1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/APSInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/FoldingSet.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineValueType.h"
36 #include "llvm/CodeGen/RuntimeLibcalls.h"
37 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
40 #include "llvm/CodeGen/TargetLowering.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSubtargetInfo.h"
43 #include "llvm/CodeGen/ValueTypes.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GlobalValue.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CodeGen.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/KnownBits.h"
61 #include "llvm/Support/ManagedStatic.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/Mutex.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Target/TargetMachine.h"
66 #include "llvm/Target/TargetOptions.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <cstdlib>
71 #include <limits>
72 #include <set>
73 #include <string>
74 #include <utility>
75 #include <vector>
76 
77 using namespace llvm;
78 
79 /// makeVTList - Return an instance of the SDVTList struct initialized with the
80 /// specified members.
81 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
82   SDVTList Res = {VTs, NumVTs};
83   return Res;
84 }
85 
86 // Default null implementations of the callbacks.
87 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
88 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
89 
90 #define DEBUG_TYPE "selectiondag"
91 
92 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
93   DEBUG(
94     dbgs() << Msg;
95     V.getNode()->dump(G);
96   );
97 }
98 
99 //===----------------------------------------------------------------------===//
100 //                              ConstantFPSDNode Class
101 //===----------------------------------------------------------------------===//
102 
103 /// isExactlyValue - We don't rely on operator== working on double values, as
104 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
105 /// As such, this method can be used to do an exact bit-for-bit comparison of
106 /// two floating point values.
107 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
108   return getValueAPF().bitwiseIsEqual(V);
109 }
110 
111 bool ConstantFPSDNode::isValueValidForType(EVT VT,
112                                            const APFloat& Val) {
113   assert(VT.isFloatingPoint() && "Can only convert between FP types");
114 
115   // convert modifies in place, so make a copy.
116   APFloat Val2 = APFloat(Val);
117   bool losesInfo;
118   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
119                       APFloat::rmNearestTiesToEven,
120                       &losesInfo);
121   return !losesInfo;
122 }
123 
124 //===----------------------------------------------------------------------===//
125 //                              ISD Namespace
126 //===----------------------------------------------------------------------===//
127 
128 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
129   auto *BV = dyn_cast<BuildVectorSDNode>(N);
130   if (!BV)
131     return false;
132 
133   APInt SplatUndef;
134   unsigned SplatBitSize;
135   bool HasUndefs;
136   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
137   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
138                              EltSize) &&
139          EltSize == SplatBitSize;
140 }
141 
142 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
143 // specializations of the more general isConstantSplatVector()?
144 
145 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
146   // Look through a bit convert.
147   while (N->getOpcode() == ISD::BITCAST)
148     N = N->getOperand(0).getNode();
149 
150   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
151 
152   unsigned i = 0, e = N->getNumOperands();
153 
154   // Skip over all of the undef values.
155   while (i != e && N->getOperand(i).isUndef())
156     ++i;
157 
158   // Do not accept an all-undef vector.
159   if (i == e) return false;
160 
161   // Do not accept build_vectors that aren't all constants or which have non-~0
162   // elements. We have to be a bit careful here, as the type of the constant
163   // may not be the same as the type of the vector elements due to type
164   // legalization (the elements are promoted to a legal type for the target and
165   // a vector of a type may be legal when the base element type is not).
166   // We only want to check enough bits to cover the vector elements, because
167   // we care if the resultant vector is all ones, not whether the individual
168   // constants are.
169   SDValue NotZero = N->getOperand(i);
170   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
171   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
172     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
173       return false;
174   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
175     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
176       return false;
177   } else
178     return false;
179 
180   // Okay, we have at least one ~0 value, check to see if the rest match or are
181   // undefs. Even with the above element type twiddling, this should be OK, as
182   // the same type legalization should have applied to all the elements.
183   for (++i; i != e; ++i)
184     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
185       return false;
186   return true;
187 }
188 
189 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
190   // Look through a bit convert.
191   while (N->getOpcode() == ISD::BITCAST)
192     N = N->getOperand(0).getNode();
193 
194   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
195 
196   bool IsAllUndef = true;
197   for (const SDValue &Op : N->op_values()) {
198     if (Op.isUndef())
199       continue;
200     IsAllUndef = false;
201     // Do not accept build_vectors that aren't all constants or which have non-0
202     // elements. We have to be a bit careful here, as the type of the constant
203     // may not be the same as the type of the vector elements due to type
204     // legalization (the elements are promoted to a legal type for the target
205     // and a vector of a type may be legal when the base element type is not).
206     // We only want to check enough bits to cover the vector elements, because
207     // we care if the resultant vector is all zeros, not whether the individual
208     // constants are.
209     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
210     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
211       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
212         return false;
213     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
214       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
215         return false;
216     } else
217       return false;
218   }
219 
220   // Do not accept an all-undef vector.
221   if (IsAllUndef)
222     return false;
223   return true;
224 }
225 
226 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
227   if (N->getOpcode() != ISD::BUILD_VECTOR)
228     return false;
229 
230   for (const SDValue &Op : N->op_values()) {
231     if (Op.isUndef())
232       continue;
233     if (!isa<ConstantSDNode>(Op))
234       return false;
235   }
236   return true;
237 }
238 
239 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
240   if (N->getOpcode() != ISD::BUILD_VECTOR)
241     return false;
242 
243   for (const SDValue &Op : N->op_values()) {
244     if (Op.isUndef())
245       continue;
246     if (!isa<ConstantFPSDNode>(Op))
247       return false;
248   }
249   return true;
250 }
251 
252 bool ISD::allOperandsUndef(const SDNode *N) {
253   // Return false if the node has no operands.
254   // This is "logically inconsistent" with the definition of "all" but
255   // is probably the desired behavior.
256   if (N->getNumOperands() == 0)
257     return false;
258 
259   for (const SDValue &Op : N->op_values())
260     if (!Op.isUndef())
261       return false;
262 
263   return true;
264 }
265 
266 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
267   switch (ExtType) {
268   case ISD::EXTLOAD:
269     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
270   case ISD::SEXTLOAD:
271     return ISD::SIGN_EXTEND;
272   case ISD::ZEXTLOAD:
273     return ISD::ZERO_EXTEND;
274   default:
275     break;
276   }
277 
278   llvm_unreachable("Invalid LoadExtType");
279 }
280 
281 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
282   // To perform this operation, we just need to swap the L and G bits of the
283   // operation.
284   unsigned OldL = (Operation >> 2) & 1;
285   unsigned OldG = (Operation >> 1) & 1;
286   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
287                        (OldL << 1) |       // New G bit
288                        (OldG << 2));       // New L bit.
289 }
290 
291 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
292   unsigned Operation = Op;
293   if (isInteger)
294     Operation ^= 7;   // Flip L, G, E bits, but not U.
295   else
296     Operation ^= 15;  // Flip all of the condition bits.
297 
298   if (Operation > ISD::SETTRUE2)
299     Operation &= ~8;  // Don't let N and U bits get set.
300 
301   return ISD::CondCode(Operation);
302 }
303 
304 /// For an integer comparison, return 1 if the comparison is a signed operation
305 /// and 2 if the result is an unsigned comparison. Return zero if the operation
306 /// does not depend on the sign of the input (setne and seteq).
307 static int isSignedOp(ISD::CondCode Opcode) {
308   switch (Opcode) {
309   default: llvm_unreachable("Illegal integer setcc operation!");
310   case ISD::SETEQ:
311   case ISD::SETNE: return 0;
312   case ISD::SETLT:
313   case ISD::SETLE:
314   case ISD::SETGT:
315   case ISD::SETGE: return 1;
316   case ISD::SETULT:
317   case ISD::SETULE:
318   case ISD::SETUGT:
319   case ISD::SETUGE: return 2;
320   }
321 }
322 
323 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
324                                        bool IsInteger) {
325   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
326     // Cannot fold a signed integer setcc with an unsigned integer setcc.
327     return ISD::SETCC_INVALID;
328 
329   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
330 
331   // If the N and U bits get set, then the resultant comparison DOES suddenly
332   // care about orderedness, and it is true when ordered.
333   if (Op > ISD::SETTRUE2)
334     Op &= ~16;     // Clear the U bit if the N bit is set.
335 
336   // Canonicalize illegal integer setcc's.
337   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
338     Op = ISD::SETNE;
339 
340   return ISD::CondCode(Op);
341 }
342 
343 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
344                                         bool IsInteger) {
345   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
346     // Cannot fold a signed setcc with an unsigned setcc.
347     return ISD::SETCC_INVALID;
348 
349   // Combine all of the condition bits.
350   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
351 
352   // Canonicalize illegal integer setcc's.
353   if (IsInteger) {
354     switch (Result) {
355     default: break;
356     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
357     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
358     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
359     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
360     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
361     }
362   }
363 
364   return Result;
365 }
366 
367 //===----------------------------------------------------------------------===//
368 //                           SDNode Profile Support
369 //===----------------------------------------------------------------------===//
370 
371 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
372 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
373   ID.AddInteger(OpC);
374 }
375 
376 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
377 /// solely with their pointer.
378 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
379   ID.AddPointer(VTList.VTs);
380 }
381 
382 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
383 static void AddNodeIDOperands(FoldingSetNodeID &ID,
384                               ArrayRef<SDValue> Ops) {
385   for (auto& Op : Ops) {
386     ID.AddPointer(Op.getNode());
387     ID.AddInteger(Op.getResNo());
388   }
389 }
390 
391 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
392 static void AddNodeIDOperands(FoldingSetNodeID &ID,
393                               ArrayRef<SDUse> Ops) {
394   for (auto& Op : Ops) {
395     ID.AddPointer(Op.getNode());
396     ID.AddInteger(Op.getResNo());
397   }
398 }
399 
400 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
401                           SDVTList VTList, ArrayRef<SDValue> OpList) {
402   AddNodeIDOpcode(ID, OpC);
403   AddNodeIDValueTypes(ID, VTList);
404   AddNodeIDOperands(ID, OpList);
405 }
406 
407 /// If this is an SDNode with special info, add this info to the NodeID data.
408 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
409   switch (N->getOpcode()) {
410   case ISD::TargetExternalSymbol:
411   case ISD::ExternalSymbol:
412   case ISD::MCSymbol:
413     llvm_unreachable("Should only be used on nodes with operands");
414   default: break;  // Normal nodes don't need extra info.
415   case ISD::TargetConstant:
416   case ISD::Constant: {
417     const ConstantSDNode *C = cast<ConstantSDNode>(N);
418     ID.AddPointer(C->getConstantIntValue());
419     ID.AddBoolean(C->isOpaque());
420     break;
421   }
422   case ISD::TargetConstantFP:
423   case ISD::ConstantFP:
424     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
425     break;
426   case ISD::TargetGlobalAddress:
427   case ISD::GlobalAddress:
428   case ISD::TargetGlobalTLSAddress:
429   case ISD::GlobalTLSAddress: {
430     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
431     ID.AddPointer(GA->getGlobal());
432     ID.AddInteger(GA->getOffset());
433     ID.AddInteger(GA->getTargetFlags());
434     break;
435   }
436   case ISD::BasicBlock:
437     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
438     break;
439   case ISD::Register:
440     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
441     break;
442   case ISD::RegisterMask:
443     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
444     break;
445   case ISD::SRCVALUE:
446     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
447     break;
448   case ISD::FrameIndex:
449   case ISD::TargetFrameIndex:
450     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
451     break;
452   case ISD::JumpTable:
453   case ISD::TargetJumpTable:
454     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
455     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
456     break;
457   case ISD::ConstantPool:
458   case ISD::TargetConstantPool: {
459     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
460     ID.AddInteger(CP->getAlignment());
461     ID.AddInteger(CP->getOffset());
462     if (CP->isMachineConstantPoolEntry())
463       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
464     else
465       ID.AddPointer(CP->getConstVal());
466     ID.AddInteger(CP->getTargetFlags());
467     break;
468   }
469   case ISD::TargetIndex: {
470     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
471     ID.AddInteger(TI->getIndex());
472     ID.AddInteger(TI->getOffset());
473     ID.AddInteger(TI->getTargetFlags());
474     break;
475   }
476   case ISD::LOAD: {
477     const LoadSDNode *LD = cast<LoadSDNode>(N);
478     ID.AddInteger(LD->getMemoryVT().getRawBits());
479     ID.AddInteger(LD->getRawSubclassData());
480     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
481     break;
482   }
483   case ISD::STORE: {
484     const StoreSDNode *ST = cast<StoreSDNode>(N);
485     ID.AddInteger(ST->getMemoryVT().getRawBits());
486     ID.AddInteger(ST->getRawSubclassData());
487     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
488     break;
489   }
490   case ISD::ATOMIC_CMP_SWAP:
491   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
492   case ISD::ATOMIC_SWAP:
493   case ISD::ATOMIC_LOAD_ADD:
494   case ISD::ATOMIC_LOAD_SUB:
495   case ISD::ATOMIC_LOAD_AND:
496   case ISD::ATOMIC_LOAD_OR:
497   case ISD::ATOMIC_LOAD_XOR:
498   case ISD::ATOMIC_LOAD_NAND:
499   case ISD::ATOMIC_LOAD_MIN:
500   case ISD::ATOMIC_LOAD_MAX:
501   case ISD::ATOMIC_LOAD_UMIN:
502   case ISD::ATOMIC_LOAD_UMAX:
503   case ISD::ATOMIC_LOAD:
504   case ISD::ATOMIC_STORE: {
505     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
506     ID.AddInteger(AT->getMemoryVT().getRawBits());
507     ID.AddInteger(AT->getRawSubclassData());
508     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
509     break;
510   }
511   case ISD::PREFETCH: {
512     const MemSDNode *PF = cast<MemSDNode>(N);
513     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
514     break;
515   }
516   case ISD::VECTOR_SHUFFLE: {
517     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
518     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
519          i != e; ++i)
520       ID.AddInteger(SVN->getMaskElt(i));
521     break;
522   }
523   case ISD::TargetBlockAddress:
524   case ISD::BlockAddress: {
525     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
526     ID.AddPointer(BA->getBlockAddress());
527     ID.AddInteger(BA->getOffset());
528     ID.AddInteger(BA->getTargetFlags());
529     break;
530   }
531   } // end switch (N->getOpcode())
532 
533   // Target specific memory nodes could also have address spaces to check.
534   if (N->isTargetMemoryOpcode())
535     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
536 }
537 
538 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
539 /// data.
540 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
541   AddNodeIDOpcode(ID, N->getOpcode());
542   // Add the return value info.
543   AddNodeIDValueTypes(ID, N->getVTList());
544   // Add the operand info.
545   AddNodeIDOperands(ID, N->ops());
546 
547   // Handle SDNode leafs with special info.
548   AddNodeIDCustom(ID, N);
549 }
550 
551 //===----------------------------------------------------------------------===//
552 //                              SelectionDAG Class
553 //===----------------------------------------------------------------------===//
554 
555 /// doNotCSE - Return true if CSE should not be performed for this node.
556 static bool doNotCSE(SDNode *N) {
557   if (N->getValueType(0) == MVT::Glue)
558     return true; // Never CSE anything that produces a flag.
559 
560   switch (N->getOpcode()) {
561   default: break;
562   case ISD::HANDLENODE:
563   case ISD::EH_LABEL:
564     return true;   // Never CSE these nodes.
565   }
566 
567   // Check that remaining values produced are not flags.
568   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
569     if (N->getValueType(i) == MVT::Glue)
570       return true; // Never CSE anything that produces a flag.
571 
572   return false;
573 }
574 
575 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
576 /// SelectionDAG.
577 void SelectionDAG::RemoveDeadNodes() {
578   // Create a dummy node (which is not added to allnodes), that adds a reference
579   // to the root node, preventing it from being deleted.
580   HandleSDNode Dummy(getRoot());
581 
582   SmallVector<SDNode*, 128> DeadNodes;
583 
584   // Add all obviously-dead nodes to the DeadNodes worklist.
585   for (SDNode &Node : allnodes())
586     if (Node.use_empty())
587       DeadNodes.push_back(&Node);
588 
589   RemoveDeadNodes(DeadNodes);
590 
591   // If the root changed (e.g. it was a dead load, update the root).
592   setRoot(Dummy.getValue());
593 }
594 
595 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
596 /// given list, and any nodes that become unreachable as a result.
597 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
598 
599   // Process the worklist, deleting the nodes and adding their uses to the
600   // worklist.
601   while (!DeadNodes.empty()) {
602     SDNode *N = DeadNodes.pop_back_val();
603     // Skip to next node if we've already managed to delete the node. This could
604     // happen if replacing a node causes a node previously added to the node to
605     // be deleted.
606     if (N->getOpcode() == ISD::DELETED_NODE)
607       continue;
608 
609     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
610       DUL->NodeDeleted(N, nullptr);
611 
612     // Take the node out of the appropriate CSE map.
613     RemoveNodeFromCSEMaps(N);
614 
615     // Next, brutally remove the operand list.  This is safe to do, as there are
616     // no cycles in the graph.
617     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
618       SDUse &Use = *I++;
619       SDNode *Operand = Use.getNode();
620       Use.set(SDValue());
621 
622       // Now that we removed this operand, see if there are no uses of it left.
623       if (Operand->use_empty())
624         DeadNodes.push_back(Operand);
625     }
626 
627     DeallocateNode(N);
628   }
629 }
630 
631 void SelectionDAG::RemoveDeadNode(SDNode *N){
632   SmallVector<SDNode*, 16> DeadNodes(1, N);
633 
634   // Create a dummy node that adds a reference to the root node, preventing
635   // it from being deleted.  (This matters if the root is an operand of the
636   // dead node.)
637   HandleSDNode Dummy(getRoot());
638 
639   RemoveDeadNodes(DeadNodes);
640 }
641 
642 void SelectionDAG::DeleteNode(SDNode *N) {
643   // First take this out of the appropriate CSE map.
644   RemoveNodeFromCSEMaps(N);
645 
646   // Finally, remove uses due to operands of this node, remove from the
647   // AllNodes list, and delete the node.
648   DeleteNodeNotInCSEMaps(N);
649 }
650 
651 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
652   assert(N->getIterator() != AllNodes.begin() &&
653          "Cannot delete the entry node!");
654   assert(N->use_empty() && "Cannot delete a node that is not dead!");
655 
656   // Drop all of the operands and decrement used node's use counts.
657   N->DropOperands();
658 
659   DeallocateNode(N);
660 }
661 
662 void SDDbgInfo::erase(const SDNode *Node) {
663   DbgValMapType::iterator I = DbgValMap.find(Node);
664   if (I == DbgValMap.end())
665     return;
666   for (auto &Val: I->second)
667     Val->setIsInvalidated();
668   DbgValMap.erase(I);
669 }
670 
671 void SelectionDAG::DeallocateNode(SDNode *N) {
672   // If we have operands, deallocate them.
673   removeOperands(N);
674 
675   NodeAllocator.Deallocate(AllNodes.remove(N));
676 
677   // Set the opcode to DELETED_NODE to help catch bugs when node
678   // memory is reallocated.
679   // FIXME: There are places in SDag that have grown a dependency on the opcode
680   // value in the released node.
681   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
682   N->NodeType = ISD::DELETED_NODE;
683 
684   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
685   // them and forget about that node.
686   DbgInfo->erase(N);
687 }
688 
689 #ifndef NDEBUG
690 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
691 static void VerifySDNode(SDNode *N) {
692   switch (N->getOpcode()) {
693   default:
694     break;
695   case ISD::BUILD_PAIR: {
696     EVT VT = N->getValueType(0);
697     assert(N->getNumValues() == 1 && "Too many results!");
698     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
699            "Wrong return type!");
700     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
701     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
702            "Mismatched operand types!");
703     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
704            "Wrong operand type!");
705     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
706            "Wrong return type size");
707     break;
708   }
709   case ISD::BUILD_VECTOR: {
710     assert(N->getNumValues() == 1 && "Too many results!");
711     assert(N->getValueType(0).isVector() && "Wrong return type!");
712     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
713            "Wrong number of operands!");
714     EVT EltVT = N->getValueType(0).getVectorElementType();
715     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
716       assert((I->getValueType() == EltVT ||
717              (EltVT.isInteger() && I->getValueType().isInteger() &&
718               EltVT.bitsLE(I->getValueType()))) &&
719             "Wrong operand type!");
720       assert(I->getValueType() == N->getOperand(0).getValueType() &&
721              "Operands must all have the same type");
722     }
723     break;
724   }
725   }
726 }
727 #endif // NDEBUG
728 
729 /// \brief Insert a newly allocated node into the DAG.
730 ///
731 /// Handles insertion into the all nodes list and CSE map, as well as
732 /// verification and other common operations when a new node is allocated.
733 void SelectionDAG::InsertNode(SDNode *N) {
734   AllNodes.push_back(N);
735 #ifndef NDEBUG
736   N->PersistentId = NextPersistentId++;
737   VerifySDNode(N);
738 #endif
739 }
740 
741 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
742 /// correspond to it.  This is useful when we're about to delete or repurpose
743 /// the node.  We don't want future request for structurally identical nodes
744 /// to return N anymore.
745 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
746   bool Erased = false;
747   switch (N->getOpcode()) {
748   case ISD::HANDLENODE: return false;  // noop.
749   case ISD::CONDCODE:
750     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
751            "Cond code doesn't exist!");
752     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
753     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
754     break;
755   case ISD::ExternalSymbol:
756     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
757     break;
758   case ISD::TargetExternalSymbol: {
759     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
760     Erased = TargetExternalSymbols.erase(
761                std::pair<std::string,unsigned char>(ESN->getSymbol(),
762                                                     ESN->getTargetFlags()));
763     break;
764   }
765   case ISD::MCSymbol: {
766     auto *MCSN = cast<MCSymbolSDNode>(N);
767     Erased = MCSymbols.erase(MCSN->getMCSymbol());
768     break;
769   }
770   case ISD::VALUETYPE: {
771     EVT VT = cast<VTSDNode>(N)->getVT();
772     if (VT.isExtended()) {
773       Erased = ExtendedValueTypeNodes.erase(VT);
774     } else {
775       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
776       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
777     }
778     break;
779   }
780   default:
781     // Remove it from the CSE Map.
782     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
783     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
784     Erased = CSEMap.RemoveNode(N);
785     break;
786   }
787 #ifndef NDEBUG
788   // Verify that the node was actually in one of the CSE maps, unless it has a
789   // flag result (which cannot be CSE'd) or is one of the special cases that are
790   // not subject to CSE.
791   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
792       !N->isMachineOpcode() && !doNotCSE(N)) {
793     N->dump(this);
794     dbgs() << "\n";
795     llvm_unreachable("Node is not in map!");
796   }
797 #endif
798   return Erased;
799 }
800 
801 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
802 /// maps and modified in place. Add it back to the CSE maps, unless an identical
803 /// node already exists, in which case transfer all its users to the existing
804 /// node. This transfer can potentially trigger recursive merging.
805 void
806 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
807   // For node types that aren't CSE'd, just act as if no identical node
808   // already exists.
809   if (!doNotCSE(N)) {
810     SDNode *Existing = CSEMap.GetOrInsertNode(N);
811     if (Existing != N) {
812       // If there was already an existing matching node, use ReplaceAllUsesWith
813       // to replace the dead one with the existing one.  This can cause
814       // recursive merging of other unrelated nodes down the line.
815       ReplaceAllUsesWith(N, Existing);
816 
817       // N is now dead. Inform the listeners and delete it.
818       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
819         DUL->NodeDeleted(N, Existing);
820       DeleteNodeNotInCSEMaps(N);
821       return;
822     }
823   }
824 
825   // If the node doesn't already exist, we updated it.  Inform listeners.
826   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
827     DUL->NodeUpdated(N);
828 }
829 
830 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
831 /// were replaced with those specified.  If this node is never memoized,
832 /// return null, otherwise return a pointer to the slot it would take.  If a
833 /// node already exists with these operands, the slot will be non-null.
834 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
835                                            void *&InsertPos) {
836   if (doNotCSE(N))
837     return nullptr;
838 
839   SDValue Ops[] = { Op };
840   FoldingSetNodeID ID;
841   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
842   AddNodeIDCustom(ID, N);
843   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
844   if (Node)
845     Node->intersectFlagsWith(N->getFlags());
846   return Node;
847 }
848 
849 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
850 /// were replaced with those specified.  If this node is never memoized,
851 /// return null, otherwise return a pointer to the slot it would take.  If a
852 /// node already exists with these operands, the slot will be non-null.
853 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
854                                            SDValue Op1, SDValue Op2,
855                                            void *&InsertPos) {
856   if (doNotCSE(N))
857     return nullptr;
858 
859   SDValue Ops[] = { Op1, Op2 };
860   FoldingSetNodeID ID;
861   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
862   AddNodeIDCustom(ID, N);
863   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
864   if (Node)
865     Node->intersectFlagsWith(N->getFlags());
866   return Node;
867 }
868 
869 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
870 /// were replaced with those specified.  If this node is never memoized,
871 /// return null, otherwise return a pointer to the slot it would take.  If a
872 /// node already exists with these operands, the slot will be non-null.
873 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
874                                            void *&InsertPos) {
875   if (doNotCSE(N))
876     return nullptr;
877 
878   FoldingSetNodeID ID;
879   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
880   AddNodeIDCustom(ID, N);
881   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
882   if (Node)
883     Node->intersectFlagsWith(N->getFlags());
884   return Node;
885 }
886 
887 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
888   Type *Ty = VT == MVT::iPTR ?
889                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
890                    VT.getTypeForEVT(*getContext());
891 
892   return getDataLayout().getABITypeAlignment(Ty);
893 }
894 
895 // EntryNode could meaningfully have debug info if we can find it...
896 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
897     : TM(tm), OptLevel(OL),
898       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
899       Root(getEntryNode()) {
900   InsertNode(&EntryNode);
901   DbgInfo = new SDDbgInfo();
902 }
903 
904 void SelectionDAG::init(MachineFunction &NewMF,
905                         OptimizationRemarkEmitter &NewORE,
906                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo) {
907   MF = &NewMF;
908   SDAGISelPass = PassPtr;
909   ORE = &NewORE;
910   TLI = getSubtarget().getTargetLowering();
911   TSI = getSubtarget().getSelectionDAGInfo();
912   LibInfo = LibraryInfo;
913   Context = &MF->getFunction().getContext();
914 }
915 
916 SelectionDAG::~SelectionDAG() {
917   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
918   allnodes_clear();
919   OperandRecycler.clear(OperandAllocator);
920   delete DbgInfo;
921 }
922 
923 void SelectionDAG::allnodes_clear() {
924   assert(&*AllNodes.begin() == &EntryNode);
925   AllNodes.remove(AllNodes.begin());
926   while (!AllNodes.empty())
927     DeallocateNode(&AllNodes.front());
928 #ifndef NDEBUG
929   NextPersistentId = 0;
930 #endif
931 }
932 
933 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
934                                           void *&InsertPos) {
935   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
936   if (N) {
937     switch (N->getOpcode()) {
938     default: break;
939     case ISD::Constant:
940     case ISD::ConstantFP:
941       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
942                        "debug location.  Use another overload.");
943     }
944   }
945   return N;
946 }
947 
948 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
949                                           const SDLoc &DL, void *&InsertPos) {
950   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
951   if (N) {
952     switch (N->getOpcode()) {
953     case ISD::Constant:
954     case ISD::ConstantFP:
955       // Erase debug location from the node if the node is used at several
956       // different places. Do not propagate one location to all uses as it
957       // will cause a worse single stepping debugging experience.
958       if (N->getDebugLoc() != DL.getDebugLoc())
959         N->setDebugLoc(DebugLoc());
960       break;
961     default:
962       // When the node's point of use is located earlier in the instruction
963       // sequence than its prior point of use, update its debug info to the
964       // earlier location.
965       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
966         N->setDebugLoc(DL.getDebugLoc());
967       break;
968     }
969   }
970   return N;
971 }
972 
973 void SelectionDAG::clear() {
974   allnodes_clear();
975   OperandRecycler.clear(OperandAllocator);
976   OperandAllocator.Reset();
977   CSEMap.clear();
978 
979   ExtendedValueTypeNodes.clear();
980   ExternalSymbols.clear();
981   TargetExternalSymbols.clear();
982   MCSymbols.clear();
983   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
984             static_cast<CondCodeSDNode*>(nullptr));
985   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
986             static_cast<SDNode*>(nullptr));
987 
988   EntryNode.UseList = nullptr;
989   InsertNode(&EntryNode);
990   Root = getEntryNode();
991   DbgInfo->clear();
992 }
993 
994 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
995   return VT.bitsGT(Op.getValueType())
996              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
997              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
998 }
999 
1000 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1001   return VT.bitsGT(Op.getValueType()) ?
1002     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1003     getNode(ISD::TRUNCATE, DL, VT, Op);
1004 }
1005 
1006 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1007   return VT.bitsGT(Op.getValueType()) ?
1008     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1009     getNode(ISD::TRUNCATE, DL, VT, Op);
1010 }
1011 
1012 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1013   return VT.bitsGT(Op.getValueType()) ?
1014     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1015     getNode(ISD::TRUNCATE, DL, VT, Op);
1016 }
1017 
1018 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1019                                         EVT OpVT) {
1020   if (VT.bitsLE(Op.getValueType()))
1021     return getNode(ISD::TRUNCATE, SL, VT, Op);
1022 
1023   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1024   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1025 }
1026 
1027 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1028   assert(!VT.isVector() &&
1029          "getZeroExtendInReg should use the vector element type instead of "
1030          "the vector type!");
1031   if (Op.getValueType().getScalarType() == VT) return Op;
1032   unsigned BitWidth = Op.getScalarValueSizeInBits();
1033   APInt Imm = APInt::getLowBitsSet(BitWidth,
1034                                    VT.getSizeInBits());
1035   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1036                  getConstant(Imm, DL, Op.getValueType()));
1037 }
1038 
1039 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL,
1040                                               EVT VT) {
1041   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1042   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1043          "The sizes of the input and result must match in order to perform the "
1044          "extend in-register.");
1045   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1046          "The destination vector type must have fewer lanes than the input.");
1047   return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op);
1048 }
1049 
1050 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL,
1051                                                EVT VT) {
1052   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1053   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1054          "The sizes of the input and result must match in order to perform the "
1055          "extend in-register.");
1056   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1057          "The destination vector type must have fewer lanes than the input.");
1058   return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op);
1059 }
1060 
1061 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL,
1062                                                EVT VT) {
1063   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1064   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1065          "The sizes of the input and result must match in order to perform the "
1066          "extend in-register.");
1067   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1068          "The destination vector type must have fewer lanes than the input.");
1069   return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op);
1070 }
1071 
1072 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1073 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1074   EVT EltVT = VT.getScalarType();
1075   SDValue NegOne =
1076     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1077   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1078 }
1079 
1080 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1081   EVT EltVT = VT.getScalarType();
1082   SDValue TrueValue;
1083   switch (TLI->getBooleanContents(VT)) {
1084     case TargetLowering::ZeroOrOneBooleanContent:
1085     case TargetLowering::UndefinedBooleanContent:
1086       TrueValue = getConstant(1, DL, VT);
1087       break;
1088     case TargetLowering::ZeroOrNegativeOneBooleanContent:
1089       TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL,
1090                               VT);
1091       break;
1092   }
1093   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1094 }
1095 
1096 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1097                                   bool isT, bool isO) {
1098   EVT EltVT = VT.getScalarType();
1099   assert((EltVT.getSizeInBits() >= 64 ||
1100          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1101          "getConstant with a uint64_t value that doesn't fit in the type!");
1102   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1103 }
1104 
1105 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1106                                   bool isT, bool isO) {
1107   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1108 }
1109 
1110 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1111                                   EVT VT, bool isT, bool isO) {
1112   assert(VT.isInteger() && "Cannot create FP integer constant!");
1113 
1114   EVT EltVT = VT.getScalarType();
1115   const ConstantInt *Elt = &Val;
1116 
1117   // In some cases the vector type is legal but the element type is illegal and
1118   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1119   // inserted value (the type does not need to match the vector element type).
1120   // Any extra bits introduced will be truncated away.
1121   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1122       TargetLowering::TypePromoteInteger) {
1123    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1124    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1125    Elt = ConstantInt::get(*getContext(), NewVal);
1126   }
1127   // In other cases the element type is illegal and needs to be expanded, for
1128   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1129   // the value into n parts and use a vector type with n-times the elements.
1130   // Then bitcast to the type requested.
1131   // Legalizing constants too early makes the DAGCombiner's job harder so we
1132   // only legalize if the DAG tells us we must produce legal types.
1133   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1134            TLI->getTypeAction(*getContext(), EltVT) ==
1135            TargetLowering::TypeExpandInteger) {
1136     const APInt &NewVal = Elt->getValue();
1137     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1138     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1139     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1140     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1141 
1142     // Check the temporary vector is the correct size. If this fails then
1143     // getTypeToTransformTo() probably returned a type whose size (in bits)
1144     // isn't a power-of-2 factor of the requested type size.
1145     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1146 
1147     SmallVector<SDValue, 2> EltParts;
1148     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1149       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1150                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1151                                      ViaEltVT, isT, isO));
1152     }
1153 
1154     // EltParts is currently in little endian order. If we actually want
1155     // big-endian order then reverse it now.
1156     if (getDataLayout().isBigEndian())
1157       std::reverse(EltParts.begin(), EltParts.end());
1158 
1159     // The elements must be reversed when the element order is different
1160     // to the endianness of the elements (because the BITCAST is itself a
1161     // vector shuffle in this situation). However, we do not need any code to
1162     // perform this reversal because getConstant() is producing a vector
1163     // splat.
1164     // This situation occurs in MIPS MSA.
1165 
1166     SmallVector<SDValue, 8> Ops;
1167     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1168       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1169 
1170     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1171     return V;
1172   }
1173 
1174   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1175          "APInt size does not match type size!");
1176   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1177   FoldingSetNodeID ID;
1178   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1179   ID.AddPointer(Elt);
1180   ID.AddBoolean(isO);
1181   void *IP = nullptr;
1182   SDNode *N = nullptr;
1183   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1184     if (!VT.isVector())
1185       return SDValue(N, 0);
1186 
1187   if (!N) {
1188     N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT);
1189     CSEMap.InsertNode(N, IP);
1190     InsertNode(N);
1191     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1192   }
1193 
1194   SDValue Result(N, 0);
1195   if (VT.isVector())
1196     Result = getSplatBuildVector(VT, DL, Result);
1197 
1198   return Result;
1199 }
1200 
1201 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1202                                         bool isTarget) {
1203   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1204 }
1205 
1206 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1207                                     bool isTarget) {
1208   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1209 }
1210 
1211 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1212                                     EVT VT, bool isTarget) {
1213   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1214 
1215   EVT EltVT = VT.getScalarType();
1216 
1217   // Do the map lookup using the actual bit pattern for the floating point
1218   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1219   // we don't have issues with SNANs.
1220   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1221   FoldingSetNodeID ID;
1222   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1223   ID.AddPointer(&V);
1224   void *IP = nullptr;
1225   SDNode *N = nullptr;
1226   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1227     if (!VT.isVector())
1228       return SDValue(N, 0);
1229 
1230   if (!N) {
1231     N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT);
1232     CSEMap.InsertNode(N, IP);
1233     InsertNode(N);
1234   }
1235 
1236   SDValue Result(N, 0);
1237   if (VT.isVector())
1238     Result = getSplatBuildVector(VT, DL, Result);
1239   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1240   return Result;
1241 }
1242 
1243 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1244                                     bool isTarget) {
1245   EVT EltVT = VT.getScalarType();
1246   if (EltVT == MVT::f32)
1247     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1248   else if (EltVT == MVT::f64)
1249     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1250   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1251            EltVT == MVT::f16) {
1252     bool Ignored;
1253     APFloat APF = APFloat(Val);
1254     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1255                 &Ignored);
1256     return getConstantFP(APF, DL, VT, isTarget);
1257   } else
1258     llvm_unreachable("Unsupported type in getConstantFP");
1259 }
1260 
1261 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1262                                        EVT VT, int64_t Offset, bool isTargetGA,
1263                                        unsigned char TargetFlags) {
1264   assert((TargetFlags == 0 || isTargetGA) &&
1265          "Cannot set target flags on target-independent globals");
1266 
1267   // Truncate (with sign-extension) the offset value to the pointer size.
1268   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1269   if (BitWidth < 64)
1270     Offset = SignExtend64(Offset, BitWidth);
1271 
1272   unsigned Opc;
1273   if (GV->isThreadLocal())
1274     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1275   else
1276     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1277 
1278   FoldingSetNodeID ID;
1279   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1280   ID.AddPointer(GV);
1281   ID.AddInteger(Offset);
1282   ID.AddInteger(TargetFlags);
1283   void *IP = nullptr;
1284   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1285     return SDValue(E, 0);
1286 
1287   auto *N = newSDNode<GlobalAddressSDNode>(
1288       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1289   CSEMap.InsertNode(N, IP);
1290     InsertNode(N);
1291   return SDValue(N, 0);
1292 }
1293 
1294 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1295   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1296   FoldingSetNodeID ID;
1297   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1298   ID.AddInteger(FI);
1299   void *IP = nullptr;
1300   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1301     return SDValue(E, 0);
1302 
1303   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1304   CSEMap.InsertNode(N, IP);
1305   InsertNode(N);
1306   return SDValue(N, 0);
1307 }
1308 
1309 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1310                                    unsigned char TargetFlags) {
1311   assert((TargetFlags == 0 || isTarget) &&
1312          "Cannot set target flags on target-independent jump tables");
1313   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1314   FoldingSetNodeID ID;
1315   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1316   ID.AddInteger(JTI);
1317   ID.AddInteger(TargetFlags);
1318   void *IP = nullptr;
1319   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1320     return SDValue(E, 0);
1321 
1322   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1323   CSEMap.InsertNode(N, IP);
1324   InsertNode(N);
1325   return SDValue(N, 0);
1326 }
1327 
1328 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1329                                       unsigned Alignment, int Offset,
1330                                       bool isTarget,
1331                                       unsigned char TargetFlags) {
1332   assert((TargetFlags == 0 || isTarget) &&
1333          "Cannot set target flags on target-independent globals");
1334   if (Alignment == 0)
1335     Alignment = MF->getFunction().optForSize()
1336                     ? getDataLayout().getABITypeAlignment(C->getType())
1337                     : getDataLayout().getPrefTypeAlignment(C->getType());
1338   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1339   FoldingSetNodeID ID;
1340   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1341   ID.AddInteger(Alignment);
1342   ID.AddInteger(Offset);
1343   ID.AddPointer(C);
1344   ID.AddInteger(TargetFlags);
1345   void *IP = nullptr;
1346   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1347     return SDValue(E, 0);
1348 
1349   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1350                                           TargetFlags);
1351   CSEMap.InsertNode(N, IP);
1352   InsertNode(N);
1353   return SDValue(N, 0);
1354 }
1355 
1356 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1357                                       unsigned Alignment, int Offset,
1358                                       bool isTarget,
1359                                       unsigned char TargetFlags) {
1360   assert((TargetFlags == 0 || isTarget) &&
1361          "Cannot set target flags on target-independent globals");
1362   if (Alignment == 0)
1363     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1364   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1365   FoldingSetNodeID ID;
1366   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1367   ID.AddInteger(Alignment);
1368   ID.AddInteger(Offset);
1369   C->addSelectionDAGCSEId(ID);
1370   ID.AddInteger(TargetFlags);
1371   void *IP = nullptr;
1372   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1373     return SDValue(E, 0);
1374 
1375   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1376                                           TargetFlags);
1377   CSEMap.InsertNode(N, IP);
1378   InsertNode(N);
1379   return SDValue(N, 0);
1380 }
1381 
1382 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1383                                      unsigned char TargetFlags) {
1384   FoldingSetNodeID ID;
1385   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1386   ID.AddInteger(Index);
1387   ID.AddInteger(Offset);
1388   ID.AddInteger(TargetFlags);
1389   void *IP = nullptr;
1390   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1391     return SDValue(E, 0);
1392 
1393   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1394   CSEMap.InsertNode(N, IP);
1395   InsertNode(N);
1396   return SDValue(N, 0);
1397 }
1398 
1399 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1400   FoldingSetNodeID ID;
1401   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1402   ID.AddPointer(MBB);
1403   void *IP = nullptr;
1404   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1405     return SDValue(E, 0);
1406 
1407   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1408   CSEMap.InsertNode(N, IP);
1409   InsertNode(N);
1410   return SDValue(N, 0);
1411 }
1412 
1413 SDValue SelectionDAG::getValueType(EVT VT) {
1414   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1415       ValueTypeNodes.size())
1416     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1417 
1418   SDNode *&N = VT.isExtended() ?
1419     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1420 
1421   if (N) return SDValue(N, 0);
1422   N = newSDNode<VTSDNode>(VT);
1423   InsertNode(N);
1424   return SDValue(N, 0);
1425 }
1426 
1427 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1428   SDNode *&N = ExternalSymbols[Sym];
1429   if (N) return SDValue(N, 0);
1430   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1431   InsertNode(N);
1432   return SDValue(N, 0);
1433 }
1434 
1435 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1436   SDNode *&N = MCSymbols[Sym];
1437   if (N)
1438     return SDValue(N, 0);
1439   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1440   InsertNode(N);
1441   return SDValue(N, 0);
1442 }
1443 
1444 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1445                                               unsigned char TargetFlags) {
1446   SDNode *&N =
1447     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1448                                                                TargetFlags)];
1449   if (N) return SDValue(N, 0);
1450   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1451   InsertNode(N);
1452   return SDValue(N, 0);
1453 }
1454 
1455 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1456   if ((unsigned)Cond >= CondCodeNodes.size())
1457     CondCodeNodes.resize(Cond+1);
1458 
1459   if (!CondCodeNodes[Cond]) {
1460     auto *N = newSDNode<CondCodeSDNode>(Cond);
1461     CondCodeNodes[Cond] = N;
1462     InsertNode(N);
1463   }
1464 
1465   return SDValue(CondCodeNodes[Cond], 0);
1466 }
1467 
1468 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1469 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1470 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1471   std::swap(N1, N2);
1472   ShuffleVectorSDNode::commuteMask(M);
1473 }
1474 
1475 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1476                                        SDValue N2, ArrayRef<int> Mask) {
1477   assert(VT.getVectorNumElements() == Mask.size() &&
1478            "Must have the same number of vector elements as mask elements!");
1479   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1480          "Invalid VECTOR_SHUFFLE");
1481 
1482   // Canonicalize shuffle undef, undef -> undef
1483   if (N1.isUndef() && N2.isUndef())
1484     return getUNDEF(VT);
1485 
1486   // Validate that all indices in Mask are within the range of the elements
1487   // input to the shuffle.
1488   int NElts = Mask.size();
1489   assert(llvm::all_of(Mask,
1490                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1491          "Index out of range");
1492 
1493   // Copy the mask so we can do any needed cleanup.
1494   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1495 
1496   // Canonicalize shuffle v, v -> v, undef
1497   if (N1 == N2) {
1498     N2 = getUNDEF(VT);
1499     for (int i = 0; i != NElts; ++i)
1500       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1501   }
1502 
1503   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1504   if (N1.isUndef())
1505     commuteShuffle(N1, N2, MaskVec);
1506 
1507   // If shuffling a splat, try to blend the splat instead. We do this here so
1508   // that even when this arises during lowering we don't have to re-handle it.
1509   auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1510     BitVector UndefElements;
1511     SDValue Splat = BV->getSplatValue(&UndefElements);
1512     if (!Splat)
1513       return;
1514 
1515     for (int i = 0; i < NElts; ++i) {
1516       if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1517         continue;
1518 
1519       // If this input comes from undef, mark it as such.
1520       if (UndefElements[MaskVec[i] - Offset]) {
1521         MaskVec[i] = -1;
1522         continue;
1523       }
1524 
1525       // If we can blend a non-undef lane, use that instead.
1526       if (!UndefElements[i])
1527         MaskVec[i] = i + Offset;
1528     }
1529   };
1530   if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1531     BlendSplat(N1BV, 0);
1532   if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1533     BlendSplat(N2BV, NElts);
1534 
1535   // Canonicalize all index into lhs, -> shuffle lhs, undef
1536   // Canonicalize all index into rhs, -> shuffle rhs, undef
1537   bool AllLHS = true, AllRHS = true;
1538   bool N2Undef = N2.isUndef();
1539   for (int i = 0; i != NElts; ++i) {
1540     if (MaskVec[i] >= NElts) {
1541       if (N2Undef)
1542         MaskVec[i] = -1;
1543       else
1544         AllLHS = false;
1545     } else if (MaskVec[i] >= 0) {
1546       AllRHS = false;
1547     }
1548   }
1549   if (AllLHS && AllRHS)
1550     return getUNDEF(VT);
1551   if (AllLHS && !N2Undef)
1552     N2 = getUNDEF(VT);
1553   if (AllRHS) {
1554     N1 = getUNDEF(VT);
1555     commuteShuffle(N1, N2, MaskVec);
1556   }
1557   // Reset our undef status after accounting for the mask.
1558   N2Undef = N2.isUndef();
1559   // Re-check whether both sides ended up undef.
1560   if (N1.isUndef() && N2Undef)
1561     return getUNDEF(VT);
1562 
1563   // If Identity shuffle return that node.
1564   bool Identity = true, AllSame = true;
1565   for (int i = 0; i != NElts; ++i) {
1566     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1567     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1568   }
1569   if (Identity && NElts)
1570     return N1;
1571 
1572   // Shuffling a constant splat doesn't change the result.
1573   if (N2Undef) {
1574     SDValue V = N1;
1575 
1576     // Look through any bitcasts. We check that these don't change the number
1577     // (and size) of elements and just changes their types.
1578     while (V.getOpcode() == ISD::BITCAST)
1579       V = V->getOperand(0);
1580 
1581     // A splat should always show up as a build vector node.
1582     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1583       BitVector UndefElements;
1584       SDValue Splat = BV->getSplatValue(&UndefElements);
1585       // If this is a splat of an undef, shuffling it is also undef.
1586       if (Splat && Splat.isUndef())
1587         return getUNDEF(VT);
1588 
1589       bool SameNumElts =
1590           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1591 
1592       // We only have a splat which can skip shuffles if there is a splatted
1593       // value and no undef lanes rearranged by the shuffle.
1594       if (Splat && UndefElements.none()) {
1595         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1596         // number of elements match or the value splatted is a zero constant.
1597         if (SameNumElts)
1598           return N1;
1599         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1600           if (C->isNullValue())
1601             return N1;
1602       }
1603 
1604       // If the shuffle itself creates a splat, build the vector directly.
1605       if (AllSame && SameNumElts) {
1606         EVT BuildVT = BV->getValueType(0);
1607         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1608         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1609 
1610         // We may have jumped through bitcasts, so the type of the
1611         // BUILD_VECTOR may not match the type of the shuffle.
1612         if (BuildVT != VT)
1613           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1614         return NewBV;
1615       }
1616     }
1617   }
1618 
1619   FoldingSetNodeID ID;
1620   SDValue Ops[2] = { N1, N2 };
1621   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1622   for (int i = 0; i != NElts; ++i)
1623     ID.AddInteger(MaskVec[i]);
1624 
1625   void* IP = nullptr;
1626   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1627     return SDValue(E, 0);
1628 
1629   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1630   // SDNode doesn't have access to it.  This memory will be "leaked" when
1631   // the node is deallocated, but recovered when the NodeAllocator is released.
1632   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1633   std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc);
1634 
1635   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1636                                            dl.getDebugLoc(), MaskAlloc);
1637   createOperands(N, Ops);
1638 
1639   CSEMap.InsertNode(N, IP);
1640   InsertNode(N);
1641   SDValue V = SDValue(N, 0);
1642   NewSDValueDbgMsg(V, "Creating new node: ", this);
1643   return V;
1644 }
1645 
1646 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1647   MVT VT = SV.getSimpleValueType(0);
1648   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1649   ShuffleVectorSDNode::commuteMask(MaskVec);
1650 
1651   SDValue Op0 = SV.getOperand(0);
1652   SDValue Op1 = SV.getOperand(1);
1653   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1654 }
1655 
1656 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1657   FoldingSetNodeID ID;
1658   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1659   ID.AddInteger(RegNo);
1660   void *IP = nullptr;
1661   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1662     return SDValue(E, 0);
1663 
1664   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1665   CSEMap.InsertNode(N, IP);
1666   InsertNode(N);
1667   return SDValue(N, 0);
1668 }
1669 
1670 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1671   FoldingSetNodeID ID;
1672   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1673   ID.AddPointer(RegMask);
1674   void *IP = nullptr;
1675   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1676     return SDValue(E, 0);
1677 
1678   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1679   CSEMap.InsertNode(N, IP);
1680   InsertNode(N);
1681   return SDValue(N, 0);
1682 }
1683 
1684 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1685                                  MCSymbol *Label) {
1686   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1687 }
1688 
1689 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1690                                    SDValue Root, MCSymbol *Label) {
1691   FoldingSetNodeID ID;
1692   SDValue Ops[] = { Root };
1693   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1694   ID.AddPointer(Label);
1695   void *IP = nullptr;
1696   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1697     return SDValue(E, 0);
1698 
1699   auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1700   createOperands(N, Ops);
1701 
1702   CSEMap.InsertNode(N, IP);
1703   InsertNode(N);
1704   return SDValue(N, 0);
1705 }
1706 
1707 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1708                                       int64_t Offset,
1709                                       bool isTarget,
1710                                       unsigned char TargetFlags) {
1711   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1712 
1713   FoldingSetNodeID ID;
1714   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1715   ID.AddPointer(BA);
1716   ID.AddInteger(Offset);
1717   ID.AddInteger(TargetFlags);
1718   void *IP = nullptr;
1719   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1720     return SDValue(E, 0);
1721 
1722   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1723   CSEMap.InsertNode(N, IP);
1724   InsertNode(N);
1725   return SDValue(N, 0);
1726 }
1727 
1728 SDValue SelectionDAG::getSrcValue(const Value *V) {
1729   assert((!V || V->getType()->isPointerTy()) &&
1730          "SrcValue is not a pointer?");
1731 
1732   FoldingSetNodeID ID;
1733   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1734   ID.AddPointer(V);
1735 
1736   void *IP = nullptr;
1737   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1738     return SDValue(E, 0);
1739 
1740   auto *N = newSDNode<SrcValueSDNode>(V);
1741   CSEMap.InsertNode(N, IP);
1742   InsertNode(N);
1743   return SDValue(N, 0);
1744 }
1745 
1746 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1747   FoldingSetNodeID ID;
1748   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1749   ID.AddPointer(MD);
1750 
1751   void *IP = nullptr;
1752   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1753     return SDValue(E, 0);
1754 
1755   auto *N = newSDNode<MDNodeSDNode>(MD);
1756   CSEMap.InsertNode(N, IP);
1757   InsertNode(N);
1758   return SDValue(N, 0);
1759 }
1760 
1761 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1762   if (VT == V.getValueType())
1763     return V;
1764 
1765   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1766 }
1767 
1768 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1769                                        unsigned SrcAS, unsigned DestAS) {
1770   SDValue Ops[] = {Ptr};
1771   FoldingSetNodeID ID;
1772   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1773   ID.AddInteger(SrcAS);
1774   ID.AddInteger(DestAS);
1775 
1776   void *IP = nullptr;
1777   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1778     return SDValue(E, 0);
1779 
1780   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1781                                            VT, SrcAS, DestAS);
1782   createOperands(N, Ops);
1783 
1784   CSEMap.InsertNode(N, IP);
1785   InsertNode(N);
1786   return SDValue(N, 0);
1787 }
1788 
1789 /// getShiftAmountOperand - Return the specified value casted to
1790 /// the target's desired shift amount type.
1791 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1792   EVT OpTy = Op.getValueType();
1793   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1794   if (OpTy == ShTy || OpTy.isVector()) return Op;
1795 
1796   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1797 }
1798 
1799 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1800   SDLoc dl(Node);
1801   const TargetLowering &TLI = getTargetLoweringInfo();
1802   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1803   EVT VT = Node->getValueType(0);
1804   SDValue Tmp1 = Node->getOperand(0);
1805   SDValue Tmp2 = Node->getOperand(1);
1806   unsigned Align = Node->getConstantOperandVal(3);
1807 
1808   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1809                                Tmp2, MachinePointerInfo(V));
1810   SDValue VAList = VAListLoad;
1811 
1812   if (Align > TLI.getMinStackArgumentAlignment()) {
1813     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1814 
1815     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1816                      getConstant(Align - 1, dl, VAList.getValueType()));
1817 
1818     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1819                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1820   }
1821 
1822   // Increment the pointer, VAList, to the next vaarg
1823   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1824                  getConstant(getDataLayout().getTypeAllocSize(
1825                                                VT.getTypeForEVT(*getContext())),
1826                              dl, VAList.getValueType()));
1827   // Store the incremented VAList to the legalized pointer
1828   Tmp1 =
1829       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1830   // Load the actual argument out of the pointer VAList
1831   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1832 }
1833 
1834 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1835   SDLoc dl(Node);
1836   const TargetLowering &TLI = getTargetLoweringInfo();
1837   // This defaults to loading a pointer from the input and storing it to the
1838   // output, returning the chain.
1839   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1840   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1841   SDValue Tmp1 =
1842       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1843               Node->getOperand(2), MachinePointerInfo(VS));
1844   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1845                   MachinePointerInfo(VD));
1846 }
1847 
1848 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1849   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1850   unsigned ByteSize = VT.getStoreSize();
1851   Type *Ty = VT.getTypeForEVT(*getContext());
1852   unsigned StackAlign =
1853       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1854 
1855   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1856   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1857 }
1858 
1859 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1860   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1861   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1862   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1863   const DataLayout &DL = getDataLayout();
1864   unsigned Align =
1865       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1866 
1867   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1868   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1869   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1870 }
1871 
1872 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1873                                 ISD::CondCode Cond, const SDLoc &dl) {
1874   // These setcc operations always fold.
1875   switch (Cond) {
1876   default: break;
1877   case ISD::SETFALSE:
1878   case ISD::SETFALSE2: return getConstant(0, dl, VT);
1879   case ISD::SETTRUE:
1880   case ISD::SETTRUE2: {
1881     TargetLowering::BooleanContent Cnt =
1882         TLI->getBooleanContents(N1->getValueType(0));
1883     return getConstant(
1884         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1885         VT);
1886   }
1887 
1888   case ISD::SETOEQ:
1889   case ISD::SETOGT:
1890   case ISD::SETOGE:
1891   case ISD::SETOLT:
1892   case ISD::SETOLE:
1893   case ISD::SETONE:
1894   case ISD::SETO:
1895   case ISD::SETUO:
1896   case ISD::SETUEQ:
1897   case ISD::SETUNE:
1898     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1899     break;
1900   }
1901 
1902   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
1903     const APInt &C2 = N2C->getAPIntValue();
1904     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
1905       const APInt &C1 = N1C->getAPIntValue();
1906 
1907       switch (Cond) {
1908       default: llvm_unreachable("Unknown integer setcc!");
1909       case ISD::SETEQ:  return getConstant(C1 == C2, dl, VT);
1910       case ISD::SETNE:  return getConstant(C1 != C2, dl, VT);
1911       case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT);
1912       case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT);
1913       case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT);
1914       case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT);
1915       case ISD::SETLT:  return getConstant(C1.slt(C2), dl, VT);
1916       case ISD::SETGT:  return getConstant(C1.sgt(C2), dl, VT);
1917       case ISD::SETLE:  return getConstant(C1.sle(C2), dl, VT);
1918       case ISD::SETGE:  return getConstant(C1.sge(C2), dl, VT);
1919       }
1920     }
1921   }
1922   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
1923     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
1924       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1925       switch (Cond) {
1926       default: break;
1927       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1928                           return getUNDEF(VT);
1929                         LLVM_FALLTHROUGH;
1930       case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT);
1931       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1932                           return getUNDEF(VT);
1933                         LLVM_FALLTHROUGH;
1934       case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1935                                            R==APFloat::cmpLessThan, dl, VT);
1936       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1937                           return getUNDEF(VT);
1938                         LLVM_FALLTHROUGH;
1939       case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT);
1940       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1941                           return getUNDEF(VT);
1942                         LLVM_FALLTHROUGH;
1943       case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT);
1944       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1945                           return getUNDEF(VT);
1946                         LLVM_FALLTHROUGH;
1947       case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1948                                            R==APFloat::cmpEqual, dl, VT);
1949       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1950                           return getUNDEF(VT);
1951                         LLVM_FALLTHROUGH;
1952       case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1953                                            R==APFloat::cmpEqual, dl, VT);
1954       case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, dl, VT);
1955       case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, dl, VT);
1956       case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1957                                            R==APFloat::cmpEqual, dl, VT);
1958       case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT);
1959       case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1960                                            R==APFloat::cmpLessThan, dl, VT);
1961       case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1962                                            R==APFloat::cmpUnordered, dl, VT);
1963       case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT);
1964       case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT);
1965       }
1966     } else {
1967       // Ensure that the constant occurs on the RHS.
1968       ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
1969       MVT CompVT = N1.getValueType().getSimpleVT();
1970       if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
1971         return SDValue();
1972 
1973       return getSetCC(dl, VT, N2, N1, SwappedCond);
1974     }
1975   }
1976 
1977   // Could not fold it.
1978   return SDValue();
1979 }
1980 
1981 /// See if the specified operand can be simplified with the knowledge that only
1982 /// the bits specified by Mask are used.
1983 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) {
1984   switch (V.getOpcode()) {
1985   default:
1986     break;
1987   case ISD::Constant: {
1988     const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
1989     assert(CV && "Const value should be ConstSDNode.");
1990     const APInt &CVal = CV->getAPIntValue();
1991     APInt NewVal = CVal & Mask;
1992     if (NewVal != CVal)
1993       return getConstant(NewVal, SDLoc(V), V.getValueType());
1994     break;
1995   }
1996   case ISD::OR:
1997   case ISD::XOR:
1998     // If the LHS or RHS don't contribute bits to the or, drop them.
1999     if (MaskedValueIsZero(V.getOperand(0), Mask))
2000       return V.getOperand(1);
2001     if (MaskedValueIsZero(V.getOperand(1), Mask))
2002       return V.getOperand(0);
2003     break;
2004   case ISD::SRL:
2005     // Only look at single-use SRLs.
2006     if (!V.getNode()->hasOneUse())
2007       break;
2008     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2009       // See if we can recursively simplify the LHS.
2010       unsigned Amt = RHSC->getZExtValue();
2011 
2012       // Watch out for shift count overflow though.
2013       if (Amt >= Mask.getBitWidth())
2014         break;
2015       APInt NewMask = Mask << Amt;
2016       if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
2017         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2018                        V.getOperand(1));
2019     }
2020     break;
2021   case ISD::AND: {
2022     // X & -1 -> X (ignoring bits which aren't demanded).
2023     ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1));
2024     if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue()))
2025       return V.getOperand(0);
2026     break;
2027   }
2028   case ISD::ANY_EXTEND: {
2029     SDValue Src = V.getOperand(0);
2030     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2031     // Being conservative here - only peek through if we only demand bits in the
2032     // non-extended source (even though the extended bits are technically undef).
2033     if (Mask.getActiveBits() > SrcBitWidth)
2034       break;
2035     APInt SrcMask = Mask.trunc(SrcBitWidth);
2036     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask))
2037       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2038     break;
2039   }
2040   }
2041   return SDValue();
2042 }
2043 
2044 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2045 /// use this predicate to simplify operations downstream.
2046 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2047   unsigned BitWidth = Op.getScalarValueSizeInBits();
2048   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2049 }
2050 
2051 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2052 /// this predicate to simplify operations downstream.  Mask is known to be zero
2053 /// for bits that V cannot have.
2054 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
2055                                      unsigned Depth) const {
2056   KnownBits Known;
2057   computeKnownBits(Op, Known, Depth);
2058   return Mask.isSubsetOf(Known.Zero);
2059 }
2060 
2061 /// Helper function that checks to see if a node is a constant or a
2062 /// build vector of splat constants at least within the demanded elts.
2063 static ConstantSDNode *isConstOrDemandedConstSplat(SDValue N,
2064                                                    const APInt &DemandedElts) {
2065   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
2066     return CN;
2067   if (N.getOpcode() != ISD::BUILD_VECTOR)
2068     return nullptr;
2069   EVT VT = N.getValueType();
2070   ConstantSDNode *Cst = nullptr;
2071   unsigned NumElts = VT.getVectorNumElements();
2072   assert(DemandedElts.getBitWidth() == NumElts && "Unexpected vector size");
2073   for (unsigned i = 0; i != NumElts; ++i) {
2074     if (!DemandedElts[i])
2075       continue;
2076     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(i));
2077     if (!C || (Cst && Cst->getAPIntValue() != C->getAPIntValue()) ||
2078         C->getValueType(0) != VT.getScalarType())
2079       return nullptr;
2080     Cst = C;
2081   }
2082   return Cst;
2083 }
2084 
2085 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2086 /// is less than the element bit-width of the shift node, return it.
2087 static const APInt *getValidShiftAmountConstant(SDValue V) {
2088   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2089     // Shifting more than the bitwidth is not valid.
2090     const APInt &ShAmt = SA->getAPIntValue();
2091     if (ShAmt.ult(V.getScalarValueSizeInBits()))
2092       return &ShAmt;
2093   }
2094   return nullptr;
2095 }
2096 
2097 /// Determine which bits of Op are known to be either zero or one and return
2098 /// them in Known. For vectors, the known bits are those that are shared by
2099 /// every vector element.
2100 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
2101                                     unsigned Depth) const {
2102   EVT VT = Op.getValueType();
2103   APInt DemandedElts = VT.isVector()
2104                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2105                            : APInt(1, 1);
2106   computeKnownBits(Op, Known, DemandedElts, Depth);
2107 }
2108 
2109 /// Determine which bits of Op are known to be either zero or one and return
2110 /// them in Known. The DemandedElts argument allows us to only collect the known
2111 /// bits that are shared by the requested vector elements.
2112 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
2113                                     const APInt &DemandedElts,
2114                                     unsigned Depth) const {
2115   unsigned BitWidth = Op.getScalarValueSizeInBits();
2116 
2117   Known = KnownBits(BitWidth);   // Don't know anything.
2118 
2119   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2120     // We know all of the bits for a constant!
2121     Known.One = C->getAPIntValue();
2122     Known.Zero = ~Known.One;
2123     return;
2124   }
2125   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2126     // We know all of the bits for a constant fp!
2127     Known.One = C->getValueAPF().bitcastToAPInt();
2128     Known.Zero = ~Known.One;
2129     return;
2130   }
2131 
2132   if (Depth == 6)
2133     return;  // Limit search depth.
2134 
2135   KnownBits Known2;
2136   unsigned NumElts = DemandedElts.getBitWidth();
2137 
2138   if (!DemandedElts)
2139     return;  // No demanded elts, better to assume we don't know anything.
2140 
2141   unsigned Opcode = Op.getOpcode();
2142   switch (Opcode) {
2143   case ISD::BUILD_VECTOR:
2144     // Collect the known bits that are shared by every demanded vector element.
2145     assert(NumElts == Op.getValueType().getVectorNumElements() &&
2146            "Unexpected vector size");
2147     Known.Zero.setAllBits(); Known.One.setAllBits();
2148     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2149       if (!DemandedElts[i])
2150         continue;
2151 
2152       SDValue SrcOp = Op.getOperand(i);
2153       computeKnownBits(SrcOp, Known2, Depth + 1);
2154 
2155       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2156       if (SrcOp.getValueSizeInBits() != BitWidth) {
2157         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2158                "Expected BUILD_VECTOR implicit truncation");
2159         Known2 = Known2.trunc(BitWidth);
2160       }
2161 
2162       // Known bits are the values that are shared by every demanded element.
2163       Known.One &= Known2.One;
2164       Known.Zero &= Known2.Zero;
2165 
2166       // If we don't know any bits, early out.
2167       if (Known.isUnknown())
2168         break;
2169     }
2170     break;
2171   case ISD::VECTOR_SHUFFLE: {
2172     // Collect the known bits that are shared by every vector element referenced
2173     // by the shuffle.
2174     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2175     Known.Zero.setAllBits(); Known.One.setAllBits();
2176     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2177     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2178     for (unsigned i = 0; i != NumElts; ++i) {
2179       if (!DemandedElts[i])
2180         continue;
2181 
2182       int M = SVN->getMaskElt(i);
2183       if (M < 0) {
2184         // For UNDEF elements, we don't know anything about the common state of
2185         // the shuffle result.
2186         Known.resetAll();
2187         DemandedLHS.clearAllBits();
2188         DemandedRHS.clearAllBits();
2189         break;
2190       }
2191 
2192       if ((unsigned)M < NumElts)
2193         DemandedLHS.setBit((unsigned)M % NumElts);
2194       else
2195         DemandedRHS.setBit((unsigned)M % NumElts);
2196     }
2197     // Known bits are the values that are shared by every demanded element.
2198     if (!!DemandedLHS) {
2199       SDValue LHS = Op.getOperand(0);
2200       computeKnownBits(LHS, Known2, DemandedLHS, Depth + 1);
2201       Known.One &= Known2.One;
2202       Known.Zero &= Known2.Zero;
2203     }
2204     // If we don't know any bits, early out.
2205     if (Known.isUnknown())
2206       break;
2207     if (!!DemandedRHS) {
2208       SDValue RHS = Op.getOperand(1);
2209       computeKnownBits(RHS, Known2, DemandedRHS, Depth + 1);
2210       Known.One &= Known2.One;
2211       Known.Zero &= Known2.Zero;
2212     }
2213     break;
2214   }
2215   case ISD::CONCAT_VECTORS: {
2216     // Split DemandedElts and test each of the demanded subvectors.
2217     Known.Zero.setAllBits(); Known.One.setAllBits();
2218     EVT SubVectorVT = Op.getOperand(0).getValueType();
2219     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2220     unsigned NumSubVectors = Op.getNumOperands();
2221     for (unsigned i = 0; i != NumSubVectors; ++i) {
2222       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2223       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2224       if (!!DemandedSub) {
2225         SDValue Sub = Op.getOperand(i);
2226         computeKnownBits(Sub, Known2, DemandedSub, Depth + 1);
2227         Known.One &= Known2.One;
2228         Known.Zero &= Known2.Zero;
2229       }
2230       // If we don't know any bits, early out.
2231       if (Known.isUnknown())
2232         break;
2233     }
2234     break;
2235   }
2236   case ISD::INSERT_SUBVECTOR: {
2237     // If we know the element index, demand any elements from the subvector and
2238     // the remainder from the src its inserted into, otherwise demand them all.
2239     SDValue Src = Op.getOperand(0);
2240     SDValue Sub = Op.getOperand(1);
2241     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2242     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2243     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2244       Known.One.setAllBits();
2245       Known.Zero.setAllBits();
2246       uint64_t Idx = SubIdx->getZExtValue();
2247       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2248       if (!!DemandedSubElts) {
2249         computeKnownBits(Sub, Known, DemandedSubElts, Depth + 1);
2250         if (Known.isUnknown())
2251           break; // early-out.
2252       }
2253       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2254       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2255       if (!!DemandedSrcElts) {
2256         computeKnownBits(Src, Known2, DemandedSrcElts, Depth + 1);
2257         Known.One &= Known2.One;
2258         Known.Zero &= Known2.Zero;
2259       }
2260     } else {
2261       computeKnownBits(Sub, Known, Depth + 1);
2262       if (Known.isUnknown())
2263         break; // early-out.
2264       computeKnownBits(Src, Known2, Depth + 1);
2265       Known.One &= Known2.One;
2266       Known.Zero &= Known2.Zero;
2267     }
2268     break;
2269   }
2270   case ISD::EXTRACT_SUBVECTOR: {
2271     // If we know the element index, just demand that subvector elements,
2272     // otherwise demand them all.
2273     SDValue Src = Op.getOperand(0);
2274     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2275     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2276     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2277       // Offset the demanded elts by the subvector index.
2278       uint64_t Idx = SubIdx->getZExtValue();
2279       APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx);
2280       computeKnownBits(Src, Known, DemandedSrc, Depth + 1);
2281     } else {
2282       computeKnownBits(Src, Known, Depth + 1);
2283     }
2284     break;
2285   }
2286   case ISD::BITCAST: {
2287     SDValue N0 = Op.getOperand(0);
2288     EVT SubVT = N0.getValueType();
2289     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2290 
2291     // Ignore bitcasts from unsupported types.
2292     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2293       break;
2294 
2295     // Fast handling of 'identity' bitcasts.
2296     if (BitWidth == SubBitWidth) {
2297       computeKnownBits(N0, Known, DemandedElts, Depth + 1);
2298       break;
2299     }
2300 
2301     // Support big-endian targets when it becomes useful.
2302     bool IsLE = getDataLayout().isLittleEndian();
2303     if (!IsLE)
2304       break;
2305 
2306     // Bitcast 'small element' vector to 'large element' scalar/vector.
2307     if ((BitWidth % SubBitWidth) == 0) {
2308       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2309 
2310       // Collect known bits for the (larger) output by collecting the known
2311       // bits from each set of sub elements and shift these into place.
2312       // We need to separately call computeKnownBits for each set of
2313       // sub elements as the knownbits for each is likely to be different.
2314       unsigned SubScale = BitWidth / SubBitWidth;
2315       APInt SubDemandedElts(NumElts * SubScale, 0);
2316       for (unsigned i = 0; i != NumElts; ++i)
2317         if (DemandedElts[i])
2318           SubDemandedElts.setBit(i * SubScale);
2319 
2320       for (unsigned i = 0; i != SubScale; ++i) {
2321         computeKnownBits(N0, Known2, SubDemandedElts.shl(i),
2322                          Depth + 1);
2323         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * i);
2324         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * i);
2325       }
2326     }
2327 
2328     // Bitcast 'large element' scalar/vector to 'small element' vector.
2329     if ((SubBitWidth % BitWidth) == 0) {
2330       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2331 
2332       // Collect known bits for the (smaller) output by collecting the known
2333       // bits from the overlapping larger input elements and extracting the
2334       // sub sections we actually care about.
2335       unsigned SubScale = SubBitWidth / BitWidth;
2336       APInt SubDemandedElts(NumElts / SubScale, 0);
2337       for (unsigned i = 0; i != NumElts; ++i)
2338         if (DemandedElts[i])
2339           SubDemandedElts.setBit(i / SubScale);
2340 
2341       computeKnownBits(N0, Known2, SubDemandedElts, Depth + 1);
2342 
2343       Known.Zero.setAllBits(); Known.One.setAllBits();
2344       for (unsigned i = 0; i != NumElts; ++i)
2345         if (DemandedElts[i]) {
2346           unsigned Offset = (i % SubScale) * BitWidth;
2347           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2348           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2349           // If we don't know any bits, early out.
2350           if (Known.isUnknown())
2351             break;
2352         }
2353     }
2354     break;
2355   }
2356   case ISD::AND:
2357     // If either the LHS or the RHS are Zero, the result is zero.
2358     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2359     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2360 
2361     // Output known-1 bits are only known if set in both the LHS & RHS.
2362     Known.One &= Known2.One;
2363     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2364     Known.Zero |= Known2.Zero;
2365     break;
2366   case ISD::OR:
2367     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2368     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2369 
2370     // Output known-0 bits are only known if clear in both the LHS & RHS.
2371     Known.Zero &= Known2.Zero;
2372     // Output known-1 are known to be set if set in either the LHS | RHS.
2373     Known.One |= Known2.One;
2374     break;
2375   case ISD::XOR: {
2376     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2377     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2378 
2379     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2380     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2381     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2382     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2383     Known.Zero = KnownZeroOut;
2384     break;
2385   }
2386   case ISD::MUL: {
2387     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2388     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2389 
2390     // If low bits are zero in either operand, output low known-0 bits.
2391     // Also compute a conservative estimate for high known-0 bits.
2392     // More trickiness is possible, but this is sufficient for the
2393     // interesting case of alignment computation.
2394     unsigned TrailZ = Known.countMinTrailingZeros() +
2395                       Known2.countMinTrailingZeros();
2396     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2397                                Known2.countMinLeadingZeros(),
2398                                BitWidth) - BitWidth;
2399 
2400     Known.resetAll();
2401     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2402     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2403     break;
2404   }
2405   case ISD::UDIV: {
2406     // For the purposes of computing leading zeros we can conservatively
2407     // treat a udiv as a logical right shift by the power of 2 known to
2408     // be less than the denominator.
2409     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2410     unsigned LeadZ = Known2.countMinLeadingZeros();
2411 
2412     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2413     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2414     if (RHSMaxLeadingZeros != BitWidth)
2415       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2416 
2417     Known.Zero.setHighBits(LeadZ);
2418     break;
2419   }
2420   case ISD::SELECT:
2421   case ISD::VSELECT:
2422     computeKnownBits(Op.getOperand(2), Known, DemandedElts, Depth+1);
2423     // If we don't know any bits, early out.
2424     if (Known.isUnknown())
2425       break;
2426     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth+1);
2427 
2428     // Only known if known in both the LHS and RHS.
2429     Known.One &= Known2.One;
2430     Known.Zero &= Known2.Zero;
2431     break;
2432   case ISD::SELECT_CC:
2433     computeKnownBits(Op.getOperand(3), Known, DemandedElts, Depth+1);
2434     // If we don't know any bits, early out.
2435     if (Known.isUnknown())
2436       break;
2437     computeKnownBits(Op.getOperand(2), Known2, DemandedElts, Depth+1);
2438 
2439     // Only known if known in both the LHS and RHS.
2440     Known.One &= Known2.One;
2441     Known.Zero &= Known2.Zero;
2442     break;
2443   case ISD::SMULO:
2444   case ISD::UMULO:
2445   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2446     if (Op.getResNo() != 1)
2447       break;
2448     // The boolean result conforms to getBooleanContents.
2449     // If we know the result of a setcc has the top bits zero, use this info.
2450     // We know that we have an integer-based boolean since these operations
2451     // are only available for integer.
2452     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2453             TargetLowering::ZeroOrOneBooleanContent &&
2454         BitWidth > 1)
2455       Known.Zero.setBitsFrom(1);
2456     break;
2457   case ISD::SETCC:
2458     // If we know the result of a setcc has the top bits zero, use this info.
2459     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2460             TargetLowering::ZeroOrOneBooleanContent &&
2461         BitWidth > 1)
2462       Known.Zero.setBitsFrom(1);
2463     break;
2464   case ISD::SHL:
2465     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2466       computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2467       unsigned Shift = ShAmt->getZExtValue();
2468       Known.Zero <<= Shift;
2469       Known.One <<= Shift;
2470       // Low bits are known zero.
2471       Known.Zero.setLowBits(Shift);
2472     }
2473     break;
2474   case ISD::SRL:
2475     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2476       computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2477       unsigned Shift = ShAmt->getZExtValue();
2478       Known.Zero.lshrInPlace(Shift);
2479       Known.One.lshrInPlace(Shift);
2480       // High bits are known zero.
2481       Known.Zero.setHighBits(Shift);
2482     } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
2483       // If the shift amount is a vector of constants see if we can bound
2484       // the number of upper zero bits.
2485       unsigned ShiftAmountMin = BitWidth;
2486       for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
2487         if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
2488           const APInt &ShAmt = C->getAPIntValue();
2489           if (ShAmt.ult(BitWidth)) {
2490             ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
2491                                                 ShAmt.getZExtValue());
2492             continue;
2493           }
2494         }
2495         // Don't know anything.
2496         ShiftAmountMin = 0;
2497         break;
2498       }
2499 
2500       Known.Zero.setHighBits(ShiftAmountMin);
2501     }
2502     break;
2503   case ISD::SRA:
2504     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2505       computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2506       unsigned Shift = ShAmt->getZExtValue();
2507       // Sign extend known zero/one bit (else is unknown).
2508       Known.Zero.ashrInPlace(Shift);
2509       Known.One.ashrInPlace(Shift);
2510     }
2511     break;
2512   case ISD::SIGN_EXTEND_INREG: {
2513     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2514     unsigned EBits = EVT.getScalarSizeInBits();
2515 
2516     // Sign extension.  Compute the demanded bits in the result that are not
2517     // present in the input.
2518     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2519 
2520     APInt InSignMask = APInt::getSignMask(EBits);
2521     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2522 
2523     // If the sign extended bits are demanded, we know that the sign
2524     // bit is demanded.
2525     InSignMask = InSignMask.zext(BitWidth);
2526     if (NewBits.getBoolValue())
2527       InputDemandedBits |= InSignMask;
2528 
2529     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2530     Known.One &= InputDemandedBits;
2531     Known.Zero &= InputDemandedBits;
2532 
2533     // If the sign bit of the input is known set or clear, then we know the
2534     // top bits of the result.
2535     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2536       Known.Zero |= NewBits;
2537       Known.One  &= ~NewBits;
2538     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2539       Known.One  |= NewBits;
2540       Known.Zero &= ~NewBits;
2541     } else {                              // Input sign bit unknown
2542       Known.Zero &= ~NewBits;
2543       Known.One  &= ~NewBits;
2544     }
2545     break;
2546   }
2547   case ISD::CTTZ:
2548   case ISD::CTTZ_ZERO_UNDEF: {
2549     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2550     // If we have a known 1, its position is our upper bound.
2551     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2552     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2553     Known.Zero.setBitsFrom(LowBits);
2554     break;
2555   }
2556   case ISD::CTLZ:
2557   case ISD::CTLZ_ZERO_UNDEF: {
2558     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2559     // If we have a known 1, its position is our upper bound.
2560     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2561     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2562     Known.Zero.setBitsFrom(LowBits);
2563     break;
2564   }
2565   case ISD::CTPOP: {
2566     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2567     // If we know some of the bits are zero, they can't be one.
2568     unsigned PossibleOnes = Known2.countMaxPopulation();
2569     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2570     break;
2571   }
2572   case ISD::LOAD: {
2573     LoadSDNode *LD = cast<LoadSDNode>(Op);
2574     // If this is a ZEXTLoad and we are looking at the loaded value.
2575     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2576       EVT VT = LD->getMemoryVT();
2577       unsigned MemBits = VT.getScalarSizeInBits();
2578       Known.Zero.setBitsFrom(MemBits);
2579     } else if (const MDNode *Ranges = LD->getRanges()) {
2580       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2581         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2582     }
2583     break;
2584   }
2585   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2586     EVT InVT = Op.getOperand(0).getValueType();
2587     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
2588     computeKnownBits(Op.getOperand(0), Known, InDemandedElts, Depth + 1);
2589     Known = Known.zext(BitWidth);
2590     Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
2591     break;
2592   }
2593   case ISD::ZERO_EXTEND: {
2594     EVT InVT = Op.getOperand(0).getValueType();
2595     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2596     Known = Known.zext(BitWidth);
2597     Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
2598     break;
2599   }
2600   // TODO ISD::SIGN_EXTEND_VECTOR_INREG
2601   case ISD::SIGN_EXTEND: {
2602     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2603     // If the sign bit is known to be zero or one, then sext will extend
2604     // it to the top bits, else it will just zext.
2605     Known = Known.sext(BitWidth);
2606     break;
2607   }
2608   case ISD::ANY_EXTEND: {
2609     computeKnownBits(Op.getOperand(0), Known, Depth+1);
2610     Known = Known.zext(BitWidth);
2611     break;
2612   }
2613   case ISD::TRUNCATE: {
2614     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2615     Known = Known.trunc(BitWidth);
2616     break;
2617   }
2618   case ISD::AssertZext: {
2619     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2620     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2621     computeKnownBits(Op.getOperand(0), Known, Depth+1);
2622     Known.Zero |= (~InMask);
2623     Known.One  &= (~Known.Zero);
2624     break;
2625   }
2626   case ISD::FGETSIGN:
2627     // All bits are zero except the low bit.
2628     Known.Zero.setBitsFrom(1);
2629     break;
2630   case ISD::USUBO:
2631   case ISD::SSUBO:
2632     if (Op.getResNo() == 1) {
2633       // If we know the result of a setcc has the top bits zero, use this info.
2634       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2635               TargetLowering::ZeroOrOneBooleanContent &&
2636           BitWidth > 1)
2637         Known.Zero.setBitsFrom(1);
2638       break;
2639     }
2640     LLVM_FALLTHROUGH;
2641   case ISD::SUB:
2642   case ISD::SUBC: {
2643     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
2644       // We know that the top bits of C-X are clear if X contains less bits
2645       // than C (i.e. no wrap-around can happen).  For example, 20-X is
2646       // positive if we can prove that X is >= 0 and < 16.
2647       if (CLHS->getAPIntValue().isNonNegative()) {
2648         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2649         // NLZ can't be BitWidth with no sign bit
2650         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2651         computeKnownBits(Op.getOperand(1), Known2, DemandedElts,
2652                          Depth + 1);
2653 
2654         // If all of the MaskV bits are known to be zero, then we know the
2655         // output top bits are zero, because we now know that the output is
2656         // from [0-C].
2657         if ((Known2.Zero & MaskV) == MaskV) {
2658           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2659           // Top bits known zero.
2660           Known.Zero.setHighBits(NLZ2);
2661         }
2662       }
2663     }
2664 
2665     // If low bits are know to be zero in both operands, then we know they are
2666     // going to be 0 in the result. Both addition and complement operations
2667     // preserve the low zero bits.
2668     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2669     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2670     if (KnownZeroLow == 0)
2671       break;
2672 
2673     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2674     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2675     Known.Zero.setLowBits(KnownZeroLow);
2676     break;
2677   }
2678   case ISD::UADDO:
2679   case ISD::SADDO:
2680   case ISD::ADDCARRY:
2681     if (Op.getResNo() == 1) {
2682       // If we know the result of a setcc has the top bits zero, use this info.
2683       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2684               TargetLowering::ZeroOrOneBooleanContent &&
2685           BitWidth > 1)
2686         Known.Zero.setBitsFrom(1);
2687       break;
2688     }
2689     LLVM_FALLTHROUGH;
2690   case ISD::ADD:
2691   case ISD::ADDC:
2692   case ISD::ADDE: {
2693     // Output known-0 bits are known if clear or set in both the low clear bits
2694     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2695     // low 3 bits clear.
2696     // Output known-0 bits are also known if the top bits of each input are
2697     // known to be clear. For example, if one input has the top 10 bits clear
2698     // and the other has the top 8 bits clear, we know the top 7 bits of the
2699     // output must be clear.
2700     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2701     unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
2702     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2703 
2704     computeKnownBits(Op.getOperand(1), Known2, DemandedElts,
2705                      Depth + 1);
2706     KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
2707     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2708 
2709     if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) {
2710       // With ADDE and ADDCARRY, a carry bit may be added in, so we can only
2711       // use this information if we know (at least) that the low two bits are
2712       // clear. We then return to the caller that the low bit is unknown but
2713       // that other bits are known zero.
2714       if (KnownZeroLow >= 2)
2715         Known.Zero.setBits(1, KnownZeroLow);
2716       break;
2717     }
2718 
2719     Known.Zero.setLowBits(KnownZeroLow);
2720     if (KnownZeroHigh > 1)
2721       Known.Zero.setHighBits(KnownZeroHigh - 1);
2722     break;
2723   }
2724   case ISD::SREM:
2725     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2726       const APInt &RA = Rem->getAPIntValue().abs();
2727       if (RA.isPowerOf2()) {
2728         APInt LowBits = RA - 1;
2729         computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2730 
2731         // The low bits of the first operand are unchanged by the srem.
2732         Known.Zero = Known2.Zero & LowBits;
2733         Known.One = Known2.One & LowBits;
2734 
2735         // If the first operand is non-negative or has all low bits zero, then
2736         // the upper bits are all zero.
2737         if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
2738           Known.Zero |= ~LowBits;
2739 
2740         // If the first operand is negative and not all low bits are zero, then
2741         // the upper bits are all one.
2742         if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
2743           Known.One |= ~LowBits;
2744         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
2745       }
2746     }
2747     break;
2748   case ISD::UREM: {
2749     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2750       const APInt &RA = Rem->getAPIntValue();
2751       if (RA.isPowerOf2()) {
2752         APInt LowBits = (RA - 1);
2753         computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2754 
2755         // The upper bits are all zero, the lower ones are unchanged.
2756         Known.Zero = Known2.Zero | ~LowBits;
2757         Known.One = Known2.One & LowBits;
2758         break;
2759       }
2760     }
2761 
2762     // Since the result is less than or equal to either operand, any leading
2763     // zero bits in either operand must also exist in the result.
2764     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2765     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2766 
2767     uint32_t Leaders =
2768         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
2769     Known.resetAll();
2770     Known.Zero.setHighBits(Leaders);
2771     break;
2772   }
2773   case ISD::EXTRACT_ELEMENT: {
2774     computeKnownBits(Op.getOperand(0), Known, Depth+1);
2775     const unsigned Index = Op.getConstantOperandVal(1);
2776     const unsigned BitWidth = Op.getValueSizeInBits();
2777 
2778     // Remove low part of known bits mask
2779     Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth);
2780     Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth);
2781 
2782     // Remove high part of known bit mask
2783     Known = Known.trunc(BitWidth);
2784     break;
2785   }
2786   case ISD::EXTRACT_VECTOR_ELT: {
2787     SDValue InVec = Op.getOperand(0);
2788     SDValue EltNo = Op.getOperand(1);
2789     EVT VecVT = InVec.getValueType();
2790     const unsigned BitWidth = Op.getValueSizeInBits();
2791     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
2792     const unsigned NumSrcElts = VecVT.getVectorNumElements();
2793     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2794     // anything about the extended bits.
2795     if (BitWidth > EltBitWidth)
2796       Known = Known.trunc(EltBitWidth);
2797     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
2798     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
2799       // If we know the element index, just demand that vector element.
2800       unsigned Idx = ConstEltNo->getZExtValue();
2801       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
2802       computeKnownBits(InVec, Known, DemandedElt, Depth + 1);
2803     } else {
2804       // Unknown element index, so ignore DemandedElts and demand them all.
2805       computeKnownBits(InVec, Known, Depth + 1);
2806     }
2807     if (BitWidth > EltBitWidth)
2808       Known = Known.zext(BitWidth);
2809     break;
2810   }
2811   case ISD::INSERT_VECTOR_ELT: {
2812     SDValue InVec = Op.getOperand(0);
2813     SDValue InVal = Op.getOperand(1);
2814     SDValue EltNo = Op.getOperand(2);
2815 
2816     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
2817     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
2818       // If we know the element index, split the demand between the
2819       // source vector and the inserted element.
2820       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
2821       unsigned EltIdx = CEltNo->getZExtValue();
2822 
2823       // If we demand the inserted element then add its common known bits.
2824       if (DemandedElts[EltIdx]) {
2825         computeKnownBits(InVal, Known2, Depth + 1);
2826         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
2827         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
2828       }
2829 
2830       // If we demand the source vector then add its common known bits, ensuring
2831       // that we don't demand the inserted element.
2832       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
2833       if (!!VectorElts) {
2834         computeKnownBits(InVec, Known2, VectorElts, Depth + 1);
2835         Known.One &= Known2.One;
2836         Known.Zero &= Known2.Zero;
2837       }
2838     } else {
2839       // Unknown element index, so ignore DemandedElts and demand them all.
2840       computeKnownBits(InVec, Known, Depth + 1);
2841       computeKnownBits(InVal, Known2, Depth + 1);
2842       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
2843       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
2844     }
2845     break;
2846   }
2847   case ISD::BITREVERSE: {
2848     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2849     Known.Zero = Known2.Zero.reverseBits();
2850     Known.One = Known2.One.reverseBits();
2851     break;
2852   }
2853   case ISD::BSWAP: {
2854     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2855     Known.Zero = Known2.Zero.byteSwap();
2856     Known.One = Known2.One.byteSwap();
2857     break;
2858   }
2859   case ISD::ABS: {
2860     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2861 
2862     // If the source's MSB is zero then we know the rest of the bits already.
2863     if (Known2.isNonNegative()) {
2864       Known.Zero = Known2.Zero;
2865       Known.One = Known2.One;
2866       break;
2867     }
2868 
2869     // We only know that the absolute values's MSB will be zero iff there is
2870     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
2871     Known2.One.clearSignBit();
2872     if (Known2.One.getBoolValue()) {
2873       Known.Zero = APInt::getSignMask(BitWidth);
2874       break;
2875     }
2876     break;
2877   }
2878   case ISD::UMIN: {
2879     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2880     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2881 
2882     // UMIN - we know that the result will have the maximum of the
2883     // known zero leading bits of the inputs.
2884     unsigned LeadZero = Known.countMinLeadingZeros();
2885     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
2886 
2887     Known.Zero &= Known2.Zero;
2888     Known.One &= Known2.One;
2889     Known.Zero.setHighBits(LeadZero);
2890     break;
2891   }
2892   case ISD::UMAX: {
2893     computeKnownBits(Op.getOperand(0), Known, DemandedElts,
2894                      Depth + 1);
2895     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2896 
2897     // UMAX - we know that the result will have the maximum of the
2898     // known one leading bits of the inputs.
2899     unsigned LeadOne = Known.countMinLeadingOnes();
2900     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
2901 
2902     Known.Zero &= Known2.Zero;
2903     Known.One &= Known2.One;
2904     Known.One.setHighBits(LeadOne);
2905     break;
2906   }
2907   case ISD::SMIN:
2908   case ISD::SMAX: {
2909     computeKnownBits(Op.getOperand(0), Known, DemandedElts,
2910                      Depth + 1);
2911     // If we don't know any bits, early out.
2912     if (Known.isUnknown())
2913       break;
2914     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2915     Known.Zero &= Known2.Zero;
2916     Known.One &= Known2.One;
2917     break;
2918   }
2919   case ISD::FrameIndex:
2920   case ISD::TargetFrameIndex:
2921     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
2922     break;
2923 
2924   default:
2925     if (Opcode < ISD::BUILTIN_OP_END)
2926       break;
2927     LLVM_FALLTHROUGH;
2928   case ISD::INTRINSIC_WO_CHAIN:
2929   case ISD::INTRINSIC_W_CHAIN:
2930   case ISD::INTRINSIC_VOID:
2931     // Allow the target to implement this method for its nodes.
2932     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
2933     break;
2934   }
2935 
2936   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2937 }
2938 
2939 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
2940                                                              SDValue N1) const {
2941   // X + 0 never overflow
2942   if (isNullConstant(N1))
2943     return OFK_Never;
2944 
2945   KnownBits N1Known;
2946   computeKnownBits(N1, N1Known);
2947   if (N1Known.Zero.getBoolValue()) {
2948     KnownBits N0Known;
2949     computeKnownBits(N0, N0Known);
2950 
2951     bool overflow;
2952     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
2953     if (!overflow)
2954       return OFK_Never;
2955   }
2956 
2957   // mulhi + 1 never overflow
2958   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
2959       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
2960     return OFK_Never;
2961 
2962   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
2963     KnownBits N0Known;
2964     computeKnownBits(N0, N0Known);
2965 
2966     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
2967       return OFK_Never;
2968   }
2969 
2970   return OFK_Sometime;
2971 }
2972 
2973 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
2974   EVT OpVT = Val.getValueType();
2975   unsigned BitWidth = OpVT.getScalarSizeInBits();
2976 
2977   // Is the constant a known power of 2?
2978   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
2979     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
2980 
2981   // A left-shift of a constant one will have exactly one bit set because
2982   // shifting the bit off the end is undefined.
2983   if (Val.getOpcode() == ISD::SHL) {
2984     auto *C = isConstOrConstSplat(Val.getOperand(0));
2985     if (C && C->getAPIntValue() == 1)
2986       return true;
2987   }
2988 
2989   // Similarly, a logical right-shift of a constant sign-bit will have exactly
2990   // one bit set.
2991   if (Val.getOpcode() == ISD::SRL) {
2992     auto *C = isConstOrConstSplat(Val.getOperand(0));
2993     if (C && C->getAPIntValue().isSignMask())
2994       return true;
2995   }
2996 
2997   // Are all operands of a build vector constant powers of two?
2998   if (Val.getOpcode() == ISD::BUILD_VECTOR)
2999     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3000           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3001             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3002           return false;
3003         }))
3004       return true;
3005 
3006   // More could be done here, though the above checks are enough
3007   // to handle some common cases.
3008 
3009   // Fall back to computeKnownBits to catch other known cases.
3010   KnownBits Known;
3011   computeKnownBits(Val, Known);
3012   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3013 }
3014 
3015 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3016   EVT VT = Op.getValueType();
3017   APInt DemandedElts = VT.isVector()
3018                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3019                            : APInt(1, 1);
3020   return ComputeNumSignBits(Op, DemandedElts, Depth);
3021 }
3022 
3023 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3024                                           unsigned Depth) const {
3025   EVT VT = Op.getValueType();
3026   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3027   unsigned VTBits = VT.getScalarSizeInBits();
3028   unsigned NumElts = DemandedElts.getBitWidth();
3029   unsigned Tmp, Tmp2;
3030   unsigned FirstAnswer = 1;
3031 
3032   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3033     const APInt &Val = C->getAPIntValue();
3034     return Val.getNumSignBits();
3035   }
3036 
3037   if (Depth == 6)
3038     return 1;  // Limit search depth.
3039 
3040   if (!DemandedElts)
3041     return 1;  // No demanded elts, better to assume we don't know anything.
3042 
3043   switch (Op.getOpcode()) {
3044   default: break;
3045   case ISD::AssertSext:
3046     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3047     return VTBits-Tmp+1;
3048   case ISD::AssertZext:
3049     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3050     return VTBits-Tmp;
3051 
3052   case ISD::BUILD_VECTOR:
3053     Tmp = VTBits;
3054     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3055       if (!DemandedElts[i])
3056         continue;
3057 
3058       SDValue SrcOp = Op.getOperand(i);
3059       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3060 
3061       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3062       if (SrcOp.getValueSizeInBits() != VTBits) {
3063         assert(SrcOp.getValueSizeInBits() > VTBits &&
3064                "Expected BUILD_VECTOR implicit truncation");
3065         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3066         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3067       }
3068       Tmp = std::min(Tmp, Tmp2);
3069     }
3070     return Tmp;
3071 
3072   case ISD::VECTOR_SHUFFLE: {
3073     // Collect the minimum number of sign bits that are shared by every vector
3074     // element referenced by the shuffle.
3075     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3076     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3077     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3078     for (unsigned i = 0; i != NumElts; ++i) {
3079       int M = SVN->getMaskElt(i);
3080       if (!DemandedElts[i])
3081         continue;
3082       // For UNDEF elements, we don't know anything about the common state of
3083       // the shuffle result.
3084       if (M < 0)
3085         return 1;
3086       if ((unsigned)M < NumElts)
3087         DemandedLHS.setBit((unsigned)M % NumElts);
3088       else
3089         DemandedRHS.setBit((unsigned)M % NumElts);
3090     }
3091     Tmp = std::numeric_limits<unsigned>::max();
3092     if (!!DemandedLHS)
3093       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3094     if (!!DemandedRHS) {
3095       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3096       Tmp = std::min(Tmp, Tmp2);
3097     }
3098     // If we don't know anything, early out and try computeKnownBits fall-back.
3099     if (Tmp == 1)
3100       break;
3101     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3102     return Tmp;
3103   }
3104 
3105   case ISD::BITCAST: {
3106     SDValue N0 = Op.getOperand(0);
3107     EVT SrcVT = N0.getValueType();
3108     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3109 
3110     // Ignore bitcasts from unsupported types..
3111     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3112       break;
3113 
3114     // Fast handling of 'identity' bitcasts.
3115     if (VTBits == SrcBits)
3116       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3117 
3118     // Bitcast 'large element' scalar/vector to 'small element' vector.
3119     // TODO: Handle cases other than 'sign splat' when we have a use case.
3120     // Requires handling of DemandedElts and Endianness.
3121     if ((SrcBits % VTBits) == 0) {
3122       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3123       Tmp = ComputeNumSignBits(N0, Depth + 1);
3124       if (Tmp == SrcBits)
3125         return VTBits;
3126     }
3127     break;
3128   }
3129 
3130   case ISD::SIGN_EXTEND:
3131     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3132     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3133   case ISD::SIGN_EXTEND_INREG:
3134     // Max of the input and what this extends.
3135     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3136     Tmp = VTBits-Tmp+1;
3137     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3138     return std::max(Tmp, Tmp2);
3139   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3140     SDValue Src = Op.getOperand(0);
3141     EVT SrcVT = Src.getValueType();
3142     APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
3143     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3144     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3145   }
3146 
3147   case ISD::SRA:
3148     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3149     // SRA X, C   -> adds C sign bits.
3150     if (ConstantSDNode *C =
3151             isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
3152       APInt ShiftVal = C->getAPIntValue();
3153       ShiftVal += Tmp;
3154       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3155     }
3156     return Tmp;
3157   case ISD::SHL:
3158     if (ConstantSDNode *C =
3159             isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
3160       // shl destroys sign bits.
3161       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3162       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3163           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3164       return Tmp - C->getZExtValue();
3165     }
3166     break;
3167   case ISD::AND:
3168   case ISD::OR:
3169   case ISD::XOR:    // NOT is handled here.
3170     // Logical binary ops preserve the number of sign bits at the worst.
3171     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3172     if (Tmp != 1) {
3173       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3174       FirstAnswer = std::min(Tmp, Tmp2);
3175       // We computed what we know about the sign bits as our first
3176       // answer. Now proceed to the generic code that uses
3177       // computeKnownBits, and pick whichever answer is better.
3178     }
3179     break;
3180 
3181   case ISD::SELECT:
3182   case ISD::VSELECT:
3183     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3184     if (Tmp == 1) return 1;  // Early out.
3185     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3186     return std::min(Tmp, Tmp2);
3187   case ISD::SELECT_CC:
3188     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3189     if (Tmp == 1) return 1;  // Early out.
3190     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3191     return std::min(Tmp, Tmp2);
3192 
3193   case ISD::SMIN:
3194   case ISD::SMAX:
3195   case ISD::UMIN:
3196   case ISD::UMAX:
3197     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3198     if (Tmp == 1)
3199       return 1;  // Early out.
3200     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3201     return std::min(Tmp, Tmp2);
3202   case ISD::SADDO:
3203   case ISD::UADDO:
3204   case ISD::SSUBO:
3205   case ISD::USUBO:
3206   case ISD::SMULO:
3207   case ISD::UMULO:
3208     if (Op.getResNo() != 1)
3209       break;
3210     // The boolean result conforms to getBooleanContents.  Fall through.
3211     // If setcc returns 0/-1, all bits are sign bits.
3212     // We know that we have an integer-based boolean since these operations
3213     // are only available for integer.
3214     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3215         TargetLowering::ZeroOrNegativeOneBooleanContent)
3216       return VTBits;
3217     break;
3218   case ISD::SETCC:
3219     // If setcc returns 0/-1, all bits are sign bits.
3220     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3221         TargetLowering::ZeroOrNegativeOneBooleanContent)
3222       return VTBits;
3223     break;
3224   case ISD::ROTL:
3225   case ISD::ROTR:
3226     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3227       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3228 
3229       // Handle rotate right by N like a rotate left by 32-N.
3230       if (Op.getOpcode() == ISD::ROTR)
3231         RotAmt = (VTBits - RotAmt) % VTBits;
3232 
3233       // If we aren't rotating out all of the known-in sign bits, return the
3234       // number that are left.  This handles rotl(sext(x), 1) for example.
3235       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3236       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3237     }
3238     break;
3239   case ISD::ADD:
3240   case ISD::ADDC:
3241     // Add can have at most one carry bit.  Thus we know that the output
3242     // is, at worst, one more bit than the inputs.
3243     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3244     if (Tmp == 1) return 1;  // Early out.
3245 
3246     // Special case decrementing a value (ADD X, -1):
3247     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3248       if (CRHS->isAllOnesValue()) {
3249         KnownBits Known;
3250         computeKnownBits(Op.getOperand(0), Known, Depth+1);
3251 
3252         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3253         // sign bits set.
3254         if ((Known.Zero | 1).isAllOnesValue())
3255           return VTBits;
3256 
3257         // If we are subtracting one from a positive number, there is no carry
3258         // out of the result.
3259         if (Known.isNonNegative())
3260           return Tmp;
3261       }
3262 
3263     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3264     if (Tmp2 == 1) return 1;
3265     return std::min(Tmp, Tmp2)-1;
3266 
3267   case ISD::SUB:
3268     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3269     if (Tmp2 == 1) return 1;
3270 
3271     // Handle NEG.
3272     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3273       if (CLHS->isNullValue()) {
3274         KnownBits Known;
3275         computeKnownBits(Op.getOperand(1), Known, Depth+1);
3276         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3277         // sign bits set.
3278         if ((Known.Zero | 1).isAllOnesValue())
3279           return VTBits;
3280 
3281         // If the input is known to be positive (the sign bit is known clear),
3282         // the output of the NEG has the same number of sign bits as the input.
3283         if (Known.isNonNegative())
3284           return Tmp2;
3285 
3286         // Otherwise, we treat this like a SUB.
3287       }
3288 
3289     // Sub can have at most one carry bit.  Thus we know that the output
3290     // is, at worst, one more bit than the inputs.
3291     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3292     if (Tmp == 1) return 1;  // Early out.
3293     return std::min(Tmp, Tmp2)-1;
3294   case ISD::TRUNCATE: {
3295     // Check if the sign bits of source go down as far as the truncated value.
3296     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3297     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3298     if (NumSrcSignBits > (NumSrcBits - VTBits))
3299       return NumSrcSignBits - (NumSrcBits - VTBits);
3300     break;
3301   }
3302   case ISD::EXTRACT_ELEMENT: {
3303     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3304     const int BitWidth = Op.getValueSizeInBits();
3305     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3306 
3307     // Get reverse index (starting from 1), Op1 value indexes elements from
3308     // little end. Sign starts at big end.
3309     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3310 
3311     // If the sign portion ends in our element the subtraction gives correct
3312     // result. Otherwise it gives either negative or > bitwidth result
3313     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3314   }
3315   case ISD::INSERT_VECTOR_ELT: {
3316     SDValue InVec = Op.getOperand(0);
3317     SDValue InVal = Op.getOperand(1);
3318     SDValue EltNo = Op.getOperand(2);
3319     unsigned NumElts = InVec.getValueType().getVectorNumElements();
3320 
3321     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3322     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3323       // If we know the element index, split the demand between the
3324       // source vector and the inserted element.
3325       unsigned EltIdx = CEltNo->getZExtValue();
3326 
3327       // If we demand the inserted element then get its sign bits.
3328       Tmp = std::numeric_limits<unsigned>::max();
3329       if (DemandedElts[EltIdx]) {
3330         // TODO - handle implicit truncation of inserted elements.
3331         if (InVal.getScalarValueSizeInBits() != VTBits)
3332           break;
3333         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3334       }
3335 
3336       // If we demand the source vector then get its sign bits, and determine
3337       // the minimum.
3338       APInt VectorElts = DemandedElts;
3339       VectorElts.clearBit(EltIdx);
3340       if (!!VectorElts) {
3341         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3342         Tmp = std::min(Tmp, Tmp2);
3343       }
3344     } else {
3345       // Unknown element index, so ignore DemandedElts and demand them all.
3346       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3347       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3348       Tmp = std::min(Tmp, Tmp2);
3349     }
3350     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3351     return Tmp;
3352   }
3353   case ISD::EXTRACT_VECTOR_ELT: {
3354     SDValue InVec = Op.getOperand(0);
3355     SDValue EltNo = Op.getOperand(1);
3356     EVT VecVT = InVec.getValueType();
3357     const unsigned BitWidth = Op.getValueSizeInBits();
3358     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3359     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3360 
3361     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3362     // anything about sign bits. But if the sizes match we can derive knowledge
3363     // about sign bits from the vector operand.
3364     if (BitWidth != EltBitWidth)
3365       break;
3366 
3367     // If we know the element index, just demand that vector element, else for
3368     // an unknown element index, ignore DemandedElts and demand them all.
3369     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3370     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3371     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3372       DemandedSrcElts =
3373           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3374 
3375     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3376   }
3377   case ISD::EXTRACT_SUBVECTOR: {
3378     // If we know the element index, just demand that subvector elements,
3379     // otherwise demand them all.
3380     SDValue Src = Op.getOperand(0);
3381     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3382     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3383     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3384       // Offset the demanded elts by the subvector index.
3385       uint64_t Idx = SubIdx->getZExtValue();
3386       APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx);
3387       return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3388     }
3389     return ComputeNumSignBits(Src, Depth + 1);
3390   }
3391   case ISD::CONCAT_VECTORS:
3392     // Determine the minimum number of sign bits across all demanded
3393     // elts of the input vectors. Early out if the result is already 1.
3394     Tmp = std::numeric_limits<unsigned>::max();
3395     EVT SubVectorVT = Op.getOperand(0).getValueType();
3396     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3397     unsigned NumSubVectors = Op.getNumOperands();
3398     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3399       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3400       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3401       if (!DemandedSub)
3402         continue;
3403       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3404       Tmp = std::min(Tmp, Tmp2);
3405     }
3406     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3407     return Tmp;
3408   }
3409 
3410   // If we are looking at the loaded value of the SDNode.
3411   if (Op.getResNo() == 0) {
3412     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3413     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3414       unsigned ExtType = LD->getExtensionType();
3415       switch (ExtType) {
3416         default: break;
3417         case ISD::SEXTLOAD:    // '17' bits known
3418           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3419           return VTBits-Tmp+1;
3420         case ISD::ZEXTLOAD:    // '16' bits known
3421           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3422           return VTBits-Tmp;
3423       }
3424     }
3425   }
3426 
3427   // Allow the target to implement this method for its nodes.
3428   if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3429       Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3430       Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3431       Op.getOpcode() == ISD::INTRINSIC_VOID) {
3432     unsigned NumBits =
3433         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3434     if (NumBits > 1)
3435       FirstAnswer = std::max(FirstAnswer, NumBits);
3436   }
3437 
3438   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3439   // use this information.
3440   KnownBits Known;
3441   computeKnownBits(Op, Known, DemandedElts, Depth);
3442 
3443   APInt Mask;
3444   if (Known.isNonNegative()) {        // sign bit is 0
3445     Mask = Known.Zero;
3446   } else if (Known.isNegative()) {  // sign bit is 1;
3447     Mask = Known.One;
3448   } else {
3449     // Nothing known.
3450     return FirstAnswer;
3451   }
3452 
3453   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3454   // the number of identical bits in the top of the input value.
3455   Mask = ~Mask;
3456   Mask <<= Mask.getBitWidth()-VTBits;
3457   // Return # leading zeros.  We use 'min' here in case Val was zero before
3458   // shifting.  We don't want to return '64' as for an i32 "0".
3459   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3460 }
3461 
3462 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3463   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3464       !isa<ConstantSDNode>(Op.getOperand(1)))
3465     return false;
3466 
3467   if (Op.getOpcode() == ISD::OR &&
3468       !MaskedValueIsZero(Op.getOperand(0),
3469                      cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
3470     return false;
3471 
3472   return true;
3473 }
3474 
3475 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
3476   // If we're told that NaNs won't happen, assume they won't.
3477   if (getTarget().Options.NoNaNsFPMath)
3478     return true;
3479 
3480   if (Op->getFlags().hasNoNaNs())
3481     return true;
3482 
3483   // If the value is a constant, we can obviously see if it is a NaN or not.
3484   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3485     return !C->getValueAPF().isNaN();
3486 
3487   // TODO: Recognize more cases here.
3488 
3489   return false;
3490 }
3491 
3492 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
3493   // If the value is a constant, we can obviously see if it is a zero or not.
3494   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3495     return !C->isZero();
3496 
3497   // TODO: Recognize more cases here.
3498   switch (Op.getOpcode()) {
3499   default: break;
3500   case ISD::OR:
3501     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3502       return !C->isNullValue();
3503     break;
3504   }
3505 
3506   return false;
3507 }
3508 
3509 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
3510   // Check the obvious case.
3511   if (A == B) return true;
3512 
3513   // For for negative and positive zero.
3514   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
3515     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
3516       if (CA->isZero() && CB->isZero()) return true;
3517 
3518   // Otherwise they may not be equal.
3519   return false;
3520 }
3521 
3522 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
3523   assert(A.getValueType() == B.getValueType() &&
3524          "Values must have the same type");
3525   KnownBits AKnown, BKnown;
3526   computeKnownBits(A, AKnown);
3527   computeKnownBits(B, BKnown);
3528   return (AKnown.Zero | BKnown.Zero).isAllOnesValue();
3529 }
3530 
3531 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
3532                                   ArrayRef<SDValue> Ops,
3533                                   SelectionDAG &DAG) {
3534   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
3535   assert(llvm::all_of(Ops,
3536                       [Ops](SDValue Op) {
3537                         return Ops[0].getValueType() == Op.getValueType();
3538                       }) &&
3539          "Concatenation of vectors with inconsistent value types!");
3540   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
3541              VT.getVectorNumElements() &&
3542          "Incorrect element count in vector concatenation!");
3543 
3544   if (Ops.size() == 1)
3545     return Ops[0];
3546 
3547   // Concat of UNDEFs is UNDEF.
3548   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
3549     return DAG.getUNDEF(VT);
3550 
3551   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
3552   // simplified to one big BUILD_VECTOR.
3553   // FIXME: Add support for SCALAR_TO_VECTOR as well.
3554   EVT SVT = VT.getScalarType();
3555   SmallVector<SDValue, 16> Elts;
3556   for (SDValue Op : Ops) {
3557     EVT OpVT = Op.getValueType();
3558     if (Op.isUndef())
3559       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
3560     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
3561       Elts.append(Op->op_begin(), Op->op_end());
3562     else
3563       return SDValue();
3564   }
3565 
3566   // BUILD_VECTOR requires all inputs to be of the same type, find the
3567   // maximum type and extend them all.
3568   for (SDValue Op : Elts)
3569     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
3570 
3571   if (SVT.bitsGT(VT.getScalarType()))
3572     for (SDValue &Op : Elts)
3573       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
3574                ? DAG.getZExtOrTrunc(Op, DL, SVT)
3575                : DAG.getSExtOrTrunc(Op, DL, SVT);
3576 
3577   SDValue V = DAG.getBuildVector(VT, DL, Elts);
3578   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
3579   return V;
3580 }
3581 
3582 /// Gets or creates the specified node.
3583 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
3584   FoldingSetNodeID ID;
3585   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
3586   void *IP = nullptr;
3587   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
3588     return SDValue(E, 0);
3589 
3590   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
3591                               getVTList(VT));
3592   CSEMap.InsertNode(N, IP);
3593 
3594   InsertNode(N);
3595   SDValue V = SDValue(N, 0);
3596   NewSDValueDbgMsg(V, "Creating new node: ", this);
3597   return V;
3598 }
3599 
3600 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3601                               SDValue Operand, const SDNodeFlags Flags) {
3602   // Constant fold unary operations with an integer constant operand. Even
3603   // opaque constant will be folded, because the folding of unary operations
3604   // doesn't create new constants with different values. Nevertheless, the
3605   // opaque flag is preserved during folding to prevent future folding with
3606   // other constants.
3607   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
3608     const APInt &Val = C->getAPIntValue();
3609     switch (Opcode) {
3610     default: break;
3611     case ISD::SIGN_EXTEND:
3612       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
3613                          C->isTargetOpcode(), C->isOpaque());
3614     case ISD::ANY_EXTEND:
3615     case ISD::ZERO_EXTEND:
3616     case ISD::TRUNCATE:
3617       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
3618                          C->isTargetOpcode(), C->isOpaque());
3619     case ISD::UINT_TO_FP:
3620     case ISD::SINT_TO_FP: {
3621       APFloat apf(EVTToAPFloatSemantics(VT),
3622                   APInt::getNullValue(VT.getSizeInBits()));
3623       (void)apf.convertFromAPInt(Val,
3624                                  Opcode==ISD::SINT_TO_FP,
3625                                  APFloat::rmNearestTiesToEven);
3626       return getConstantFP(apf, DL, VT);
3627     }
3628     case ISD::BITCAST:
3629       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
3630         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
3631       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
3632         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
3633       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
3634         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
3635       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
3636         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
3637       break;
3638     case ISD::ABS:
3639       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
3640                          C->isOpaque());
3641     case ISD::BITREVERSE:
3642       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
3643                          C->isOpaque());
3644     case ISD::BSWAP:
3645       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
3646                          C->isOpaque());
3647     case ISD::CTPOP:
3648       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
3649                          C->isOpaque());
3650     case ISD::CTLZ:
3651     case ISD::CTLZ_ZERO_UNDEF:
3652       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
3653                          C->isOpaque());
3654     case ISD::CTTZ:
3655     case ISD::CTTZ_ZERO_UNDEF:
3656       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
3657                          C->isOpaque());
3658     case ISD::FP16_TO_FP: {
3659       bool Ignored;
3660       APFloat FPV(APFloat::IEEEhalf(),
3661                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
3662 
3663       // This can return overflow, underflow, or inexact; we don't care.
3664       // FIXME need to be more flexible about rounding mode.
3665       (void)FPV.convert(EVTToAPFloatSemantics(VT),
3666                         APFloat::rmNearestTiesToEven, &Ignored);
3667       return getConstantFP(FPV, DL, VT);
3668     }
3669     }
3670   }
3671 
3672   // Constant fold unary operations with a floating point constant operand.
3673   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
3674     APFloat V = C->getValueAPF();    // make copy
3675     switch (Opcode) {
3676     case ISD::FNEG:
3677       V.changeSign();
3678       return getConstantFP(V, DL, VT);
3679     case ISD::FABS:
3680       V.clearSign();
3681       return getConstantFP(V, DL, VT);
3682     case ISD::FCEIL: {
3683       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
3684       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3685         return getConstantFP(V, DL, VT);
3686       break;
3687     }
3688     case ISD::FTRUNC: {
3689       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
3690       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3691         return getConstantFP(V, DL, VT);
3692       break;
3693     }
3694     case ISD::FFLOOR: {
3695       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
3696       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3697         return getConstantFP(V, DL, VT);
3698       break;
3699     }
3700     case ISD::FP_EXTEND: {
3701       bool ignored;
3702       // This can return overflow, underflow, or inexact; we don't care.
3703       // FIXME need to be more flexible about rounding mode.
3704       (void)V.convert(EVTToAPFloatSemantics(VT),
3705                       APFloat::rmNearestTiesToEven, &ignored);
3706       return getConstantFP(V, DL, VT);
3707     }
3708     case ISD::FP_TO_SINT:
3709     case ISD::FP_TO_UINT: {
3710       bool ignored;
3711       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
3712       // FIXME need to be more flexible about rounding mode.
3713       APFloat::opStatus s =
3714           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
3715       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
3716         break;
3717       return getConstant(IntVal, DL, VT);
3718     }
3719     case ISD::BITCAST:
3720       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
3721         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3722       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
3723         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3724       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
3725         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
3726       break;
3727     case ISD::FP_TO_FP16: {
3728       bool Ignored;
3729       // This can return overflow, underflow, or inexact; we don't care.
3730       // FIXME need to be more flexible about rounding mode.
3731       (void)V.convert(APFloat::IEEEhalf(),
3732                       APFloat::rmNearestTiesToEven, &Ignored);
3733       return getConstant(V.bitcastToAPInt(), DL, VT);
3734     }
3735     }
3736   }
3737 
3738   // Constant fold unary operations with a vector integer or float operand.
3739   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
3740     if (BV->isConstant()) {
3741       switch (Opcode) {
3742       default:
3743         // FIXME: Entirely reasonable to perform folding of other unary
3744         // operations here as the need arises.
3745         break;
3746       case ISD::FNEG:
3747       case ISD::FABS:
3748       case ISD::FCEIL:
3749       case ISD::FTRUNC:
3750       case ISD::FFLOOR:
3751       case ISD::FP_EXTEND:
3752       case ISD::FP_TO_SINT:
3753       case ISD::FP_TO_UINT:
3754       case ISD::TRUNCATE:
3755       case ISD::ANY_EXTEND:
3756       case ISD::ZERO_EXTEND:
3757       case ISD::SIGN_EXTEND:
3758       case ISD::UINT_TO_FP:
3759       case ISD::SINT_TO_FP:
3760       case ISD::ABS:
3761       case ISD::BITREVERSE:
3762       case ISD::BSWAP:
3763       case ISD::CTLZ:
3764       case ISD::CTLZ_ZERO_UNDEF:
3765       case ISD::CTTZ:
3766       case ISD::CTTZ_ZERO_UNDEF:
3767       case ISD::CTPOP: {
3768         SDValue Ops = { Operand };
3769         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
3770           return Fold;
3771       }
3772       }
3773     }
3774   }
3775 
3776   unsigned OpOpcode = Operand.getNode()->getOpcode();
3777   switch (Opcode) {
3778   case ISD::TokenFactor:
3779   case ISD::MERGE_VALUES:
3780   case ISD::CONCAT_VECTORS:
3781     return Operand;         // Factor, merge or concat of one node?  No need.
3782   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
3783   case ISD::FP_EXTEND:
3784     assert(VT.isFloatingPoint() &&
3785            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
3786     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
3787     assert((!VT.isVector() ||
3788             VT.getVectorNumElements() ==
3789             Operand.getValueType().getVectorNumElements()) &&
3790            "Vector element count mismatch!");
3791     assert(Operand.getValueType().bitsLT(VT) &&
3792            "Invalid fpext node, dst < src!");
3793     if (Operand.isUndef())
3794       return getUNDEF(VT);
3795     break;
3796   case ISD::SIGN_EXTEND:
3797     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3798            "Invalid SIGN_EXTEND!");
3799     if (Operand.getValueType() == VT) return Operand;   // noop extension
3800     assert((!VT.isVector() ||
3801             VT.getVectorNumElements() ==
3802             Operand.getValueType().getVectorNumElements()) &&
3803            "Vector element count mismatch!");
3804     assert(Operand.getValueType().bitsLT(VT) &&
3805            "Invalid sext node, dst < src!");
3806     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
3807       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
3808     else if (OpOpcode == ISD::UNDEF)
3809       // sext(undef) = 0, because the top bits will all be the same.
3810       return getConstant(0, DL, VT);
3811     break;
3812   case ISD::ZERO_EXTEND:
3813     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3814            "Invalid ZERO_EXTEND!");
3815     if (Operand.getValueType() == VT) return Operand;   // noop extension
3816     assert((!VT.isVector() ||
3817             VT.getVectorNumElements() ==
3818             Operand.getValueType().getVectorNumElements()) &&
3819            "Vector element count mismatch!");
3820     assert(Operand.getValueType().bitsLT(VT) &&
3821            "Invalid zext node, dst < src!");
3822     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
3823       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
3824     else if (OpOpcode == ISD::UNDEF)
3825       // zext(undef) = 0, because the top bits will be zero.
3826       return getConstant(0, DL, VT);
3827     break;
3828   case ISD::ANY_EXTEND:
3829     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3830            "Invalid ANY_EXTEND!");
3831     if (Operand.getValueType() == VT) return Operand;   // noop extension
3832     assert((!VT.isVector() ||
3833             VT.getVectorNumElements() ==
3834             Operand.getValueType().getVectorNumElements()) &&
3835            "Vector element count mismatch!");
3836     assert(Operand.getValueType().bitsLT(VT) &&
3837            "Invalid anyext node, dst < src!");
3838 
3839     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3840         OpOpcode == ISD::ANY_EXTEND)
3841       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
3842       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
3843     else if (OpOpcode == ISD::UNDEF)
3844       return getUNDEF(VT);
3845 
3846     // (ext (trunx x)) -> x
3847     if (OpOpcode == ISD::TRUNCATE) {
3848       SDValue OpOp = Operand.getOperand(0);
3849       if (OpOp.getValueType() == VT)
3850         return OpOp;
3851     }
3852     break;
3853   case ISD::TRUNCATE:
3854     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3855            "Invalid TRUNCATE!");
3856     if (Operand.getValueType() == VT) return Operand;   // noop truncate
3857     assert((!VT.isVector() ||
3858             VT.getVectorNumElements() ==
3859             Operand.getValueType().getVectorNumElements()) &&
3860            "Vector element count mismatch!");
3861     assert(Operand.getValueType().bitsGT(VT) &&
3862            "Invalid truncate node, src < dst!");
3863     if (OpOpcode == ISD::TRUNCATE)
3864       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
3865     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3866         OpOpcode == ISD::ANY_EXTEND) {
3867       // If the source is smaller than the dest, we still need an extend.
3868       if (Operand.getOperand(0).getValueType().getScalarType()
3869             .bitsLT(VT.getScalarType()))
3870         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
3871       if (Operand.getOperand(0).getValueType().bitsGT(VT))
3872         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
3873       return Operand.getOperand(0);
3874     }
3875     if (OpOpcode == ISD::UNDEF)
3876       return getUNDEF(VT);
3877     break;
3878   case ISD::ABS:
3879     assert(VT.isInteger() && VT == Operand.getValueType() &&
3880            "Invalid ABS!");
3881     if (OpOpcode == ISD::UNDEF)
3882       return getUNDEF(VT);
3883     break;
3884   case ISD::BSWAP:
3885     assert(VT.isInteger() && VT == Operand.getValueType() &&
3886            "Invalid BSWAP!");
3887     assert((VT.getScalarSizeInBits() % 16 == 0) &&
3888            "BSWAP types must be a multiple of 16 bits!");
3889     if (OpOpcode == ISD::UNDEF)
3890       return getUNDEF(VT);
3891     break;
3892   case ISD::BITREVERSE:
3893     assert(VT.isInteger() && VT == Operand.getValueType() &&
3894            "Invalid BITREVERSE!");
3895     if (OpOpcode == ISD::UNDEF)
3896       return getUNDEF(VT);
3897     break;
3898   case ISD::BITCAST:
3899     // Basic sanity checking.
3900     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
3901            "Cannot BITCAST between types of different sizes!");
3902     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
3903     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
3904       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
3905     if (OpOpcode == ISD::UNDEF)
3906       return getUNDEF(VT);
3907     break;
3908   case ISD::SCALAR_TO_VECTOR:
3909     assert(VT.isVector() && !Operand.getValueType().isVector() &&
3910            (VT.getVectorElementType() == Operand.getValueType() ||
3911             (VT.getVectorElementType().isInteger() &&
3912              Operand.getValueType().isInteger() &&
3913              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
3914            "Illegal SCALAR_TO_VECTOR node!");
3915     if (OpOpcode == ISD::UNDEF)
3916       return getUNDEF(VT);
3917     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
3918     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
3919         isa<ConstantSDNode>(Operand.getOperand(1)) &&
3920         Operand.getConstantOperandVal(1) == 0 &&
3921         Operand.getOperand(0).getValueType() == VT)
3922       return Operand.getOperand(0);
3923     break;
3924   case ISD::FNEG:
3925     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
3926     if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
3927       // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags?
3928       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
3929                      Operand.getOperand(0), Operand.getNode()->getFlags());
3930     if (OpOpcode == ISD::FNEG)  // --X -> X
3931       return Operand.getOperand(0);
3932     break;
3933   case ISD::FABS:
3934     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
3935       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
3936     break;
3937   }
3938 
3939   SDNode *N;
3940   SDVTList VTs = getVTList(VT);
3941   SDValue Ops[] = {Operand};
3942   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
3943     FoldingSetNodeID ID;
3944     AddNodeIDNode(ID, Opcode, VTs, Ops);
3945     void *IP = nullptr;
3946     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
3947       E->intersectFlagsWith(Flags);
3948       return SDValue(E, 0);
3949     }
3950 
3951     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
3952     N->setFlags(Flags);
3953     createOperands(N, Ops);
3954     CSEMap.InsertNode(N, IP);
3955   } else {
3956     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
3957     createOperands(N, Ops);
3958   }
3959 
3960   InsertNode(N);
3961   SDValue V = SDValue(N, 0);
3962   NewSDValueDbgMsg(V, "Creating new node: ", this);
3963   return V;
3964 }
3965 
3966 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
3967                                         const APInt &C2) {
3968   switch (Opcode) {
3969   case ISD::ADD:  return std::make_pair(C1 + C2, true);
3970   case ISD::SUB:  return std::make_pair(C1 - C2, true);
3971   case ISD::MUL:  return std::make_pair(C1 * C2, true);
3972   case ISD::AND:  return std::make_pair(C1 & C2, true);
3973   case ISD::OR:   return std::make_pair(C1 | C2, true);
3974   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
3975   case ISD::SHL:  return std::make_pair(C1 << C2, true);
3976   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
3977   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
3978   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
3979   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
3980   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
3981   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
3982   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
3983   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
3984   case ISD::UDIV:
3985     if (!C2.getBoolValue())
3986       break;
3987     return std::make_pair(C1.udiv(C2), true);
3988   case ISD::UREM:
3989     if (!C2.getBoolValue())
3990       break;
3991     return std::make_pair(C1.urem(C2), true);
3992   case ISD::SDIV:
3993     if (!C2.getBoolValue())
3994       break;
3995     return std::make_pair(C1.sdiv(C2), true);
3996   case ISD::SREM:
3997     if (!C2.getBoolValue())
3998       break;
3999     return std::make_pair(C1.srem(C2), true);
4000   }
4001   return std::make_pair(APInt(1, 0), false);
4002 }
4003 
4004 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4005                                              EVT VT, const ConstantSDNode *Cst1,
4006                                              const ConstantSDNode *Cst2) {
4007   if (Cst1->isOpaque() || Cst2->isOpaque())
4008     return SDValue();
4009 
4010   std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(),
4011                                             Cst2->getAPIntValue());
4012   if (!Folded.second)
4013     return SDValue();
4014   return getConstant(Folded.first, DL, VT);
4015 }
4016 
4017 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4018                                        const GlobalAddressSDNode *GA,
4019                                        const SDNode *N2) {
4020   if (GA->getOpcode() != ISD::GlobalAddress)
4021     return SDValue();
4022   if (!TLI->isOffsetFoldingLegal(GA))
4023     return SDValue();
4024   const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2);
4025   if (!Cst2)
4026     return SDValue();
4027   int64_t Offset = Cst2->getSExtValue();
4028   switch (Opcode) {
4029   case ISD::ADD: break;
4030   case ISD::SUB: Offset = -uint64_t(Offset); break;
4031   default: return SDValue();
4032   }
4033   return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT,
4034                           GA->getOffset() + uint64_t(Offset));
4035 }
4036 
4037 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4038   switch (Opcode) {
4039   case ISD::SDIV:
4040   case ISD::UDIV:
4041   case ISD::SREM:
4042   case ISD::UREM: {
4043     // If a divisor is zero/undef or any element of a divisor vector is
4044     // zero/undef, the whole op is undef.
4045     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4046     SDValue Divisor = Ops[1];
4047     if (Divisor.isUndef() || isNullConstant(Divisor))
4048       return true;
4049 
4050     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4051            llvm::any_of(Divisor->op_values(),
4052                         [](SDValue V) { return V.isUndef() ||
4053                                         isNullConstant(V); });
4054     // TODO: Handle signed overflow.
4055   }
4056   // TODO: Handle oversized shifts.
4057   default:
4058     return false;
4059   }
4060 }
4061 
4062 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4063                                              EVT VT, SDNode *Cst1,
4064                                              SDNode *Cst2) {
4065   // If the opcode is a target-specific ISD node, there's nothing we can
4066   // do here and the operand rules may not line up with the below, so
4067   // bail early.
4068   if (Opcode >= ISD::BUILTIN_OP_END)
4069     return SDValue();
4070 
4071   if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)}))
4072     return getUNDEF(VT);
4073 
4074   // Handle the case of two scalars.
4075   if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) {
4076     if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) {
4077       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2);
4078       assert((!Folded || !VT.isVector()) &&
4079              "Can't fold vectors ops with scalar operands");
4080       return Folded;
4081     }
4082   }
4083 
4084   // fold (add Sym, c) -> Sym+c
4085   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1))
4086     return FoldSymbolOffset(Opcode, VT, GA, Cst2);
4087   if (TLI->isCommutativeBinOp(Opcode))
4088     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2))
4089       return FoldSymbolOffset(Opcode, VT, GA, Cst1);
4090 
4091   // For vectors extract each constant element into Inputs so we can constant
4092   // fold them individually.
4093   BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
4094   BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
4095   if (!BV1 || !BV2)
4096     return SDValue();
4097 
4098   assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
4099 
4100   EVT SVT = VT.getScalarType();
4101   EVT LegalSVT = SVT;
4102   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4103     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4104     if (LegalSVT.bitsLT(SVT))
4105       return SDValue();
4106   }
4107   SmallVector<SDValue, 4> Outputs;
4108   for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
4109     SDValue V1 = BV1->getOperand(I);
4110     SDValue V2 = BV2->getOperand(I);
4111 
4112     if (SVT.isInteger()) {
4113         if (V1->getValueType(0).bitsGT(SVT))
4114           V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4115         if (V2->getValueType(0).bitsGT(SVT))
4116           V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4117     }
4118 
4119     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4120       return SDValue();
4121 
4122     // Fold one vector element.
4123     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4124     if (LegalSVT != SVT)
4125       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4126 
4127     // Scalar folding only succeeded if the result is a constant or UNDEF.
4128     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4129         ScalarResult.getOpcode() != ISD::ConstantFP)
4130       return SDValue();
4131     Outputs.push_back(ScalarResult);
4132   }
4133 
4134   assert(VT.getVectorNumElements() == Outputs.size() &&
4135          "Vector size mismatch!");
4136 
4137   // We may have a vector type but a scalar result. Create a splat.
4138   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4139 
4140   // Build a big vector out of the scalar elements we generated.
4141   return getBuildVector(VT, SDLoc(), Outputs);
4142 }
4143 
4144 // TODO: Merge with FoldConstantArithmetic
4145 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4146                                                    const SDLoc &DL, EVT VT,
4147                                                    ArrayRef<SDValue> Ops,
4148                                                    const SDNodeFlags Flags) {
4149   // If the opcode is a target-specific ISD node, there's nothing we can
4150   // do here and the operand rules may not line up with the below, so
4151   // bail early.
4152   if (Opcode >= ISD::BUILTIN_OP_END)
4153     return SDValue();
4154 
4155   if (isUndef(Opcode, Ops))
4156     return getUNDEF(VT);
4157 
4158   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4159   if (!VT.isVector())
4160     return SDValue();
4161 
4162   unsigned NumElts = VT.getVectorNumElements();
4163 
4164   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4165     return !Op.getValueType().isVector() ||
4166            Op.getValueType().getVectorNumElements() == NumElts;
4167   };
4168 
4169   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4170     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4171     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4172            (BV && BV->isConstant());
4173   };
4174 
4175   // All operands must be vector types with the same number of elements as
4176   // the result type and must be either UNDEF or a build vector of constant
4177   // or UNDEF scalars.
4178   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4179       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4180     return SDValue();
4181 
4182   // If we are comparing vectors, then the result needs to be a i1 boolean
4183   // that is then sign-extended back to the legal result type.
4184   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4185 
4186   // Find legal integer scalar type for constant promotion and
4187   // ensure that its scalar size is at least as large as source.
4188   EVT LegalSVT = VT.getScalarType();
4189   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4190     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4191     if (LegalSVT.bitsLT(VT.getScalarType()))
4192       return SDValue();
4193   }
4194 
4195   // Constant fold each scalar lane separately.
4196   SmallVector<SDValue, 4> ScalarResults;
4197   for (unsigned i = 0; i != NumElts; i++) {
4198     SmallVector<SDValue, 4> ScalarOps;
4199     for (SDValue Op : Ops) {
4200       EVT InSVT = Op.getValueType().getScalarType();
4201       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4202       if (!InBV) {
4203         // We've checked that this is UNDEF or a constant of some kind.
4204         if (Op.isUndef())
4205           ScalarOps.push_back(getUNDEF(InSVT));
4206         else
4207           ScalarOps.push_back(Op);
4208         continue;
4209       }
4210 
4211       SDValue ScalarOp = InBV->getOperand(i);
4212       EVT ScalarVT = ScalarOp.getValueType();
4213 
4214       // Build vector (integer) scalar operands may need implicit
4215       // truncation - do this before constant folding.
4216       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4217         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4218 
4219       ScalarOps.push_back(ScalarOp);
4220     }
4221 
4222     // Constant fold the scalar operands.
4223     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4224 
4225     // Legalize the (integer) scalar constant if necessary.
4226     if (LegalSVT != SVT)
4227       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4228 
4229     // Scalar folding only succeeded if the result is a constant or UNDEF.
4230     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4231         ScalarResult.getOpcode() != ISD::ConstantFP)
4232       return SDValue();
4233     ScalarResults.push_back(ScalarResult);
4234   }
4235 
4236   SDValue V = getBuildVector(VT, DL, ScalarResults);
4237   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4238   return V;
4239 }
4240 
4241 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4242                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
4243   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4244   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4245   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4246   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4247 
4248   // Canonicalize constant to RHS if commutative.
4249   if (TLI->isCommutativeBinOp(Opcode)) {
4250     if (N1C && !N2C) {
4251       std::swap(N1C, N2C);
4252       std::swap(N1, N2);
4253     } else if (N1CFP && !N2CFP) {
4254       std::swap(N1CFP, N2CFP);
4255       std::swap(N1, N2);
4256     }
4257   }
4258 
4259   switch (Opcode) {
4260   default: break;
4261   case ISD::TokenFactor:
4262     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
4263            N2.getValueType() == MVT::Other && "Invalid token factor!");
4264     // Fold trivial token factors.
4265     if (N1.getOpcode() == ISD::EntryToken) return N2;
4266     if (N2.getOpcode() == ISD::EntryToken) return N1;
4267     if (N1 == N2) return N1;
4268     break;
4269   case ISD::CONCAT_VECTORS: {
4270     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4271     SDValue Ops[] = {N1, N2};
4272     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4273       return V;
4274     break;
4275   }
4276   case ISD::AND:
4277     assert(VT.isInteger() && "This operator does not apply to FP types!");
4278     assert(N1.getValueType() == N2.getValueType() &&
4279            N1.getValueType() == VT && "Binary operator types must match!");
4280     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
4281     // worth handling here.
4282     if (N2C && N2C->isNullValue())
4283       return N2;
4284     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
4285       return N1;
4286     break;
4287   case ISD::OR:
4288   case ISD::XOR:
4289   case ISD::ADD:
4290   case ISD::SUB:
4291     assert(VT.isInteger() && "This operator does not apply to FP types!");
4292     assert(N1.getValueType() == N2.getValueType() &&
4293            N1.getValueType() == VT && "Binary operator types must match!");
4294     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
4295     // it's worth handling here.
4296     if (N2C && N2C->isNullValue())
4297       return N1;
4298     break;
4299   case ISD::UDIV:
4300   case ISD::UREM:
4301   case ISD::MULHU:
4302   case ISD::MULHS:
4303   case ISD::MUL:
4304   case ISD::SDIV:
4305   case ISD::SREM:
4306   case ISD::SMIN:
4307   case ISD::SMAX:
4308   case ISD::UMIN:
4309   case ISD::UMAX:
4310     assert(VT.isInteger() && "This operator does not apply to FP types!");
4311     assert(N1.getValueType() == N2.getValueType() &&
4312            N1.getValueType() == VT && "Binary operator types must match!");
4313     break;
4314   case ISD::FADD:
4315   case ISD::FSUB:
4316   case ISD::FMUL:
4317   case ISD::FDIV:
4318   case ISD::FREM:
4319     if (getTarget().Options.UnsafeFPMath) {
4320       if (Opcode == ISD::FADD) {
4321         // x+0 --> x
4322         if (N2CFP && N2CFP->getValueAPF().isZero())
4323           return N1;
4324       } else if (Opcode == ISD::FSUB) {
4325         // x-0 --> x
4326         if (N2CFP && N2CFP->getValueAPF().isZero())
4327           return N1;
4328       } else if (Opcode == ISD::FMUL) {
4329         // x*0 --> 0
4330         if (N2CFP && N2CFP->isZero())
4331           return N2;
4332         // x*1 --> x
4333         if (N2CFP && N2CFP->isExactlyValue(1.0))
4334           return N1;
4335       }
4336     }
4337     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4338     assert(N1.getValueType() == N2.getValueType() &&
4339            N1.getValueType() == VT && "Binary operator types must match!");
4340     break;
4341   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
4342     assert(N1.getValueType() == VT &&
4343            N1.getValueType().isFloatingPoint() &&
4344            N2.getValueType().isFloatingPoint() &&
4345            "Invalid FCOPYSIGN!");
4346     break;
4347   case ISD::SHL:
4348   case ISD::SRA:
4349   case ISD::SRL:
4350   case ISD::ROTL:
4351   case ISD::ROTR:
4352     assert(VT == N1.getValueType() &&
4353            "Shift operators return type must be the same as their first arg");
4354     assert(VT.isInteger() && N2.getValueType().isInteger() &&
4355            "Shifts only work on integers");
4356     assert((!VT.isVector() || VT == N2.getValueType()) &&
4357            "Vector shift amounts must be in the same as their first arg");
4358     // Verify that the shift amount VT is bit enough to hold valid shift
4359     // amounts.  This catches things like trying to shift an i1024 value by an
4360     // i8, which is easy to fall into in generic code that uses
4361     // TLI.getShiftAmount().
4362     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
4363            "Invalid use of small shift amount with oversized value!");
4364 
4365     // Always fold shifts of i1 values so the code generator doesn't need to
4366     // handle them.  Since we know the size of the shift has to be less than the
4367     // size of the value, the shift/rotate count is guaranteed to be zero.
4368     if (VT == MVT::i1)
4369       return N1;
4370     if (N2C && N2C->isNullValue())
4371       return N1;
4372     break;
4373   case ISD::FP_ROUND_INREG: {
4374     EVT EVT = cast<VTSDNode>(N2)->getVT();
4375     assert(VT == N1.getValueType() && "Not an inreg round!");
4376     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
4377            "Cannot FP_ROUND_INREG integer types");
4378     assert(EVT.isVector() == VT.isVector() &&
4379            "FP_ROUND_INREG type should be vector iff the operand "
4380            "type is vector!");
4381     assert((!EVT.isVector() ||
4382             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4383            "Vector element counts must match in FP_ROUND_INREG");
4384     assert(EVT.bitsLE(VT) && "Not rounding down!");
4385     (void)EVT;
4386     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
4387     break;
4388   }
4389   case ISD::FP_ROUND:
4390     assert(VT.isFloatingPoint() &&
4391            N1.getValueType().isFloatingPoint() &&
4392            VT.bitsLE(N1.getValueType()) &&
4393            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
4394            "Invalid FP_ROUND!");
4395     if (N1.getValueType() == VT) return N1;  // noop conversion.
4396     break;
4397   case ISD::AssertSext:
4398   case ISD::AssertZext: {
4399     EVT EVT = cast<VTSDNode>(N2)->getVT();
4400     assert(VT == N1.getValueType() && "Not an inreg extend!");
4401     assert(VT.isInteger() && EVT.isInteger() &&
4402            "Cannot *_EXTEND_INREG FP types");
4403     assert(!EVT.isVector() &&
4404            "AssertSExt/AssertZExt type should be the vector element type "
4405            "rather than the vector type!");
4406     assert(EVT.bitsLE(VT) && "Not extending!");
4407     if (VT == EVT) return N1; // noop assertion.
4408     break;
4409   }
4410   case ISD::SIGN_EXTEND_INREG: {
4411     EVT EVT = cast<VTSDNode>(N2)->getVT();
4412     assert(VT == N1.getValueType() && "Not an inreg extend!");
4413     assert(VT.isInteger() && EVT.isInteger() &&
4414            "Cannot *_EXTEND_INREG FP types");
4415     assert(EVT.isVector() == VT.isVector() &&
4416            "SIGN_EXTEND_INREG type should be vector iff the operand "
4417            "type is vector!");
4418     assert((!EVT.isVector() ||
4419             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4420            "Vector element counts must match in SIGN_EXTEND_INREG");
4421     assert(EVT.bitsLE(VT) && "Not extending!");
4422     if (EVT == VT) return N1;  // Not actually extending
4423 
4424     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
4425       unsigned FromBits = EVT.getScalarSizeInBits();
4426       Val <<= Val.getBitWidth() - FromBits;
4427       Val.ashrInPlace(Val.getBitWidth() - FromBits);
4428       return getConstant(Val, DL, ConstantVT);
4429     };
4430 
4431     if (N1C) {
4432       const APInt &Val = N1C->getAPIntValue();
4433       return SignExtendInReg(Val, VT);
4434     }
4435     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
4436       SmallVector<SDValue, 8> Ops;
4437       llvm::EVT OpVT = N1.getOperand(0).getValueType();
4438       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4439         SDValue Op = N1.getOperand(i);
4440         if (Op.isUndef()) {
4441           Ops.push_back(getUNDEF(OpVT));
4442           continue;
4443         }
4444         ConstantSDNode *C = cast<ConstantSDNode>(Op);
4445         APInt Val = C->getAPIntValue();
4446         Ops.push_back(SignExtendInReg(Val, OpVT));
4447       }
4448       return getBuildVector(VT, DL, Ops);
4449     }
4450     break;
4451   }
4452   case ISD::EXTRACT_VECTOR_ELT:
4453     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
4454     if (N1.isUndef())
4455       return getUNDEF(VT);
4456 
4457     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
4458     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
4459       return getUNDEF(VT);
4460 
4461     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
4462     // expanding copies of large vectors from registers.
4463     if (N2C &&
4464         N1.getOpcode() == ISD::CONCAT_VECTORS &&
4465         N1.getNumOperands() > 0) {
4466       unsigned Factor =
4467         N1.getOperand(0).getValueType().getVectorNumElements();
4468       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
4469                      N1.getOperand(N2C->getZExtValue() / Factor),
4470                      getConstant(N2C->getZExtValue() % Factor, DL,
4471                                  N2.getValueType()));
4472     }
4473 
4474     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
4475     // expanding large vector constants.
4476     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
4477       SDValue Elt = N1.getOperand(N2C->getZExtValue());
4478 
4479       if (VT != Elt.getValueType())
4480         // If the vector element type is not legal, the BUILD_VECTOR operands
4481         // are promoted and implicitly truncated, and the result implicitly
4482         // extended. Make that explicit here.
4483         Elt = getAnyExtOrTrunc(Elt, DL, VT);
4484 
4485       return Elt;
4486     }
4487 
4488     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
4489     // operations are lowered to scalars.
4490     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
4491       // If the indices are the same, return the inserted element else
4492       // if the indices are known different, extract the element from
4493       // the original vector.
4494       SDValue N1Op2 = N1.getOperand(2);
4495       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
4496 
4497       if (N1Op2C && N2C) {
4498         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
4499           if (VT == N1.getOperand(1).getValueType())
4500             return N1.getOperand(1);
4501           else
4502             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
4503         }
4504 
4505         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
4506       }
4507     }
4508 
4509     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
4510     // when vector types are scalarized and v1iX is legal.
4511     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
4512     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
4513         N1.getValueType().getVectorNumElements() == 1) {
4514       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
4515                      N1.getOperand(1));
4516     }
4517     break;
4518   case ISD::EXTRACT_ELEMENT:
4519     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
4520     assert(!N1.getValueType().isVector() && !VT.isVector() &&
4521            (N1.getValueType().isInteger() == VT.isInteger()) &&
4522            N1.getValueType() != VT &&
4523            "Wrong types for EXTRACT_ELEMENT!");
4524 
4525     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
4526     // 64-bit integers into 32-bit parts.  Instead of building the extract of
4527     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
4528     if (N1.getOpcode() == ISD::BUILD_PAIR)
4529       return N1.getOperand(N2C->getZExtValue());
4530 
4531     // EXTRACT_ELEMENT of a constant int is also very common.
4532     if (N1C) {
4533       unsigned ElementSize = VT.getSizeInBits();
4534       unsigned Shift = ElementSize * N2C->getZExtValue();
4535       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
4536       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
4537     }
4538     break;
4539   case ISD::EXTRACT_SUBVECTOR:
4540     if (VT.isSimple() && N1.getValueType().isSimple()) {
4541       assert(VT.isVector() && N1.getValueType().isVector() &&
4542              "Extract subvector VTs must be a vectors!");
4543       assert(VT.getVectorElementType() ==
4544              N1.getValueType().getVectorElementType() &&
4545              "Extract subvector VTs must have the same element type!");
4546       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
4547              "Extract subvector must be from larger vector to smaller vector!");
4548 
4549       if (N2C) {
4550         assert((VT.getVectorNumElements() + N2C->getZExtValue()
4551                 <= N1.getValueType().getVectorNumElements())
4552                && "Extract subvector overflow!");
4553       }
4554 
4555       // Trivial extraction.
4556       if (VT.getSimpleVT() == N1.getSimpleValueType())
4557         return N1;
4558 
4559       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
4560       if (N1.isUndef())
4561         return getUNDEF(VT);
4562 
4563       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
4564       // the concat have the same type as the extract.
4565       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
4566           N1.getNumOperands() > 0 &&
4567           VT == N1.getOperand(0).getValueType()) {
4568         unsigned Factor = VT.getVectorNumElements();
4569         return N1.getOperand(N2C->getZExtValue() / Factor);
4570       }
4571 
4572       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
4573       // during shuffle legalization.
4574       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
4575           VT == N1.getOperand(1).getValueType())
4576         return N1.getOperand(1);
4577     }
4578     break;
4579   }
4580 
4581   // Perform trivial constant folding.
4582   if (SDValue SV =
4583           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
4584     return SV;
4585 
4586   // Constant fold FP operations.
4587   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
4588   if (N1CFP) {
4589     if (N2CFP) {
4590       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
4591       APFloat::opStatus s;
4592       switch (Opcode) {
4593       case ISD::FADD:
4594         s = V1.add(V2, APFloat::rmNearestTiesToEven);
4595         if (!HasFPExceptions || s != APFloat::opInvalidOp)
4596           return getConstantFP(V1, DL, VT);
4597         break;
4598       case ISD::FSUB:
4599         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
4600         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4601           return getConstantFP(V1, DL, VT);
4602         break;
4603       case ISD::FMUL:
4604         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
4605         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4606           return getConstantFP(V1, DL, VT);
4607         break;
4608       case ISD::FDIV:
4609         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
4610         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4611                                  s!=APFloat::opDivByZero)) {
4612           return getConstantFP(V1, DL, VT);
4613         }
4614         break;
4615       case ISD::FREM :
4616         s = V1.mod(V2);
4617         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4618                                  s!=APFloat::opDivByZero)) {
4619           return getConstantFP(V1, DL, VT);
4620         }
4621         break;
4622       case ISD::FCOPYSIGN:
4623         V1.copySign(V2);
4624         return getConstantFP(V1, DL, VT);
4625       default: break;
4626       }
4627     }
4628 
4629     if (Opcode == ISD::FP_ROUND) {
4630       APFloat V = N1CFP->getValueAPF();    // make copy
4631       bool ignored;
4632       // This can return overflow, underflow, or inexact; we don't care.
4633       // FIXME need to be more flexible about rounding mode.
4634       (void)V.convert(EVTToAPFloatSemantics(VT),
4635                       APFloat::rmNearestTiesToEven, &ignored);
4636       return getConstantFP(V, DL, VT);
4637     }
4638   }
4639 
4640   // Canonicalize an UNDEF to the RHS, even over a constant.
4641   if (N1.isUndef()) {
4642     if (TLI->isCommutativeBinOp(Opcode)) {
4643       std::swap(N1, N2);
4644     } else {
4645       switch (Opcode) {
4646       case ISD::FP_ROUND_INREG:
4647       case ISD::SIGN_EXTEND_INREG:
4648       case ISD::SUB:
4649       case ISD::FSUB:
4650       case ISD::FDIV:
4651       case ISD::FREM:
4652       case ISD::SRA:
4653         return N1;     // fold op(undef, arg2) -> undef
4654       case ISD::UDIV:
4655       case ISD::SDIV:
4656       case ISD::UREM:
4657       case ISD::SREM:
4658       case ISD::SRL:
4659       case ISD::SHL:
4660         if (!VT.isVector())
4661           return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
4662         // For vectors, we can't easily build an all zero vector, just return
4663         // the LHS.
4664         return N2;
4665       }
4666     }
4667   }
4668 
4669   // Fold a bunch of operators when the RHS is undef.
4670   if (N2.isUndef()) {
4671     switch (Opcode) {
4672     case ISD::XOR:
4673       if (N1.isUndef())
4674         // Handle undef ^ undef -> 0 special case. This is a common
4675         // idiom (misuse).
4676         return getConstant(0, DL, VT);
4677       LLVM_FALLTHROUGH;
4678     case ISD::ADD:
4679     case ISD::ADDC:
4680     case ISD::ADDE:
4681     case ISD::SUB:
4682     case ISD::UDIV:
4683     case ISD::SDIV:
4684     case ISD::UREM:
4685     case ISD::SREM:
4686       return N2;       // fold op(arg1, undef) -> undef
4687     case ISD::FADD:
4688     case ISD::FSUB:
4689     case ISD::FMUL:
4690     case ISD::FDIV:
4691     case ISD::FREM:
4692       if (getTarget().Options.UnsafeFPMath)
4693         return N2;
4694       break;
4695     case ISD::MUL:
4696     case ISD::AND:
4697     case ISD::SRL:
4698     case ISD::SHL:
4699       if (!VT.isVector())
4700         return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
4701       // For vectors, we can't easily build an all zero vector, just return
4702       // the LHS.
4703       return N1;
4704     case ISD::OR:
4705       if (!VT.isVector())
4706         return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT);
4707       // For vectors, we can't easily build an all one vector, just return
4708       // the LHS.
4709       return N1;
4710     case ISD::SRA:
4711       return N1;
4712     }
4713   }
4714 
4715   // Memoize this node if possible.
4716   SDNode *N;
4717   SDVTList VTs = getVTList(VT);
4718   SDValue Ops[] = {N1, N2};
4719   if (VT != MVT::Glue) {
4720     FoldingSetNodeID ID;
4721     AddNodeIDNode(ID, Opcode, VTs, Ops);
4722     void *IP = nullptr;
4723     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4724       E->intersectFlagsWith(Flags);
4725       return SDValue(E, 0);
4726     }
4727 
4728     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4729     N->setFlags(Flags);
4730     createOperands(N, Ops);
4731     CSEMap.InsertNode(N, IP);
4732   } else {
4733     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4734     createOperands(N, Ops);
4735   }
4736 
4737   InsertNode(N);
4738   SDValue V = SDValue(N, 0);
4739   NewSDValueDbgMsg(V, "Creating new node: ", this);
4740   return V;
4741 }
4742 
4743 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4744                               SDValue N1, SDValue N2, SDValue N3) {
4745   // Perform various simplifications.
4746   switch (Opcode) {
4747   case ISD::FMA: {
4748     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4749     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4750     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
4751     if (N1CFP && N2CFP && N3CFP) {
4752       APFloat  V1 = N1CFP->getValueAPF();
4753       const APFloat &V2 = N2CFP->getValueAPF();
4754       const APFloat &V3 = N3CFP->getValueAPF();
4755       APFloat::opStatus s =
4756         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
4757       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
4758         return getConstantFP(V1, DL, VT);
4759     }
4760     break;
4761   }
4762   case ISD::CONCAT_VECTORS: {
4763     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4764     SDValue Ops[] = {N1, N2, N3};
4765     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4766       return V;
4767     break;
4768   }
4769   case ISD::SETCC: {
4770     // Use FoldSetCC to simplify SETCC's.
4771     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
4772       return V;
4773     // Vector constant folding.
4774     SDValue Ops[] = {N1, N2, N3};
4775     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
4776       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
4777       return V;
4778     }
4779     break;
4780   }
4781   case ISD::SELECT:
4782     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
4783      if (N1C->getZExtValue())
4784        return N2;             // select true, X, Y -> X
4785      return N3;             // select false, X, Y -> Y
4786     }
4787 
4788     if (N2 == N3) return N2;   // select C, X, X -> X
4789     break;
4790   case ISD::VECTOR_SHUFFLE:
4791     llvm_unreachable("should use getVectorShuffle constructor!");
4792   case ISD::INSERT_VECTOR_ELT: {
4793     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
4794     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
4795     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
4796       return getUNDEF(VT);
4797     break;
4798   }
4799   case ISD::INSERT_SUBVECTOR: {
4800     SDValue Index = N3;
4801     if (VT.isSimple() && N1.getValueType().isSimple()
4802         && N2.getValueType().isSimple()) {
4803       assert(VT.isVector() && N1.getValueType().isVector() &&
4804              N2.getValueType().isVector() &&
4805              "Insert subvector VTs must be a vectors");
4806       assert(VT == N1.getValueType() &&
4807              "Dest and insert subvector source types must match!");
4808       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
4809              "Insert subvector must be from smaller vector to larger vector!");
4810       if (isa<ConstantSDNode>(Index)) {
4811         assert((N2.getValueType().getVectorNumElements() +
4812                 cast<ConstantSDNode>(Index)->getZExtValue()
4813                 <= VT.getVectorNumElements())
4814                && "Insert subvector overflow!");
4815       }
4816 
4817       // Trivial insertion.
4818       if (VT.getSimpleVT() == N2.getSimpleValueType())
4819         return N2;
4820     }
4821     break;
4822   }
4823   case ISD::BITCAST:
4824     // Fold bit_convert nodes from a type to themselves.
4825     if (N1.getValueType() == VT)
4826       return N1;
4827     break;
4828   }
4829 
4830   // Memoize node if it doesn't produce a flag.
4831   SDNode *N;
4832   SDVTList VTs = getVTList(VT);
4833   SDValue Ops[] = {N1, N2, N3};
4834   if (VT != MVT::Glue) {
4835     FoldingSetNodeID ID;
4836     AddNodeIDNode(ID, Opcode, VTs, Ops);
4837     void *IP = nullptr;
4838     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4839       return SDValue(E, 0);
4840 
4841     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4842     createOperands(N, Ops);
4843     CSEMap.InsertNode(N, IP);
4844   } else {
4845     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4846     createOperands(N, Ops);
4847   }
4848 
4849   InsertNode(N);
4850   SDValue V = SDValue(N, 0);
4851   NewSDValueDbgMsg(V, "Creating new node: ", this);
4852   return V;
4853 }
4854 
4855 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4856                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
4857   SDValue Ops[] = { N1, N2, N3, N4 };
4858   return getNode(Opcode, DL, VT, Ops);
4859 }
4860 
4861 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4862                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
4863                               SDValue N5) {
4864   SDValue Ops[] = { N1, N2, N3, N4, N5 };
4865   return getNode(Opcode, DL, VT, Ops);
4866 }
4867 
4868 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
4869 /// the incoming stack arguments to be loaded from the stack.
4870 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
4871   SmallVector<SDValue, 8> ArgChains;
4872 
4873   // Include the original chain at the beginning of the list. When this is
4874   // used by target LowerCall hooks, this helps legalize find the
4875   // CALLSEQ_BEGIN node.
4876   ArgChains.push_back(Chain);
4877 
4878   // Add a chain value for each stack argument.
4879   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
4880        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
4881     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
4882       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
4883         if (FI->getIndex() < 0)
4884           ArgChains.push_back(SDValue(L, 1));
4885 
4886   // Build a tokenfactor for all the chains.
4887   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
4888 }
4889 
4890 /// getMemsetValue - Vectorized representation of the memset value
4891 /// operand.
4892 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
4893                               const SDLoc &dl) {
4894   assert(!Value.isUndef());
4895 
4896   unsigned NumBits = VT.getScalarSizeInBits();
4897   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4898     assert(C->getAPIntValue().getBitWidth() == 8);
4899     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
4900     if (VT.isInteger())
4901       return DAG.getConstant(Val, dl, VT);
4902     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
4903                              VT);
4904   }
4905 
4906   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
4907   EVT IntVT = VT.getScalarType();
4908   if (!IntVT.isInteger())
4909     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
4910 
4911   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
4912   if (NumBits > 8) {
4913     // Use a multiplication with 0x010101... to extend the input to the
4914     // required length.
4915     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
4916     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
4917                         DAG.getConstant(Magic, dl, IntVT));
4918   }
4919 
4920   if (VT != Value.getValueType() && !VT.isInteger())
4921     Value = DAG.getBitcast(VT.getScalarType(), Value);
4922   if (VT != Value.getValueType())
4923     Value = DAG.getSplatBuildVector(VT, dl, Value);
4924 
4925   return Value;
4926 }
4927 
4928 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4929 /// used when a memcpy is turned into a memset when the source is a constant
4930 /// string ptr.
4931 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
4932                                   const TargetLowering &TLI,
4933                                   const ConstantDataArraySlice &Slice) {
4934   // Handle vector with all elements zero.
4935   if (Slice.Array == nullptr) {
4936     if (VT.isInteger())
4937       return DAG.getConstant(0, dl, VT);
4938     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
4939       return DAG.getConstantFP(0.0, dl, VT);
4940     else if (VT.isVector()) {
4941       unsigned NumElts = VT.getVectorNumElements();
4942       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
4943       return DAG.getNode(ISD::BITCAST, dl, VT,
4944                          DAG.getConstant(0, dl,
4945                                          EVT::getVectorVT(*DAG.getContext(),
4946                                                           EltVT, NumElts)));
4947     } else
4948       llvm_unreachable("Expected type!");
4949   }
4950 
4951   assert(!VT.isVector() && "Can't handle vector type here!");
4952   unsigned NumVTBits = VT.getSizeInBits();
4953   unsigned NumVTBytes = NumVTBits / 8;
4954   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
4955 
4956   APInt Val(NumVTBits, 0);
4957   if (DAG.getDataLayout().isLittleEndian()) {
4958     for (unsigned i = 0; i != NumBytes; ++i)
4959       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
4960   } else {
4961     for (unsigned i = 0; i != NumBytes; ++i)
4962       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
4963   }
4964 
4965   // If the "cost" of materializing the integer immediate is less than the cost
4966   // of a load, then it is cost effective to turn the load into the immediate.
4967   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
4968   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
4969     return DAG.getConstant(Val, dl, VT);
4970   return SDValue(nullptr, 0);
4971 }
4972 
4973 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
4974                                            const SDLoc &DL) {
4975   EVT VT = Base.getValueType();
4976   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
4977 }
4978 
4979 /// Returns true if memcpy source is constant data.
4980 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
4981   uint64_t SrcDelta = 0;
4982   GlobalAddressSDNode *G = nullptr;
4983   if (Src.getOpcode() == ISD::GlobalAddress)
4984     G = cast<GlobalAddressSDNode>(Src);
4985   else if (Src.getOpcode() == ISD::ADD &&
4986            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4987            Src.getOperand(1).getOpcode() == ISD::Constant) {
4988     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
4989     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
4990   }
4991   if (!G)
4992     return false;
4993 
4994   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
4995                                   SrcDelta + G->getOffset());
4996 }
4997 
4998 /// Determines the optimal series of memory ops to replace the memset / memcpy.
4999 /// Return true if the number of memory ops is below the threshold (Limit).
5000 /// It returns the types of the sequence of memory ops to perform
5001 /// memset / memcpy by reference.
5002 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
5003                                      unsigned Limit, uint64_t Size,
5004                                      unsigned DstAlign, unsigned SrcAlign,
5005                                      bool IsMemset,
5006                                      bool ZeroMemset,
5007                                      bool MemcpyStrSrc,
5008                                      bool AllowOverlap,
5009                                      unsigned DstAS, unsigned SrcAS,
5010                                      SelectionDAG &DAG,
5011                                      const TargetLowering &TLI) {
5012   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
5013          "Expecting memcpy / memset source to meet alignment requirement!");
5014   // If 'SrcAlign' is zero, that means the memory operation does not need to
5015   // load the value, i.e. memset or memcpy from constant string. Otherwise,
5016   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
5017   // is the specified alignment of the memory operation. If it is zero, that
5018   // means it's possible to change the alignment of the destination.
5019   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
5020   // not need to be loaded.
5021   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
5022                                    IsMemset, ZeroMemset, MemcpyStrSrc,
5023                                    DAG.getMachineFunction());
5024 
5025   if (VT == MVT::Other) {
5026     // Use the largest integer type whose alignment constraints are satisfied.
5027     // We only need to check DstAlign here as SrcAlign is always greater or
5028     // equal to DstAlign (or zero).
5029     VT = MVT::i64;
5030     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
5031            !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
5032       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
5033     assert(VT.isInteger());
5034 
5035     // Find the largest legal integer type.
5036     MVT LVT = MVT::i64;
5037     while (!TLI.isTypeLegal(LVT))
5038       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
5039     assert(LVT.isInteger());
5040 
5041     // If the type we've chosen is larger than the largest legal integer type
5042     // then use that instead.
5043     if (VT.bitsGT(LVT))
5044       VT = LVT;
5045   }
5046 
5047   unsigned NumMemOps = 0;
5048   while (Size != 0) {
5049     unsigned VTSize = VT.getSizeInBits() / 8;
5050     while (VTSize > Size) {
5051       // For now, only use non-vector load / store's for the left-over pieces.
5052       EVT NewVT = VT;
5053       unsigned NewVTSize;
5054 
5055       bool Found = false;
5056       if (VT.isVector() || VT.isFloatingPoint()) {
5057         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
5058         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
5059             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
5060           Found = true;
5061         else if (NewVT == MVT::i64 &&
5062                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
5063                  TLI.isSafeMemOpType(MVT::f64)) {
5064           // i64 is usually not legal on 32-bit targets, but f64 may be.
5065           NewVT = MVT::f64;
5066           Found = true;
5067         }
5068       }
5069 
5070       if (!Found) {
5071         do {
5072           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
5073           if (NewVT == MVT::i8)
5074             break;
5075         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
5076       }
5077       NewVTSize = NewVT.getSizeInBits() / 8;
5078 
5079       // If the new VT cannot cover all of the remaining bits, then consider
5080       // issuing a (or a pair of) unaligned and overlapping load / store.
5081       // FIXME: Only does this for 64-bit or more since we don't have proper
5082       // cost model for unaligned load / store.
5083       bool Fast;
5084       if (NumMemOps && AllowOverlap &&
5085           VTSize >= 8 && NewVTSize < Size &&
5086           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast)
5087         VTSize = Size;
5088       else {
5089         VT = NewVT;
5090         VTSize = NewVTSize;
5091       }
5092     }
5093 
5094     if (++NumMemOps > Limit)
5095       return false;
5096 
5097     MemOps.push_back(VT);
5098     Size -= VTSize;
5099   }
5100 
5101   return true;
5102 }
5103 
5104 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5105   // On Darwin, -Os means optimize for size without hurting performance, so
5106   // only really optimize for size when -Oz (MinSize) is used.
5107   if (MF.getTarget().getTargetTriple().isOSDarwin())
5108     return MF.getFunction().optForMinSize();
5109   return MF.getFunction().optForSize();
5110 }
5111 
5112 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5113                                        SDValue Chain, SDValue Dst, SDValue Src,
5114                                        uint64_t Size, unsigned Align,
5115                                        bool isVol, bool AlwaysInline,
5116                                        MachinePointerInfo DstPtrInfo,
5117                                        MachinePointerInfo SrcPtrInfo) {
5118   // Turn a memcpy of undef to nop.
5119   if (Src.isUndef())
5120     return Chain;
5121 
5122   // Expand memcpy to a series of load and store ops if the size operand falls
5123   // below a certain threshold.
5124   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5125   // rather than maybe a humongous number of loads and stores.
5126   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5127   const DataLayout &DL = DAG.getDataLayout();
5128   LLVMContext &C = *DAG.getContext();
5129   std::vector<EVT> MemOps;
5130   bool DstAlignCanChange = false;
5131   MachineFunction &MF = DAG.getMachineFunction();
5132   MachineFrameInfo &MFI = MF.getFrameInfo();
5133   bool OptSize = shouldLowerMemFuncForSize(MF);
5134   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5135   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5136     DstAlignCanChange = true;
5137   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5138   if (Align > SrcAlign)
5139     SrcAlign = Align;
5140   ConstantDataArraySlice Slice;
5141   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5142   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5143   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5144 
5145   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5146                                 (DstAlignCanChange ? 0 : Align),
5147                                 (isZeroConstant ? 0 : SrcAlign),
5148                                 false, false, CopyFromConstant, true,
5149                                 DstPtrInfo.getAddrSpace(),
5150                                 SrcPtrInfo.getAddrSpace(),
5151                                 DAG, TLI))
5152     return SDValue();
5153 
5154   if (DstAlignCanChange) {
5155     Type *Ty = MemOps[0].getTypeForEVT(C);
5156     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5157 
5158     // Don't promote to an alignment that would require dynamic stack
5159     // realignment.
5160     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5161     if (!TRI->needsStackRealignment(MF))
5162       while (NewAlign > Align &&
5163              DL.exceedsNaturalStackAlignment(NewAlign))
5164           NewAlign /= 2;
5165 
5166     if (NewAlign > Align) {
5167       // Give the stack frame object a larger alignment if needed.
5168       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5169         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5170       Align = NewAlign;
5171     }
5172   }
5173 
5174   MachineMemOperand::Flags MMOFlags =
5175       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5176   SmallVector<SDValue, 8> OutChains;
5177   unsigned NumMemOps = MemOps.size();
5178   uint64_t SrcOff = 0, DstOff = 0;
5179   for (unsigned i = 0; i != NumMemOps; ++i) {
5180     EVT VT = MemOps[i];
5181     unsigned VTSize = VT.getSizeInBits() / 8;
5182     SDValue Value, Store;
5183 
5184     if (VTSize > Size) {
5185       // Issuing an unaligned load / store pair  that overlaps with the previous
5186       // pair. Adjust the offset accordingly.
5187       assert(i == NumMemOps-1 && i != 0);
5188       SrcOff -= VTSize - Size;
5189       DstOff -= VTSize - Size;
5190     }
5191 
5192     if (CopyFromConstant &&
5193         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5194       // It's unlikely a store of a vector immediate can be done in a single
5195       // instruction. It would require a load from a constantpool first.
5196       // We only handle zero vectors here.
5197       // FIXME: Handle other cases where store of vector immediate is done in
5198       // a single instruction.
5199       ConstantDataArraySlice SubSlice;
5200       if (SrcOff < Slice.Length) {
5201         SubSlice = Slice;
5202         SubSlice.move(SrcOff);
5203       } else {
5204         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5205         SubSlice.Array = nullptr;
5206         SubSlice.Offset = 0;
5207         SubSlice.Length = VTSize;
5208       }
5209       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5210       if (Value.getNode())
5211         Store = DAG.getStore(Chain, dl, Value,
5212                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5213                              DstPtrInfo.getWithOffset(DstOff), Align,
5214                              MMOFlags);
5215     }
5216 
5217     if (!Store.getNode()) {
5218       // The type might not be legal for the target.  This should only happen
5219       // if the type is smaller than a legal type, as on PPC, so the right
5220       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5221       // to Load/Store if NVT==VT.
5222       // FIXME does the case above also need this?
5223       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5224       assert(NVT.bitsGE(VT));
5225 
5226       bool isDereferenceable =
5227         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5228       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5229       if (isDereferenceable)
5230         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5231 
5232       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5233                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5234                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5235                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5236       OutChains.push_back(Value.getValue(1));
5237       Store = DAG.getTruncStore(
5238           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5239           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5240     }
5241     OutChains.push_back(Store);
5242     SrcOff += VTSize;
5243     DstOff += VTSize;
5244     Size -= VTSize;
5245   }
5246 
5247   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5248 }
5249 
5250 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5251                                         SDValue Chain, SDValue Dst, SDValue Src,
5252                                         uint64_t Size, unsigned Align,
5253                                         bool isVol, bool AlwaysInline,
5254                                         MachinePointerInfo DstPtrInfo,
5255                                         MachinePointerInfo SrcPtrInfo) {
5256   // Turn a memmove of undef to nop.
5257   if (Src.isUndef())
5258     return Chain;
5259 
5260   // Expand memmove to a series of load and store ops if the size operand falls
5261   // below a certain threshold.
5262   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5263   const DataLayout &DL = DAG.getDataLayout();
5264   LLVMContext &C = *DAG.getContext();
5265   std::vector<EVT> MemOps;
5266   bool DstAlignCanChange = false;
5267   MachineFunction &MF = DAG.getMachineFunction();
5268   MachineFrameInfo &MFI = MF.getFrameInfo();
5269   bool OptSize = shouldLowerMemFuncForSize(MF);
5270   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5271   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5272     DstAlignCanChange = true;
5273   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5274   if (Align > SrcAlign)
5275     SrcAlign = Align;
5276   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5277 
5278   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5279                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
5280                                 false, false, false, false,
5281                                 DstPtrInfo.getAddrSpace(),
5282                                 SrcPtrInfo.getAddrSpace(),
5283                                 DAG, TLI))
5284     return SDValue();
5285 
5286   if (DstAlignCanChange) {
5287     Type *Ty = MemOps[0].getTypeForEVT(C);
5288     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5289     if (NewAlign > Align) {
5290       // Give the stack frame object a larger alignment if needed.
5291       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5292         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5293       Align = NewAlign;
5294     }
5295   }
5296 
5297   MachineMemOperand::Flags MMOFlags =
5298       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5299   uint64_t SrcOff = 0, DstOff = 0;
5300   SmallVector<SDValue, 8> LoadValues;
5301   SmallVector<SDValue, 8> LoadChains;
5302   SmallVector<SDValue, 8> OutChains;
5303   unsigned NumMemOps = MemOps.size();
5304   for (unsigned i = 0; i < NumMemOps; i++) {
5305     EVT VT = MemOps[i];
5306     unsigned VTSize = VT.getSizeInBits() / 8;
5307     SDValue Value;
5308 
5309     bool isDereferenceable =
5310       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5311     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5312     if (isDereferenceable)
5313       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5314 
5315     Value =
5316         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5317                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
5318     LoadValues.push_back(Value);
5319     LoadChains.push_back(Value.getValue(1));
5320     SrcOff += VTSize;
5321   }
5322   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
5323   OutChains.clear();
5324   for (unsigned i = 0; i < NumMemOps; i++) {
5325     EVT VT = MemOps[i];
5326     unsigned VTSize = VT.getSizeInBits() / 8;
5327     SDValue Store;
5328 
5329     Store = DAG.getStore(Chain, dl, LoadValues[i],
5330                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5331                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
5332     OutChains.push_back(Store);
5333     DstOff += VTSize;
5334   }
5335 
5336   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5337 }
5338 
5339 /// \brief Lower the call to 'memset' intrinsic function into a series of store
5340 /// operations.
5341 ///
5342 /// \param DAG Selection DAG where lowered code is placed.
5343 /// \param dl Link to corresponding IR location.
5344 /// \param Chain Control flow dependency.
5345 /// \param Dst Pointer to destination memory location.
5346 /// \param Src Value of byte to write into the memory.
5347 /// \param Size Number of bytes to write.
5348 /// \param Align Alignment of the destination in bytes.
5349 /// \param isVol True if destination is volatile.
5350 /// \param DstPtrInfo IR information on the memory pointer.
5351 /// \returns New head in the control flow, if lowering was successful, empty
5352 /// SDValue otherwise.
5353 ///
5354 /// The function tries to replace 'llvm.memset' intrinsic with several store
5355 /// operations and value calculation code. This is usually profitable for small
5356 /// memory size.
5357 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
5358                                SDValue Chain, SDValue Dst, SDValue Src,
5359                                uint64_t Size, unsigned Align, bool isVol,
5360                                MachinePointerInfo DstPtrInfo) {
5361   // Turn a memset of undef to nop.
5362   if (Src.isUndef())
5363     return Chain;
5364 
5365   // Expand memset to a series of load/store ops if the size operand
5366   // falls below a certain threshold.
5367   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5368   std::vector<EVT> MemOps;
5369   bool DstAlignCanChange = false;
5370   MachineFunction &MF = DAG.getMachineFunction();
5371   MachineFrameInfo &MFI = MF.getFrameInfo();
5372   bool OptSize = shouldLowerMemFuncForSize(MF);
5373   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5374   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5375     DstAlignCanChange = true;
5376   bool IsZeroVal =
5377     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
5378   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
5379                                 Size, (DstAlignCanChange ? 0 : Align), 0,
5380                                 true, IsZeroVal, false, true,
5381                                 DstPtrInfo.getAddrSpace(), ~0u,
5382                                 DAG, TLI))
5383     return SDValue();
5384 
5385   if (DstAlignCanChange) {
5386     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
5387     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
5388     if (NewAlign > Align) {
5389       // Give the stack frame object a larger alignment if needed.
5390       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5391         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5392       Align = NewAlign;
5393     }
5394   }
5395 
5396   SmallVector<SDValue, 8> OutChains;
5397   uint64_t DstOff = 0;
5398   unsigned NumMemOps = MemOps.size();
5399 
5400   // Find the largest store and generate the bit pattern for it.
5401   EVT LargestVT = MemOps[0];
5402   for (unsigned i = 1; i < NumMemOps; i++)
5403     if (MemOps[i].bitsGT(LargestVT))
5404       LargestVT = MemOps[i];
5405   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
5406 
5407   for (unsigned i = 0; i < NumMemOps; i++) {
5408     EVT VT = MemOps[i];
5409     unsigned VTSize = VT.getSizeInBits() / 8;
5410     if (VTSize > Size) {
5411       // Issuing an unaligned load / store pair  that overlaps with the previous
5412       // pair. Adjust the offset accordingly.
5413       assert(i == NumMemOps-1 && i != 0);
5414       DstOff -= VTSize - Size;
5415     }
5416 
5417     // If this store is smaller than the largest store see whether we can get
5418     // the smaller value for free with a truncate.
5419     SDValue Value = MemSetValue;
5420     if (VT.bitsLT(LargestVT)) {
5421       if (!LargestVT.isVector() && !VT.isVector() &&
5422           TLI.isTruncateFree(LargestVT, VT))
5423         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
5424       else
5425         Value = getMemsetValue(Src, VT, DAG, dl);
5426     }
5427     assert(Value.getValueType() == VT && "Value with wrong type.");
5428     SDValue Store = DAG.getStore(
5429         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5430         DstPtrInfo.getWithOffset(DstOff), Align,
5431         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
5432     OutChains.push_back(Store);
5433     DstOff += VT.getSizeInBits() / 8;
5434     Size -= VTSize;
5435   }
5436 
5437   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5438 }
5439 
5440 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
5441                                             unsigned AS) {
5442   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
5443   // pointer operands can be losslessly bitcasted to pointers of address space 0
5444   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
5445     report_fatal_error("cannot lower memory intrinsic in address space " +
5446                        Twine(AS));
5447   }
5448 }
5449 
5450 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
5451                                 SDValue Src, SDValue Size, unsigned Align,
5452                                 bool isVol, bool AlwaysInline, bool isTailCall,
5453                                 MachinePointerInfo DstPtrInfo,
5454                                 MachinePointerInfo SrcPtrInfo) {
5455   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5456 
5457   // Check to see if we should lower the memcpy to loads and stores first.
5458   // For cases within the target-specified limits, this is the best choice.
5459   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5460   if (ConstantSize) {
5461     // Memcpy with size zero? Just return the original chain.
5462     if (ConstantSize->isNullValue())
5463       return Chain;
5464 
5465     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5466                                              ConstantSize->getZExtValue(),Align,
5467                                 isVol, false, DstPtrInfo, SrcPtrInfo);
5468     if (Result.getNode())
5469       return Result;
5470   }
5471 
5472   // Then check to see if we should lower the memcpy with target-specific
5473   // code. If the target chooses to do this, this is the next best.
5474   if (TSI) {
5475     SDValue Result = TSI->EmitTargetCodeForMemcpy(
5476         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
5477         DstPtrInfo, SrcPtrInfo);
5478     if (Result.getNode())
5479       return Result;
5480   }
5481 
5482   // If we really need inline code and the target declined to provide it,
5483   // use a (potentially long) sequence of loads and stores.
5484   if (AlwaysInline) {
5485     assert(ConstantSize && "AlwaysInline requires a constant size!");
5486     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5487                                    ConstantSize->getZExtValue(), Align, isVol,
5488                                    true, DstPtrInfo, SrcPtrInfo);
5489   }
5490 
5491   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5492   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5493 
5494   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
5495   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
5496   // respect volatile, so they may do things like read or write memory
5497   // beyond the given memory regions. But fixing this isn't easy, and most
5498   // people don't care.
5499 
5500   // Emit a library call.
5501   TargetLowering::ArgListTy Args;
5502   TargetLowering::ArgListEntry Entry;
5503   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5504   Entry.Node = Dst; Args.push_back(Entry);
5505   Entry.Node = Src; Args.push_back(Entry);
5506   Entry.Node = Size; Args.push_back(Entry);
5507   // FIXME: pass in SDLoc
5508   TargetLowering::CallLoweringInfo CLI(*this);
5509   CLI.setDebugLoc(dl)
5510       .setChain(Chain)
5511       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
5512                     Dst.getValueType().getTypeForEVT(*getContext()),
5513                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
5514                                       TLI->getPointerTy(getDataLayout())),
5515                     std::move(Args))
5516       .setDiscardResult()
5517       .setTailCall(isTailCall);
5518 
5519   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5520   return CallResult.second;
5521 }
5522 
5523 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
5524                                  SDValue Src, SDValue Size, unsigned Align,
5525                                  bool isVol, bool isTailCall,
5526                                  MachinePointerInfo DstPtrInfo,
5527                                  MachinePointerInfo SrcPtrInfo) {
5528   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5529 
5530   // Check to see if we should lower the memmove to loads and stores first.
5531   // For cases within the target-specified limits, this is the best choice.
5532   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5533   if (ConstantSize) {
5534     // Memmove with size zero? Just return the original chain.
5535     if (ConstantSize->isNullValue())
5536       return Chain;
5537 
5538     SDValue Result =
5539       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
5540                                ConstantSize->getZExtValue(), Align, isVol,
5541                                false, DstPtrInfo, SrcPtrInfo);
5542     if (Result.getNode())
5543       return Result;
5544   }
5545 
5546   // Then check to see if we should lower the memmove with target-specific
5547   // code. If the target chooses to do this, this is the next best.
5548   if (TSI) {
5549     SDValue Result = TSI->EmitTargetCodeForMemmove(
5550         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
5551     if (Result.getNode())
5552       return Result;
5553   }
5554 
5555   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5556   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5557 
5558   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
5559   // not be safe.  See memcpy above for more details.
5560 
5561   // Emit a library call.
5562   TargetLowering::ArgListTy Args;
5563   TargetLowering::ArgListEntry Entry;
5564   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5565   Entry.Node = Dst; Args.push_back(Entry);
5566   Entry.Node = Src; Args.push_back(Entry);
5567   Entry.Node = Size; Args.push_back(Entry);
5568   // FIXME:  pass in SDLoc
5569   TargetLowering::CallLoweringInfo CLI(*this);
5570   CLI.setDebugLoc(dl)
5571       .setChain(Chain)
5572       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
5573                     Dst.getValueType().getTypeForEVT(*getContext()),
5574                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
5575                                       TLI->getPointerTy(getDataLayout())),
5576                     std::move(Args))
5577       .setDiscardResult()
5578       .setTailCall(isTailCall);
5579 
5580   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5581   return CallResult.second;
5582 }
5583 
5584 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
5585                                 SDValue Src, SDValue Size, unsigned Align,
5586                                 bool isVol, bool isTailCall,
5587                                 MachinePointerInfo DstPtrInfo) {
5588   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5589 
5590   // Check to see if we should lower the memset to stores first.
5591   // For cases within the target-specified limits, this is the best choice.
5592   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5593   if (ConstantSize) {
5594     // Memset with size zero? Just return the original chain.
5595     if (ConstantSize->isNullValue())
5596       return Chain;
5597 
5598     SDValue Result =
5599       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
5600                       Align, isVol, DstPtrInfo);
5601 
5602     if (Result.getNode())
5603       return Result;
5604   }
5605 
5606   // Then check to see if we should lower the memset with target-specific
5607   // code. If the target chooses to do this, this is the next best.
5608   if (TSI) {
5609     SDValue Result = TSI->EmitTargetCodeForMemset(
5610         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
5611     if (Result.getNode())
5612       return Result;
5613   }
5614 
5615   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5616 
5617   // Emit a library call.
5618   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
5619   TargetLowering::ArgListTy Args;
5620   TargetLowering::ArgListEntry Entry;
5621   Entry.Node = Dst; Entry.Ty = IntPtrTy;
5622   Args.push_back(Entry);
5623   Entry.Node = Src;
5624   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
5625   Args.push_back(Entry);
5626   Entry.Node = Size;
5627   Entry.Ty = IntPtrTy;
5628   Args.push_back(Entry);
5629 
5630   // FIXME: pass in SDLoc
5631   TargetLowering::CallLoweringInfo CLI(*this);
5632   CLI.setDebugLoc(dl)
5633       .setChain(Chain)
5634       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
5635                     Dst.getValueType().getTypeForEVT(*getContext()),
5636                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
5637                                       TLI->getPointerTy(getDataLayout())),
5638                     std::move(Args))
5639       .setDiscardResult()
5640       .setTailCall(isTailCall);
5641 
5642   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5643   return CallResult.second;
5644 }
5645 
5646 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5647                                 SDVTList VTList, ArrayRef<SDValue> Ops,
5648                                 MachineMemOperand *MMO) {
5649   FoldingSetNodeID ID;
5650   ID.AddInteger(MemVT.getRawBits());
5651   AddNodeIDNode(ID, Opcode, VTList, Ops);
5652   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5653   void* IP = nullptr;
5654   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5655     cast<AtomicSDNode>(E)->refineAlignment(MMO);
5656     return SDValue(E, 0);
5657   }
5658 
5659   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5660                                     VTList, MemVT, MMO);
5661   createOperands(N, Ops);
5662 
5663   CSEMap.InsertNode(N, IP);
5664   InsertNode(N);
5665   return SDValue(N, 0);
5666 }
5667 
5668 SDValue SelectionDAG::getAtomicCmpSwap(
5669     unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
5670     SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
5671     unsigned Alignment, AtomicOrdering SuccessOrdering,
5672     AtomicOrdering FailureOrdering, SyncScope::ID SSID) {
5673   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
5674          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
5675   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
5676 
5677   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5678     Alignment = getEVTAlignment(MemVT);
5679 
5680   MachineFunction &MF = getMachineFunction();
5681 
5682   // FIXME: Volatile isn't really correct; we should keep track of atomic
5683   // orderings in the memoperand.
5684   auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
5685                MachineMemOperand::MOStore;
5686   MachineMemOperand *MMO =
5687     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
5688                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
5689                             FailureOrdering);
5690 
5691   return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO);
5692 }
5693 
5694 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
5695                                        EVT MemVT, SDVTList VTs, SDValue Chain,
5696                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
5697                                        MachineMemOperand *MMO) {
5698   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
5699          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
5700   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
5701 
5702   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
5703   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5704 }
5705 
5706 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5707                                 SDValue Chain, SDValue Ptr, SDValue Val,
5708                                 const Value *PtrVal, unsigned Alignment,
5709                                 AtomicOrdering Ordering,
5710                                 SyncScope::ID SSID) {
5711   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5712     Alignment = getEVTAlignment(MemVT);
5713 
5714   MachineFunction &MF = getMachineFunction();
5715   // An atomic store does not load. An atomic load does not store.
5716   // (An atomicrmw obviously both loads and stores.)
5717   // For now, atomics are considered to be volatile always, and they are
5718   // chained as such.
5719   // FIXME: Volatile isn't really correct; we should keep track of atomic
5720   // orderings in the memoperand.
5721   auto Flags = MachineMemOperand::MOVolatile;
5722   if (Opcode != ISD::ATOMIC_STORE)
5723     Flags |= MachineMemOperand::MOLoad;
5724   if (Opcode != ISD::ATOMIC_LOAD)
5725     Flags |= MachineMemOperand::MOStore;
5726 
5727   MachineMemOperand *MMO =
5728     MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
5729                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
5730                             nullptr, SSID, Ordering);
5731 
5732   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
5733 }
5734 
5735 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5736                                 SDValue Chain, SDValue Ptr, SDValue Val,
5737                                 MachineMemOperand *MMO) {
5738   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
5739           Opcode == ISD::ATOMIC_LOAD_SUB ||
5740           Opcode == ISD::ATOMIC_LOAD_AND ||
5741           Opcode == ISD::ATOMIC_LOAD_OR ||
5742           Opcode == ISD::ATOMIC_LOAD_XOR ||
5743           Opcode == ISD::ATOMIC_LOAD_NAND ||
5744           Opcode == ISD::ATOMIC_LOAD_MIN ||
5745           Opcode == ISD::ATOMIC_LOAD_MAX ||
5746           Opcode == ISD::ATOMIC_LOAD_UMIN ||
5747           Opcode == ISD::ATOMIC_LOAD_UMAX ||
5748           Opcode == ISD::ATOMIC_SWAP ||
5749           Opcode == ISD::ATOMIC_STORE) &&
5750          "Invalid Atomic Op");
5751 
5752   EVT VT = Val.getValueType();
5753 
5754   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
5755                                                getVTList(VT, MVT::Other);
5756   SDValue Ops[] = {Chain, Ptr, Val};
5757   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5758 }
5759 
5760 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5761                                 EVT VT, SDValue Chain, SDValue Ptr,
5762                                 MachineMemOperand *MMO) {
5763   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
5764 
5765   SDVTList VTs = getVTList(VT, MVT::Other);
5766   SDValue Ops[] = {Chain, Ptr};
5767   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5768 }
5769 
5770 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
5771 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
5772   if (Ops.size() == 1)
5773     return Ops[0];
5774 
5775   SmallVector<EVT, 4> VTs;
5776   VTs.reserve(Ops.size());
5777   for (unsigned i = 0; i < Ops.size(); ++i)
5778     VTs.push_back(Ops[i].getValueType());
5779   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
5780 }
5781 
5782 SDValue SelectionDAG::getMemIntrinsicNode(
5783     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
5784     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
5785     MachineMemOperand::Flags Flags, unsigned Size) {
5786   if (Align == 0)  // Ensure that codegen never sees alignment 0
5787     Align = getEVTAlignment(MemVT);
5788 
5789   if (!Size)
5790     Size = MemVT.getStoreSize();
5791 
5792   MachineFunction &MF = getMachineFunction();
5793   MachineMemOperand *MMO =
5794     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
5795 
5796   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
5797 }
5798 
5799 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
5800                                           SDVTList VTList,
5801                                           ArrayRef<SDValue> Ops, EVT MemVT,
5802                                           MachineMemOperand *MMO) {
5803   assert((Opcode == ISD::INTRINSIC_VOID ||
5804           Opcode == ISD::INTRINSIC_W_CHAIN ||
5805           Opcode == ISD::PREFETCH ||
5806           Opcode == ISD::LIFETIME_START ||
5807           Opcode == ISD::LIFETIME_END ||
5808           ((int)Opcode <= std::numeric_limits<int>::max() &&
5809            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
5810          "Opcode is not a memory-accessing opcode!");
5811 
5812   // Memoize the node unless it returns a flag.
5813   MemIntrinsicSDNode *N;
5814   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5815     FoldingSetNodeID ID;
5816     AddNodeIDNode(ID, Opcode, VTList, Ops);
5817     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
5818         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
5819     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5820     void *IP = nullptr;
5821     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5822       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
5823       return SDValue(E, 0);
5824     }
5825 
5826     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5827                                       VTList, MemVT, MMO);
5828     createOperands(N, Ops);
5829 
5830   CSEMap.InsertNode(N, IP);
5831   } else {
5832     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5833                                       VTList, MemVT, MMO);
5834     createOperands(N, Ops);
5835   }
5836   InsertNode(N);
5837   return SDValue(N, 0);
5838 }
5839 
5840 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
5841 /// MachinePointerInfo record from it.  This is particularly useful because the
5842 /// code generator has many cases where it doesn't bother passing in a
5843 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
5844 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
5845                                            SelectionDAG &DAG, SDValue Ptr,
5846                                            int64_t Offset = 0) {
5847   // If this is FI+Offset, we can model it.
5848   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
5849     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
5850                                              FI->getIndex(), Offset);
5851 
5852   // If this is (FI+Offset1)+Offset2, we can model it.
5853   if (Ptr.getOpcode() != ISD::ADD ||
5854       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
5855       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
5856     return Info;
5857 
5858   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5859   return MachinePointerInfo::getFixedStack(
5860       DAG.getMachineFunction(), FI,
5861       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
5862 }
5863 
5864 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
5865 /// MachinePointerInfo record from it.  This is particularly useful because the
5866 /// code generator has many cases where it doesn't bother passing in a
5867 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
5868 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
5869                                            SelectionDAG &DAG, SDValue Ptr,
5870                                            SDValue OffsetOp) {
5871   // If the 'Offset' value isn't a constant, we can't handle this.
5872   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
5873     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
5874   if (OffsetOp.isUndef())
5875     return InferPointerInfo(Info, DAG, Ptr);
5876   return Info;
5877 }
5878 
5879 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
5880                               EVT VT, const SDLoc &dl, SDValue Chain,
5881                               SDValue Ptr, SDValue Offset,
5882                               MachinePointerInfo PtrInfo, EVT MemVT,
5883                               unsigned Alignment,
5884                               MachineMemOperand::Flags MMOFlags,
5885                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
5886   assert(Chain.getValueType() == MVT::Other &&
5887         "Invalid chain type");
5888   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5889     Alignment = getEVTAlignment(MemVT);
5890 
5891   MMOFlags |= MachineMemOperand::MOLoad;
5892   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
5893   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
5894   // clients.
5895   if (PtrInfo.V.isNull())
5896     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
5897 
5898   MachineFunction &MF = getMachineFunction();
5899   MachineMemOperand *MMO = MF.getMachineMemOperand(
5900       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
5901   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
5902 }
5903 
5904 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
5905                               EVT VT, const SDLoc &dl, SDValue Chain,
5906                               SDValue Ptr, SDValue Offset, EVT MemVT,
5907                               MachineMemOperand *MMO) {
5908   if (VT == MemVT) {
5909     ExtType = ISD::NON_EXTLOAD;
5910   } else if (ExtType == ISD::NON_EXTLOAD) {
5911     assert(VT == MemVT && "Non-extending load from different memory type!");
5912   } else {
5913     // Extending load.
5914     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
5915            "Should only be an extending load, not truncating!");
5916     assert(VT.isInteger() == MemVT.isInteger() &&
5917            "Cannot convert from FP to Int or Int -> FP!");
5918     assert(VT.isVector() == MemVT.isVector() &&
5919            "Cannot use an ext load to convert to or from a vector!");
5920     assert((!VT.isVector() ||
5921             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
5922            "Cannot use an ext load to change the number of vector elements!");
5923   }
5924 
5925   bool Indexed = AM != ISD::UNINDEXED;
5926   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
5927 
5928   SDVTList VTs = Indexed ?
5929     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
5930   SDValue Ops[] = { Chain, Ptr, Offset };
5931   FoldingSetNodeID ID;
5932   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
5933   ID.AddInteger(MemVT.getRawBits());
5934   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
5935       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
5936   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5937   void *IP = nullptr;
5938   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5939     cast<LoadSDNode>(E)->refineAlignment(MMO);
5940     return SDValue(E, 0);
5941   }
5942   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
5943                                   ExtType, MemVT, MMO);
5944   createOperands(N, Ops);
5945 
5946   CSEMap.InsertNode(N, IP);
5947   InsertNode(N);
5948   SDValue V(N, 0);
5949   NewSDValueDbgMsg(V, "Creating new node: ", this);
5950   return V;
5951 }
5952 
5953 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5954                               SDValue Ptr, MachinePointerInfo PtrInfo,
5955                               unsigned Alignment,
5956                               MachineMemOperand::Flags MMOFlags,
5957                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
5958   SDValue Undef = getUNDEF(Ptr.getValueType());
5959   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
5960                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
5961 }
5962 
5963 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5964                               SDValue Ptr, MachineMemOperand *MMO) {
5965   SDValue Undef = getUNDEF(Ptr.getValueType());
5966   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
5967                  VT, MMO);
5968 }
5969 
5970 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
5971                                  EVT VT, SDValue Chain, SDValue Ptr,
5972                                  MachinePointerInfo PtrInfo, EVT MemVT,
5973                                  unsigned Alignment,
5974                                  MachineMemOperand::Flags MMOFlags,
5975                                  const AAMDNodes &AAInfo) {
5976   SDValue Undef = getUNDEF(Ptr.getValueType());
5977   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
5978                  MemVT, Alignment, MMOFlags, AAInfo);
5979 }
5980 
5981 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
5982                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
5983                                  MachineMemOperand *MMO) {
5984   SDValue Undef = getUNDEF(Ptr.getValueType());
5985   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
5986                  MemVT, MMO);
5987 }
5988 
5989 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
5990                                      SDValue Base, SDValue Offset,
5991                                      ISD::MemIndexedMode AM) {
5992   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
5993   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
5994   // Don't propagate the invariant or dereferenceable flags.
5995   auto MMOFlags =
5996       LD->getMemOperand()->getFlags() &
5997       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
5998   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
5999                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6000                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6001                  LD->getAAInfo());
6002 }
6003 
6004 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6005                                SDValue Ptr, MachinePointerInfo PtrInfo,
6006                                unsigned Alignment,
6007                                MachineMemOperand::Flags MMOFlags,
6008                                const AAMDNodes &AAInfo) {
6009   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6010   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6011     Alignment = getEVTAlignment(Val.getValueType());
6012 
6013   MMOFlags |= MachineMemOperand::MOStore;
6014   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6015 
6016   if (PtrInfo.V.isNull())
6017     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6018 
6019   MachineFunction &MF = getMachineFunction();
6020   MachineMemOperand *MMO = MF.getMachineMemOperand(
6021       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6022   return getStore(Chain, dl, Val, Ptr, MMO);
6023 }
6024 
6025 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6026                                SDValue Ptr, MachineMemOperand *MMO) {
6027   assert(Chain.getValueType() == MVT::Other &&
6028         "Invalid chain type");
6029   EVT VT = Val.getValueType();
6030   SDVTList VTs = getVTList(MVT::Other);
6031   SDValue Undef = getUNDEF(Ptr.getValueType());
6032   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6033   FoldingSetNodeID ID;
6034   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6035   ID.AddInteger(VT.getRawBits());
6036   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6037       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6038   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6039   void *IP = nullptr;
6040   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6041     cast<StoreSDNode>(E)->refineAlignment(MMO);
6042     return SDValue(E, 0);
6043   }
6044   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6045                                    ISD::UNINDEXED, false, VT, MMO);
6046   createOperands(N, Ops);
6047 
6048   CSEMap.InsertNode(N, IP);
6049   InsertNode(N);
6050   SDValue V(N, 0);
6051   NewSDValueDbgMsg(V, "Creating new node: ", this);
6052   return V;
6053 }
6054 
6055 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6056                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6057                                     EVT SVT, unsigned Alignment,
6058                                     MachineMemOperand::Flags MMOFlags,
6059                                     const AAMDNodes &AAInfo) {
6060   assert(Chain.getValueType() == MVT::Other &&
6061         "Invalid chain type");
6062   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6063     Alignment = getEVTAlignment(SVT);
6064 
6065   MMOFlags |= MachineMemOperand::MOStore;
6066   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6067 
6068   if (PtrInfo.V.isNull())
6069     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6070 
6071   MachineFunction &MF = getMachineFunction();
6072   MachineMemOperand *MMO = MF.getMachineMemOperand(
6073       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6074   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6075 }
6076 
6077 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6078                                     SDValue Ptr, EVT SVT,
6079                                     MachineMemOperand *MMO) {
6080   EVT VT = Val.getValueType();
6081 
6082   assert(Chain.getValueType() == MVT::Other &&
6083         "Invalid chain type");
6084   if (VT == SVT)
6085     return getStore(Chain, dl, Val, Ptr, MMO);
6086 
6087   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6088          "Should only be a truncating store, not extending!");
6089   assert(VT.isInteger() == SVT.isInteger() &&
6090          "Can't do FP-INT conversion!");
6091   assert(VT.isVector() == SVT.isVector() &&
6092          "Cannot use trunc store to convert to or from a vector!");
6093   assert((!VT.isVector() ||
6094           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6095          "Cannot use trunc store to change the number of vector elements!");
6096 
6097   SDVTList VTs = getVTList(MVT::Other);
6098   SDValue Undef = getUNDEF(Ptr.getValueType());
6099   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6100   FoldingSetNodeID ID;
6101   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6102   ID.AddInteger(SVT.getRawBits());
6103   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6104       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6105   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6106   void *IP = nullptr;
6107   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6108     cast<StoreSDNode>(E)->refineAlignment(MMO);
6109     return SDValue(E, 0);
6110   }
6111   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6112                                    ISD::UNINDEXED, true, SVT, MMO);
6113   createOperands(N, Ops);
6114 
6115   CSEMap.InsertNode(N, IP);
6116   InsertNode(N);
6117   SDValue V(N, 0);
6118   NewSDValueDbgMsg(V, "Creating new node: ", this);
6119   return V;
6120 }
6121 
6122 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6123                                       SDValue Base, SDValue Offset,
6124                                       ISD::MemIndexedMode AM) {
6125   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6126   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6127   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6128   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6129   FoldingSetNodeID ID;
6130   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6131   ID.AddInteger(ST->getMemoryVT().getRawBits());
6132   ID.AddInteger(ST->getRawSubclassData());
6133   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6134   void *IP = nullptr;
6135   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6136     return SDValue(E, 0);
6137 
6138   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6139                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6140                                    ST->getMemOperand());
6141   createOperands(N, Ops);
6142 
6143   CSEMap.InsertNode(N, IP);
6144   InsertNode(N);
6145   SDValue V(N, 0);
6146   NewSDValueDbgMsg(V, "Creating new node: ", this);
6147   return V;
6148 }
6149 
6150 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6151                                     SDValue Ptr, SDValue Mask, SDValue Src0,
6152                                     EVT MemVT, MachineMemOperand *MMO,
6153                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6154   SDVTList VTs = getVTList(VT, MVT::Other);
6155   SDValue Ops[] = { Chain, Ptr, Mask, Src0 };
6156   FoldingSetNodeID ID;
6157   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6158   ID.AddInteger(VT.getRawBits());
6159   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6160       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6161   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6162   void *IP = nullptr;
6163   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6164     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6165     return SDValue(E, 0);
6166   }
6167   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6168                                         ExtTy, isExpanding, MemVT, MMO);
6169   createOperands(N, Ops);
6170 
6171   CSEMap.InsertNode(N, IP);
6172   InsertNode(N);
6173   SDValue V(N, 0);
6174   NewSDValueDbgMsg(V, "Creating new node: ", this);
6175   return V;
6176 }
6177 
6178 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6179                                      SDValue Val, SDValue Ptr, SDValue Mask,
6180                                      EVT MemVT, MachineMemOperand *MMO,
6181                                      bool IsTruncating, bool IsCompressing) {
6182   assert(Chain.getValueType() == MVT::Other &&
6183         "Invalid chain type");
6184   EVT VT = Val.getValueType();
6185   SDVTList VTs = getVTList(MVT::Other);
6186   SDValue Ops[] = { Chain, Ptr, Mask, Val };
6187   FoldingSetNodeID ID;
6188   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6189   ID.AddInteger(VT.getRawBits());
6190   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6191       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6192   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6193   void *IP = nullptr;
6194   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6195     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6196     return SDValue(E, 0);
6197   }
6198   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6199                                          IsTruncating, IsCompressing, MemVT, MMO);
6200   createOperands(N, Ops);
6201 
6202   CSEMap.InsertNode(N, IP);
6203   InsertNode(N);
6204   SDValue V(N, 0);
6205   NewSDValueDbgMsg(V, "Creating new node: ", this);
6206   return V;
6207 }
6208 
6209 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
6210                                       ArrayRef<SDValue> Ops,
6211                                       MachineMemOperand *MMO) {
6212   assert(Ops.size() == 6 && "Incompatible number of operands");
6213 
6214   FoldingSetNodeID ID;
6215   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
6216   ID.AddInteger(VT.getRawBits());
6217   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
6218       dl.getIROrder(), VTs, VT, MMO));
6219   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6220   void *IP = nullptr;
6221   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6222     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
6223     return SDValue(E, 0);
6224   }
6225 
6226   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6227                                           VTs, VT, MMO);
6228   createOperands(N, Ops);
6229 
6230   assert(N->getValue().getValueType() == N->getValueType(0) &&
6231          "Incompatible type of the PassThru value in MaskedGatherSDNode");
6232   assert(N->getMask().getValueType().getVectorNumElements() ==
6233              N->getValueType(0).getVectorNumElements() &&
6234          "Vector width mismatch between mask and data");
6235   assert(N->getIndex().getValueType().getVectorNumElements() ==
6236              N->getValueType(0).getVectorNumElements() &&
6237          "Vector width mismatch between index and data");
6238   assert(isa<ConstantSDNode>(N->getScale()) &&
6239          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6240          "Scale should be a constant power of 2");
6241 
6242   CSEMap.InsertNode(N, IP);
6243   InsertNode(N);
6244   SDValue V(N, 0);
6245   NewSDValueDbgMsg(V, "Creating new node: ", this);
6246   return V;
6247 }
6248 
6249 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
6250                                        ArrayRef<SDValue> Ops,
6251                                        MachineMemOperand *MMO) {
6252   assert(Ops.size() == 6 && "Incompatible number of operands");
6253 
6254   FoldingSetNodeID ID;
6255   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
6256   ID.AddInteger(VT.getRawBits());
6257   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
6258       dl.getIROrder(), VTs, VT, MMO));
6259   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6260   void *IP = nullptr;
6261   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6262     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
6263     return SDValue(E, 0);
6264   }
6265   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6266                                            VTs, VT, MMO);
6267   createOperands(N, Ops);
6268 
6269   assert(N->getMask().getValueType().getVectorNumElements() ==
6270              N->getValue().getValueType().getVectorNumElements() &&
6271          "Vector width mismatch between mask and data");
6272   assert(N->getIndex().getValueType().getVectorNumElements() ==
6273              N->getValue().getValueType().getVectorNumElements() &&
6274          "Vector width mismatch between index and data");
6275   assert(isa<ConstantSDNode>(N->getScale()) &&
6276          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6277          "Scale should be a constant power of 2");
6278 
6279   CSEMap.InsertNode(N, IP);
6280   InsertNode(N);
6281   SDValue V(N, 0);
6282   NewSDValueDbgMsg(V, "Creating new node: ", this);
6283   return V;
6284 }
6285 
6286 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
6287                                SDValue Ptr, SDValue SV, unsigned Align) {
6288   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
6289   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
6290 }
6291 
6292 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6293                               ArrayRef<SDUse> Ops) {
6294   switch (Ops.size()) {
6295   case 0: return getNode(Opcode, DL, VT);
6296   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
6297   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
6298   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
6299   default: break;
6300   }
6301 
6302   // Copy from an SDUse array into an SDValue array for use with
6303   // the regular getNode logic.
6304   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
6305   return getNode(Opcode, DL, VT, NewOps);
6306 }
6307 
6308 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6309                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
6310   unsigned NumOps = Ops.size();
6311   switch (NumOps) {
6312   case 0: return getNode(Opcode, DL, VT);
6313   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
6314   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
6315   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
6316   default: break;
6317   }
6318 
6319   switch (Opcode) {
6320   default: break;
6321   case ISD::CONCAT_VECTORS:
6322     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
6323     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
6324       return V;
6325     break;
6326   case ISD::SELECT_CC:
6327     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
6328     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
6329            "LHS and RHS of condition must have same type!");
6330     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
6331            "True and False arms of SelectCC must have same type!");
6332     assert(Ops[2].getValueType() == VT &&
6333            "select_cc node must be of same type as true and false value!");
6334     break;
6335   case ISD::BR_CC:
6336     assert(NumOps == 5 && "BR_CC takes 5 operands!");
6337     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
6338            "LHS/RHS of comparison should match types!");
6339     break;
6340   }
6341 
6342   // Memoize nodes.
6343   SDNode *N;
6344   SDVTList VTs = getVTList(VT);
6345 
6346   if (VT != MVT::Glue) {
6347     FoldingSetNodeID ID;
6348     AddNodeIDNode(ID, Opcode, VTs, Ops);
6349     void *IP = nullptr;
6350 
6351     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6352       return SDValue(E, 0);
6353 
6354     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6355     createOperands(N, Ops);
6356 
6357     CSEMap.InsertNode(N, IP);
6358   } else {
6359     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6360     createOperands(N, Ops);
6361   }
6362 
6363   InsertNode(N);
6364   SDValue V(N, 0);
6365   NewSDValueDbgMsg(V, "Creating new node: ", this);
6366   return V;
6367 }
6368 
6369 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
6370                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
6371   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
6372 }
6373 
6374 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6375                               ArrayRef<SDValue> Ops) {
6376   if (VTList.NumVTs == 1)
6377     return getNode(Opcode, DL, VTList.VTs[0], Ops);
6378 
6379 #if 0
6380   switch (Opcode) {
6381   // FIXME: figure out how to safely handle things like
6382   // int foo(int x) { return 1 << (x & 255); }
6383   // int bar() { return foo(256); }
6384   case ISD::SRA_PARTS:
6385   case ISD::SRL_PARTS:
6386   case ISD::SHL_PARTS:
6387     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
6388         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
6389       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6390     else if (N3.getOpcode() == ISD::AND)
6391       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
6392         // If the and is only masking out bits that cannot effect the shift,
6393         // eliminate the and.
6394         unsigned NumBits = VT.getScalarSizeInBits()*2;
6395         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
6396           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6397       }
6398     break;
6399   }
6400 #endif
6401 
6402   // Memoize the node unless it returns a flag.
6403   SDNode *N;
6404   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6405     FoldingSetNodeID ID;
6406     AddNodeIDNode(ID, Opcode, VTList, Ops);
6407     void *IP = nullptr;
6408     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6409       return SDValue(E, 0);
6410 
6411     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6412     createOperands(N, Ops);
6413     CSEMap.InsertNode(N, IP);
6414   } else {
6415     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6416     createOperands(N, Ops);
6417   }
6418   InsertNode(N);
6419   SDValue V(N, 0);
6420   NewSDValueDbgMsg(V, "Creating new node: ", this);
6421   return V;
6422 }
6423 
6424 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
6425                               SDVTList VTList) {
6426   return getNode(Opcode, DL, VTList, None);
6427 }
6428 
6429 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6430                               SDValue N1) {
6431   SDValue Ops[] = { N1 };
6432   return getNode(Opcode, DL, VTList, Ops);
6433 }
6434 
6435 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6436                               SDValue N1, SDValue N2) {
6437   SDValue Ops[] = { N1, N2 };
6438   return getNode(Opcode, DL, VTList, Ops);
6439 }
6440 
6441 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6442                               SDValue N1, SDValue N2, SDValue N3) {
6443   SDValue Ops[] = { N1, N2, N3 };
6444   return getNode(Opcode, DL, VTList, Ops);
6445 }
6446 
6447 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6448                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6449   SDValue Ops[] = { N1, N2, N3, N4 };
6450   return getNode(Opcode, DL, VTList, Ops);
6451 }
6452 
6453 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6454                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6455                               SDValue N5) {
6456   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6457   return getNode(Opcode, DL, VTList, Ops);
6458 }
6459 
6460 SDVTList SelectionDAG::getVTList(EVT VT) {
6461   return makeVTList(SDNode::getValueTypeList(VT), 1);
6462 }
6463 
6464 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
6465   FoldingSetNodeID ID;
6466   ID.AddInteger(2U);
6467   ID.AddInteger(VT1.getRawBits());
6468   ID.AddInteger(VT2.getRawBits());
6469 
6470   void *IP = nullptr;
6471   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6472   if (!Result) {
6473     EVT *Array = Allocator.Allocate<EVT>(2);
6474     Array[0] = VT1;
6475     Array[1] = VT2;
6476     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
6477     VTListMap.InsertNode(Result, IP);
6478   }
6479   return Result->getSDVTList();
6480 }
6481 
6482 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
6483   FoldingSetNodeID ID;
6484   ID.AddInteger(3U);
6485   ID.AddInteger(VT1.getRawBits());
6486   ID.AddInteger(VT2.getRawBits());
6487   ID.AddInteger(VT3.getRawBits());
6488 
6489   void *IP = nullptr;
6490   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6491   if (!Result) {
6492     EVT *Array = Allocator.Allocate<EVT>(3);
6493     Array[0] = VT1;
6494     Array[1] = VT2;
6495     Array[2] = VT3;
6496     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
6497     VTListMap.InsertNode(Result, IP);
6498   }
6499   return Result->getSDVTList();
6500 }
6501 
6502 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
6503   FoldingSetNodeID ID;
6504   ID.AddInteger(4U);
6505   ID.AddInteger(VT1.getRawBits());
6506   ID.AddInteger(VT2.getRawBits());
6507   ID.AddInteger(VT3.getRawBits());
6508   ID.AddInteger(VT4.getRawBits());
6509 
6510   void *IP = nullptr;
6511   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6512   if (!Result) {
6513     EVT *Array = Allocator.Allocate<EVT>(4);
6514     Array[0] = VT1;
6515     Array[1] = VT2;
6516     Array[2] = VT3;
6517     Array[3] = VT4;
6518     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
6519     VTListMap.InsertNode(Result, IP);
6520   }
6521   return Result->getSDVTList();
6522 }
6523 
6524 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
6525   unsigned NumVTs = VTs.size();
6526   FoldingSetNodeID ID;
6527   ID.AddInteger(NumVTs);
6528   for (unsigned index = 0; index < NumVTs; index++) {
6529     ID.AddInteger(VTs[index].getRawBits());
6530   }
6531 
6532   void *IP = nullptr;
6533   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6534   if (!Result) {
6535     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
6536     std::copy(VTs.begin(), VTs.end(), Array);
6537     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
6538     VTListMap.InsertNode(Result, IP);
6539   }
6540   return Result->getSDVTList();
6541 }
6542 
6543 
6544 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
6545 /// specified operands.  If the resultant node already exists in the DAG,
6546 /// this does not modify the specified node, instead it returns the node that
6547 /// already exists.  If the resultant node does not exist in the DAG, the
6548 /// input node is returned.  As a degenerate case, if you specify the same
6549 /// input operands as the node already has, the input node is returned.
6550 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
6551   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
6552 
6553   // Check to see if there is no change.
6554   if (Op == N->getOperand(0)) return N;
6555 
6556   // See if the modified node already exists.
6557   void *InsertPos = nullptr;
6558   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
6559     return Existing;
6560 
6561   // Nope it doesn't.  Remove the node from its current place in the maps.
6562   if (InsertPos)
6563     if (!RemoveNodeFromCSEMaps(N))
6564       InsertPos = nullptr;
6565 
6566   // Now we update the operands.
6567   N->OperandList[0].set(Op);
6568 
6569   // If this gets put into a CSE map, add it.
6570   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6571   return N;
6572 }
6573 
6574 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
6575   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
6576 
6577   // Check to see if there is no change.
6578   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
6579     return N;   // No operands changed, just return the input node.
6580 
6581   // See if the modified node already exists.
6582   void *InsertPos = nullptr;
6583   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
6584     return Existing;
6585 
6586   // Nope it doesn't.  Remove the node from its current place in the maps.
6587   if (InsertPos)
6588     if (!RemoveNodeFromCSEMaps(N))
6589       InsertPos = nullptr;
6590 
6591   // Now we update the operands.
6592   if (N->OperandList[0] != Op1)
6593     N->OperandList[0].set(Op1);
6594   if (N->OperandList[1] != Op2)
6595     N->OperandList[1].set(Op2);
6596 
6597   // If this gets put into a CSE map, add it.
6598   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6599   return N;
6600 }
6601 
6602 SDNode *SelectionDAG::
6603 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
6604   SDValue Ops[] = { Op1, Op2, Op3 };
6605   return UpdateNodeOperands(N, Ops);
6606 }
6607 
6608 SDNode *SelectionDAG::
6609 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
6610                    SDValue Op3, SDValue Op4) {
6611   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
6612   return UpdateNodeOperands(N, Ops);
6613 }
6614 
6615 SDNode *SelectionDAG::
6616 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
6617                    SDValue Op3, SDValue Op4, SDValue Op5) {
6618   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
6619   return UpdateNodeOperands(N, Ops);
6620 }
6621 
6622 SDNode *SelectionDAG::
6623 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
6624   unsigned NumOps = Ops.size();
6625   assert(N->getNumOperands() == NumOps &&
6626          "Update with wrong number of operands");
6627 
6628   // If no operands changed just return the input node.
6629   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
6630     return N;
6631 
6632   // See if the modified node already exists.
6633   void *InsertPos = nullptr;
6634   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
6635     return Existing;
6636 
6637   // Nope it doesn't.  Remove the node from its current place in the maps.
6638   if (InsertPos)
6639     if (!RemoveNodeFromCSEMaps(N))
6640       InsertPos = nullptr;
6641 
6642   // Now we update the operands.
6643   for (unsigned i = 0; i != NumOps; ++i)
6644     if (N->OperandList[i] != Ops[i])
6645       N->OperandList[i].set(Ops[i]);
6646 
6647   // If this gets put into a CSE map, add it.
6648   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6649   return N;
6650 }
6651 
6652 /// DropOperands - Release the operands and set this node to have
6653 /// zero operands.
6654 void SDNode::DropOperands() {
6655   // Unlike the code in MorphNodeTo that does this, we don't need to
6656   // watch for dead nodes here.
6657   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
6658     SDUse &Use = *I++;
6659     Use.set(SDValue());
6660   }
6661 }
6662 
6663 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
6664 /// machine opcode.
6665 ///
6666 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6667                                    EVT VT) {
6668   SDVTList VTs = getVTList(VT);
6669   return SelectNodeTo(N, MachineOpc, VTs, None);
6670 }
6671 
6672 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6673                                    EVT VT, SDValue Op1) {
6674   SDVTList VTs = getVTList(VT);
6675   SDValue Ops[] = { Op1 };
6676   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6677 }
6678 
6679 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6680                                    EVT VT, SDValue Op1,
6681                                    SDValue Op2) {
6682   SDVTList VTs = getVTList(VT);
6683   SDValue Ops[] = { Op1, Op2 };
6684   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6685 }
6686 
6687 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6688                                    EVT VT, SDValue Op1,
6689                                    SDValue Op2, SDValue Op3) {
6690   SDVTList VTs = getVTList(VT);
6691   SDValue Ops[] = { Op1, Op2, Op3 };
6692   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6693 }
6694 
6695 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6696                                    EVT VT, ArrayRef<SDValue> Ops) {
6697   SDVTList VTs = getVTList(VT);
6698   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6699 }
6700 
6701 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6702                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
6703   SDVTList VTs = getVTList(VT1, VT2);
6704   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6705 }
6706 
6707 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6708                                    EVT VT1, EVT VT2) {
6709   SDVTList VTs = getVTList(VT1, VT2);
6710   return SelectNodeTo(N, MachineOpc, VTs, None);
6711 }
6712 
6713 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6714                                    EVT VT1, EVT VT2, EVT VT3,
6715                                    ArrayRef<SDValue> Ops) {
6716   SDVTList VTs = getVTList(VT1, VT2, VT3);
6717   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6718 }
6719 
6720 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6721                                    EVT VT1, EVT VT2,
6722                                    SDValue Op1, SDValue Op2) {
6723   SDVTList VTs = getVTList(VT1, VT2);
6724   SDValue Ops[] = { Op1, Op2 };
6725   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6726 }
6727 
6728 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6729                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
6730   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
6731   // Reset the NodeID to -1.
6732   New->setNodeId(-1);
6733   if (New != N) {
6734     ReplaceAllUsesWith(N, New);
6735     RemoveDeadNode(N);
6736   }
6737   return New;
6738 }
6739 
6740 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
6741 /// the line number information on the merged node since it is not possible to
6742 /// preserve the information that operation is associated with multiple lines.
6743 /// This will make the debugger working better at -O0, were there is a higher
6744 /// probability having other instructions associated with that line.
6745 ///
6746 /// For IROrder, we keep the smaller of the two
6747 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
6748   DebugLoc NLoc = N->getDebugLoc();
6749   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
6750     N->setDebugLoc(DebugLoc());
6751   }
6752   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
6753   N->setIROrder(Order);
6754   return N;
6755 }
6756 
6757 /// MorphNodeTo - This *mutates* the specified node to have the specified
6758 /// return type, opcode, and operands.
6759 ///
6760 /// Note that MorphNodeTo returns the resultant node.  If there is already a
6761 /// node of the specified opcode and operands, it returns that node instead of
6762 /// the current one.  Note that the SDLoc need not be the same.
6763 ///
6764 /// Using MorphNodeTo is faster than creating a new node and swapping it in
6765 /// with ReplaceAllUsesWith both because it often avoids allocating a new
6766 /// node, and because it doesn't require CSE recalculation for any of
6767 /// the node's users.
6768 ///
6769 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
6770 /// As a consequence it isn't appropriate to use from within the DAG combiner or
6771 /// the legalizer which maintain worklists that would need to be updated when
6772 /// deleting things.
6773 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
6774                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
6775   // If an identical node already exists, use it.
6776   void *IP = nullptr;
6777   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
6778     FoldingSetNodeID ID;
6779     AddNodeIDNode(ID, Opc, VTs, Ops);
6780     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
6781       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
6782   }
6783 
6784   if (!RemoveNodeFromCSEMaps(N))
6785     IP = nullptr;
6786 
6787   // Start the morphing.
6788   N->NodeType = Opc;
6789   N->ValueList = VTs.VTs;
6790   N->NumValues = VTs.NumVTs;
6791 
6792   // Clear the operands list, updating used nodes to remove this from their
6793   // use list.  Keep track of any operands that become dead as a result.
6794   SmallPtrSet<SDNode*, 16> DeadNodeSet;
6795   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
6796     SDUse &Use = *I++;
6797     SDNode *Used = Use.getNode();
6798     Use.set(SDValue());
6799     if (Used->use_empty())
6800       DeadNodeSet.insert(Used);
6801   }
6802 
6803   // For MachineNode, initialize the memory references information.
6804   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
6805     MN->setMemRefs(nullptr, nullptr);
6806 
6807   // Swap for an appropriately sized array from the recycler.
6808   removeOperands(N);
6809   createOperands(N, Ops);
6810 
6811   // Delete any nodes that are still dead after adding the uses for the
6812   // new operands.
6813   if (!DeadNodeSet.empty()) {
6814     SmallVector<SDNode *, 16> DeadNodes;
6815     for (SDNode *N : DeadNodeSet)
6816       if (N->use_empty())
6817         DeadNodes.push_back(N);
6818     RemoveDeadNodes(DeadNodes);
6819   }
6820 
6821   if (IP)
6822     CSEMap.InsertNode(N, IP);   // Memoize the new node.
6823   return N;
6824 }
6825 
6826 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
6827   unsigned OrigOpc = Node->getOpcode();
6828   unsigned NewOpc;
6829   bool IsUnary = false;
6830   bool IsTernary = false;
6831   switch (OrigOpc) {
6832   default:
6833     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
6834   case ISD::STRICT_FADD: NewOpc = ISD::FADD; break;
6835   case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break;
6836   case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break;
6837   case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break;
6838   case ISD::STRICT_FREM: NewOpc = ISD::FREM; break;
6839   case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break;
6840   case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break;
6841   case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break;
6842   case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break;
6843   case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break;
6844   case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break;
6845   case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break;
6846   case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break;
6847   case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break;
6848   case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break;
6849   case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break;
6850   case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break;
6851   case ISD::STRICT_FNEARBYINT:
6852     NewOpc = ISD::FNEARBYINT;
6853     IsUnary = true;
6854     break;
6855   }
6856 
6857   // We're taking this node out of the chain, so we need to re-link things.
6858   SDValue InputChain = Node->getOperand(0);
6859   SDValue OutputChain = SDValue(Node, 1);
6860   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
6861 
6862   SDVTList VTs = getVTList(Node->getOperand(1).getValueType());
6863   SDNode *Res = nullptr;
6864   if (IsUnary)
6865     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) });
6866   else if (IsTernary)
6867     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
6868                                            Node->getOperand(2),
6869                                            Node->getOperand(3)});
6870   else
6871     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
6872                                            Node->getOperand(2) });
6873 
6874   // MorphNodeTo can operate in two ways: if an existing node with the
6875   // specified operands exists, it can just return it.  Otherwise, it
6876   // updates the node in place to have the requested operands.
6877   if (Res == Node) {
6878     // If we updated the node in place, reset the node ID.  To the isel,
6879     // this should be just like a newly allocated machine node.
6880     Res->setNodeId(-1);
6881   } else {
6882     ReplaceAllUsesWith(Node, Res);
6883     RemoveDeadNode(Node);
6884   }
6885 
6886   return Res;
6887 }
6888 
6889 /// getMachineNode - These are used for target selectors to create a new node
6890 /// with specified return type(s), MachineInstr opcode, and operands.
6891 ///
6892 /// Note that getMachineNode returns the resultant node.  If there is already a
6893 /// node of the specified opcode and operands, it returns that node instead of
6894 /// the current one.
6895 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6896                                             EVT VT) {
6897   SDVTList VTs = getVTList(VT);
6898   return getMachineNode(Opcode, dl, VTs, None);
6899 }
6900 
6901 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6902                                             EVT VT, SDValue Op1) {
6903   SDVTList VTs = getVTList(VT);
6904   SDValue Ops[] = { Op1 };
6905   return getMachineNode(Opcode, dl, VTs, Ops);
6906 }
6907 
6908 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6909                                             EVT VT, SDValue Op1, SDValue Op2) {
6910   SDVTList VTs = getVTList(VT);
6911   SDValue Ops[] = { Op1, Op2 };
6912   return getMachineNode(Opcode, dl, VTs, Ops);
6913 }
6914 
6915 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6916                                             EVT VT, SDValue Op1, SDValue Op2,
6917                                             SDValue Op3) {
6918   SDVTList VTs = getVTList(VT);
6919   SDValue Ops[] = { Op1, Op2, Op3 };
6920   return getMachineNode(Opcode, dl, VTs, Ops);
6921 }
6922 
6923 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6924                                             EVT VT, ArrayRef<SDValue> Ops) {
6925   SDVTList VTs = getVTList(VT);
6926   return getMachineNode(Opcode, dl, VTs, Ops);
6927 }
6928 
6929 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6930                                             EVT VT1, EVT VT2, SDValue Op1,
6931                                             SDValue Op2) {
6932   SDVTList VTs = getVTList(VT1, VT2);
6933   SDValue Ops[] = { Op1, Op2 };
6934   return getMachineNode(Opcode, dl, VTs, Ops);
6935 }
6936 
6937 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6938                                             EVT VT1, EVT VT2, SDValue Op1,
6939                                             SDValue Op2, SDValue Op3) {
6940   SDVTList VTs = getVTList(VT1, VT2);
6941   SDValue Ops[] = { Op1, Op2, Op3 };
6942   return getMachineNode(Opcode, dl, VTs, Ops);
6943 }
6944 
6945 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6946                                             EVT VT1, EVT VT2,
6947                                             ArrayRef<SDValue> Ops) {
6948   SDVTList VTs = getVTList(VT1, VT2);
6949   return getMachineNode(Opcode, dl, VTs, Ops);
6950 }
6951 
6952 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6953                                             EVT VT1, EVT VT2, EVT VT3,
6954                                             SDValue Op1, SDValue Op2) {
6955   SDVTList VTs = getVTList(VT1, VT2, VT3);
6956   SDValue Ops[] = { Op1, Op2 };
6957   return getMachineNode(Opcode, dl, VTs, Ops);
6958 }
6959 
6960 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6961                                             EVT VT1, EVT VT2, EVT VT3,
6962                                             SDValue Op1, SDValue Op2,
6963                                             SDValue Op3) {
6964   SDVTList VTs = getVTList(VT1, VT2, VT3);
6965   SDValue Ops[] = { Op1, Op2, Op3 };
6966   return getMachineNode(Opcode, dl, VTs, Ops);
6967 }
6968 
6969 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6970                                             EVT VT1, EVT VT2, EVT VT3,
6971                                             ArrayRef<SDValue> Ops) {
6972   SDVTList VTs = getVTList(VT1, VT2, VT3);
6973   return getMachineNode(Opcode, dl, VTs, Ops);
6974 }
6975 
6976 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6977                                             ArrayRef<EVT> ResultTys,
6978                                             ArrayRef<SDValue> Ops) {
6979   SDVTList VTs = getVTList(ResultTys);
6980   return getMachineNode(Opcode, dl, VTs, Ops);
6981 }
6982 
6983 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
6984                                             SDVTList VTs,
6985                                             ArrayRef<SDValue> Ops) {
6986   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
6987   MachineSDNode *N;
6988   void *IP = nullptr;
6989 
6990   if (DoCSE) {
6991     FoldingSetNodeID ID;
6992     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
6993     IP = nullptr;
6994     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6995       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
6996     }
6997   }
6998 
6999   // Allocate a new MachineSDNode.
7000   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7001   createOperands(N, Ops);
7002 
7003   if (DoCSE)
7004     CSEMap.InsertNode(N, IP);
7005 
7006   InsertNode(N);
7007   return N;
7008 }
7009 
7010 /// getTargetExtractSubreg - A convenience function for creating
7011 /// TargetOpcode::EXTRACT_SUBREG nodes.
7012 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7013                                              SDValue Operand) {
7014   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7015   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7016                                   VT, Operand, SRIdxVal);
7017   return SDValue(Subreg, 0);
7018 }
7019 
7020 /// getTargetInsertSubreg - A convenience function for creating
7021 /// TargetOpcode::INSERT_SUBREG nodes.
7022 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7023                                             SDValue Operand, SDValue Subreg) {
7024   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7025   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7026                                   VT, Operand, Subreg, SRIdxVal);
7027   return SDValue(Result, 0);
7028 }
7029 
7030 /// getNodeIfExists - Get the specified node if it's already available, or
7031 /// else return NULL.
7032 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7033                                       ArrayRef<SDValue> Ops,
7034                                       const SDNodeFlags Flags) {
7035   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7036     FoldingSetNodeID ID;
7037     AddNodeIDNode(ID, Opcode, VTList, Ops);
7038     void *IP = nullptr;
7039     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7040       E->intersectFlagsWith(Flags);
7041       return E;
7042     }
7043   }
7044   return nullptr;
7045 }
7046 
7047 /// getDbgValue - Creates a SDDbgValue node.
7048 ///
7049 /// SDNode
7050 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7051                                       SDNode *N, unsigned R, bool IsIndirect,
7052                                       const DebugLoc &DL, unsigned O) {
7053   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7054          "Expected inlined-at fields to agree");
7055   return new (DbgInfo->getAlloc())
7056       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7057 }
7058 
7059 /// Constant
7060 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7061                                               DIExpression *Expr,
7062                                               const Value *C,
7063                                               const DebugLoc &DL, unsigned O) {
7064   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7065          "Expected inlined-at fields to agree");
7066   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7067 }
7068 
7069 /// FrameIndex
7070 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7071                                                 DIExpression *Expr, unsigned FI,
7072                                                 const DebugLoc &DL,
7073                                                 unsigned O) {
7074   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7075          "Expected inlined-at fields to agree");
7076   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, DL, O);
7077 }
7078 
7079 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
7080                                      unsigned OffsetInBits, unsigned SizeInBits,
7081                                      bool InvalidateDbg) {
7082   SDNode *FromNode = From.getNode();
7083   SDNode *ToNode = To.getNode();
7084   assert(FromNode && ToNode && "Can't modify dbg values");
7085 
7086   // PR35338
7087   // TODO: assert(From != To && "Redundant dbg value transfer");
7088   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
7089   if (From == To || FromNode == ToNode)
7090     return;
7091 
7092   if (!FromNode->getHasDebugValue())
7093     return;
7094 
7095   SmallVector<SDDbgValue *, 2> ClonedDVs;
7096   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
7097     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
7098       continue;
7099 
7100     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
7101 
7102     // Just transfer the dbg value attached to From.
7103     if (Dbg->getResNo() != From.getResNo())
7104       continue;
7105 
7106     DIVariable *Var = Dbg->getVariable();
7107     auto *Expr = Dbg->getExpression();
7108     // If a fragment is requested, update the expression.
7109     if (SizeInBits) {
7110       // When splitting a larger (e.g., sign-extended) value whose
7111       // lower bits are described with an SDDbgValue, do not attempt
7112       // to transfer the SDDbgValue to the upper bits.
7113       if (auto FI = Expr->getFragmentInfo())
7114         if (OffsetInBits + SizeInBits > FI->SizeInBits)
7115           continue;
7116       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
7117                                                              SizeInBits);
7118       if (!Fragment)
7119         continue;
7120       Expr = *Fragment;
7121     }
7122     // Clone the SDDbgValue and move it to To.
7123     SDDbgValue *Clone =
7124         getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
7125                     Dbg->getDebugLoc(), Dbg->getOrder());
7126     ClonedDVs.push_back(Clone);
7127 
7128     if (InvalidateDbg)
7129       Dbg->setIsInvalidated();
7130   }
7131 
7132   for (SDDbgValue *Dbg : ClonedDVs)
7133     AddDbgValue(Dbg, ToNode, false);
7134 }
7135 
7136 void SelectionDAG::salvageDebugInfo(SDNode &N) {
7137   if (!N.getHasDebugValue())
7138     return;
7139 
7140   SmallVector<SDDbgValue *, 2> ClonedDVs;
7141   for (auto DV : GetDbgValues(&N)) {
7142     if (DV->isInvalidated())
7143       continue;
7144     switch (N.getOpcode()) {
7145     default:
7146       break;
7147     case ISD::ADD:
7148       SDValue N0 = N.getOperand(0);
7149       SDValue N1 = N.getOperand(1);
7150       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
7151           isConstantIntBuildVectorOrConstantInt(N1)) {
7152         uint64_t Offset = N.getConstantOperandVal(1);
7153         // Rewrite an ADD constant node into a DIExpression. Since we are
7154         // performing arithmetic to compute the variable's *value* in the
7155         // DIExpression, we need to mark the expression with a
7156         // DW_OP_stack_value.
7157         auto *DIExpr = DV->getExpression();
7158         DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset,
7159                                        DIExpression::NoDeref,
7160                                        DIExpression::WithStackValue);
7161         SDDbgValue *Clone =
7162             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
7163                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
7164         ClonedDVs.push_back(Clone);
7165         DV->setIsInvalidated();
7166         DEBUG(dbgs() << "SALVAGE: Rewriting"; N0.getNode()->dumprFull(this);
7167               dbgs() << " into " << *DIExpr << '\n');
7168       }
7169     }
7170   }
7171 
7172   for (SDDbgValue *Dbg : ClonedDVs)
7173     AddDbgValue(Dbg, Dbg->getSDNode(), false);
7174 }
7175 
7176 namespace {
7177 
7178 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
7179 /// pointed to by a use iterator is deleted, increment the use iterator
7180 /// so that it doesn't dangle.
7181 ///
7182 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
7183   SDNode::use_iterator &UI;
7184   SDNode::use_iterator &UE;
7185 
7186   void NodeDeleted(SDNode *N, SDNode *E) override {
7187     // Increment the iterator as needed.
7188     while (UI != UE && N == *UI)
7189       ++UI;
7190   }
7191 
7192 public:
7193   RAUWUpdateListener(SelectionDAG &d,
7194                      SDNode::use_iterator &ui,
7195                      SDNode::use_iterator &ue)
7196     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
7197 };
7198 
7199 } // end anonymous namespace
7200 
7201 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7202 /// This can cause recursive merging of nodes in the DAG.
7203 ///
7204 /// This version assumes From has a single result value.
7205 ///
7206 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
7207   SDNode *From = FromN.getNode();
7208   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
7209          "Cannot replace with this method!");
7210   assert(From != To.getNode() && "Cannot replace uses of with self");
7211 
7212   // Preserve Debug Values
7213   transferDbgValues(FromN, To);
7214 
7215   // Iterate over all the existing uses of From. New uses will be added
7216   // to the beginning of the use list, which we avoid visiting.
7217   // This specifically avoids visiting uses of From that arise while the
7218   // replacement is happening, because any such uses would be the result
7219   // of CSE: If an existing node looks like From after one of its operands
7220   // is replaced by To, we don't want to replace of all its users with To
7221   // too. See PR3018 for more info.
7222   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7223   RAUWUpdateListener Listener(*this, UI, UE);
7224   while (UI != UE) {
7225     SDNode *User = *UI;
7226 
7227     // This node is about to morph, remove its old self from the CSE maps.
7228     RemoveNodeFromCSEMaps(User);
7229 
7230     // A user can appear in a use list multiple times, and when this
7231     // happens the uses are usually next to each other in the list.
7232     // To help reduce the number of CSE recomputations, process all
7233     // the uses of this user that we can find this way.
7234     do {
7235       SDUse &Use = UI.getUse();
7236       ++UI;
7237       Use.set(To);
7238     } while (UI != UE && *UI == User);
7239 
7240     // Now that we have modified User, add it back to the CSE maps.  If it
7241     // already exists there, recursively merge the results together.
7242     AddModifiedNodeToCSEMaps(User);
7243   }
7244 
7245   // If we just RAUW'd the root, take note.
7246   if (FromN == getRoot())
7247     setRoot(To);
7248 }
7249 
7250 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7251 /// This can cause recursive merging of nodes in the DAG.
7252 ///
7253 /// This version assumes that for each value of From, there is a
7254 /// corresponding value in To in the same position with the same type.
7255 ///
7256 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
7257 #ifndef NDEBUG
7258   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7259     assert((!From->hasAnyUseOfValue(i) ||
7260             From->getValueType(i) == To->getValueType(i)) &&
7261            "Cannot use this version of ReplaceAllUsesWith!");
7262 #endif
7263 
7264   // Handle the trivial case.
7265   if (From == To)
7266     return;
7267 
7268   // Preserve Debug Info. Only do this if there's a use.
7269   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7270     if (From->hasAnyUseOfValue(i)) {
7271       assert((i < To->getNumValues()) && "Invalid To location");
7272       transferDbgValues(SDValue(From, i), SDValue(To, i));
7273     }
7274 
7275   // Iterate over just the existing users of From. See the comments in
7276   // the ReplaceAllUsesWith above.
7277   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7278   RAUWUpdateListener Listener(*this, UI, UE);
7279   while (UI != UE) {
7280     SDNode *User = *UI;
7281 
7282     // This node is about to morph, remove its old self from the CSE maps.
7283     RemoveNodeFromCSEMaps(User);
7284 
7285     // A user can appear in a use list multiple times, and when this
7286     // happens the uses are usually next to each other in the list.
7287     // To help reduce the number of CSE recomputations, process all
7288     // the uses of this user that we can find this way.
7289     do {
7290       SDUse &Use = UI.getUse();
7291       ++UI;
7292       Use.setNode(To);
7293     } while (UI != UE && *UI == User);
7294 
7295     // Now that we have modified User, add it back to the CSE maps.  If it
7296     // already exists there, recursively merge the results together.
7297     AddModifiedNodeToCSEMaps(User);
7298   }
7299 
7300   // If we just RAUW'd the root, take note.
7301   if (From == getRoot().getNode())
7302     setRoot(SDValue(To, getRoot().getResNo()));
7303 }
7304 
7305 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7306 /// This can cause recursive merging of nodes in the DAG.
7307 ///
7308 /// This version can replace From with any result values.  To must match the
7309 /// number and types of values returned by From.
7310 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
7311   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
7312     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
7313 
7314   // Preserve Debug Info.
7315   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7316     transferDbgValues(SDValue(From, i), *To);
7317 
7318   // Iterate over just the existing users of From. See the comments in
7319   // the ReplaceAllUsesWith above.
7320   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7321   RAUWUpdateListener Listener(*this, UI, UE);
7322   while (UI != UE) {
7323     SDNode *User = *UI;
7324 
7325     // This node is about to morph, remove its old self from the CSE maps.
7326     RemoveNodeFromCSEMaps(User);
7327 
7328     // A user can appear in a use list multiple times, and when this
7329     // happens the uses are usually next to each other in the list.
7330     // To help reduce the number of CSE recomputations, process all
7331     // the uses of this user that we can find this way.
7332     do {
7333       SDUse &Use = UI.getUse();
7334       const SDValue &ToOp = To[Use.getResNo()];
7335       ++UI;
7336       Use.set(ToOp);
7337     } while (UI != UE && *UI == User);
7338 
7339     // Now that we have modified User, add it back to the CSE maps.  If it
7340     // already exists there, recursively merge the results together.
7341     AddModifiedNodeToCSEMaps(User);
7342   }
7343 
7344   // If we just RAUW'd the root, take note.
7345   if (From == getRoot().getNode())
7346     setRoot(SDValue(To[getRoot().getResNo()]));
7347 }
7348 
7349 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
7350 /// uses of other values produced by From.getNode() alone.  The Deleted
7351 /// vector is handled the same way as for ReplaceAllUsesWith.
7352 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
7353   // Handle the really simple, really trivial case efficiently.
7354   if (From == To) return;
7355 
7356   // Handle the simple, trivial, case efficiently.
7357   if (From.getNode()->getNumValues() == 1) {
7358     ReplaceAllUsesWith(From, To);
7359     return;
7360   }
7361 
7362   // Preserve Debug Info.
7363   transferDbgValues(From, To);
7364 
7365   // Iterate over just the existing users of From. See the comments in
7366   // the ReplaceAllUsesWith above.
7367   SDNode::use_iterator UI = From.getNode()->use_begin(),
7368                        UE = From.getNode()->use_end();
7369   RAUWUpdateListener Listener(*this, UI, UE);
7370   while (UI != UE) {
7371     SDNode *User = *UI;
7372     bool UserRemovedFromCSEMaps = false;
7373 
7374     // A user can appear in a use list multiple times, and when this
7375     // happens the uses are usually next to each other in the list.
7376     // To help reduce the number of CSE recomputations, process all
7377     // the uses of this user that we can find this way.
7378     do {
7379       SDUse &Use = UI.getUse();
7380 
7381       // Skip uses of different values from the same node.
7382       if (Use.getResNo() != From.getResNo()) {
7383         ++UI;
7384         continue;
7385       }
7386 
7387       // If this node hasn't been modified yet, it's still in the CSE maps,
7388       // so remove its old self from the CSE maps.
7389       if (!UserRemovedFromCSEMaps) {
7390         RemoveNodeFromCSEMaps(User);
7391         UserRemovedFromCSEMaps = true;
7392       }
7393 
7394       ++UI;
7395       Use.set(To);
7396     } while (UI != UE && *UI == User);
7397 
7398     // We are iterating over all uses of the From node, so if a use
7399     // doesn't use the specific value, no changes are made.
7400     if (!UserRemovedFromCSEMaps)
7401       continue;
7402 
7403     // Now that we have modified User, add it back to the CSE maps.  If it
7404     // already exists there, recursively merge the results together.
7405     AddModifiedNodeToCSEMaps(User);
7406   }
7407 
7408   // If we just RAUW'd the root, take note.
7409   if (From == getRoot())
7410     setRoot(To);
7411 }
7412 
7413 namespace {
7414 
7415   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
7416   /// to record information about a use.
7417   struct UseMemo {
7418     SDNode *User;
7419     unsigned Index;
7420     SDUse *Use;
7421   };
7422 
7423   /// operator< - Sort Memos by User.
7424   bool operator<(const UseMemo &L, const UseMemo &R) {
7425     return (intptr_t)L.User < (intptr_t)R.User;
7426   }
7427 
7428 } // end anonymous namespace
7429 
7430 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
7431 /// uses of other values produced by From.getNode() alone.  The same value
7432 /// may appear in both the From and To list.  The Deleted vector is
7433 /// handled the same way as for ReplaceAllUsesWith.
7434 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
7435                                               const SDValue *To,
7436                                               unsigned Num){
7437   // Handle the simple, trivial case efficiently.
7438   if (Num == 1)
7439     return ReplaceAllUsesOfValueWith(*From, *To);
7440 
7441   transferDbgValues(*From, *To);
7442 
7443   // Read up all the uses and make records of them. This helps
7444   // processing new uses that are introduced during the
7445   // replacement process.
7446   SmallVector<UseMemo, 4> Uses;
7447   for (unsigned i = 0; i != Num; ++i) {
7448     unsigned FromResNo = From[i].getResNo();
7449     SDNode *FromNode = From[i].getNode();
7450     for (SDNode::use_iterator UI = FromNode->use_begin(),
7451          E = FromNode->use_end(); UI != E; ++UI) {
7452       SDUse &Use = UI.getUse();
7453       if (Use.getResNo() == FromResNo) {
7454         UseMemo Memo = { *UI, i, &Use };
7455         Uses.push_back(Memo);
7456       }
7457     }
7458   }
7459 
7460   // Sort the uses, so that all the uses from a given User are together.
7461   std::sort(Uses.begin(), Uses.end());
7462 
7463   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
7464        UseIndex != UseIndexEnd; ) {
7465     // We know that this user uses some value of From.  If it is the right
7466     // value, update it.
7467     SDNode *User = Uses[UseIndex].User;
7468 
7469     // This node is about to morph, remove its old self from the CSE maps.
7470     RemoveNodeFromCSEMaps(User);
7471 
7472     // The Uses array is sorted, so all the uses for a given User
7473     // are next to each other in the list.
7474     // To help reduce the number of CSE recomputations, process all
7475     // the uses of this user that we can find this way.
7476     do {
7477       unsigned i = Uses[UseIndex].Index;
7478       SDUse &Use = *Uses[UseIndex].Use;
7479       ++UseIndex;
7480 
7481       Use.set(To[i]);
7482     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
7483 
7484     // Now that we have modified User, add it back to the CSE maps.  If it
7485     // already exists there, recursively merge the results together.
7486     AddModifiedNodeToCSEMaps(User);
7487   }
7488 }
7489 
7490 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
7491 /// based on their topological order. It returns the maximum id and a vector
7492 /// of the SDNodes* in assigned order by reference.
7493 unsigned SelectionDAG::AssignTopologicalOrder() {
7494   unsigned DAGSize = 0;
7495 
7496   // SortedPos tracks the progress of the algorithm. Nodes before it are
7497   // sorted, nodes after it are unsorted. When the algorithm completes
7498   // it is at the end of the list.
7499   allnodes_iterator SortedPos = allnodes_begin();
7500 
7501   // Visit all the nodes. Move nodes with no operands to the front of
7502   // the list immediately. Annotate nodes that do have operands with their
7503   // operand count. Before we do this, the Node Id fields of the nodes
7504   // may contain arbitrary values. After, the Node Id fields for nodes
7505   // before SortedPos will contain the topological sort index, and the
7506   // Node Id fields for nodes At SortedPos and after will contain the
7507   // count of outstanding operands.
7508   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
7509     SDNode *N = &*I++;
7510     checkForCycles(N, this);
7511     unsigned Degree = N->getNumOperands();
7512     if (Degree == 0) {
7513       // A node with no uses, add it to the result array immediately.
7514       N->setNodeId(DAGSize++);
7515       allnodes_iterator Q(N);
7516       if (Q != SortedPos)
7517         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
7518       assert(SortedPos != AllNodes.end() && "Overran node list");
7519       ++SortedPos;
7520     } else {
7521       // Temporarily use the Node Id as scratch space for the degree count.
7522       N->setNodeId(Degree);
7523     }
7524   }
7525 
7526   // Visit all the nodes. As we iterate, move nodes into sorted order,
7527   // such that by the time the end is reached all nodes will be sorted.
7528   for (SDNode &Node : allnodes()) {
7529     SDNode *N = &Node;
7530     checkForCycles(N, this);
7531     // N is in sorted position, so all its uses have one less operand
7532     // that needs to be sorted.
7533     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
7534          UI != UE; ++UI) {
7535       SDNode *P = *UI;
7536       unsigned Degree = P->getNodeId();
7537       assert(Degree != 0 && "Invalid node degree");
7538       --Degree;
7539       if (Degree == 0) {
7540         // All of P's operands are sorted, so P may sorted now.
7541         P->setNodeId(DAGSize++);
7542         if (P->getIterator() != SortedPos)
7543           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
7544         assert(SortedPos != AllNodes.end() && "Overran node list");
7545         ++SortedPos;
7546       } else {
7547         // Update P's outstanding operand count.
7548         P->setNodeId(Degree);
7549       }
7550     }
7551     if (Node.getIterator() == SortedPos) {
7552 #ifndef NDEBUG
7553       allnodes_iterator I(N);
7554       SDNode *S = &*++I;
7555       dbgs() << "Overran sorted position:\n";
7556       S->dumprFull(this); dbgs() << "\n";
7557       dbgs() << "Checking if this is due to cycles\n";
7558       checkForCycles(this, true);
7559 #endif
7560       llvm_unreachable(nullptr);
7561     }
7562   }
7563 
7564   assert(SortedPos == AllNodes.end() &&
7565          "Topological sort incomplete!");
7566   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
7567          "First node in topological sort is not the entry token!");
7568   assert(AllNodes.front().getNodeId() == 0 &&
7569          "First node in topological sort has non-zero id!");
7570   assert(AllNodes.front().getNumOperands() == 0 &&
7571          "First node in topological sort has operands!");
7572   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
7573          "Last node in topologic sort has unexpected id!");
7574   assert(AllNodes.back().use_empty() &&
7575          "Last node in topologic sort has users!");
7576   assert(DAGSize == allnodes_size() && "Node count mismatch!");
7577   return DAGSize;
7578 }
7579 
7580 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
7581 /// value is produced by SD.
7582 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
7583   if (SD) {
7584     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
7585     SD->setHasDebugValue(true);
7586   }
7587   DbgInfo->add(DB, SD, isParameter);
7588 }
7589 
7590 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
7591                                                    SDValue NewMemOp) {
7592   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
7593   // The new memory operation must have the same position as the old load in
7594   // terms of memory dependency. Create a TokenFactor for the old load and new
7595   // memory operation and update uses of the old load's output chain to use that
7596   // TokenFactor.
7597   SDValue OldChain = SDValue(OldLoad, 1);
7598   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
7599   if (!OldLoad->hasAnyUseOfValue(1))
7600     return NewChain;
7601 
7602   SDValue TokenFactor =
7603       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
7604   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
7605   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
7606   return TokenFactor;
7607 }
7608 
7609 //===----------------------------------------------------------------------===//
7610 //                              SDNode Class
7611 //===----------------------------------------------------------------------===//
7612 
7613 bool llvm::isNullConstant(SDValue V) {
7614   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
7615   return Const != nullptr && Const->isNullValue();
7616 }
7617 
7618 bool llvm::isNullFPConstant(SDValue V) {
7619   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
7620   return Const != nullptr && Const->isZero() && !Const->isNegative();
7621 }
7622 
7623 bool llvm::isAllOnesConstant(SDValue V) {
7624   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
7625   return Const != nullptr && Const->isAllOnesValue();
7626 }
7627 
7628 bool llvm::isOneConstant(SDValue V) {
7629   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
7630   return Const != nullptr && Const->isOne();
7631 }
7632 
7633 bool llvm::isBitwiseNot(SDValue V) {
7634   return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1));
7635 }
7636 
7637 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) {
7638   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
7639     return CN;
7640 
7641   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
7642     BitVector UndefElements;
7643     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
7644 
7645     // BuildVectors can truncate their operands. Ignore that case here.
7646     // FIXME: We blindly ignore splats which include undef which is overly
7647     // pessimistic.
7648     if (CN && UndefElements.none() &&
7649         CN->getValueType(0) == N.getValueType().getScalarType())
7650       return CN;
7651   }
7652 
7653   return nullptr;
7654 }
7655 
7656 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) {
7657   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
7658     return CN;
7659 
7660   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
7661     BitVector UndefElements;
7662     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
7663 
7664     if (CN && UndefElements.none())
7665       return CN;
7666   }
7667 
7668   return nullptr;
7669 }
7670 
7671 HandleSDNode::~HandleSDNode() {
7672   DropOperands();
7673 }
7674 
7675 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
7676                                          const DebugLoc &DL,
7677                                          const GlobalValue *GA, EVT VT,
7678                                          int64_t o, unsigned char TF)
7679     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
7680   TheGlobal = GA;
7681 }
7682 
7683 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
7684                                          EVT VT, unsigned SrcAS,
7685                                          unsigned DestAS)
7686     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
7687       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
7688 
7689 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
7690                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
7691     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
7692   MemSDNodeBits.IsVolatile = MMO->isVolatile();
7693   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
7694   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
7695   MemSDNodeBits.IsInvariant = MMO->isInvariant();
7696 
7697   // We check here that the size of the memory operand fits within the size of
7698   // the MMO. This is because the MMO might indicate only a possible address
7699   // range instead of specifying the affected memory addresses precisely.
7700   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
7701 }
7702 
7703 /// Profile - Gather unique data for the node.
7704 ///
7705 void SDNode::Profile(FoldingSetNodeID &ID) const {
7706   AddNodeIDNode(ID, this);
7707 }
7708 
7709 namespace {
7710 
7711   struct EVTArray {
7712     std::vector<EVT> VTs;
7713 
7714     EVTArray() {
7715       VTs.reserve(MVT::LAST_VALUETYPE);
7716       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
7717         VTs.push_back(MVT((MVT::SimpleValueType)i));
7718     }
7719   };
7720 
7721 } // end anonymous namespace
7722 
7723 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
7724 static ManagedStatic<EVTArray> SimpleVTArray;
7725 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
7726 
7727 /// getValueTypeList - Return a pointer to the specified value type.
7728 ///
7729 const EVT *SDNode::getValueTypeList(EVT VT) {
7730   if (VT.isExtended()) {
7731     sys::SmartScopedLock<true> Lock(*VTMutex);
7732     return &(*EVTs->insert(VT).first);
7733   } else {
7734     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
7735            "Value type out of range!");
7736     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
7737   }
7738 }
7739 
7740 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
7741 /// indicated value.  This method ignores uses of other values defined by this
7742 /// operation.
7743 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
7744   assert(Value < getNumValues() && "Bad value!");
7745 
7746   // TODO: Only iterate over uses of a given value of the node
7747   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
7748     if (UI.getUse().getResNo() == Value) {
7749       if (NUses == 0)
7750         return false;
7751       --NUses;
7752     }
7753   }
7754 
7755   // Found exactly the right number of uses?
7756   return NUses == 0;
7757 }
7758 
7759 /// hasAnyUseOfValue - Return true if there are any use of the indicated
7760 /// value. This method ignores uses of other values defined by this operation.
7761 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
7762   assert(Value < getNumValues() && "Bad value!");
7763 
7764   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
7765     if (UI.getUse().getResNo() == Value)
7766       return true;
7767 
7768   return false;
7769 }
7770 
7771 /// isOnlyUserOf - Return true if this node is the only use of N.
7772 bool SDNode::isOnlyUserOf(const SDNode *N) const {
7773   bool Seen = false;
7774   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
7775     SDNode *User = *I;
7776     if (User == this)
7777       Seen = true;
7778     else
7779       return false;
7780   }
7781 
7782   return Seen;
7783 }
7784 
7785 /// Return true if the only users of N are contained in Nodes.
7786 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
7787   bool Seen = false;
7788   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
7789     SDNode *User = *I;
7790     if (llvm::any_of(Nodes,
7791                      [&User](const SDNode *Node) { return User == Node; }))
7792       Seen = true;
7793     else
7794       return false;
7795   }
7796 
7797   return Seen;
7798 }
7799 
7800 /// isOperand - Return true if this node is an operand of N.
7801 bool SDValue::isOperandOf(const SDNode *N) const {
7802   for (const SDValue &Op : N->op_values())
7803     if (*this == Op)
7804       return true;
7805   return false;
7806 }
7807 
7808 bool SDNode::isOperandOf(const SDNode *N) const {
7809   for (const SDValue &Op : N->op_values())
7810     if (this == Op.getNode())
7811       return true;
7812   return false;
7813 }
7814 
7815 /// reachesChainWithoutSideEffects - Return true if this operand (which must
7816 /// be a chain) reaches the specified operand without crossing any
7817 /// side-effecting instructions on any chain path.  In practice, this looks
7818 /// through token factors and non-volatile loads.  In order to remain efficient,
7819 /// this only looks a couple of nodes in, it does not do an exhaustive search.
7820 ///
7821 /// Note that we only need to examine chains when we're searching for
7822 /// side-effects; SelectionDAG requires that all side-effects are represented
7823 /// by chains, even if another operand would force a specific ordering. This
7824 /// constraint is necessary to allow transformations like splitting loads.
7825 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
7826                                              unsigned Depth) const {
7827   if (*this == Dest) return true;
7828 
7829   // Don't search too deeply, we just want to be able to see through
7830   // TokenFactor's etc.
7831   if (Depth == 0) return false;
7832 
7833   // If this is a token factor, all inputs to the TF happen in parallel.
7834   if (getOpcode() == ISD::TokenFactor) {
7835     // First, try a shallow search.
7836     if (is_contained((*this)->ops(), Dest)) {
7837       // We found the chain we want as an operand of this TokenFactor.
7838       // Essentially, we reach the chain without side-effects if we could
7839       // serialize the TokenFactor into a simple chain of operations with
7840       // Dest as the last operation. This is automatically true if the
7841       // chain has one use: there are no other ordering constraints.
7842       // If the chain has more than one use, we give up: some other
7843       // use of Dest might force a side-effect between Dest and the current
7844       // node.
7845       if (Dest.hasOneUse())
7846         return true;
7847     }
7848     // Next, try a deep search: check whether every operand of the TokenFactor
7849     // reaches Dest.
7850     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
7851       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
7852     });
7853   }
7854 
7855   // Loads don't have side effects, look through them.
7856   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
7857     if (!Ld->isVolatile())
7858       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
7859   }
7860   return false;
7861 }
7862 
7863 bool SDNode::hasPredecessor(const SDNode *N) const {
7864   SmallPtrSet<const SDNode *, 32> Visited;
7865   SmallVector<const SDNode *, 16> Worklist;
7866   Worklist.push_back(this);
7867   return hasPredecessorHelper(N, Visited, Worklist);
7868 }
7869 
7870 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
7871   this->Flags.intersectWith(Flags);
7872 }
7873 
7874 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
7875   assert(N->getNumValues() == 1 &&
7876          "Can't unroll a vector with multiple results!");
7877 
7878   EVT VT = N->getValueType(0);
7879   unsigned NE = VT.getVectorNumElements();
7880   EVT EltVT = VT.getVectorElementType();
7881   SDLoc dl(N);
7882 
7883   SmallVector<SDValue, 8> Scalars;
7884   SmallVector<SDValue, 4> Operands(N->getNumOperands());
7885 
7886   // If ResNE is 0, fully unroll the vector op.
7887   if (ResNE == 0)
7888     ResNE = NE;
7889   else if (NE > ResNE)
7890     NE = ResNE;
7891 
7892   unsigned i;
7893   for (i= 0; i != NE; ++i) {
7894     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
7895       SDValue Operand = N->getOperand(j);
7896       EVT OperandVT = Operand.getValueType();
7897       if (OperandVT.isVector()) {
7898         // A vector operand; extract a single element.
7899         EVT OperandEltVT = OperandVT.getVectorElementType();
7900         Operands[j] =
7901             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
7902                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
7903       } else {
7904         // A scalar operand; just use it as is.
7905         Operands[j] = Operand;
7906       }
7907     }
7908 
7909     switch (N->getOpcode()) {
7910     default: {
7911       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
7912                                 N->getFlags()));
7913       break;
7914     }
7915     case ISD::VSELECT:
7916       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
7917       break;
7918     case ISD::SHL:
7919     case ISD::SRA:
7920     case ISD::SRL:
7921     case ISD::ROTL:
7922     case ISD::ROTR:
7923       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
7924                                getShiftAmountOperand(Operands[0].getValueType(),
7925                                                      Operands[1])));
7926       break;
7927     case ISD::SIGN_EXTEND_INREG:
7928     case ISD::FP_ROUND_INREG: {
7929       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
7930       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
7931                                 Operands[0],
7932                                 getValueType(ExtVT)));
7933     }
7934     }
7935   }
7936 
7937   for (; i < ResNE; ++i)
7938     Scalars.push_back(getUNDEF(EltVT));
7939 
7940   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
7941   return getBuildVector(VecVT, dl, Scalars);
7942 }
7943 
7944 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
7945                                                   LoadSDNode *Base,
7946                                                   unsigned Bytes,
7947                                                   int Dist) const {
7948   if (LD->isVolatile() || Base->isVolatile())
7949     return false;
7950   if (LD->isIndexed() || Base->isIndexed())
7951     return false;
7952   if (LD->getChain() != Base->getChain())
7953     return false;
7954   EVT VT = LD->getValueType(0);
7955   if (VT.getSizeInBits() / 8 != Bytes)
7956     return false;
7957 
7958   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
7959   auto LocDecomp = BaseIndexOffset::match(LD, *this);
7960 
7961   int64_t Offset = 0;
7962   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
7963     return (Dist * Bytes == Offset);
7964   return false;
7965 }
7966 
7967 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
7968 /// it cannot be inferred.
7969 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
7970   // If this is a GlobalAddress + cst, return the alignment.
7971   const GlobalValue *GV;
7972   int64_t GVOffset = 0;
7973   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
7974     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
7975     KnownBits Known(PtrWidth);
7976     llvm::computeKnownBits(GV, Known, getDataLayout());
7977     unsigned AlignBits = Known.countMinTrailingZeros();
7978     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
7979     if (Align)
7980       return MinAlign(Align, GVOffset);
7981   }
7982 
7983   // If this is a direct reference to a stack slot, use information about the
7984   // stack slot's alignment.
7985   int FrameIdx = 1 << 31;
7986   int64_t FrameOffset = 0;
7987   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
7988     FrameIdx = FI->getIndex();
7989   } else if (isBaseWithConstantOffset(Ptr) &&
7990              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
7991     // Handle FI+Cst
7992     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7993     FrameOffset = Ptr.getConstantOperandVal(1);
7994   }
7995 
7996   if (FrameIdx != (1 << 31)) {
7997     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
7998     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
7999                                     FrameOffset);
8000     return FIInfoAlign;
8001   }
8002 
8003   return 0;
8004 }
8005 
8006 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
8007 /// which is split (or expanded) into two not necessarily identical pieces.
8008 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
8009   // Currently all types are split in half.
8010   EVT LoVT, HiVT;
8011   if (!VT.isVector())
8012     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
8013   else
8014     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
8015 
8016   return std::make_pair(LoVT, HiVT);
8017 }
8018 
8019 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
8020 /// low/high part.
8021 std::pair<SDValue, SDValue>
8022 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
8023                           const EVT &HiVT) {
8024   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
8025          N.getValueType().getVectorNumElements() &&
8026          "More vector elements requested than available!");
8027   SDValue Lo, Hi;
8028   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
8029                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
8030   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
8031                getConstant(LoVT.getVectorNumElements(), DL,
8032                            TLI->getVectorIdxTy(getDataLayout())));
8033   return std::make_pair(Lo, Hi);
8034 }
8035 
8036 void SelectionDAG::ExtractVectorElements(SDValue Op,
8037                                          SmallVectorImpl<SDValue> &Args,
8038                                          unsigned Start, unsigned Count) {
8039   EVT VT = Op.getValueType();
8040   if (Count == 0)
8041     Count = VT.getVectorNumElements();
8042 
8043   EVT EltVT = VT.getVectorElementType();
8044   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
8045   SDLoc SL(Op);
8046   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
8047     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
8048                            Op, getConstant(i, SL, IdxTy)));
8049   }
8050 }
8051 
8052 // getAddressSpace - Return the address space this GlobalAddress belongs to.
8053 unsigned GlobalAddressSDNode::getAddressSpace() const {
8054   return getGlobal()->getType()->getAddressSpace();
8055 }
8056 
8057 Type *ConstantPoolSDNode::getType() const {
8058   if (isMachineConstantPoolEntry())
8059     return Val.MachineCPVal->getType();
8060   return Val.ConstVal->getType();
8061 }
8062 
8063 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
8064                                         unsigned &SplatBitSize,
8065                                         bool &HasAnyUndefs,
8066                                         unsigned MinSplatBits,
8067                                         bool IsBigEndian) const {
8068   EVT VT = getValueType(0);
8069   assert(VT.isVector() && "Expected a vector type");
8070   unsigned VecWidth = VT.getSizeInBits();
8071   if (MinSplatBits > VecWidth)
8072     return false;
8073 
8074   // FIXME: The widths are based on this node's type, but build vectors can
8075   // truncate their operands.
8076   SplatValue = APInt(VecWidth, 0);
8077   SplatUndef = APInt(VecWidth, 0);
8078 
8079   // Get the bits. Bits with undefined values (when the corresponding element
8080   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
8081   // in SplatValue. If any of the values are not constant, give up and return
8082   // false.
8083   unsigned int NumOps = getNumOperands();
8084   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
8085   unsigned EltWidth = VT.getScalarSizeInBits();
8086 
8087   for (unsigned j = 0; j < NumOps; ++j) {
8088     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
8089     SDValue OpVal = getOperand(i);
8090     unsigned BitPos = j * EltWidth;
8091 
8092     if (OpVal.isUndef())
8093       SplatUndef.setBits(BitPos, BitPos + EltWidth);
8094     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
8095       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
8096     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
8097       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
8098     else
8099       return false;
8100   }
8101 
8102   // The build_vector is all constants or undefs. Find the smallest element
8103   // size that splats the vector.
8104   HasAnyUndefs = (SplatUndef != 0);
8105 
8106   // FIXME: This does not work for vectors with elements less than 8 bits.
8107   while (VecWidth > 8) {
8108     unsigned HalfSize = VecWidth / 2;
8109     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
8110     APInt LowValue = SplatValue.trunc(HalfSize);
8111     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
8112     APInt LowUndef = SplatUndef.trunc(HalfSize);
8113 
8114     // If the two halves do not match (ignoring undef bits), stop here.
8115     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
8116         MinSplatBits > HalfSize)
8117       break;
8118 
8119     SplatValue = HighValue | LowValue;
8120     SplatUndef = HighUndef & LowUndef;
8121 
8122     VecWidth = HalfSize;
8123   }
8124 
8125   SplatBitSize = VecWidth;
8126   return true;
8127 }
8128 
8129 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
8130   if (UndefElements) {
8131     UndefElements->clear();
8132     UndefElements->resize(getNumOperands());
8133   }
8134   SDValue Splatted;
8135   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
8136     SDValue Op = getOperand(i);
8137     if (Op.isUndef()) {
8138       if (UndefElements)
8139         (*UndefElements)[i] = true;
8140     } else if (!Splatted) {
8141       Splatted = Op;
8142     } else if (Splatted != Op) {
8143       return SDValue();
8144     }
8145   }
8146 
8147   if (!Splatted) {
8148     assert(getOperand(0).isUndef() &&
8149            "Can only have a splat without a constant for all undefs.");
8150     return getOperand(0);
8151   }
8152 
8153   return Splatted;
8154 }
8155 
8156 ConstantSDNode *
8157 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
8158   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
8159 }
8160 
8161 ConstantFPSDNode *
8162 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
8163   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
8164 }
8165 
8166 int32_t
8167 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
8168                                                    uint32_t BitWidth) const {
8169   if (ConstantFPSDNode *CN =
8170           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
8171     bool IsExact;
8172     APSInt IntVal(BitWidth);
8173     const APFloat &APF = CN->getValueAPF();
8174     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
8175             APFloat::opOK ||
8176         !IsExact)
8177       return -1;
8178 
8179     return IntVal.exactLogBase2();
8180   }
8181   return -1;
8182 }
8183 
8184 bool BuildVectorSDNode::isConstant() const {
8185   for (const SDValue &Op : op_values()) {
8186     unsigned Opc = Op.getOpcode();
8187     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
8188       return false;
8189   }
8190   return true;
8191 }
8192 
8193 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
8194   // Find the first non-undef value in the shuffle mask.
8195   unsigned i, e;
8196   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
8197     /* search */;
8198 
8199   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
8200 
8201   // Make sure all remaining elements are either undef or the same as the first
8202   // non-undef value.
8203   for (int Idx = Mask[i]; i != e; ++i)
8204     if (Mask[i] >= 0 && Mask[i] != Idx)
8205       return false;
8206   return true;
8207 }
8208 
8209 // \brief Returns the SDNode if it is a constant integer BuildVector
8210 // or constant integer.
8211 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
8212   if (isa<ConstantSDNode>(N))
8213     return N.getNode();
8214   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
8215     return N.getNode();
8216   // Treat a GlobalAddress supporting constant offset folding as a
8217   // constant integer.
8218   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
8219     if (GA->getOpcode() == ISD::GlobalAddress &&
8220         TLI->isOffsetFoldingLegal(GA))
8221       return GA;
8222   return nullptr;
8223 }
8224 
8225 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
8226   if (isa<ConstantFPSDNode>(N))
8227     return N.getNode();
8228 
8229   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
8230     return N.getNode();
8231 
8232   return nullptr;
8233 }
8234 
8235 #ifndef NDEBUG
8236 static void checkForCyclesHelper(const SDNode *N,
8237                                  SmallPtrSetImpl<const SDNode*> &Visited,
8238                                  SmallPtrSetImpl<const SDNode*> &Checked,
8239                                  const llvm::SelectionDAG *DAG) {
8240   // If this node has already been checked, don't check it again.
8241   if (Checked.count(N))
8242     return;
8243 
8244   // If a node has already been visited on this depth-first walk, reject it as
8245   // a cycle.
8246   if (!Visited.insert(N).second) {
8247     errs() << "Detected cycle in SelectionDAG\n";
8248     dbgs() << "Offending node:\n";
8249     N->dumprFull(DAG); dbgs() << "\n";
8250     abort();
8251   }
8252 
8253   for (const SDValue &Op : N->op_values())
8254     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
8255 
8256   Checked.insert(N);
8257   Visited.erase(N);
8258 }
8259 #endif
8260 
8261 void llvm::checkForCycles(const llvm::SDNode *N,
8262                           const llvm::SelectionDAG *DAG,
8263                           bool force) {
8264 #ifndef NDEBUG
8265   bool check = force;
8266 #ifdef EXPENSIVE_CHECKS
8267   check = true;
8268 #endif  // EXPENSIVE_CHECKS
8269   if (check) {
8270     assert(N && "Checking nonexistent SDNode");
8271     SmallPtrSet<const SDNode*, 32> visited;
8272     SmallPtrSet<const SDNode*, 32> checked;
8273     checkForCyclesHelper(N, visited, checked, DAG);
8274   }
8275 #endif  // !NDEBUG
8276 }
8277 
8278 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
8279   checkForCycles(DAG->getRoot().getNode(), DAG, force);
8280 }
8281