertNode(N); 1631 return SDValue(N, 0); 1632 } 1633 1634 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1635 SDNode *&N = MCSymbols[Sym]; 1636 if (N) 1637 return SDValue(N, 0); 1638 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1639 InsertNode(N); 1640 return SDValue(N, 0); 1641 } 1642 1643 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1644 unsigned TargetFlags) { 1645 SDNode *&N = 1646 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1647 if (N) return SDValue(N, 0); 1648 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1649 InsertNode(N); 1650 return SDValue(N, 0); 1651 } 1652 1653 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1654 if ((unsigned)Cond >= CondCodeNodes.size()) 1655 CondCodeNodes.resize(Cond+1); 1656 1657 if (!CondCodeNodes[Cond]) { 1658 auto *N = newSDNode<CondCodeSDNode>(Cond); 1659 CondCodeNodes[Cond] = N; 1660 InsertNode(N); 1661 } 1662 1663 return SDValue(CondCodeNodes[Cond], 0); 1664 } 1665 1666 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1667 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1668 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1669 std::swap(N1, N2); 1670 ShuffleVectorSDNode::commuteMask(M); 1671 } 1672 1673 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1674 SDValue N2, ArrayRef<int> Mask) { 1675 assert(VT.getVectorNumElements() == Mask.size() && 1676 "Must have the same number of vector elements as mask elements!"); 1677 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1678 "Invalid VECTOR_SHUFFLE"); 1679 1680 // Canonicalize shuffle undef, undef -> undef 1681 if (N1.isUndef() && N2.isUndef()) 1682 return getUNDEF(VT); 1683 1684 // Validate that all indices in Mask are within the range of the elements 1685 // input to the shuffle. 1686 int NElts = Mask.size(); 1687 assert(llvm::all_of(Mask, 1688 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1689 "Index out of range"); 1690 1691 // Copy the mask so we can do any needed cleanup. 1692 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1693 1694 // Canonicalize shuffle v, v -> v, undef 1695 if (N1 == N2) { 1696 N2 = getUNDEF(VT); 1697 for (int i = 0; i != NElts; ++i) 1698 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1699 } 1700 1701 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1702 if (N1.isUndef()) 1703 commuteShuffle(N1, N2, MaskVec); 1704 1705 if (TLI->hasVectorBlend()) { 1706 // If shuffling a splat, try to blend the splat instead. We do this here so 1707 // that even when this arises during lowering we don't have to re-handle it. 1708 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1709 BitVector UndefElements; 1710 SDValue Splat = BV->getSplatValue(&UndefElements); 1711 if (!Splat) 1712 return; 1713 1714 for (int i = 0; i < NElts; ++i) { 1715 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1716 continue; 1717 1718 // If this input comes from undef, mark it as such. 1719 if (UndefElements[MaskVec[i] - Offset]) { 1720 MaskVec[i] = -1; 1721 continue; 1722 } 1723 1724 // If we can blend a non-undef lane, use that instead. 1725 if (!UndefElements[i]) 1726 MaskVec[i] = i + Offset; 1727 } 1728 }; 1729 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1730 BlendSplat(N1BV, 0); 1731 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1732 BlendSplat(N2BV, NElts); 1733 } 1734 1735 // Canonicalize all index into lhs, -> shuffle lhs, undef 1736 // Canonicalize all index into rhs, -> shuffle rhs, undef 1737 bool AllLHS = true, AllRHS = true; 1738 bool N2Undef = N2.isUndef(); 1739 for (int i = 0; i != NElts; ++i) { 1740 if (MaskVec[i] >= NElts) { 1741 if (N2Undef) 1742 MaskVec[i] = -1; 1743 else 1744 AllLHS = false; 1745 } else if (MaskVec[i] >= 0) { 1746 AllRHS = false; 1747 } 1748 } 1749 if (AllLHS && AllRHS) 1750 return getUNDEF(VT); 1751 if (AllLHS && !N2Undef) 1752 N2 = getUNDEF(VT); 1753 if (AllRHS) { 1754 N1 = getUNDEF(VT); 1755 commuteShuffle(N1, N2, MaskVec); 1756 } 1757 // Reset our undef status after accounting for the mask. 1758 N2Undef = N2.isUndef(); 1759 // Re-check whether both sides ended up undef. 1760 if (N1.isUndef() && N2Undef) 1761 return getUNDEF(VT); 1762 1763 // If Identity shuffle return that node. 1764 bool Identity = true, AllSame = true; 1765 for (int i = 0; i != NElts; ++i) { 1766 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1767 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1768 } 1769 if (Identity && NElts) 1770 return N1; 1771 1772 // Shuffling a constant splat doesn't change the result. 1773 if (N2Undef) { 1774 SDValue V = N1; 1775 1776 // Look through any bitcasts. We check that these don't change the number 1777 // (and size) of elements and just changes their types. 1778 while (V.getOpcode() == ISD::BITCAST) 1779 V = V->getOperand(0); 1780 1781 // A splat should always show up as a build vector node. 1782 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1783 BitVector UndefElements; 1784 SDValue Splat = BV->getSplatValue(&UndefElements); 1785 // If this is a splat of an undef, shuffling it is also undef. 1786 if (Splat && Splat.isUndef()) 1787 return getUNDEF(VT); 1788 1789 bool SameNumElts = 1790 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1791 1792 // We only have a splat which can skip shuffles if there is a splatted 1793 // value and no undef lanes rearranged by the shuffle. 1794 if (Splat && UndefElements.none()) { 1795 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1796 // number of elements match or the value splatted is a zero constant. 1797 if (SameNumElts) 1798 return N1; 1799 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1800 if (C->isNullValue()) 1801 return N1; 1802 } 1803 1804 // If the shuffle itself creates a splat, build the vector directly. 1805 if (AllSame && SameNumElts) { 1806 EVT BuildVT = BV->getValueType(0); 1807 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1808 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1809 1810 // We may have jumped through bitcasts, so the type of the 1811 // BUILD_VECTOR may not match the type of the shuffle. 1812 if (BuildVT != VT) 1813 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1814 return NewBV; 1815 } 1816 } 1817 } 1818 1819 FoldingSetNodeID ID; 1820 SDValue Ops[2] = { N1, N2 }; 1821 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1822 for (int i = 0; i != NElts; ++i) 1823 ID.AddInteger(MaskVec[i]); 1824 1825 void* IP = nullptr; 1826 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1827 return SDValue(E, 0); 1828 1829 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1830 // SDNode doesn't have access to it. This memory will be "leaked" when 1831 // the node is deallocated, but recovered when the NodeAllocator is released. 1832 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1833 llvm::copy(MaskVec, MaskAlloc); 1834 1835 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1836 dl.getDebugLoc(), MaskAlloc); 1837 createOperands(N, Ops); 1838 1839 CSEMap.InsertNode(N, IP); 1840 InsertNode(N); 1841 SDValue V = SDValue(N, 0); 1842 NewSDValueDbgMsg(V, "Creating new node: ", this); 1843 return V; 1844 } 1845 1846 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1847 EVT VT = SV.getValueType(0); 1848 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1849 ShuffleVectorSDNode::commuteMask(MaskVec); 1850 1851 SDValue Op0 = SV.getOperand(0); 1852 SDValue Op1 = SV.getOperand(1); 1853 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1854 } 1855 1856 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1857 FoldingSetNodeID ID; 1858 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1859 ID.AddInteger(RegNo); 1860 void *IP = nullptr; 1861 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1862 return SDValue(E, 0); 1863 1864 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1865 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1866 CSEMap.InsertNode(N, IP); 1867 InsertNode(N); 1868 return SDValue(N, 0); 1869 } 1870 1871 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1872 FoldingSetNodeID ID; 1873 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1874 ID.AddPointer(RegMask); 1875 void *IP = nullptr; 1876 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1877 return SDValue(E, 0); 1878 1879 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1880 CSEMap.InsertNode(N, IP); 1881 InsertNode(N); 1882 return SDValue(N, 0); 1883 } 1884 1885 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1886 MCSymbol *Label) { 1887 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1888 } 1889 1890 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1891 SDValue Root, MCSymbol *Label) { 1892 FoldingSetNodeID ID; 1893 SDValue Ops[] = { Root }; 1894 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1895 ID.AddPointer(Label); 1896 void *IP = nullptr; 1897 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1898 return SDValue(E, 0); 1899 1900 auto *N = 1901 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1902 createOperands(N, Ops); 1903 1904 CSEMap.InsertNode(N, IP); 1905 InsertNode(N); 1906 return SDValue(N, 0); 1907 } 1908 1909 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1910 int64_t Offset, bool isTarget, 1911 unsigned TargetFlags) { 1912 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1913 1914 FoldingSetNodeID ID; 1915 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1916 ID.AddPointer(BA); 1917 ID.AddInteger(Offset); 1918 ID.AddInteger(TargetFlags); 1919 void *IP = nullptr; 1920 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1921 return SDValue(E, 0); 1922 1923 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1924 CSEMap.InsertNode(N, IP); 1925 InsertNode(N); 1926 return SDValue(N, 0); 1927 } 1928 1929 SDValue SelectionDAG::getSrcValue(const Value *V) { 1930 FoldingSetNodeID ID; 1931 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1932 ID.AddPointer(V); 1933 1934 void *IP = nullptr; 1935 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1936 return SDValue(E, 0); 1937 1938 auto *N = newSDNode<SrcValueSDNode>(V); 1939 CSEMap.InsertNode(N, IP); 1940 InsertNode(N); 1941 return SDValue(N, 0); 1942 } 1943 1944 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1945 FoldingSetNodeID ID; 1946 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1947 ID.AddPointer(MD); 1948 1949 void *IP = nullptr; 1950 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1951 return SDValue(E, 0); 1952 1953 auto *N = newSDNode<MDNodeSDNode>(MD); 1954 CSEMap.InsertNode(N, IP); 1955 InsertNode(N); 1956 return SDValue(N, 0); 1957 } 1958 1959 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1960 if (VT == V.getValueType()) 1961 return V; 1962 1963 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1964 } 1965 1966 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1967 unsigned SrcAS, unsigned DestAS) { 1968 SDValue Ops[] = {Ptr}; 1969 FoldingSetNodeID ID; 1970 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1971 ID.AddInteger(SrcAS); 1972 ID.AddInteger(DestAS); 1973 1974 void *IP = nullptr; 1975 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1976 return SDValue(E, 0); 1977 1978 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1979 VT, SrcAS, DestAS); 1980 createOperands(N, Ops); 1981 1982 CSEMap.InsertNode(N, IP); 1983 InsertNode(N); 1984 return SDValue(N, 0); 1985 } 1986 1987 SDValue SelectionDAG::getFreeze(SDValue V) { 1988 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1989 } 1990 1991 /// getShiftAmountOperand - Return the specified value casted to 1992 /// the target's desired shift amount type. 1993 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1994 EVT OpTy = Op.getValueType(); 1995 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1996 if (OpTy == ShTy || OpTy.isVector()) return Op; 1997 1998 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1999 } 2000 2001 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2002 SDLoc dl(Node); 2003 const TargetLowering &TLI = getTargetLoweringInfo(); 2004 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2005 EVT VT = Node->getValueType(0); 2006 SDValue Tmp1 = Node->getOperand(0); 2007 SDValue Tmp2 = Node->getOperand(1); 2008 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2009 2010 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2011 Tmp2, MachinePointerInfo(V)); 2012 SDValue VAList = VAListLoad; 2013 2014 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2015 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2016 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2017 2018 VAList = 2019 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2020 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2021 } 2022 2023 // Increment the pointer, VAList, to the next vaarg 2024 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2025 getConstant(getDataLayout().getTypeAllocSize( 2026 VT.getTypeForEVT(*getContext())), 2027 dl, VAList.getValueType())); 2028 // Store the incremented VAList to the legalized pointer 2029 Tmp1 = 2030 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2031 // Load the actual argument out of the pointer VAList 2032 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2033 } 2034 2035 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2036 SDLoc dl(Node); 2037 const TargetLowering &TLI = getTargetLoweringInfo(); 2038 // This defaults to loading a pointer from the input and storing it to the 2039 // output, returning the chain. 2040 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2041 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2042 SDValue Tmp1 = 2043 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2044 Node->getOperand(2), MachinePointerInfo(VS)); 2045 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2046 MachinePointerInfo(VD)); 2047 } 2048 2049 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2050 const DataLayout &DL = getDataLayout(); 2051 Type *Ty = VT.getTypeForEVT(*getContext()); 2052 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2053 2054 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2055 return RedAlign; 2056 2057 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2058 const Align StackAlign = TFI->getStackAlign(); 2059 2060 // See if we can choose a smaller ABI alignment in cases where it's an 2061 // illegal vector type that will get broken down. 2062 if (RedAlign > StackAlign) { 2063 EVT IntermediateVT; 2064 MVT RegisterVT; 2065 unsigned NumIntermediates; 2066 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2067 NumIntermediates, RegisterVT); 2068 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2069 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2070 if (RedAlign2 < RedAlign) 2071 RedAlign = RedAlign2; 2072 } 2073 2074 return RedAlign; 2075 } 2076 2077 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2078 MachineFrameInfo &MFI = MF->getFrameInfo(); 2079 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2080 int StackID = 0; 2081 if (Bytes.isScalable()) 2082 StackID = TFI->getStackIDForScalableVectors(); 2083 // The stack id gives an indication of whether the object is scalable or 2084 // not, so it's safe to pass in the minimum size here. 2085 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2086 false, nullptr, StackID); 2087 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2088 } 2089 2090 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2091 Type *Ty = VT.getTypeForEVT(*getContext()); 2092 Align StackAlign = 2093 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2094 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2095 } 2096 2097 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2098 TypeSize VT1Size = VT1.getStoreSize(); 2099 TypeSize VT2Size = VT2.getStoreSize(); 2100 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2101 "Don't know how to choose the maximum size when creating a stack " 2102 "temporary"); 2103 TypeSize Bytes = 2104 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2105 2106 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2107 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2108 const DataLayout &DL = getDataLayout(); 2109 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2110 return CreateStackTemporary(Bytes, Align); 2111 } 2112 2113 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2114 ISD::CondCode Cond, const SDLoc &dl) { 2115 EVT OpVT = N1.getValueType(); 2116 2117 // These setcc operations always fold. 2118 switch (Cond) { 2119 default: break; 2120 case ISD::SETFALSE: 2121 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2122 case ISD::SETTRUE: 2123 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2124 2125 case ISD::SETOEQ: 2126 case ISD::SETOGT: 2127 case ISD::SETOGE: 2128 case ISD::SETOLT: 2129 case ISD::SETOLE: 2130 case ISD::SETONE: 2131 case ISD::SETO: 2132 case ISD::SETUO: 2133 case ISD::SETUEQ: 2134 case ISD::SETUNE: 2135 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2136 break; 2137 } 2138 2139 if (OpVT.isInteger()) { 2140 // For EQ and NE, we can always pick a value for the undef to make the 2141 // predicate pass or fail, so we can return undef. 2142 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2143 // icmp eq/ne X, undef -> undef. 2144 if ((N1.isUndef() || N2.isUndef()) && 2145 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2146 return getUNDEF(VT); 2147 2148 // If both operands are undef, we can return undef for int comparison. 2149 // icmp undef, undef -> undef. 2150 if (N1.isUndef() && N2.isUndef()) 2151 return getUNDEF(VT); 2152 2153 // icmp X, X -> true/false 2154 // icmp X, undef -> true/false because undef could be X. 2155 if (N1 == N2) 2156 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2157 } 2158 2159 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2160 const APInt &C2 = N2C->getAPIntValue(); 2161 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2162 const APInt &C1 = N1C->getAPIntValue(); 2163 2164 switch (Cond) { 2165 default: llvm_unreachable("Unknown integer setcc!"); 2166 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2167 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2168 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2169 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2170 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2171 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2172 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2173 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2174 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2175 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2176 } 2177 } 2178 } 2179 2180 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2181 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2182 2183 if (N1CFP && N2CFP) { 2184 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2185 switch (Cond) { 2186 default: break; 2187 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2188 return getUNDEF(VT); 2189 LLVM_FALLTHROUGH; 2190 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2191 OpVT); 2192 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2193 return getUNDEF(VT); 2194 LLVM_FALLTHROUGH; 2195 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2196 R==APFloat::cmpLessThan, dl, VT, 2197 OpVT); 2198 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2199 return getUNDEF(VT); 2200 LLVM_FALLTHROUGH; 2201 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2202 OpVT); 2203 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2204 return getUNDEF(VT); 2205 LLVM_FALLTHROUGH; 2206 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2207 VT, OpVT); 2208 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2209 return getUNDEF(VT); 2210 LLVM_FALLTHROUGH; 2211 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2212 R==APFloat::cmpEqual, dl, VT, 2213 OpVT); 2214 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2215 return getUNDEF(VT); 2216 LLVM_FALLTHROUGH; 2217 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2218 R==APFloat::cmpEqual, dl, VT, OpVT); 2219 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2220 OpVT); 2221 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2222 OpVT); 2223 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2224 R==APFloat::cmpEqual, dl, VT, 2225 OpVT); 2226 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2227 OpVT); 2228 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2229 R==APFloat::cmpLessThan, dl, VT, 2230 OpVT); 2231 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2232 R==APFloat::cmpUnordered, dl, VT, 2233 OpVT); 2234 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2235 VT, OpVT); 2236 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2237 OpVT); 2238 } 2239 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2240 // Ensure that the constant occurs on the RHS. 2241 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2242 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2243 return SDValue(); 2244 return getSetCC(dl, VT, N2, N1, SwappedCond); 2245 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2246 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2247 // If an operand is known to be a nan (or undef that could be a nan), we can 2248 // fold it. 2249 // Choosing NaN for the undef will always make unordered comparison succeed 2250 // and ordered comparison fails. 2251 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2252 switch (ISD::getUnorderedFlavor(Cond)) { 2253 default: 2254 llvm_unreachable("Unknown flavor!"); 2255 case 0: // Known false. 2256 return getBoolConstant(false, dl, VT, OpVT); 2257 case 1: // Known true. 2258 return getBoolConstant(true, dl, VT, OpVT); 2259 case 2: // Undefined. 2260 return getUNDEF(VT); 2261 } 2262 } 2263 2264 // Could not fold it. 2265 return SDValue(); 2266 } 2267 2268 /// See if the specified operand can be simplified with the knowledge that only 2269 /// the bits specified by DemandedBits are used. 2270 /// TODO: really we should be making this into the DAG equivalent of 2271 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2272 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2273 EVT VT = V.getValueType(); 2274 2275 if (VT.isScalableVector()) 2276 return SDValue(); 2277 2278 APInt DemandedElts = VT.isVector() 2279 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2280 : APInt(1, 1); 2281 return GetDemandedBits(V, DemandedBits, DemandedElts); 2282 } 2283 2284 /// See if the specified operand can be simplified with the knowledge that only 2285 /// the bits specified by DemandedBits are used in the elements specified by 2286 /// DemandedElts. 2287 /// TODO: really we should be making this into the DAG equivalent of 2288 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2289 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2290 const APInt &DemandedElts) { 2291 switch (V.getOpcode()) { 2292 default: 2293 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2294 *this, 0); 2295 case ISD::Constant: { 2296 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2297 APInt NewVal = CVal & DemandedBits; 2298 if (NewVal != CVal) 2299 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2300 break; 2301 } 2302 case ISD::SRL: 2303 // Only look at single-use SRLs. 2304 if (!V.getNode()->hasOneUse()) 2305 break; 2306 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2307 // See if we can recursively simplify the LHS. 2308 unsigned Amt = RHSC->getZExtValue(); 2309 2310 // Watch out for shift count overflow though. 2311 if (Amt >= DemandedBits.getBitWidth()) 2312 break; 2313 APInt SrcDemandedBits = DemandedBits << Amt; 2314 if (SDValue SimplifyLHS = 2315 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2316 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2317 V.getOperand(1)); 2318 } 2319 break; 2320 } 2321 return SDValue(); 2322 } 2323 2324 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2325 /// use this predicate to simplify operations downstream. 2326 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2327 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2328 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2329 } 2330 2331 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2332 /// this predicate to simplify operations downstream. Mask is known to be zero 2333 /// for bits that V cannot have. 2334 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2335 unsigned Depth) const { 2336 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2337 } 2338 2339 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2340 /// DemandedElts. We use this predicate to simplify operations downstream. 2341 /// Mask is known to be zero for bits that V cannot have. 2342 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2343 const APInt &DemandedElts, 2344 unsigned Depth) const { 2345 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2346 } 2347 2348 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2349 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2350 unsigned Depth) const { 2351 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2352 } 2353 2354 /// isSplatValue - Return true if the vector V has the same value 2355 /// across all DemandedElts. For scalable vectors it does not make 2356 /// sense to specify which elements are demanded or undefined, therefore 2357 /// they are simply ignored. 2358 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2359 APInt &UndefElts, unsigned Depth) { 2360 EVT VT = V.getValueType(); 2361 assert(VT.isVector() && "Vector type expected"); 2362 2363 if (!VT.isScalableVector() && !DemandedElts) 2364 return false; // No demanded elts, better to assume we don't know anything. 2365 2366 if (Depth >= MaxRecursionDepth) 2367 return false; // Limit search depth. 2368 2369 // Deal with some common cases here that work for both fixed and scalable 2370 // vector types. 2371 switch (V.getOpcode()) { 2372 case ISD::SPLAT_VECTOR: 2373 UndefElts = V.getOperand(0).isUndef() 2374 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2375 : APInt(DemandedElts.getBitWidth(), 0); 2376 return true; 2377 case ISD::ADD: 2378 case ISD::SUB: 2379 case ISD::AND: { 2380 APInt UndefLHS, UndefRHS; 2381 SDValue LHS = V.getOperand(0); 2382 SDValue RHS = V.getOperand(1); 2383 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2384 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2385 UndefElts = UndefLHS | UndefRHS; 2386 return true; 2387 } 2388 break; 2389 } 2390 case ISD::TRUNCATE: 2391 case ISD::SIGN_EXTEND: 2392 case ISD::ZERO_EXTEND: 2393 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2394 } 2395 2396 // We don't support other cases than those above for scalable vectors at 2397 // the moment. 2398 if (VT.isScalableVector()) 2399 return false; 2400 2401 unsigned NumElts = VT.getVectorNumElements(); 2402 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2403 UndefElts = APInt::getNullValue(NumElts); 2404 2405 switch (V.getOpcode()) { 2406 case ISD::BUILD_VECTOR: { 2407 SDValue Scl; 2408 for (unsigned i = 0; i != NumElts; ++i) { 2409 SDValue Op = V.getOperand(i); 2410 if (Op.isUndef()) { 2411 UndefElts.setBit(i); 2412 continue; 2413 } 2414 if (!DemandedElts[i]) 2415 continue; 2416 if (Scl && Scl != Op) 2417 return false; 2418 Scl = Op; 2419 } 2420 return true; 2421 } 2422 case ISD::VECTOR_SHUFFLE: { 2423 // Check if this is a shuffle node doing a splat. 2424 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2425 int SplatIndex = -1; 2426 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2427 for (int i = 0; i != (int)NumElts; ++i) { 2428 int M = Mask[i]; 2429 if (M < 0) { 2430 UndefElts.setBit(i); 2431 continue; 2432 } 2433 if (!DemandedElts[i]) 2434 continue; 2435 if (0 <= SplatIndex && SplatIndex != M) 2436 return false; 2437 SplatIndex = M; 2438 } 2439 return true; 2440 } 2441 case ISD::EXTRACT_SUBVECTOR: { 2442 // Offset the demanded elts by the subvector index. 2443 SDValue Src = V.getOperand(0); 2444 uint64_t Idx = V.getConstantOperandVal(1); 2445 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2446 APInt UndefSrcElts; 2447 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2448 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2449 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2450 return true; 2451 } 2452 break; 2453 } 2454 } 2455 2456 return false; 2457 } 2458 2459 /// Helper wrapper to main isSplatValue function. 2460 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2461 EVT VT = V.getValueType(); 2462 assert(VT.isVector() && "Vector type expected"); 2463 2464 APInt UndefElts; 2465 APInt DemandedElts; 2466 2467 // For now we don't support this with scalable vectors. 2468 if (!VT.isScalableVector()) 2469 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2470 return isSplatValue(V, DemandedElts, UndefElts) && 2471 (AllowUndefs || !UndefElts); 2472 } 2473 2474 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2475 V = peekThroughExtractSubvectors(V); 2476 2477 EVT VT = V.getValueType(); 2478 unsigned Opcode = V.getOpcode(); 2479 switch (Opcode) { 2480 default: { 2481 APInt UndefElts; 2482 APInt DemandedElts; 2483 2484 if (!VT.isScalableVector()) 2485 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2486 2487 if (isSplatValue(V, DemandedElts, UndefElts)) { 2488 if (VT.isScalableVector()) { 2489 // DemandedElts and UndefElts are ignored for scalable vectors, since 2490 // the only supported cases are SPLAT_VECTOR nodes. 2491 SplatIdx = 0; 2492 } else { 2493 // Handle case where all demanded elements are UNDEF. 2494 if (DemandedElts.isSubsetOf(UndefElts)) { 2495 SplatIdx = 0; 2496 return getUNDEF(VT); 2497 } 2498 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2499 } 2500 return V; 2501 } 2502 break; 2503 } 2504 case ISD::SPLAT_VECTOR: 2505 SplatIdx = 0; 2506 return V; 2507 case ISD::VECTOR_SHUFFLE: { 2508 if (VT.isScalableVector()) 2509 return SDValue(); 2510 2511 // Check if this is a shuffle node doing a splat. 2512 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2513 // getTargetVShiftNode currently struggles without the splat source. 2514 auto *SVN = cast<ShuffleVectorSDNode>(V); 2515 if (!SVN->isSplat()) 2516 break; 2517 int Idx = SVN->getSplatIndex(); 2518 int NumElts = V.getValueType().getVectorNumElements(); 2519 SplatIdx = Idx % NumElts; 2520 return V.getOperand(Idx / NumElts); 2521 } 2522 } 2523 2524 return SDValue(); 2525 } 2526 2527 SDValue SelectionDAG::getSplatValue(SDValue V) { 2528 int SplatIdx; 2529 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2530 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2531 SrcVector.getValueType().getScalarType(), SrcVector, 2532 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2533 return SDValue(); 2534 } 2535 2536 const APInt * 2537 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2538 const APInt &DemandedElts) const { 2539 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2540 V.getOpcode() == ISD::SRA) && 2541 "Unknown shift node"); 2542 unsigned BitWidth = V.getScalarValueSizeInBits(); 2543 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2544 // Shifting more than the bitwidth is not valid. 2545 const APInt &ShAmt = SA->getAPIntValue(); 2546 if (ShAmt.ult(BitWidth)) 2547 return &ShAmt; 2548 } 2549 return nullptr; 2550 } 2551 2552 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2553 SDValue V, const APInt &DemandedElts) const { 2554 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2555 V.getOpcode() == ISD::SRA) && 2556 "Unknown shift node"); 2557 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2558 return ValidAmt; 2559 unsigned BitWidth = V.getScalarValueSizeInBits(); 2560 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2561 if (!BV) 2562 return nullptr; 2563 const APInt *MinShAmt = nullptr; 2564 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2565 if (!DemandedElts[i]) 2566 continue; 2567 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2568 if (!SA) 2569 return nullptr; 2570 // Shifting more than the bitwidth is not valid. 2571 const APInt &ShAmt = SA->getAPIntValue(); 2572 if (ShAmt.uge(BitWidth)) 2573 return nullptr; 2574 if (MinShAmt && MinShAmt->ule(ShAmt)) 2575 continue; 2576 MinShAmt = &ShAmt; 2577 } 2578 return MinShAmt; 2579 } 2580 2581 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2582 SDValue V, const APInt &DemandedElts) const { 2583 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2584 V.getOpcode() == ISD::SRA) && 2585 "Unknown shift node"); 2586 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2587 return ValidAmt; 2588 unsigned BitWidth = V.getScalarValueSizeInBits(); 2589 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2590 if (!BV) 2591 return nullptr; 2592 const APInt *MaxShAmt = nullptr; 2593 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2594 if (!DemandedElts[i]) 2595 continue; 2596 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2597 if (!SA) 2598 return nullptr; 2599 // Shifting more than the bitwidth is not valid. 2600 const APInt &ShAmt = SA->getAPIntValue(); 2601 if (ShAmt.uge(BitWidth)) 2602 return nullptr; 2603 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2604 continue; 2605 MaxShAmt = &ShAmt; 2606 } 2607 return MaxShAmt; 2608 } 2609 2610 /// Determine which bits of Op are known to be either zero or one and return 2611 /// them in Known. For vectors, the known bits are those that are shared by 2612 /// every vector element. 2613 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2614 EVT VT = Op.getValueType(); 2615 2616 // TOOD: Until we have a plan for how to represent demanded elements for 2617 // scalable vectors, we can just bail out for now. 2618 if (Op.getValueType().isScalableVector()) { 2619 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2620 return KnownBits(BitWidth); 2621 } 2622 2623 APInt DemandedElts = VT.isVector() 2624 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2625 : APInt(1, 1); 2626 return computeKnownBits(Op, DemandedElts, Depth); 2627 } 2628 2629 /// Determine which bits of Op are known to be either zero or one and return 2630 /// them in Known. The DemandedElts argument allows us to only collect the known 2631 /// bits that are shared by the requested vector elements. 2632 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2633 unsigned Depth) const { 2634 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2635 2636 KnownBits Known(BitWidth); // Don't know anything. 2637 2638 // TOOD: Until we have a plan for how to represent demanded elements for 2639 // scalable vectors, we can just bail out for now. 2640 if (Op.getValueType().isScalableVector()) 2641 return Known; 2642 2643 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2644 // We know all of the bits for a constant! 2645 return KnownBits::makeConstant(C->getAPIntValue()); 2646 } 2647 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2648 // We know all of the bits for a constant fp! 2649 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2650 } 2651 2652 if (Depth >= MaxRecursionDepth) 2653 return Known; // Limit search depth. 2654 2655 KnownBits Known2; 2656 unsigned NumElts = DemandedElts.getBitWidth(); 2657 assert((!Op.getValueType().isVector() || 2658 NumElts == Op.getValueType().getVectorNumElements()) && 2659 "Unexpected vector size"); 2660 2661 if (!DemandedElts) 2662 return Known; // No demanded elts, better to assume we don't know anything. 2663 2664 unsigned Opcode = Op.getOpcode(); 2665 switch (Opcode) { 2666 case ISD::BUILD_VECTOR: 2667 // Collect the known bits that are shared by every demanded vector element. 2668 Known.Zero.setAllBits(); Known.One.setAllBits(); 2669 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2670 if (!DemandedElts[i]) 2671 continue; 2672 2673 SDValue SrcOp = Op.getOperand(i); 2674 Known2 = computeKnownBits(SrcOp, Depth + 1); 2675 2676 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2677 if (SrcOp.getValueSizeInBits() != BitWidth) { 2678 assert(SrcOp.getValueSizeInBits() > BitWidth && 2679 "Expected BUILD_VECTOR implicit truncation"); 2680 Known2 = Known2.trunc(BitWidth); 2681 } 2682 2683 // Known bits are the values that are shared by every demanded element. 2684 Known = KnownBits::commonBits(Known, Known2); 2685 2686 // If we don't know any bits, early out. 2687 if (Known.isUnknown()) 2688 break; 2689 } 2690 break; 2691 case ISD::VECTOR_SHUFFLE: { 2692 // Collect the known bits that are shared by every vector element referenced 2693 // by the shuffle. 2694 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2695 Known.Zero.setAllBits(); Known.One.setAllBits(); 2696 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2697 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2698 for (unsigned i = 0; i != NumElts; ++i) { 2699 if (!DemandedElts[i]) 2700 continue; 2701 2702 int M = SVN->getMaskElt(i); 2703 if (M < 0) { 2704 // For UNDEF elements, we don't know anything about the common state of 2705 // the shuffle result. 2706 Known.resetAll(); 2707 DemandedLHS.clearAllBits(); 2708 DemandedRHS.clearAllBits(); 2709 break; 2710 } 2711 2712 if ((unsigned)M < NumElts) 2713 DemandedLHS.setBit((unsigned)M % NumElts); 2714 else 2715 DemandedRHS.setBit((unsigned)M % NumElts); 2716 } 2717 // Known bits are the values that are shared by every demanded element. 2718 if (!!DemandedLHS) { 2719 SDValue LHS = Op.getOperand(0); 2720 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2721 Known = KnownBits::commonBits(Known, Known2); 2722 } 2723 // If we don't know any bits, early out. 2724 if (Known.isUnknown()) 2725 break; 2726 if (!!DemandedRHS) { 2727 SDValue RHS = Op.getOperand(1); 2728 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2729 Known = KnownBits::commonBits(Known, Known2); 2730 } 2731 break; 2732 } 2733 case ISD::CONCAT_VECTORS: { 2734 // Split DemandedElts and test each of the demanded subvectors. 2735 Known.Zero.setAllBits(); Known.One.setAllBits(); 2736 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2737 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2738 unsigned NumSubVectors = Op.getNumOperands(); 2739 for (unsigned i = 0; i != NumSubVectors; ++i) { 2740 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2741 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2742 if (!!DemandedSub) { 2743 SDValue Sub = Op.getOperand(i); 2744 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2745 Known = KnownBits::commonBits(Known, Known2); 2746 } 2747 // If we don't know any bits, early out. 2748 if (Known.isUnknown()) 2749 break; 2750 } 2751 break; 2752 } 2753 case ISD::INSERT_SUBVECTOR: { 2754 // Demand any elements from the subvector and the remainder from the src its 2755 // inserted into. 2756 SDValue Src = Op.getOperand(0); 2757 SDValue Sub = Op.getOperand(1); 2758 uint64_t Idx = Op.getConstantOperandVal(2); 2759 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2760 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2761 APInt DemandedSrcElts = DemandedElts; 2762 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2763 2764 Known.One.setAllBits(); 2765 Known.Zero.setAllBits(); 2766 if (!!DemandedSubElts) { 2767 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2768 if (Known.isUnknown()) 2769 break; // early-out. 2770 } 2771 if (!!DemandedSrcElts) { 2772 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2773 Known = KnownBits::commonBits(Known, Known2); 2774 } 2775 break; 2776 } 2777 case ISD::EXTRACT_SUBVECTOR: { 2778 // Offset the demanded elts by the subvector index. 2779 SDValue Src = Op.getOperand(0); 2780 // Bail until we can represent demanded elements for scalable vectors. 2781 if (Src.getValueType().isScalableVector()) 2782 break; 2783 uint64_t Idx = Op.getConstantOperandVal(1); 2784 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2785 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2786 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2787 break; 2788 } 2789 case ISD::SCALAR_TO_VECTOR: { 2790 // We know about scalar_to_vector as much as we know about it source, 2791 // which becomes the first element of otherwise unknown vector. 2792 if (DemandedElts != 1) 2793 break; 2794 2795 SDValue N0 = Op.getOperand(0); 2796 Known = computeKnownBits(N0, Depth + 1); 2797 if (N0.getValueSizeInBits() != BitWidth) 2798 Known = Known.trunc(BitWidth); 2799 2800 break; 2801 } 2802 case ISD::BITCAST: { 2803 SDValue N0 = Op.getOperand(0); 2804 EVT SubVT = N0.getValueType(); 2805 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2806 2807 // Ignore bitcasts from unsupported types. 2808 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2809 break; 2810 2811 // Fast handling of 'identity' bitcasts. 2812 if (BitWidth == SubBitWidth) { 2813 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2814 break; 2815 } 2816 2817 bool IsLE = getDataLayout().isLittleEndian(); 2818 2819 // Bitcast 'small element' vector to 'large element' scalar/vector. 2820 if ((BitWidth % SubBitWidth) == 0) { 2821 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2822 2823 // Collect known bits for the (larger) output by collecting the known 2824 // bits from each set of sub elements and shift these into place. 2825 // We need to separately call computeKnownBits for each set of 2826 // sub elements as the knownbits for each is likely to be different. 2827 unsigned SubScale = BitWidth / SubBitWidth; 2828 APInt SubDemandedElts(NumElts * SubScale, 0); 2829 for (unsigned i = 0; i != NumElts; ++i) 2830 if (DemandedElts[i]) 2831 SubDemandedElts.setBit(i * SubScale); 2832 2833 for (unsigned i = 0; i != SubScale; ++i) { 2834 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2835 Depth + 1); 2836 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2837 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2838 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2839 } 2840 } 2841 2842 // Bitcast 'large element' scalar/vector to 'small element' vector. 2843 if ((SubBitWidth % BitWidth) == 0) { 2844 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2845 2846 // Collect known bits for the (smaller) output by collecting the known 2847 // bits from the overlapping larger input elements and extracting the 2848 // sub sections we actually care about. 2849 unsigned SubScale = SubBitWidth / BitWidth; 2850 APInt SubDemandedElts(NumElts / SubScale, 0); 2851 for (unsigned i = 0; i != NumElts; ++i) 2852 if (DemandedElts[i]) 2853 SubDemandedElts.setBit(i / SubScale); 2854 2855 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2856 2857 Known.Zero.setAllBits(); Known.One.setAllBits(); 2858 for (unsigned i = 0; i != NumElts; ++i) 2859 if (DemandedElts[i]) { 2860 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2861 unsigned Offset = (Shifts % SubScale) * BitWidth; 2862 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2863 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2864 // If we don't know any bits, early out. 2865 if (Known.isUnknown()) 2866 break; 2867 } 2868 } 2869 break; 2870 } 2871 case ISD::AND: 2872 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2873 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2874 2875 Known &= Known2; 2876 break; 2877 case ISD::OR: 2878 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2879 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2880 2881 Known |= Known2; 2882 break; 2883 case ISD::XOR: 2884 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2885 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2886 2887 Known ^= Known2; 2888 break; 2889 case ISD::MUL: { 2890 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2891 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2892 Known = KnownBits::computeForMul(Known, Known2); 2893 break; 2894 } 2895 case ISD::UDIV: { 2896 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2897 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2898 Known = KnownBits::udiv(Known, Known2); 2899 break; 2900 } 2901 case ISD::SELECT: 2902 case ISD::VSELECT: 2903 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2904 // If we don't know any bits, early out. 2905 if (Known.isUnknown()) 2906 break; 2907 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2908 2909 // Only known if known in both the LHS and RHS. 2910 Known = KnownBits::commonBits(Known, Known2); 2911 break; 2912 case ISD::SELECT_CC: 2913 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2914 // If we don't know any bits, early out. 2915 if (Known.isUnknown()) 2916 break; 2917 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2918 2919 // Only known if known in both the LHS and RHS. 2920 Known = KnownBits::commonBits(Known, Known2); 2921 break; 2922 case ISD::SMULO: 2923 case ISD::UMULO: 2924 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2925 if (Op.getResNo() != 1) 2926 break; 2927 // The boolean result conforms to getBooleanContents. 2928 // If we know the result of a setcc has the top bits zero, use this info. 2929 // We know that we have an integer-based boolean since these operations 2930 // are only available for integer. 2931 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2932 TargetLowering::ZeroOrOneBooleanContent && 2933 BitWidth > 1) 2934 Known.Zero.setBitsFrom(1); 2935 break; 2936 case ISD::SETCC: 2937 case ISD::STRICT_FSETCC: 2938 case ISD::STRICT_FSETCCS: { 2939 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2940 // If we know the result of a setcc has the top bits zero, use this info. 2941 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2942 TargetLowering::ZeroOrOneBooleanContent && 2943 BitWidth > 1) 2944 Known.Zero.setBitsFrom(1); 2945 break; 2946 } 2947 case ISD::SHL: 2948 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2949 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2950 Known = KnownBits::shl(Known, Known2); 2951 2952 // Minimum shift low bits are known zero. 2953 if (const APInt *ShMinAmt = 2954 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2955 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2956 break; 2957 case ISD::SRL: 2958 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2959 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2960 Known = KnownBits::lshr(Known, Known2); 2961 2962 // Minimum shift high bits are known zero. 2963 if (const APInt *ShMinAmt = 2964 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2965 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2966 break; 2967 case ISD::SRA: 2968 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2969 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2970 Known = KnownBits::ashr(Known, Known2); 2971 // TODO: Add minimum shift high known sign bits. 2972 break; 2973 case ISD::FSHL: 2974 case ISD::FSHR: 2975 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2976 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2977 2978 // For fshl, 0-shift returns the 1st arg. 2979 // For fshr, 0-shift returns the 2nd arg. 2980 if (Amt == 0) { 2981 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2982 DemandedElts, Depth + 1); 2983 break; 2984 } 2985 2986 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2987 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2988 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2989 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2990 if (Opcode == ISD::FSHL) { 2991 Known.One <<= Amt; 2992 Known.Zero <<= Amt; 2993 Known2.One.lshrInPlace(BitWidth - Amt); 2994 Known2.Zero.lshrInPlace(BitWidth - Amt); 2995 } else { 2996 Known.One <<= BitWidth - Amt; 2997 Known.Zero <<= BitWidth - Amt; 2998 Known2.One.lshrInPlace(Amt); 2999 Known2.Zero.lshrInPlace(Amt); 3000 } 3001 Known.One |= Known2.One; 3002 Known.Zero |= Known2.Zero; 3003 } 3004 break; 3005 case ISD::SIGN_EXTEND_INREG: { 3006 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3007 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3008 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3009 break; 3010 } 3011 case ISD::CTTZ: 3012 case ISD::CTTZ_ZERO_UNDEF: { 3013 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3014 // If we have a known 1, its position is our upper bound. 3015 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3016 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3017 Known.Zero.setBitsFrom(LowBits); 3018 break; 3019 } 3020 case ISD::CTLZ: 3021 case ISD::CTLZ_ZERO_UNDEF: { 3022 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3023 // If we have a known 1, its position is our upper bound. 3024 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3025 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3026 Known.Zero.setBitsFrom(LowBits); 3027 break; 3028 } 3029 case ISD::CTPOP: { 3030 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3031 // If we know some of the bits are zero, they can't be one. 3032 unsigned PossibleOnes = Known2.countMaxPopulation(); 3033 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3034 break; 3035 } 3036 case ISD::PARITY: { 3037 // Parity returns 0 everywhere but the LSB. 3038 Known.Zero.setBitsFrom(1); 3039 break; 3040 } 3041 case ISD::LOAD: { 3042 LoadSDNode *LD = cast<LoadSDNode>(Op); 3043 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3044 if (ISD::isNON_EXTLoad(LD) && Cst) { 3045 // Determine any common known bits from the loaded constant pool value. 3046 Type *CstTy = Cst->getType(); 3047 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3048 // If its a vector splat, then we can (quickly) reuse the scalar path. 3049 // NOTE: We assume all elements match and none are UNDEF. 3050 if (CstTy->isVectorTy()) { 3051 if (const Constant *Splat = Cst->getSplatValue()) { 3052 Cst = Splat; 3053 CstTy = Cst->getType(); 3054 } 3055 } 3056 // TODO - do we need to handle different bitwidths? 3057 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3058 // Iterate across all vector elements finding common known bits. 3059 Known.One.setAllBits(); 3060 Known.Zero.setAllBits(); 3061 for (unsigned i = 0; i != NumElts; ++i) { 3062 if (!DemandedElts[i]) 3063 continue; 3064 if (Constant *Elt = Cst->getAggregateElement(i)) { 3065 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3066 const APInt &Value = CInt->getValue(); 3067 Known.One &= Value; 3068 Known.Zero &= ~Value; 3069 continue; 3070 } 3071 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3072 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3073 Known.One &= Value; 3074 Known.Zero &= ~Value; 3075 continue; 3076 } 3077 } 3078 Known.One.clearAllBits(); 3079 Known.Zero.clearAllBits(); 3080 break; 3081 } 3082 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3083 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3084 const APInt &Value = CInt->getValue(); 3085 Known.One = Value; 3086 Known.Zero = ~Value; 3087 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3088 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3089 Known.One = Value; 3090 Known.Zero = ~Value; 3091 } 3092 } 3093 } 3094 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3095 // If this is a ZEXTLoad and we are looking at the loaded value. 3096 EVT VT = LD->getMemoryVT(); 3097 unsigned MemBits = VT.getScalarSizeInBits(); 3098 Known.Zero.setBitsFrom(MemBits); 3099 } else if (const MDNode *Ranges = LD->getRanges()) { 3100 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3101 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3102 } 3103 break; 3104 } 3105 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3106 EVT InVT = Op.getOperand(0).getValueType(); 3107 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3108 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3109 Known = Known.zext(BitWidth); 3110 break; 3111 } 3112 case ISD::ZERO_EXTEND: { 3113 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3114 Known = Known.zext(BitWidth); 3115 break; 3116 } 3117 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3118 EVT InVT = Op.getOperand(0).getValueType(); 3119 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3120 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3121 // If the sign bit is known to be zero or one, then sext will extend 3122 // it to the top bits, else it will just zext. 3123 Known = Known.sext(BitWidth); 3124 break; 3125 } 3126 case ISD::SIGN_EXTEND: { 3127 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3128 // If the sign bit is known to be zero or one, then sext will extend 3129 // it to the top bits, else it will just zext. 3130 Known = Known.sext(BitWidth); 3131 break; 3132 } 3133 case ISD::ANY_EXTEND_VECTOR_INREG: { 3134 EVT InVT = Op.getOperand(0).getValueType(); 3135 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3136 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3137 Known = Known.anyext(BitWidth); 3138 break; 3139 } 3140 case ISD::ANY_EXTEND: { 3141 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3142 Known = Known.anyext(BitWidth); 3143 break; 3144 } 3145 case ISD::TRUNCATE: { 3146 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3147 Known = Known.trunc(BitWidth); 3148 break; 3149 } 3150 case ISD::AssertZext: { 3151 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3152 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3153 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3154 Known.Zero |= (~InMask); 3155 Known.One &= (~Known.Zero); 3156 break; 3157 } 3158 case ISD::AssertAlign: { 3159 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3160 assert(LogOfAlign != 0); 3161 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3162 // well as clearing one bits. 3163 Known.Zero.setLowBits(LogOfAlign); 3164 Known.One.clearLowBits(LogOfAlign); 3165 break; 3166 } 3167 case ISD::FGETSIGN: 3168 // All bits are zero except the low bit. 3169 Known.Zero.setBitsFrom(1); 3170 break; 3171 case ISD::USUBO: 3172 case ISD::SSUBO: 3173 if (Op.getResNo() == 1) { 3174 // If we know the result of a setcc has the top bits zero, use this info. 3175 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3176 TargetLowering::ZeroOrOneBooleanContent && 3177 BitWidth > 1) 3178 Known.Zero.setBitsFrom(1); 3179 break; 3180 } 3181 LLVM_FALLTHROUGH; 3182 case ISD::SUB: 3183 case ISD::SUBC: { 3184 assert(Op.getResNo() == 0 && 3185 "We only compute knownbits for the difference here."); 3186 3187 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3188 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3189 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3190 Known, Known2); 3191 break; 3192 } 3193 case ISD::UADDO: 3194 case ISD::SADDO: 3195 case ISD::ADDCARRY: 3196 if (Op.getResNo() == 1) { 3197 // If we know the result of a setcc has the top bits zero, use this info. 3198 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3199 TargetLowering::ZeroOrOneBooleanContent && 3200 BitWidth > 1) 3201 Known.Zero.setBitsFrom(1); 3202 break; 3203 } 3204 LLVM_FALLTHROUGH; 3205 case ISD::ADD: 3206 case ISD::ADDC: 3207 case ISD::ADDE: { 3208 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3209 3210 // With ADDE and ADDCARRY, a carry bit may be added in. 3211 KnownBits Carry(1); 3212 if (Opcode == ISD::ADDE) 3213 // Can't track carry from glue, set carry to unknown. 3214 Carry.resetAll(); 3215 else if (Opcode == ISD::ADDCARRY) 3216 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3217 // the trouble (how often will we find a known carry bit). And I haven't 3218 // tested this very much yet, but something like this might work: 3219 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3220 // Carry = Carry.zextOrTrunc(1, false); 3221 Carry.resetAll(); 3222 else 3223 Carry.setAllZero(); 3224 3225 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3226 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3227 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3228 break; 3229 } 3230 case ISD::SREM: { 3231 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3232 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3233 Known = KnownBits::srem(Known, Known2); 3234 break; 3235 } 3236 case ISD::UREM: { 3237 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3238 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3239 Known = KnownBits::urem(Known, Known2); 3240 break; 3241 } 3242 case ISD::EXTRACT_ELEMENT: { 3243 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3244 const unsigned Index = Op.getConstantOperandVal(1); 3245 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3246 3247 // Remove low part of known bits mask 3248 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3249 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3250 3251 // Remove high part of known bit mask 3252 Known = Known.trunc(EltBitWidth); 3253 break; 3254 } 3255 case ISD::EXTRACT_VECTOR_ELT: { 3256 SDValue InVec = Op.getOperand(0); 3257 SDValue EltNo = Op.getOperand(1); 3258 EVT VecVT = InVec.getValueType(); 3259 // computeKnownBits not yet implemented for scalable vectors. 3260 if (VecVT.isScalableVector()) 3261 break; 3262 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3263 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3264 3265 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3266 // anything about the extended bits. 3267 if (BitWidth > EltBitWidth) 3268 Known = Known.trunc(EltBitWidth); 3269 3270 // If we know the element index, just demand that vector element, else for 3271 // an unknown element index, ignore DemandedElts and demand them all. 3272 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3273 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3274 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3275 DemandedSrcElts = 3276 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3277 3278 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3279 if (BitWidth > EltBitWidth) 3280 Known = Known.anyext(BitWidth); 3281 break; 3282 } 3283 case ISD::INSERT_VECTOR_ELT: { 3284 // If we know the element index, split the demand between the 3285 // source vector and the inserted element, otherwise assume we need 3286 // the original demanded vector elements and the value. 3287 SDValue InVec = Op.getOperand(0); 3288 SDValue InVal = Op.getOperand(1); 3289 SDValue EltNo = Op.getOperand(2); 3290 bool DemandedVal = true; 3291 APInt DemandedVecElts = DemandedElts; 3292 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3293 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3294 unsigned EltIdx = CEltNo->getZExtValue(); 3295 DemandedVal = !!DemandedElts[EltIdx]; 3296 DemandedVecElts.clearBit(EltIdx); 3297 } 3298 Known.One.setAllBits(); 3299 Known.Zero.setAllBits(); 3300 if (DemandedVal) { 3301 Known2 = computeKnownBits(InVal, Depth + 1); 3302 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3303 } 3304 if (!!DemandedVecElts) { 3305 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3306 Known = KnownBits::commonBits(Known, Known2); 3307 } 3308 break; 3309 } 3310 case ISD::BITREVERSE: { 3311 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3312 Known = Known2.reverseBits(); 3313 break; 3314 } 3315 case ISD::BSWAP: { 3316 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3317 Known = Known2.byteSwap(); 3318 break; 3319 } 3320 case ISD::ABS: { 3321 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3322 Known = Known2.abs(); 3323 break; 3324 } 3325 case ISD::UMIN: { 3326 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3327 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3328 Known = KnownBits::umin(Known, Known2); 3329 break; 3330 } 3331 case ISD::UMAX: { 3332 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3333 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3334 Known = KnownBits::umax(Known, Known2); 3335 break; 3336 } 3337 case ISD::SMIN: 3338 case ISD::SMAX: { 3339 // If we have a clamp pattern, we know that the number of sign bits will be 3340 // the minimum of the clamp min/max range. 3341 bool IsMax = (Opcode == ISD::SMAX); 3342 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3343 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3344 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3345 CstHigh = 3346 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3347 if (CstLow && CstHigh) { 3348 if (!IsMax) 3349 std::swap(CstLow, CstHigh); 3350 3351 const APInt &ValueLow = CstLow->getAPIntValue(); 3352 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3353 if (ValueLow.sle(ValueHigh)) { 3354 unsigned LowSignBits = ValueLow.getNumSignBits(); 3355 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3356 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3357 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3358 Known.One.setHighBits(MinSignBits); 3359 break; 3360 } 3361 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3362 Known.Zero.setHighBits(MinSignBits); 3363 break; 3364 } 3365 } 3366 } 3367 3368 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3369 if (Known.isUnknown()) break; // Early-out 3370 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3371 if (IsMax) 3372 Known = KnownBits::smax(Known, Known2); 3373 else 3374 Known = KnownBits::smin(Known, Known2); 3375 break; 3376 } 3377 case ISD::FrameIndex: 3378 case ISD::TargetFrameIndex: 3379 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3380 Known, getMachineFunction()); 3381 break; 3382 3383 default: 3384 if (Opcode < ISD::BUILTIN_OP_END) 3385 break; 3386 LLVM_FALLTHROUGH; 3387 case ISD::INTRINSIC_WO_CHAIN: 3388 case ISD::INTRINSIC_W_CHAIN: 3389 case ISD::INTRINSIC_VOID: 3390 // Allow the target to implement this method for its nodes. 3391 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3392 break; 3393 } 3394 3395 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3396 return Known; 3397 } 3398 3399 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3400 SDValue N1) const { 3401 // X + 0 never overflow 3402 if (isNullConstant(N1)) 3403 return OFK_Never; 3404 3405 KnownBits N1Known = computeKnownBits(N1); 3406 if (N1Known.Zero.getBoolValue()) { 3407 KnownBits N0Known = computeKnownBits(N0); 3408 3409 bool overflow; 3410 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3411 if (!overflow) 3412 return OFK_Never; 3413 } 3414 3415 // mulhi + 1 never overflow 3416 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3417 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3418 return OFK_Never; 3419 3420 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3421 KnownBits N0Known = computeKnownBits(N0); 3422 3423 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3424 return OFK_Never; 3425 } 3426 3427 return OFK_Sometime; 3428 } 3429 3430 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3431 EVT OpVT = Val.getValueType(); 3432 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3433 3434 // Is the constant a known power of 2? 3435 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3436 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3437 3438 // A left-shift of a constant one will have exactly one bit set because 3439 // shifting the bit off the end is undefined. 3440 if (Val.getOpcode() == ISD::SHL) { 3441 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3442 if (C && C->getAPIntValue() == 1) 3443 return true; 3444 } 3445 3446 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3447 // one bit set. 3448 if (Val.getOpcode() == ISD::SRL) { 3449 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3450 if (C && C->getAPIntValue().isSignMask()) 3451 return true; 3452 } 3453 3454 // Are all operands of a build vector constant powers of two? 3455 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3456 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3457 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3458 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3459 return false; 3460 })) 3461 return true; 3462 3463 // More could be done here, though the above checks are enough 3464 // to handle some common cases. 3465 3466 // Fall back to computeKnownBits to catch other known cases. 3467 KnownBits Known = computeKnownBits(Val); 3468 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3469 } 3470 3471 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3472 EVT VT = Op.getValueType(); 3473 3474 // TODO: Assume we don't know anything for now. 3475 if (VT.isScalableVector()) 3476 return 1; 3477 3478 APInt DemandedElts = VT.isVector() 3479 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3480 : APInt(1, 1); 3481 return ComputeNumSignBits(Op, DemandedElts, Depth); 3482 } 3483 3484 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3485 unsigned Depth) const { 3486 EVT VT = Op.getValueType(); 3487 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3488 unsigned VTBits = VT.getScalarSizeInBits(); 3489 unsigned NumElts = DemandedElts.getBitWidth(); 3490 unsigned Tmp, Tmp2; 3491 unsigned FirstAnswer = 1; 3492 3493 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3494 const APInt &Val = C->getAPIntValue(); 3495 return Val.getNumSignBits(); 3496 } 3497 3498 if (Depth >= MaxRecursionDepth) 3499 return 1; // Limit search depth. 3500 3501 if (!DemandedElts || VT.isScalableVector()) 3502 return 1; // No demanded elts, better to assume we don't know anything. 3503 3504 unsigned Opcode = Op.getOpcode(); 3505 switch (Opcode) { 3506 default: break; 3507 case ISD::AssertSext: 3508 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3509 return VTBits-Tmp+1; 3510 case ISD::AssertZext: 3511 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3512 return VTBits-Tmp; 3513 3514 case ISD::BUILD_VECTOR: 3515 Tmp = VTBits; 3516 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3517 if (!DemandedElts[i]) 3518 continue; 3519 3520 SDValue SrcOp = Op.getOperand(i); 3521 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3522 3523 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3524 if (SrcOp.getValueSizeInBits() != VTBits) { 3525 assert(SrcOp.getValueSizeInBits() > VTBits && 3526 "Expected BUILD_VECTOR implicit truncation"); 3527 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3528 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3529 } 3530 Tmp = std::min(Tmp, Tmp2); 3531 } 3532 return Tmp; 3533 3534 case ISD::VECTOR_SHUFFLE: { 3535 // Collect the minimum number of sign bits that are shared by every vector 3536 // element referenced by the shuffle. 3537 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3538 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3539 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3540 for (unsigned i = 0; i != NumElts; ++i) { 3541 int M = SVN->getMaskElt(i); 3542 if (!DemandedElts[i]) 3543 continue; 3544 // For UNDEF elements, we don't know anything about the common state of 3545 // the shuffle result. 3546 if (M < 0) 3547 return 1; 3548 if ((unsigned)M < NumElts) 3549 DemandedLHS.setBit((unsigned)M % NumElts); 3550 else 3551 DemandedRHS.setBit((unsigned)M % NumElts); 3552 } 3553 Tmp = std::numeric_limits<unsigned>::max(); 3554 if (!!DemandedLHS) 3555 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3556 if (!!DemandedRHS) { 3557 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3558 Tmp = std::min(Tmp, Tmp2); 3559 } 3560 // If we don't know anything, early out and try computeKnownBits fall-back. 3561 if (Tmp == 1) 3562 break; 3563 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3564 return Tmp; 3565 } 3566 3567 case ISD::BITCAST: { 3568 SDValue N0 = Op.getOperand(0); 3569 EVT SrcVT = N0.getValueType(); 3570 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3571 3572 // Ignore bitcasts from unsupported types.. 3573 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3574 break; 3575 3576 // Fast handling of 'identity' bitcasts. 3577 if (VTBits == SrcBits) 3578 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3579 3580 bool IsLE = getDataLayout().isLittleEndian(); 3581 3582 // Bitcast 'large element' scalar/vector to 'small element' vector. 3583 if ((SrcBits % VTBits) == 0) { 3584 assert(VT.isVector() && "Expected bitcast to vector"); 3585 3586 unsigned Scale = SrcBits / VTBits; 3587 APInt SrcDemandedElts(NumElts / Scale, 0); 3588 for (unsigned i = 0; i != NumElts; ++i) 3589 if (DemandedElts[i]) 3590 SrcDemandedElts.setBit(i / Scale); 3591 3592 // Fast case - sign splat can be simply split across the small elements. 3593 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3594 if (Tmp == SrcBits) 3595 return VTBits; 3596 3597 // Slow case - determine how far the sign extends into each sub-element. 3598 Tmp2 = VTBits; 3599 for (unsigned i = 0; i != NumElts; ++i) 3600 if (DemandedElts[i]) { 3601 unsigned SubOffset = i % Scale; 3602 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3603 SubOffset = SubOffset * VTBits; 3604 if (Tmp <= SubOffset) 3605 return 1; 3606 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3607 } 3608 return Tmp2; 3609 } 3610 break; 3611 } 3612 3613 case ISD::SIGN_EXTEND: 3614 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3615 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3616 case ISD::SIGN_EXTEND_INREG: 3617 // Max of the input and what this extends. 3618 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3619 Tmp = VTBits-Tmp+1; 3620 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3621 return std::max(Tmp, Tmp2); 3622 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3623 SDValue Src = Op.getOperand(0); 3624 EVT SrcVT = Src.getValueType(); 3625 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3626 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3627 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3628 } 3629 case ISD::SRA: 3630 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3631 // SRA X, C -> adds C sign bits. 3632 if (const APInt *ShAmt = 3633 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3634 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3635 return Tmp; 3636 case ISD::SHL: 3637 if (const APInt *ShAmt = 3638 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3639 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3640 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3641 if (ShAmt->ult(Tmp)) 3642 return Tmp - ShAmt->getZExtValue(); 3643 } 3644 break; 3645 case ISD::AND: 3646 case ISD::OR: 3647 case ISD::XOR: // NOT is handled here. 3648 // Logical binary ops preserve the number of sign bits at the worst. 3649 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3650 if (Tmp != 1) { 3651 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3652 FirstAnswer = std::min(Tmp, Tmp2); 3653 // We computed what we know about the sign bits as our first 3654 // answer. Now proceed to the generic code that uses 3655 // computeKnownBits, and pick whichever answer is better. 3656 } 3657 break; 3658 3659 case ISD::SELECT: 3660 case ISD::VSELECT: 3661 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3662 if (Tmp == 1) return 1; // Early out. 3663 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3664 return std::min(Tmp, Tmp2); 3665 case ISD::SELECT_CC: 3666 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3667 if (Tmp == 1) return 1; // Early out. 3668 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3669 return std::min(Tmp, Tmp2); 3670 3671 case ISD::SMIN: 3672 case ISD::SMAX: { 3673 // If we have a clamp pattern, we know that the number of sign bits will be 3674 // the minimum of the clamp min/max range. 3675 bool IsMax = (Opcode == ISD::SMAX); 3676 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3677 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3678 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3679 CstHigh = 3680 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3681 if (CstLow && CstHigh) { 3682 if (!IsMax) 3683 std::swap(CstLow, CstHigh); 3684 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3685 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3686 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3687 return std::min(Tmp, Tmp2); 3688 } 3689 } 3690 3691 // Fallback - just get the minimum number of sign bits of the operands. 3692 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3693 if (Tmp == 1) 3694 return 1; // Early out. 3695 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3696 return std::min(Tmp, Tmp2); 3697 } 3698 case ISD::UMIN: 3699 case ISD::UMAX: 3700 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3701 if (Tmp == 1) 3702 return 1; // Early out. 3703 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3704 return std::min(Tmp, Tmp2); 3705 case ISD::SADDO: 3706 case ISD::UADDO: 3707 case ISD::SSUBO: 3708 case ISD::USUBO: 3709 case ISD::SMULO: 3710 case ISD::UMULO: 3711 if (Op.getResNo() != 1) 3712 break; 3713 // The boolean result conforms to getBooleanContents. Fall through. 3714 // If setcc returns 0/-1, all bits are sign bits. 3715 // We know that we have an integer-based boolean since these operations 3716 // are only available for integer. 3717 if (TLI->getBooleanContents(VT.isVector(), false) == 3718 TargetLowering::ZeroOrNegativeOneBooleanContent) 3719 return VTBits; 3720 break; 3721 case ISD::SETCC: 3722 case ISD::STRICT_FSETCC: 3723 case ISD::STRICT_FSETCCS: { 3724 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3725 // If setcc returns 0/-1, all bits are sign bits. 3726 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3727 TargetLowering::ZeroOrNegativeOneBooleanContent) 3728 return VTBits; 3729 break; 3730 } 3731 case ISD::ROTL: 3732 case ISD::ROTR: 3733 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3734 3735 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3736 if (Tmp == VTBits) 3737 return VTBits; 3738 3739 if (ConstantSDNode *C = 3740 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3741 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3742 3743 // Handle rotate right by N like a rotate left by 32-N. 3744 if (Opcode == ISD::ROTR) 3745 RotAmt = (VTBits - RotAmt) % VTBits; 3746 3747 // If we aren't rotating out all of the known-in sign bits, return the 3748 // number that are left. This handles rotl(sext(x), 1) for example. 3749 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3750 } 3751 break; 3752 case ISD::ADD: 3753 case ISD::ADDC: 3754 // Add can have at most one carry bit. Thus we know that the output 3755 // is, at worst, one more bit than the inputs. 3756 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3757 if (Tmp == 1) return 1; // Early out. 3758 3759 // Special case decrementing a value (ADD X, -1): 3760 if (ConstantSDNode *CRHS = 3761 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3762 if (CRHS->isAllOnesValue()) { 3763 KnownBits Known = 3764 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3765 3766 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3767 // sign bits set. 3768 if ((Known.Zero | 1).isAllOnesValue()) 3769 return VTBits; 3770 3771 // If we are subtracting one from a positive number, there is no carry 3772 // out of the result. 3773 if (Known.isNonNegative()) 3774 return Tmp; 3775 } 3776 3777 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3778 if (Tmp2 == 1) return 1; // Early out. 3779 return std::min(Tmp, Tmp2) - 1; 3780 case ISD::SUB: 3781 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3782 if (Tmp2 == 1) return 1; // Early out. 3783 3784 // Handle NEG. 3785 if (ConstantSDNode *CLHS = 3786 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3787 if (CLHS->isNullValue()) { 3788 KnownBits Known = 3789 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3790 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3791 // sign bits set. 3792 if ((Known.Zero | 1).isAllOnesValue()) 3793 return VTBits; 3794 3795 // If the input is known to be positive (the sign bit is known clear), 3796 // the output of the NEG has the same number of sign bits as the input. 3797 if (Known.isNonNegative()) 3798 return Tmp2; 3799 3800 // Otherwise, we treat this like a SUB. 3801 } 3802 3803 // Sub can have at most one carry bit. Thus we know that the output 3804 // is, at worst, one more bit than the inputs. 3805 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3806 if (Tmp == 1) return 1; // Early out. 3807 return std::min(Tmp, Tmp2) - 1; 3808 case ISD::MUL: { 3809 // The output of the Mul can be at most twice the valid bits in the inputs. 3810 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3811 if (SignBitsOp0 == 1) 3812 break; 3813 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3814 if (SignBitsOp1 == 1) 3815 break; 3816 unsigned OutValidBits = 3817 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3818 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3819 } 3820 case ISD::TRUNCATE: { 3821 // Check if the sign bits of source go down as far as the truncated value. 3822 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3823 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3824 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3825 return NumSrcSignBits - (NumSrcBits - VTBits); 3826 break; 3827 } 3828 case ISD::EXTRACT_ELEMENT: { 3829 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3830 const int BitWidth = Op.getValueSizeInBits(); 3831 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3832 3833 // Get reverse index (starting from 1), Op1 value indexes elements from 3834 // little end. Sign starts at big end. 3835 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3836 3837 // If the sign portion ends in our element the subtraction gives correct 3838 // result. Otherwise it gives either negative or > bitwidth result 3839 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3840 } 3841 case ISD::INSERT_VECTOR_ELT: { 3842 // If we know the element index, split the demand between the 3843 // source vector and the inserted element, otherwise assume we need 3844 // the original demanded vector elements and the value. 3845 SDValue InVec = Op.getOperand(0); 3846 SDValue InVal = Op.getOperand(1); 3847 SDValue EltNo = Op.getOperand(2); 3848 bool DemandedVal = true; 3849 APInt DemandedVecElts = DemandedElts; 3850 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3851 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3852 unsigned EltIdx = CEltNo->getZExtValue(); 3853 DemandedVal = !!DemandedElts[EltIdx]; 3854 DemandedVecElts.clearBit(EltIdx); 3855 } 3856 Tmp = std::numeric_limits<unsigned>::max(); 3857 if (DemandedVal) { 3858 // TODO - handle implicit truncation of inserted elements. 3859 if (InVal.getScalarValueSizeInBits() != VTBits) 3860 break; 3861 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3862 Tmp = std::min(Tmp, Tmp2); 3863 } 3864 if (!!DemandedVecElts) { 3865 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3866 Tmp = std::min(Tmp, Tmp2); 3867 } 3868 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3869 return Tmp; 3870 } 3871 case ISD::EXTRACT_VECTOR_ELT: { 3872 SDValue InVec = Op.getOperand(0); 3873 SDValue EltNo = Op.getOperand(1); 3874 EVT VecVT = InVec.getValueType(); 3875 const unsigned BitWidth = Op.getValueSizeInBits(); 3876 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3877 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3878 3879 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3880 // anything about sign bits. But if the sizes match we can derive knowledge 3881 // about sign bits from the vector operand. 3882 if (BitWidth != EltBitWidth) 3883 break; 3884 3885 // If we know the element index, just demand that vector element, else for 3886 // an unknown element index, ignore DemandedElts and demand them all. 3887 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3888 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3889 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3890 DemandedSrcElts = 3891 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3892 3893 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3894 } 3895 case ISD::EXTRACT_SUBVECTOR: { 3896 // Offset the demanded elts by the subvector index. 3897 SDValue Src = Op.getOperand(0); 3898 // Bail until we can represent demanded elements for scalable vectors. 3899 if (Src.getValueType().isScalableVector()) 3900 break; 3901 uint64_t Idx = Op.getConstantOperandVal(1); 3902 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3903 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3904 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3905 } 3906 case ISD::CONCAT_VECTORS: { 3907 // Determine the minimum number of sign bits across all demanded 3908 // elts of the input vectors. Early out if the result is already 1. 3909 Tmp = std::numeric_limits<unsigned>::max(); 3910 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3911 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3912 unsigned NumSubVectors = Op.getNumOperands(); 3913 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3914 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3915 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3916 if (!DemandedSub) 3917 continue; 3918 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3919 Tmp = std::min(Tmp, Tmp2); 3920 } 3921 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3922 return Tmp; 3923 } 3924 case ISD::INSERT_SUBVECTOR: { 3925 // Demand any elements from the subvector and the remainder from the src its 3926 // inserted into. 3927 SDValue Src = Op.getOperand(0); 3928 SDValue Sub = Op.getOperand(1); 3929 uint64_t Idx = Op.getConstantOperandVal(2); 3930 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3931 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3932 APInt DemandedSrcElts = DemandedElts; 3933 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 3934 3935 Tmp = std::numeric_limits<unsigned>::max(); 3936 if (!!DemandedSubElts) { 3937 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3938 if (Tmp == 1) 3939 return 1; // early-out 3940 } 3941 if (!!DemandedSrcElts) { 3942 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3943 Tmp = std::min(Tmp, Tmp2); 3944 } 3945 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3946 return Tmp; 3947 } 3948 } 3949 3950 // If we are looking at the loaded value of the SDNode. 3951 if (Op.getResNo() == 0) { 3952 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3953 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3954 unsigned ExtType = LD->getExtensionType(); 3955 switch (ExtType) { 3956 default: break; 3957 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 3958 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3959 return VTBits - Tmp + 1; 3960 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 3961 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3962 return VTBits - Tmp; 3963 case ISD::NON_EXTLOAD: 3964 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 3965 // We only need to handle vectors - computeKnownBits should handle 3966 // scalar cases. 3967 Type *CstTy = Cst->getType(); 3968 if (CstTy->isVectorTy() && 3969 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 3970 Tmp = VTBits; 3971 for (unsigned i = 0; i != NumElts; ++i) { 3972 if (!DemandedElts[i]) 3973 continue; 3974 if (Constant *Elt = Cst->getAggregateElement(i)) { 3975 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3976 const APInt &Value = CInt->getValue(); 3977 Tmp = std::min(Tmp, Value.getNumSignBits()); 3978 continue; 3979 } 3980 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3981 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3982 Tmp = std::min(Tmp, Value.getNumSignBits()); 3983 continue; 3984 } 3985 } 3986 // Unknown type. Conservatively assume no bits match sign bit. 3987 return 1; 3988 } 3989 return Tmp; 3990 } 3991 } 3992 break; 3993 } 3994 } 3995 } 3996 3997 // Allow the target to implement this method for its nodes. 3998 if (Opcode >= ISD::BUILTIN_OP_END || 3999 Opcode == ISD::INTRINSIC_WO_CHAIN || 4000 Opcode == ISD::INTRINSIC_W_CHAIN || 4001 Opcode == ISD::INTRINSIC_VOID) { 4002 unsigned NumBits = 4003 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4004 if (NumBits > 1) 4005 FirstAnswer = std::max(FirstAnswer, NumBits); 4006 } 4007 4008 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4009 // use this information. 4010 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4011 4012 APInt Mask; 4013 if (Known.isNonNegative()) { // sign bit is 0 4014 Mask = Known.Zero; 4015 } else if (Known.isNegative()) { // sign bit is 1; 4016 Mask = Known.One; 4017 } else { 4018 // Nothing known. 4019 return FirstAnswer; 4020 } 4021 4022 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4023 // the number of identical bits in the top of the input value. 4024 Mask <<= Mask.getBitWidth()-VTBits; 4025 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4026 } 4027 4028 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4029 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4030 !isa<ConstantSDNode>(Op.getOperand(1))) 4031 return false; 4032 4033 if (Op.getOpcode() == ISD::OR && 4034 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4035 return false; 4036 4037 return true; 4038 } 4039 4040 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4041 // If we're told that NaNs won't happen, assume they won't. 4042 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4043 return true; 4044 4045 if (Depth >= MaxRecursionDepth) 4046 return false; // Limit search depth. 4047 4048 // TODO: Handle vectors. 4049 // If the value is a constant, we can obviously see if it is a NaN or not. 4050 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4051 return !C->getValueAPF().isNaN() || 4052 (SNaN && !C->getValueAPF().isSignaling()); 4053 } 4054 4055 unsigned Opcode = Op.getOpcode(); 4056 switch (Opcode) { 4057 case ISD::FADD: 4058 case ISD::FSUB: 4059 case ISD::FMUL: 4060 case ISD::FDIV: 4061 case ISD::FREM: 4062 case ISD::FSIN: 4063 case ISD::FCOS: { 4064 if (SNaN) 4065 return true; 4066 // TODO: Need isKnownNeverInfinity 4067 return false; 4068 } 4069 case ISD::FCANONICALIZE: 4070 case ISD::FEXP: 4071 case ISD::FEXP2: 4072 case ISD::FTRUNC: 4073 case ISD::FFLOOR: 4074 case ISD::FCEIL: 4075 case ISD::FROUND: 4076 case ISD::FROUNDEVEN: 4077 case ISD::FRINT: 4078 case ISD::FNEARBYINT: { 4079 if (SNaN) 4080 return true; 4081 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4082 } 4083 case ISD::FABS: 4084 case ISD::FNEG: 4085 case ISD::FCOPYSIGN: { 4086 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4087 } 4088 case ISD::SELECT: 4089 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4090 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4091 case ISD::FP_EXTEND: 4092 case ISD::FP_ROUND: { 4093 if (SNaN) 4094 return true; 4095 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4096 } 4097 case ISD::SINT_TO_FP: 4098 case ISD::UINT_TO_FP: 4099 return true; 4100 case ISD::FMA: 4101 case ISD::FMAD: { 4102 if (SNaN) 4103 return true; 4104 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4105 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4106 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4107 } 4108 case ISD::FSQRT: // Need is known positive 4109 case ISD::FLOG: 4110 case ISD::FLOG2: 4111 case ISD::FLOG10: 4112 case ISD::FPOWI: 4113 case ISD::FPOW: { 4114 if (SNaN) 4115 return true; 4116 // TODO: Refine on operand 4117 return false; 4118 } 4119 case ISD::FMINNUM: 4120 case ISD::FMAXNUM: { 4121 // Only one needs to be known not-nan, since it will be returned if the 4122 // other ends up being one. 4123 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4124 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4125 } 4126 case ISD::FMINNUM_IEEE: 4127 case ISD::FMAXNUM_IEEE: { 4128 if (SNaN) 4129 return true; 4130 // This can return a NaN if either operand is an sNaN, or if both operands 4131 // are NaN. 4132 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4133 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4134 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4135 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4136 } 4137 case ISD::FMINIMUM: 4138 case ISD::FMAXIMUM: { 4139 // TODO: Does this quiet or return the origina NaN as-is? 4140 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4141 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4142 } 4143 case ISD::EXTRACT_VECTOR_ELT: { 4144 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4145 } 4146 default: 4147 if (Opcode >= ISD::BUILTIN_OP_END || 4148 Opcode == ISD::INTRINSIC_WO_CHAIN || 4149 Opcode == ISD::INTRINSIC_W_CHAIN || 4150 Opcode == ISD::INTRINSIC_VOID) { 4151 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4152 } 4153 4154 return false; 4155 } 4156 } 4157 4158 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4159 assert(Op.getValueType().isFloatingPoint() && 4160 "Floating point type expected"); 4161 4162 // If the value is a constant, we can obviously see if it is a zero or not. 4163 // TODO: Add BuildVector support. 4164 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4165 return !C->isZero(); 4166 return false; 4167 } 4168 4169 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4170 assert(!Op.getValueType().isFloatingPoint() && 4171 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4172 4173 // If the value is a constant, we can obviously see if it is a zero or not. 4174 if (ISD::matchUnaryPredicate( 4175 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4176 return true; 4177 4178 // TODO: Recognize more cases here. 4179 switch (Op.getOpcode()) { 4180 default: break; 4181 case ISD::OR: 4182 if (isKnownNeverZero(Op.getOperand(1)) || 4183 isKnownNeverZero(Op.getOperand(0))) 4184 return true; 4185 break; 4186 } 4187 4188 return false; 4189 } 4190 4191 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4192 // Check the obvious case. 4193 if (A == B) return true; 4194 4195 // For for negative and positive zero. 4196 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4197 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4198 if (CA->isZero() && CB->isZero()) return true; 4199 4200 // Otherwise they may not be equal. 4201 return false; 4202 } 4203 4204 // FIXME: unify with llvm::haveNoCommonBitsSet. 4205 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4206 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4207 assert(A.getValueType() == B.getValueType() && 4208 "Values must have the same type"); 4209 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4210 } 4211 4212 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4213 ArrayRef<SDValue> Ops, 4214 SelectionDAG &DAG) { 4215 int NumOps = Ops.size(); 4216 assert(NumOps != 0 && "Can't build an empty vector!"); 4217 assert(!VT.isScalableVector() && 4218 "BUILD_VECTOR cannot be used with scalable types"); 4219 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4220 "Incorrect element count in BUILD_VECTOR!"); 4221 4222 // BUILD_VECTOR of UNDEFs is UNDEF. 4223 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4224 return DAG.getUNDEF(VT); 4225 4226 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4227 SDValue IdentitySrc; 4228 bool IsIdentity = true; 4229 for (int i = 0; i != NumOps; ++i) { 4230 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4231 Ops[i].getOperand(0).getValueType() != VT || 4232 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4233 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4234 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4235 IsIdentity = false; 4236 break; 4237 } 4238 IdentitySrc = Ops[i].getOperand(0); 4239 } 4240 if (IsIdentity) 4241 return IdentitySrc; 4242 4243 return SDValue(); 4244 } 4245 4246 /// Try to simplify vector concatenation to an input value, undef, or build 4247 /// vector. 4248 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4249 ArrayRef<SDValue> Ops, 4250 SelectionDAG &DAG) { 4251 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4252 assert(llvm::all_of(Ops, 4253 [Ops](SDValue Op) { 4254 return Ops[0].getValueType() == Op.getValueType(); 4255 }) && 4256 "Concatenation of vectors with inconsistent value types!"); 4257 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4258 VT.getVectorElementCount() && 4259 "Incorrect element count in vector concatenation!"); 4260 4261 if (Ops.size() == 1) 4262 return Ops[0]; 4263 4264 // Concat of UNDEFs is UNDEF. 4265 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4266 return DAG.getUNDEF(VT); 4267 4268 // Scan the operands and look for extract operations from a single source 4269 // that correspond to insertion at the same location via this concatenation: 4270 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4271 SDValue IdentitySrc; 4272 bool IsIdentity = true; 4273 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4274 SDValue Op = Ops[i]; 4275 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4276 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4277 Op.getOperand(0).getValueType() != VT || 4278 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4279 Op.getConstantOperandVal(1) != IdentityIndex) { 4280 IsIdentity = false; 4281 break; 4282 } 4283 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4284 "Unexpected identity source vector for concat of extracts"); 4285 IdentitySrc = Op.getOperand(0); 4286 } 4287 if (IsIdentity) { 4288 assert(IdentitySrc && "Failed to set source vector of extracts"); 4289 return IdentitySrc; 4290 } 4291 4292 // The code below this point is only designed to work for fixed width 4293 // vectors, so we bail out for now. 4294 if (VT.isScalableVector()) 4295 return SDValue(); 4296 4297 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4298 // simplified to one big BUILD_VECTOR. 4299 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4300 EVT SVT = VT.getScalarType(); 4301 SmallVector<SDValue, 16> Elts; 4302 for (SDValue Op : Ops) { 4303 EVT OpVT = Op.getValueType(); 4304 if (Op.isUndef()) 4305 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4306 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4307 Elts.append(Op->op_begin(), Op->op_end()); 4308 else 4309 return SDValue(); 4310 } 4311 4312 // BUILD_VECTOR requires all inputs to be of the same type, find the 4313 // maximum type and extend them all. 4314 for (SDValue Op : Elts) 4315 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4316 4317 if (SVT.bitsGT(VT.getScalarType())) { 4318 for (SDValue &Op : Elts) { 4319 if (Op.isUndef()) 4320 Op = DAG.getUNDEF(SVT); 4321 else 4322 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4323 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4324 : DAG.getSExtOrTrunc(Op, DL, SVT); 4325 } 4326 } 4327 4328 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4329 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4330 return V; 4331 } 4332 4333 /// Gets or creates the specified node. 4334 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4335 FoldingSetNodeID ID; 4336 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4337 void *IP = nullptr; 4338 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4339 return SDValue(E, 0); 4340 4341 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4342 getVTList(VT)); 4343 CSEMap.InsertNode(N, IP); 4344 4345 InsertNode(N); 4346 SDValue V = SDValue(N, 0); 4347 NewSDValueDbgMsg(V, "Creating new node: ", this); 4348 return V; 4349 } 4350 4351 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4352 SDValue Operand) { 4353 SDNodeFlags Flags; 4354 if (Inserter) 4355 Flags = Inserter->getFlags(); 4356 return getNode(Opcode, DL, VT, Operand, Flags); 4357 } 4358 4359 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4360 SDValue Operand, const SDNodeFlags Flags) { 4361 // Constant fold unary operations with an integer constant operand. Even 4362 // opaque constant will be folded, because the folding of unary operations 4363 // doesn't create new constants with different values. Nevertheless, the 4364 // opaque flag is preserved during folding to prevent future folding with 4365 // other constants. 4366 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4367 const APInt &Val = C->getAPIntValue(); 4368 switch (Opcode) { 4369 default: break; 4370 case ISD::SIGN_EXTEND: 4371 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4372 C->isTargetOpcode(), C->isOpaque()); 4373 case ISD::TRUNCATE: 4374 if (C->isOpaque()) 4375 break; 4376 LLVM_FALLTHROUGH; 4377 case ISD::ANY_EXTEND: 4378 case ISD::ZERO_EXTEND: 4379 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4380 C->isTargetOpcode(), C->isOpaque()); 4381 case ISD::UINT_TO_FP: 4382 case ISD::SINT_TO_FP: { 4383 APFloat apf(EVTToAPFloatSemantics(VT), 4384 APInt::getNullValue(VT.getSizeInBits())); 4385 (void)apf.convertFromAPInt(Val, 4386 Opcode==ISD::SINT_TO_FP, 4387 APFloat::rmNearestTiesToEven); 4388 return getConstantFP(apf, DL, VT); 4389 } 4390 case ISD::BITCAST: 4391 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4392 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4393 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4394 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4395 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4396 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4397 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4398 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4399 break; 4400 case ISD::ABS: 4401 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4402 C->isOpaque()); 4403 case ISD::BITREVERSE: 4404 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4405 C->isOpaque()); 4406 case ISD::BSWAP: 4407 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4408 C->isOpaque()); 4409 case ISD::CTPOP: 4410 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4411 C->isOpaque()); 4412 case ISD::CTLZ: 4413 case ISD::CTLZ_ZERO_UNDEF: 4414 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4415 C->isOpaque()); 4416 case ISD::CTTZ: 4417 case ISD::CTTZ_ZERO_UNDEF: 4418 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4419 C->isOpaque()); 4420 case ISD::FP16_TO_FP: { 4421 bool Ignored; 4422 APFloat FPV(APFloat::IEEEhalf(), 4423 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4424 4425 // This can return overflow, underflow, or inexact; we don't care. 4426 // FIXME need to be more flexible about rounding mode. 4427 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4428 APFloat::rmNearestTiesToEven, &Ignored); 4429 return getConstantFP(FPV, DL, VT); 4430 } 4431 } 4432 } 4433 4434 // Constant fold unary operations with a floating point constant operand. 4435 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4436 APFloat V = C->getValueAPF(); // make copy 4437 switch (Opcode) { 4438 case ISD::FNEG: 4439 V.changeSign(); 4440 return getConstantFP(V, DL, VT); 4441 case ISD::FABS: 4442 V.clearSign(); 4443 return getConstantFP(V, DL, VT); 4444 case ISD::FCEIL: { 4445 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4446 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4447 return getConstantFP(V, DL, VT); 4448 break; 4449 } 4450 case ISD::FTRUNC: { 4451 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4452 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4453 return getConstantFP(V, DL, VT); 4454 break; 4455 } 4456 case ISD::FFLOOR: { 4457 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4458 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4459 return getConstantFP(V, DL, VT); 4460 break; 4461 } 4462 case ISD::FP_EXTEND: { 4463 bool ignored; 4464 // This can return overflow, underflow, or inexact; we don't care. 4465 // FIXME need to be more flexible about rounding mode. 4466 (void)V.convert(EVTToAPFloatSemantics(VT), 4467 APFloat::rmNearestTiesToEven, &ignored); 4468 return getConstantFP(V, DL, VT); 4469 } 4470 case ISD::FP_TO_SINT: 4471 case ISD::FP_TO_UINT: { 4472 bool ignored; 4473 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4474 // FIXME need to be more flexible about rounding mode. 4475 APFloat::opStatus s = 4476 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4477 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4478 break; 4479 return getConstant(IntVal, DL, VT); 4480 } 4481 case ISD::BITCAST: 4482 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4483 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4484 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4485 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4486 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4487 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4488 break; 4489 case ISD::FP_TO_FP16: { 4490 bool Ignored; 4491 // This can return overflow, underflow, or inexact; we don't care. 4492 // FIXME need to be more flexible about rounding mode. 4493 (void)V.convert(APFloat::IEEEhalf(), 4494 APFloat::rmNearestTiesToEven, &Ignored); 4495 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4496 } 4497 } 4498 } 4499 4500 // Constant fold unary operations with a vector integer or float operand. 4501 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4502 if (BV->isConstant()) { 4503 switch (Opcode) { 4504 default: 4505 // FIXME: Entirely reasonable to perform folding of other unary 4506 // operations here as the need arises. 4507 break; 4508 case ISD::FNEG: 4509 case ISD::FABS: 4510 case ISD::FCEIL: 4511 case ISD::FTRUNC: 4512 case ISD::FFLOOR: 4513 case ISD::FP_EXTEND: 4514 case ISD::FP_TO_SINT: 4515 case ISD::FP_TO_UINT: 4516 case ISD::TRUNCATE: 4517 case ISD::ANY_EXTEND: 4518 case ISD::ZERO_EXTEND: 4519 case ISD::SIGN_EXTEND: 4520 case ISD::UINT_TO_FP: 4521 case ISD::SINT_TO_FP: 4522 case ISD::ABS: 4523 case ISD::BITREVERSE: 4524 case ISD::BSWAP: 4525 case ISD::CTLZ: 4526 case ISD::CTLZ_ZERO_UNDEF: 4527 case ISD::CTTZ: 4528 case ISD::CTTZ_ZERO_UNDEF: 4529 case ISD::CTPOP: { 4530 SDValue Ops = { Operand }; 4531 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4532 return Fold; 4533 } 4534 } 4535 } 4536 } 4537 4538 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4539 switch (Opcode) { 4540 case ISD::FREEZE: 4541 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4542 break; 4543 case ISD::TokenFactor: 4544 case ISD::MERGE_VALUES: 4545 case ISD::CONCAT_VECTORS: 4546 return Operand; // Factor, merge or concat of one node? No need. 4547 case ISD::BUILD_VECTOR: { 4548 // Attempt to simplify BUILD_VECTOR. 4549 SDValue Ops[] = {Operand}; 4550 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4551 return V; 4552 break; 4553 } 4554 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4555 case ISD::FP_EXTEND: 4556 assert(VT.isFloatingPoint() && 4557 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4558 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4559 assert((!VT.isVector() || 4560 VT.getVectorElementCount() == 4561 Operand.getValueType().getVectorElementCount()) && 4562 "Vector element count mismatch!"); 4563 assert(Operand.getValueType().bitsLT(VT) && 4564 "Invalid fpext node, dst < src!"); 4565 if (Operand.isUndef()) 4566 return getUNDEF(VT); 4567 break; 4568 case ISD::FP_TO_SINT: 4569 case ISD::FP_TO_UINT: 4570 if (Operand.isUndef()) 4571 return getUNDEF(VT); 4572 break; 4573 case ISD::SINT_TO_FP: 4574 case ISD::UINT_TO_FP: 4575 // [us]itofp(undef) = 0, because the result value is bounded. 4576 if (Operand.isUndef()) 4577 return getConstantFP(0.0, DL, VT); 4578 break; 4579 case ISD::SIGN_EXTEND: 4580 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4581 "Invalid SIGN_EXTEND!"); 4582 assert(VT.isVector() == Operand.getValueType().isVector() && 4583 "SIGN_EXTEND result type type should be vector iff the operand " 4584 "type is vector!"); 4585 if (Operand.getValueType() == VT) return Operand; // noop extension 4586 assert((!VT.isVector() || 4587 VT.getVectorElementCount() == 4588 Operand.getValueType().getVectorElementCount()) && 4589 "Vector element count mismatch!"); 4590 assert(Operand.getValueType().bitsLT(VT) && 4591 "Invalid sext node, dst < src!"); 4592 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4593 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4594 else if (OpOpcode == ISD::UNDEF) 4595 // sext(undef) = 0, because the top bits will all be the same. 4596 return getConstant(0, DL, VT); 4597 break; 4598 case ISD::ZERO_EXTEND: 4599 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4600 "Invalid ZERO_EXTEND!"); 4601 assert(VT.isVector() == Operand.getValueType().isVector() && 4602 "ZERO_EXTEND result type type should be vector iff the operand " 4603 "type is vector!"); 4604 if (Operand.getValueType() == VT) return Operand; // noop extension 4605 assert((!VT.isVector() || 4606 VT.getVectorElementCount() == 4607 Operand.getValueType().getVectorElementCount()) && 4608 "Vector element count mismatch!"); 4609 assert(Operand.getValueType().bitsLT(VT) && 4610 "Invalid zext node, dst < src!"); 4611 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4612 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4613 else if (OpOpcode == ISD::UNDEF) 4614 // zext(undef) = 0, because the top bits will be zero. 4615 return getConstant(0, DL, VT); 4616 break; 4617 case ISD::ANY_EXTEND: 4618 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4619 "Invalid ANY_EXTEND!"); 4620 assert(VT.isVector() == Operand.getValueType().isVector() && 4621 "ANY_EXTEND result type type should be vector iff the operand " 4622 "type is vector!"); 4623 if (Operand.getValueType() == VT) return Operand; // noop extension 4624 assert((!VT.isVector() || 4625 VT.getVectorElementCount() == 4626 Operand.getValueType().getVectorElementCount()) && 4627 "Vector element count mismatch!"); 4628 assert(Operand.getValueType().bitsLT(VT) && 4629 "Invalid anyext node, dst < src!"); 4630 4631 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4632 OpOpcode == ISD::ANY_EXTEND) 4633 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4634 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4635 else if (OpOpcode == ISD::UNDEF) 4636 return getUNDEF(VT); 4637 4638 // (ext (trunc x)) -> x 4639 if (OpOpcode == ISD::TRUNCATE) { 4640 SDValue OpOp = Operand.getOperand(0); 4641 if (OpOp.getValueType() == VT) { 4642 transferDbgValues(Operand, OpOp); 4643 return OpOp; 4644 } 4645 } 4646 break; 4647 case ISD::TRUNCATE: 4648 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4649 "Invalid TRUNCATE!"); 4650 assert(VT.isVector() == Operand.getValueType().isVector() && 4651 "TRUNCATE result type type should be vector iff the operand " 4652 "type is vector!"); 4653 if (Operand.getValueType() == VT) return Operand; // noop truncate 4654 assert((!VT.isVector() || 4655 VT.getVectorElementCount() == 4656 Operand.getValueType().getVectorElementCount()) && 4657 "Vector element count mismatch!"); 4658 assert(Operand.getValueType().bitsGT(VT) && 4659 "Invalid truncate node, src < dst!"); 4660 if (OpOpcode == ISD::TRUNCATE) 4661 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4662 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4663 OpOpcode == ISD::ANY_EXTEND) { 4664 // If the source is smaller than the dest, we still need an extend. 4665 if (Operand.getOperand(0).getValueType().getScalarType() 4666 .bitsLT(VT.getScalarType())) 4667 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4668 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4669 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4670 return Operand.getOperand(0); 4671 } 4672 if (OpOpcode == ISD::UNDEF) 4673 return getUNDEF(VT); 4674 break; 4675 case ISD::ANY_EXTEND_VECTOR_INREG: 4676 case ISD::ZERO_EXTEND_VECTOR_INREG: 4677 case ISD::SIGN_EXTEND_VECTOR_INREG: 4678 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4679 assert(Operand.getValueType().bitsLE(VT) && 4680 "The input must be the same size or smaller than the result."); 4681 assert(VT.getVectorNumElements() < 4682 Operand.getValueType().getVectorNumElements() && 4683 "The destination vector type must have fewer lanes than the input."); 4684 break; 4685 case ISD::ABS: 4686 assert(VT.isInteger() && VT == Operand.getValueType() && 4687 "Invalid ABS!"); 4688 if (OpOpcode == ISD::UNDEF) 4689 return getUNDEF(VT); 4690 break; 4691 case ISD::BSWAP: 4692 assert(VT.isInteger() && VT == Operand.getValueType() && 4693 "Invalid BSWAP!"); 4694 assert((VT.getScalarSizeInBits() % 16 == 0) && 4695 "BSWAP types must be a multiple of 16 bits!"); 4696 if (OpOpcode == ISD::UNDEF) 4697 return getUNDEF(VT); 4698 break; 4699 case ISD::BITREVERSE: 4700 assert(VT.isInteger() && VT == Operand.getValueType() && 4701 "Invalid BITREVERSE!"); 4702 if (OpOpcode == ISD::UNDEF) 4703 return getUNDEF(VT); 4704 break; 4705 case ISD::BITCAST: 4706 // Basic sanity checking. 4707 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4708 "Cannot BITCAST between types of different sizes!"); 4709 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4710 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4711 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4712 if (OpOpcode == ISD::UNDEF) 4713 return getUNDEF(VT); 4714 break; 4715 case ISD::SCALAR_TO_VECTOR: 4716 assert(VT.isVector() && !Operand.getValueType().isVector() && 4717 (VT.getVectorElementType() == Operand.getValueType() || 4718 (VT.getVectorElementType().isInteger() && 4719 Operand.getValueType().isInteger() && 4720 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4721 "Illegal SCALAR_TO_VECTOR node!"); 4722 if (OpOpcode == ISD::UNDEF) 4723 return getUNDEF(VT); 4724 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4725 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4726 isa<ConstantSDNode>(Operand.getOperand(1)) && 4727 Operand.getConstantOperandVal(1) == 0 && 4728 Operand.getOperand(0).getValueType() == VT) 4729 return Operand.getOperand(0); 4730 break; 4731 case ISD::FNEG: 4732 // Negation of an unknown bag of bits is still completely undefined. 4733 if (OpOpcode == ISD::UNDEF) 4734 return getUNDEF(VT); 4735 4736 if (OpOpcode == ISD::FNEG) // --X -> X 4737 return Operand.getOperand(0); 4738 break; 4739 case ISD::FABS: 4740 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4741 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4742 break; 4743 case ISD::VSCALE: 4744 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4745 break; 4746 case ISD::VECREDUCE_SMIN: 4747 case ISD::VECREDUCE_UMAX: 4748 if (Operand.getValueType().getScalarType() == MVT::i1) 4749 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 4750 break; 4751 case ISD::VECREDUCE_SMAX: 4752 case ISD::VECREDUCE_UMIN: 4753 if (Operand.getValueType().getScalarType() == MVT::i1) 4754 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 4755 break; 4756 } 4757 4758 SDNode *N; 4759 SDVTList VTs = getVTList(VT); 4760 SDValue Ops[] = {Operand}; 4761 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4762 FoldingSetNodeID ID; 4763 AddNodeIDNode(ID, Opcode, VTs, Ops); 4764 void *IP = nullptr; 4765 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4766 E->intersectFlagsWith(Flags); 4767 return SDValue(E, 0); 4768 } 4769 4770 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4771 N->setFlags(Flags); 4772 createOperands(N, Ops); 4773 CSEMap.InsertNode(N, IP); 4774 } else { 4775 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4776 createOperands(N, Ops); 4777 } 4778 4779 InsertNode(N); 4780 SDValue V = SDValue(N, 0); 4781 NewSDValueDbgMsg(V, "Creating new node: ", this); 4782 return V; 4783 } 4784 4785 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4786 const APInt &C2) { 4787 switch (Opcode) { 4788 case ISD::ADD: return C1 + C2; 4789 case ISD::SUB: return C1 - C2; 4790 case ISD::MUL: return C1 * C2; 4791 case ISD::AND: return C1 & C2; 4792 case ISD::OR: return C1 | C2; 4793 case ISD::XOR: return C1 ^ C2; 4794 case ISD::SHL: return C1 << C2; 4795 case ISD::SRL: return C1.lshr(C2); 4796 case ISD::SRA: return C1.ashr(C2); 4797 case ISD::ROTL: return C1.rotl(C2); 4798 case ISD::ROTR: return C1.rotr(C2); 4799 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4800 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4801 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4802 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4803 case ISD::SADDSAT: return C1.sadd_sat(C2); 4804 case ISD::UADDSAT: return C1.uadd_sat(C2); 4805 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4806 case ISD::USUBSAT: return C1.usub_sat(C2); 4807 case ISD::UDIV: 4808 if (!C2.getBoolValue()) 4809 break; 4810 return C1.udiv(C2); 4811 case ISD::UREM: 4812 if (!C2.getBoolValue()) 4813 break; 4814 return C1.urem(C2); 4815 case ISD::SDIV: 4816 if (!C2.getBoolValue()) 4817 break; 4818 return C1.sdiv(C2); 4819 case ISD::SREM: 4820 if (!C2.getBoolValue()) 4821 break; 4822 return C1.srem(C2); 4823 } 4824 return llvm::None; 4825 } 4826 4827 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4828 const GlobalAddressSDNode *GA, 4829 const SDNode *N2) { 4830 if (GA->getOpcode() != ISD::GlobalAddress) 4831 return SDValue(); 4832 if (!TLI->isOffsetFoldingLegal(GA)) 4833 return SDValue(); 4834 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4835 if (!C2) 4836 return SDValue(); 4837 int64_t Offset = C2->getSExtValue(); 4838 switch (Opcode) { 4839 case ISD::ADD: break; 4840 case ISD::SUB: Offset = -uint64_t(Offset); break; 4841 default: return SDValue(); 4842 } 4843 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4844 GA->getOffset() + uint64_t(Offset)); 4845 } 4846 4847 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4848 switch (Opcode) { 4849 case ISD::SDIV: 4850 case ISD::UDIV: 4851 case ISD::SREM: 4852 case ISD::UREM: { 4853 // If a divisor is zero/undef or any element of a divisor vector is 4854 // zero/undef, the whole op is undef. 4855 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4856 SDValue Divisor = Ops[1]; 4857 if (Divisor.isUndef() || isNullConstant(Divisor)) 4858 return true; 4859 4860 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4861 llvm::any_of(Divisor->op_values(), 4862 [](SDValue V) { return V.isUndef() || 4863 isNullConstant(V); }); 4864 // TODO: Handle signed overflow. 4865 } 4866 // TODO: Handle oversized shifts. 4867 default: 4868 return false; 4869 } 4870 } 4871 4872 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4873 EVT VT, ArrayRef<SDValue> Ops) { 4874 // If the opcode is a target-specific ISD node, there's nothing we can 4875 // do here and the operand rules may not line up with the below, so 4876 // bail early. 4877 if (Opcode >= ISD::BUILTIN_OP_END) 4878 return SDValue(); 4879 4880 // For now, the array Ops should only contain two values. 4881 // This enforcement will be removed once this function is merged with 4882 // FoldConstantVectorArithmetic 4883 if (Ops.size() != 2) 4884 return SDValue(); 4885 4886 if (isUndef(Opcode, Ops)) 4887 return getUNDEF(VT); 4888 4889 SDNode *N1 = Ops[0].getNode(); 4890 SDNode *N2 = Ops[1].getNode(); 4891 4892 // Handle the case of two scalars. 4893 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4894 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4895 if (C1->isOpaque() || C2->isOpaque()) 4896 return SDValue(); 4897 4898 Optional<APInt> FoldAttempt = 4899 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4900 if (!FoldAttempt) 4901 return SDValue(); 4902 4903 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4904 assert((!Folded || !VT.isVector()) && 4905 "Can't fold vectors ops with scalar operands"); 4906 return Folded; 4907 } 4908 } 4909 4910 // fold (add Sym, c) -> Sym+c 4911 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4912 return FoldSymbolOffset(Opcode, VT, GA, N2); 4913 if (TLI->isCommutativeBinOp(Opcode)) 4914 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4915 return FoldSymbolOffset(Opcode, VT, GA, N1); 4916 4917 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4918 // vector width, however we should be able to do constant folds involving 4919 // splat vector nodes too. 4920 if (VT.isScalableVector()) 4921 return SDValue(); 4922 4923 // For fixed width vectors, extract each constant element and fold them 4924 // individually. Either input may be an undef value. 4925 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4926 if (!BV1 && !N1->isUndef()) 4927 return SDValue(); 4928 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4929 if (!BV2 && !N2->isUndef()) 4930 return SDValue(); 4931 // If both operands are undef, that's handled the same way as scalars. 4932 if (!BV1 && !BV2) 4933 return SDValue(); 4934 4935 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4936 "Vector binop with different number of elements in operands?"); 4937 4938 EVT SVT = VT.getScalarType(); 4939 EVT LegalSVT = SVT; 4940 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4941 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4942 if (LegalSVT.bitsLT(SVT)) 4943 return SDValue(); 4944 } 4945 SmallVector<SDValue, 4> Outputs; 4946 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4947 for (unsigned I = 0; I != NumOps; ++I) { 4948 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4949 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4950 if (SVT.isInteger()) { 4951 if (V1->getValueType(0).bitsGT(SVT)) 4952 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4953 if (V2->getValueType(0).bitsGT(SVT)) 4954 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4955 } 4956 4957 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4958 return SDValue(); 4959 4960 // Fold one vector element. 4961 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4962 if (LegalSVT != SVT) 4963 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4964 4965 // Scalar folding only succeeded if the result is a constant or UNDEF. 4966 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4967 ScalarResult.getOpcode() != ISD::ConstantFP) 4968 return SDValue(); 4969 Outputs.push_back(ScalarResult); 4970 } 4971 4972 assert(VT.getVectorNumElements() == Outputs.size() && 4973 "Vector size mismatch!"); 4974 4975 // We may have a vector type but a scalar result. Create a splat. 4976 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4977 4978 // Build a big vector out of the scalar elements we generated. 4979 return getBuildVector(VT, SDLoc(), Outputs); 4980 } 4981 4982 // TODO: Merge with FoldConstantArithmetic 4983 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4984 const SDLoc &DL, EVT VT, 4985 ArrayRef<SDValue> Ops, 4986 const SDNodeFlags Flags) { 4987 // If the opcode is a target-specific ISD node, there's nothing we can 4988 // do here and the operand rules may not line up with the below, so 4989 // bail early. 4990 if (Opcode >= ISD::BUILTIN_OP_END) 4991 return SDValue(); 4992 4993 if (isUndef(Opcode, Ops)) 4994 return getUNDEF(VT); 4995 4996 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4997 if (!VT.isVector()) 4998 return SDValue(); 4999 5000 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5001 // vector width, however we should be able to do constant folds involving 5002 // splat vector nodes too. 5003 if (VT.isScalableVector()) 5004 return SDValue(); 5005 5006 // From this point onwards all vectors are assumed to be fixed width. 5007 unsigned NumElts = VT.getVectorNumElements(); 5008 5009 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5010 return !Op.getValueType().isVector() || 5011 Op.getValueType().getVectorNumElements() == NumElts; 5012 }; 5013 5014 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5015 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5016 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5017 (BV && BV->isConstant()); 5018 }; 5019 5020 // All operands must be vector types with the same number of elements as 5021 // the result type and must be either UNDEF or a build vector of constant 5022 // or UNDEF scalars. 5023 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5024 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5025 return SDValue(); 5026 5027 // If we are comparing vectors, then the result needs to be a i1 boolean 5028 // that is then sign-extended back to the legal result type. 5029 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5030 5031 // Find legal integer scalar type for constant promotion and 5032 // ensure that its scalar size is at least as large as source. 5033 EVT LegalSVT = VT.getScalarType(); 5034 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5035 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5036 if (LegalSVT.bitsLT(VT.getScalarType())) 5037 return SDValue(); 5038 } 5039 5040 // Constant fold each scalar lane separately. 5041 SmallVector<SDValue, 4> ScalarResults; 5042 for (unsigned i = 0; i != NumElts; i++) { 5043 SmallVector<SDValue, 4> ScalarOps; 5044 for (SDValue Op : Ops) { 5045 EVT InSVT = Op.getValueType().getScalarType(); 5046 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5047 if (!InBV) { 5048 // We've checked that this is UNDEF or a constant of some kind. 5049 if (Op.isUndef()) 5050 ScalarOps.push_back(getUNDEF(InSVT)); 5051 else 5052 ScalarOps.push_back(Op); 5053 continue; 5054 } 5055 5056 SDValue ScalarOp = InBV->getOperand(i); 5057 EVT ScalarVT = ScalarOp.getValueType(); 5058 5059 // Build vector (integer) scalar operands may need implicit 5060 // truncation - do this before constant folding. 5061 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5062 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5063 5064 ScalarOps.push_back(ScalarOp); 5065 } 5066 5067 // Constant fold the scalar operands. 5068 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5069 5070 // Legalize the (integer) scalar constant if necessary. 5071 if (LegalSVT != SVT) 5072 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5073 5074 // Scalar folding only succeeded if the result is a constant or UNDEF. 5075 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5076 ScalarResult.getOpcode() != ISD::ConstantFP) 5077 return SDValue(); 5078 ScalarResults.push_back(ScalarResult); 5079 } 5080 5081 SDValue V = getBuildVector(VT, DL, ScalarResults); 5082 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5083 return V; 5084 } 5085 5086 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5087 EVT VT, SDValue N1, SDValue N2) { 5088 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5089 // should. That will require dealing with a potentially non-default 5090 // rounding mode, checking the "opStatus" return value from the APFloat 5091 // math calculations, and possibly other variations. 5092 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5093 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5094 if (N1CFP && N2CFP) { 5095 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5096 switch (Opcode) { 5097 case ISD::FADD: 5098 C1.add(C2, APFloat::rmNearestTiesToEven); 5099 return getConstantFP(C1, DL, VT); 5100 case ISD::FSUB: 5101 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5102 return getConstantFP(C1, DL, VT); 5103 case ISD::FMUL: 5104 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5105 return getConstantFP(C1, DL, VT); 5106 case ISD::FDIV: 5107 C1.divide(C2, APFloat::rmNearestTiesToEven); 5108 return getConstantFP(C1, DL, VT); 5109 case ISD::FREM: 5110 C1.mod(C2); 5111 return getConstantFP(C1, DL, VT); 5112 case ISD::FCOPYSIGN: 5113 C1.copySign(C2); 5114 return getConstantFP(C1, DL, VT); 5115 default: break; 5116 } 5117 } 5118 if (N1CFP && Opcode == ISD::FP_ROUND) { 5119 APFloat C1 = N1CFP->getValueAPF(); // make copy 5120 bool Unused; 5121 // This can return overflow, underflow, or inexact; we don't care. 5122 // FIXME need to be more flexible about rounding mode. 5123 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5124 &Unused); 5125 return getConstantFP(C1, DL, VT); 5126 } 5127 5128 switch (Opcode) { 5129 case ISD::FSUB: 5130 // -0.0 - undef --> undef (consistent with "fneg undef") 5131 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5132 return getUNDEF(VT); 5133 LLVM_FALLTHROUGH; 5134 5135 case ISD::FADD: 5136 case ISD::FMUL: 5137 case ISD::FDIV: 5138 case ISD::FREM: 5139 // If both operands are undef, the result is undef. If 1 operand is undef, 5140 // the result is NaN. This should match the behavior of the IR optimizer. 5141 if (N1.isUndef() && N2.isUndef()) 5142 return getUNDEF(VT); 5143 if (N1.isUndef() || N2.isUndef()) 5144 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5145 } 5146 return SDValue(); 5147 } 5148 5149 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5150 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5151 5152 // There's no need to assert on a byte-aligned pointer. All pointers are at 5153 // least byte aligned. 5154 if (A == Align(1)) 5155 return Val; 5156 5157 FoldingSetNodeID ID; 5158 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5159 ID.AddInteger(A.value()); 5160 5161 void *IP = nullptr; 5162 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5163 return SDValue(E, 0); 5164 5165 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5166 Val.getValueType(), A); 5167 createOperands(N, {Val}); 5168 5169 CSEMap.InsertNode(N, IP); 5170 InsertNode(N); 5171 5172 SDValue V(N, 0); 5173 NewSDValueDbgMsg(V, "Creating new node: ", this); 5174 return V; 5175 } 5176 5177 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5178 SDValue N1, SDValue N2) { 5179 SDNodeFlags Flags; 5180 if (Inserter) 5181 Flags = Inserter->getFlags(); 5182 return getNode(Opcode, DL, VT, N1, N2, Flags); 5183 } 5184 5185 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5186 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5187 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5188 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5189 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5190 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5191 5192 // Canonicalize constant to RHS if commutative. 5193 if (TLI->isCommutativeBinOp(Opcode)) { 5194 if (N1C && !N2C) { 5195 std::swap(N1C, N2C); 5196 std::swap(N1, N2); 5197 } else if (N1CFP && !N2CFP) { 5198 std::swap(N1CFP, N2CFP); 5199 std::swap(N1, N2); 5200 } 5201 } 5202 5203 switch (Opcode) { 5204 default: break; 5205 case ISD::TokenFactor: 5206 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5207 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5208 // Fold trivial token factors. 5209 if (N1.getOpcode() == ISD::EntryToken) return N2; 5210 if (N2.getOpcode() == ISD::EntryToken) return N1; 5211 if (N1 == N2) return N1; 5212 break; 5213 case ISD::BUILD_VECTOR: { 5214 // Attempt to simplify BUILD_VECTOR. 5215 SDValue Ops[] = {N1, N2}; 5216 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5217 return V; 5218 break; 5219 } 5220 case ISD::CONCAT_VECTORS: { 5221 SDValue Ops[] = {N1, N2}; 5222 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5223 return V; 5224 break; 5225 } 5226 case ISD::AND: 5227 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5228 assert(N1.getValueType() == N2.getValueType() && 5229 N1.getValueType() == VT && "Binary operator types must match!"); 5230 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5231 // worth handling here. 5232 if (N2C && N2C->isNullValue()) 5233 return N2; 5234 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5235 return N1; 5236 break; 5237 case ISD::OR: 5238 case ISD::XOR: 5239 case ISD::ADD: 5240 case ISD::SUB: 5241 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5242 assert(N1.getValueType() == N2.getValueType() && 5243 N1.getValueType() == VT && "Binary operator types must match!"); 5244 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5245 // it's worth handling here. 5246 if (N2C && N2C->isNullValue()) 5247 return N1; 5248 break; 5249 case ISD::MUL: 5250 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5251 assert(N1.getValueType() == N2.getValueType() && 5252 N1.getValueType() == VT && "Binary operator types must match!"); 5253 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5254 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5255 APInt N2CImm = N2C->getAPIntValue(); 5256 return getVScale(DL, VT, MulImm * N2CImm); 5257 } 5258 break; 5259 case ISD::UDIV: 5260 case ISD::UREM: 5261 case ISD::MULHU: 5262 case ISD::MULHS: 5263 case ISD::SDIV: 5264 case ISD::SREM: 5265 case ISD::SADDSAT: 5266 case ISD::SSUBSAT: 5267 case ISD::UADDSAT: 5268 case ISD::USUBSAT: 5269 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5270 assert(N1.getValueType() == N2.getValueType() && 5271 N1.getValueType() == VT && "Binary operator types must match!"); 5272 break; 5273 case ISD::SMIN: 5274 case ISD::UMAX: 5275 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5276 assert(N1.getValueType() == N2.getValueType() && 5277 N1.getValueType() == VT && "Binary operator types must match!"); 5278 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5279 return getNode(ISD::OR, DL, VT, N1, N2); 5280 break; 5281 case ISD::SMAX: 5282 case ISD::UMIN: 5283 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5284 assert(N1.getValueType() == N2.getValueType() && 5285 N1.getValueType() == VT && "Binary operator types must match!"); 5286 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5287 return getNode(ISD::AND, DL, VT, N1, N2); 5288 break; 5289 case ISD::FADD: 5290 case ISD::FSUB: 5291 case ISD::FMUL: 5292 case ISD::FDIV: 5293 case ISD::FREM: 5294 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5295 assert(N1.getValueType() == N2.getValueType() && 5296 N1.getValueType() == VT && "Binary operator types must match!"); 5297 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5298 return V; 5299 break; 5300 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5301 assert(N1.getValueType() == VT && 5302 N1.getValueType().isFloatingPoint() && 5303 N2.getValueType().isFloatingPoint() && 5304 "Invalid FCOPYSIGN!"); 5305 break; 5306 case ISD::SHL: 5307 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5308 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5309 APInt ShiftImm = N2C->getAPIntValue(); 5310 return getVScale(DL, VT, MulImm << ShiftImm); 5311 } 5312 LLVM_FALLTHROUGH; 5313 case ISD::SRA: 5314 case ISD::SRL: 5315 if (SDValue V = simplifyShift(N1, N2)) 5316 return V; 5317 LLVM_FALLTHROUGH; 5318 case ISD::ROTL: 5319 case ISD::ROTR: 5320 assert(VT == N1.getValueType() && 5321 "Shift operators return type must be the same as their first arg"); 5322 assert(VT.isInteger() && N2.getValueType().isInteger() && 5323 "Shifts only work on integers"); 5324 assert((!VT.isVector() || VT == N2.getValueType()) && 5325 "Vector shift amounts must be in the same as their first arg"); 5326 // Verify that the shift amount VT is big enough to hold valid shift 5327 // amounts. This catches things like trying to shift an i1024 value by an 5328 // i8, which is easy to fall into in generic code that uses 5329 // TLI.getShiftAmount(). 5330 assert(N2.getValueType().getScalarSizeInBits() >= 5331 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5332 "Invalid use of small shift amount with oversized value!"); 5333 5334 // Always fold shifts of i1 values so the code generator doesn't need to 5335 // handle them. Since we know the size of the shift has to be less than the 5336 // size of the value, the shift/rotate count is guaranteed to be zero. 5337 if (VT == MVT::i1) 5338 return N1; 5339 if (N2C && N2C->isNullValue()) 5340 return N1; 5341 break; 5342 case ISD::FP_ROUND: 5343 assert(VT.isFloatingPoint() && 5344 N1.getValueType().isFloatingPoint() && 5345 VT.bitsLE(N1.getValueType()) && 5346 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5347 "Invalid FP_ROUND!"); 5348 if (N1.getValueType() == VT) return N1; // noop conversion. 5349 break; 5350 case ISD::AssertSext: 5351 case ISD::AssertZext: { 5352 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5353 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5354 assert(VT.isInteger() && EVT.isInteger() && 5355 "Cannot *_EXTEND_INREG FP types"); 5356 assert(!EVT.isVector() && 5357 "AssertSExt/AssertZExt type should be the vector element type " 5358 "rather than the vector type!"); 5359 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5360 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5361 break; 5362 } 5363 case ISD::SIGN_EXTEND_INREG: { 5364 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5365 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5366 assert(VT.isInteger() && EVT.isInteger() && 5367 "Cannot *_EXTEND_INREG FP types"); 5368 assert(EVT.isVector() == VT.isVector() && 5369 "SIGN_EXTEND_INREG type should be vector iff the operand " 5370 "type is vector!"); 5371 assert((!EVT.isVector() || 5372 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5373 "Vector element counts must match in SIGN_EXTEND_INREG"); 5374 assert(EVT.bitsLE(VT) && "Not extending!"); 5375 if (EVT == VT) return N1; // Not actually extending 5376 5377 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5378 unsigned FromBits = EVT.getScalarSizeInBits(); 5379 Val <<= Val.getBitWidth() - FromBits; 5380 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5381 return getConstant(Val, DL, ConstantVT); 5382 }; 5383 5384 if (N1C) { 5385 const APInt &Val = N1C->getAPIntValue(); 5386 return SignExtendInReg(Val, VT); 5387 } 5388 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5389 SmallVector<SDValue, 8> Ops; 5390 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5391 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5392 SDValue Op = N1.getOperand(i); 5393 if (Op.isUndef()) { 5394 Ops.push_back(getUNDEF(OpVT)); 5395 continue; 5396 } 5397 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5398 APInt Val = C->getAPIntValue(); 5399 Ops.push_back(SignExtendInReg(Val, OpVT)); 5400 } 5401 return getBuildVector(VT, DL, Ops); 5402 } 5403 break; 5404 } 5405 case ISD::EXTRACT_VECTOR_ELT: 5406 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5407 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5408 element type of the vector."); 5409 5410 // Extract from an undefined value or using an undefined index is undefined. 5411 if (N1.isUndef() || N2.isUndef()) 5412 return getUNDEF(VT); 5413 5414 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5415 // vectors. For scalable vectors we will provide appropriate support for 5416 // dealing with arbitrary indices. 5417 if (N2C && N1.getValueType().isFixedLengthVector() && 5418 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5419 return getUNDEF(VT); 5420 5421 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5422 // expanding copies of large vectors from registers. This only works for 5423 // fixed length vectors, since we need to know the exact number of 5424 // elements. 5425 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5426 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5427 unsigned Factor = 5428 N1.getOperand(0).getValueType().getVectorNumElements(); 5429 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5430 N1.getOperand(N2C->getZExtValue() / Factor), 5431 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5432 } 5433 5434 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5435 // lowering is expanding large vector constants. 5436 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5437 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5438 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5439 N1.getValueType().isFixedLengthVector()) && 5440 "BUILD_VECTOR used for scalable vectors"); 5441 unsigned Index = 5442 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5443 SDValue Elt = N1.getOperand(Index); 5444 5445 if (VT != Elt.getValueType()) 5446 // If the vector element type is not legal, the BUILD_VECTOR operands 5447 // are promoted and implicitly truncated, and the result implicitly 5448 // extended. Make that explicit here. 5449 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5450 5451 return Elt; 5452 } 5453 5454 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5455 // operations are lowered to scalars. 5456 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5457 // If the indices are the same, return the inserted element else 5458 // if the indices are known different, extract the element from 5459 // the original vector. 5460 SDValue N1Op2 = N1.getOperand(2); 5461 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5462 5463 if (N1Op2C && N2C) { 5464 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5465 if (VT == N1.getOperand(1).getValueType()) 5466 return N1.getOperand(1); 5467 else 5468 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5469 } 5470 5471 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5472 } 5473 } 5474 5475 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5476 // when vector types are scalarized and v1iX is legal. 5477 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5478 // Here we are completely ignoring the extract element index (N2), 5479 // which is fine for fixed width vectors, since any index other than 0 5480 // is undefined anyway. However, this cannot be ignored for scalable 5481 // vectors - in theory we could support this, but we don't want to do this 5482 // without a profitability check. 5483 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5484 N1.getValueType().isFixedLengthVector() && 5485 N1.getValueType().getVectorNumElements() == 1) { 5486 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5487 N1.getOperand(1)); 5488 } 5489 break; 5490 case ISD::EXTRACT_ELEMENT: 5491 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5492 assert(!N1.getValueType().isVector() && !VT.isVector() && 5493 (N1.getValueType().isInteger() == VT.isInteger()) && 5494 N1.getValueType() != VT && 5495 "Wrong types for EXTRACT_ELEMENT!"); 5496 5497 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5498 // 64-bit integers into 32-bit parts. Instead of building the extract of 5499 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5500 if (N1.getOpcode() == ISD::BUILD_PAIR) 5501 return N1.getOperand(N2C->getZExtValue()); 5502 5503 // EXTRACT_ELEMENT of a constant int is also very common. 5504 if (N1C) { 5505 unsigned ElementSize = VT.getSizeInBits(); 5506 unsigned Shift = ElementSize * N2C->getZExtValue(); 5507 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5508 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5509 } 5510 break; 5511 case ISD::EXTRACT_SUBVECTOR: 5512 EVT N1VT = N1.getValueType(); 5513 assert(VT.isVector() && N1VT.isVector() && 5514 "Extract subvector VTs must be vectors!"); 5515 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5516 "Extract subvector VTs must have the same element type!"); 5517 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5518 "Cannot extract a scalable vector from a fixed length vector!"); 5519 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5520 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5521 "Extract subvector must be from larger vector to smaller vector!"); 5522 assert(N2C && "Extract subvector index must be a constant"); 5523 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5524 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5525 N1VT.getVectorMinNumElements()) && 5526 "Extract subvector overflow!"); 5527 assert(N2C->getAPIntValue().getBitWidth() == 5528 TLI->getVectorIdxTy(getDataLayout()) 5529 .getSizeInBits() 5530 .getFixedSize() && 5531 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5532 5533 // Trivial extraction. 5534 if (VT == N1VT) 5535 return N1; 5536 5537 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5538 if (N1.isUndef()) 5539 return getUNDEF(VT); 5540 5541 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5542 // the concat have the same type as the extract. 5543 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5544 VT == N1.getOperand(0).getValueType()) { 5545 unsigned Factor = VT.getVectorMinNumElements(); 5546 return N1.getOperand(N2C->getZExtValue() / Factor); 5547 } 5548 5549 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5550 // during shuffle legalization. 5551 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5552 VT == N1.getOperand(1).getValueType()) 5553 return N1.getOperand(1); 5554 break; 5555 } 5556 5557 // Perform trivial constant folding. 5558 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5559 return SV; 5560 5561 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5562 return V; 5563 5564 // Canonicalize an UNDEF to the RHS, even over a constant. 5565 if (N1.isUndef()) { 5566 if (TLI->isCommutativeBinOp(Opcode)) { 5567 std::swap(N1, N2); 5568 } else { 5569 switch (Opcode) { 5570 case ISD::SIGN_EXTEND_INREG: 5571 case ISD::SUB: 5572 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5573 case ISD::UDIV: 5574 case ISD::SDIV: 5575 case ISD::UREM: 5576 case ISD::SREM: 5577 case ISD::SSUBSAT: 5578 case ISD::USUBSAT: 5579 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5580 } 5581 } 5582 } 5583 5584 // Fold a bunch of operators when the RHS is undef. 5585 if (N2.isUndef()) { 5586 switch (Opcode) { 5587 case ISD::XOR: 5588 if (N1.isUndef()) 5589 // Handle undef ^ undef -> 0 special case. This is a common 5590 // idiom (misuse). 5591 return getConstant(0, DL, VT); 5592 LLVM_FALLTHROUGH; 5593 case ISD::ADD: 5594 case ISD::SUB: 5595 case ISD::UDIV: 5596 case ISD::SDIV: 5597 case ISD::UREM: 5598 case ISD::SREM: 5599 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5600 case ISD::MUL: 5601 case ISD::AND: 5602 case ISD::SSUBSAT: 5603 case ISD::USUBSAT: 5604 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5605 case ISD::OR: 5606 case ISD::SADDSAT: 5607 case ISD::UADDSAT: 5608 return getAllOnesConstant(DL, VT); 5609 } 5610 } 5611 5612 // Memoize this node if possible. 5613 SDNode *N; 5614 SDVTList VTs = getVTList(VT); 5615 SDValue Ops[] = {N1, N2}; 5616 if (VT != MVT::Glue) { 5617 FoldingSetNodeID ID; 5618 AddNodeIDNode(ID, Opcode, VTs, Ops); 5619 void *IP = nullptr; 5620 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5621 E->intersectFlagsWith(Flags); 5622 return SDValue(E, 0); 5623 } 5624 5625 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5626 N->setFlags(Flags); 5627 createOperands(N, Ops); 5628 CSEMap.InsertNode(N, IP); 5629 } else { 5630 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5631 createOperands(N, Ops); 5632 } 5633 5634 InsertNode(N); 5635 SDValue V = SDValue(N, 0); 5636 NewSDValueDbgMsg(V, "Creating new node: ", this); 5637 return V; 5638 } 5639 5640 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5641 SDValue N1, SDValue N2, SDValue N3) { 5642 SDNodeFlags Flags; 5643 if (Inserter) 5644 Flags = Inserter->getFlags(); 5645 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5646 } 5647 5648 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5649 SDValue N1, SDValue N2, SDValue N3, 5650 const SDNodeFlags Flags) { 5651 // Perform various simplifications. 5652 switch (Opcode) { 5653 case ISD::FMA: { 5654 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5655 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5656 N3.getValueType() == VT && "FMA types must match!"); 5657 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5658 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5659 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5660 if (N1CFP && N2CFP && N3CFP) { 5661 APFloat V1 = N1CFP->getValueAPF(); 5662 const APFloat &V2 = N2CFP->getValueAPF(); 5663 const APFloat &V3 = N3CFP->getValueAPF(); 5664 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5665 return getConstantFP(V1, DL, VT); 5666 } 5667 break; 5668 } 5669 case ISD::BUILD_VECTOR: { 5670 // Attempt to simplify BUILD_VECTOR. 5671 SDValue Ops[] = {N1, N2, N3}; 5672 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5673 return V; 5674 break; 5675 } 5676 case ISD::CONCAT_VECTORS: { 5677 SDValue Ops[] = {N1, N2, N3}; 5678 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5679 return V; 5680 break; 5681 } 5682 case ISD::SETCC: { 5683 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5684 assert(N1.getValueType() == N2.getValueType() && 5685 "SETCC operands must have the same type!"); 5686 assert(VT.isVector() == N1.getValueType().isVector() && 5687 "SETCC type should be vector iff the operand type is vector!"); 5688 assert((!VT.isVector() || VT.getVectorElementCount() == 5689 N1.getValueType().getVectorElementCount()) && 5690 "SETCC vector element counts must match!"); 5691 // Use FoldSetCC to simplify SETCC's. 5692 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5693 return V; 5694 // Vector constant folding. 5695 SDValue Ops[] = {N1, N2, N3}; 5696 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5697 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5698 return V; 5699 } 5700 break; 5701 } 5702 case ISD::SELECT: 5703 case ISD::VSELECT: 5704 if (SDValue V = simplifySelect(N1, N2, N3)) 5705 return V; 5706 break; 5707 case ISD::VECTOR_SHUFFLE: 5708 llvm_unreachable("should use getVectorShuffle constructor!"); 5709 case ISD::INSERT_VECTOR_ELT: { 5710 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5711 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5712 // for scalable vectors where we will generate appropriate code to 5713 // deal with out-of-bounds cases correctly. 5714 if (N3C && N1.getValueType().isFixedLengthVector() && 5715 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5716 return getUNDEF(VT); 5717 5718 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5719 if (N3.isUndef()) 5720 return getUNDEF(VT); 5721 5722 // If the inserted element is an UNDEF, just use the input vector. 5723 if (N2.isUndef()) 5724 return N1; 5725 5726 break; 5727 } 5728 case ISD::INSERT_SUBVECTOR: { 5729 // Inserting undef into undef is still undef. 5730 if (N1.isUndef() && N2.isUndef()) 5731 return getUNDEF(VT); 5732 5733 EVT N2VT = N2.getValueType(); 5734 assert(VT == N1.getValueType() && 5735 "Dest and insert subvector source types must match!"); 5736 assert(VT.isVector() && N2VT.isVector() && 5737 "Insert subvector VTs must be vectors!"); 5738 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5739 "Cannot insert a scalable vector into a fixed length vector!"); 5740 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5741 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5742 "Insert subvector must be from smaller vector to larger vector!"); 5743 assert(isa<ConstantSDNode>(N3) && 5744 "Insert subvector index must be constant"); 5745 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5746 (N2VT.getVectorMinNumElements() + 5747 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5748 VT.getVectorMinNumElements()) && 5749 "Insert subvector overflow!"); 5750 5751 // Trivial insertion. 5752 if (VT == N2VT) 5753 return N2; 5754 5755 // If this is an insert of an extracted vector into an undef vector, we 5756 // can just use the input to the extract. 5757 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5758 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5759 return N2.getOperand(0); 5760 break; 5761 } 5762 case ISD::BITCAST: 5763 // Fold bit_convert nodes from a type to themselves. 5764 if (N1.getValueType() == VT) 5765 return N1; 5766 break; 5767 } 5768 5769 // Memoize node if it doesn't produce a flag. 5770 SDNode *N; 5771 SDVTList VTs = getVTList(VT); 5772 SDValue Ops[] = {N1, N2, N3}; 5773 if (VT != MVT::Glue) { 5774 FoldingSetNodeID ID; 5775 AddNodeIDNode(ID, Opcode, VTs, Ops); 5776 void *IP = nullptr; 5777 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5778 E->intersectFlagsWith(Flags); 5779 return SDValue(E, 0); 5780 } 5781 5782 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5783 N->setFlags(Flags); 5784 createOperands(N, Ops); 5785 CSEMap.InsertNode(N, IP); 5786 } else { 5787 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5788 createOperands(N, Ops); 5789 } 5790 5791 InsertNode(N); 5792 SDValue V = SDValue(N, 0); 5793 NewSDValueDbgMsg(V, "Creating new node: ", this); 5794 return V; 5795 } 5796 5797 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5798 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5799 SDValue Ops[] = { N1, N2, N3, N4 }; 5800 return getNode(Opcode, DL, VT, Ops); 5801 } 5802 5803 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5804 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5805 SDValue N5) { 5806 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5807 return getNode(Opcode, DL, VT, Ops); 5808 } 5809 5810 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5811 /// the incoming stack arguments to be loaded from the stack. 5812 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5813 SmallVector<SDValue, 8> ArgChains; 5814 5815 // Include the original chain at the beginning of the list. When this is 5816 // used by target LowerCall hooks, this helps legalize find the 5817 // CALLSEQ_BEGIN node. 5818 ArgChains.push_back(Chain); 5819 5820 // Add a chain value for each stack argument. 5821 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5822 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5823 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5824 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5825 if (FI->getIndex() < 0) 5826 ArgChains.push_back(SDValue(L, 1)); 5827 5828 // Build a tokenfactor for all the chains. 5829 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5830 } 5831 5832 /// getMemsetValue - Vectorized representation of the memset value 5833 /// operand. 5834 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5835 const SDLoc &dl) { 5836 assert(!Value.isUndef()); 5837 5838 unsigned NumBits = VT.getScalarSizeInBits(); 5839 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5840 assert(C->getAPIntValue().getBitWidth() == 8); 5841 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5842 if (VT.isInteger()) { 5843 bool IsOpaque = VT.getSizeInBits() > 64 || 5844 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5845 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5846 } 5847 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5848 VT); 5849 } 5850 5851 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5852 EVT IntVT = VT.getScalarType(); 5853 if (!IntVT.isInteger()) 5854 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5855 5856 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5857 if (NumBits > 8) { 5858 // Use a multiplication with 0x010101... to extend the input to the 5859 // required length. 5860 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5861 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5862 DAG.getConstant(Magic, dl, IntVT)); 5863 } 5864 5865 if (VT != Value.getValueType() && !VT.isInteger()) 5866 Value = DAG.getBitcast(VT.getScalarType(), Value); 5867 if (VT != Value.getValueType()) 5868 Value = DAG.getSplatBuildVector(VT, dl, Value); 5869 5870 return Value; 5871 } 5872 5873 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5874 /// used when a memcpy is turned into a memset when the source is a constant 5875 /// string ptr. 5876 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5877 const TargetLowering &TLI, 5878 const ConstantDataArraySlice &Slice) { 5879 // Handle vector with all elements zero. 5880 if (Slice.Array == nullptr) { 5881 if (VT.isInteger()) 5882 return DAG.getConstant(0, dl, VT); 5883 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5884 return DAG.getConstantFP(0.0, dl, VT); 5885 else if (VT.isVector()) { 5886 unsigned NumElts = VT.getVectorNumElements(); 5887 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5888 return DAG.getNode(ISD::BITCAST, dl, VT, 5889 DAG.getConstant(0, dl, 5890 EVT::getVectorVT(*DAG.getContext(), 5891 EltVT, NumElts))); 5892 } else 5893 llvm_unreachable("Expected type!"); 5894 } 5895 5896 assert(!VT.isVector() && "Can't handle vector type here!"); 5897 unsigned NumVTBits = VT.getSizeInBits(); 5898 unsigned NumVTBytes = NumVTBits / 8; 5899 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5900 5901 APInt Val(NumVTBits, 0); 5902 if (DAG.getDataLayout().isLittleEndian()) { 5903 for (unsigned i = 0; i != NumBytes; ++i) 5904 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5905 } else { 5906 for (unsigned i = 0; i != NumBytes; ++i) 5907 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5908 } 5909 5910 // If the "cost" of materializing the integer immediate is less than the cost 5911 // of a load, then it is cost effective to turn the load into the immediate. 5912 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5913 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5914 return DAG.getConstant(Val, dl, VT); 5915 return SDValue(nullptr, 0); 5916 } 5917 5918 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 5919 const SDLoc &DL, 5920 const SDNodeFlags Flags) { 5921 EVT VT = Base.getValueType(); 5922 SDValue Index; 5923 5924 if (Offset.isScalable()) 5925 Index = getVScale(DL, Base.getValueType(), 5926 APInt(Base.getValueSizeInBits().getFixedSize(), 5927 Offset.getKnownMinSize())); 5928 else 5929 Index = getConstant(Offset.getFixedSize(), DL, VT); 5930 5931 return getMemBasePlusOffset(Base, Index, DL, Flags); 5932 } 5933 5934 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5935 const SDLoc &DL, 5936 const SDNodeFlags Flags) { 5937 assert(Offset.getValueType().isInteger()); 5938 EVT BasePtrVT = Ptr.getValueType(); 5939 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5940 } 5941 5942 /// Returns true if memcpy source is constant data. 5943 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5944 uint64_t SrcDelta = 0; 5945 GlobalAddressSDNode *G = nullptr; 5946 if (Src.getOpcode() == ISD::GlobalAddress) 5947 G = cast<GlobalAddressSDNode>(Src); 5948 else if (Src.getOpcode() == ISD::ADD && 5949 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5950 Src.getOperand(1).getOpcode() == ISD::Constant) { 5951 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5952 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5953 } 5954 if (!G) 5955 return false; 5956 5957 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5958 SrcDelta + G->getOffset()); 5959 } 5960 5961 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5962 SelectionDAG &DAG) { 5963 // On Darwin, -Os means optimize for size without hurting performance, so 5964 // only really optimize for size when -Oz (MinSize) is used. 5965 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5966 return MF.getFunction().hasMinSize(); 5967 return DAG.shouldOptForSize(); 5968 } 5969 5970 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5971 SmallVector<SDValue, 32> &OutChains, unsigned From, 5972 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5973 SmallVector<SDValue, 16> &OutStoreChains) { 5974 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5975 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5976 SmallVector<SDValue, 16> GluedLoadChains; 5977 for (unsigned i = From; i < To; ++i) { 5978 OutChains.push_back(OutLoadChains[i]); 5979 GluedLoadChains.push_back(OutLoadChains[i]); 5980 } 5981 5982 // Chain for all loads. 5983 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5984 GluedLoadChains); 5985 5986 for (unsigned i = From; i < To; ++i) { 5987 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5988 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5989 ST->getBasePtr(), ST->getMemoryVT(), 5990 ST->getMemOperand()); 5991 OutChains.push_back(NewStore); 5992 } 5993 } 5994 5995 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5996 SDValue Chain, SDValue Dst, SDValue Src, 5997 uint64_t Size, Align Alignment, 5998 bool isVol, bool AlwaysInline, 5999 MachinePointerInfo DstPtrInfo, 6000 MachinePointerInfo SrcPtrInfo) { 6001 // Turn a memcpy of undef to nop. 6002 // FIXME: We need to honor volatile even is Src is undef. 6003 if (Src.isUndef()) 6004 return Chain; 6005 6006 // Expand memcpy to a series of load and store ops if the size operand falls 6007 // below a certain threshold. 6008 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6009 // rather than maybe a humongous number of loads and stores. 6010 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6011 const DataLayout &DL = DAG.getDataLayout(); 6012 LLVMContext &C = *DAG.getContext(); 6013 std::vector<EVT> MemOps; 6014 bool DstAlignCanChange = false; 6015 MachineFunction &MF = DAG.getMachineFunction(); 6016 MachineFrameInfo &MFI = MF.getFrameInfo(); 6017 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6018 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6019 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6020 DstAlignCanChange = true; 6021 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6022 if (!SrcAlign || Alignment > *SrcAlign) 6023 SrcAlign = Alignment; 6024 assert(SrcAlign && "SrcAlign must be set"); 6025 ConstantDataArraySlice Slice; 6026 // If marked as volatile, perform a copy even when marked as constant. 6027 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6028 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6029 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6030 const MemOp Op = isZeroConstant 6031 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6032 /*IsZeroMemset*/ true, isVol) 6033 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6034 *SrcAlign, isVol, CopyFromConstant); 6035 if (!TLI.findOptimalMemOpLowering( 6036 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6037 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6038 return SDValue(); 6039 6040 if (DstAlignCanChange) { 6041 Type *Ty = MemOps[0].getTypeForEVT(C); 6042 Align NewAlign = DL.getABITypeAlign(Ty); 6043 6044 // Don't promote to an alignment that would require dynamic stack 6045 // realignment. 6046 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6047 if (!TRI->needsStackRealignment(MF)) 6048 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6049 NewAlign = NewAlign / 2; 6050 6051 if (NewAlign > Alignment) { 6052 // Give the stack frame object a larger alignment if needed. 6053 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6054 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6055 Alignment = NewAlign; 6056 } 6057 } 6058 6059 MachineMemOperand::Flags MMOFlags = 6060 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6061 SmallVector<SDValue, 16> OutLoadChains; 6062 SmallVector<SDValue, 16> OutStoreChains; 6063 SmallVector<SDValue, 32> OutChains; 6064 unsigned NumMemOps = MemOps.size(); 6065 uint64_t SrcOff = 0, DstOff = 0; 6066 for (unsigned i = 0; i != NumMemOps; ++i) { 6067 EVT VT = MemOps[i]; 6068 unsigned VTSize = VT.getSizeInBits() / 8; 6069 SDValue Value, Store; 6070 6071 if (VTSize > Size) { 6072 // Issuing an unaligned load / store pair that overlaps with the previous 6073 // pair. Adjust the offset accordingly. 6074 assert(i == NumMemOps-1 && i != 0); 6075 SrcOff -= VTSize - Size; 6076 DstOff -= VTSize - Size; 6077 } 6078 6079 if (CopyFromConstant && 6080 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6081 // It's unlikely a store of a vector immediate can be done in a single 6082 // instruction. It would require a load from a constantpool first. 6083 // We only handle zero vectors here. 6084 // FIXME: Handle other cases where store of vector immediate is done in 6085 // a single instruction. 6086 ConstantDataArraySlice SubSlice; 6087 if (SrcOff < Slice.Length) { 6088 SubSlice = Slice; 6089 SubSlice.move(SrcOff); 6090 } else { 6091 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6092 SubSlice.Array = nullptr; 6093 SubSlice.Offset = 0; 6094 SubSlice.Length = VTSize; 6095 } 6096 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6097 if (Value.getNode()) { 6098 Store = DAG.getStore( 6099 Chain, dl, Value, 6100 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6101 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6102 OutChains.push_back(Store); 6103 } 6104 } 6105 6106 if (!Store.getNode()) { 6107 // The type might not be legal for the target. This should only happen 6108 // if the type is smaller than a legal type, as on PPC, so the right 6109 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6110 // to Load/Store if NVT==VT. 6111 // FIXME does the case above also need this? 6112 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6113 assert(NVT.bitsGE(VT)); 6114 6115 bool isDereferenceable = 6116 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6117 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6118 if (isDereferenceable) 6119 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6120 6121 Value = DAG.getExtLoad( 6122 ISD::EXTLOAD, dl, NVT, Chain, 6123 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6124 SrcPtrInfo.getWithOffset(SrcOff), VT, 6125 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags); 6126 OutLoadChains.push_back(Value.getValue(1)); 6127 6128 Store = DAG.getTruncStore( 6129 Chain, dl, Value, 6130 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6131 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 6132 OutStoreChains.push_back(Store); 6133 } 6134 SrcOff += VTSize; 6135 DstOff += VTSize; 6136 Size -= VTSize; 6137 } 6138 6139 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6140 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6141 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6142 6143 if (NumLdStInMemcpy) { 6144 // It may be that memcpy might be converted to memset if it's memcpy 6145 // of constants. In such a case, we won't have loads and stores, but 6146 // just stores. In the absence of loads, there is nothing to gang up. 6147 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6148 // If target does not care, just leave as it. 6149 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6150 OutChains.push_back(OutLoadChains[i]); 6151 OutChains.push_back(OutStoreChains[i]); 6152 } 6153 } else { 6154 // Ld/St less than/equal limit set by target. 6155 if (NumLdStInMemcpy <= GluedLdStLimit) { 6156 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6157 NumLdStInMemcpy, OutLoadChains, 6158 OutStoreChains); 6159 } else { 6160 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6161 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6162 unsigned GlueIter = 0; 6163 6164 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6165 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6166 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6167 6168 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6169 OutLoadChains, OutStoreChains); 6170 GlueIter += GluedLdStLimit; 6171 } 6172 6173 // Residual ld/st. 6174 if (RemainingLdStInMemcpy) { 6175 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6176 RemainingLdStInMemcpy, OutLoadChains, 6177 OutStoreChains); 6178 } 6179 } 6180 } 6181 } 6182 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6183 } 6184 6185 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6186 SDValue Chain, SDValue Dst, SDValue Src, 6187 uint64_t Size, Align Alignment, 6188 bool isVol, bool AlwaysInline, 6189 MachinePointerInfo DstPtrInfo, 6190 MachinePointerInfo SrcPtrInfo) { 6191 // Turn a memmove of undef to nop. 6192 // FIXME: We need to honor volatile even is Src is undef. 6193 if (Src.isUndef()) 6194 return Chain; 6195 6196 // Expand memmove to a series of load and store ops if the size operand falls 6197 // below a certain threshold. 6198 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6199 const DataLayout &DL = DAG.getDataLayout(); 6200 LLVMContext &C = *DAG.getContext(); 6201 std::vector<EVT> MemOps; 6202 bool DstAlignCanChange = false; 6203 MachineFunction &MF = DAG.getMachineFunction(); 6204 MachineFrameInfo &MFI = MF.getFrameInfo(); 6205 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6206 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6207 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6208 DstAlignCanChange = true; 6209 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6210 if (!SrcAlign || Alignment > *SrcAlign) 6211 SrcAlign = Alignment; 6212 assert(SrcAlign && "SrcAlign must be set"); 6213 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6214 if (!TLI.findOptimalMemOpLowering( 6215 MemOps, Limit, 6216 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6217 /*IsVolatile*/ true), 6218 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6219 MF.getFunction().getAttributes())) 6220 return SDValue(); 6221 6222 if (DstAlignCanChange) { 6223 Type *Ty = MemOps[0].getTypeForEVT(C); 6224 Align NewAlign = DL.getABITypeAlign(Ty); 6225 if (NewAlign > Alignment) { 6226 // Give the stack frame object a larger alignment if needed. 6227 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6228 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6229 Alignment = NewAlign; 6230 } 6231 } 6232 6233 MachineMemOperand::Flags MMOFlags = 6234 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6235 uint64_t SrcOff = 0, DstOff = 0; 6236 SmallVector<SDValue, 8> LoadValues; 6237 SmallVector<SDValue, 8> LoadChains; 6238 SmallVector<SDValue, 8> OutChains; 6239 unsigned NumMemOps = MemOps.size(); 6240 for (unsigned i = 0; i < NumMemOps; i++) { 6241 EVT VT = MemOps[i]; 6242 unsigned VTSize = VT.getSizeInBits() / 8; 6243 SDValue Value; 6244 6245 bool isDereferenceable = 6246 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6247 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6248 if (isDereferenceable) 6249 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6250 6251 Value = 6252 DAG.getLoad(VT, dl, Chain, 6253 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6254 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags); 6255 LoadValues.push_back(Value); 6256 LoadChains.push_back(Value.getValue(1)); 6257 SrcOff += VTSize; 6258 } 6259 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6260 OutChains.clear(); 6261 for (unsigned i = 0; i < NumMemOps; i++) { 6262 EVT VT = MemOps[i]; 6263 unsigned VTSize = VT.getSizeInBits() / 8; 6264 SDValue Store; 6265 6266 Store = 6267 DAG.getStore(Chain, dl, LoadValues[i], 6268 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6269 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6270 OutChains.push_back(Store); 6271 DstOff += VTSize; 6272 } 6273 6274 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6275 } 6276 6277 /// Lower the call to 'memset' intrinsic function into a series of store 6278 /// operations. 6279 /// 6280 /// \param DAG Selection DAG where lowered code is placed. 6281 /// \param dl Link to corresponding IR location. 6282 /// \param Chain Control flow dependency. 6283 /// \param Dst Pointer to destination memory location. 6284 /// \param Src Value of byte to write into the memory. 6285 /// \param Size Number of bytes to write. 6286 /// \param Alignment Alignment of the destination in bytes. 6287 /// \param isVol True if destination is volatile. 6288 /// \param DstPtrInfo IR information on the memory pointer. 6289 /// \returns New head in the control flow, if lowering was successful, empty 6290 /// SDValue otherwise. 6291 /// 6292 /// The function tries to replace 'llvm.memset' intrinsic with several store 6293 /// operations and value calculation code. This is usually profitable for small 6294 /// memory size. 6295 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6296 SDValue Chain, SDValue Dst, SDValue Src, 6297 uint64_t Size, Align Alignment, bool isVol, 6298 MachinePointerInfo DstPtrInfo) { 6299 // Turn a memset of undef to nop. 6300 // FIXME: We need to honor volatile even is Src is undef. 6301 if (Src.isUndef()) 6302 return Chain; 6303 6304 // Expand memset to a series of load/store ops if the size operand 6305 // falls below a certain threshold. 6306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6307 std::vector<EVT> MemOps; 6308 bool DstAlignCanChange = false; 6309 MachineFunction &MF = DAG.getMachineFunction(); 6310 MachineFrameInfo &MFI = MF.getFrameInfo(); 6311 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6312 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6313 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6314 DstAlignCanChange = true; 6315 bool IsZeroVal = 6316 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6317 if (!TLI.findOptimalMemOpLowering( 6318 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6319 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6320 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6321 return SDValue(); 6322 6323 if (DstAlignCanChange) { 6324 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6325 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6326 if (NewAlign > Alignment) { 6327 // Give the stack frame object a larger alignment if needed. 6328 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6329 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6330 Alignment = NewAlign; 6331 } 6332 } 6333 6334 SmallVector<SDValue, 8> OutChains; 6335 uint64_t DstOff = 0; 6336 unsigned NumMemOps = MemOps.size(); 6337 6338 // Find the largest store and generate the bit pattern for it. 6339 EVT LargestVT = MemOps[0]; 6340 for (unsigned i = 1; i < NumMemOps; i++) 6341 if (MemOps[i].bitsGT(LargestVT)) 6342 LargestVT = MemOps[i]; 6343 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6344 6345 for (unsigned i = 0; i < NumMemOps; i++) { 6346 EVT VT = MemOps[i]; 6347 unsigned VTSize = VT.getSizeInBits() / 8; 6348 if (VTSize > Size) { 6349 // Issuing an unaligned load / store pair that overlaps with the previous 6350 // pair. Adjust the offset accordingly. 6351 assert(i == NumMemOps-1 && i != 0); 6352 DstOff -= VTSize - Size; 6353 } 6354 6355 // If this store is smaller than the largest store see whether we can get 6356 // the smaller value for free with a truncate. 6357 SDValue Value = MemSetValue; 6358 if (VT.bitsLT(LargestVT)) { 6359 if (!LargestVT.isVector() && !VT.isVector() && 6360 TLI.isTruncateFree(LargestVT, VT)) 6361 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6362 else 6363 Value = getMemsetValue(Src, VT, DAG, dl); 6364 } 6365 assert(Value.getValueType() == VT && "Value with wrong type."); 6366 SDValue Store = DAG.getStore( 6367 Chain, dl, Value, 6368 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6369 DstPtrInfo.getWithOffset(DstOff), Alignment, 6370 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6371 OutChains.push_back(Store); 6372 DstOff += VT.getSizeInBits() / 8; 6373 Size -= VTSize; 6374 } 6375 6376 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6377 } 6378 6379 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6380 unsigned AS) { 6381 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6382 // pointer operands can be losslessly bitcasted to pointers of address space 0 6383 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6384 report_fatal_error("cannot lower memory intrinsic in address space " + 6385 Twine(AS)); 6386 } 6387 } 6388 6389 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6390 SDValue Src, SDValue Size, Align Alignment, 6391 bool isVol, bool AlwaysInline, bool isTailCall, 6392 MachinePointerInfo DstPtrInfo, 6393 MachinePointerInfo SrcPtrInfo) { 6394 // Check to see if we should lower the memcpy to loads and stores first. 6395 // For cases within the target-specified limits, this is the best choice. 6396 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6397 if (ConstantSize) { 6398 // Memcpy with size zero? Just return the original chain. 6399 if (ConstantSize->isNullValue()) 6400 return Chain; 6401 6402 SDValue Result = getMemcpyLoadsAndStores( 6403 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6404 isVol, false, DstPtrInfo, SrcPtrInfo); 6405 if (Result.getNode()) 6406 return Result; 6407 } 6408 6409 // Then check to see if we should lower the memcpy with target-specific 6410 // code. If the target chooses to do this, this is the next best. 6411 if (TSI) { 6412 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6413 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6414 DstPtrInfo, SrcPtrInfo); 6415 if (Result.getNode()) 6416 return Result; 6417 } 6418 6419 // If we really need inline code and the target declined to provide it, 6420 // use a (potentially long) sequence of loads and stores. 6421 if (AlwaysInline) { 6422 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6423 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6424 ConstantSize->getZExtValue(), Alignment, 6425 isVol, true, DstPtrInfo, SrcPtrInfo); 6426 } 6427 6428 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6429 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6430 6431 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6432 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6433 // respect volatile, so they may do things like read or write memory 6434 // beyond the given memory regions. But fixing this isn't easy, and most 6435 // people don't care. 6436 6437 // Emit a library call. 6438 TargetLowering::ArgListTy Args; 6439 TargetLowering::ArgListEntry Entry; 6440 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6441 Entry.Node = Dst; Args.push_back(Entry); 6442 Entry.Node = Src; Args.push_back(Entry); 6443 6444 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6445 Entry.Node = Size; Args.push_back(Entry); 6446 // FIXME: pass in SDLoc 6447 TargetLowering::CallLoweringInfo CLI(*this); 6448 CLI.setDebugLoc(dl) 6449 .setChain(Chain) 6450 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6451 Dst.getValueType().getTypeForEVT(*getContext()), 6452 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6453 TLI->getPointerTy(getDataLayout())), 6454 std::move(Args)) 6455 .setDiscardResult() 6456 .setTailCall(isTailCall); 6457 6458 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6459 return CallResult.second; 6460 } 6461 6462 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6463 SDValue Dst, unsigned DstAlign, 6464 SDValue Src, unsigned SrcAlign, 6465 SDValue Size, Type *SizeTy, 6466 unsigned ElemSz, bool isTailCall, 6467 MachinePointerInfo DstPtrInfo, 6468 MachinePointerInfo SrcPtrInfo) { 6469 // Emit a library call. 6470 TargetLowering::ArgListTy Args; 6471 TargetLowering::ArgListEntry Entry; 6472 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6473 Entry.Node = Dst; 6474 Args.push_back(Entry); 6475 6476 Entry.Node = Src; 6477 Args.push_back(Entry); 6478 6479 Entry.Ty = SizeTy; 6480 Entry.Node = Size; 6481 Args.push_back(Entry); 6482 6483 RTLIB::Libcall LibraryCall = 6484 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6485 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6486 report_fatal_error("Unsupported element size"); 6487 6488 TargetLowering::CallLoweringInfo CLI(*this); 6489 CLI.setDebugLoc(dl) 6490 .setChain(Chain) 6491 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6492 Type::getVoidTy(*getContext()), 6493 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6494 TLI->getPointerTy(getDataLayout())), 6495 std::move(Args)) 6496 .setDiscardResult() 6497 .setTailCall(isTailCall); 6498 6499 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6500 return CallResult.second; 6501 } 6502 6503 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6504 SDValue Src, SDValue Size, Align Alignment, 6505 bool isVol, bool isTailCall, 6506 MachinePointerInfo DstPtrInfo, 6507 MachinePointerInfo SrcPtrInfo) { 6508 // Check to see if we should lower the memmove to loads and stores first. 6509 // For cases within the target-specified limits, this is the best choice. 6510 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6511 if (ConstantSize) { 6512 // Memmove with size zero? Just return the original chain. 6513 if (ConstantSize->isNullValue()) 6514 return Chain; 6515 6516 SDValue Result = getMemmoveLoadsAndStores( 6517 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6518 isVol, false, DstPtrInfo, SrcPtrInfo); 6519 if (Result.getNode()) 6520 return Result; 6521 } 6522 6523 // Then check to see if we should lower the memmove with target-specific 6524 // code. If the target chooses to do this, this is the next best. 6525 if (TSI) { 6526 SDValue Result = 6527 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6528 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6529 if (Result.getNode()) 6530 return Result; 6531 } 6532 6533 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6534 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6535 6536 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6537 // not be safe. See memcpy above for more details. 6538 6539 // Emit a library call. 6540 TargetLowering::ArgListTy Args; 6541 TargetLowering::ArgListEntry Entry; 6542 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6543 Entry.Node = Dst; Args.push_back(Entry); 6544 Entry.Node = Src; Args.push_back(Entry); 6545 6546 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6547 Entry.Node = Size; Args.push_back(Entry); 6548 // FIXME: pass in SDLoc 6549 TargetLowering::CallLoweringInfo CLI(*this); 6550 CLI.setDebugLoc(dl) 6551 .setChain(Chain) 6552 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6553 Dst.getValueType().getTypeForEVT(*getContext()), 6554 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6555 TLI->getPointerTy(getDataLayout())), 6556 std::move(Args)) 6557 .setDiscardResult() 6558 .setTailCall(isTailCall); 6559 6560 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6561 return CallResult.second; 6562 } 6563 6564 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6565 SDValue Dst, unsigned DstAlign, 6566 SDValue Src, unsigned SrcAlign, 6567 SDValue Size, Type *SizeTy, 6568 unsigned ElemSz, bool isTailCall, 6569 MachinePointerInfo DstPtrInfo, 6570 MachinePointerInfo SrcPtrInfo) { 6571 // Emit a library call. 6572 TargetLowering::ArgListTy Args; 6573 TargetLowering::ArgListEntry Entry; 6574 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6575 Entry.Node = Dst; 6576 Args.push_back(Entry); 6577 6578 Entry.Node = Src; 6579 Args.push_back(Entry); 6580 6581 Entry.Ty = SizeTy; 6582 Entry.Node = Size; 6583 Args.push_back(Entry); 6584 6585 RTLIB::Libcall LibraryCall = 6586 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6587 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6588 report_fatal_error("Unsupported element size"); 6589 6590 TargetLowering::CallLoweringInfo CLI(*this); 6591 CLI.setDebugLoc(dl) 6592 .setChain(Chain) 6593 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6594 Type::getVoidTy(*getContext()), 6595 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6596 TLI->getPointerTy(getDataLayout())), 6597 std::move(Args)) 6598 .setDiscardResult() 6599 .setTailCall(isTailCall); 6600 6601 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6602 return CallResult.second; 6603 } 6604 6605 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6606 SDValue Src, SDValue Size, Align Alignment, 6607 bool isVol, bool isTailCall, 6608 MachinePointerInfo DstPtrInfo) { 6609 // Check to see if we should lower the memset to stores first. 6610 // For cases within the target-specified limits, this is the best choice. 6611 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6612 if (ConstantSize) { 6613 // Memset with size zero? Just return the original chain. 6614 if (ConstantSize->isNullValue()) 6615 return Chain; 6616 6617 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6618 ConstantSize->getZExtValue(), Alignment, 6619 isVol, DstPtrInfo); 6620 6621 if (Result.getNode()) 6622 return Result; 6623 } 6624 6625 // Then check to see if we should lower the memset with target-specific 6626 // code. If the target chooses to do this, this is the next best. 6627 if (TSI) { 6628 SDValue Result = TSI->EmitTargetCodeForMemset( 6629 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6630 if (Result.getNode()) 6631 return Result; 6632 } 6633 6634 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6635 6636 // Emit a library call. 6637 TargetLowering::ArgListTy Args; 6638 TargetLowering::ArgListEntry Entry; 6639 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6640 Args.push_back(Entry); 6641 Entry.Node = Src; 6642 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6643 Args.push_back(Entry); 6644 Entry.Node = Size; 6645 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6646 Args.push_back(Entry); 6647 6648 // FIXME: pass in SDLoc 6649 TargetLowering::CallLoweringInfo CLI(*this); 6650 CLI.setDebugLoc(dl) 6651 .setChain(Chain) 6652 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6653 Dst.getValueType().getTypeForEVT(*getContext()), 6654 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6655 TLI->getPointerTy(getDataLayout())), 6656 std::move(Args)) 6657 .setDiscardResult() 6658 .setTailCall(isTailCall); 6659 6660 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6661 return CallResult.second; 6662 } 6663 6664 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6665 SDValue Dst, unsigned DstAlign, 6666 SDValue Value, SDValue Size, Type *SizeTy, 6667 unsigned ElemSz, bool isTailCall, 6668 MachinePointerInfo DstPtrInfo) { 6669 // Emit a library call. 6670 TargetLowering::ArgListTy Args; 6671 TargetLowering::ArgListEntry Entry; 6672 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6673 Entry.Node = Dst; 6674 Args.push_back(Entry); 6675 6676 Entry.Ty = Type::getInt8Ty(*getContext()); 6677 Entry.Node = Value; 6678 Args.push_back(Entry); 6679 6680 Entry.Ty = SizeTy; 6681 Entry.Node = Size; 6682 Args.push_back(Entry); 6683 6684 RTLIB::Libcall LibraryCall = 6685 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6686 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6687 report_fatal_error("Unsupported element size"); 6688 6689 TargetLowering::CallLoweringInfo CLI(*this); 6690 CLI.setDebugLoc(dl) 6691 .setChain(Chain) 6692 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6693 Type::getVoidTy(*getContext()), 6694 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6695 TLI->getPointerTy(getDataLayout())), 6696 std::move(Args)) 6697 .setDiscardResult() 6698 .setTailCall(isTailCall); 6699 6700 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6701 return CallResult.second; 6702 } 6703 6704 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6705 SDVTList VTList, ArrayRef<SDValue> Ops, 6706 MachineMemOperand *MMO) { 6707 FoldingSetNodeID ID; 6708 ID.AddInteger(MemVT.getRawBits()); 6709 AddNodeIDNode(ID, Opcode, VTList, Ops); 6710 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6711 void* IP = nullptr; 6712 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6713 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6714 return SDValue(E, 0); 6715 } 6716 6717 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6718 VTList, MemVT, MMO); 6719 createOperands(N, Ops); 6720 6721 CSEMap.InsertNode(N, IP); 6722 InsertNode(N); 6723 return SDValue(N, 0); 6724 } 6725 6726 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6727 EVT MemVT, SDVTList VTs, SDValue Chain, 6728 SDValue Ptr, SDValue Cmp, SDValue Swp, 6729 MachineMemOperand *MMO) { 6730 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6731 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6732 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6733 6734 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6735 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6736 } 6737 6738 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6739 SDValue Chain, SDValue Ptr, SDValue Val, 6740 MachineMemOperand *MMO) { 6741 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6742 Opcode == ISD::ATOMIC_LOAD_SUB || 6743 Opcode == ISD::ATOMIC_LOAD_AND || 6744 Opcode == ISD::ATOMIC_LOAD_CLR || 6745 Opcode == ISD::ATOMIC_LOAD_OR || 6746 Opcode == ISD::ATOMIC_LOAD_XOR || 6747 Opcode == ISD::ATOMIC_LOAD_NAND || 6748 Opcode == ISD::ATOMIC_LOAD_MIN || 6749 Opcode == ISD::ATOMIC_LOAD_MAX || 6750 Opcode == ISD::ATOMIC_LOAD_UMIN || 6751 Opcode == ISD::ATOMIC_LOAD_UMAX || 6752 Opcode == ISD::ATOMIC_LOAD_FADD || 6753 Opcode == ISD::ATOMIC_LOAD_FSUB || 6754 Opcode == ISD::ATOMIC_SWAP || 6755 Opcode == ISD::ATOMIC_STORE) && 6756 "Invalid Atomic Op"); 6757 6758 EVT VT = Val.getValueType(); 6759 6760 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6761 getVTList(VT, MVT::Other); 6762 SDValue Ops[] = {Chain, Ptr, Val}; 6763 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6764 } 6765 6766 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6767 EVT VT, SDValue Chain, SDValue Ptr, 6768 MachineMemOperand *MMO) { 6769 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6770 6771 SDVTList VTs = getVTList(VT, MVT::Other); 6772 SDValue Ops[] = {Chain, Ptr}; 6773 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6774 } 6775 6776 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6777 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6778 if (Ops.size() == 1) 6779 return Ops[0]; 6780 6781 SmallVector<EVT, 4> VTs; 6782 VTs.reserve(Ops.size()); 6783 for (unsigned i = 0; i < Ops.size(); ++i) 6784 VTs.push_back(Ops[i].getValueType()); 6785 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6786 } 6787 6788 SDValue SelectionDAG::getMemIntrinsicNode( 6789 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6790 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6791 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6792 if (!Size && MemVT.isScalableVector()) 6793 Size = MemoryLocation::UnknownSize; 6794 else if (!Size) 6795 Size = MemVT.getStoreSize(); 6796 6797 MachineFunction &MF = getMachineFunction(); 6798 MachineMemOperand *MMO = 6799 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6800 6801 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6802 } 6803 6804 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6805 SDVTList VTList, 6806 ArrayRef<SDValue> Ops, EVT MemVT, 6807 MachineMemOperand *MMO) { 6808 assert((Opcode == ISD::INTRINSIC_VOID || 6809 Opcode == ISD::INTRINSIC_W_CHAIN || 6810 Opcode == ISD::PREFETCH || 6811 ((int)Opcode <= std::numeric_limits<int>::max() && 6812 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6813 "Opcode is not a memory-accessing opcode!"); 6814 6815 // Memoize the node unless it returns a flag. 6816 MemIntrinsicSDNode *N; 6817 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6818 FoldingSetNodeID ID; 6819 AddNodeIDNode(ID, Opcode, VTList, Ops); 6820 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6821 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6822 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6823 void *IP = nullptr; 6824 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6825 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6826 return SDValue(E, 0); 6827 } 6828 6829 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6830 VTList, MemVT, MMO); 6831 createOperands(N, Ops); 6832 6833 CSEMap.InsertNode(N, IP); 6834 } else { 6835 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6836 VTList, MemVT, MMO); 6837 createOperands(N, Ops); 6838 } 6839 InsertNode(N); 6840 SDValue V(N, 0); 6841 NewSDValueDbgMsg(V, "Creating new node: ", this); 6842 return V; 6843 } 6844 6845 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6846 SDValue Chain, int FrameIndex, 6847 int64_t Size, int64_t Offset) { 6848 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6849 const auto VTs = getVTList(MVT::Other); 6850 SDValue Ops[2] = { 6851 Chain, 6852 getFrameIndex(FrameIndex, 6853 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6854 true)}; 6855 6856 FoldingSetNodeID ID; 6857 AddNodeIDNode(ID, Opcode, VTs, Ops); 6858 ID.AddInteger(FrameIndex); 6859 ID.AddInteger(Size); 6860 ID.AddInteger(Offset); 6861 void *IP = nullptr; 6862 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6863 return SDValue(E, 0); 6864 6865 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6866 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6867 createOperands(N, Ops); 6868 CSEMap.InsertNode(N, IP); 6869 InsertNode(N); 6870 SDValue V(N, 0); 6871 NewSDValueDbgMsg(V, "Creating new node: ", this); 6872 return V; 6873 } 6874 6875 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 6876 uint64_t Guid, uint64_t Index, 6877 uint32_t Attr) { 6878 const unsigned Opcode = ISD::PSEUDO_PROBE; 6879 const auto VTs = getVTList(MVT::Other); 6880 SDValue Ops[] = {Chain}; 6881 FoldingSetNodeID ID; 6882 AddNodeIDNode(ID, Opcode, VTs, Ops); 6883 ID.AddInteger(Guid); 6884 ID.AddInteger(Index); 6885 void *IP = nullptr; 6886 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 6887 return SDValue(E, 0); 6888 6889 auto *N = newSDNode<PseudoProbeSDNode>( 6890 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 6891 createOperands(N, Ops); 6892 CSEMap.InsertNode(N, IP); 6893 InsertNode(N); 6894 SDValue V(N, 0); 6895 NewSDValueDbgMsg(V, "Creating new node: ", this); 6896 return V; 6897 } 6898 6899 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6900 /// MachinePointerInfo record from it. This is particularly useful because the 6901 /// code generator has many cases where it doesn't bother passing in a 6902 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6903 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6904 SelectionDAG &DAG, SDValue Ptr, 6905 int64_t Offset = 0) { 6906 // If this is FI+Offset, we can model it. 6907 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6908 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6909 FI->getIndex(), Offset); 6910 6911 // If this is (FI+Offset1)+Offset2, we can model it. 6912 if (Ptr.getOpcode() != ISD::ADD || 6913 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6914 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6915 return Info; 6916 6917 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6918 return MachinePointerInfo::getFixedStack( 6919 DAG.getMachineFunction(), FI, 6920 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6921 } 6922 6923 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6924 /// MachinePointerInfo record from it. This is particularly useful because the 6925 /// code generator has many cases where it doesn't bother passing in a 6926 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6927 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6928 SelectionDAG &DAG, SDValue Ptr, 6929 SDValue OffsetOp) { 6930 // If the 'Offset' value isn't a constant, we can't handle this. 6931 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6932 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6933 if (OffsetOp.isUndef()) 6934 return InferPointerInfo(Info, DAG, Ptr); 6935 return Info; 6936 } 6937 6938 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6939 EVT VT, const SDLoc &dl, SDValue Chain, 6940 SDValue Ptr, SDValue Offset, 6941 MachinePointerInfo PtrInfo, EVT MemVT, 6942 Align Alignment, 6943 MachineMemOperand::Flags MMOFlags, 6944 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6945 assert(Chain.getValueType() == MVT::Other && 6946 "Invalid chain type"); 6947 6948 MMOFlags |= MachineMemOperand::MOLoad; 6949 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6950 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6951 // clients. 6952 if (PtrInfo.V.isNull()) 6953 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6954 6955 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6956 MachineFunction &MF = getMachineFunction(); 6957 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 6958 Alignment, AAInfo, Ranges); 6959 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6960 } 6961 6962 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6963 EVT VT, const SDLoc &dl, SDValue Chain, 6964 SDValue Ptr, SDValue Offset, EVT MemVT, 6965 MachineMemOperand *MMO) { 6966 if (VT == MemVT) { 6967 ExtType = ISD::NON_EXTLOAD; 6968 } else if (ExtType == ISD::NON_EXTLOAD) { 6969 assert(VT == MemVT && "Non-extending load from different memory type!"); 6970 } else { 6971 // Extending load. 6972 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6973 "Should only be an extending load, not truncating!"); 6974 assert(VT.isInteger() == MemVT.isInteger() && 6975 "Cannot convert from FP to Int or Int -> FP!"); 6976 assert(VT.isVector() == MemVT.isVector() && 6977 "Cannot use an ext load to convert to or from a vector!"); 6978 assert((!VT.isVector() || 6979 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 6980 "Cannot use an ext load to change the number of vector elements!"); 6981 } 6982 6983 bool Indexed = AM != ISD::UNINDEXED; 6984 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6985 6986 SDVTList VTs = Indexed ? 6987 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6988 SDValue Ops[] = { Chain, Ptr, Offset }; 6989 FoldingSetNodeID ID; 6990 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6991 ID.AddInteger(MemVT.getRawBits()); 6992 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6993 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6994 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6995 void *IP = nullptr; 6996 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6997 cast<LoadSDNode>(E)->refineAlignment(MMO); 6998 return SDValue(E, 0); 6999 } 7000 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7001 ExtType, MemVT, MMO); 7002 createOperands(N, Ops); 7003 7004 CSEMap.InsertNode(N, IP); 7005 InsertNode(N); 7006 SDValue V(N, 0); 7007 NewSDValueDbgMsg(V, "Creating new node: ", this); 7008 return V; 7009 } 7010 7011 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7012 SDValue Ptr, MachinePointerInfo PtrInfo, 7013 MaybeAlign Alignment, 7014 MachineMemOperand::Flags MMOFlags, 7015 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7016 SDValue Undef = getUNDEF(Ptr.getValueType()); 7017 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7018 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7019 } 7020 7021 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7022 SDValue Ptr, MachineMemOperand *MMO) { 7023 SDValue Undef = getUNDEF(Ptr.getValueType()); 7024 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7025 VT, MMO); 7026 } 7027 7028 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7029 EVT VT, SDValue Chain, SDValue Ptr, 7030 MachinePointerInfo PtrInfo, EVT MemVT, 7031 MaybeAlign Alignment, 7032 MachineMemOperand::Flags MMOFlags, 7033 const AAMDNodes &AAInfo) { 7034 SDValue Undef = getUNDEF(Ptr.getValueType()); 7035 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7036 MemVT, Alignment, MMOFlags, AAInfo); 7037 } 7038 7039 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7040 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7041 MachineMemOperand *MMO) { 7042 SDValue Undef = getUNDEF(Ptr.getValueType()); 7043 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7044 MemVT, MMO); 7045 } 7046 7047 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7048 SDValue Base, SDValue Offset, 7049 ISD::MemIndexedMode AM) { 7050 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7051 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7052 // Don't propagate the invariant or dereferenceable flags. 7053 auto MMOFlags = 7054 LD->getMemOperand()->getFlags() & 7055 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7056 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7057 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7058 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7059 } 7060 7061 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7062 SDValue Ptr, MachinePointerInfo PtrInfo, 7063 Align Alignment, 7064 MachineMemOperand::Flags MMOFlags, 7065 const AAMDNodes &AAInfo) { 7066 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7067 7068 MMOFlags |= MachineMemOperand::MOStore; 7069 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7070 7071 if (PtrInfo.V.isNull()) 7072 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7073 7074 MachineFunction &MF = getMachineFunction(); 7075 uint64_t Size = 7076 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7077 MachineMemOperand *MMO = 7078 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7079 return getStore(Chain, dl, Val, Ptr, MMO); 7080 } 7081 7082 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7083 SDValue Ptr, MachineMemOperand *MMO) { 7084 assert(Chain.getValueType() == MVT::Other && 7085 "Invalid chain type"); 7086 EVT VT = Val.getValueType(); 7087 SDVTList VTs = getVTList(MVT::Other); 7088 SDValue Undef = getUNDEF(Ptr.getValueType()); 7089 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7090 FoldingSetNodeID ID; 7091 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7092 ID.AddInteger(VT.getRawBits()); 7093 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7094 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7095 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7096 void *IP = nullptr; 7097 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7098 cast<StoreSDNode>(E)->refineAlignment(MMO); 7099 return SDValue(E, 0); 7100 } 7101 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7102 ISD::UNINDEXED, false, VT, MMO); 7103 createOperands(N, Ops); 7104 7105 CSEMap.InsertNode(N, IP); 7106 InsertNode(N); 7107 SDValue V(N, 0); 7108 NewSDValueDbgMsg(V, "Creating new node: ", this); 7109 return V; 7110 } 7111 7112 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7113 SDValue Ptr, MachinePointerInfo PtrInfo, 7114 EVT SVT, Align Alignment, 7115 MachineMemOperand::Flags MMOFlags, 7116 const AAMDNodes &AAInfo) { 7117 assert(Chain.getValueType() == MVT::Other && 7118 "Invalid chain type"); 7119 7120 MMOFlags |= MachineMemOperand::MOStore; 7121 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7122 7123 if (PtrInfo.V.isNull()) 7124 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7125 7126 MachineFunction &MF = getMachineFunction(); 7127 MachineMemOperand *MMO = MF.getMachineMemOperand( 7128 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7129 Alignment, AAInfo); 7130 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7131 } 7132 7133 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7134 SDValue Ptr, EVT SVT, 7135 MachineMemOperand *MMO) { 7136 EVT VT = Val.getValueType(); 7137 7138 assert(Chain.getValueType() == MVT::Other && 7139 "Invalid chain type"); 7140 if (VT == SVT) 7141 return getStore(Chain, dl, Val, Ptr, MMO); 7142 7143 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7144 "Should only be a truncating store, not extending!"); 7145 assert(VT.isInteger() == SVT.isInteger() && 7146 "Can't do FP-INT conversion!"); 7147 assert(VT.isVector() == SVT.isVector() && 7148 "Cannot use trunc store to convert to or from a vector!"); 7149 assert((!VT.isVector() || 7150 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7151 "Cannot use trunc store to change the number of vector elements!"); 7152 7153 SDVTList VTs = getVTList(MVT::Other); 7154 SDValue Undef = getUNDEF(Ptr.getValueType()); 7155 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7156 FoldingSetNodeID ID; 7157 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7158 ID.AddInteger(SVT.getRawBits()); 7159 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7160 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7161 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7162 void *IP = nullptr; 7163 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7164 cast<StoreSDNode>(E)->refineAlignment(MMO); 7165 return SDValue(E, 0); 7166 } 7167 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7168 ISD::UNINDEXED, true, SVT, MMO); 7169 createOperands(N, Ops); 7170 7171 CSEMap.InsertNode(N, IP); 7172 InsertNode(N); 7173 SDValue V(N, 0); 7174 NewSDValueDbgMsg(V, "Creating new node: ", this); 7175 return V; 7176 } 7177 7178 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7179 SDValue Base, SDValue Offset, 7180 ISD::MemIndexedMode AM) { 7181 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7182 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7183 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7184 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7185 FoldingSetNodeID ID; 7186 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7187 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7188 ID.AddInteger(ST->getRawSubclassData()); 7189 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7190 void *IP = nullptr; 7191 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7192 return SDValue(E, 0); 7193 7194 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7195 ST->isTruncatingStore(), ST->getMemoryVT(), 7196 ST->getMemOperand()); 7197 createOperands(N, Ops); 7198 7199 CSEMap.InsertNode(N, IP); 7200 InsertNode(N); 7201 SDValue V(N, 0); 7202 NewSDValueDbgMsg(V, "Creating new node: ", this); 7203 return V; 7204 } 7205 7206 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7207 SDValue Base, SDValue Offset, SDValue Mask, 7208 SDValue PassThru, EVT MemVT, 7209 MachineMemOperand *MMO, 7210 ISD::MemIndexedMode AM, 7211 ISD::LoadExtType ExtTy, bool isExpanding) { 7212 bool Indexed = AM != ISD::UNINDEXED; 7213 assert((Indexed || Offset.isUndef()) && 7214 "Unindexed masked load with an offset!"); 7215 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7216 : getVTList(VT, MVT::Other); 7217 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7218 FoldingSetNodeID ID; 7219 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7220 ID.AddInteger(MemVT.getRawBits()); 7221 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7222 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7223 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7224 void *IP = nullptr; 7225 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7226 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7227 return SDValue(E, 0); 7228 } 7229 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7230 AM, ExtTy, isExpanding, MemVT, MMO); 7231 createOperands(N, Ops); 7232 7233 CSEMap.InsertNode(N, IP); 7234 InsertNode(N); 7235 SDValue V(N, 0); 7236 NewSDValueDbgMsg(V, "Creating new node: ", this); 7237 return V; 7238 } 7239 7240 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7241 SDValue Base, SDValue Offset, 7242 ISD::MemIndexedMode AM) { 7243 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7244 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7245 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7246 Offset, LD->getMask(), LD->getPassThru(), 7247 LD->getMemoryVT(), LD->getMemOperand(), AM, 7248 LD->getExtensionType(), LD->isExpandingLoad()); 7249 } 7250 7251 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7252 SDValue Val, SDValue Base, SDValue Offset, 7253 SDValue Mask, EVT MemVT, 7254 MachineMemOperand *MMO, 7255 ISD::MemIndexedMode AM, bool IsTruncating, 7256 bool IsCompressing) { 7257 assert(Chain.getValueType() == MVT::Other && 7258 "Invalid chain type"); 7259 bool Indexed = AM != ISD::UNINDEXED; 7260 assert((Indexed || Offset.isUndef()) && 7261 "Unindexed masked store with an offset!"); 7262 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7263 : getVTList(MVT::Other); 7264 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7265 FoldingSetNodeID ID; 7266 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7267 ID.AddInteger(MemVT.getRawBits()); 7268 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7269 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7270 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7271 void *IP = nullptr; 7272 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7273 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7274 return SDValue(E, 0); 7275 } 7276 auto *N = 7277 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7278 IsTruncating, IsCompressing, MemVT, MMO); 7279 createOperands(N, Ops); 7280 7281 CSEMap.InsertNode(N, IP); 7282 InsertNode(N); 7283 SDValue V(N, 0); 7284 NewSDValueDbgMsg(V, "Creating new node: ", this); 7285 return V; 7286 } 7287 7288 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7289 SDValue Base, SDValue Offset, 7290 ISD::MemIndexedMode AM) { 7291 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7292 assert(ST->getOffset().isUndef() && 7293 "Masked store is already a indexed store!"); 7294 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7295 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7296 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7297 } 7298 7299 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7300 ArrayRef<SDValue> Ops, 7301 MachineMemOperand *MMO, 7302 ISD::MemIndexType IndexType, 7303 ISD::LoadExtType ExtTy) { 7304 assert(Ops.size() == 6 && "Incompatible number of operands"); 7305 7306 FoldingSetNodeID ID; 7307 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7308 ID.AddInteger(VT.getRawBits()); 7309 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7310 dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy)); 7311 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7312 void *IP = nullptr; 7313 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7314 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7315 return SDValue(E, 0); 7316 } 7317 7318 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7319 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7320 VTs, VT, MMO, IndexType, ExtTy); 7321 createOperands(N, Ops); 7322 7323 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7324 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7325 assert(N->getMask().getValueType().getVectorElementCount() == 7326 N->getValueType(0).getVectorElementCount() && 7327 "Vector width mismatch between mask and data"); 7328 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7329 N->getValueType(0).getVectorElementCount().isScalable() && 7330 "Scalable flags of index and data do not match"); 7331 assert(ElementCount::isKnownGE( 7332 N->getIndex().getValueType().getVectorElementCount(), 7333 N->getValueType(0).getVectorElementCount()) && 7334 "Vector width mismatch between index and data"); 7335 assert(isa<ConstantSDNode>(N->getScale()) && 7336 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7337 "Scale should be a constant power of 2"); 7338 7339 CSEMap.InsertNode(N, IP); 7340 InsertNode(N); 7341 SDValue V(N, 0); 7342 NewSDValueDbgMsg(V, "Creating new node: ", this); 7343 return V; 7344 } 7345 7346 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7347 ArrayRef<SDValue> Ops, 7348 MachineMemOperand *MMO, 7349 ISD::MemIndexType IndexType, 7350 bool IsTrunc) { 7351 assert(Ops.size() == 6 && "Incompatible number of operands"); 7352 7353 FoldingSetNodeID ID; 7354 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7355 ID.AddInteger(VT.getRawBits()); 7356 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7357 dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc)); 7358 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7359 void *IP = nullptr; 7360 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7361 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7362 return SDValue(E, 0); 7363 } 7364 7365 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7366 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7367 VTs, VT, MMO, IndexType, IsTrunc); 7368 createOperands(N, Ops); 7369 7370 assert(N->getMask().getValueType().getVectorElementCount() == 7371 N->getValue().getValueType().getVectorElementCount() && 7372 "Vector width mismatch between mask and data"); 7373 assert( 7374 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7375 N->getValue().getValueType().getVectorElementCount().isScalable() && 7376 "Scalable flags of index and data do not match"); 7377 assert(ElementCount::isKnownGE( 7378 N->getIndex().getValueType().getVectorElementCount(), 7379 N->getValue().getValueType().getVectorElementCount()) && 7380 "Vector width mismatch between index and data"); 7381 assert(isa<ConstantSDNode>(N->getScale()) && 7382 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7383 "Scale should be a constant power of 2"); 7384 7385 CSEMap.InsertNode(N, IP); 7386 InsertNode(N); 7387 SDValue V(N, 0); 7388 NewSDValueDbgMsg(V, "Creating new node: ", this); 7389 return V; 7390 } 7391 7392 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7393 // select undef, T, F --> T (if T is a constant), otherwise F 7394 // select, ?, undef, F --> F 7395 // select, ?, T, undef --> T 7396 if (Cond.isUndef()) 7397 return isConstantValueOfAnyType(T) ? T : F; 7398 if (T.isUndef()) 7399 return F; 7400 if (F.isUndef()) 7401 return T; 7402 7403 // select true, T, F --> T 7404 // select false, T, F --> F 7405 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7406 return CondC->isNullValue() ? F : T; 7407 7408 // TODO: This should simplify VSELECT with constant condition using something 7409 // like this (but check boolean contents to be complete?): 7410 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7411 // return T; 7412 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7413 // return F; 7414 7415 // select ?, T, T --> T 7416 if (T == F) 7417 return T; 7418 7419 return SDValue(); 7420 } 7421 7422 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7423 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7424 if (X.isUndef()) 7425 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7426 // shift X, undef --> undef (because it may shift by the bitwidth) 7427 if (Y.isUndef()) 7428 return getUNDEF(X.getValueType()); 7429 7430 // shift 0, Y --> 0 7431 // shift X, 0 --> X 7432 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7433 return X; 7434 7435 // shift X, C >= bitwidth(X) --> undef 7436 // All vector elements must be too big (or undef) to avoid partial undefs. 7437 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7438 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7439 }; 7440 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7441 return getUNDEF(X.getValueType()); 7442 7443 return SDValue(); 7444 } 7445 7446 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7447 SDNodeFlags Flags) { 7448 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7449 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7450 // operation is poison. That result can be relaxed to undef. 7451 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7452 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7453 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7454 (YC && YC->getValueAPF().isNaN()); 7455 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7456 (YC && YC->getValueAPF().isInfinity()); 7457 7458 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7459 return getUNDEF(X.getValueType()); 7460 7461 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7462 return getUNDEF(X.getValueType()); 7463 7464 if (!YC) 7465 return SDValue(); 7466 7467 // X + -0.0 --> X 7468 if (Opcode == ISD::FADD) 7469 if (YC->getValueAPF().isNegZero()) 7470 return X; 7471 7472 // X - +0.0 --> X 7473 if (Opcode == ISD::FSUB) 7474 if (YC->getValueAPF().isPosZero()) 7475 return X; 7476 7477 // X * 1.0 --> X 7478 // X / 1.0 --> X 7479 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7480 if (YC->getValueAPF().isExactlyValue(1.0)) 7481 return X; 7482 7483 // X * 0.0 --> 0.0 7484 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 7485 if (YC->getValueAPF().isZero()) 7486 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 7487 7488 return SDValue(); 7489 } 7490 7491 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7492 SDValue Ptr, SDValue SV, unsigned Align) { 7493 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7494 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7495 } 7496 7497 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7498 ArrayRef<SDUse> Ops) { 7499 switch (Ops.size()) { 7500 case 0: return getNode(Opcode, DL, VT); 7501 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7502 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7503 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7504 default: break; 7505 } 7506 7507 // Copy from an SDUse array into an SDValue array for use with 7508 // the regular getNode logic. 7509 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7510 return getNode(Opcode, DL, VT, NewOps); 7511 } 7512 7513 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7514 ArrayRef<SDValue> Ops) { 7515 SDNodeFlags Flags; 7516 if (Inserter) 7517 Flags = Inserter->getFlags(); 7518 return getNode(Opcode, DL, VT, Ops, Flags); 7519 } 7520 7521 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7522 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7523 unsigned NumOps = Ops.size(); 7524 switch (NumOps) { 7525 case 0: return getNode(Opcode, DL, VT); 7526 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7527 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7528 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7529 default: break; 7530 } 7531 7532 switch (Opcode) { 7533 default: break; 7534 case ISD::BUILD_VECTOR: 7535 // Attempt to simplify BUILD_VECTOR. 7536 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7537 return V; 7538 break; 7539 case ISD::CONCAT_VECTORS: 7540 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7541 return V; 7542 break; 7543 case ISD::SELECT_CC: 7544 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7545 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7546 "LHS and RHS of condition must have same type!"); 7547 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7548 "True and False arms of SelectCC must have same type!"); 7549 assert(Ops[2].getValueType() == VT && 7550 "select_cc node must be of same type as true and false value!"); 7551 break; 7552 case ISD::BR_CC: 7553 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7554 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7555 "LHS/RHS of comparison should match types!"); 7556 break; 7557 } 7558 7559 // Memoize nodes. 7560 SDNode *N; 7561 SDVTList VTs = getVTList(VT); 7562 7563 if (VT != MVT::Glue) { 7564 FoldingSetNodeID ID; 7565 AddNodeIDNode(ID, Opcode, VTs, Ops); 7566 void *IP = nullptr; 7567 7568 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7569 return SDValue(E, 0); 7570 7571 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7572 createOperands(N, Ops); 7573 7574 CSEMap.InsertNode(N, IP); 7575 } else { 7576 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7577 createOperands(N, Ops); 7578 } 7579 7580 N->setFlags(Flags); 7581 InsertNode(N); 7582 SDValue V(N, 0); 7583 NewSDValueDbgMsg(V, "Creating new node: ", this); 7584 return V; 7585 } 7586 7587 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7588 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7589 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7590 } 7591 7592 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7593 ArrayRef<SDValue> Ops) { 7594 SDNodeFlags Flags; 7595 if (Inserter) 7596 Flags = Inserter->getFlags(); 7597 return getNode(Opcode, DL, VTList, Ops, Flags); 7598 } 7599 7600 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7601 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7602 if (VTList.NumVTs == 1) 7603 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7604 7605 switch (Opcode) { 7606 case ISD::STRICT_FP_EXTEND: 7607 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7608 "Invalid STRICT_FP_EXTEND!"); 7609 assert(VTList.VTs[0].isFloatingPoint() && 7610 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7611 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7612 "STRICT_FP_EXTEND result type should be vector iff the operand " 7613 "type is vector!"); 7614 assert((!VTList.VTs[0].isVector() || 7615 VTList.VTs[0].getVectorNumElements() == 7616 Ops[1].getValueType().getVectorNumElements()) && 7617 "Vector element count mismatch!"); 7618 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7619 "Invalid fpext node, dst <= src!"); 7620 break; 7621 case ISD::STRICT_FP_ROUND: 7622 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7623 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7624 "STRICT_FP_ROUND result type should be vector iff the operand " 7625 "type is vector!"); 7626 assert((!VTList.VTs[0].isVector() || 7627 VTList.VTs[0].getVectorNumElements() == 7628 Ops[1].getValueType().getVectorNumElements()) && 7629 "Vector element count mismatch!"); 7630 assert(VTList.VTs[0].isFloatingPoint() && 7631 Ops[1].getValueType().isFloatingPoint() && 7632 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7633 isa<ConstantSDNode>(Ops[2]) && 7634 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7635 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7636 "Invalid STRICT_FP_ROUND!"); 7637 break; 7638 #if 0 7639 // FIXME: figure out how to safely handle things like 7640 // int foo(int x) { return 1 << (x & 255); } 7641 // int bar() { return foo(256); } 7642 case ISD::SRA_PARTS: 7643 case ISD::SRL_PARTS: 7644 case ISD::SHL_PARTS: 7645 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7646 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7647 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7648 else if (N3.getOpcode() == ISD::AND) 7649 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7650 // If the and is only masking out bits that cannot effect the shift, 7651 // eliminate the and. 7652 unsigned NumBits = VT.getScalarSizeInBits()*2; 7653 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7654 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7655 } 7656 break; 7657 #endif 7658 } 7659 7660 // Memoize the node unless it returns a flag. 7661 SDNode *N; 7662 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7663 FoldingSetNodeID ID; 7664 AddNodeIDNode(ID, Opcode, VTList, Ops); 7665 void *IP = nullptr; 7666 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7667 return SDValue(E, 0); 7668 7669 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7670 createOperands(N, Ops); 7671 CSEMap.InsertNode(N, IP); 7672 } else { 7673 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7674 createOperands(N, Ops); 7675 } 7676 7677 N->setFlags(Flags); 7678 InsertNode(N); 7679 SDValue V(N, 0); 7680 NewSDValueDbgMsg(V, "Creating new node: ", this); 7681 return V; 7682 } 7683 7684 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7685 SDVTList VTList) { 7686 return getNode(Opcode, DL, VTList, None); 7687 } 7688 7689 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7690 SDValue N1) { 7691 SDValue Ops[] = { N1 }; 7692 return getNode(Opcode, DL, VTList, Ops); 7693 } 7694 7695 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7696 SDValue N1, SDValue N2) { 7697 SDValue Ops[] = { N1, N2 }; 7698 return getNode(Opcode, DL, VTList, Ops); 7699 } 7700 7701 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7702 SDValue N1, SDValue N2, SDValue N3) { 7703 SDValue Ops[] = { N1, N2, N3 }; 7704 return getNode(Opcode, DL, VTList, Ops); 7705 } 7706 7707 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7708 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7709 SDValue Ops[] = { N1, N2, N3, N4 }; 7710 return getNode(Opcode, DL, VTList, Ops); 7711 } 7712 7713 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7714 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7715 SDValue N5) { 7716 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7717 return getNode(Opcode, DL, VTList, Ops); 7718 } 7719 7720 SDVTList SelectionDAG::getVTList(EVT VT) { 7721 return makeVTList(SDNode::getValueTypeList(VT), 1); 7722 } 7723 7724 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7725 FoldingSetNodeID ID; 7726 ID.AddInteger(2U); 7727 ID.AddInteger(VT1.getRawBits()); 7728 ID.AddInteger(VT2.getRawBits()); 7729 7730 void *IP = nullptr; 7731 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7732 if (!Result) { 7733 EVT *Array = Allocator.Allocate<EVT>(2); 7734 Array[0] = VT1; 7735 Array[1] = VT2; 7736 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7737 VTListMap.InsertNode(Result, IP); 7738 } 7739 return Result->getSDVTList(); 7740 } 7741 7742 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7743 FoldingSetNodeID ID; 7744 ID.AddInteger(3U); 7745 ID.AddInteger(VT1.getRawBits()); 7746 ID.AddInteger(VT2.getRawBits()); 7747 ID.AddInteger(VT3.getRawBits()); 7748 7749 void *IP = nullptr; 7750 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7751 if (!Result) { 7752 EVT *Array = Allocator.Allocate<EVT>(3); 7753 Array[0] = VT1; 7754 Array[1] = VT2; 7755 Array[2] = VT3; 7756 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7757 VTListMap.InsertNode(Result, IP); 7758 } 7759 return Result->getSDVTList(); 7760 } 7761 7762 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7763 FoldingSetNodeID ID; 7764 ID.AddInteger(4U); 7765 ID.AddInteger(VT1.getRawBits()); 7766 ID.AddInteger(VT2.getRawBits()); 7767 ID.AddInteger(VT3.getRawBits()); 7768 ID.AddInteger(VT4.getRawBits()); 7769 7770 void *IP = nullptr; 7771 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7772 if (!Result) { 7773 EVT *Array = Allocator.Allocate<EVT>(4); 7774 Array[0] = VT1; 7775 Array[1] = VT2; 7776 Array[2] = VT3; 7777 Array[3] = VT4; 7778 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7779 VTListMap.InsertNode(Result, IP); 7780 } 7781 return Result->getSDVTList(); 7782 } 7783 7784 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7785 unsigned NumVTs = VTs.size(); 7786 FoldingSetNodeID ID; 7787 ID.AddInteger(NumVTs); 7788 for (unsigned index = 0; index < NumVTs; index++) { 7789 ID.AddInteger(VTs[index].getRawBits()); 7790 } 7791 7792 void *IP = nullptr; 7793 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7794 if (!Result) { 7795 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7796 llvm::copy(VTs, Array); 7797 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7798 VTListMap.InsertNode(Result, IP); 7799 } 7800 return Result->getSDVTList(); 7801 } 7802 7803 7804 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7805 /// specified operands. If the resultant node already exists in the DAG, 7806 /// this does not modify the specified node, instead it returns the node that 7807 /// already exists. If the resultant node does not exist in the DAG, the 7808 /// input node is returned. As a degenerate case, if you specify the same 7809 /// input operands as the node already has, the input node is returned. 7810 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7811 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7812 7813 // Check to see if there is no change. 7814 if (Op == N->getOperand(0)) return N; 7815 7816 // See if the modified node already exists. 7817 void *InsertPos = nullptr; 7818 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7819 return Existing; 7820 7821 // Nope it doesn't. Remove the node from its current place in the maps. 7822 if (InsertPos) 7823 if (!RemoveNodeFromCSEMaps(N)) 7824 InsertPos = nullptr; 7825 7826 // Now we update the operands. 7827 N->OperandList[0].set(Op); 7828 7829 updateDivergence(N); 7830 // If this gets put into a CSE map, add it. 7831 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7832 return N; 7833 } 7834 7835 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7836 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7837 7838 // Check to see if there is no change. 7839 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7840 return N; // No operands changed, just return the input node. 7841 7842 // See if the modified node already exists. 7843 void *InsertPos = nullptr; 7844 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7845 return Existing; 7846 7847 // Nope it doesn't. Remove the node from its current place in the maps. 7848 if (InsertPos) 7849 if (!RemoveNodeFromCSEMaps(N)) 7850 InsertPos = nullptr; 7851 7852 // Now we update the operands. 7853 if (N->OperandList[0] != Op1) 7854 N->OperandList[0].set(Op1); 7855 if (N->OperandList[1] != Op2) 7856 N->OperandList[1].set(Op2); 7857 7858 updateDivergence(N); 7859 // If this gets put into a CSE map, add it. 7860 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7861 return N; 7862 } 7863 7864 SDNode *SelectionDAG:: 7865 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7866 SDValue Ops[] = { Op1, Op2, Op3 }; 7867 return UpdateNodeOperands(N, Ops); 7868 } 7869 7870 SDNode *SelectionDAG:: 7871 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7872 SDValue Op3, SDValue Op4) { 7873 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7874 return UpdateNodeOperands(N, Ops); 7875 } 7876 7877 SDNode *SelectionDAG:: 7878 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7879 SDValue Op3, SDValue Op4, SDValue Op5) { 7880 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7881 return UpdateNodeOperands(N, Ops); 7882 } 7883 7884 SDNode *SelectionDAG:: 7885 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7886 unsigned NumOps = Ops.size(); 7887 assert(N->getNumOperands() == NumOps && 7888 "Update with wrong number of operands"); 7889 7890 // If no operands changed just return the input node. 7891 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7892 return N; 7893 7894 // See if the modified node already exists. 7895 void *InsertPos = nullptr; 7896 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7897 return Existing; 7898 7899 // Nope it doesn't. Remove the node from its current place in the maps. 7900 if (InsertPos) 7901 if (!RemoveNodeFromCSEMaps(N)) 7902 InsertPos = nullptr; 7903 7904 // Now we update the operands. 7905 for (unsigned i = 0; i != NumOps; ++i) 7906 if (N->OperandList[i] != Ops[i]) 7907 N->OperandList[i].set(Ops[i]); 7908 7909 updateDivergence(N); 7910 // If this gets put into a CSE map, add it. 7911 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7912 return N; 7913 } 7914 7915 /// DropOperands - Release the operands and set this node to have 7916 /// zero operands. 7917 void SDNode::DropOperands() { 7918 // Unlike the code in MorphNodeTo that does this, we don't need to 7919 // watch for dead nodes here. 7920 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7921 SDUse &Use = *I++; 7922 Use.set(SDValue()); 7923 } 7924 } 7925 7926 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7927 ArrayRef<MachineMemOperand *> NewMemRefs) { 7928 if (NewMemRefs.empty()) { 7929 N->clearMemRefs(); 7930 return; 7931 } 7932 7933 // Check if we can avoid allocating by storing a single reference directly. 7934 if (NewMemRefs.size() == 1) { 7935 N->MemRefs = NewMemRefs[0]; 7936 N->NumMemRefs = 1; 7937 return; 7938 } 7939 7940 MachineMemOperand **MemRefsBuffer = 7941 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7942 llvm::copy(NewMemRefs, MemRefsBuffer); 7943 N->MemRefs = MemRefsBuffer; 7944 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7945 } 7946 7947 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7948 /// machine opcode. 7949 /// 7950 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7951 EVT VT) { 7952 SDVTList VTs = getVTList(VT); 7953 return SelectNodeTo(N, MachineOpc, VTs, None); 7954 } 7955 7956 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7957 EVT VT, SDValue Op1) { 7958 SDVTList VTs = getVTList(VT); 7959 SDValue Ops[] = { Op1 }; 7960 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7961 } 7962 7963 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7964 EVT VT, SDValue Op1, 7965 SDValue Op2) { 7966 SDVTList VTs = getVTList(VT); 7967 SDValue Ops[] = { Op1, Op2 }; 7968 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7969 } 7970 7971 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7972 EVT VT, SDValue Op1, 7973 SDValue Op2, SDValue Op3) { 7974 SDVTList VTs = getVTList(VT); 7975 SDValue Ops[] = { Op1, Op2, Op3 }; 7976 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7977 } 7978 7979 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7980 EVT VT, ArrayRef<SDValue> Ops) { 7981 SDVTList VTs = getVTList(VT); 7982 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7983 } 7984 7985 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7986 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7987 SDVTList VTs = getVTList(VT1, VT2); 7988 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7989 } 7990 7991 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7992 EVT VT1, EVT VT2) { 7993 SDVTList VTs = getVTList(VT1, VT2); 7994 return SelectNodeTo(N, MachineOpc, VTs, None); 7995 } 7996 7997 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7998 EVT VT1, EVT VT2, EVT VT3, 7999 ArrayRef<SDValue> Ops) { 8000 SDVTList VTs = getVTList(VT1, VT2, VT3); 8001 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8002 } 8003 8004 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8005 EVT VT1, EVT VT2, 8006 SDValue Op1, SDValue Op2) { 8007 SDVTList VTs = getVTList(VT1, VT2); 8008 SDValue Ops[] = { Op1, Op2 }; 8009 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8010 } 8011 8012 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8013 SDVTList VTs,ArrayRef<SDValue> Ops) { 8014 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8015 // Reset the NodeID to -1. 8016 New->setNodeId(-1); 8017 if (New != N) { 8018 ReplaceAllUsesWith(N, New); 8019 RemoveDeadNode(N); 8020 } 8021 return New; 8022 } 8023 8024 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8025 /// the line number information on the merged node since it is not possible to 8026 /// preserve the information that operation is associated with multiple lines. 8027 /// This will make the debugger working better at -O0, were there is a higher 8028 /// probability having other instructions associated with that line. 8029 /// 8030 /// For IROrder, we keep the smaller of the two 8031 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8032 DebugLoc NLoc = N->getDebugLoc(); 8033 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8034 N->setDebugLoc(DebugLoc()); 8035 } 8036 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8037 N->setIROrder(Order); 8038 return N; 8039 } 8040 8041 /// MorphNodeTo - This *mutates* the specified node to have the specified 8042 /// return type, opcode, and operands. 8043 /// 8044 /// Note that MorphNodeTo returns the resultant node. If there is already a 8045 /// node of the specified opcode and operands, it returns that node instead of 8046 /// the current one. Note that the SDLoc need not be the same. 8047 /// 8048 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8049 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8050 /// node, and because it doesn't require CSE recalculation for any of 8051 /// the node's users. 8052 /// 8053 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8054 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8055 /// the legalizer which maintain worklists that would need to be updated when 8056 /// deleting things. 8057 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8058 SDVTList VTs, ArrayRef<SDValue> Ops) { 8059 // If an identical node already exists, use it. 8060 void *IP = nullptr; 8061 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8062 FoldingSetNodeID ID; 8063 AddNodeIDNode(ID, Opc, VTs, Ops); 8064 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8065 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8066 } 8067 8068 if (!RemoveNodeFromCSEMaps(N)) 8069 IP = nullptr; 8070 8071 // Start the morphing. 8072 N->NodeType = Opc; 8073 N->ValueList = VTs.VTs; 8074 N->NumValues = VTs.NumVTs; 8075 8076 // Clear the operands list, updating used nodes to remove this from their 8077 // use list. Keep track of any operands that become dead as a result. 8078 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8079 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8080 SDUse &Use = *I++; 8081 SDNode *Used = Use.getNode(); 8082 Use.set(SDValue()); 8083 if (Used->use_empty()) 8084 DeadNodeSet.insert(Used); 8085 } 8086 8087 // For MachineNode, initialize the memory references information. 8088 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8089 MN->clearMemRefs(); 8090 8091 // Swap for an appropriately sized array from the recycler. 8092 removeOperands(N); 8093 createOperands(N, Ops); 8094 8095 // Delete any nodes that are still dead after adding the uses for the 8096 // new operands. 8097 if (!DeadNodeSet.empty()) { 8098 SmallVector<SDNode *, 16> DeadNodes; 8099 for (SDNode *N : DeadNodeSet) 8100 if (N->use_empty()) 8101 DeadNodes.push_back(N); 8102 RemoveDeadNodes(DeadNodes); 8103 } 8104 8105 if (IP) 8106 CSEMap.InsertNode(N, IP); // Memoize the new node. 8107 return N; 8108 } 8109 8110 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8111 unsigned OrigOpc = Node->getOpcode(); 8112 unsigned NewOpc; 8113 switch (OrigOpc) { 8114 default: 8115 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8116 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8117 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8118 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8119 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8120 #include "llvm/IR/ConstrainedOps.def" 8121 } 8122 8123 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8124 8125 // We're taking this node out of the chain, so we need to re-link things. 8126 SDValue InputChain = Node->getOperand(0); 8127 SDValue OutputChain = SDValue(Node, 1); 8128 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8129 8130 SmallVector<SDValue, 3> Ops; 8131 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8132 Ops.push_back(Node->getOperand(i)); 8133 8134 SDVTList VTs = getVTList(Node->getValueType(0)); 8135 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8136 8137 // MorphNodeTo can operate in two ways: if an existing node with the 8138 // specified operands exists, it can just return it. Otherwise, it 8139 // updates the node in place to have the requested operands. 8140 if (Res == Node) { 8141 // If we updated the node in place, reset the node ID. To the isel, 8142 // this should be just like a newly allocated machine node. 8143 Res->setNodeId(-1); 8144 } else { 8145 ReplaceAllUsesWith(Node, Res); 8146 RemoveDeadNode(Node); 8147 } 8148 8149 return Res; 8150 } 8151 8152 /// getMachineNode - These are used for target selectors to create a new node 8153 /// with specified return type(s), MachineInstr opcode, and operands. 8154 /// 8155 /// Note that getMachineNode returns the resultant node. If there is already a 8156 /// node of the specified opcode and operands, it returns that node instead of 8157 /// the current one. 8158 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8159 EVT VT) { 8160 SDVTList VTs = getVTList(VT); 8161 return getMachineNode(Opcode, dl, VTs, None); 8162 } 8163 8164 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8165 EVT VT, SDValue Op1) { 8166 SDVTList VTs = getVTList(VT); 8167 SDValue Ops[] = { Op1 }; 8168 return getMachineNode(Opcode, dl, VTs, Ops); 8169 } 8170 8171 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8172 EVT VT, SDValue Op1, SDValue Op2) { 8173 SDVTList VTs = getVTList(VT); 8174 SDValue Ops[] = { Op1, Op2 }; 8175 return getMachineNode(Opcode, dl, VTs, Ops); 8176 } 8177 8178 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8179 EVT VT, SDValue Op1, SDValue Op2, 8180 SDValue Op3) { 8181 SDVTList VTs = getVTList(VT); 8182 SDValue Ops[] = { Op1, Op2, Op3 }; 8183 return getMachineNode(Opcode, dl, VTs, Ops); 8184 } 8185 8186 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8187 EVT VT, ArrayRef<SDValue> Ops) { 8188 SDVTList VTs = getVTList(VT); 8189 return getMachineNode(Opcode, dl, VTs, Ops); 8190 } 8191 8192 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8193 EVT VT1, EVT VT2, SDValue Op1, 8194 SDValue Op2) { 8195 SDVTList VTs = getVTList(VT1, VT2); 8196 SDValue Ops[] = { Op1, Op2 }; 8197 return getMachineNode(Opcode, dl, VTs, Ops); 8198 } 8199 8200 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8201 EVT VT1, EVT VT2, SDValue Op1, 8202 SDValue Op2, SDValue Op3) { 8203 SDVTList VTs = getVTList(VT1, VT2); 8204 SDValue Ops[] = { Op1, Op2, Op3 }; 8205 return getMachineNode(Opcode, dl, VTs, Ops); 8206 } 8207 8208 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8209 EVT VT1, EVT VT2, 8210 ArrayRef<SDValue> Ops) { 8211 SDVTList VTs = getVTList(VT1, VT2); 8212 return getMachineNode(Opcode, dl, VTs, Ops); 8213 } 8214 8215 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8216 EVT VT1, EVT VT2, EVT VT3, 8217 SDValue Op1, SDValue Op2) { 8218 SDVTList VTs = getVTList(VT1, VT2, VT3); 8219 SDValue Ops[] = { Op1, Op2 }; 8220 return getMachineNode(Opcode, dl, VTs, Ops); 8221 } 8222 8223 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8224 EVT VT1, EVT VT2, EVT VT3, 8225 SDValue Op1, SDValue Op2, 8226 SDValue Op3) { 8227 SDVTList VTs = getVTList(VT1, VT2, VT3); 8228 SDValue Ops[] = { Op1, Op2, Op3 }; 8229 return getMachineNode(Opcode, dl, VTs, Ops); 8230 } 8231 8232 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8233 EVT VT1, EVT VT2, EVT VT3, 8234 ArrayRef<SDValue> Ops) { 8235 SDVTList VTs = getVTList(VT1, VT2, VT3); 8236 return getMachineNode(Opcode, dl, VTs, Ops); 8237 } 8238 8239 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8240 ArrayRef<EVT> ResultTys, 8241 ArrayRef<SDValue> Ops) { 8242 SDVTList VTs = getVTList(ResultTys); 8243 return getMachineNode(Opcode, dl, VTs, Ops); 8244 } 8245 8246 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8247 SDVTList VTs, 8248 ArrayRef<SDValue> Ops) { 8249 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8250 MachineSDNode *N; 8251 void *IP = nullptr; 8252 8253 if (DoCSE) { 8254 FoldingSetNodeID ID; 8255 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8256 IP = nullptr; 8257 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8258 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8259 } 8260 } 8261 8262 // Allocate a new MachineSDNode. 8263 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8264 createOperands(N, Ops); 8265 8266 if (DoCSE) 8267 CSEMap.InsertNode(N, IP); 8268 8269 InsertNode(N); 8270 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8271 return N; 8272 } 8273 8274 /// getTargetExtractSubreg - A convenience function for creating 8275 /// TargetOpcode::EXTRACT_SUBREG nodes. 8276 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8277 SDValue Operand) { 8278 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8279 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8280 VT, Operand, SRIdxVal); 8281 return SDValue(Subreg, 0); 8282 } 8283 8284 /// getTargetInsertSubreg - A convenience function for creating 8285 /// TargetOpcode::INSERT_SUBREG nodes. 8286 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8287 SDValue Operand, SDValue Subreg) { 8288 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8289 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8290 VT, Operand, Subreg, SRIdxVal); 8291 return SDValue(Result, 0); 8292 } 8293 8294 /// getNodeIfExists - Get the specified node if it's already available, or 8295 /// else return NULL. 8296 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8297 ArrayRef<SDValue> Ops) { 8298 SDNodeFlags Flags; 8299 if (Inserter) 8300 Flags = Inserter->getFlags(); 8301 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8302 } 8303 8304 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8305 ArrayRef<SDValue> Ops, 8306 const SDNodeFlags Flags) { 8307 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8308 FoldingSetNodeID ID; 8309 AddNodeIDNode(ID, Opcode, VTList, Ops); 8310 void *IP = nullptr; 8311 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8312 E->intersectFlagsWith(Flags); 8313 return E; 8314 } 8315 } 8316 return nullptr; 8317 } 8318 8319 /// doesNodeExist - Check if a node exists without modifying its flags. 8320 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 8321 ArrayRef<SDValue> Ops) { 8322 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8323 FoldingSetNodeID ID; 8324 AddNodeIDNode(ID, Opcode, VTList, Ops); 8325 void *IP = nullptr; 8326 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 8327 return true; 8328 } 8329 return false; 8330 } 8331 8332 /// getDbgValue - Creates a SDDbgValue node. 8333 /// 8334 /// SDNode 8335 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8336 SDNode *N, unsigned R, bool IsIndirect, 8337 const DebugLoc &DL, unsigned O) { 8338 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8339 "Expected inlined-at fields to agree"); 8340 return new (DbgInfo->getAlloc()) 8341 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8342 } 8343 8344 /// Constant 8345 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8346 DIExpression *Expr, 8347 const Value *C, 8348 const DebugLoc &DL, unsigned O) { 8349 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8350 "Expected inlined-at fields to agree"); 8351 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8352 } 8353 8354 /// FrameIndex 8355 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8356 DIExpression *Expr, unsigned FI, 8357 bool IsIndirect, 8358 const DebugLoc &DL, 8359 unsigned O) { 8360 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8361 "Expected inlined-at fields to agree"); 8362 return new (DbgInfo->getAlloc()) 8363 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8364 } 8365 8366 /// VReg 8367 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8368 DIExpression *Expr, 8369 unsigned VReg, bool IsIndirect, 8370 const DebugLoc &DL, unsigned O) { 8371 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8372 "Expected inlined-at fields to agree"); 8373 return new (DbgInfo->getAlloc()) 8374 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8375 } 8376 8377 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8378 unsigned OffsetInBits, unsigned SizeInBits, 8379 bool InvalidateDbg) { 8380 SDNode *FromNode = From.getNode(); 8381 SDNode *ToNode = To.getNode(); 8382 assert(FromNode && ToNode && "Can't modify dbg values"); 8383 8384 // PR35338 8385 // TODO: assert(From != To && "Redundant dbg value transfer"); 8386 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8387 if (From == To || FromNode == ToNode) 8388 return; 8389 8390 if (!FromNode->getHasDebugValue()) 8391 return; 8392 8393 SmallVector<SDDbgValue *, 2> ClonedDVs; 8394 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8395 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8396 continue; 8397 8398 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8399 8400 // Just transfer the dbg value attached to From. 8401 if (Dbg->getResNo() != From.getResNo()) 8402 continue; 8403 8404 DIVariable *Var = Dbg->getVariable(); 8405 auto *Expr = Dbg->getExpression(); 8406 // If a fragment is requested, update the expression. 8407 if (SizeInBits) { 8408 // When splitting a larger (e.g., sign-extended) value whose 8409 // lower bits are described with an SDDbgValue, do not attempt 8410 // to transfer the SDDbgValue to the upper bits. 8411 if (auto FI = Expr->getFragmentInfo()) 8412 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8413 continue; 8414 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8415 SizeInBits); 8416 if (!Fragment) 8417 continue; 8418 Expr = *Fragment; 8419 } 8420 // Clone the SDDbgValue and move it to To. 8421 SDDbgValue *Clone = getDbgValue( 8422 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8423 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8424 ClonedDVs.push_back(Clone); 8425 8426 if (InvalidateDbg) { 8427 // Invalidate value and indicate the SDDbgValue should not be emitted. 8428 Dbg->setIsInvalidated(); 8429 Dbg->setIsEmitted(); 8430 } 8431 } 8432 8433 for (SDDbgValue *Dbg : ClonedDVs) 8434 AddDbgValue(Dbg, ToNode, false); 8435 } 8436 8437 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8438 if (!N.getHasDebugValue()) 8439 return; 8440 8441 SmallVector<SDDbgValue *, 2> ClonedDVs; 8442 for (auto DV : GetDbgValues(&N)) { 8443 if (DV->isInvalidated()) 8444 continue; 8445 switch (N.getOpcode()) { 8446 default: 8447 break; 8448 case ISD::ADD: 8449 SDValue N0 = N.getOperand(0); 8450 SDValue N1 = N.getOperand(1); 8451 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8452 isConstantIntBuildVectorOrConstantInt(N1)) { 8453 uint64_t Offset = N.getConstantOperandVal(1); 8454 // Rewrite an ADD constant node into a DIExpression. Since we are 8455 // performing arithmetic to compute the variable's *value* in the 8456 // DIExpression, we need to mark the expression with a 8457 // DW_OP_stack_value. 8458 auto *DIExpr = DV->getExpression(); 8459 DIExpr = 8460 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8461 SDDbgValue *Clone = 8462 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8463 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8464 ClonedDVs.push_back(Clone); 8465 DV->setIsInvalidated(); 8466 DV->setIsEmitted(); 8467 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8468 N0.getNode()->dumprFull(this); 8469 dbgs() << " into " << *DIExpr << '\n'); 8470 } 8471 } 8472 } 8473 8474 for (SDDbgValue *Dbg : ClonedDVs) 8475 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8476 } 8477 8478 /// Creates a SDDbgLabel node. 8479 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8480 const DebugLoc &DL, unsigned O) { 8481 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8482 "Expected inlined-at fields to agree"); 8483 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8484 } 8485 8486 namespace { 8487 8488 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8489 /// pointed to by a use iterator is deleted, increment the use iterator 8490 /// so that it doesn't dangle. 8491 /// 8492 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8493 SDNode::use_iterator &UI; 8494 SDNode::use_iterator &UE; 8495 8496 void NodeDeleted(SDNode *N, SDNode *E) override { 8497 // Increment the iterator as needed. 8498 while (UI != UE && N == *UI) 8499 ++UI; 8500 } 8501 8502 public: 8503 RAUWUpdateListener(SelectionDAG &d, 8504 SDNode::use_iterator &ui, 8505 SDNode::use_iterator &ue) 8506 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8507 }; 8508 8509 } // end anonymous namespace 8510 8511 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8512 /// This can cause recursive merging of nodes in the DAG. 8513 /// 8514 /// This version assumes From has a single result value. 8515 /// 8516 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8517 SDNode *From = FromN.getNode(); 8518 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8519 "Cannot replace with this method!"); 8520 assert(From != To.getNode() && "Cannot replace uses of with self"); 8521 8522 // Preserve Debug Values 8523 transferDbgValues(FromN, To); 8524 8525 // Iterate over all the existing uses of From. New uses will be added 8526 // to the beginning of the use list, which we avoid visiting. 8527 // This specifically avoids visiting uses of From that arise while the 8528 // replacement is happening, because any such uses would be the result 8529 // of CSE: If an existing node looks like From after one of its operands 8530 // is replaced by To, we don't want to replace of all its users with To 8531 // too. See PR3018 for more info. 8532 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8533 RAUWUpdateListener Listener(*this, UI, UE); 8534 while (UI != UE) { 8535 SDNode *User = *UI; 8536 8537 // This node is about to morph, remove its old self from the CSE maps. 8538 RemoveNodeFromCSEMaps(User); 8539 8540 // A user can appear in a use list multiple times, and when this 8541 // happens the uses are usually next to each other in the list. 8542 // To help reduce the number of CSE recomputations, process all 8543 // the uses of this user that we can find this way. 8544 do { 8545 SDUse &Use = UI.getUse(); 8546 ++UI; 8547 Use.set(To); 8548 if (To->isDivergent() != From->isDivergent()) 8549 updateDivergence(User); 8550 } while (UI != UE && *UI == User); 8551 // Now that we have modified User, add it back to the CSE maps. If it 8552 // already exists there, recursively merge the results together. 8553 AddModifiedNodeToCSEMaps(User); 8554 } 8555 8556 // If we just RAUW'd the root, take note. 8557 if (FromN == getRoot()) 8558 setRoot(To); 8559 } 8560 8561 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8562 /// This can cause recursive merging of nodes in the DAG. 8563 /// 8564 /// This version assumes that for each value of From, there is a 8565 /// corresponding value in To in the same position with the same type. 8566 /// 8567 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8568 #ifndef NDEBUG 8569 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8570 assert((!From->hasAnyUseOfValue(i) || 8571 From->getValueType(i) == To->getValueType(i)) && 8572 "Cannot use this version of ReplaceAllUsesWith!"); 8573 #endif 8574 8575 // Handle the trivial case. 8576 if (From == To) 8577 return; 8578 8579 // Preserve Debug Info. Only do this if there's a use. 8580 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8581 if (From->hasAnyUseOfValue(i)) { 8582 assert((i < To->getNumValues()) && "Invalid To location"); 8583 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8584 } 8585 8586 // Iterate over just the existing users of From. See the comments in 8587 // the ReplaceAllUsesWith above. 8588 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8589 RAUWUpdateListener Listener(*this, UI, UE); 8590 while (UI != UE) { 8591 SDNode *User = *UI; 8592 8593 // This node is about to morph, remove its old self from the CSE maps. 8594 RemoveNodeFromCSEMaps(User); 8595 8596 // A user can appear in a use list multiple times, and when this 8597 // happens the uses are usually next to each other in the list. 8598 // To help reduce the number of CSE recomputations, process all 8599 // the uses of this user that we can find this way. 8600 do { 8601 SDUse &Use = UI.getUse(); 8602 ++UI; 8603 Use.setNode(To); 8604 if (To->isDivergent() != From->isDivergent()) 8605 updateDivergence(User); 8606 } while (UI != UE && *UI == User); 8607 8608 // Now that we have modified User, add it back to the CSE maps. If it 8609 // already exists there, recursively merge the results together. 8610 AddModifiedNodeToCSEMaps(User); 8611 } 8612 8613 // If we just RAUW'd the root, take note. 8614 if (From == getRoot().getNode()) 8615 setRoot(SDValue(To, getRoot().getResNo())); 8616 } 8617 8618 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8619 /// This can cause recursive merging of nodes in the DAG. 8620 /// 8621 /// This version can replace From with any result values. To must match the 8622 /// number and types of values returned by From. 8623 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8624 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8625 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8626 8627 // Preserve Debug Info. 8628 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8629 transferDbgValues(SDValue(From, i), To[i]); 8630 8631 // Iterate over just the existing users of From. See the comments in 8632 // the ReplaceAllUsesWith above. 8633 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8634 RAUWUpdateListener Listener(*this, UI, UE); 8635 while (UI != UE) { 8636 SDNode *User = *UI; 8637 8638 // This node is about to morph, remove its old self from the CSE maps. 8639 RemoveNodeFromCSEMaps(User); 8640 8641 // A user can appear in a use list multiple times, and when this happens the 8642 // uses are usually next to each other in the list. To help reduce the 8643 // number of CSE and divergence recomputations, process all the uses of this 8644 // user that we can find this way. 8645 bool To_IsDivergent = false; 8646 do { 8647 SDUse &Use = UI.getUse(); 8648 const SDValue &ToOp = To[Use.getResNo()]; 8649 ++UI; 8650 Use.set(ToOp); 8651 To_IsDivergent |= ToOp->isDivergent(); 8652 } while (UI != UE && *UI == User); 8653 8654 if (To_IsDivergent != From->isDivergent()) 8655 updateDivergence(User); 8656 8657 // Now that we have modified User, add it back to the CSE maps. If it 8658 // already exists there, recursively merge the results together. 8659 AddModifiedNodeToCSEMaps(User); 8660 } 8661 8662 // If we just RAUW'd the root, take note. 8663 if (From == getRoot().getNode()) 8664 setRoot(SDValue(To[getRoot().getResNo()])); 8665 } 8666 8667 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8668 /// uses of other values produced by From.getNode() alone. The Deleted 8669 /// vector is handled the same way as for ReplaceAllUsesWith. 8670 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8671 // Handle the really simple, really trivial case efficiently. 8672 if (From == To) return; 8673 8674 // Handle the simple, trivial, case efficiently. 8675 if (From.getNode()->getNumValues() == 1) { 8676 ReplaceAllUsesWith(From, To); 8677 return; 8678 } 8679 8680 // Preserve Debug Info. 8681 transferDbgValues(From, To); 8682 8683 // Iterate over just the existing users of From. See the comments in 8684 // the ReplaceAllUsesWith above. 8685 SDNode::use_iterator UI = From.getNode()->use_begin(), 8686 UE = From.getNode()->use_end(); 8687 RAUWUpdateListener Listener(*this, UI, UE); 8688 while (UI != UE) { 8689 SDNode *User = *UI; 8690 bool UserRemovedFromCSEMaps = false; 8691 8692 // A user can appear in a use list multiple times, and when this 8693 // happens the uses are usually next to each other in the list. 8694 // To help reduce the number of CSE recomputations, process all 8695 // the uses of this user that we can find this way. 8696 do { 8697 SDUse &Use = UI.getUse(); 8698 8699 // Skip uses of different values from the same node. 8700 if (Use.getResNo() != From.getResNo()) { 8701 ++UI; 8702 continue; 8703 } 8704 8705 // If this node hasn't been modified yet, it's still in the CSE maps, 8706 // so remove its old self from the CSE maps. 8707 if (!UserRemovedFromCSEMaps) { 8708 RemoveNodeFromCSEMaps(User); 8709 UserRemovedFromCSEMaps = true; 8710 } 8711 8712 ++UI; 8713 Use.set(To); 8714 if (To->isDivergent() != From->isDivergent()) 8715 updateDivergence(User); 8716 } while (UI != UE && *UI == User); 8717 // We are iterating over all uses of the From node, so if a use 8718 // doesn't use the specific value, no changes are made. 8719 if (!UserRemovedFromCSEMaps) 8720 continue; 8721 8722 // Now that we have modified User, add it back to the CSE maps. If it 8723 // already exists there, recursively merge the results together. 8724 AddModifiedNodeToCSEMaps(User); 8725 } 8726 8727 // If we just RAUW'd the root, take note. 8728 if (From == getRoot()) 8729 setRoot(To); 8730 } 8731 8732 namespace { 8733 8734 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8735 /// to record information about a use. 8736 struct UseMemo { 8737 SDNode *User; 8738 unsigned Index; 8739 SDUse *Use; 8740 }; 8741 8742 /// operator< - Sort Memos by User. 8743 bool operator<(const UseMemo &L, const UseMemo &R) { 8744 return (intptr_t)L.User < (intptr_t)R.User; 8745 } 8746 8747 } // end anonymous namespace 8748 8749 bool SelectionDAG::calculateDivergence(SDNode *N) { 8750 if (TLI->isSDNodeAlwaysUniform(N)) { 8751 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 8752 "Conflicting divergence information!"); 8753 return false; 8754 } 8755 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 8756 return true; 8757 for (auto &Op : N->ops()) { 8758 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 8759 return true; 8760 } 8761 return false; 8762 } 8763 8764 void SelectionDAG::updateDivergence(SDNode *N) { 8765 SmallVector<SDNode *, 16> Worklist(1, N); 8766 do { 8767 N = Worklist.pop_back_val(); 8768 bool IsDivergent = calculateDivergence(N); 8769 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8770 N->SDNodeBits.IsDivergent = IsDivergent; 8771 llvm::append_range(Worklist, N->uses()); 8772 } 8773 } while (!Worklist.empty()); 8774 } 8775 8776 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8777 DenseMap<SDNode *, unsigned> Degree; 8778 Order.reserve(AllNodes.size()); 8779 for (auto &N : allnodes()) { 8780 unsigned NOps = N.getNumOperands(); 8781 Degree[&N] = NOps; 8782 if (0 == NOps) 8783 Order.push_back(&N); 8784 } 8785 for (size_t I = 0; I != Order.size(); ++I) { 8786 SDNode *N = Order[I]; 8787 for (auto U : N->uses()) { 8788 unsigned &UnsortedOps = Degree[U]; 8789 if (0 == --UnsortedOps) 8790 Order.push_back(U); 8791 } 8792 } 8793 } 8794 8795 #ifndef NDEBUG 8796 void SelectionDAG::VerifyDAGDiverence() { 8797 std::vector<SDNode *> TopoOrder; 8798 CreateTopologicalOrder(TopoOrder); 8799 for (auto *N : TopoOrder) { 8800 assert(calculateDivergence(N) == N->isDivergent() && 8801 "Divergence bit inconsistency detected"); 8802 } 8803 } 8804 #endif 8805 8806 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8807 /// uses of other values produced by From.getNode() alone. The same value 8808 /// may appear in both the From and To list. The Deleted vector is 8809 /// handled the same way as for ReplaceAllUsesWith. 8810 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8811 const SDValue *To, 8812 unsigned Num){ 8813 // Handle the simple, trivial case efficiently. 8814 if (Num == 1) 8815 return ReplaceAllUsesOfValueWith(*From, *To); 8816 8817 transferDbgValues(*From, *To); 8818 8819 // Read up all the uses and make records of them. This helps 8820 // processing new uses that are introduced during the 8821 // replacement process. 8822 SmallVector<UseMemo, 4> Uses; 8823 for (unsigned i = 0; i != Num; ++i) { 8824 unsigned FromResNo = From[i].getResNo(); 8825 SDNode *FromNode = From[i].getNode(); 8826 for (SDNode::use_iterator UI = FromNode->use_begin(), 8827 E = FromNode->use_end(); UI != E; ++UI) { 8828 SDUse &Use = UI.getUse(); 8829 if (Use.getResNo() == FromResNo) { 8830 UseMemo Memo = { *UI, i, &Use }; 8831 Uses.push_back(Memo); 8832 } 8833 } 8834 } 8835 8836 // Sort the uses, so that all the uses from a given User are together. 8837 llvm::sort(Uses); 8838 8839 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8840 UseIndex != UseIndexEnd; ) { 8841 // We know that this user uses some value of From. If it is the right 8842 // value, update it. 8843 SDNode *User = Uses[UseIndex].User; 8844 8845 // This node is about to morph, remove its old self from the CSE maps. 8846 RemoveNodeFromCSEMaps(User); 8847 8848 // The Uses array is sorted, so all the uses for a given User 8849 // are next to each other in the list. 8850 // To help reduce the number of CSE recomputations, process all 8851 // the uses of this user that we can find this way. 8852 do { 8853 unsigned i = Uses[UseIndex].Index; 8854 SDUse &Use = *Uses[UseIndex].Use; 8855 ++UseIndex; 8856 8857 Use.set(To[i]); 8858 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8859 8860 // Now that we have modified User, add it back to the CSE maps. If it 8861 // already exists there, recursively merge the results together. 8862 AddModifiedNodeToCSEMaps(User); 8863 } 8864 } 8865 8866 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8867 /// based on their topological order. It returns the maximum id and a vector 8868 /// of the SDNodes* in assigned order by reference. 8869 unsigned SelectionDAG::AssignTopologicalOrder() { 8870 unsigned DAGSize = 0; 8871 8872 // SortedPos tracks the progress of the algorithm. Nodes before it are 8873 // sorted, nodes after it are unsorted. When the algorithm completes 8874 // it is at the end of the list. 8875 allnodes_iterator SortedPos = allnodes_begin(); 8876 8877 // Visit all the nodes. Move nodes with no operands to the front of 8878 // the list immediately. Annotate nodes that do have operands with their 8879 // operand count. Before we do this, the Node Id fields of the nodes 8880 // may contain arbitrary values. After, the Node Id fields for nodes 8881 // before SortedPos will contain the topological sort index, and the 8882 // Node Id fields for nodes At SortedPos and after will contain the 8883 // count of outstanding operands. 8884 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8885 SDNode *N = &*I++; 8886 checkForCycles(N, this); 8887 unsigned Degree = N->getNumOperands(); 8888 if (Degree == 0) { 8889 // A node with no uses, add it to the result array immediately. 8890 N->setNodeId(DAGSize++); 8891 allnodes_iterator Q(N); 8892 if (Q != SortedPos) 8893 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8894 assert(SortedPos != AllNodes.end() && "Overran node list"); 8895 ++SortedPos; 8896 } else { 8897 // Temporarily use the Node Id as scratch space for the degree count. 8898 N->setNodeId(Degree); 8899 } 8900 } 8901 8902 // Visit all the nodes. As we iterate, move nodes into sorted order, 8903 // such that by the time the end is reached all nodes will be sorted. 8904 for (SDNode &Node : allnodes()) { 8905 SDNode *N = &Node; 8906 checkForCycles(N, this); 8907 // N is in sorted position, so all its uses have one less operand 8908 // that needs to be sorted. 8909 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8910 UI != UE; ++UI) { 8911 SDNode *P = *UI; 8912 unsigned Degree = P->getNodeId(); 8913 assert(Degree != 0 && "Invalid node degree"); 8914 --Degree; 8915 if (Degree == 0) { 8916 // All of P's operands are sorted, so P may sorted now. 8917 P->setNodeId(DAGSize++); 8918 if (P->getIterator() != SortedPos) 8919 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8920 assert(SortedPos != AllNodes.end() && "Overran node list"); 8921 ++SortedPos; 8922 } else { 8923 // Update P's outstanding operand count. 8924 P->setNodeId(Degree); 8925 } 8926 } 8927 if (Node.getIterator() == SortedPos) { 8928 #ifndef NDEBUG 8929 allnodes_iterator I(N); 8930 SDNode *S = &*++I; 8931 dbgs() << "Overran sorted position:\n"; 8932 S->dumprFull(this); dbgs() << "\n"; 8933 dbgs() << "Checking if this is due to cycles\n"; 8934 checkForCycles(this, true); 8935 #endif 8936 llvm_unreachable(nullptr); 8937 } 8938 } 8939 8940 assert(SortedPos == AllNodes.end() && 8941 "Topological sort incomplete!"); 8942 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8943 "First node in topological sort is not the entry token!"); 8944 assert(AllNodes.front().getNodeId() == 0 && 8945 "First node in topological sort has non-zero id!"); 8946 assert(AllNodes.front().getNumOperands() == 0 && 8947 "First node in topological sort has operands!"); 8948 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8949 "Last node in topologic sort has unexpected id!"); 8950 assert(AllNodes.back().use_empty() && 8951 "Last node in topologic sort has users!"); 8952 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8953 return DAGSize; 8954 } 8955 8956 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8957 /// value is produced by SD. 8958 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8959 if (SD) { 8960 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8961 SD->setHasDebugValue(true); 8962 } 8963 DbgInfo->add(DB, SD, isParameter); 8964 } 8965 8966 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8967 DbgInfo->add(DB); 8968 } 8969 8970 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 8971 SDValue NewMemOpChain) { 8972 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 8973 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 8974 // The new memory operation must have the same position as the old load in 8975 // terms of memory dependency. Create a TokenFactor for the old load and new 8976 // memory operation and update uses of the old load's output chain to use that 8977 // TokenFactor. 8978 if (OldChain == NewMemOpChain || OldChain.use_empty()) 8979 return NewMemOpChain; 8980 8981 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 8982 OldChain, NewMemOpChain); 8983 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8984 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 8985 return TokenFactor; 8986 } 8987 8988 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8989 SDValue NewMemOp) { 8990 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8991 SDValue OldChain = SDValue(OldLoad, 1); 8992 SDValue NewMemOpChain = NewMemOp.getValue(1); 8993 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 8994 } 8995 8996 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8997 Function **OutFunction) { 8998 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8999 9000 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9001 auto *Module = MF->getFunction().getParent(); 9002 auto *Function = Module->getFunction(Symbol); 9003 9004 if (OutFunction != nullptr) 9005 *OutFunction = Function; 9006 9007 if (Function != nullptr) { 9008 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9009 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9010 } 9011 9012 std::string ErrorStr; 9013 raw_string_ostream ErrorFormatter(ErrorStr); 9014 9015 ErrorFormatter << "Undefined external symbol "; 9016 ErrorFormatter << '"' << Symbol << '"'; 9017 ErrorFormatter.flush(); 9018 9019 report_fatal_error(ErrorStr); 9020 } 9021 9022 //===----------------------------------------------------------------------===// 9023 // SDNode Class 9024 //===----------------------------------------------------------------------===// 9025 9026 bool llvm::isNullConstant(SDValue V) { 9027 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9028 return Const != nullptr && Const->isNullValue(); 9029 } 9030 9031 bool llvm::isNullFPConstant(SDValue V) { 9032 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9033 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9034 } 9035 9036 bool llvm::isAllOnesConstant(SDValue V) { 9037 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9038 return Const != nullptr && Const->isAllOnesValue(); 9039 } 9040 9041 bool llvm::isOneConstant(SDValue V) { 9042 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9043 return Const != nullptr && Const->isOne(); 9044 } 9045 9046 SDValue llvm::peekThroughBitcasts(SDValue V) { 9047 while (V.getOpcode() == ISD::BITCAST) 9048 V = V.getOperand(0); 9049 return V; 9050 } 9051 9052 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9053 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9054 V = V.getOperand(0); 9055 return V; 9056 } 9057 9058 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9059 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9060 V = V.getOperand(0); 9061 return V; 9062 } 9063 9064 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9065 if (V.getOpcode() != ISD::XOR) 9066 return false; 9067 V = peekThroughBitcasts(V.getOperand(1)); 9068 unsigned NumBits = V.getScalarValueSizeInBits(); 9069 ConstantSDNode *C = 9070 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9071 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9072 } 9073 9074 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9075 bool AllowTruncation) { 9076 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9077 return CN; 9078 9079 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9080 BitVector UndefElements; 9081 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9082 9083 // BuildVectors can truncate their operands. Ignore that case here unless 9084 // AllowTruncation is set. 9085 if (CN && (UndefElements.none() || AllowUndefs)) { 9086 EVT CVT = CN->getValueType(0); 9087 EVT NSVT = N.getValueType().getScalarType(); 9088 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9089 if (AllowTruncation || (CVT == NSVT)) 9090 return CN; 9091 } 9092 } 9093 9094 return nullptr; 9095 } 9096 9097 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9098 bool AllowUndefs, 9099 bool AllowTruncation) { 9100 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9101 return CN; 9102 9103 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9104 BitVector UndefElements; 9105 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9106 9107 // BuildVectors can truncate their operands. Ignore that case here unless 9108 // AllowTruncation is set. 9109 if (CN && (UndefElements.none() || AllowUndefs)) { 9110 EVT CVT = CN->getValueType(0); 9111 EVT NSVT = N.getValueType().getScalarType(); 9112 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9113 if (AllowTruncation || (CVT == NSVT)) 9114 return CN; 9115 } 9116 } 9117 9118 return nullptr; 9119 } 9120 9121 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9122 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9123 return CN; 9124 9125 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9126 BitVector UndefElements; 9127 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9128 if (CN && (UndefElements.none() || AllowUndefs)) 9129 return CN; 9130 } 9131 9132 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9133 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9134 return CN; 9135 9136 return nullptr; 9137 } 9138 9139 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9140 const APInt &DemandedElts, 9141 bool AllowUndefs) { 9142 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9143 return CN; 9144 9145 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9146 BitVector UndefElements; 9147 ConstantFPSDNode *CN = 9148 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9149 if (CN && (UndefElements.none() || AllowUndefs)) 9150 return CN; 9151 } 9152 9153 return nullptr; 9154 } 9155 9156 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9157 // TODO: may want to use peekThroughBitcast() here. 9158 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9159 return C && C->isNullValue(); 9160 } 9161 9162 bool llvm::isOneOrOneSplat(SDValue N) { 9163 // TODO: may want to use peekThroughBitcast() here. 9164 unsigned BitWidth = N.getScalarValueSizeInBits(); 9165 ConstantSDNode *C = isConstOrConstSplat(N); 9166 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9167 } 9168 9169 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 9170 N = peekThroughBitcasts(N); 9171 unsigned BitWidth = N.getScalarValueSizeInBits(); 9172 ConstantSDNode *C = isConstOrConstSplat(N); 9173 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9174 } 9175 9176 HandleSDNode::~HandleSDNode() { 9177 DropOperands(); 9178 } 9179 9180 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9181 const DebugLoc &DL, 9182 const GlobalValue *GA, EVT VT, 9183 int64_t o, unsigned TF) 9184 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9185 TheGlobal = GA; 9186 } 9187 9188 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9189 EVT VT, unsigned SrcAS, 9190 unsigned DestAS) 9191 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9192 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9193 9194 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9195 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9196 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9197 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9198 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9199 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9200 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9201 9202 // We check here that the size of the memory operand fits within the size of 9203 // the MMO. This is because the MMO might indicate only a possible address 9204 // range instead of specifying the affected memory addresses precisely. 9205 // TODO: Make MachineMemOperands aware of scalable vectors. 9206 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9207 "Size mismatch!"); 9208 } 9209 9210 /// Profile - Gather unique data for the node. 9211 /// 9212 void SDNode::Profile(FoldingSetNodeID &ID) const { 9213 AddNodeIDNode(ID, this); 9214 } 9215 9216 namespace { 9217 9218 struct EVTArray { 9219 std::vector<EVT> VTs; 9220 9221 EVTArray() { 9222 VTs.reserve(MVT::LAST_VALUETYPE); 9223 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9224 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9225 } 9226 }; 9227 9228 } // end anonymous namespace 9229 9230 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9231 static ManagedStatic<EVTArray> SimpleVTArray; 9232 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9233 9234 /// getValueTypeList - Return a pointer to the specified value type. 9235 /// 9236 const EVT *SDNode::getValueTypeList(EVT VT) { 9237 if (VT.isExtended()) { 9238 sys::SmartScopedLock<true> Lock(*VTMutex); 9239 return &(*EVTs->insert(VT).first); 9240 } else { 9241 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9242 "Value type out of range!"); 9243 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9244 } 9245 } 9246 9247 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9248 /// indicated value. This method ignores uses of other values defined by this 9249 /// operation. 9250 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9251 assert(Value < getNumValues() && "Bad value!"); 9252 9253 // TODO: Only iterate over uses of a given value of the node 9254 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9255 if (UI.getUse().getResNo() == Value) { 9256 if (NUses == 0) 9257 return false; 9258 --NUses; 9259 } 9260 } 9261 9262 // Found exactly the right number of uses? 9263 return NUses == 0; 9264 } 9265 9266 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9267 /// value. This method ignores uses of other values defined by this operation. 9268 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9269 assert(Value < getNumValues() && "Bad value!"); 9270 9271 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9272 if (UI.getUse().getResNo() == Value) 9273 return true; 9274 9275 return false; 9276 } 9277 9278 /// isOnlyUserOf - Return true if this node is the only use of N. 9279 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9280 bool Seen = false; 9281 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9282 SDNode *User = *I; 9283 if (User == this) 9284 Seen = true; 9285 else 9286 return false; 9287 } 9288 9289 return Seen; 9290 } 9291 9292 /// Return true if the only users of N are contained in Nodes. 9293 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9294 bool Seen = false; 9295 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9296 SDNode *User = *I; 9297 if (llvm::is_contained(Nodes, User)) 9298 Seen = true; 9299 else 9300 return false; 9301 } 9302 9303 return Seen; 9304 } 9305 9306 /// isOperand - Return true if this node is an operand of N. 9307 bool SDValue::isOperandOf(const SDNode *N) const { 9308 return is_contained(N->op_values(), *this); 9309 } 9310 9311 bool SDNode::isOperandOf(const SDNode *N) const { 9312 return any_of(N->op_values(), 9313 [this](SDValue Op) { return this == Op.getNode(); }); 9314 } 9315 9316 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9317 /// be a chain) reaches the specified operand without crossing any 9318 /// side-effecting instructions on any chain path. In practice, this looks 9319 /// through token factors and non-volatile loads. In order to remain efficient, 9320 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9321 /// 9322 /// Note that we only need to examine chains when we're searching for 9323 /// side-effects; SelectionDAG requires that all side-effects are represented 9324 /// by chains, even if another operand would force a specific ordering. This 9325 /// constraint is necessary to allow transformations like splitting loads. 9326 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9327 unsigned Depth) const { 9328 if (*this == Dest) return true; 9329 9330 // Don't search too deeply, we just want to be able to see through 9331 // TokenFactor's etc. 9332 if (Depth == 0) return false; 9333 9334 // If this is a token factor, all inputs to the TF happen in parallel. 9335 if (getOpcode() == ISD::TokenFactor) { 9336 // First, try a shallow search. 9337 if (is_contained((*this)->ops(), Dest)) { 9338 // We found the chain we want as an operand of this TokenFactor. 9339 // Essentially, we reach the chain without side-effects if we could 9340 // serialize the TokenFactor into a simple chain of operations with 9341 // Dest as the last operation. This is automatically true if the 9342 // chain has one use: there are no other ordering constraints. 9343 // If the chain has more than one use, we give up: some other 9344 // use of Dest might force a side-effect between Dest and the current 9345 // node. 9346 if (Dest.hasOneUse()) 9347 return true; 9348 } 9349 // Next, try a deep search: check whether every operand of the TokenFactor 9350 // reaches Dest. 9351 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9352 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9353 }); 9354 } 9355 9356 // Loads don't have side effects, look through them. 9357 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9358 if (Ld->isUnordered()) 9359 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9360 } 9361 return false; 9362 } 9363 9364 bool SDNode::hasPredecessor(const SDNode *N) const { 9365 SmallPtrSet<const SDNode *, 32> Visited; 9366 SmallVector<const SDNode *, 16> Worklist; 9367 Worklist.push_back(this); 9368 return hasPredecessorHelper(N, Visited, Worklist); 9369 } 9370 9371 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9372 this->Flags.intersectWith(Flags); 9373 } 9374 9375 SDValue 9376 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9377 ArrayRef<ISD::NodeType> CandidateBinOps, 9378 bool AllowPartials) { 9379 // The pattern must end in an extract from index 0. 9380 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9381 !isNullConstant(Extract->getOperand(1))) 9382 return SDValue(); 9383 9384 // Match against one of the candidate binary ops. 9385 SDValue Op = Extract->getOperand(0); 9386 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9387 return Op.getOpcode() == unsigned(BinOp); 9388 })) 9389 return SDValue(); 9390 9391 // Floating-point reductions may require relaxed constraints on the final step 9392 // of the reduction because they may reorder intermediate operations. 9393 unsigned CandidateBinOp = Op.getOpcode(); 9394 if (Op.getValueType().isFloatingPoint()) { 9395 SDNodeFlags Flags = Op->getFlags(); 9396 switch (CandidateBinOp) { 9397 case ISD::FADD: 9398 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9399 return SDValue(); 9400 break; 9401 default: 9402 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9403 } 9404 } 9405 9406 // Matching failed - attempt to see if we did enough stages that a partial 9407 // reduction from a subvector is possible. 9408 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9409 if (!AllowPartials || !Op) 9410 return SDValue(); 9411 EVT OpVT = Op.getValueType(); 9412 EVT OpSVT = OpVT.getScalarType(); 9413 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9414 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9415 return SDValue(); 9416 BinOp = (ISD::NodeType)CandidateBinOp; 9417 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9418 getVectorIdxConstant(0, SDLoc(Op))); 9419 }; 9420 9421 // At each stage, we're looking for something that looks like: 9422 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9423 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9424 // i32 undef, i32 undef, i32 undef, i32 undef> 9425 // %a = binop <8 x i32> %op, %s 9426 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9427 // we expect something like: 9428 // <4,5,6,7,u,u,u,u> 9429 // <2,3,u,u,u,u,u,u> 9430 // <1,u,u,u,u,u,u,u> 9431 // While a partial reduction match would be: 9432 // <2,3,u,u,u,u,u,u> 9433 // <1,u,u,u,u,u,u,u> 9434 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9435 SDValue PrevOp; 9436 for (unsigned i = 0; i < Stages; ++i) { 9437 unsigned MaskEnd = (1 << i); 9438 9439 if (Op.getOpcode() != CandidateBinOp) 9440 return PartialReduction(PrevOp, MaskEnd); 9441 9442 SDValue Op0 = Op.getOperand(0); 9443 SDValue Op1 = Op.getOperand(1); 9444 9445 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9446 if (Shuffle) { 9447 Op = Op1; 9448 } else { 9449 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9450 Op = Op0; 9451 } 9452 9453 // The first operand of the shuffle should be the same as the other operand 9454 // of the binop. 9455 if (!Shuffle || Shuffle->getOperand(0) != Op) 9456 return PartialReduction(PrevOp, MaskEnd); 9457 9458 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9459 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9460 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9461 return PartialReduction(PrevOp, MaskEnd); 9462 9463 PrevOp = Op; 9464 } 9465 9466 // Handle subvector reductions, which tend to appear after the shuffle 9467 // reduction stages. 9468 while (Op.getOpcode() == CandidateBinOp) { 9469 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9470 SDValue Op0 = Op.getOperand(0); 9471 SDValue Op1 = Op.getOperand(1); 9472 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9473 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9474 Op0.getOperand(0) != Op1.getOperand(0)) 9475 break; 9476 SDValue Src = Op0.getOperand(0); 9477 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9478 if (NumSrcElts != (2 * NumElts)) 9479 break; 9480 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9481 Op1.getConstantOperandAPInt(1) == NumElts) && 9482 !(Op1.getConstantOperandAPInt(1) == 0 && 9483 Op0.getConstantOperandAPInt(1) == NumElts)) 9484 break; 9485 Op = Src; 9486 } 9487 9488 BinOp = (ISD::NodeType)CandidateBinOp; 9489 return Op; 9490 } 9491 9492 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9493 assert(N->getNumValues() == 1 && 9494 "Can't unroll a vector with multiple results!"); 9495 9496 EVT VT = N->getValueType(0); 9497 unsigned NE = VT.getVectorNumElements(); 9498 EVT EltVT = VT.getVectorElementType(); 9499 SDLoc dl(N); 9500 9501 SmallVector<SDValue, 8> Scalars; 9502 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9503 9504 // If ResNE is 0, fully unroll the vector op. 9505 if (ResNE == 0) 9506 ResNE = NE; 9507 else if (NE > ResNE) 9508 NE = ResNE; 9509 9510 unsigned i; 9511 for (i= 0; i != NE; ++i) { 9512 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9513 SDValue Operand = N->getOperand(j); 9514 EVT OperandVT = Operand.getValueType(); 9515 if (OperandVT.isVector()) { 9516 // A vector operand; extract a single element. 9517 EVT OperandEltVT = OperandVT.getVectorElementType(); 9518 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9519 Operand, getVectorIdxConstant(i, dl)); 9520 } else { 9521 // A scalar operand; just use it as is. 9522 Operands[j] = Operand; 9523 } 9524 } 9525 9526 switch (N->getOpcode()) { 9527 default: { 9528 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9529 N->getFlags())); 9530 break; 9531 } 9532 case ISD::VSELECT: 9533 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9534 break; 9535 case ISD::SHL: 9536 case ISD::SRA: 9537 case ISD::SRL: 9538 case ISD::ROTL: 9539 case ISD::ROTR: 9540 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9541 getShiftAmountOperand(Operands[0].getValueType(), 9542 Operands[1]))); 9543 break; 9544 case ISD::SIGN_EXTEND_INREG: { 9545 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9546 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9547 Operands[0], 9548 getValueType(ExtVT))); 9549 } 9550 } 9551 } 9552 9553 for (; i < ResNE; ++i) 9554 Scalars.push_back(getUNDEF(EltVT)); 9555 9556 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9557 return getBuildVector(VecVT, dl, Scalars); 9558 } 9559 9560 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9561 SDNode *N, unsigned ResNE) { 9562 unsigned Opcode = N->getOpcode(); 9563 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9564 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9565 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9566 "Expected an overflow opcode"); 9567 9568 EVT ResVT = N->getValueType(0); 9569 EVT OvVT = N->getValueType(1); 9570 EVT ResEltVT = ResVT.getVectorElementType(); 9571 EVT OvEltVT = OvVT.getVectorElementType(); 9572 SDLoc dl(N); 9573 9574 // If ResNE is 0, fully unroll the vector op. 9575 unsigned NE = ResVT.getVectorNumElements(); 9576 if (ResNE == 0) 9577 ResNE = NE; 9578 else if (NE > ResNE) 9579 NE = ResNE; 9580 9581 SmallVector<SDValue, 8> LHSScalars; 9582 SmallVector<SDValue, 8> RHSScalars; 9583 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9584 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9585 9586 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9587 SDVTList VTs = getVTList(ResEltVT, SVT); 9588 SmallVector<SDValue, 8> ResScalars; 9589 SmallVector<SDValue, 8> OvScalars; 9590 for (unsigned i = 0; i < NE; ++i) { 9591 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9592 SDValue Ov = 9593 getSelect(dl, OvEltVT, Res.getValue(1), 9594 getBoolConstant(true, dl, OvEltVT, ResVT), 9595 getConstant(0, dl, OvEltVT)); 9596 9597 ResScalars.push_back(Res); 9598 OvScalars.push_back(Ov); 9599 } 9600 9601 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9602 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9603 9604 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9605 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9606 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9607 getBuildVector(NewOvVT, dl, OvScalars)); 9608 } 9609 9610 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9611 LoadSDNode *Base, 9612 unsigned Bytes, 9613 int Dist) const { 9614 if (LD->isVolatile() || Base->isVolatile()) 9615 return false; 9616 // TODO: probably too restrictive for atomics, revisit 9617 if (!LD->isSimple()) 9618 return false; 9619 if (LD->isIndexed() || Base->isIndexed()) 9620 return false; 9621 if (LD->getChain() != Base->getChain()) 9622 return false; 9623 EVT VT = LD->getValueType(0); 9624 if (VT.getSizeInBits() / 8 != Bytes) 9625 return false; 9626 9627 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9628 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9629 9630 int64_t Offset = 0; 9631 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9632 return (Dist * Bytes == Offset); 9633 return false; 9634 } 9635 9636 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9637 /// if it cannot be inferred. 9638 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9639 // If this is a GlobalAddress + cst, return the alignment. 9640 const GlobalValue *GV = nullptr; 9641 int64_t GVOffset = 0; 9642 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9643 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9644 KnownBits Known(PtrWidth); 9645 llvm::computeKnownBits(GV, Known, getDataLayout()); 9646 unsigned AlignBits = Known.countMinTrailingZeros(); 9647 if (AlignBits) 9648 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9649 } 9650 9651 // If this is a direct reference to a stack slot, use information about the 9652 // stack slot's alignment. 9653 int FrameIdx = INT_MIN; 9654 int64_t FrameOffset = 0; 9655 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9656 FrameIdx = FI->getIndex(); 9657 } else if (isBaseWithConstantOffset(Ptr) && 9658 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9659 // Handle FI+Cst 9660 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9661 FrameOffset = Ptr.getConstantOperandVal(1); 9662 } 9663 9664 if (FrameIdx != INT_MIN) { 9665 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9666 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9667 } 9668 9669 return None; 9670 } 9671 9672 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9673 /// which is split (or expanded) into two not necessarily identical pieces. 9674 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9675 // Currently all types are split in half. 9676 EVT LoVT, HiVT; 9677 if (!VT.isVector()) 9678 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9679 else 9680 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9681 9682 return std::make_pair(LoVT, HiVT); 9683 } 9684 9685 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9686 /// type, dependent on an enveloping VT that has been split into two identical 9687 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9688 std::pair<EVT, EVT> 9689 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9690 bool *HiIsEmpty) const { 9691 EVT EltTp = VT.getVectorElementType(); 9692 // Examples: 9693 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9694 // custom VL=9 with enveloping VL=8/8 yields 8/1 9695 // custom VL=10 with enveloping VL=8/8 yields 8/2 9696 // etc. 9697 ElementCount VTNumElts = VT.getVectorElementCount(); 9698 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 9699 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 9700 "Mixing fixed width and scalable vectors when enveloping a type"); 9701 EVT LoVT, HiVT; 9702 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 9703 LoVT = EnvVT; 9704 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 9705 *HiIsEmpty = false; 9706 } else { 9707 // Flag that hi type has zero storage size, but return split envelop type 9708 // (this would be easier if vector types with zero elements were allowed). 9709 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 9710 HiVT = EnvVT; 9711 *HiIsEmpty = true; 9712 } 9713 return std::make_pair(LoVT, HiVT); 9714 } 9715 9716 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9717 /// low/high part. 9718 std::pair<SDValue, SDValue> 9719 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9720 const EVT &HiVT) { 9721 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 9722 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 9723 "Splitting vector with an invalid mixture of fixed and scalable " 9724 "vector types"); 9725 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 9726 N.getValueType().getVectorMinNumElements() && 9727 "More vector elements requested than available!"); 9728 SDValue Lo, Hi; 9729 Lo = 9730 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9731 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 9732 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 9733 // IDX with the runtime scaling factor of the result vector type. For 9734 // fixed-width result vectors, that runtime scaling factor is 1. 9735 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9736 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 9737 return std::make_pair(Lo, Hi); 9738 } 9739 9740 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9741 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9742 EVT VT = N.getValueType(); 9743 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9744 NextPowerOf2(VT.getVectorNumElements())); 9745 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9746 getVectorIdxConstant(0, DL)); 9747 } 9748 9749 void SelectionDAG::ExtractVectorElements(SDValue Op, 9750 SmallVectorImpl<SDValue> &Args, 9751 unsigned Start, unsigned Count, 9752 EVT EltVT) { 9753 EVT VT = Op.getValueType(); 9754 if (Count == 0) 9755 Count = VT.getVectorNumElements(); 9756 if (EltVT == EVT()) 9757 EltVT = VT.getVectorElementType(); 9758 SDLoc SL(Op); 9759 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9760 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9761 getVectorIdxConstant(i, SL))); 9762 } 9763 } 9764 9765 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9766 unsigned GlobalAddressSDNode::getAddressSpace() const { 9767 return getGlobal()->getType()->getAddressSpace(); 9768 } 9769 9770 Type *ConstantPoolSDNode::getType() const { 9771 if (isMachineConstantPoolEntry()) 9772 return Val.MachineCPVal->getType(); 9773 return Val.ConstVal->getType(); 9774 } 9775 9776 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9777 unsigned &SplatBitSize, 9778 bool &HasAnyUndefs, 9779 unsigned MinSplatBits, 9780 bool IsBigEndian) const { 9781 EVT VT = getValueType(0); 9782 assert(VT.isVector() && "Expected a vector type"); 9783 unsigned VecWidth = VT.getSizeInBits(); 9784 if (MinSplatBits > VecWidth) 9785 return false; 9786 9787 // FIXME: The widths are based on this node's type, but build vectors can 9788 // truncate their operands. 9789 SplatValue = APInt(VecWidth, 0); 9790 SplatUndef = APInt(VecWidth, 0); 9791 9792 // Get the bits. Bits with undefined values (when the corresponding element 9793 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9794 // in SplatValue. If any of the values are not constant, give up and return 9795 // false. 9796 unsigned int NumOps = getNumOperands(); 9797 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9798 unsigned EltWidth = VT.getScalarSizeInBits(); 9799 9800 for (unsigned j = 0; j < NumOps; ++j) { 9801 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9802 SDValue OpVal = getOperand(i); 9803 unsigned BitPos = j * EltWidth; 9804 9805 if (OpVal.isUndef()) 9806 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9807 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9808 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9809 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9810 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9811 else 9812 return false; 9813 } 9814 9815 // The build_vector is all constants or undefs. Find the smallest element 9816 // size that splats the vector. 9817 HasAnyUndefs = (SplatUndef != 0); 9818 9819 // FIXME: This does not work for vectors with elements less than 8 bits. 9820 while (VecWidth > 8) { 9821 unsigned HalfSize = VecWidth / 2; 9822 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9823 APInt LowValue = SplatValue.trunc(HalfSize); 9824 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9825 APInt LowUndef = SplatUndef.trunc(HalfSize); 9826 9827 // If the two halves do not match (ignoring undef bits), stop here. 9828 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9829 MinSplatBits > HalfSize) 9830 break; 9831 9832 SplatValue = HighValue | LowValue; 9833 SplatUndef = HighUndef & LowUndef; 9834 9835 VecWidth = HalfSize; 9836 } 9837 9838 SplatBitSize = VecWidth; 9839 return true; 9840 } 9841 9842 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9843 BitVector *UndefElements) const { 9844 unsigned NumOps = getNumOperands(); 9845 if (UndefElements) { 9846 UndefElements->clear(); 9847 UndefElements->resize(NumOps); 9848 } 9849 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9850 if (!DemandedElts) 9851 return SDValue(); 9852 SDValue Splatted; 9853 for (unsigned i = 0; i != NumOps; ++i) { 9854 if (!DemandedElts[i]) 9855 continue; 9856 SDValue Op = getOperand(i); 9857 if (Op.isUndef()) { 9858 if (UndefElements) 9859 (*UndefElements)[i] = true; 9860 } else if (!Splatted) { 9861 Splatted = Op; 9862 } else if (Splatted != Op) { 9863 return SDValue(); 9864 } 9865 } 9866 9867 if (!Splatted) { 9868 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9869 assert(getOperand(FirstDemandedIdx).isUndef() && 9870 "Can only have a splat without a constant for all undefs."); 9871 return getOperand(FirstDemandedIdx); 9872 } 9873 9874 return Splatted; 9875 } 9876 9877 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9878 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9879 return getSplatValue(DemandedElts, UndefElements); 9880 } 9881 9882 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 9883 SmallVectorImpl<SDValue> &Sequence, 9884 BitVector *UndefElements) const { 9885 unsigned NumOps = getNumOperands(); 9886 Sequence.clear(); 9887 if (UndefElements) { 9888 UndefElements->clear(); 9889 UndefElements->resize(NumOps); 9890 } 9891 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9892 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 9893 return false; 9894 9895 // Set the undefs even if we don't find a sequence (like getSplatValue). 9896 if (UndefElements) 9897 for (unsigned I = 0; I != NumOps; ++I) 9898 if (DemandedElts[I] && getOperand(I).isUndef()) 9899 (*UndefElements)[I] = true; 9900 9901 // Iteratively widen the sequence length looking for repetitions. 9902 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 9903 Sequence.append(SeqLen, SDValue()); 9904 for (unsigned I = 0; I != NumOps; ++I) { 9905 if (!DemandedElts[I]) 9906 continue; 9907 SDValue &SeqOp = Sequence[I % SeqLen]; 9908 SDValue Op = getOperand(I); 9909 if (Op.isUndef()) { 9910 if (!SeqOp) 9911 SeqOp = Op; 9912 continue; 9913 } 9914 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 9915 Sequence.clear(); 9916 break; 9917 } 9918 SeqOp = Op; 9919 } 9920 if (!Sequence.empty()) 9921 return true; 9922 } 9923 9924 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 9925 return false; 9926 } 9927 9928 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 9929 BitVector *UndefElements) const { 9930 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9931 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 9932 } 9933 9934 ConstantSDNode * 9935 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9936 BitVector *UndefElements) const { 9937 return dyn_cast_or_null<ConstantSDNode>( 9938 getSplatValue(DemandedElts, UndefElements)); 9939 } 9940 9941 ConstantSDNode * 9942 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9943 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9944 } 9945 9946 ConstantFPSDNode * 9947 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9948 BitVector *UndefElements) const { 9949 return dyn_cast_or_null<ConstantFPSDNode>( 9950 getSplatValue(DemandedElts, UndefElements)); 9951 } 9952 9953 ConstantFPSDNode * 9954 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9955 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9956 } 9957 9958 int32_t 9959 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9960 uint32_t BitWidth) const { 9961 if (ConstantFPSDNode *CN = 9962 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9963 bool IsExact; 9964 APSInt IntVal(BitWidth); 9965 const APFloat &APF = CN->getValueAPF(); 9966 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9967 APFloat::opOK || 9968 !IsExact) 9969 return -1; 9970 9971 return IntVal.exactLogBase2(); 9972 } 9973 return -1; 9974 } 9975 9976 bool BuildVectorSDNode::isConstant() const { 9977 for (const SDValue &Op : op_values()) { 9978 unsigned Opc = Op.getOpcode(); 9979 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9980 return false; 9981 } 9982 return true; 9983 } 9984 9985 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9986 // Find the first non-undef value in the shuffle mask. 9987 unsigned i, e; 9988 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9989 /* search */; 9990 9991 // If all elements are undefined, this shuffle can be considered a splat 9992 // (although it should eventually get simplified away completely). 9993 if (i == e) 9994 return true; 9995 9996 // Make sure all remaining elements are either undef or the same as the first 9997 // non-undef value. 9998 for (int Idx = Mask[i]; i != e; ++i) 9999 if (Mask[i] >= 0 && Mask[i] != Idx) 10000 return false; 10001 return true; 10002 } 10003 10004 // Returns the SDNode if it is a constant integer BuildVector 10005 // or constant integer. 10006 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 10007 if (isa<ConstantSDNode>(N)) 10008 return N.getNode(); 10009 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10010 return N.getNode(); 10011 // Treat a GlobalAddress supporting constant offset folding as a 10012 // constant integer. 10013 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10014 if (GA->getOpcode() == ISD::GlobalAddress && 10015 TLI->isOffsetFoldingLegal(GA)) 10016 return GA; 10017 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10018 isa<ConstantSDNode>(N.getOperand(0))) 10019 return N.getNode(); 10020 return nullptr; 10021 } 10022 10023 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 10024 if (isa<ConstantFPSDNode>(N)) 10025 return N.getNode(); 10026 10027 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10028 return N.getNode(); 10029 10030 return nullptr; 10031 } 10032 10033 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10034 assert(!Node->OperandList && "Node already has operands"); 10035 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10036 "too many operands to fit into SDNode"); 10037 SDUse *Ops = OperandRecycler.allocate( 10038 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10039 10040 bool IsDivergent = false; 10041 for (unsigned I = 0; I != Vals.size(); ++I) { 10042 Ops[I].setUser(Node); 10043 Ops[I].setInitial(Vals[I]); 10044 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10045 IsDivergent |= Ops[I].getNode()->isDivergent(); 10046 } 10047 Node->NumOperands = Vals.size(); 10048 Node->OperandList = Ops; 10049 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10050 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10051 Node->SDNodeBits.IsDivergent = IsDivergent; 10052 } 10053 checkForCycles(Node); 10054 } 10055 10056 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10057 SmallVectorImpl<SDValue> &Vals) { 10058 size_t Limit = SDNode::getMaxNumOperands(); 10059 while (Vals.size() > Limit) { 10060 unsigned SliceIdx = Vals.size() - Limit; 10061 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10062 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10063 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10064 Vals.emplace_back(NewTF); 10065 } 10066 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10067 } 10068 10069 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10070 EVT VT, SDNodeFlags Flags) { 10071 switch (Opcode) { 10072 default: 10073 return SDValue(); 10074 case ISD::ADD: 10075 case ISD::OR: 10076 case ISD::XOR: 10077 case ISD::UMAX: 10078 return getConstant(0, DL, VT); 10079 case ISD::MUL: 10080 return getConstant(1, DL, VT); 10081 case ISD::AND: 10082 case ISD::UMIN: 10083 return getAllOnesConstant(DL, VT); 10084 case ISD::SMAX: 10085 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 10086 case ISD::SMIN: 10087 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 10088 case ISD::FADD: 10089 return getConstantFP(-0.0, DL, VT); 10090 case ISD::FMUL: 10091 return getConstantFP(1.0, DL, VT); 10092 case ISD::FMINNUM: 10093 case ISD::FMAXNUM: { 10094 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 10095 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 10096 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 10097 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 10098 APFloat::getLargest(Semantics); 10099 if (Opcode == ISD::FMAXNUM) 10100 NeutralAF.changeSign(); 10101 10102 return getConstantFP(NeutralAF, DL, VT); 10103 } 10104 } 10105 } 10106 10107 #ifndef NDEBUG 10108 static void checkForCyclesHelper(const SDNode *N, 10109 SmallPtrSetImpl<const SDNode*> &Visited, 10110 SmallPtrSetImpl<const SDNode*> &Checked, 10111 const llvm::SelectionDAG *DAG) { 10112 // If this node has already been checked, don't check it again. 10113 if (Checked.count(N)) 10114 return; 10115 10116 // If a node has already been visited on this depth-first walk, reject it as 10117 // a cycle. 10118 if (!Visited.insert(N).second) { 10119 errs() << "Detected cycle in SelectionDAG\n"; 10120 dbgs() << "Offending node:\n"; 10121 N->dumprFull(DAG); dbgs() << "\n"; 10122 abort(); 10123 } 10124 10125 for (const SDValue &Op : N->op_values()) 10126 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10127 10128 Checked.insert(N); 10129 Visited.erase(N); 10130 } 10131 #endif 10132 10133 void llvm::checkForCycles(const llvm::SDNode *N, 10134 const llvm::SelectionDAG *DAG, 10135 bool force) { 10136 #ifndef NDEBUG 10137 bool check = force; 10138 #ifdef EXPENSIVE_CHECKS 10139 check = true; 10140 #endif // EXPENSIVE_CHECKS 10141 if (check) { 10142 assert(N && "Checking nonexistent SDNode"); 10143 SmallPtrSet<const SDNode*, 32> visited; 10144 SmallPtrSet<const SDNode*, 32> checked; 10145 checkForCyclesHelper(N, visited, checked, DAG); 10146 } 10147 #endif // !NDEBUG 10148 } 10149 10150 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10151 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10152 } 10153