1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAG class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/APSInt.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/FoldingSet.h" 22 #include "llvm/ADT/None.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/ISDOpcodes.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/MachineValueType.h" 36 #include "llvm/CodeGen/RuntimeLibcalls.h" 37 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/TargetLowering.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/TargetSubtargetInfo.h" 43 #include "llvm/CodeGen/ValueTypes.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GlobalValue.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CodeGen.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/KnownBits.h" 61 #include "llvm/Support/ManagedStatic.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/Mutex.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Target/TargetMachine.h" 66 #include "llvm/Target/TargetOptions.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <cstdlib> 71 #include <limits> 72 #include <set> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 79 /// makeVTList - Return an instance of the SDVTList struct initialized with the 80 /// specified members. 81 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 82 SDVTList Res = {VTs, NumVTs}; 83 return Res; 84 } 85 86 // Default null implementations of the callbacks. 87 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 88 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 89 90 #define DEBUG_TYPE "selectiondag" 91 92 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 93 DEBUG( 94 dbgs() << Msg; 95 V.getNode()->dump(G); 96 ); 97 } 98 99 //===----------------------------------------------------------------------===// 100 // ConstantFPSDNode Class 101 //===----------------------------------------------------------------------===// 102 103 /// isExactlyValue - We don't rely on operator== working on double values, as 104 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 105 /// As such, this method can be used to do an exact bit-for-bit comparison of 106 /// two floating point values. 107 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 108 return getValueAPF().bitwiseIsEqual(V); 109 } 110 111 bool ConstantFPSDNode::isValueValidForType(EVT VT, 112 const APFloat& Val) { 113 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 114 115 // convert modifies in place, so make a copy. 116 APFloat Val2 = APFloat(Val); 117 bool losesInfo; 118 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 119 APFloat::rmNearestTiesToEven, 120 &losesInfo); 121 return !losesInfo; 122 } 123 124 //===----------------------------------------------------------------------===// 125 // ISD Namespace 126 //===----------------------------------------------------------------------===// 127 128 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 129 auto *BV = dyn_cast<BuildVectorSDNode>(N); 130 if (!BV) 131 return false; 132 133 APInt SplatUndef; 134 unsigned SplatBitSize; 135 bool HasUndefs; 136 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 137 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 138 EltSize) && 139 EltSize == SplatBitSize; 140 } 141 142 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 143 // specializations of the more general isConstantSplatVector()? 144 145 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 146 // Look through a bit convert. 147 while (N->getOpcode() == ISD::BITCAST) 148 N = N->getOperand(0).getNode(); 149 150 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 151 152 unsigned i = 0, e = N->getNumOperands(); 153 154 // Skip over all of the undef values. 155 while (i != e && N->getOperand(i).isUndef()) 156 ++i; 157 158 // Do not accept an all-undef vector. 159 if (i == e) return false; 160 161 // Do not accept build_vectors that aren't all constants or which have non-~0 162 // elements. We have to be a bit careful here, as the type of the constant 163 // may not be the same as the type of the vector elements due to type 164 // legalization (the elements are promoted to a legal type for the target and 165 // a vector of a type may be legal when the base element type is not). 166 // We only want to check enough bits to cover the vector elements, because 167 // we care if the resultant vector is all ones, not whether the individual 168 // constants are. 169 SDValue NotZero = N->getOperand(i); 170 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 171 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 172 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 173 return false; 174 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 175 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 176 return false; 177 } else 178 return false; 179 180 // Okay, we have at least one ~0 value, check to see if the rest match or are 181 // undefs. Even with the above element type twiddling, this should be OK, as 182 // the same type legalization should have applied to all the elements. 183 for (++i; i != e; ++i) 184 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 185 return false; 186 return true; 187 } 188 189 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 190 // Look through a bit convert. 191 while (N->getOpcode() == ISD::BITCAST) 192 N = N->getOperand(0).getNode(); 193 194 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 195 196 bool IsAllUndef = true; 197 for (const SDValue &Op : N->op_values()) { 198 if (Op.isUndef()) 199 continue; 200 IsAllUndef = false; 201 // Do not accept build_vectors that aren't all constants or which have non-0 202 // elements. We have to be a bit careful here, as the type of the constant 203 // may not be the same as the type of the vector elements due to type 204 // legalization (the elements are promoted to a legal type for the target 205 // and a vector of a type may be legal when the base element type is not). 206 // We only want to check enough bits to cover the vector elements, because 207 // we care if the resultant vector is all zeros, not whether the individual 208 // constants are. 209 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 210 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 211 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 212 return false; 213 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 214 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 215 return false; 216 } else 217 return false; 218 } 219 220 // Do not accept an all-undef vector. 221 if (IsAllUndef) 222 return false; 223 return true; 224 } 225 226 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 227 if (N->getOpcode() != ISD::BUILD_VECTOR) 228 return false; 229 230 for (const SDValue &Op : N->op_values()) { 231 if (Op.isUndef()) 232 continue; 233 if (!isa<ConstantSDNode>(Op)) 234 return false; 235 } 236 return true; 237 } 238 239 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 240 if (N->getOpcode() != ISD::BUILD_VECTOR) 241 return false; 242 243 for (const SDValue &Op : N->op_values()) { 244 if (Op.isUndef()) 245 continue; 246 if (!isa<ConstantFPSDNode>(Op)) 247 return false; 248 } 249 return true; 250 } 251 252 bool ISD::allOperandsUndef(const SDNode *N) { 253 // Return false if the node has no operands. 254 // This is "logically inconsistent" with the definition of "all" but 255 // is probably the desired behavior. 256 if (N->getNumOperands() == 0) 257 return false; 258 259 for (const SDValue &Op : N->op_values()) 260 if (!Op.isUndef()) 261 return false; 262 263 return true; 264 } 265 266 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 267 switch (ExtType) { 268 case ISD::EXTLOAD: 269 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 270 case ISD::SEXTLOAD: 271 return ISD::SIGN_EXTEND; 272 case ISD::ZEXTLOAD: 273 return ISD::ZERO_EXTEND; 274 default: 275 break; 276 } 277 278 llvm_unreachable("Invalid LoadExtType"); 279 } 280 281 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 282 // To perform this operation, we just need to swap the L and G bits of the 283 // operation. 284 unsigned OldL = (Operation >> 2) & 1; 285 unsigned OldG = (Operation >> 1) & 1; 286 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 287 (OldL << 1) | // New G bit 288 (OldG << 2)); // New L bit. 289 } 290 291 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 292 unsigned Operation = Op; 293 if (isInteger) 294 Operation ^= 7; // Flip L, G, E bits, but not U. 295 else 296 Operation ^= 15; // Flip all of the condition bits. 297 298 if (Operation > ISD::SETTRUE2) 299 Operation &= ~8; // Don't let N and U bits get set. 300 301 return ISD::CondCode(Operation); 302 } 303 304 /// For an integer comparison, return 1 if the comparison is a signed operation 305 /// and 2 if the result is an unsigned comparison. Return zero if the operation 306 /// does not depend on the sign of the input (setne and seteq). 307 static int isSignedOp(ISD::CondCode Opcode) { 308 switch (Opcode) { 309 default: llvm_unreachable("Illegal integer setcc operation!"); 310 case ISD::SETEQ: 311 case ISD::SETNE: return 0; 312 case ISD::SETLT: 313 case ISD::SETLE: 314 case ISD::SETGT: 315 case ISD::SETGE: return 1; 316 case ISD::SETULT: 317 case ISD::SETULE: 318 case ISD::SETUGT: 319 case ISD::SETUGE: return 2; 320 } 321 } 322 323 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 324 bool IsInteger) { 325 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 326 // Cannot fold a signed integer setcc with an unsigned integer setcc. 327 return ISD::SETCC_INVALID; 328 329 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 330 331 // If the N and U bits get set, then the resultant comparison DOES suddenly 332 // care about orderedness, and it is true when ordered. 333 if (Op > ISD::SETTRUE2) 334 Op &= ~16; // Clear the U bit if the N bit is set. 335 336 // Canonicalize illegal integer setcc's. 337 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 338 Op = ISD::SETNE; 339 340 return ISD::CondCode(Op); 341 } 342 343 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 344 bool IsInteger) { 345 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 346 // Cannot fold a signed setcc with an unsigned setcc. 347 return ISD::SETCC_INVALID; 348 349 // Combine all of the condition bits. 350 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 351 352 // Canonicalize illegal integer setcc's. 353 if (IsInteger) { 354 switch (Result) { 355 default: break; 356 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 357 case ISD::SETOEQ: // SETEQ & SETU[LG]E 358 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 359 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 360 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 361 } 362 } 363 364 return Result; 365 } 366 367 //===----------------------------------------------------------------------===// 368 // SDNode Profile Support 369 //===----------------------------------------------------------------------===// 370 371 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 372 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 373 ID.AddInteger(OpC); 374 } 375 376 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 377 /// solely with their pointer. 378 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 379 ID.AddPointer(VTList.VTs); 380 } 381 382 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 383 static void AddNodeIDOperands(FoldingSetNodeID &ID, 384 ArrayRef<SDValue> Ops) { 385 for (auto& Op : Ops) { 386 ID.AddPointer(Op.getNode()); 387 ID.AddInteger(Op.getResNo()); 388 } 389 } 390 391 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 392 static void AddNodeIDOperands(FoldingSetNodeID &ID, 393 ArrayRef<SDUse> Ops) { 394 for (auto& Op : Ops) { 395 ID.AddPointer(Op.getNode()); 396 ID.AddInteger(Op.getResNo()); 397 } 398 } 399 400 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 401 SDVTList VTList, ArrayRef<SDValue> OpList) { 402 AddNodeIDOpcode(ID, OpC); 403 AddNodeIDValueTypes(ID, VTList); 404 AddNodeIDOperands(ID, OpList); 405 } 406 407 /// If this is an SDNode with special info, add this info to the NodeID data. 408 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 409 switch (N->getOpcode()) { 410 case ISD::TargetExternalSymbol: 411 case ISD::ExternalSymbol: 412 case ISD::MCSymbol: 413 llvm_unreachable("Should only be used on nodes with operands"); 414 default: break; // Normal nodes don't need extra info. 415 case ISD::TargetConstant: 416 case ISD::Constant: { 417 const ConstantSDNode *C = cast<ConstantSDNode>(N); 418 ID.AddPointer(C->getConstantIntValue()); 419 ID.AddBoolean(C->isOpaque()); 420 break; 421 } 422 case ISD::TargetConstantFP: 423 case ISD::ConstantFP: 424 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 425 break; 426 case ISD::TargetGlobalAddress: 427 case ISD::GlobalAddress: 428 case ISD::TargetGlobalTLSAddress: 429 case ISD::GlobalTLSAddress: { 430 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 431 ID.AddPointer(GA->getGlobal()); 432 ID.AddInteger(GA->getOffset()); 433 ID.AddInteger(GA->getTargetFlags()); 434 break; 435 } 436 case ISD::BasicBlock: 437 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 438 break; 439 case ISD::Register: 440 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 441 break; 442 case ISD::RegisterMask: 443 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 444 break; 445 case ISD::SRCVALUE: 446 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 447 break; 448 case ISD::FrameIndex: 449 case ISD::TargetFrameIndex: 450 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 451 break; 452 case ISD::JumpTable: 453 case ISD::TargetJumpTable: 454 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 455 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 456 break; 457 case ISD::ConstantPool: 458 case ISD::TargetConstantPool: { 459 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 460 ID.AddInteger(CP->getAlignment()); 461 ID.AddInteger(CP->getOffset()); 462 if (CP->isMachineConstantPoolEntry()) 463 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 464 else 465 ID.AddPointer(CP->getConstVal()); 466 ID.AddInteger(CP->getTargetFlags()); 467 break; 468 } 469 case ISD::TargetIndex: { 470 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 471 ID.AddInteger(TI->getIndex()); 472 ID.AddInteger(TI->getOffset()); 473 ID.AddInteger(TI->getTargetFlags()); 474 break; 475 } 476 case ISD::LOAD: { 477 const LoadSDNode *LD = cast<LoadSDNode>(N); 478 ID.AddInteger(LD->getMemoryVT().getRawBits()); 479 ID.AddInteger(LD->getRawSubclassData()); 480 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 481 break; 482 } 483 case ISD::STORE: { 484 const StoreSDNode *ST = cast<StoreSDNode>(N); 485 ID.AddInteger(ST->getMemoryVT().getRawBits()); 486 ID.AddInteger(ST->getRawSubclassData()); 487 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 488 break; 489 } 490 case ISD::ATOMIC_CMP_SWAP: 491 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 492 case ISD::ATOMIC_SWAP: 493 case ISD::ATOMIC_LOAD_ADD: 494 case ISD::ATOMIC_LOAD_SUB: 495 case ISD::ATOMIC_LOAD_AND: 496 case ISD::ATOMIC_LOAD_OR: 497 case ISD::ATOMIC_LOAD_XOR: 498 case ISD::ATOMIC_LOAD_NAND: 499 case ISD::ATOMIC_LOAD_MIN: 500 case ISD::ATOMIC_LOAD_MAX: 501 case ISD::ATOMIC_LOAD_UMIN: 502 case ISD::ATOMIC_LOAD_UMAX: 503 case ISD::ATOMIC_LOAD: 504 case ISD::ATOMIC_STORE: { 505 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 506 ID.AddInteger(AT->getMemoryVT().getRawBits()); 507 ID.AddInteger(AT->getRawSubclassData()); 508 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 509 break; 510 } 511 case ISD::PREFETCH: { 512 const MemSDNode *PF = cast<MemSDNode>(N); 513 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 514 break; 515 } 516 case ISD::VECTOR_SHUFFLE: { 517 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 518 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 519 i != e; ++i) 520 ID.AddInteger(SVN->getMaskElt(i)); 521 break; 522 } 523 case ISD::TargetBlockAddress: 524 case ISD::BlockAddress: { 525 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 526 ID.AddPointer(BA->getBlockAddress()); 527 ID.AddInteger(BA->getOffset()); 528 ID.AddInteger(BA->getTargetFlags()); 529 break; 530 } 531 } // end switch (N->getOpcode()) 532 533 // Target specific memory nodes could also have address spaces to check. 534 if (N->isTargetMemoryOpcode()) 535 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 536 } 537 538 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 539 /// data. 540 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 541 AddNodeIDOpcode(ID, N->getOpcode()); 542 // Add the return value info. 543 AddNodeIDValueTypes(ID, N->getVTList()); 544 // Add the operand info. 545 AddNodeIDOperands(ID, N->ops()); 546 547 // Handle SDNode leafs with special info. 548 AddNodeIDCustom(ID, N); 549 } 550 551 //===----------------------------------------------------------------------===// 552 // SelectionDAG Class 553 //===----------------------------------------------------------------------===// 554 555 /// doNotCSE - Return true if CSE should not be performed for this node. 556 static bool doNotCSE(SDNode *N) { 557 if (N->getValueType(0) == MVT::Glue) 558 return true; // Never CSE anything that produces a flag. 559 560 switch (N->getOpcode()) { 561 default: break; 562 case ISD::HANDLENODE: 563 case ISD::EH_LABEL: 564 return true; // Never CSE these nodes. 565 } 566 567 // Check that remaining values produced are not flags. 568 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 569 if (N->getValueType(i) == MVT::Glue) 570 return true; // Never CSE anything that produces a flag. 571 572 return false; 573 } 574 575 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 576 /// SelectionDAG. 577 void SelectionDAG::RemoveDeadNodes() { 578 // Create a dummy node (which is not added to allnodes), that adds a reference 579 // to the root node, preventing it from being deleted. 580 HandleSDNode Dummy(getRoot()); 581 582 SmallVector<SDNode*, 128> DeadNodes; 583 584 // Add all obviously-dead nodes to the DeadNodes worklist. 585 for (SDNode &Node : allnodes()) 586 if (Node.use_empty()) 587 DeadNodes.push_back(&Node); 588 589 RemoveDeadNodes(DeadNodes); 590 591 // If the root changed (e.g. it was a dead load, update the root). 592 setRoot(Dummy.getValue()); 593 } 594 595 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 596 /// given list, and any nodes that become unreachable as a result. 597 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 598 599 // Process the worklist, deleting the nodes and adding their uses to the 600 // worklist. 601 while (!DeadNodes.empty()) { 602 SDNode *N = DeadNodes.pop_back_val(); 603 // Skip to next node if we've already managed to delete the node. This could 604 // happen if replacing a node causes a node previously added to the node to 605 // be deleted. 606 if (N->getOpcode() == ISD::DELETED_NODE) 607 continue; 608 609 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 610 DUL->NodeDeleted(N, nullptr); 611 612 // Take the node out of the appropriate CSE map. 613 RemoveNodeFromCSEMaps(N); 614 615 // Next, brutally remove the operand list. This is safe to do, as there are 616 // no cycles in the graph. 617 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 618 SDUse &Use = *I++; 619 SDNode *Operand = Use.getNode(); 620 Use.set(SDValue()); 621 622 // Now that we removed this operand, see if there are no uses of it left. 623 if (Operand->use_empty()) 624 DeadNodes.push_back(Operand); 625 } 626 627 DeallocateNode(N); 628 } 629 } 630 631 void SelectionDAG::RemoveDeadNode(SDNode *N){ 632 SmallVector<SDNode*, 16> DeadNodes(1, N); 633 634 // Create a dummy node that adds a reference to the root node, preventing 635 // it from being deleted. (This matters if the root is an operand of the 636 // dead node.) 637 HandleSDNode Dummy(getRoot()); 638 639 RemoveDeadNodes(DeadNodes); 640 } 641 642 void SelectionDAG::DeleteNode(SDNode *N) { 643 // First take this out of the appropriate CSE map. 644 RemoveNodeFromCSEMaps(N); 645 646 // Finally, remove uses due to operands of this node, remove from the 647 // AllNodes list, and delete the node. 648 DeleteNodeNotInCSEMaps(N); 649 } 650 651 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 652 assert(N->getIterator() != AllNodes.begin() && 653 "Cannot delete the entry node!"); 654 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 655 656 // Drop all of the operands and decrement used node's use counts. 657 N->DropOperands(); 658 659 DeallocateNode(N); 660 } 661 662 void SDDbgInfo::erase(const SDNode *Node) { 663 DbgValMapType::iterator I = DbgValMap.find(Node); 664 if (I == DbgValMap.end()) 665 return; 666 for (auto &Val: I->second) 667 Val->setIsInvalidated(); 668 DbgValMap.erase(I); 669 } 670 671 void SelectionDAG::DeallocateNode(SDNode *N) { 672 // If we have operands, deallocate them. 673 removeOperands(N); 674 675 NodeAllocator.Deallocate(AllNodes.remove(N)); 676 677 // Set the opcode to DELETED_NODE to help catch bugs when node 678 // memory is reallocated. 679 // FIXME: There are places in SDag that have grown a dependency on the opcode 680 // value in the released node. 681 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 682 N->NodeType = ISD::DELETED_NODE; 683 684 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 685 // them and forget about that node. 686 DbgInfo->erase(N); 687 } 688 689 #ifndef NDEBUG 690 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 691 static void VerifySDNode(SDNode *N) { 692 switch (N->getOpcode()) { 693 default: 694 break; 695 case ISD::BUILD_PAIR: { 696 EVT VT = N->getValueType(0); 697 assert(N->getNumValues() == 1 && "Too many results!"); 698 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 699 "Wrong return type!"); 700 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 701 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 702 "Mismatched operand types!"); 703 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 704 "Wrong operand type!"); 705 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 706 "Wrong return type size"); 707 break; 708 } 709 case ISD::BUILD_VECTOR: { 710 assert(N->getNumValues() == 1 && "Too many results!"); 711 assert(N->getValueType(0).isVector() && "Wrong return type!"); 712 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 713 "Wrong number of operands!"); 714 EVT EltVT = N->getValueType(0).getVectorElementType(); 715 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 716 assert((I->getValueType() == EltVT || 717 (EltVT.isInteger() && I->getValueType().isInteger() && 718 EltVT.bitsLE(I->getValueType()))) && 719 "Wrong operand type!"); 720 assert(I->getValueType() == N->getOperand(0).getValueType() && 721 "Operands must all have the same type"); 722 } 723 break; 724 } 725 } 726 } 727 #endif // NDEBUG 728 729 /// \brief Insert a newly allocated node into the DAG. 730 /// 731 /// Handles insertion into the all nodes list and CSE map, as well as 732 /// verification and other common operations when a new node is allocated. 733 void SelectionDAG::InsertNode(SDNode *N) { 734 AllNodes.push_back(N); 735 #ifndef NDEBUG 736 N->PersistentId = NextPersistentId++; 737 VerifySDNode(N); 738 #endif 739 } 740 741 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 742 /// correspond to it. This is useful when we're about to delete or repurpose 743 /// the node. We don't want future request for structurally identical nodes 744 /// to return N anymore. 745 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 746 bool Erased = false; 747 switch (N->getOpcode()) { 748 case ISD::HANDLENODE: return false; // noop. 749 case ISD::CONDCODE: 750 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 751 "Cond code doesn't exist!"); 752 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 753 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 754 break; 755 case ISD::ExternalSymbol: 756 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 757 break; 758 case ISD::TargetExternalSymbol: { 759 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 760 Erased = TargetExternalSymbols.erase( 761 std::pair<std::string,unsigned char>(ESN->getSymbol(), 762 ESN->getTargetFlags())); 763 break; 764 } 765 case ISD::MCSymbol: { 766 auto *MCSN = cast<MCSymbolSDNode>(N); 767 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 768 break; 769 } 770 case ISD::VALUETYPE: { 771 EVT VT = cast<VTSDNode>(N)->getVT(); 772 if (VT.isExtended()) { 773 Erased = ExtendedValueTypeNodes.erase(VT); 774 } else { 775 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 776 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 777 } 778 break; 779 } 780 default: 781 // Remove it from the CSE Map. 782 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 783 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 784 Erased = CSEMap.RemoveNode(N); 785 break; 786 } 787 #ifndef NDEBUG 788 // Verify that the node was actually in one of the CSE maps, unless it has a 789 // flag result (which cannot be CSE'd) or is one of the special cases that are 790 // not subject to CSE. 791 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 792 !N->isMachineOpcode() && !doNotCSE(N)) { 793 N->dump(this); 794 dbgs() << "\n"; 795 llvm_unreachable("Node is not in map!"); 796 } 797 #endif 798 return Erased; 799 } 800 801 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 802 /// maps and modified in place. Add it back to the CSE maps, unless an identical 803 /// node already exists, in which case transfer all its users to the existing 804 /// node. This transfer can potentially trigger recursive merging. 805 void 806 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 807 // For node types that aren't CSE'd, just act as if no identical node 808 // already exists. 809 if (!doNotCSE(N)) { 810 SDNode *Existing = CSEMap.GetOrInsertNode(N); 811 if (Existing != N) { 812 // If there was already an existing matching node, use ReplaceAllUsesWith 813 // to replace the dead one with the existing one. This can cause 814 // recursive merging of other unrelated nodes down the line. 815 ReplaceAllUsesWith(N, Existing); 816 817 // N is now dead. Inform the listeners and delete it. 818 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 819 DUL->NodeDeleted(N, Existing); 820 DeleteNodeNotInCSEMaps(N); 821 return; 822 } 823 } 824 825 // If the node doesn't already exist, we updated it. Inform listeners. 826 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 827 DUL->NodeUpdated(N); 828 } 829 830 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 831 /// were replaced with those specified. If this node is never memoized, 832 /// return null, otherwise return a pointer to the slot it would take. If a 833 /// node already exists with these operands, the slot will be non-null. 834 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 835 void *&InsertPos) { 836 if (doNotCSE(N)) 837 return nullptr; 838 839 SDValue Ops[] = { Op }; 840 FoldingSetNodeID ID; 841 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 842 AddNodeIDCustom(ID, N); 843 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 844 if (Node) 845 Node->intersectFlagsWith(N->getFlags()); 846 return Node; 847 } 848 849 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 850 /// were replaced with those specified. If this node is never memoized, 851 /// return null, otherwise return a pointer to the slot it would take. If a 852 /// node already exists with these operands, the slot will be non-null. 853 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 854 SDValue Op1, SDValue Op2, 855 void *&InsertPos) { 856 if (doNotCSE(N)) 857 return nullptr; 858 859 SDValue Ops[] = { Op1, Op2 }; 860 FoldingSetNodeID ID; 861 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 862 AddNodeIDCustom(ID, N); 863 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 864 if (Node) 865 Node->intersectFlagsWith(N->getFlags()); 866 return Node; 867 } 868 869 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 870 /// were replaced with those specified. If this node is never memoized, 871 /// return null, otherwise return a pointer to the slot it would take. If a 872 /// node already exists with these operands, the slot will be non-null. 873 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 874 void *&InsertPos) { 875 if (doNotCSE(N)) 876 return nullptr; 877 878 FoldingSetNodeID ID; 879 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 880 AddNodeIDCustom(ID, N); 881 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 882 if (Node) 883 Node->intersectFlagsWith(N->getFlags()); 884 return Node; 885 } 886 887 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 888 Type *Ty = VT == MVT::iPTR ? 889 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 890 VT.getTypeForEVT(*getContext()); 891 892 return getDataLayout().getABITypeAlignment(Ty); 893 } 894 895 // EntryNode could meaningfully have debug info if we can find it... 896 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 897 : TM(tm), OptLevel(OL), 898 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 899 Root(getEntryNode()) { 900 InsertNode(&EntryNode); 901 DbgInfo = new SDDbgInfo(); 902 } 903 904 void SelectionDAG::init(MachineFunction &NewMF, 905 OptimizationRemarkEmitter &NewORE, 906 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo) { 907 MF = &NewMF; 908 SDAGISelPass = PassPtr; 909 ORE = &NewORE; 910 TLI = getSubtarget().getTargetLowering(); 911 TSI = getSubtarget().getSelectionDAGInfo(); 912 LibInfo = LibraryInfo; 913 Context = &MF->getFunction().getContext(); 914 } 915 916 SelectionDAG::~SelectionDAG() { 917 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 918 allnodes_clear(); 919 OperandRecycler.clear(OperandAllocator); 920 delete DbgInfo; 921 } 922 923 void SelectionDAG::allnodes_clear() { 924 assert(&*AllNodes.begin() == &EntryNode); 925 AllNodes.remove(AllNodes.begin()); 926 while (!AllNodes.empty()) 927 DeallocateNode(&AllNodes.front()); 928 #ifndef NDEBUG 929 NextPersistentId = 0; 930 #endif 931 } 932 933 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 934 void *&InsertPos) { 935 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 936 if (N) { 937 switch (N->getOpcode()) { 938 default: break; 939 case ISD::Constant: 940 case ISD::ConstantFP: 941 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 942 "debug location. Use another overload."); 943 } 944 } 945 return N; 946 } 947 948 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 949 const SDLoc &DL, void *&InsertPos) { 950 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 951 if (N) { 952 switch (N->getOpcode()) { 953 case ISD::Constant: 954 case ISD::ConstantFP: 955 // Erase debug location from the node if the node is used at several 956 // different places. Do not propagate one location to all uses as it 957 // will cause a worse single stepping debugging experience. 958 if (N->getDebugLoc() != DL.getDebugLoc()) 959 N->setDebugLoc(DebugLoc()); 960 break; 961 default: 962 // When the node's point of use is located earlier in the instruction 963 // sequence than its prior point of use, update its debug info to the 964 // earlier location. 965 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 966 N->setDebugLoc(DL.getDebugLoc()); 967 break; 968 } 969 } 970 return N; 971 } 972 973 void SelectionDAG::clear() { 974 allnodes_clear(); 975 OperandRecycler.clear(OperandAllocator); 976 OperandAllocator.Reset(); 977 CSEMap.clear(); 978 979 ExtendedValueTypeNodes.clear(); 980 ExternalSymbols.clear(); 981 TargetExternalSymbols.clear(); 982 MCSymbols.clear(); 983 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 984 static_cast<CondCodeSDNode*>(nullptr)); 985 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 986 static_cast<SDNode*>(nullptr)); 987 988 EntryNode.UseList = nullptr; 989 InsertNode(&EntryNode); 990 Root = getEntryNode(); 991 DbgInfo->clear(); 992 } 993 994 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 995 return VT.bitsGT(Op.getValueType()) 996 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 997 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 998 } 999 1000 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1001 return VT.bitsGT(Op.getValueType()) ? 1002 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1003 getNode(ISD::TRUNCATE, DL, VT, Op); 1004 } 1005 1006 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1007 return VT.bitsGT(Op.getValueType()) ? 1008 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1009 getNode(ISD::TRUNCATE, DL, VT, Op); 1010 } 1011 1012 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1013 return VT.bitsGT(Op.getValueType()) ? 1014 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1015 getNode(ISD::TRUNCATE, DL, VT, Op); 1016 } 1017 1018 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1019 EVT OpVT) { 1020 if (VT.bitsLE(Op.getValueType())) 1021 return getNode(ISD::TRUNCATE, SL, VT, Op); 1022 1023 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1024 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1025 } 1026 1027 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1028 assert(!VT.isVector() && 1029 "getZeroExtendInReg should use the vector element type instead of " 1030 "the vector type!"); 1031 if (Op.getValueType().getScalarType() == VT) return Op; 1032 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1033 APInt Imm = APInt::getLowBitsSet(BitWidth, 1034 VT.getSizeInBits()); 1035 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1036 getConstant(Imm, DL, Op.getValueType())); 1037 } 1038 1039 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, 1040 EVT VT) { 1041 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1042 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1043 "The sizes of the input and result must match in order to perform the " 1044 "extend in-register."); 1045 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1046 "The destination vector type must have fewer lanes than the input."); 1047 return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op); 1048 } 1049 1050 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, 1051 EVT VT) { 1052 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1053 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1054 "The sizes of the input and result must match in order to perform the " 1055 "extend in-register."); 1056 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1057 "The destination vector type must have fewer lanes than the input."); 1058 return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op); 1059 } 1060 1061 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, 1062 EVT VT) { 1063 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1064 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1065 "The sizes of the input and result must match in order to perform the " 1066 "extend in-register."); 1067 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1068 "The destination vector type must have fewer lanes than the input."); 1069 return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op); 1070 } 1071 1072 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1073 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1074 EVT EltVT = VT.getScalarType(); 1075 SDValue NegOne = 1076 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1077 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1078 } 1079 1080 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1081 EVT EltVT = VT.getScalarType(); 1082 SDValue TrueValue; 1083 switch (TLI->getBooleanContents(VT)) { 1084 case TargetLowering::ZeroOrOneBooleanContent: 1085 case TargetLowering::UndefinedBooleanContent: 1086 TrueValue = getConstant(1, DL, VT); 1087 break; 1088 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1089 TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, 1090 VT); 1091 break; 1092 } 1093 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1094 } 1095 1096 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1097 bool isT, bool isO) { 1098 EVT EltVT = VT.getScalarType(); 1099 assert((EltVT.getSizeInBits() >= 64 || 1100 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1101 "getConstant with a uint64_t value that doesn't fit in the type!"); 1102 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1103 } 1104 1105 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1106 bool isT, bool isO) { 1107 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1108 } 1109 1110 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1111 EVT VT, bool isT, bool isO) { 1112 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1113 1114 EVT EltVT = VT.getScalarType(); 1115 const ConstantInt *Elt = &Val; 1116 1117 // In some cases the vector type is legal but the element type is illegal and 1118 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1119 // inserted value (the type does not need to match the vector element type). 1120 // Any extra bits introduced will be truncated away. 1121 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1122 TargetLowering::TypePromoteInteger) { 1123 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1124 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1125 Elt = ConstantInt::get(*getContext(), NewVal); 1126 } 1127 // In other cases the element type is illegal and needs to be expanded, for 1128 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1129 // the value into n parts and use a vector type with n-times the elements. 1130 // Then bitcast to the type requested. 1131 // Legalizing constants too early makes the DAGCombiner's job harder so we 1132 // only legalize if the DAG tells us we must produce legal types. 1133 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1134 TLI->getTypeAction(*getContext(), EltVT) == 1135 TargetLowering::TypeExpandInteger) { 1136 const APInt &NewVal = Elt->getValue(); 1137 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1138 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1139 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1140 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1141 1142 // Check the temporary vector is the correct size. If this fails then 1143 // getTypeToTransformTo() probably returned a type whose size (in bits) 1144 // isn't a power-of-2 factor of the requested type size. 1145 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1146 1147 SmallVector<SDValue, 2> EltParts; 1148 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1149 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1150 .zextOrTrunc(ViaEltSizeInBits), DL, 1151 ViaEltVT, isT, isO)); 1152 } 1153 1154 // EltParts is currently in little endian order. If we actually want 1155 // big-endian order then reverse it now. 1156 if (getDataLayout().isBigEndian()) 1157 std::reverse(EltParts.begin(), EltParts.end()); 1158 1159 // The elements must be reversed when the element order is different 1160 // to the endianness of the elements (because the BITCAST is itself a 1161 // vector shuffle in this situation). However, we do not need any code to 1162 // perform this reversal because getConstant() is producing a vector 1163 // splat. 1164 // This situation occurs in MIPS MSA. 1165 1166 SmallVector<SDValue, 8> Ops; 1167 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1168 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1169 1170 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1171 return V; 1172 } 1173 1174 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1175 "APInt size does not match type size!"); 1176 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1177 FoldingSetNodeID ID; 1178 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1179 ID.AddPointer(Elt); 1180 ID.AddBoolean(isO); 1181 void *IP = nullptr; 1182 SDNode *N = nullptr; 1183 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1184 if (!VT.isVector()) 1185 return SDValue(N, 0); 1186 1187 if (!N) { 1188 N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT); 1189 CSEMap.InsertNode(N, IP); 1190 InsertNode(N); 1191 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1192 } 1193 1194 SDValue Result(N, 0); 1195 if (VT.isVector()) 1196 Result = getSplatBuildVector(VT, DL, Result); 1197 1198 return Result; 1199 } 1200 1201 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1202 bool isTarget) { 1203 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1204 } 1205 1206 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1207 bool isTarget) { 1208 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1209 } 1210 1211 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1212 EVT VT, bool isTarget) { 1213 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1214 1215 EVT EltVT = VT.getScalarType(); 1216 1217 // Do the map lookup using the actual bit pattern for the floating point 1218 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1219 // we don't have issues with SNANs. 1220 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1221 FoldingSetNodeID ID; 1222 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1223 ID.AddPointer(&V); 1224 void *IP = nullptr; 1225 SDNode *N = nullptr; 1226 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1227 if (!VT.isVector()) 1228 return SDValue(N, 0); 1229 1230 if (!N) { 1231 N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT); 1232 CSEMap.InsertNode(N, IP); 1233 InsertNode(N); 1234 } 1235 1236 SDValue Result(N, 0); 1237 if (VT.isVector()) 1238 Result = getSplatBuildVector(VT, DL, Result); 1239 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1240 return Result; 1241 } 1242 1243 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1244 bool isTarget) { 1245 EVT EltVT = VT.getScalarType(); 1246 if (EltVT == MVT::f32) 1247 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1248 else if (EltVT == MVT::f64) 1249 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1250 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1251 EltVT == MVT::f16) { 1252 bool Ignored; 1253 APFloat APF = APFloat(Val); 1254 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1255 &Ignored); 1256 return getConstantFP(APF, DL, VT, isTarget); 1257 } else 1258 llvm_unreachable("Unsupported type in getConstantFP"); 1259 } 1260 1261 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1262 EVT VT, int64_t Offset, bool isTargetGA, 1263 unsigned char TargetFlags) { 1264 assert((TargetFlags == 0 || isTargetGA) && 1265 "Cannot set target flags on target-independent globals"); 1266 1267 // Truncate (with sign-extension) the offset value to the pointer size. 1268 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1269 if (BitWidth < 64) 1270 Offset = SignExtend64(Offset, BitWidth); 1271 1272 unsigned Opc; 1273 if (GV->isThreadLocal()) 1274 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1275 else 1276 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1277 1278 FoldingSetNodeID ID; 1279 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1280 ID.AddPointer(GV); 1281 ID.AddInteger(Offset); 1282 ID.AddInteger(TargetFlags); 1283 void *IP = nullptr; 1284 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1285 return SDValue(E, 0); 1286 1287 auto *N = newSDNode<GlobalAddressSDNode>( 1288 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1289 CSEMap.InsertNode(N, IP); 1290 InsertNode(N); 1291 return SDValue(N, 0); 1292 } 1293 1294 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1295 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1296 FoldingSetNodeID ID; 1297 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1298 ID.AddInteger(FI); 1299 void *IP = nullptr; 1300 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1301 return SDValue(E, 0); 1302 1303 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1304 CSEMap.InsertNode(N, IP); 1305 InsertNode(N); 1306 return SDValue(N, 0); 1307 } 1308 1309 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1310 unsigned char TargetFlags) { 1311 assert((TargetFlags == 0 || isTarget) && 1312 "Cannot set target flags on target-independent jump tables"); 1313 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1314 FoldingSetNodeID ID; 1315 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1316 ID.AddInteger(JTI); 1317 ID.AddInteger(TargetFlags); 1318 void *IP = nullptr; 1319 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1320 return SDValue(E, 0); 1321 1322 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1323 CSEMap.InsertNode(N, IP); 1324 InsertNode(N); 1325 return SDValue(N, 0); 1326 } 1327 1328 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1329 unsigned Alignment, int Offset, 1330 bool isTarget, 1331 unsigned char TargetFlags) { 1332 assert((TargetFlags == 0 || isTarget) && 1333 "Cannot set target flags on target-independent globals"); 1334 if (Alignment == 0) 1335 Alignment = MF->getFunction().optForSize() 1336 ? getDataLayout().getABITypeAlignment(C->getType()) 1337 : getDataLayout().getPrefTypeAlignment(C->getType()); 1338 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1339 FoldingSetNodeID ID; 1340 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1341 ID.AddInteger(Alignment); 1342 ID.AddInteger(Offset); 1343 ID.AddPointer(C); 1344 ID.AddInteger(TargetFlags); 1345 void *IP = nullptr; 1346 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1347 return SDValue(E, 0); 1348 1349 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1350 TargetFlags); 1351 CSEMap.InsertNode(N, IP); 1352 InsertNode(N); 1353 return SDValue(N, 0); 1354 } 1355 1356 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1357 unsigned Alignment, int Offset, 1358 bool isTarget, 1359 unsigned char TargetFlags) { 1360 assert((TargetFlags == 0 || isTarget) && 1361 "Cannot set target flags on target-independent globals"); 1362 if (Alignment == 0) 1363 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1364 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1365 FoldingSetNodeID ID; 1366 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1367 ID.AddInteger(Alignment); 1368 ID.AddInteger(Offset); 1369 C->addSelectionDAGCSEId(ID); 1370 ID.AddInteger(TargetFlags); 1371 void *IP = nullptr; 1372 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1373 return SDValue(E, 0); 1374 1375 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1376 TargetFlags); 1377 CSEMap.InsertNode(N, IP); 1378 InsertNode(N); 1379 return SDValue(N, 0); 1380 } 1381 1382 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1383 unsigned char TargetFlags) { 1384 FoldingSetNodeID ID; 1385 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1386 ID.AddInteger(Index); 1387 ID.AddInteger(Offset); 1388 ID.AddInteger(TargetFlags); 1389 void *IP = nullptr; 1390 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1391 return SDValue(E, 0); 1392 1393 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1394 CSEMap.InsertNode(N, IP); 1395 InsertNode(N); 1396 return SDValue(N, 0); 1397 } 1398 1399 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1400 FoldingSetNodeID ID; 1401 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1402 ID.AddPointer(MBB); 1403 void *IP = nullptr; 1404 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1405 return SDValue(E, 0); 1406 1407 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1408 CSEMap.InsertNode(N, IP); 1409 InsertNode(N); 1410 return SDValue(N, 0); 1411 } 1412 1413 SDValue SelectionDAG::getValueType(EVT VT) { 1414 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1415 ValueTypeNodes.size()) 1416 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1417 1418 SDNode *&N = VT.isExtended() ? 1419 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1420 1421 if (N) return SDValue(N, 0); 1422 N = newSDNode<VTSDNode>(VT); 1423 InsertNode(N); 1424 return SDValue(N, 0); 1425 } 1426 1427 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1428 SDNode *&N = ExternalSymbols[Sym]; 1429 if (N) return SDValue(N, 0); 1430 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1431 InsertNode(N); 1432 return SDValue(N, 0); 1433 } 1434 1435 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1436 SDNode *&N = MCSymbols[Sym]; 1437 if (N) 1438 return SDValue(N, 0); 1439 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1440 InsertNode(N); 1441 return SDValue(N, 0); 1442 } 1443 1444 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1445 unsigned char TargetFlags) { 1446 SDNode *&N = 1447 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1448 TargetFlags)]; 1449 if (N) return SDValue(N, 0); 1450 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1451 InsertNode(N); 1452 return SDValue(N, 0); 1453 } 1454 1455 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1456 if ((unsigned)Cond >= CondCodeNodes.size()) 1457 CondCodeNodes.resize(Cond+1); 1458 1459 if (!CondCodeNodes[Cond]) { 1460 auto *N = newSDNode<CondCodeSDNode>(Cond); 1461 CondCodeNodes[Cond] = N; 1462 InsertNode(N); 1463 } 1464 1465 return SDValue(CondCodeNodes[Cond], 0); 1466 } 1467 1468 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1469 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1470 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1471 std::swap(N1, N2); 1472 ShuffleVectorSDNode::commuteMask(M); 1473 } 1474 1475 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1476 SDValue N2, ArrayRef<int> Mask) { 1477 assert(VT.getVectorNumElements() == Mask.size() && 1478 "Must have the same number of vector elements as mask elements!"); 1479 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1480 "Invalid VECTOR_SHUFFLE"); 1481 1482 // Canonicalize shuffle undef, undef -> undef 1483 if (N1.isUndef() && N2.isUndef()) 1484 return getUNDEF(VT); 1485 1486 // Validate that all indices in Mask are within the range of the elements 1487 // input to the shuffle. 1488 int NElts = Mask.size(); 1489 assert(llvm::all_of(Mask, 1490 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1491 "Index out of range"); 1492 1493 // Copy the mask so we can do any needed cleanup. 1494 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1495 1496 // Canonicalize shuffle v, v -> v, undef 1497 if (N1 == N2) { 1498 N2 = getUNDEF(VT); 1499 for (int i = 0; i != NElts; ++i) 1500 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1501 } 1502 1503 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1504 if (N1.isUndef()) 1505 commuteShuffle(N1, N2, MaskVec); 1506 1507 // If shuffling a splat, try to blend the splat instead. We do this here so 1508 // that even when this arises during lowering we don't have to re-handle it. 1509 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1510 BitVector UndefElements; 1511 SDValue Splat = BV->getSplatValue(&UndefElements); 1512 if (!Splat) 1513 return; 1514 1515 for (int i = 0; i < NElts; ++i) { 1516 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1517 continue; 1518 1519 // If this input comes from undef, mark it as such. 1520 if (UndefElements[MaskVec[i] - Offset]) { 1521 MaskVec[i] = -1; 1522 continue; 1523 } 1524 1525 // If we can blend a non-undef lane, use that instead. 1526 if (!UndefElements[i]) 1527 MaskVec[i] = i + Offset; 1528 } 1529 }; 1530 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1531 BlendSplat(N1BV, 0); 1532 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1533 BlendSplat(N2BV, NElts); 1534 1535 // Canonicalize all index into lhs, -> shuffle lhs, undef 1536 // Canonicalize all index into rhs, -> shuffle rhs, undef 1537 bool AllLHS = true, AllRHS = true; 1538 bool N2Undef = N2.isUndef(); 1539 for (int i = 0; i != NElts; ++i) { 1540 if (MaskVec[i] >= NElts) { 1541 if (N2Undef) 1542 MaskVec[i] = -1; 1543 else 1544 AllLHS = false; 1545 } else if (MaskVec[i] >= 0) { 1546 AllRHS = false; 1547 } 1548 } 1549 if (AllLHS && AllRHS) 1550 return getUNDEF(VT); 1551 if (AllLHS && !N2Undef) 1552 N2 = getUNDEF(VT); 1553 if (AllRHS) { 1554 N1 = getUNDEF(VT); 1555 commuteShuffle(N1, N2, MaskVec); 1556 } 1557 // Reset our undef status after accounting for the mask. 1558 N2Undef = N2.isUndef(); 1559 // Re-check whether both sides ended up undef. 1560 if (N1.isUndef() && N2Undef) 1561 return getUNDEF(VT); 1562 1563 // If Identity shuffle return that node. 1564 bool Identity = true, AllSame = true; 1565 for (int i = 0; i != NElts; ++i) { 1566 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1567 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1568 } 1569 if (Identity && NElts) 1570 return N1; 1571 1572 // Shuffling a constant splat doesn't change the result. 1573 if (N2Undef) { 1574 SDValue V = N1; 1575 1576 // Look through any bitcasts. We check that these don't change the number 1577 // (and size) of elements and just changes their types. 1578 while (V.getOpcode() == ISD::BITCAST) 1579 V = V->getOperand(0); 1580 1581 // A splat should always show up as a build vector node. 1582 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1583 BitVector UndefElements; 1584 SDValue Splat = BV->getSplatValue(&UndefElements); 1585 // If this is a splat of an undef, shuffling it is also undef. 1586 if (Splat && Splat.isUndef()) 1587 return getUNDEF(VT); 1588 1589 bool SameNumElts = 1590 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1591 1592 // We only have a splat which can skip shuffles if there is a splatted 1593 // value and no undef lanes rearranged by the shuffle. 1594 if (Splat && UndefElements.none()) { 1595 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1596 // number of elements match or the value splatted is a zero constant. 1597 if (SameNumElts) 1598 return N1; 1599 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1600 if (C->isNullValue()) 1601 return N1; 1602 } 1603 1604 // If the shuffle itself creates a splat, build the vector directly. 1605 if (AllSame && SameNumElts) { 1606 EVT BuildVT = BV->getValueType(0); 1607 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1608 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1609 1610 // We may have jumped through bitcasts, so the type of the 1611 // BUILD_VECTOR may not match the type of the shuffle. 1612 if (BuildVT != VT) 1613 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1614 return NewBV; 1615 } 1616 } 1617 } 1618 1619 FoldingSetNodeID ID; 1620 SDValue Ops[2] = { N1, N2 }; 1621 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1622 for (int i = 0; i != NElts; ++i) 1623 ID.AddInteger(MaskVec[i]); 1624 1625 void* IP = nullptr; 1626 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1627 return SDValue(E, 0); 1628 1629 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1630 // SDNode doesn't have access to it. This memory will be "leaked" when 1631 // the node is deallocated, but recovered when the NodeAllocator is released. 1632 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1633 std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc); 1634 1635 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1636 dl.getDebugLoc(), MaskAlloc); 1637 createOperands(N, Ops); 1638 1639 CSEMap.InsertNode(N, IP); 1640 InsertNode(N); 1641 SDValue V = SDValue(N, 0); 1642 NewSDValueDbgMsg(V, "Creating new node: ", this); 1643 return V; 1644 } 1645 1646 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1647 MVT VT = SV.getSimpleValueType(0); 1648 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1649 ShuffleVectorSDNode::commuteMask(MaskVec); 1650 1651 SDValue Op0 = SV.getOperand(0); 1652 SDValue Op1 = SV.getOperand(1); 1653 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1654 } 1655 1656 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1657 FoldingSetNodeID ID; 1658 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1659 ID.AddInteger(RegNo); 1660 void *IP = nullptr; 1661 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1662 return SDValue(E, 0); 1663 1664 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1665 CSEMap.InsertNode(N, IP); 1666 InsertNode(N); 1667 return SDValue(N, 0); 1668 } 1669 1670 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1671 FoldingSetNodeID ID; 1672 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1673 ID.AddPointer(RegMask); 1674 void *IP = nullptr; 1675 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1676 return SDValue(E, 0); 1677 1678 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1679 CSEMap.InsertNode(N, IP); 1680 InsertNode(N); 1681 return SDValue(N, 0); 1682 } 1683 1684 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1685 MCSymbol *Label) { 1686 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1687 } 1688 1689 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1690 SDValue Root, MCSymbol *Label) { 1691 FoldingSetNodeID ID; 1692 SDValue Ops[] = { Root }; 1693 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1694 ID.AddPointer(Label); 1695 void *IP = nullptr; 1696 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1697 return SDValue(E, 0); 1698 1699 auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1700 createOperands(N, Ops); 1701 1702 CSEMap.InsertNode(N, IP); 1703 InsertNode(N); 1704 return SDValue(N, 0); 1705 } 1706 1707 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1708 int64_t Offset, 1709 bool isTarget, 1710 unsigned char TargetFlags) { 1711 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1712 1713 FoldingSetNodeID ID; 1714 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1715 ID.AddPointer(BA); 1716 ID.AddInteger(Offset); 1717 ID.AddInteger(TargetFlags); 1718 void *IP = nullptr; 1719 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1720 return SDValue(E, 0); 1721 1722 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1723 CSEMap.InsertNode(N, IP); 1724 InsertNode(N); 1725 return SDValue(N, 0); 1726 } 1727 1728 SDValue SelectionDAG::getSrcValue(const Value *V) { 1729 assert((!V || V->getType()->isPointerTy()) && 1730 "SrcValue is not a pointer?"); 1731 1732 FoldingSetNodeID ID; 1733 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1734 ID.AddPointer(V); 1735 1736 void *IP = nullptr; 1737 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1738 return SDValue(E, 0); 1739 1740 auto *N = newSDNode<SrcValueSDNode>(V); 1741 CSEMap.InsertNode(N, IP); 1742 InsertNode(N); 1743 return SDValue(N, 0); 1744 } 1745 1746 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1747 FoldingSetNodeID ID; 1748 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1749 ID.AddPointer(MD); 1750 1751 void *IP = nullptr; 1752 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1753 return SDValue(E, 0); 1754 1755 auto *N = newSDNode<MDNodeSDNode>(MD); 1756 CSEMap.InsertNode(N, IP); 1757 InsertNode(N); 1758 return SDValue(N, 0); 1759 } 1760 1761 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1762 if (VT == V.getValueType()) 1763 return V; 1764 1765 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1766 } 1767 1768 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1769 unsigned SrcAS, unsigned DestAS) { 1770 SDValue Ops[] = {Ptr}; 1771 FoldingSetNodeID ID; 1772 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1773 ID.AddInteger(SrcAS); 1774 ID.AddInteger(DestAS); 1775 1776 void *IP = nullptr; 1777 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1778 return SDValue(E, 0); 1779 1780 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1781 VT, SrcAS, DestAS); 1782 createOperands(N, Ops); 1783 1784 CSEMap.InsertNode(N, IP); 1785 InsertNode(N); 1786 return SDValue(N, 0); 1787 } 1788 1789 /// getShiftAmountOperand - Return the specified value casted to 1790 /// the target's desired shift amount type. 1791 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1792 EVT OpTy = Op.getValueType(); 1793 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1794 if (OpTy == ShTy || OpTy.isVector()) return Op; 1795 1796 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1797 } 1798 1799 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1800 SDLoc dl(Node); 1801 const TargetLowering &TLI = getTargetLoweringInfo(); 1802 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1803 EVT VT = Node->getValueType(0); 1804 SDValue Tmp1 = Node->getOperand(0); 1805 SDValue Tmp2 = Node->getOperand(1); 1806 unsigned Align = Node->getConstantOperandVal(3); 1807 1808 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1809 Tmp2, MachinePointerInfo(V)); 1810 SDValue VAList = VAListLoad; 1811 1812 if (Align > TLI.getMinStackArgumentAlignment()) { 1813 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1814 1815 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1816 getConstant(Align - 1, dl, VAList.getValueType())); 1817 1818 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1819 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1820 } 1821 1822 // Increment the pointer, VAList, to the next vaarg 1823 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1824 getConstant(getDataLayout().getTypeAllocSize( 1825 VT.getTypeForEVT(*getContext())), 1826 dl, VAList.getValueType())); 1827 // Store the incremented VAList to the legalized pointer 1828 Tmp1 = 1829 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1830 // Load the actual argument out of the pointer VAList 1831 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1832 } 1833 1834 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1835 SDLoc dl(Node); 1836 const TargetLowering &TLI = getTargetLoweringInfo(); 1837 // This defaults to loading a pointer from the input and storing it to the 1838 // output, returning the chain. 1839 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1840 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1841 SDValue Tmp1 = 1842 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1843 Node->getOperand(2), MachinePointerInfo(VS)); 1844 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1845 MachinePointerInfo(VD)); 1846 } 1847 1848 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1849 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1850 unsigned ByteSize = VT.getStoreSize(); 1851 Type *Ty = VT.getTypeForEVT(*getContext()); 1852 unsigned StackAlign = 1853 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1854 1855 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1856 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1857 } 1858 1859 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1860 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1861 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1862 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1863 const DataLayout &DL = getDataLayout(); 1864 unsigned Align = 1865 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1866 1867 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1868 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1869 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1870 } 1871 1872 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1873 ISD::CondCode Cond, const SDLoc &dl) { 1874 // These setcc operations always fold. 1875 switch (Cond) { 1876 default: break; 1877 case ISD::SETFALSE: 1878 case ISD::SETFALSE2: return getConstant(0, dl, VT); 1879 case ISD::SETTRUE: 1880 case ISD::SETTRUE2: { 1881 TargetLowering::BooleanContent Cnt = 1882 TLI->getBooleanContents(N1->getValueType(0)); 1883 return getConstant( 1884 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1885 VT); 1886 } 1887 1888 case ISD::SETOEQ: 1889 case ISD::SETOGT: 1890 case ISD::SETOGE: 1891 case ISD::SETOLT: 1892 case ISD::SETOLE: 1893 case ISD::SETONE: 1894 case ISD::SETO: 1895 case ISD::SETUO: 1896 case ISD::SETUEQ: 1897 case ISD::SETUNE: 1898 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); 1899 break; 1900 } 1901 1902 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 1903 const APInt &C2 = N2C->getAPIntValue(); 1904 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 1905 const APInt &C1 = N1C->getAPIntValue(); 1906 1907 switch (Cond) { 1908 default: llvm_unreachable("Unknown integer setcc!"); 1909 case ISD::SETEQ: return getConstant(C1 == C2, dl, VT); 1910 case ISD::SETNE: return getConstant(C1 != C2, dl, VT); 1911 case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT); 1912 case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT); 1913 case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT); 1914 case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT); 1915 case ISD::SETLT: return getConstant(C1.slt(C2), dl, VT); 1916 case ISD::SETGT: return getConstant(C1.sgt(C2), dl, VT); 1917 case ISD::SETLE: return getConstant(C1.sle(C2), dl, VT); 1918 case ISD::SETGE: return getConstant(C1.sge(C2), dl, VT); 1919 } 1920 } 1921 } 1922 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) { 1923 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) { 1924 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); 1925 switch (Cond) { 1926 default: break; 1927 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 1928 return getUNDEF(VT); 1929 LLVM_FALLTHROUGH; 1930 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT); 1931 case ISD::SETNE: if (R==APFloat::cmpUnordered) 1932 return getUNDEF(VT); 1933 LLVM_FALLTHROUGH; 1934 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || 1935 R==APFloat::cmpLessThan, dl, VT); 1936 case ISD::SETLT: if (R==APFloat::cmpUnordered) 1937 return getUNDEF(VT); 1938 LLVM_FALLTHROUGH; 1939 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT); 1940 case ISD::SETGT: if (R==APFloat::cmpUnordered) 1941 return getUNDEF(VT); 1942 LLVM_FALLTHROUGH; 1943 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT); 1944 case ISD::SETLE: if (R==APFloat::cmpUnordered) 1945 return getUNDEF(VT); 1946 LLVM_FALLTHROUGH; 1947 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || 1948 R==APFloat::cmpEqual, dl, VT); 1949 case ISD::SETGE: if (R==APFloat::cmpUnordered) 1950 return getUNDEF(VT); 1951 LLVM_FALLTHROUGH; 1952 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || 1953 R==APFloat::cmpEqual, dl, VT); 1954 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, dl, VT); 1955 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, dl, VT); 1956 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || 1957 R==APFloat::cmpEqual, dl, VT); 1958 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT); 1959 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || 1960 R==APFloat::cmpLessThan, dl, VT); 1961 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || 1962 R==APFloat::cmpUnordered, dl, VT); 1963 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT); 1964 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT); 1965 } 1966 } else { 1967 // Ensure that the constant occurs on the RHS. 1968 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 1969 MVT CompVT = N1.getValueType().getSimpleVT(); 1970 if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) 1971 return SDValue(); 1972 1973 return getSetCC(dl, VT, N2, N1, SwappedCond); 1974 } 1975 } 1976 1977 // Could not fold it. 1978 return SDValue(); 1979 } 1980 1981 /// See if the specified operand can be simplified with the knowledge that only 1982 /// the bits specified by Mask are used. 1983 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) { 1984 switch (V.getOpcode()) { 1985 default: 1986 break; 1987 case ISD::Constant: { 1988 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 1989 assert(CV && "Const value should be ConstSDNode."); 1990 const APInt &CVal = CV->getAPIntValue(); 1991 APInt NewVal = CVal & Mask; 1992 if (NewVal != CVal) 1993 return getConstant(NewVal, SDLoc(V), V.getValueType()); 1994 break; 1995 } 1996 case ISD::OR: 1997 case ISD::XOR: 1998 // If the LHS or RHS don't contribute bits to the or, drop them. 1999 if (MaskedValueIsZero(V.getOperand(0), Mask)) 2000 return V.getOperand(1); 2001 if (MaskedValueIsZero(V.getOperand(1), Mask)) 2002 return V.getOperand(0); 2003 break; 2004 case ISD::SRL: 2005 // Only look at single-use SRLs. 2006 if (!V.getNode()->hasOneUse()) 2007 break; 2008 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2009 // See if we can recursively simplify the LHS. 2010 unsigned Amt = RHSC->getZExtValue(); 2011 2012 // Watch out for shift count overflow though. 2013 if (Amt >= Mask.getBitWidth()) 2014 break; 2015 APInt NewMask = Mask << Amt; 2016 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) 2017 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2018 V.getOperand(1)); 2019 } 2020 break; 2021 case ISD::AND: { 2022 // X & -1 -> X (ignoring bits which aren't demanded). 2023 ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1)); 2024 if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue())) 2025 return V.getOperand(0); 2026 break; 2027 } 2028 case ISD::ANY_EXTEND: { 2029 SDValue Src = V.getOperand(0); 2030 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 2031 // Being conservative here - only peek through if we only demand bits in the 2032 // non-extended source (even though the extended bits are technically undef). 2033 if (Mask.getActiveBits() > SrcBitWidth) 2034 break; 2035 APInt SrcMask = Mask.trunc(SrcBitWidth); 2036 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask)) 2037 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); 2038 break; 2039 } 2040 } 2041 return SDValue(); 2042 } 2043 2044 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2045 /// use this predicate to simplify operations downstream. 2046 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2047 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2048 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2049 } 2050 2051 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2052 /// this predicate to simplify operations downstream. Mask is known to be zero 2053 /// for bits that V cannot have. 2054 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 2055 unsigned Depth) const { 2056 KnownBits Known; 2057 computeKnownBits(Op, Known, Depth); 2058 return Mask.isSubsetOf(Known.Zero); 2059 } 2060 2061 /// Helper function that checks to see if a node is a constant or a 2062 /// build vector of splat constants at least within the demanded elts. 2063 static ConstantSDNode *isConstOrDemandedConstSplat(SDValue N, 2064 const APInt &DemandedElts) { 2065 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 2066 return CN; 2067 if (N.getOpcode() != ISD::BUILD_VECTOR) 2068 return nullptr; 2069 EVT VT = N.getValueType(); 2070 ConstantSDNode *Cst = nullptr; 2071 unsigned NumElts = VT.getVectorNumElements(); 2072 assert(DemandedElts.getBitWidth() == NumElts && "Unexpected vector size"); 2073 for (unsigned i = 0; i != NumElts; ++i) { 2074 if (!DemandedElts[i]) 2075 continue; 2076 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(i)); 2077 if (!C || (Cst && Cst->getAPIntValue() != C->getAPIntValue()) || 2078 C->getValueType(0) != VT.getScalarType()) 2079 return nullptr; 2080 Cst = C; 2081 } 2082 return Cst; 2083 } 2084 2085 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 2086 /// is less than the element bit-width of the shift node, return it. 2087 static const APInt *getValidShiftAmountConstant(SDValue V) { 2088 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 2089 // Shifting more than the bitwidth is not valid. 2090 const APInt &ShAmt = SA->getAPIntValue(); 2091 if (ShAmt.ult(V.getScalarValueSizeInBits())) 2092 return &ShAmt; 2093 } 2094 return nullptr; 2095 } 2096 2097 /// Determine which bits of Op are known to be either zero or one and return 2098 /// them in Known. For vectors, the known bits are those that are shared by 2099 /// every vector element. 2100 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, 2101 unsigned Depth) const { 2102 EVT VT = Op.getValueType(); 2103 APInt DemandedElts = VT.isVector() 2104 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2105 : APInt(1, 1); 2106 computeKnownBits(Op, Known, DemandedElts, Depth); 2107 } 2108 2109 /// Determine which bits of Op are known to be either zero or one and return 2110 /// them in Known. The DemandedElts argument allows us to only collect the known 2111 /// bits that are shared by the requested vector elements. 2112 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, 2113 const APInt &DemandedElts, 2114 unsigned Depth) const { 2115 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2116 2117 Known = KnownBits(BitWidth); // Don't know anything. 2118 2119 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2120 // We know all of the bits for a constant! 2121 Known.One = C->getAPIntValue(); 2122 Known.Zero = ~Known.One; 2123 return; 2124 } 2125 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2126 // We know all of the bits for a constant fp! 2127 Known.One = C->getValueAPF().bitcastToAPInt(); 2128 Known.Zero = ~Known.One; 2129 return; 2130 } 2131 2132 if (Depth == 6) 2133 return; // Limit search depth. 2134 2135 KnownBits Known2; 2136 unsigned NumElts = DemandedElts.getBitWidth(); 2137 2138 if (!DemandedElts) 2139 return; // No demanded elts, better to assume we don't know anything. 2140 2141 unsigned Opcode = Op.getOpcode(); 2142 switch (Opcode) { 2143 case ISD::BUILD_VECTOR: 2144 // Collect the known bits that are shared by every demanded vector element. 2145 assert(NumElts == Op.getValueType().getVectorNumElements() && 2146 "Unexpected vector size"); 2147 Known.Zero.setAllBits(); Known.One.setAllBits(); 2148 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2149 if (!DemandedElts[i]) 2150 continue; 2151 2152 SDValue SrcOp = Op.getOperand(i); 2153 computeKnownBits(SrcOp, Known2, Depth + 1); 2154 2155 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2156 if (SrcOp.getValueSizeInBits() != BitWidth) { 2157 assert(SrcOp.getValueSizeInBits() > BitWidth && 2158 "Expected BUILD_VECTOR implicit truncation"); 2159 Known2 = Known2.trunc(BitWidth); 2160 } 2161 2162 // Known bits are the values that are shared by every demanded element. 2163 Known.One &= Known2.One; 2164 Known.Zero &= Known2.Zero; 2165 2166 // If we don't know any bits, early out. 2167 if (Known.isUnknown()) 2168 break; 2169 } 2170 break; 2171 case ISD::VECTOR_SHUFFLE: { 2172 // Collect the known bits that are shared by every vector element referenced 2173 // by the shuffle. 2174 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2175 Known.Zero.setAllBits(); Known.One.setAllBits(); 2176 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2177 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2178 for (unsigned i = 0; i != NumElts; ++i) { 2179 if (!DemandedElts[i]) 2180 continue; 2181 2182 int M = SVN->getMaskElt(i); 2183 if (M < 0) { 2184 // For UNDEF elements, we don't know anything about the common state of 2185 // the shuffle result. 2186 Known.resetAll(); 2187 DemandedLHS.clearAllBits(); 2188 DemandedRHS.clearAllBits(); 2189 break; 2190 } 2191 2192 if ((unsigned)M < NumElts) 2193 DemandedLHS.setBit((unsigned)M % NumElts); 2194 else 2195 DemandedRHS.setBit((unsigned)M % NumElts); 2196 } 2197 // Known bits are the values that are shared by every demanded element. 2198 if (!!DemandedLHS) { 2199 SDValue LHS = Op.getOperand(0); 2200 computeKnownBits(LHS, Known2, DemandedLHS, Depth + 1); 2201 Known.One &= Known2.One; 2202 Known.Zero &= Known2.Zero; 2203 } 2204 // If we don't know any bits, early out. 2205 if (Known.isUnknown()) 2206 break; 2207 if (!!DemandedRHS) { 2208 SDValue RHS = Op.getOperand(1); 2209 computeKnownBits(RHS, Known2, DemandedRHS, Depth + 1); 2210 Known.One &= Known2.One; 2211 Known.Zero &= Known2.Zero; 2212 } 2213 break; 2214 } 2215 case ISD::CONCAT_VECTORS: { 2216 // Split DemandedElts and test each of the demanded subvectors. 2217 Known.Zero.setAllBits(); Known.One.setAllBits(); 2218 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2219 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2220 unsigned NumSubVectors = Op.getNumOperands(); 2221 for (unsigned i = 0; i != NumSubVectors; ++i) { 2222 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2223 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2224 if (!!DemandedSub) { 2225 SDValue Sub = Op.getOperand(i); 2226 computeKnownBits(Sub, Known2, DemandedSub, Depth + 1); 2227 Known.One &= Known2.One; 2228 Known.Zero &= Known2.Zero; 2229 } 2230 // If we don't know any bits, early out. 2231 if (Known.isUnknown()) 2232 break; 2233 } 2234 break; 2235 } 2236 case ISD::INSERT_SUBVECTOR: { 2237 // If we know the element index, demand any elements from the subvector and 2238 // the remainder from the src its inserted into, otherwise demand them all. 2239 SDValue Src = Op.getOperand(0); 2240 SDValue Sub = Op.getOperand(1); 2241 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2242 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2243 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2244 Known.One.setAllBits(); 2245 Known.Zero.setAllBits(); 2246 uint64_t Idx = SubIdx->getZExtValue(); 2247 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2248 if (!!DemandedSubElts) { 2249 computeKnownBits(Sub, Known, DemandedSubElts, Depth + 1); 2250 if (Known.isUnknown()) 2251 break; // early-out. 2252 } 2253 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 2254 APInt DemandedSrcElts = DemandedElts & ~SubMask; 2255 if (!!DemandedSrcElts) { 2256 computeKnownBits(Src, Known2, DemandedSrcElts, Depth + 1); 2257 Known.One &= Known2.One; 2258 Known.Zero &= Known2.Zero; 2259 } 2260 } else { 2261 computeKnownBits(Sub, Known, Depth + 1); 2262 if (Known.isUnknown()) 2263 break; // early-out. 2264 computeKnownBits(Src, Known2, Depth + 1); 2265 Known.One &= Known2.One; 2266 Known.Zero &= Known2.Zero; 2267 } 2268 break; 2269 } 2270 case ISD::EXTRACT_SUBVECTOR: { 2271 // If we know the element index, just demand that subvector elements, 2272 // otherwise demand them all. 2273 SDValue Src = Op.getOperand(0); 2274 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2275 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2276 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2277 // Offset the demanded elts by the subvector index. 2278 uint64_t Idx = SubIdx->getZExtValue(); 2279 APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); 2280 computeKnownBits(Src, Known, DemandedSrc, Depth + 1); 2281 } else { 2282 computeKnownBits(Src, Known, Depth + 1); 2283 } 2284 break; 2285 } 2286 case ISD::BITCAST: { 2287 SDValue N0 = Op.getOperand(0); 2288 EVT SubVT = N0.getValueType(); 2289 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2290 2291 // Ignore bitcasts from unsupported types. 2292 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2293 break; 2294 2295 // Fast handling of 'identity' bitcasts. 2296 if (BitWidth == SubBitWidth) { 2297 computeKnownBits(N0, Known, DemandedElts, Depth + 1); 2298 break; 2299 } 2300 2301 // Support big-endian targets when it becomes useful. 2302 bool IsLE = getDataLayout().isLittleEndian(); 2303 if (!IsLE) 2304 break; 2305 2306 // Bitcast 'small element' vector to 'large element' scalar/vector. 2307 if ((BitWidth % SubBitWidth) == 0) { 2308 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2309 2310 // Collect known bits for the (larger) output by collecting the known 2311 // bits from each set of sub elements and shift these into place. 2312 // We need to separately call computeKnownBits for each set of 2313 // sub elements as the knownbits for each is likely to be different. 2314 unsigned SubScale = BitWidth / SubBitWidth; 2315 APInt SubDemandedElts(NumElts * SubScale, 0); 2316 for (unsigned i = 0; i != NumElts; ++i) 2317 if (DemandedElts[i]) 2318 SubDemandedElts.setBit(i * SubScale); 2319 2320 for (unsigned i = 0; i != SubScale; ++i) { 2321 computeKnownBits(N0, Known2, SubDemandedElts.shl(i), 2322 Depth + 1); 2323 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * i); 2324 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * i); 2325 } 2326 } 2327 2328 // Bitcast 'large element' scalar/vector to 'small element' vector. 2329 if ((SubBitWidth % BitWidth) == 0) { 2330 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2331 2332 // Collect known bits for the (smaller) output by collecting the known 2333 // bits from the overlapping larger input elements and extracting the 2334 // sub sections we actually care about. 2335 unsigned SubScale = SubBitWidth / BitWidth; 2336 APInt SubDemandedElts(NumElts / SubScale, 0); 2337 for (unsigned i = 0; i != NumElts; ++i) 2338 if (DemandedElts[i]) 2339 SubDemandedElts.setBit(i / SubScale); 2340 2341 computeKnownBits(N0, Known2, SubDemandedElts, Depth + 1); 2342 2343 Known.Zero.setAllBits(); Known.One.setAllBits(); 2344 for (unsigned i = 0; i != NumElts; ++i) 2345 if (DemandedElts[i]) { 2346 unsigned Offset = (i % SubScale) * BitWidth; 2347 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2348 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2349 // If we don't know any bits, early out. 2350 if (Known.isUnknown()) 2351 break; 2352 } 2353 } 2354 break; 2355 } 2356 case ISD::AND: 2357 // If either the LHS or the RHS are Zero, the result is zero. 2358 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2359 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2360 2361 // Output known-1 bits are only known if set in both the LHS & RHS. 2362 Known.One &= Known2.One; 2363 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2364 Known.Zero |= Known2.Zero; 2365 break; 2366 case ISD::OR: 2367 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2368 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2369 2370 // Output known-0 bits are only known if clear in both the LHS & RHS. 2371 Known.Zero &= Known2.Zero; 2372 // Output known-1 are known to be set if set in either the LHS | RHS. 2373 Known.One |= Known2.One; 2374 break; 2375 case ISD::XOR: { 2376 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2377 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2378 2379 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2380 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2381 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2382 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2383 Known.Zero = KnownZeroOut; 2384 break; 2385 } 2386 case ISD::MUL: { 2387 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2388 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2389 2390 // If low bits are zero in either operand, output low known-0 bits. 2391 // Also compute a conservative estimate for high known-0 bits. 2392 // More trickiness is possible, but this is sufficient for the 2393 // interesting case of alignment computation. 2394 unsigned TrailZ = Known.countMinTrailingZeros() + 2395 Known2.countMinTrailingZeros(); 2396 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2397 Known2.countMinLeadingZeros(), 2398 BitWidth) - BitWidth; 2399 2400 Known.resetAll(); 2401 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2402 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2403 break; 2404 } 2405 case ISD::UDIV: { 2406 // For the purposes of computing leading zeros we can conservatively 2407 // treat a udiv as a logical right shift by the power of 2 known to 2408 // be less than the denominator. 2409 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2410 unsigned LeadZ = Known2.countMinLeadingZeros(); 2411 2412 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2413 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2414 if (RHSMaxLeadingZeros != BitWidth) 2415 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2416 2417 Known.Zero.setHighBits(LeadZ); 2418 break; 2419 } 2420 case ISD::SELECT: 2421 case ISD::VSELECT: 2422 computeKnownBits(Op.getOperand(2), Known, DemandedElts, Depth+1); 2423 // If we don't know any bits, early out. 2424 if (Known.isUnknown()) 2425 break; 2426 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth+1); 2427 2428 // Only known if known in both the LHS and RHS. 2429 Known.One &= Known2.One; 2430 Known.Zero &= Known2.Zero; 2431 break; 2432 case ISD::SELECT_CC: 2433 computeKnownBits(Op.getOperand(3), Known, DemandedElts, Depth+1); 2434 // If we don't know any bits, early out. 2435 if (Known.isUnknown()) 2436 break; 2437 computeKnownBits(Op.getOperand(2), Known2, DemandedElts, Depth+1); 2438 2439 // Only known if known in both the LHS and RHS. 2440 Known.One &= Known2.One; 2441 Known.Zero &= Known2.Zero; 2442 break; 2443 case ISD::SMULO: 2444 case ISD::UMULO: 2445 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2446 if (Op.getResNo() != 1) 2447 break; 2448 // The boolean result conforms to getBooleanContents. 2449 // If we know the result of a setcc has the top bits zero, use this info. 2450 // We know that we have an integer-based boolean since these operations 2451 // are only available for integer. 2452 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2453 TargetLowering::ZeroOrOneBooleanContent && 2454 BitWidth > 1) 2455 Known.Zero.setBitsFrom(1); 2456 break; 2457 case ISD::SETCC: 2458 // If we know the result of a setcc has the top bits zero, use this info. 2459 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2460 TargetLowering::ZeroOrOneBooleanContent && 2461 BitWidth > 1) 2462 Known.Zero.setBitsFrom(1); 2463 break; 2464 case ISD::SHL: 2465 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2466 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2467 unsigned Shift = ShAmt->getZExtValue(); 2468 Known.Zero <<= Shift; 2469 Known.One <<= Shift; 2470 // Low bits are known zero. 2471 Known.Zero.setLowBits(Shift); 2472 } 2473 break; 2474 case ISD::SRL: 2475 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2476 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2477 unsigned Shift = ShAmt->getZExtValue(); 2478 Known.Zero.lshrInPlace(Shift); 2479 Known.One.lshrInPlace(Shift); 2480 // High bits are known zero. 2481 Known.Zero.setHighBits(Shift); 2482 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) { 2483 // If the shift amount is a vector of constants see if we can bound 2484 // the number of upper zero bits. 2485 unsigned ShiftAmountMin = BitWidth; 2486 for (unsigned i = 0; i != BV->getNumOperands(); ++i) { 2487 if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) { 2488 const APInt &ShAmt = C->getAPIntValue(); 2489 if (ShAmt.ult(BitWidth)) { 2490 ShiftAmountMin = std::min<unsigned>(ShiftAmountMin, 2491 ShAmt.getZExtValue()); 2492 continue; 2493 } 2494 } 2495 // Don't know anything. 2496 ShiftAmountMin = 0; 2497 break; 2498 } 2499 2500 Known.Zero.setHighBits(ShiftAmountMin); 2501 } 2502 break; 2503 case ISD::SRA: 2504 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2505 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2506 unsigned Shift = ShAmt->getZExtValue(); 2507 // Sign extend known zero/one bit (else is unknown). 2508 Known.Zero.ashrInPlace(Shift); 2509 Known.One.ashrInPlace(Shift); 2510 } 2511 break; 2512 case ISD::SIGN_EXTEND_INREG: { 2513 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2514 unsigned EBits = EVT.getScalarSizeInBits(); 2515 2516 // Sign extension. Compute the demanded bits in the result that are not 2517 // present in the input. 2518 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2519 2520 APInt InSignMask = APInt::getSignMask(EBits); 2521 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2522 2523 // If the sign extended bits are demanded, we know that the sign 2524 // bit is demanded. 2525 InSignMask = InSignMask.zext(BitWidth); 2526 if (NewBits.getBoolValue()) 2527 InputDemandedBits |= InSignMask; 2528 2529 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2530 Known.One &= InputDemandedBits; 2531 Known.Zero &= InputDemandedBits; 2532 2533 // If the sign bit of the input is known set or clear, then we know the 2534 // top bits of the result. 2535 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2536 Known.Zero |= NewBits; 2537 Known.One &= ~NewBits; 2538 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2539 Known.One |= NewBits; 2540 Known.Zero &= ~NewBits; 2541 } else { // Input sign bit unknown 2542 Known.Zero &= ~NewBits; 2543 Known.One &= ~NewBits; 2544 } 2545 break; 2546 } 2547 case ISD::CTTZ: 2548 case ISD::CTTZ_ZERO_UNDEF: { 2549 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2550 // If we have a known 1, its position is our upper bound. 2551 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2552 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2553 Known.Zero.setBitsFrom(LowBits); 2554 break; 2555 } 2556 case ISD::CTLZ: 2557 case ISD::CTLZ_ZERO_UNDEF: { 2558 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2559 // If we have a known 1, its position is our upper bound. 2560 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2561 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2562 Known.Zero.setBitsFrom(LowBits); 2563 break; 2564 } 2565 case ISD::CTPOP: { 2566 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2567 // If we know some of the bits are zero, they can't be one. 2568 unsigned PossibleOnes = Known2.countMaxPopulation(); 2569 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 2570 break; 2571 } 2572 case ISD::LOAD: { 2573 LoadSDNode *LD = cast<LoadSDNode>(Op); 2574 // If this is a ZEXTLoad and we are looking at the loaded value. 2575 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2576 EVT VT = LD->getMemoryVT(); 2577 unsigned MemBits = VT.getScalarSizeInBits(); 2578 Known.Zero.setBitsFrom(MemBits); 2579 } else if (const MDNode *Ranges = LD->getRanges()) { 2580 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2581 computeKnownBitsFromRangeMetadata(*Ranges, Known); 2582 } 2583 break; 2584 } 2585 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2586 EVT InVT = Op.getOperand(0).getValueType(); 2587 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 2588 computeKnownBits(Op.getOperand(0), Known, InDemandedElts, Depth + 1); 2589 Known = Known.zext(BitWidth); 2590 Known.Zero.setBitsFrom(InVT.getScalarSizeInBits()); 2591 break; 2592 } 2593 case ISD::ZERO_EXTEND: { 2594 EVT InVT = Op.getOperand(0).getValueType(); 2595 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2596 Known = Known.zext(BitWidth); 2597 Known.Zero.setBitsFrom(InVT.getScalarSizeInBits()); 2598 break; 2599 } 2600 // TODO ISD::SIGN_EXTEND_VECTOR_INREG 2601 case ISD::SIGN_EXTEND: { 2602 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2603 // If the sign bit is known to be zero or one, then sext will extend 2604 // it to the top bits, else it will just zext. 2605 Known = Known.sext(BitWidth); 2606 break; 2607 } 2608 case ISD::ANY_EXTEND: { 2609 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2610 Known = Known.zext(BitWidth); 2611 break; 2612 } 2613 case ISD::TRUNCATE: { 2614 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2615 Known = Known.trunc(BitWidth); 2616 break; 2617 } 2618 case ISD::AssertZext: { 2619 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2620 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2621 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2622 Known.Zero |= (~InMask); 2623 Known.One &= (~Known.Zero); 2624 break; 2625 } 2626 case ISD::FGETSIGN: 2627 // All bits are zero except the low bit. 2628 Known.Zero.setBitsFrom(1); 2629 break; 2630 case ISD::USUBO: 2631 case ISD::SSUBO: 2632 if (Op.getResNo() == 1) { 2633 // If we know the result of a setcc has the top bits zero, use this info. 2634 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2635 TargetLowering::ZeroOrOneBooleanContent && 2636 BitWidth > 1) 2637 Known.Zero.setBitsFrom(1); 2638 break; 2639 } 2640 LLVM_FALLTHROUGH; 2641 case ISD::SUB: 2642 case ISD::SUBC: { 2643 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) { 2644 // We know that the top bits of C-X are clear if X contains less bits 2645 // than C (i.e. no wrap-around can happen). For example, 20-X is 2646 // positive if we can prove that X is >= 0 and < 16. 2647 if (CLHS->getAPIntValue().isNonNegative()) { 2648 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); 2649 // NLZ can't be BitWidth with no sign bit 2650 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 2651 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, 2652 Depth + 1); 2653 2654 // If all of the MaskV bits are known to be zero, then we know the 2655 // output top bits are zero, because we now know that the output is 2656 // from [0-C]. 2657 if ((Known2.Zero & MaskV) == MaskV) { 2658 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); 2659 // Top bits known zero. 2660 Known.Zero.setHighBits(NLZ2); 2661 } 2662 } 2663 } 2664 2665 // If low bits are know to be zero in both operands, then we know they are 2666 // going to be 0 in the result. Both addition and complement operations 2667 // preserve the low zero bits. 2668 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2669 unsigned KnownZeroLow = Known2.countMinTrailingZeros(); 2670 if (KnownZeroLow == 0) 2671 break; 2672 2673 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2674 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); 2675 Known.Zero.setLowBits(KnownZeroLow); 2676 break; 2677 } 2678 case ISD::UADDO: 2679 case ISD::SADDO: 2680 case ISD::ADDCARRY: 2681 if (Op.getResNo() == 1) { 2682 // If we know the result of a setcc has the top bits zero, use this info. 2683 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2684 TargetLowering::ZeroOrOneBooleanContent && 2685 BitWidth > 1) 2686 Known.Zero.setBitsFrom(1); 2687 break; 2688 } 2689 LLVM_FALLTHROUGH; 2690 case ISD::ADD: 2691 case ISD::ADDC: 2692 case ISD::ADDE: { 2693 // Output known-0 bits are known if clear or set in both the low clear bits 2694 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the 2695 // low 3 bits clear. 2696 // Output known-0 bits are also known if the top bits of each input are 2697 // known to be clear. For example, if one input has the top 10 bits clear 2698 // and the other has the top 8 bits clear, we know the top 7 bits of the 2699 // output must be clear. 2700 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2701 unsigned KnownZeroHigh = Known2.countMinLeadingZeros(); 2702 unsigned KnownZeroLow = Known2.countMinTrailingZeros(); 2703 2704 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, 2705 Depth + 1); 2706 KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros()); 2707 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); 2708 2709 if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) { 2710 // With ADDE and ADDCARRY, a carry bit may be added in, so we can only 2711 // use this information if we know (at least) that the low two bits are 2712 // clear. We then return to the caller that the low bit is unknown but 2713 // that other bits are known zero. 2714 if (KnownZeroLow >= 2) 2715 Known.Zero.setBits(1, KnownZeroLow); 2716 break; 2717 } 2718 2719 Known.Zero.setLowBits(KnownZeroLow); 2720 if (KnownZeroHigh > 1) 2721 Known.Zero.setHighBits(KnownZeroHigh - 1); 2722 break; 2723 } 2724 case ISD::SREM: 2725 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2726 const APInt &RA = Rem->getAPIntValue().abs(); 2727 if (RA.isPowerOf2()) { 2728 APInt LowBits = RA - 1; 2729 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2730 2731 // The low bits of the first operand are unchanged by the srem. 2732 Known.Zero = Known2.Zero & LowBits; 2733 Known.One = Known2.One & LowBits; 2734 2735 // If the first operand is non-negative or has all low bits zero, then 2736 // the upper bits are all zero. 2737 if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits)) 2738 Known.Zero |= ~LowBits; 2739 2740 // If the first operand is negative and not all low bits are zero, then 2741 // the upper bits are all one. 2742 if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0)) 2743 Known.One |= ~LowBits; 2744 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 2745 } 2746 } 2747 break; 2748 case ISD::UREM: { 2749 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2750 const APInt &RA = Rem->getAPIntValue(); 2751 if (RA.isPowerOf2()) { 2752 APInt LowBits = (RA - 1); 2753 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2754 2755 // The upper bits are all zero, the lower ones are unchanged. 2756 Known.Zero = Known2.Zero | ~LowBits; 2757 Known.One = Known2.One & LowBits; 2758 break; 2759 } 2760 } 2761 2762 // Since the result is less than or equal to either operand, any leading 2763 // zero bits in either operand must also exist in the result. 2764 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2765 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2766 2767 uint32_t Leaders = 2768 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 2769 Known.resetAll(); 2770 Known.Zero.setHighBits(Leaders); 2771 break; 2772 } 2773 case ISD::EXTRACT_ELEMENT: { 2774 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2775 const unsigned Index = Op.getConstantOperandVal(1); 2776 const unsigned BitWidth = Op.getValueSizeInBits(); 2777 2778 // Remove low part of known bits mask 2779 Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth); 2780 Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth); 2781 2782 // Remove high part of known bit mask 2783 Known = Known.trunc(BitWidth); 2784 break; 2785 } 2786 case ISD::EXTRACT_VECTOR_ELT: { 2787 SDValue InVec = Op.getOperand(0); 2788 SDValue EltNo = Op.getOperand(1); 2789 EVT VecVT = InVec.getValueType(); 2790 const unsigned BitWidth = Op.getValueSizeInBits(); 2791 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 2792 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 2793 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2794 // anything about the extended bits. 2795 if (BitWidth > EltBitWidth) 2796 Known = Known.trunc(EltBitWidth); 2797 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 2798 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 2799 // If we know the element index, just demand that vector element. 2800 unsigned Idx = ConstEltNo->getZExtValue(); 2801 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 2802 computeKnownBits(InVec, Known, DemandedElt, Depth + 1); 2803 } else { 2804 // Unknown element index, so ignore DemandedElts and demand them all. 2805 computeKnownBits(InVec, Known, Depth + 1); 2806 } 2807 if (BitWidth > EltBitWidth) 2808 Known = Known.zext(BitWidth); 2809 break; 2810 } 2811 case ISD::INSERT_VECTOR_ELT: { 2812 SDValue InVec = Op.getOperand(0); 2813 SDValue InVal = Op.getOperand(1); 2814 SDValue EltNo = Op.getOperand(2); 2815 2816 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 2817 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 2818 // If we know the element index, split the demand between the 2819 // source vector and the inserted element. 2820 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); 2821 unsigned EltIdx = CEltNo->getZExtValue(); 2822 2823 // If we demand the inserted element then add its common known bits. 2824 if (DemandedElts[EltIdx]) { 2825 computeKnownBits(InVal, Known2, Depth + 1); 2826 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 2827 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 2828 } 2829 2830 // If we demand the source vector then add its common known bits, ensuring 2831 // that we don't demand the inserted element. 2832 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 2833 if (!!VectorElts) { 2834 computeKnownBits(InVec, Known2, VectorElts, Depth + 1); 2835 Known.One &= Known2.One; 2836 Known.Zero &= Known2.Zero; 2837 } 2838 } else { 2839 // Unknown element index, so ignore DemandedElts and demand them all. 2840 computeKnownBits(InVec, Known, Depth + 1); 2841 computeKnownBits(InVal, Known2, Depth + 1); 2842 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 2843 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 2844 } 2845 break; 2846 } 2847 case ISD::BITREVERSE: { 2848 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2849 Known.Zero = Known2.Zero.reverseBits(); 2850 Known.One = Known2.One.reverseBits(); 2851 break; 2852 } 2853 case ISD::BSWAP: { 2854 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2855 Known.Zero = Known2.Zero.byteSwap(); 2856 Known.One = Known2.One.byteSwap(); 2857 break; 2858 } 2859 case ISD::ABS: { 2860 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2861 2862 // If the source's MSB is zero then we know the rest of the bits already. 2863 if (Known2.isNonNegative()) { 2864 Known.Zero = Known2.Zero; 2865 Known.One = Known2.One; 2866 break; 2867 } 2868 2869 // We only know that the absolute values's MSB will be zero iff there is 2870 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 2871 Known2.One.clearSignBit(); 2872 if (Known2.One.getBoolValue()) { 2873 Known.Zero = APInt::getSignMask(BitWidth); 2874 break; 2875 } 2876 break; 2877 } 2878 case ISD::UMIN: { 2879 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2880 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2881 2882 // UMIN - we know that the result will have the maximum of the 2883 // known zero leading bits of the inputs. 2884 unsigned LeadZero = Known.countMinLeadingZeros(); 2885 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 2886 2887 Known.Zero &= Known2.Zero; 2888 Known.One &= Known2.One; 2889 Known.Zero.setHighBits(LeadZero); 2890 break; 2891 } 2892 case ISD::UMAX: { 2893 computeKnownBits(Op.getOperand(0), Known, DemandedElts, 2894 Depth + 1); 2895 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2896 2897 // UMAX - we know that the result will have the maximum of the 2898 // known one leading bits of the inputs. 2899 unsigned LeadOne = Known.countMinLeadingOnes(); 2900 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 2901 2902 Known.Zero &= Known2.Zero; 2903 Known.One &= Known2.One; 2904 Known.One.setHighBits(LeadOne); 2905 break; 2906 } 2907 case ISD::SMIN: 2908 case ISD::SMAX: { 2909 computeKnownBits(Op.getOperand(0), Known, DemandedElts, 2910 Depth + 1); 2911 // If we don't know any bits, early out. 2912 if (Known.isUnknown()) 2913 break; 2914 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2915 Known.Zero &= Known2.Zero; 2916 Known.One &= Known2.One; 2917 break; 2918 } 2919 case ISD::FrameIndex: 2920 case ISD::TargetFrameIndex: 2921 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 2922 break; 2923 2924 default: 2925 if (Opcode < ISD::BUILTIN_OP_END) 2926 break; 2927 LLVM_FALLTHROUGH; 2928 case ISD::INTRINSIC_WO_CHAIN: 2929 case ISD::INTRINSIC_W_CHAIN: 2930 case ISD::INTRINSIC_VOID: 2931 // Allow the target to implement this method for its nodes. 2932 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 2933 break; 2934 } 2935 2936 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2937 } 2938 2939 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 2940 SDValue N1) const { 2941 // X + 0 never overflow 2942 if (isNullConstant(N1)) 2943 return OFK_Never; 2944 2945 KnownBits N1Known; 2946 computeKnownBits(N1, N1Known); 2947 if (N1Known.Zero.getBoolValue()) { 2948 KnownBits N0Known; 2949 computeKnownBits(N0, N0Known); 2950 2951 bool overflow; 2952 (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); 2953 if (!overflow) 2954 return OFK_Never; 2955 } 2956 2957 // mulhi + 1 never overflow 2958 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 2959 (~N1Known.Zero & 0x01) == ~N1Known.Zero) 2960 return OFK_Never; 2961 2962 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 2963 KnownBits N0Known; 2964 computeKnownBits(N0, N0Known); 2965 2966 if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) 2967 return OFK_Never; 2968 } 2969 2970 return OFK_Sometime; 2971 } 2972 2973 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 2974 EVT OpVT = Val.getValueType(); 2975 unsigned BitWidth = OpVT.getScalarSizeInBits(); 2976 2977 // Is the constant a known power of 2? 2978 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 2979 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 2980 2981 // A left-shift of a constant one will have exactly one bit set because 2982 // shifting the bit off the end is undefined. 2983 if (Val.getOpcode() == ISD::SHL) { 2984 auto *C = isConstOrConstSplat(Val.getOperand(0)); 2985 if (C && C->getAPIntValue() == 1) 2986 return true; 2987 } 2988 2989 // Similarly, a logical right-shift of a constant sign-bit will have exactly 2990 // one bit set. 2991 if (Val.getOpcode() == ISD::SRL) { 2992 auto *C = isConstOrConstSplat(Val.getOperand(0)); 2993 if (C && C->getAPIntValue().isSignMask()) 2994 return true; 2995 } 2996 2997 // Are all operands of a build vector constant powers of two? 2998 if (Val.getOpcode() == ISD::BUILD_VECTOR) 2999 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3000 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3001 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3002 return false; 3003 })) 3004 return true; 3005 3006 // More could be done here, though the above checks are enough 3007 // to handle some common cases. 3008 3009 // Fall back to computeKnownBits to catch other known cases. 3010 KnownBits Known; 3011 computeKnownBits(Val, Known); 3012 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3013 } 3014 3015 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3016 EVT VT = Op.getValueType(); 3017 APInt DemandedElts = VT.isVector() 3018 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3019 : APInt(1, 1); 3020 return ComputeNumSignBits(Op, DemandedElts, Depth); 3021 } 3022 3023 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3024 unsigned Depth) const { 3025 EVT VT = Op.getValueType(); 3026 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3027 unsigned VTBits = VT.getScalarSizeInBits(); 3028 unsigned NumElts = DemandedElts.getBitWidth(); 3029 unsigned Tmp, Tmp2; 3030 unsigned FirstAnswer = 1; 3031 3032 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3033 const APInt &Val = C->getAPIntValue(); 3034 return Val.getNumSignBits(); 3035 } 3036 3037 if (Depth == 6) 3038 return 1; // Limit search depth. 3039 3040 if (!DemandedElts) 3041 return 1; // No demanded elts, better to assume we don't know anything. 3042 3043 switch (Op.getOpcode()) { 3044 default: break; 3045 case ISD::AssertSext: 3046 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3047 return VTBits-Tmp+1; 3048 case ISD::AssertZext: 3049 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3050 return VTBits-Tmp; 3051 3052 case ISD::BUILD_VECTOR: 3053 Tmp = VTBits; 3054 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3055 if (!DemandedElts[i]) 3056 continue; 3057 3058 SDValue SrcOp = Op.getOperand(i); 3059 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3060 3061 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3062 if (SrcOp.getValueSizeInBits() != VTBits) { 3063 assert(SrcOp.getValueSizeInBits() > VTBits && 3064 "Expected BUILD_VECTOR implicit truncation"); 3065 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3066 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3067 } 3068 Tmp = std::min(Tmp, Tmp2); 3069 } 3070 return Tmp; 3071 3072 case ISD::VECTOR_SHUFFLE: { 3073 // Collect the minimum number of sign bits that are shared by every vector 3074 // element referenced by the shuffle. 3075 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3076 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3077 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3078 for (unsigned i = 0; i != NumElts; ++i) { 3079 int M = SVN->getMaskElt(i); 3080 if (!DemandedElts[i]) 3081 continue; 3082 // For UNDEF elements, we don't know anything about the common state of 3083 // the shuffle result. 3084 if (M < 0) 3085 return 1; 3086 if ((unsigned)M < NumElts) 3087 DemandedLHS.setBit((unsigned)M % NumElts); 3088 else 3089 DemandedRHS.setBit((unsigned)M % NumElts); 3090 } 3091 Tmp = std::numeric_limits<unsigned>::max(); 3092 if (!!DemandedLHS) 3093 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3094 if (!!DemandedRHS) { 3095 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3096 Tmp = std::min(Tmp, Tmp2); 3097 } 3098 // If we don't know anything, early out and try computeKnownBits fall-back. 3099 if (Tmp == 1) 3100 break; 3101 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3102 return Tmp; 3103 } 3104 3105 case ISD::BITCAST: { 3106 SDValue N0 = Op.getOperand(0); 3107 EVT SrcVT = N0.getValueType(); 3108 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3109 3110 // Ignore bitcasts from unsupported types.. 3111 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3112 break; 3113 3114 // Fast handling of 'identity' bitcasts. 3115 if (VTBits == SrcBits) 3116 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3117 3118 // Bitcast 'large element' scalar/vector to 'small element' vector. 3119 // TODO: Handle cases other than 'sign splat' when we have a use case. 3120 // Requires handling of DemandedElts and Endianness. 3121 if ((SrcBits % VTBits) == 0) { 3122 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3123 Tmp = ComputeNumSignBits(N0, Depth + 1); 3124 if (Tmp == SrcBits) 3125 return VTBits; 3126 } 3127 break; 3128 } 3129 3130 case ISD::SIGN_EXTEND: 3131 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3132 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3133 case ISD::SIGN_EXTEND_INREG: 3134 // Max of the input and what this extends. 3135 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3136 Tmp = VTBits-Tmp+1; 3137 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3138 return std::max(Tmp, Tmp2); 3139 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3140 SDValue Src = Op.getOperand(0); 3141 EVT SrcVT = Src.getValueType(); 3142 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); 3143 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3144 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3145 } 3146 3147 case ISD::SRA: 3148 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3149 // SRA X, C -> adds C sign bits. 3150 if (ConstantSDNode *C = 3151 isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) { 3152 APInt ShiftVal = C->getAPIntValue(); 3153 ShiftVal += Tmp; 3154 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 3155 } 3156 return Tmp; 3157 case ISD::SHL: 3158 if (ConstantSDNode *C = 3159 isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) { 3160 // shl destroys sign bits. 3161 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3162 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 3163 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 3164 return Tmp - C->getZExtValue(); 3165 } 3166 break; 3167 case ISD::AND: 3168 case ISD::OR: 3169 case ISD::XOR: // NOT is handled here. 3170 // Logical binary ops preserve the number of sign bits at the worst. 3171 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3172 if (Tmp != 1) { 3173 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3174 FirstAnswer = std::min(Tmp, Tmp2); 3175 // We computed what we know about the sign bits as our first 3176 // answer. Now proceed to the generic code that uses 3177 // computeKnownBits, and pick whichever answer is better. 3178 } 3179 break; 3180 3181 case ISD::SELECT: 3182 case ISD::VSELECT: 3183 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3184 if (Tmp == 1) return 1; // Early out. 3185 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3186 return std::min(Tmp, Tmp2); 3187 case ISD::SELECT_CC: 3188 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3189 if (Tmp == 1) return 1; // Early out. 3190 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3191 return std::min(Tmp, Tmp2); 3192 3193 case ISD::SMIN: 3194 case ISD::SMAX: 3195 case ISD::UMIN: 3196 case ISD::UMAX: 3197 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3198 if (Tmp == 1) 3199 return 1; // Early out. 3200 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3201 return std::min(Tmp, Tmp2); 3202 case ISD::SADDO: 3203 case ISD::UADDO: 3204 case ISD::SSUBO: 3205 case ISD::USUBO: 3206 case ISD::SMULO: 3207 case ISD::UMULO: 3208 if (Op.getResNo() != 1) 3209 break; 3210 // The boolean result conforms to getBooleanContents. Fall through. 3211 // If setcc returns 0/-1, all bits are sign bits. 3212 // We know that we have an integer-based boolean since these operations 3213 // are only available for integer. 3214 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3215 TargetLowering::ZeroOrNegativeOneBooleanContent) 3216 return VTBits; 3217 break; 3218 case ISD::SETCC: 3219 // If setcc returns 0/-1, all bits are sign bits. 3220 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3221 TargetLowering::ZeroOrNegativeOneBooleanContent) 3222 return VTBits; 3223 break; 3224 case ISD::ROTL: 3225 case ISD::ROTR: 3226 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3227 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3228 3229 // Handle rotate right by N like a rotate left by 32-N. 3230 if (Op.getOpcode() == ISD::ROTR) 3231 RotAmt = (VTBits - RotAmt) % VTBits; 3232 3233 // If we aren't rotating out all of the known-in sign bits, return the 3234 // number that are left. This handles rotl(sext(x), 1) for example. 3235 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3236 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3237 } 3238 break; 3239 case ISD::ADD: 3240 case ISD::ADDC: 3241 // Add can have at most one carry bit. Thus we know that the output 3242 // is, at worst, one more bit than the inputs. 3243 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3244 if (Tmp == 1) return 1; // Early out. 3245 3246 // Special case decrementing a value (ADD X, -1): 3247 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3248 if (CRHS->isAllOnesValue()) { 3249 KnownBits Known; 3250 computeKnownBits(Op.getOperand(0), Known, Depth+1); 3251 3252 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3253 // sign bits set. 3254 if ((Known.Zero | 1).isAllOnesValue()) 3255 return VTBits; 3256 3257 // If we are subtracting one from a positive number, there is no carry 3258 // out of the result. 3259 if (Known.isNonNegative()) 3260 return Tmp; 3261 } 3262 3263 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3264 if (Tmp2 == 1) return 1; 3265 return std::min(Tmp, Tmp2)-1; 3266 3267 case ISD::SUB: 3268 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3269 if (Tmp2 == 1) return 1; 3270 3271 // Handle NEG. 3272 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3273 if (CLHS->isNullValue()) { 3274 KnownBits Known; 3275 computeKnownBits(Op.getOperand(1), Known, Depth+1); 3276 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3277 // sign bits set. 3278 if ((Known.Zero | 1).isAllOnesValue()) 3279 return VTBits; 3280 3281 // If the input is known to be positive (the sign bit is known clear), 3282 // the output of the NEG has the same number of sign bits as the input. 3283 if (Known.isNonNegative()) 3284 return Tmp2; 3285 3286 // Otherwise, we treat this like a SUB. 3287 } 3288 3289 // Sub can have at most one carry bit. Thus we know that the output 3290 // is, at worst, one more bit than the inputs. 3291 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3292 if (Tmp == 1) return 1; // Early out. 3293 return std::min(Tmp, Tmp2)-1; 3294 case ISD::TRUNCATE: { 3295 // Check if the sign bits of source go down as far as the truncated value. 3296 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3297 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3298 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3299 return NumSrcSignBits - (NumSrcBits - VTBits); 3300 break; 3301 } 3302 case ISD::EXTRACT_ELEMENT: { 3303 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3304 const int BitWidth = Op.getValueSizeInBits(); 3305 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3306 3307 // Get reverse index (starting from 1), Op1 value indexes elements from 3308 // little end. Sign starts at big end. 3309 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3310 3311 // If the sign portion ends in our element the subtraction gives correct 3312 // result. Otherwise it gives either negative or > bitwidth result 3313 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3314 } 3315 case ISD::INSERT_VECTOR_ELT: { 3316 SDValue InVec = Op.getOperand(0); 3317 SDValue InVal = Op.getOperand(1); 3318 SDValue EltNo = Op.getOperand(2); 3319 unsigned NumElts = InVec.getValueType().getVectorNumElements(); 3320 3321 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3322 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3323 // If we know the element index, split the demand between the 3324 // source vector and the inserted element. 3325 unsigned EltIdx = CEltNo->getZExtValue(); 3326 3327 // If we demand the inserted element then get its sign bits. 3328 Tmp = std::numeric_limits<unsigned>::max(); 3329 if (DemandedElts[EltIdx]) { 3330 // TODO - handle implicit truncation of inserted elements. 3331 if (InVal.getScalarValueSizeInBits() != VTBits) 3332 break; 3333 Tmp = ComputeNumSignBits(InVal, Depth + 1); 3334 } 3335 3336 // If we demand the source vector then get its sign bits, and determine 3337 // the minimum. 3338 APInt VectorElts = DemandedElts; 3339 VectorElts.clearBit(EltIdx); 3340 if (!!VectorElts) { 3341 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); 3342 Tmp = std::min(Tmp, Tmp2); 3343 } 3344 } else { 3345 // Unknown element index, so ignore DemandedElts and demand them all. 3346 Tmp = ComputeNumSignBits(InVec, Depth + 1); 3347 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3348 Tmp = std::min(Tmp, Tmp2); 3349 } 3350 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3351 return Tmp; 3352 } 3353 case ISD::EXTRACT_VECTOR_ELT: { 3354 SDValue InVec = Op.getOperand(0); 3355 SDValue EltNo = Op.getOperand(1); 3356 EVT VecVT = InVec.getValueType(); 3357 const unsigned BitWidth = Op.getValueSizeInBits(); 3358 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3359 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3360 3361 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3362 // anything about sign bits. But if the sizes match we can derive knowledge 3363 // about sign bits from the vector operand. 3364 if (BitWidth != EltBitWidth) 3365 break; 3366 3367 // If we know the element index, just demand that vector element, else for 3368 // an unknown element index, ignore DemandedElts and demand them all. 3369 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3370 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3371 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3372 DemandedSrcElts = 3373 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3374 3375 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3376 } 3377 case ISD::EXTRACT_SUBVECTOR: { 3378 // If we know the element index, just demand that subvector elements, 3379 // otherwise demand them all. 3380 SDValue Src = Op.getOperand(0); 3381 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3382 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3383 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3384 // Offset the demanded elts by the subvector index. 3385 uint64_t Idx = SubIdx->getZExtValue(); 3386 APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); 3387 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3388 } 3389 return ComputeNumSignBits(Src, Depth + 1); 3390 } 3391 case ISD::CONCAT_VECTORS: 3392 // Determine the minimum number of sign bits across all demanded 3393 // elts of the input vectors. Early out if the result is already 1. 3394 Tmp = std::numeric_limits<unsigned>::max(); 3395 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3396 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3397 unsigned NumSubVectors = Op.getNumOperands(); 3398 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3399 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3400 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3401 if (!DemandedSub) 3402 continue; 3403 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3404 Tmp = std::min(Tmp, Tmp2); 3405 } 3406 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3407 return Tmp; 3408 } 3409 3410 // If we are looking at the loaded value of the SDNode. 3411 if (Op.getResNo() == 0) { 3412 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3413 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3414 unsigned ExtType = LD->getExtensionType(); 3415 switch (ExtType) { 3416 default: break; 3417 case ISD::SEXTLOAD: // '17' bits known 3418 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3419 return VTBits-Tmp+1; 3420 case ISD::ZEXTLOAD: // '16' bits known 3421 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3422 return VTBits-Tmp; 3423 } 3424 } 3425 } 3426 3427 // Allow the target to implement this method for its nodes. 3428 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3429 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3430 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3431 Op.getOpcode() == ISD::INTRINSIC_VOID) { 3432 unsigned NumBits = 3433 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 3434 if (NumBits > 1) 3435 FirstAnswer = std::max(FirstAnswer, NumBits); 3436 } 3437 3438 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3439 // use this information. 3440 KnownBits Known; 3441 computeKnownBits(Op, Known, DemandedElts, Depth); 3442 3443 APInt Mask; 3444 if (Known.isNonNegative()) { // sign bit is 0 3445 Mask = Known.Zero; 3446 } else if (Known.isNegative()) { // sign bit is 1; 3447 Mask = Known.One; 3448 } else { 3449 // Nothing known. 3450 return FirstAnswer; 3451 } 3452 3453 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3454 // the number of identical bits in the top of the input value. 3455 Mask = ~Mask; 3456 Mask <<= Mask.getBitWidth()-VTBits; 3457 // Return # leading zeros. We use 'min' here in case Val was zero before 3458 // shifting. We don't want to return '64' as for an i32 "0". 3459 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3460 } 3461 3462 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3463 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3464 !isa<ConstantSDNode>(Op.getOperand(1))) 3465 return false; 3466 3467 if (Op.getOpcode() == ISD::OR && 3468 !MaskedValueIsZero(Op.getOperand(0), 3469 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) 3470 return false; 3471 3472 return true; 3473 } 3474 3475 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const { 3476 // If we're told that NaNs won't happen, assume they won't. 3477 if (getTarget().Options.NoNaNsFPMath) 3478 return true; 3479 3480 if (Op->getFlags().hasNoNaNs()) 3481 return true; 3482 3483 // If the value is a constant, we can obviously see if it is a NaN or not. 3484 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3485 return !C->getValueAPF().isNaN(); 3486 3487 // TODO: Recognize more cases here. 3488 3489 return false; 3490 } 3491 3492 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 3493 // If the value is a constant, we can obviously see if it is a zero or not. 3494 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3495 return !C->isZero(); 3496 3497 // TODO: Recognize more cases here. 3498 switch (Op.getOpcode()) { 3499 default: break; 3500 case ISD::OR: 3501 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3502 return !C->isNullValue(); 3503 break; 3504 } 3505 3506 return false; 3507 } 3508 3509 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 3510 // Check the obvious case. 3511 if (A == B) return true; 3512 3513 // For for negative and positive zero. 3514 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 3515 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 3516 if (CA->isZero() && CB->isZero()) return true; 3517 3518 // Otherwise they may not be equal. 3519 return false; 3520 } 3521 3522 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 3523 assert(A.getValueType() == B.getValueType() && 3524 "Values must have the same type"); 3525 KnownBits AKnown, BKnown; 3526 computeKnownBits(A, AKnown); 3527 computeKnownBits(B, BKnown); 3528 return (AKnown.Zero | BKnown.Zero).isAllOnesValue(); 3529 } 3530 3531 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 3532 ArrayRef<SDValue> Ops, 3533 SelectionDAG &DAG) { 3534 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 3535 assert(llvm::all_of(Ops, 3536 [Ops](SDValue Op) { 3537 return Ops[0].getValueType() == Op.getValueType(); 3538 }) && 3539 "Concatenation of vectors with inconsistent value types!"); 3540 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 3541 VT.getVectorNumElements() && 3542 "Incorrect element count in vector concatenation!"); 3543 3544 if (Ops.size() == 1) 3545 return Ops[0]; 3546 3547 // Concat of UNDEFs is UNDEF. 3548 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 3549 return DAG.getUNDEF(VT); 3550 3551 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 3552 // simplified to one big BUILD_VECTOR. 3553 // FIXME: Add support for SCALAR_TO_VECTOR as well. 3554 EVT SVT = VT.getScalarType(); 3555 SmallVector<SDValue, 16> Elts; 3556 for (SDValue Op : Ops) { 3557 EVT OpVT = Op.getValueType(); 3558 if (Op.isUndef()) 3559 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 3560 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 3561 Elts.append(Op->op_begin(), Op->op_end()); 3562 else 3563 return SDValue(); 3564 } 3565 3566 // BUILD_VECTOR requires all inputs to be of the same type, find the 3567 // maximum type and extend them all. 3568 for (SDValue Op : Elts) 3569 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 3570 3571 if (SVT.bitsGT(VT.getScalarType())) 3572 for (SDValue &Op : Elts) 3573 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 3574 ? DAG.getZExtOrTrunc(Op, DL, SVT) 3575 : DAG.getSExtOrTrunc(Op, DL, SVT); 3576 3577 SDValue V = DAG.getBuildVector(VT, DL, Elts); 3578 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 3579 return V; 3580 } 3581 3582 /// Gets or creates the specified node. 3583 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 3584 FoldingSetNodeID ID; 3585 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 3586 void *IP = nullptr; 3587 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3588 return SDValue(E, 0); 3589 3590 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 3591 getVTList(VT)); 3592 CSEMap.InsertNode(N, IP); 3593 3594 InsertNode(N); 3595 SDValue V = SDValue(N, 0); 3596 NewSDValueDbgMsg(V, "Creating new node: ", this); 3597 return V; 3598 } 3599 3600 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3601 SDValue Operand, const SDNodeFlags Flags) { 3602 // Constant fold unary operations with an integer constant operand. Even 3603 // opaque constant will be folded, because the folding of unary operations 3604 // doesn't create new constants with different values. Nevertheless, the 3605 // opaque flag is preserved during folding to prevent future folding with 3606 // other constants. 3607 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 3608 const APInt &Val = C->getAPIntValue(); 3609 switch (Opcode) { 3610 default: break; 3611 case ISD::SIGN_EXTEND: 3612 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 3613 C->isTargetOpcode(), C->isOpaque()); 3614 case ISD::ANY_EXTEND: 3615 case ISD::ZERO_EXTEND: 3616 case ISD::TRUNCATE: 3617 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 3618 C->isTargetOpcode(), C->isOpaque()); 3619 case ISD::UINT_TO_FP: 3620 case ISD::SINT_TO_FP: { 3621 APFloat apf(EVTToAPFloatSemantics(VT), 3622 APInt::getNullValue(VT.getSizeInBits())); 3623 (void)apf.convertFromAPInt(Val, 3624 Opcode==ISD::SINT_TO_FP, 3625 APFloat::rmNearestTiesToEven); 3626 return getConstantFP(apf, DL, VT); 3627 } 3628 case ISD::BITCAST: 3629 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 3630 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 3631 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 3632 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 3633 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 3634 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 3635 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 3636 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 3637 break; 3638 case ISD::ABS: 3639 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 3640 C->isOpaque()); 3641 case ISD::BITREVERSE: 3642 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 3643 C->isOpaque()); 3644 case ISD::BSWAP: 3645 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 3646 C->isOpaque()); 3647 case ISD::CTPOP: 3648 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 3649 C->isOpaque()); 3650 case ISD::CTLZ: 3651 case ISD::CTLZ_ZERO_UNDEF: 3652 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 3653 C->isOpaque()); 3654 case ISD::CTTZ: 3655 case ISD::CTTZ_ZERO_UNDEF: 3656 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 3657 C->isOpaque()); 3658 case ISD::FP16_TO_FP: { 3659 bool Ignored; 3660 APFloat FPV(APFloat::IEEEhalf(), 3661 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 3662 3663 // This can return overflow, underflow, or inexact; we don't care. 3664 // FIXME need to be more flexible about rounding mode. 3665 (void)FPV.convert(EVTToAPFloatSemantics(VT), 3666 APFloat::rmNearestTiesToEven, &Ignored); 3667 return getConstantFP(FPV, DL, VT); 3668 } 3669 } 3670 } 3671 3672 // Constant fold unary operations with a floating point constant operand. 3673 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 3674 APFloat V = C->getValueAPF(); // make copy 3675 switch (Opcode) { 3676 case ISD::FNEG: 3677 V.changeSign(); 3678 return getConstantFP(V, DL, VT); 3679 case ISD::FABS: 3680 V.clearSign(); 3681 return getConstantFP(V, DL, VT); 3682 case ISD::FCEIL: { 3683 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 3684 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3685 return getConstantFP(V, DL, VT); 3686 break; 3687 } 3688 case ISD::FTRUNC: { 3689 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 3690 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3691 return getConstantFP(V, DL, VT); 3692 break; 3693 } 3694 case ISD::FFLOOR: { 3695 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 3696 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3697 return getConstantFP(V, DL, VT); 3698 break; 3699 } 3700 case ISD::FP_EXTEND: { 3701 bool ignored; 3702 // This can return overflow, underflow, or inexact; we don't care. 3703 // FIXME need to be more flexible about rounding mode. 3704 (void)V.convert(EVTToAPFloatSemantics(VT), 3705 APFloat::rmNearestTiesToEven, &ignored); 3706 return getConstantFP(V, DL, VT); 3707 } 3708 case ISD::FP_TO_SINT: 3709 case ISD::FP_TO_UINT: { 3710 bool ignored; 3711 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 3712 // FIXME need to be more flexible about rounding mode. 3713 APFloat::opStatus s = 3714 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 3715 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 3716 break; 3717 return getConstant(IntVal, DL, VT); 3718 } 3719 case ISD::BITCAST: 3720 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 3721 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3722 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 3723 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3724 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 3725 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 3726 break; 3727 case ISD::FP_TO_FP16: { 3728 bool Ignored; 3729 // This can return overflow, underflow, or inexact; we don't care. 3730 // FIXME need to be more flexible about rounding mode. 3731 (void)V.convert(APFloat::IEEEhalf(), 3732 APFloat::rmNearestTiesToEven, &Ignored); 3733 return getConstant(V.bitcastToAPInt(), DL, VT); 3734 } 3735 } 3736 } 3737 3738 // Constant fold unary operations with a vector integer or float operand. 3739 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 3740 if (BV->isConstant()) { 3741 switch (Opcode) { 3742 default: 3743 // FIXME: Entirely reasonable to perform folding of other unary 3744 // operations here as the need arises. 3745 break; 3746 case ISD::FNEG: 3747 case ISD::FABS: 3748 case ISD::FCEIL: 3749 case ISD::FTRUNC: 3750 case ISD::FFLOOR: 3751 case ISD::FP_EXTEND: 3752 case ISD::FP_TO_SINT: 3753 case ISD::FP_TO_UINT: 3754 case ISD::TRUNCATE: 3755 case ISD::ANY_EXTEND: 3756 case ISD::ZERO_EXTEND: 3757 case ISD::SIGN_EXTEND: 3758 case ISD::UINT_TO_FP: 3759 case ISD::SINT_TO_FP: 3760 case ISD::ABS: 3761 case ISD::BITREVERSE: 3762 case ISD::BSWAP: 3763 case ISD::CTLZ: 3764 case ISD::CTLZ_ZERO_UNDEF: 3765 case ISD::CTTZ: 3766 case ISD::CTTZ_ZERO_UNDEF: 3767 case ISD::CTPOP: { 3768 SDValue Ops = { Operand }; 3769 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 3770 return Fold; 3771 } 3772 } 3773 } 3774 } 3775 3776 unsigned OpOpcode = Operand.getNode()->getOpcode(); 3777 switch (Opcode) { 3778 case ISD::TokenFactor: 3779 case ISD::MERGE_VALUES: 3780 case ISD::CONCAT_VECTORS: 3781 return Operand; // Factor, merge or concat of one node? No need. 3782 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 3783 case ISD::FP_EXTEND: 3784 assert(VT.isFloatingPoint() && 3785 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 3786 if (Operand.getValueType() == VT) return Operand; // noop conversion. 3787 assert((!VT.isVector() || 3788 VT.getVectorNumElements() == 3789 Operand.getValueType().getVectorNumElements()) && 3790 "Vector element count mismatch!"); 3791 assert(Operand.getValueType().bitsLT(VT) && 3792 "Invalid fpext node, dst < src!"); 3793 if (Operand.isUndef()) 3794 return getUNDEF(VT); 3795 break; 3796 case ISD::SIGN_EXTEND: 3797 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3798 "Invalid SIGN_EXTEND!"); 3799 if (Operand.getValueType() == VT) return Operand; // noop extension 3800 assert((!VT.isVector() || 3801 VT.getVectorNumElements() == 3802 Operand.getValueType().getVectorNumElements()) && 3803 "Vector element count mismatch!"); 3804 assert(Operand.getValueType().bitsLT(VT) && 3805 "Invalid sext node, dst < src!"); 3806 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 3807 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3808 else if (OpOpcode == ISD::UNDEF) 3809 // sext(undef) = 0, because the top bits will all be the same. 3810 return getConstant(0, DL, VT); 3811 break; 3812 case ISD::ZERO_EXTEND: 3813 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3814 "Invalid ZERO_EXTEND!"); 3815 if (Operand.getValueType() == VT) return Operand; // noop extension 3816 assert((!VT.isVector() || 3817 VT.getVectorNumElements() == 3818 Operand.getValueType().getVectorNumElements()) && 3819 "Vector element count mismatch!"); 3820 assert(Operand.getValueType().bitsLT(VT) && 3821 "Invalid zext node, dst < src!"); 3822 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 3823 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 3824 else if (OpOpcode == ISD::UNDEF) 3825 // zext(undef) = 0, because the top bits will be zero. 3826 return getConstant(0, DL, VT); 3827 break; 3828 case ISD::ANY_EXTEND: 3829 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3830 "Invalid ANY_EXTEND!"); 3831 if (Operand.getValueType() == VT) return Operand; // noop extension 3832 assert((!VT.isVector() || 3833 VT.getVectorNumElements() == 3834 Operand.getValueType().getVectorNumElements()) && 3835 "Vector element count mismatch!"); 3836 assert(Operand.getValueType().bitsLT(VT) && 3837 "Invalid anyext node, dst < src!"); 3838 3839 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3840 OpOpcode == ISD::ANY_EXTEND) 3841 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 3842 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3843 else if (OpOpcode == ISD::UNDEF) 3844 return getUNDEF(VT); 3845 3846 // (ext (trunx x)) -> x 3847 if (OpOpcode == ISD::TRUNCATE) { 3848 SDValue OpOp = Operand.getOperand(0); 3849 if (OpOp.getValueType() == VT) 3850 return OpOp; 3851 } 3852 break; 3853 case ISD::TRUNCATE: 3854 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3855 "Invalid TRUNCATE!"); 3856 if (Operand.getValueType() == VT) return Operand; // noop truncate 3857 assert((!VT.isVector() || 3858 VT.getVectorNumElements() == 3859 Operand.getValueType().getVectorNumElements()) && 3860 "Vector element count mismatch!"); 3861 assert(Operand.getValueType().bitsGT(VT) && 3862 "Invalid truncate node, src < dst!"); 3863 if (OpOpcode == ISD::TRUNCATE) 3864 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 3865 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3866 OpOpcode == ISD::ANY_EXTEND) { 3867 // If the source is smaller than the dest, we still need an extend. 3868 if (Operand.getOperand(0).getValueType().getScalarType() 3869 .bitsLT(VT.getScalarType())) 3870 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3871 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 3872 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 3873 return Operand.getOperand(0); 3874 } 3875 if (OpOpcode == ISD::UNDEF) 3876 return getUNDEF(VT); 3877 break; 3878 case ISD::ABS: 3879 assert(VT.isInteger() && VT == Operand.getValueType() && 3880 "Invalid ABS!"); 3881 if (OpOpcode == ISD::UNDEF) 3882 return getUNDEF(VT); 3883 break; 3884 case ISD::BSWAP: 3885 assert(VT.isInteger() && VT == Operand.getValueType() && 3886 "Invalid BSWAP!"); 3887 assert((VT.getScalarSizeInBits() % 16 == 0) && 3888 "BSWAP types must be a multiple of 16 bits!"); 3889 if (OpOpcode == ISD::UNDEF) 3890 return getUNDEF(VT); 3891 break; 3892 case ISD::BITREVERSE: 3893 assert(VT.isInteger() && VT == Operand.getValueType() && 3894 "Invalid BITREVERSE!"); 3895 if (OpOpcode == ISD::UNDEF) 3896 return getUNDEF(VT); 3897 break; 3898 case ISD::BITCAST: 3899 // Basic sanity checking. 3900 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 3901 "Cannot BITCAST between types of different sizes!"); 3902 if (VT == Operand.getValueType()) return Operand; // noop conversion. 3903 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 3904 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 3905 if (OpOpcode == ISD::UNDEF) 3906 return getUNDEF(VT); 3907 break; 3908 case ISD::SCALAR_TO_VECTOR: 3909 assert(VT.isVector() && !Operand.getValueType().isVector() && 3910 (VT.getVectorElementType() == Operand.getValueType() || 3911 (VT.getVectorElementType().isInteger() && 3912 Operand.getValueType().isInteger() && 3913 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 3914 "Illegal SCALAR_TO_VECTOR node!"); 3915 if (OpOpcode == ISD::UNDEF) 3916 return getUNDEF(VT); 3917 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 3918 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 3919 isa<ConstantSDNode>(Operand.getOperand(1)) && 3920 Operand.getConstantOperandVal(1) == 0 && 3921 Operand.getOperand(0).getValueType() == VT) 3922 return Operand.getOperand(0); 3923 break; 3924 case ISD::FNEG: 3925 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 3926 if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB) 3927 // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags? 3928 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), 3929 Operand.getOperand(0), Operand.getNode()->getFlags()); 3930 if (OpOpcode == ISD::FNEG) // --X -> X 3931 return Operand.getOperand(0); 3932 break; 3933 case ISD::FABS: 3934 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 3935 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 3936 break; 3937 } 3938 3939 SDNode *N; 3940 SDVTList VTs = getVTList(VT); 3941 SDValue Ops[] = {Operand}; 3942 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 3943 FoldingSetNodeID ID; 3944 AddNodeIDNode(ID, Opcode, VTs, Ops); 3945 void *IP = nullptr; 3946 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 3947 E->intersectFlagsWith(Flags); 3948 return SDValue(E, 0); 3949 } 3950 3951 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3952 N->setFlags(Flags); 3953 createOperands(N, Ops); 3954 CSEMap.InsertNode(N, IP); 3955 } else { 3956 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3957 createOperands(N, Ops); 3958 } 3959 3960 InsertNode(N); 3961 SDValue V = SDValue(N, 0); 3962 NewSDValueDbgMsg(V, "Creating new node: ", this); 3963 return V; 3964 } 3965 3966 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 3967 const APInt &C2) { 3968 switch (Opcode) { 3969 case ISD::ADD: return std::make_pair(C1 + C2, true); 3970 case ISD::SUB: return std::make_pair(C1 - C2, true); 3971 case ISD::MUL: return std::make_pair(C1 * C2, true); 3972 case ISD::AND: return std::make_pair(C1 & C2, true); 3973 case ISD::OR: return std::make_pair(C1 | C2, true); 3974 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 3975 case ISD::SHL: return std::make_pair(C1 << C2, true); 3976 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 3977 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 3978 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 3979 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 3980 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 3981 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 3982 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 3983 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 3984 case ISD::UDIV: 3985 if (!C2.getBoolValue()) 3986 break; 3987 return std::make_pair(C1.udiv(C2), true); 3988 case ISD::UREM: 3989 if (!C2.getBoolValue()) 3990 break; 3991 return std::make_pair(C1.urem(C2), true); 3992 case ISD::SDIV: 3993 if (!C2.getBoolValue()) 3994 break; 3995 return std::make_pair(C1.sdiv(C2), true); 3996 case ISD::SREM: 3997 if (!C2.getBoolValue()) 3998 break; 3999 return std::make_pair(C1.srem(C2), true); 4000 } 4001 return std::make_pair(APInt(1, 0), false); 4002 } 4003 4004 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4005 EVT VT, const ConstantSDNode *Cst1, 4006 const ConstantSDNode *Cst2) { 4007 if (Cst1->isOpaque() || Cst2->isOpaque()) 4008 return SDValue(); 4009 4010 std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), 4011 Cst2->getAPIntValue()); 4012 if (!Folded.second) 4013 return SDValue(); 4014 return getConstant(Folded.first, DL, VT); 4015 } 4016 4017 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4018 const GlobalAddressSDNode *GA, 4019 const SDNode *N2) { 4020 if (GA->getOpcode() != ISD::GlobalAddress) 4021 return SDValue(); 4022 if (!TLI->isOffsetFoldingLegal(GA)) 4023 return SDValue(); 4024 const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2); 4025 if (!Cst2) 4026 return SDValue(); 4027 int64_t Offset = Cst2->getSExtValue(); 4028 switch (Opcode) { 4029 case ISD::ADD: break; 4030 case ISD::SUB: Offset = -uint64_t(Offset); break; 4031 default: return SDValue(); 4032 } 4033 return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT, 4034 GA->getOffset() + uint64_t(Offset)); 4035 } 4036 4037 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4038 switch (Opcode) { 4039 case ISD::SDIV: 4040 case ISD::UDIV: 4041 case ISD::SREM: 4042 case ISD::UREM: { 4043 // If a divisor is zero/undef or any element of a divisor vector is 4044 // zero/undef, the whole op is undef. 4045 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4046 SDValue Divisor = Ops[1]; 4047 if (Divisor.isUndef() || isNullConstant(Divisor)) 4048 return true; 4049 4050 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4051 llvm::any_of(Divisor->op_values(), 4052 [](SDValue V) { return V.isUndef() || 4053 isNullConstant(V); }); 4054 // TODO: Handle signed overflow. 4055 } 4056 // TODO: Handle oversized shifts. 4057 default: 4058 return false; 4059 } 4060 } 4061 4062 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4063 EVT VT, SDNode *Cst1, 4064 SDNode *Cst2) { 4065 // If the opcode is a target-specific ISD node, there's nothing we can 4066 // do here and the operand rules may not line up with the below, so 4067 // bail early. 4068 if (Opcode >= ISD::BUILTIN_OP_END) 4069 return SDValue(); 4070 4071 if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)})) 4072 return getUNDEF(VT); 4073 4074 // Handle the case of two scalars. 4075 if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { 4076 if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { 4077 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2); 4078 assert((!Folded || !VT.isVector()) && 4079 "Can't fold vectors ops with scalar operands"); 4080 return Folded; 4081 } 4082 } 4083 4084 // fold (add Sym, c) -> Sym+c 4085 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1)) 4086 return FoldSymbolOffset(Opcode, VT, GA, Cst2); 4087 if (TLI->isCommutativeBinOp(Opcode)) 4088 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2)) 4089 return FoldSymbolOffset(Opcode, VT, GA, Cst1); 4090 4091 // For vectors extract each constant element into Inputs so we can constant 4092 // fold them individually. 4093 BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); 4094 BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); 4095 if (!BV1 || !BV2) 4096 return SDValue(); 4097 4098 assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); 4099 4100 EVT SVT = VT.getScalarType(); 4101 EVT LegalSVT = SVT; 4102 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4103 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4104 if (LegalSVT.bitsLT(SVT)) 4105 return SDValue(); 4106 } 4107 SmallVector<SDValue, 4> Outputs; 4108 for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { 4109 SDValue V1 = BV1->getOperand(I); 4110 SDValue V2 = BV2->getOperand(I); 4111 4112 if (SVT.isInteger()) { 4113 if (V1->getValueType(0).bitsGT(SVT)) 4114 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4115 if (V2->getValueType(0).bitsGT(SVT)) 4116 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4117 } 4118 4119 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4120 return SDValue(); 4121 4122 // Fold one vector element. 4123 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4124 if (LegalSVT != SVT) 4125 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4126 4127 // Scalar folding only succeeded if the result is a constant or UNDEF. 4128 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4129 ScalarResult.getOpcode() != ISD::ConstantFP) 4130 return SDValue(); 4131 Outputs.push_back(ScalarResult); 4132 } 4133 4134 assert(VT.getVectorNumElements() == Outputs.size() && 4135 "Vector size mismatch!"); 4136 4137 // We may have a vector type but a scalar result. Create a splat. 4138 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4139 4140 // Build a big vector out of the scalar elements we generated. 4141 return getBuildVector(VT, SDLoc(), Outputs); 4142 } 4143 4144 // TODO: Merge with FoldConstantArithmetic 4145 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4146 const SDLoc &DL, EVT VT, 4147 ArrayRef<SDValue> Ops, 4148 const SDNodeFlags Flags) { 4149 // If the opcode is a target-specific ISD node, there's nothing we can 4150 // do here and the operand rules may not line up with the below, so 4151 // bail early. 4152 if (Opcode >= ISD::BUILTIN_OP_END) 4153 return SDValue(); 4154 4155 if (isUndef(Opcode, Ops)) 4156 return getUNDEF(VT); 4157 4158 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4159 if (!VT.isVector()) 4160 return SDValue(); 4161 4162 unsigned NumElts = VT.getVectorNumElements(); 4163 4164 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4165 return !Op.getValueType().isVector() || 4166 Op.getValueType().getVectorNumElements() == NumElts; 4167 }; 4168 4169 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4170 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4171 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 4172 (BV && BV->isConstant()); 4173 }; 4174 4175 // All operands must be vector types with the same number of elements as 4176 // the result type and must be either UNDEF or a build vector of constant 4177 // or UNDEF scalars. 4178 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 4179 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 4180 return SDValue(); 4181 4182 // If we are comparing vectors, then the result needs to be a i1 boolean 4183 // that is then sign-extended back to the legal result type. 4184 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 4185 4186 // Find legal integer scalar type for constant promotion and 4187 // ensure that its scalar size is at least as large as source. 4188 EVT LegalSVT = VT.getScalarType(); 4189 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4190 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4191 if (LegalSVT.bitsLT(VT.getScalarType())) 4192 return SDValue(); 4193 } 4194 4195 // Constant fold each scalar lane separately. 4196 SmallVector<SDValue, 4> ScalarResults; 4197 for (unsigned i = 0; i != NumElts; i++) { 4198 SmallVector<SDValue, 4> ScalarOps; 4199 for (SDValue Op : Ops) { 4200 EVT InSVT = Op.getValueType().getScalarType(); 4201 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 4202 if (!InBV) { 4203 // We've checked that this is UNDEF or a constant of some kind. 4204 if (Op.isUndef()) 4205 ScalarOps.push_back(getUNDEF(InSVT)); 4206 else 4207 ScalarOps.push_back(Op); 4208 continue; 4209 } 4210 4211 SDValue ScalarOp = InBV->getOperand(i); 4212 EVT ScalarVT = ScalarOp.getValueType(); 4213 4214 // Build vector (integer) scalar operands may need implicit 4215 // truncation - do this before constant folding. 4216 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 4217 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 4218 4219 ScalarOps.push_back(ScalarOp); 4220 } 4221 4222 // Constant fold the scalar operands. 4223 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 4224 4225 // Legalize the (integer) scalar constant if necessary. 4226 if (LegalSVT != SVT) 4227 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4228 4229 // Scalar folding only succeeded if the result is a constant or UNDEF. 4230 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4231 ScalarResult.getOpcode() != ISD::ConstantFP) 4232 return SDValue(); 4233 ScalarResults.push_back(ScalarResult); 4234 } 4235 4236 SDValue V = getBuildVector(VT, DL, ScalarResults); 4237 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 4238 return V; 4239 } 4240 4241 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4242 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 4243 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4244 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 4245 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4246 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4247 4248 // Canonicalize constant to RHS if commutative. 4249 if (TLI->isCommutativeBinOp(Opcode)) { 4250 if (N1C && !N2C) { 4251 std::swap(N1C, N2C); 4252 std::swap(N1, N2); 4253 } else if (N1CFP && !N2CFP) { 4254 std::swap(N1CFP, N2CFP); 4255 std::swap(N1, N2); 4256 } 4257 } 4258 4259 switch (Opcode) { 4260 default: break; 4261 case ISD::TokenFactor: 4262 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 4263 N2.getValueType() == MVT::Other && "Invalid token factor!"); 4264 // Fold trivial token factors. 4265 if (N1.getOpcode() == ISD::EntryToken) return N2; 4266 if (N2.getOpcode() == ISD::EntryToken) return N1; 4267 if (N1 == N2) return N1; 4268 break; 4269 case ISD::CONCAT_VECTORS: { 4270 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4271 SDValue Ops[] = {N1, N2}; 4272 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4273 return V; 4274 break; 4275 } 4276 case ISD::AND: 4277 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4278 assert(N1.getValueType() == N2.getValueType() && 4279 N1.getValueType() == VT && "Binary operator types must match!"); 4280 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 4281 // worth handling here. 4282 if (N2C && N2C->isNullValue()) 4283 return N2; 4284 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 4285 return N1; 4286 break; 4287 case ISD::OR: 4288 case ISD::XOR: 4289 case ISD::ADD: 4290 case ISD::SUB: 4291 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4292 assert(N1.getValueType() == N2.getValueType() && 4293 N1.getValueType() == VT && "Binary operator types must match!"); 4294 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 4295 // it's worth handling here. 4296 if (N2C && N2C->isNullValue()) 4297 return N1; 4298 break; 4299 case ISD::UDIV: 4300 case ISD::UREM: 4301 case ISD::MULHU: 4302 case ISD::MULHS: 4303 case ISD::MUL: 4304 case ISD::SDIV: 4305 case ISD::SREM: 4306 case ISD::SMIN: 4307 case ISD::SMAX: 4308 case ISD::UMIN: 4309 case ISD::UMAX: 4310 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4311 assert(N1.getValueType() == N2.getValueType() && 4312 N1.getValueType() == VT && "Binary operator types must match!"); 4313 break; 4314 case ISD::FADD: 4315 case ISD::FSUB: 4316 case ISD::FMUL: 4317 case ISD::FDIV: 4318 case ISD::FREM: 4319 if (getTarget().Options.UnsafeFPMath) { 4320 if (Opcode == ISD::FADD) { 4321 // x+0 --> x 4322 if (N2CFP && N2CFP->getValueAPF().isZero()) 4323 return N1; 4324 } else if (Opcode == ISD::FSUB) { 4325 // x-0 --> x 4326 if (N2CFP && N2CFP->getValueAPF().isZero()) 4327 return N1; 4328 } else if (Opcode == ISD::FMUL) { 4329 // x*0 --> 0 4330 if (N2CFP && N2CFP->isZero()) 4331 return N2; 4332 // x*1 --> x 4333 if (N2CFP && N2CFP->isExactlyValue(1.0)) 4334 return N1; 4335 } 4336 } 4337 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 4338 assert(N1.getValueType() == N2.getValueType() && 4339 N1.getValueType() == VT && "Binary operator types must match!"); 4340 break; 4341 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 4342 assert(N1.getValueType() == VT && 4343 N1.getValueType().isFloatingPoint() && 4344 N2.getValueType().isFloatingPoint() && 4345 "Invalid FCOPYSIGN!"); 4346 break; 4347 case ISD::SHL: 4348 case ISD::SRA: 4349 case ISD::SRL: 4350 case ISD::ROTL: 4351 case ISD::ROTR: 4352 assert(VT == N1.getValueType() && 4353 "Shift operators return type must be the same as their first arg"); 4354 assert(VT.isInteger() && N2.getValueType().isInteger() && 4355 "Shifts only work on integers"); 4356 assert((!VT.isVector() || VT == N2.getValueType()) && 4357 "Vector shift amounts must be in the same as their first arg"); 4358 // Verify that the shift amount VT is bit enough to hold valid shift 4359 // amounts. This catches things like trying to shift an i1024 value by an 4360 // i8, which is easy to fall into in generic code that uses 4361 // TLI.getShiftAmount(). 4362 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 4363 "Invalid use of small shift amount with oversized value!"); 4364 4365 // Always fold shifts of i1 values so the code generator doesn't need to 4366 // handle them. Since we know the size of the shift has to be less than the 4367 // size of the value, the shift/rotate count is guaranteed to be zero. 4368 if (VT == MVT::i1) 4369 return N1; 4370 if (N2C && N2C->isNullValue()) 4371 return N1; 4372 break; 4373 case ISD::FP_ROUND_INREG: { 4374 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4375 assert(VT == N1.getValueType() && "Not an inreg round!"); 4376 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 4377 "Cannot FP_ROUND_INREG integer types"); 4378 assert(EVT.isVector() == VT.isVector() && 4379 "FP_ROUND_INREG type should be vector iff the operand " 4380 "type is vector!"); 4381 assert((!EVT.isVector() || 4382 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4383 "Vector element counts must match in FP_ROUND_INREG"); 4384 assert(EVT.bitsLE(VT) && "Not rounding down!"); 4385 (void)EVT; 4386 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 4387 break; 4388 } 4389 case ISD::FP_ROUND: 4390 assert(VT.isFloatingPoint() && 4391 N1.getValueType().isFloatingPoint() && 4392 VT.bitsLE(N1.getValueType()) && 4393 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 4394 "Invalid FP_ROUND!"); 4395 if (N1.getValueType() == VT) return N1; // noop conversion. 4396 break; 4397 case ISD::AssertSext: 4398 case ISD::AssertZext: { 4399 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4400 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4401 assert(VT.isInteger() && EVT.isInteger() && 4402 "Cannot *_EXTEND_INREG FP types"); 4403 assert(!EVT.isVector() && 4404 "AssertSExt/AssertZExt type should be the vector element type " 4405 "rather than the vector type!"); 4406 assert(EVT.bitsLE(VT) && "Not extending!"); 4407 if (VT == EVT) return N1; // noop assertion. 4408 break; 4409 } 4410 case ISD::SIGN_EXTEND_INREG: { 4411 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4412 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4413 assert(VT.isInteger() && EVT.isInteger() && 4414 "Cannot *_EXTEND_INREG FP types"); 4415 assert(EVT.isVector() == VT.isVector() && 4416 "SIGN_EXTEND_INREG type should be vector iff the operand " 4417 "type is vector!"); 4418 assert((!EVT.isVector() || 4419 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4420 "Vector element counts must match in SIGN_EXTEND_INREG"); 4421 assert(EVT.bitsLE(VT) && "Not extending!"); 4422 if (EVT == VT) return N1; // Not actually extending 4423 4424 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 4425 unsigned FromBits = EVT.getScalarSizeInBits(); 4426 Val <<= Val.getBitWidth() - FromBits; 4427 Val.ashrInPlace(Val.getBitWidth() - FromBits); 4428 return getConstant(Val, DL, ConstantVT); 4429 }; 4430 4431 if (N1C) { 4432 const APInt &Val = N1C->getAPIntValue(); 4433 return SignExtendInReg(Val, VT); 4434 } 4435 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 4436 SmallVector<SDValue, 8> Ops; 4437 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 4438 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4439 SDValue Op = N1.getOperand(i); 4440 if (Op.isUndef()) { 4441 Ops.push_back(getUNDEF(OpVT)); 4442 continue; 4443 } 4444 ConstantSDNode *C = cast<ConstantSDNode>(Op); 4445 APInt Val = C->getAPIntValue(); 4446 Ops.push_back(SignExtendInReg(Val, OpVT)); 4447 } 4448 return getBuildVector(VT, DL, Ops); 4449 } 4450 break; 4451 } 4452 case ISD::EXTRACT_VECTOR_ELT: 4453 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 4454 if (N1.isUndef()) 4455 return getUNDEF(VT); 4456 4457 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 4458 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 4459 return getUNDEF(VT); 4460 4461 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 4462 // expanding copies of large vectors from registers. 4463 if (N2C && 4464 N1.getOpcode() == ISD::CONCAT_VECTORS && 4465 N1.getNumOperands() > 0) { 4466 unsigned Factor = 4467 N1.getOperand(0).getValueType().getVectorNumElements(); 4468 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 4469 N1.getOperand(N2C->getZExtValue() / Factor), 4470 getConstant(N2C->getZExtValue() % Factor, DL, 4471 N2.getValueType())); 4472 } 4473 4474 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 4475 // expanding large vector constants. 4476 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 4477 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 4478 4479 if (VT != Elt.getValueType()) 4480 // If the vector element type is not legal, the BUILD_VECTOR operands 4481 // are promoted and implicitly truncated, and the result implicitly 4482 // extended. Make that explicit here. 4483 Elt = getAnyExtOrTrunc(Elt, DL, VT); 4484 4485 return Elt; 4486 } 4487 4488 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 4489 // operations are lowered to scalars. 4490 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 4491 // If the indices are the same, return the inserted element else 4492 // if the indices are known different, extract the element from 4493 // the original vector. 4494 SDValue N1Op2 = N1.getOperand(2); 4495 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 4496 4497 if (N1Op2C && N2C) { 4498 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 4499 if (VT == N1.getOperand(1).getValueType()) 4500 return N1.getOperand(1); 4501 else 4502 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 4503 } 4504 4505 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 4506 } 4507 } 4508 4509 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 4510 // when vector types are scalarized and v1iX is legal. 4511 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 4512 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 4513 N1.getValueType().getVectorNumElements() == 1) { 4514 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 4515 N1.getOperand(1)); 4516 } 4517 break; 4518 case ISD::EXTRACT_ELEMENT: 4519 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 4520 assert(!N1.getValueType().isVector() && !VT.isVector() && 4521 (N1.getValueType().isInteger() == VT.isInteger()) && 4522 N1.getValueType() != VT && 4523 "Wrong types for EXTRACT_ELEMENT!"); 4524 4525 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 4526 // 64-bit integers into 32-bit parts. Instead of building the extract of 4527 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 4528 if (N1.getOpcode() == ISD::BUILD_PAIR) 4529 return N1.getOperand(N2C->getZExtValue()); 4530 4531 // EXTRACT_ELEMENT of a constant int is also very common. 4532 if (N1C) { 4533 unsigned ElementSize = VT.getSizeInBits(); 4534 unsigned Shift = ElementSize * N2C->getZExtValue(); 4535 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 4536 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 4537 } 4538 break; 4539 case ISD::EXTRACT_SUBVECTOR: 4540 if (VT.isSimple() && N1.getValueType().isSimple()) { 4541 assert(VT.isVector() && N1.getValueType().isVector() && 4542 "Extract subvector VTs must be a vectors!"); 4543 assert(VT.getVectorElementType() == 4544 N1.getValueType().getVectorElementType() && 4545 "Extract subvector VTs must have the same element type!"); 4546 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 4547 "Extract subvector must be from larger vector to smaller vector!"); 4548 4549 if (N2C) { 4550 assert((VT.getVectorNumElements() + N2C->getZExtValue() 4551 <= N1.getValueType().getVectorNumElements()) 4552 && "Extract subvector overflow!"); 4553 } 4554 4555 // Trivial extraction. 4556 if (VT.getSimpleVT() == N1.getSimpleValueType()) 4557 return N1; 4558 4559 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 4560 if (N1.isUndef()) 4561 return getUNDEF(VT); 4562 4563 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 4564 // the concat have the same type as the extract. 4565 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 4566 N1.getNumOperands() > 0 && 4567 VT == N1.getOperand(0).getValueType()) { 4568 unsigned Factor = VT.getVectorNumElements(); 4569 return N1.getOperand(N2C->getZExtValue() / Factor); 4570 } 4571 4572 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 4573 // during shuffle legalization. 4574 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 4575 VT == N1.getOperand(1).getValueType()) 4576 return N1.getOperand(1); 4577 } 4578 break; 4579 } 4580 4581 // Perform trivial constant folding. 4582 if (SDValue SV = 4583 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 4584 return SV; 4585 4586 // Constant fold FP operations. 4587 bool HasFPExceptions = TLI->hasFloatingPointExceptions(); 4588 if (N1CFP) { 4589 if (N2CFP) { 4590 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); 4591 APFloat::opStatus s; 4592 switch (Opcode) { 4593 case ISD::FADD: 4594 s = V1.add(V2, APFloat::rmNearestTiesToEven); 4595 if (!HasFPExceptions || s != APFloat::opInvalidOp) 4596 return getConstantFP(V1, DL, VT); 4597 break; 4598 case ISD::FSUB: 4599 s = V1.subtract(V2, APFloat::rmNearestTiesToEven); 4600 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4601 return getConstantFP(V1, DL, VT); 4602 break; 4603 case ISD::FMUL: 4604 s = V1.multiply(V2, APFloat::rmNearestTiesToEven); 4605 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4606 return getConstantFP(V1, DL, VT); 4607 break; 4608 case ISD::FDIV: 4609 s = V1.divide(V2, APFloat::rmNearestTiesToEven); 4610 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4611 s!=APFloat::opDivByZero)) { 4612 return getConstantFP(V1, DL, VT); 4613 } 4614 break; 4615 case ISD::FREM : 4616 s = V1.mod(V2); 4617 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4618 s!=APFloat::opDivByZero)) { 4619 return getConstantFP(V1, DL, VT); 4620 } 4621 break; 4622 case ISD::FCOPYSIGN: 4623 V1.copySign(V2); 4624 return getConstantFP(V1, DL, VT); 4625 default: break; 4626 } 4627 } 4628 4629 if (Opcode == ISD::FP_ROUND) { 4630 APFloat V = N1CFP->getValueAPF(); // make copy 4631 bool ignored; 4632 // This can return overflow, underflow, or inexact; we don't care. 4633 // FIXME need to be more flexible about rounding mode. 4634 (void)V.convert(EVTToAPFloatSemantics(VT), 4635 APFloat::rmNearestTiesToEven, &ignored); 4636 return getConstantFP(V, DL, VT); 4637 } 4638 } 4639 4640 // Canonicalize an UNDEF to the RHS, even over a constant. 4641 if (N1.isUndef()) { 4642 if (TLI->isCommutativeBinOp(Opcode)) { 4643 std::swap(N1, N2); 4644 } else { 4645 switch (Opcode) { 4646 case ISD::FP_ROUND_INREG: 4647 case ISD::SIGN_EXTEND_INREG: 4648 case ISD::SUB: 4649 case ISD::FSUB: 4650 case ISD::FDIV: 4651 case ISD::FREM: 4652 case ISD::SRA: 4653 return N1; // fold op(undef, arg2) -> undef 4654 case ISD::UDIV: 4655 case ISD::SDIV: 4656 case ISD::UREM: 4657 case ISD::SREM: 4658 case ISD::SRL: 4659 case ISD::SHL: 4660 if (!VT.isVector()) 4661 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 4662 // For vectors, we can't easily build an all zero vector, just return 4663 // the LHS. 4664 return N2; 4665 } 4666 } 4667 } 4668 4669 // Fold a bunch of operators when the RHS is undef. 4670 if (N2.isUndef()) { 4671 switch (Opcode) { 4672 case ISD::XOR: 4673 if (N1.isUndef()) 4674 // Handle undef ^ undef -> 0 special case. This is a common 4675 // idiom (misuse). 4676 return getConstant(0, DL, VT); 4677 LLVM_FALLTHROUGH; 4678 case ISD::ADD: 4679 case ISD::ADDC: 4680 case ISD::ADDE: 4681 case ISD::SUB: 4682 case ISD::UDIV: 4683 case ISD::SDIV: 4684 case ISD::UREM: 4685 case ISD::SREM: 4686 return N2; // fold op(arg1, undef) -> undef 4687 case ISD::FADD: 4688 case ISD::FSUB: 4689 case ISD::FMUL: 4690 case ISD::FDIV: 4691 case ISD::FREM: 4692 if (getTarget().Options.UnsafeFPMath) 4693 return N2; 4694 break; 4695 case ISD::MUL: 4696 case ISD::AND: 4697 case ISD::SRL: 4698 case ISD::SHL: 4699 if (!VT.isVector()) 4700 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 4701 // For vectors, we can't easily build an all zero vector, just return 4702 // the LHS. 4703 return N1; 4704 case ISD::OR: 4705 if (!VT.isVector()) 4706 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT); 4707 // For vectors, we can't easily build an all one vector, just return 4708 // the LHS. 4709 return N1; 4710 case ISD::SRA: 4711 return N1; 4712 } 4713 } 4714 4715 // Memoize this node if possible. 4716 SDNode *N; 4717 SDVTList VTs = getVTList(VT); 4718 SDValue Ops[] = {N1, N2}; 4719 if (VT != MVT::Glue) { 4720 FoldingSetNodeID ID; 4721 AddNodeIDNode(ID, Opcode, VTs, Ops); 4722 void *IP = nullptr; 4723 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4724 E->intersectFlagsWith(Flags); 4725 return SDValue(E, 0); 4726 } 4727 4728 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4729 N->setFlags(Flags); 4730 createOperands(N, Ops); 4731 CSEMap.InsertNode(N, IP); 4732 } else { 4733 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4734 createOperands(N, Ops); 4735 } 4736 4737 InsertNode(N); 4738 SDValue V = SDValue(N, 0); 4739 NewSDValueDbgMsg(V, "Creating new node: ", this); 4740 return V; 4741 } 4742 4743 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4744 SDValue N1, SDValue N2, SDValue N3) { 4745 // Perform various simplifications. 4746 switch (Opcode) { 4747 case ISD::FMA: { 4748 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4749 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4750 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 4751 if (N1CFP && N2CFP && N3CFP) { 4752 APFloat V1 = N1CFP->getValueAPF(); 4753 const APFloat &V2 = N2CFP->getValueAPF(); 4754 const APFloat &V3 = N3CFP->getValueAPF(); 4755 APFloat::opStatus s = 4756 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 4757 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) 4758 return getConstantFP(V1, DL, VT); 4759 } 4760 break; 4761 } 4762 case ISD::CONCAT_VECTORS: { 4763 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4764 SDValue Ops[] = {N1, N2, N3}; 4765 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4766 return V; 4767 break; 4768 } 4769 case ISD::SETCC: { 4770 // Use FoldSetCC to simplify SETCC's. 4771 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 4772 return V; 4773 // Vector constant folding. 4774 SDValue Ops[] = {N1, N2, N3}; 4775 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 4776 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 4777 return V; 4778 } 4779 break; 4780 } 4781 case ISD::SELECT: 4782 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 4783 if (N1C->getZExtValue()) 4784 return N2; // select true, X, Y -> X 4785 return N3; // select false, X, Y -> Y 4786 } 4787 4788 if (N2 == N3) return N2; // select C, X, X -> X 4789 break; 4790 case ISD::VECTOR_SHUFFLE: 4791 llvm_unreachable("should use getVectorShuffle constructor!"); 4792 case ISD::INSERT_VECTOR_ELT: { 4793 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 4794 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 4795 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 4796 return getUNDEF(VT); 4797 break; 4798 } 4799 case ISD::INSERT_SUBVECTOR: { 4800 SDValue Index = N3; 4801 if (VT.isSimple() && N1.getValueType().isSimple() 4802 && N2.getValueType().isSimple()) { 4803 assert(VT.isVector() && N1.getValueType().isVector() && 4804 N2.getValueType().isVector() && 4805 "Insert subvector VTs must be a vectors"); 4806 assert(VT == N1.getValueType() && 4807 "Dest and insert subvector source types must match!"); 4808 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 4809 "Insert subvector must be from smaller vector to larger vector!"); 4810 if (isa<ConstantSDNode>(Index)) { 4811 assert((N2.getValueType().getVectorNumElements() + 4812 cast<ConstantSDNode>(Index)->getZExtValue() 4813 <= VT.getVectorNumElements()) 4814 && "Insert subvector overflow!"); 4815 } 4816 4817 // Trivial insertion. 4818 if (VT.getSimpleVT() == N2.getSimpleValueType()) 4819 return N2; 4820 } 4821 break; 4822 } 4823 case ISD::BITCAST: 4824 // Fold bit_convert nodes from a type to themselves. 4825 if (N1.getValueType() == VT) 4826 return N1; 4827 break; 4828 } 4829 4830 // Memoize node if it doesn't produce a flag. 4831 SDNode *N; 4832 SDVTList VTs = getVTList(VT); 4833 SDValue Ops[] = {N1, N2, N3}; 4834 if (VT != MVT::Glue) { 4835 FoldingSetNodeID ID; 4836 AddNodeIDNode(ID, Opcode, VTs, Ops); 4837 void *IP = nullptr; 4838 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4839 return SDValue(E, 0); 4840 4841 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4842 createOperands(N, Ops); 4843 CSEMap.InsertNode(N, IP); 4844 } else { 4845 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4846 createOperands(N, Ops); 4847 } 4848 4849 InsertNode(N); 4850 SDValue V = SDValue(N, 0); 4851 NewSDValueDbgMsg(V, "Creating new node: ", this); 4852 return V; 4853 } 4854 4855 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4856 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 4857 SDValue Ops[] = { N1, N2, N3, N4 }; 4858 return getNode(Opcode, DL, VT, Ops); 4859 } 4860 4861 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4862 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 4863 SDValue N5) { 4864 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 4865 return getNode(Opcode, DL, VT, Ops); 4866 } 4867 4868 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 4869 /// the incoming stack arguments to be loaded from the stack. 4870 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 4871 SmallVector<SDValue, 8> ArgChains; 4872 4873 // Include the original chain at the beginning of the list. When this is 4874 // used by target LowerCall hooks, this helps legalize find the 4875 // CALLSEQ_BEGIN node. 4876 ArgChains.push_back(Chain); 4877 4878 // Add a chain value for each stack argument. 4879 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 4880 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 4881 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 4882 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 4883 if (FI->getIndex() < 0) 4884 ArgChains.push_back(SDValue(L, 1)); 4885 4886 // Build a tokenfactor for all the chains. 4887 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 4888 } 4889 4890 /// getMemsetValue - Vectorized representation of the memset value 4891 /// operand. 4892 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 4893 const SDLoc &dl) { 4894 assert(!Value.isUndef()); 4895 4896 unsigned NumBits = VT.getScalarSizeInBits(); 4897 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 4898 assert(C->getAPIntValue().getBitWidth() == 8); 4899 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 4900 if (VT.isInteger()) 4901 return DAG.getConstant(Val, dl, VT); 4902 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 4903 VT); 4904 } 4905 4906 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 4907 EVT IntVT = VT.getScalarType(); 4908 if (!IntVT.isInteger()) 4909 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 4910 4911 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 4912 if (NumBits > 8) { 4913 // Use a multiplication with 0x010101... to extend the input to the 4914 // required length. 4915 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 4916 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 4917 DAG.getConstant(Magic, dl, IntVT)); 4918 } 4919 4920 if (VT != Value.getValueType() && !VT.isInteger()) 4921 Value = DAG.getBitcast(VT.getScalarType(), Value); 4922 if (VT != Value.getValueType()) 4923 Value = DAG.getSplatBuildVector(VT, dl, Value); 4924 4925 return Value; 4926 } 4927 4928 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 4929 /// used when a memcpy is turned into a memset when the source is a constant 4930 /// string ptr. 4931 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 4932 const TargetLowering &TLI, 4933 const ConstantDataArraySlice &Slice) { 4934 // Handle vector with all elements zero. 4935 if (Slice.Array == nullptr) { 4936 if (VT.isInteger()) 4937 return DAG.getConstant(0, dl, VT); 4938 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 4939 return DAG.getConstantFP(0.0, dl, VT); 4940 else if (VT.isVector()) { 4941 unsigned NumElts = VT.getVectorNumElements(); 4942 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 4943 return DAG.getNode(ISD::BITCAST, dl, VT, 4944 DAG.getConstant(0, dl, 4945 EVT::getVectorVT(*DAG.getContext(), 4946 EltVT, NumElts))); 4947 } else 4948 llvm_unreachable("Expected type!"); 4949 } 4950 4951 assert(!VT.isVector() && "Can't handle vector type here!"); 4952 unsigned NumVTBits = VT.getSizeInBits(); 4953 unsigned NumVTBytes = NumVTBits / 8; 4954 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 4955 4956 APInt Val(NumVTBits, 0); 4957 if (DAG.getDataLayout().isLittleEndian()) { 4958 for (unsigned i = 0; i != NumBytes; ++i) 4959 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 4960 } else { 4961 for (unsigned i = 0; i != NumBytes; ++i) 4962 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 4963 } 4964 4965 // If the "cost" of materializing the integer immediate is less than the cost 4966 // of a load, then it is cost effective to turn the load into the immediate. 4967 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 4968 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 4969 return DAG.getConstant(Val, dl, VT); 4970 return SDValue(nullptr, 0); 4971 } 4972 4973 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 4974 const SDLoc &DL) { 4975 EVT VT = Base.getValueType(); 4976 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 4977 } 4978 4979 /// Returns true if memcpy source is constant data. 4980 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 4981 uint64_t SrcDelta = 0; 4982 GlobalAddressSDNode *G = nullptr; 4983 if (Src.getOpcode() == ISD::GlobalAddress) 4984 G = cast<GlobalAddressSDNode>(Src); 4985 else if (Src.getOpcode() == ISD::ADD && 4986 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 4987 Src.getOperand(1).getOpcode() == ISD::Constant) { 4988 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 4989 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 4990 } 4991 if (!G) 4992 return false; 4993 4994 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 4995 SrcDelta + G->getOffset()); 4996 } 4997 4998 /// Determines the optimal series of memory ops to replace the memset / memcpy. 4999 /// Return true if the number of memory ops is below the threshold (Limit). 5000 /// It returns the types of the sequence of memory ops to perform 5001 /// memset / memcpy by reference. 5002 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, 5003 unsigned Limit, uint64_t Size, 5004 unsigned DstAlign, unsigned SrcAlign, 5005 bool IsMemset, 5006 bool ZeroMemset, 5007 bool MemcpyStrSrc, 5008 bool AllowOverlap, 5009 unsigned DstAS, unsigned SrcAS, 5010 SelectionDAG &DAG, 5011 const TargetLowering &TLI) { 5012 assert((SrcAlign == 0 || SrcAlign >= DstAlign) && 5013 "Expecting memcpy / memset source to meet alignment requirement!"); 5014 // If 'SrcAlign' is zero, that means the memory operation does not need to 5015 // load the value, i.e. memset or memcpy from constant string. Otherwise, 5016 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 5017 // is the specified alignment of the memory operation. If it is zero, that 5018 // means it's possible to change the alignment of the destination. 5019 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 5020 // not need to be loaded. 5021 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, 5022 IsMemset, ZeroMemset, MemcpyStrSrc, 5023 DAG.getMachineFunction()); 5024 5025 if (VT == MVT::Other) { 5026 // Use the largest integer type whose alignment constraints are satisfied. 5027 // We only need to check DstAlign here as SrcAlign is always greater or 5028 // equal to DstAlign (or zero). 5029 VT = MVT::i64; 5030 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 5031 !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 5032 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 5033 assert(VT.isInteger()); 5034 5035 // Find the largest legal integer type. 5036 MVT LVT = MVT::i64; 5037 while (!TLI.isTypeLegal(LVT)) 5038 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 5039 assert(LVT.isInteger()); 5040 5041 // If the type we've chosen is larger than the largest legal integer type 5042 // then use that instead. 5043 if (VT.bitsGT(LVT)) 5044 VT = LVT; 5045 } 5046 5047 unsigned NumMemOps = 0; 5048 while (Size != 0) { 5049 unsigned VTSize = VT.getSizeInBits() / 8; 5050 while (VTSize > Size) { 5051 // For now, only use non-vector load / store's for the left-over pieces. 5052 EVT NewVT = VT; 5053 unsigned NewVTSize; 5054 5055 bool Found = false; 5056 if (VT.isVector() || VT.isFloatingPoint()) { 5057 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 5058 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && 5059 TLI.isSafeMemOpType(NewVT.getSimpleVT())) 5060 Found = true; 5061 else if (NewVT == MVT::i64 && 5062 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 5063 TLI.isSafeMemOpType(MVT::f64)) { 5064 // i64 is usually not legal on 32-bit targets, but f64 may be. 5065 NewVT = MVT::f64; 5066 Found = true; 5067 } 5068 } 5069 5070 if (!Found) { 5071 do { 5072 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 5073 if (NewVT == MVT::i8) 5074 break; 5075 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); 5076 } 5077 NewVTSize = NewVT.getSizeInBits() / 8; 5078 5079 // If the new VT cannot cover all of the remaining bits, then consider 5080 // issuing a (or a pair of) unaligned and overlapping load / store. 5081 // FIXME: Only does this for 64-bit or more since we don't have proper 5082 // cost model for unaligned load / store. 5083 bool Fast; 5084 if (NumMemOps && AllowOverlap && 5085 VTSize >= 8 && NewVTSize < Size && 5086 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast) 5087 VTSize = Size; 5088 else { 5089 VT = NewVT; 5090 VTSize = NewVTSize; 5091 } 5092 } 5093 5094 if (++NumMemOps > Limit) 5095 return false; 5096 5097 MemOps.push_back(VT); 5098 Size -= VTSize; 5099 } 5100 5101 return true; 5102 } 5103 5104 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 5105 // On Darwin, -Os means optimize for size without hurting performance, so 5106 // only really optimize for size when -Oz (MinSize) is used. 5107 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5108 return MF.getFunction().optForMinSize(); 5109 return MF.getFunction().optForSize(); 5110 } 5111 5112 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5113 SDValue Chain, SDValue Dst, SDValue Src, 5114 uint64_t Size, unsigned Align, 5115 bool isVol, bool AlwaysInline, 5116 MachinePointerInfo DstPtrInfo, 5117 MachinePointerInfo SrcPtrInfo) { 5118 // Turn a memcpy of undef to nop. 5119 if (Src.isUndef()) 5120 return Chain; 5121 5122 // Expand memcpy to a series of load and store ops if the size operand falls 5123 // below a certain threshold. 5124 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5125 // rather than maybe a humongous number of loads and stores. 5126 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5127 const DataLayout &DL = DAG.getDataLayout(); 5128 LLVMContext &C = *DAG.getContext(); 5129 std::vector<EVT> MemOps; 5130 bool DstAlignCanChange = false; 5131 MachineFunction &MF = DAG.getMachineFunction(); 5132 MachineFrameInfo &MFI = MF.getFrameInfo(); 5133 bool OptSize = shouldLowerMemFuncForSize(MF); 5134 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5135 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5136 DstAlignCanChange = true; 5137 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5138 if (Align > SrcAlign) 5139 SrcAlign = Align; 5140 ConstantDataArraySlice Slice; 5141 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5142 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5143 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5144 5145 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 5146 (DstAlignCanChange ? 0 : Align), 5147 (isZeroConstant ? 0 : SrcAlign), 5148 false, false, CopyFromConstant, true, 5149 DstPtrInfo.getAddrSpace(), 5150 SrcPtrInfo.getAddrSpace(), 5151 DAG, TLI)) 5152 return SDValue(); 5153 5154 if (DstAlignCanChange) { 5155 Type *Ty = MemOps[0].getTypeForEVT(C); 5156 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5157 5158 // Don't promote to an alignment that would require dynamic stack 5159 // realignment. 5160 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5161 if (!TRI->needsStackRealignment(MF)) 5162 while (NewAlign > Align && 5163 DL.exceedsNaturalStackAlignment(NewAlign)) 5164 NewAlign /= 2; 5165 5166 if (NewAlign > Align) { 5167 // Give the stack frame object a larger alignment if needed. 5168 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5169 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5170 Align = NewAlign; 5171 } 5172 } 5173 5174 MachineMemOperand::Flags MMOFlags = 5175 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5176 SmallVector<SDValue, 8> OutChains; 5177 unsigned NumMemOps = MemOps.size(); 5178 uint64_t SrcOff = 0, DstOff = 0; 5179 for (unsigned i = 0; i != NumMemOps; ++i) { 5180 EVT VT = MemOps[i]; 5181 unsigned VTSize = VT.getSizeInBits() / 8; 5182 SDValue Value, Store; 5183 5184 if (VTSize > Size) { 5185 // Issuing an unaligned load / store pair that overlaps with the previous 5186 // pair. Adjust the offset accordingly. 5187 assert(i == NumMemOps-1 && i != 0); 5188 SrcOff -= VTSize - Size; 5189 DstOff -= VTSize - Size; 5190 } 5191 5192 if (CopyFromConstant && 5193 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5194 // It's unlikely a store of a vector immediate can be done in a single 5195 // instruction. It would require a load from a constantpool first. 5196 // We only handle zero vectors here. 5197 // FIXME: Handle other cases where store of vector immediate is done in 5198 // a single instruction. 5199 ConstantDataArraySlice SubSlice; 5200 if (SrcOff < Slice.Length) { 5201 SubSlice = Slice; 5202 SubSlice.move(SrcOff); 5203 } else { 5204 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5205 SubSlice.Array = nullptr; 5206 SubSlice.Offset = 0; 5207 SubSlice.Length = VTSize; 5208 } 5209 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5210 if (Value.getNode()) 5211 Store = DAG.getStore(Chain, dl, Value, 5212 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5213 DstPtrInfo.getWithOffset(DstOff), Align, 5214 MMOFlags); 5215 } 5216 5217 if (!Store.getNode()) { 5218 // The type might not be legal for the target. This should only happen 5219 // if the type is smaller than a legal type, as on PPC, so the right 5220 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 5221 // to Load/Store if NVT==VT. 5222 // FIXME does the case above also need this? 5223 EVT NVT = TLI.getTypeToTransformTo(C, VT); 5224 assert(NVT.bitsGE(VT)); 5225 5226 bool isDereferenceable = 5227 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5228 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5229 if (isDereferenceable) 5230 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5231 5232 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 5233 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5234 SrcPtrInfo.getWithOffset(SrcOff), VT, 5235 MinAlign(SrcAlign, SrcOff), SrcMMOFlags); 5236 OutChains.push_back(Value.getValue(1)); 5237 Store = DAG.getTruncStore( 5238 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5239 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 5240 } 5241 OutChains.push_back(Store); 5242 SrcOff += VTSize; 5243 DstOff += VTSize; 5244 Size -= VTSize; 5245 } 5246 5247 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5248 } 5249 5250 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5251 SDValue Chain, SDValue Dst, SDValue Src, 5252 uint64_t Size, unsigned Align, 5253 bool isVol, bool AlwaysInline, 5254 MachinePointerInfo DstPtrInfo, 5255 MachinePointerInfo SrcPtrInfo) { 5256 // Turn a memmove of undef to nop. 5257 if (Src.isUndef()) 5258 return Chain; 5259 5260 // Expand memmove to a series of load and store ops if the size operand falls 5261 // below a certain threshold. 5262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5263 const DataLayout &DL = DAG.getDataLayout(); 5264 LLVMContext &C = *DAG.getContext(); 5265 std::vector<EVT> MemOps; 5266 bool DstAlignCanChange = false; 5267 MachineFunction &MF = DAG.getMachineFunction(); 5268 MachineFrameInfo &MFI = MF.getFrameInfo(); 5269 bool OptSize = shouldLowerMemFuncForSize(MF); 5270 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5271 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5272 DstAlignCanChange = true; 5273 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5274 if (Align > SrcAlign) 5275 SrcAlign = Align; 5276 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 5277 5278 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 5279 (DstAlignCanChange ? 0 : Align), SrcAlign, 5280 false, false, false, false, 5281 DstPtrInfo.getAddrSpace(), 5282 SrcPtrInfo.getAddrSpace(), 5283 DAG, TLI)) 5284 return SDValue(); 5285 5286 if (DstAlignCanChange) { 5287 Type *Ty = MemOps[0].getTypeForEVT(C); 5288 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5289 if (NewAlign > Align) { 5290 // Give the stack frame object a larger alignment if needed. 5291 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5292 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5293 Align = NewAlign; 5294 } 5295 } 5296 5297 MachineMemOperand::Flags MMOFlags = 5298 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5299 uint64_t SrcOff = 0, DstOff = 0; 5300 SmallVector<SDValue, 8> LoadValues; 5301 SmallVector<SDValue, 8> LoadChains; 5302 SmallVector<SDValue, 8> OutChains; 5303 unsigned NumMemOps = MemOps.size(); 5304 for (unsigned i = 0; i < NumMemOps; i++) { 5305 EVT VT = MemOps[i]; 5306 unsigned VTSize = VT.getSizeInBits() / 8; 5307 SDValue Value; 5308 5309 bool isDereferenceable = 5310 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5311 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5312 if (isDereferenceable) 5313 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5314 5315 Value = 5316 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5317 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); 5318 LoadValues.push_back(Value); 5319 LoadChains.push_back(Value.getValue(1)); 5320 SrcOff += VTSize; 5321 } 5322 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 5323 OutChains.clear(); 5324 for (unsigned i = 0; i < NumMemOps; i++) { 5325 EVT VT = MemOps[i]; 5326 unsigned VTSize = VT.getSizeInBits() / 8; 5327 SDValue Store; 5328 5329 Store = DAG.getStore(Chain, dl, LoadValues[i], 5330 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5331 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 5332 OutChains.push_back(Store); 5333 DstOff += VTSize; 5334 } 5335 5336 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5337 } 5338 5339 /// \brief Lower the call to 'memset' intrinsic function into a series of store 5340 /// operations. 5341 /// 5342 /// \param DAG Selection DAG where lowered code is placed. 5343 /// \param dl Link to corresponding IR location. 5344 /// \param Chain Control flow dependency. 5345 /// \param Dst Pointer to destination memory location. 5346 /// \param Src Value of byte to write into the memory. 5347 /// \param Size Number of bytes to write. 5348 /// \param Align Alignment of the destination in bytes. 5349 /// \param isVol True if destination is volatile. 5350 /// \param DstPtrInfo IR information on the memory pointer. 5351 /// \returns New head in the control flow, if lowering was successful, empty 5352 /// SDValue otherwise. 5353 /// 5354 /// The function tries to replace 'llvm.memset' intrinsic with several store 5355 /// operations and value calculation code. This is usually profitable for small 5356 /// memory size. 5357 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 5358 SDValue Chain, SDValue Dst, SDValue Src, 5359 uint64_t Size, unsigned Align, bool isVol, 5360 MachinePointerInfo DstPtrInfo) { 5361 // Turn a memset of undef to nop. 5362 if (Src.isUndef()) 5363 return Chain; 5364 5365 // Expand memset to a series of load/store ops if the size operand 5366 // falls below a certain threshold. 5367 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5368 std::vector<EVT> MemOps; 5369 bool DstAlignCanChange = false; 5370 MachineFunction &MF = DAG.getMachineFunction(); 5371 MachineFrameInfo &MFI = MF.getFrameInfo(); 5372 bool OptSize = shouldLowerMemFuncForSize(MF); 5373 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5374 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5375 DstAlignCanChange = true; 5376 bool IsZeroVal = 5377 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 5378 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 5379 Size, (DstAlignCanChange ? 0 : Align), 0, 5380 true, IsZeroVal, false, true, 5381 DstPtrInfo.getAddrSpace(), ~0u, 5382 DAG, TLI)) 5383 return SDValue(); 5384 5385 if (DstAlignCanChange) { 5386 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 5387 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 5388 if (NewAlign > Align) { 5389 // Give the stack frame object a larger alignment if needed. 5390 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5391 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5392 Align = NewAlign; 5393 } 5394 } 5395 5396 SmallVector<SDValue, 8> OutChains; 5397 uint64_t DstOff = 0; 5398 unsigned NumMemOps = MemOps.size(); 5399 5400 // Find the largest store and generate the bit pattern for it. 5401 EVT LargestVT = MemOps[0]; 5402 for (unsigned i = 1; i < NumMemOps; i++) 5403 if (MemOps[i].bitsGT(LargestVT)) 5404 LargestVT = MemOps[i]; 5405 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 5406 5407 for (unsigned i = 0; i < NumMemOps; i++) { 5408 EVT VT = MemOps[i]; 5409 unsigned VTSize = VT.getSizeInBits() / 8; 5410 if (VTSize > Size) { 5411 // Issuing an unaligned load / store pair that overlaps with the previous 5412 // pair. Adjust the offset accordingly. 5413 assert(i == NumMemOps-1 && i != 0); 5414 DstOff -= VTSize - Size; 5415 } 5416 5417 // If this store is smaller than the largest store see whether we can get 5418 // the smaller value for free with a truncate. 5419 SDValue Value = MemSetValue; 5420 if (VT.bitsLT(LargestVT)) { 5421 if (!LargestVT.isVector() && !VT.isVector() && 5422 TLI.isTruncateFree(LargestVT, VT)) 5423 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 5424 else 5425 Value = getMemsetValue(Src, VT, DAG, dl); 5426 } 5427 assert(Value.getValueType() == VT && "Value with wrong type."); 5428 SDValue Store = DAG.getStore( 5429 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5430 DstPtrInfo.getWithOffset(DstOff), Align, 5431 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 5432 OutChains.push_back(Store); 5433 DstOff += VT.getSizeInBits() / 8; 5434 Size -= VTSize; 5435 } 5436 5437 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5438 } 5439 5440 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 5441 unsigned AS) { 5442 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 5443 // pointer operands can be losslessly bitcasted to pointers of address space 0 5444 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 5445 report_fatal_error("cannot lower memory intrinsic in address space " + 5446 Twine(AS)); 5447 } 5448 } 5449 5450 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 5451 SDValue Src, SDValue Size, unsigned Align, 5452 bool isVol, bool AlwaysInline, bool isTailCall, 5453 MachinePointerInfo DstPtrInfo, 5454 MachinePointerInfo SrcPtrInfo) { 5455 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5456 5457 // Check to see if we should lower the memcpy to loads and stores first. 5458 // For cases within the target-specified limits, this is the best choice. 5459 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5460 if (ConstantSize) { 5461 // Memcpy with size zero? Just return the original chain. 5462 if (ConstantSize->isNullValue()) 5463 return Chain; 5464 5465 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5466 ConstantSize->getZExtValue(),Align, 5467 isVol, false, DstPtrInfo, SrcPtrInfo); 5468 if (Result.getNode()) 5469 return Result; 5470 } 5471 5472 // Then check to see if we should lower the memcpy with target-specific 5473 // code. If the target chooses to do this, this is the next best. 5474 if (TSI) { 5475 SDValue Result = TSI->EmitTargetCodeForMemcpy( 5476 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 5477 DstPtrInfo, SrcPtrInfo); 5478 if (Result.getNode()) 5479 return Result; 5480 } 5481 5482 // If we really need inline code and the target declined to provide it, 5483 // use a (potentially long) sequence of loads and stores. 5484 if (AlwaysInline) { 5485 assert(ConstantSize && "AlwaysInline requires a constant size!"); 5486 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5487 ConstantSize->getZExtValue(), Align, isVol, 5488 true, DstPtrInfo, SrcPtrInfo); 5489 } 5490 5491 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5492 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5493 5494 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 5495 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 5496 // respect volatile, so they may do things like read or write memory 5497 // beyond the given memory regions. But fixing this isn't easy, and most 5498 // people don't care. 5499 5500 // Emit a library call. 5501 TargetLowering::ArgListTy Args; 5502 TargetLowering::ArgListEntry Entry; 5503 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5504 Entry.Node = Dst; Args.push_back(Entry); 5505 Entry.Node = Src; Args.push_back(Entry); 5506 Entry.Node = Size; Args.push_back(Entry); 5507 // FIXME: pass in SDLoc 5508 TargetLowering::CallLoweringInfo CLI(*this); 5509 CLI.setDebugLoc(dl) 5510 .setChain(Chain) 5511 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 5512 Dst.getValueType().getTypeForEVT(*getContext()), 5513 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 5514 TLI->getPointerTy(getDataLayout())), 5515 std::move(Args)) 5516 .setDiscardResult() 5517 .setTailCall(isTailCall); 5518 5519 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5520 return CallResult.second; 5521 } 5522 5523 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 5524 SDValue Src, SDValue Size, unsigned Align, 5525 bool isVol, bool isTailCall, 5526 MachinePointerInfo DstPtrInfo, 5527 MachinePointerInfo SrcPtrInfo) { 5528 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5529 5530 // Check to see if we should lower the memmove to loads and stores first. 5531 // For cases within the target-specified limits, this is the best choice. 5532 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5533 if (ConstantSize) { 5534 // Memmove with size zero? Just return the original chain. 5535 if (ConstantSize->isNullValue()) 5536 return Chain; 5537 5538 SDValue Result = 5539 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 5540 ConstantSize->getZExtValue(), Align, isVol, 5541 false, DstPtrInfo, SrcPtrInfo); 5542 if (Result.getNode()) 5543 return Result; 5544 } 5545 5546 // Then check to see if we should lower the memmove with target-specific 5547 // code. If the target chooses to do this, this is the next best. 5548 if (TSI) { 5549 SDValue Result = TSI->EmitTargetCodeForMemmove( 5550 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 5551 if (Result.getNode()) 5552 return Result; 5553 } 5554 5555 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5556 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5557 5558 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 5559 // not be safe. See memcpy above for more details. 5560 5561 // Emit a library call. 5562 TargetLowering::ArgListTy Args; 5563 TargetLowering::ArgListEntry Entry; 5564 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5565 Entry.Node = Dst; Args.push_back(Entry); 5566 Entry.Node = Src; Args.push_back(Entry); 5567 Entry.Node = Size; Args.push_back(Entry); 5568 // FIXME: pass in SDLoc 5569 TargetLowering::CallLoweringInfo CLI(*this); 5570 CLI.setDebugLoc(dl) 5571 .setChain(Chain) 5572 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 5573 Dst.getValueType().getTypeForEVT(*getContext()), 5574 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 5575 TLI->getPointerTy(getDataLayout())), 5576 std::move(Args)) 5577 .setDiscardResult() 5578 .setTailCall(isTailCall); 5579 5580 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5581 return CallResult.second; 5582 } 5583 5584 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 5585 SDValue Src, SDValue Size, unsigned Align, 5586 bool isVol, bool isTailCall, 5587 MachinePointerInfo DstPtrInfo) { 5588 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5589 5590 // Check to see if we should lower the memset to stores first. 5591 // For cases within the target-specified limits, this is the best choice. 5592 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5593 if (ConstantSize) { 5594 // Memset with size zero? Just return the original chain. 5595 if (ConstantSize->isNullValue()) 5596 return Chain; 5597 5598 SDValue Result = 5599 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 5600 Align, isVol, DstPtrInfo); 5601 5602 if (Result.getNode()) 5603 return Result; 5604 } 5605 5606 // Then check to see if we should lower the memset with target-specific 5607 // code. If the target chooses to do this, this is the next best. 5608 if (TSI) { 5609 SDValue Result = TSI->EmitTargetCodeForMemset( 5610 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 5611 if (Result.getNode()) 5612 return Result; 5613 } 5614 5615 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5616 5617 // Emit a library call. 5618 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext()); 5619 TargetLowering::ArgListTy Args; 5620 TargetLowering::ArgListEntry Entry; 5621 Entry.Node = Dst; Entry.Ty = IntPtrTy; 5622 Args.push_back(Entry); 5623 Entry.Node = Src; 5624 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 5625 Args.push_back(Entry); 5626 Entry.Node = Size; 5627 Entry.Ty = IntPtrTy; 5628 Args.push_back(Entry); 5629 5630 // FIXME: pass in SDLoc 5631 TargetLowering::CallLoweringInfo CLI(*this); 5632 CLI.setDebugLoc(dl) 5633 .setChain(Chain) 5634 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 5635 Dst.getValueType().getTypeForEVT(*getContext()), 5636 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 5637 TLI->getPointerTy(getDataLayout())), 5638 std::move(Args)) 5639 .setDiscardResult() 5640 .setTailCall(isTailCall); 5641 5642 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5643 return CallResult.second; 5644 } 5645 5646 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5647 SDVTList VTList, ArrayRef<SDValue> Ops, 5648 MachineMemOperand *MMO) { 5649 FoldingSetNodeID ID; 5650 ID.AddInteger(MemVT.getRawBits()); 5651 AddNodeIDNode(ID, Opcode, VTList, Ops); 5652 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5653 void* IP = nullptr; 5654 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5655 cast<AtomicSDNode>(E)->refineAlignment(MMO); 5656 return SDValue(E, 0); 5657 } 5658 5659 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5660 VTList, MemVT, MMO); 5661 createOperands(N, Ops); 5662 5663 CSEMap.InsertNode(N, IP); 5664 InsertNode(N); 5665 return SDValue(N, 0); 5666 } 5667 5668 SDValue SelectionDAG::getAtomicCmpSwap( 5669 unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, 5670 SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, 5671 unsigned Alignment, AtomicOrdering SuccessOrdering, 5672 AtomicOrdering FailureOrdering, SyncScope::ID SSID) { 5673 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5674 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5675 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5676 5677 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5678 Alignment = getEVTAlignment(MemVT); 5679 5680 MachineFunction &MF = getMachineFunction(); 5681 5682 // FIXME: Volatile isn't really correct; we should keep track of atomic 5683 // orderings in the memoperand. 5684 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad | 5685 MachineMemOperand::MOStore; 5686 MachineMemOperand *MMO = 5687 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, 5688 AAMDNodes(), nullptr, SSID, SuccessOrdering, 5689 FailureOrdering); 5690 5691 return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO); 5692 } 5693 5694 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 5695 EVT MemVT, SDVTList VTs, SDValue Chain, 5696 SDValue Ptr, SDValue Cmp, SDValue Swp, 5697 MachineMemOperand *MMO) { 5698 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5699 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5700 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5701 5702 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 5703 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5704 } 5705 5706 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5707 SDValue Chain, SDValue Ptr, SDValue Val, 5708 const Value *PtrVal, unsigned Alignment, 5709 AtomicOrdering Ordering, 5710 SyncScope::ID SSID) { 5711 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5712 Alignment = getEVTAlignment(MemVT); 5713 5714 MachineFunction &MF = getMachineFunction(); 5715 // An atomic store does not load. An atomic load does not store. 5716 // (An atomicrmw obviously both loads and stores.) 5717 // For now, atomics are considered to be volatile always, and they are 5718 // chained as such. 5719 // FIXME: Volatile isn't really correct; we should keep track of atomic 5720 // orderings in the memoperand. 5721 auto Flags = MachineMemOperand::MOVolatile; 5722 if (Opcode != ISD::ATOMIC_STORE) 5723 Flags |= MachineMemOperand::MOLoad; 5724 if (Opcode != ISD::ATOMIC_LOAD) 5725 Flags |= MachineMemOperand::MOStore; 5726 5727 MachineMemOperand *MMO = 5728 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, 5729 MemVT.getStoreSize(), Alignment, AAMDNodes(), 5730 nullptr, SSID, Ordering); 5731 5732 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO); 5733 } 5734 5735 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5736 SDValue Chain, SDValue Ptr, SDValue Val, 5737 MachineMemOperand *MMO) { 5738 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 5739 Opcode == ISD::ATOMIC_LOAD_SUB || 5740 Opcode == ISD::ATOMIC_LOAD_AND || 5741 Opcode == ISD::ATOMIC_LOAD_OR || 5742 Opcode == ISD::ATOMIC_LOAD_XOR || 5743 Opcode == ISD::ATOMIC_LOAD_NAND || 5744 Opcode == ISD::ATOMIC_LOAD_MIN || 5745 Opcode == ISD::ATOMIC_LOAD_MAX || 5746 Opcode == ISD::ATOMIC_LOAD_UMIN || 5747 Opcode == ISD::ATOMIC_LOAD_UMAX || 5748 Opcode == ISD::ATOMIC_SWAP || 5749 Opcode == ISD::ATOMIC_STORE) && 5750 "Invalid Atomic Op"); 5751 5752 EVT VT = Val.getValueType(); 5753 5754 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 5755 getVTList(VT, MVT::Other); 5756 SDValue Ops[] = {Chain, Ptr, Val}; 5757 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5758 } 5759 5760 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5761 EVT VT, SDValue Chain, SDValue Ptr, 5762 MachineMemOperand *MMO) { 5763 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 5764 5765 SDVTList VTs = getVTList(VT, MVT::Other); 5766 SDValue Ops[] = {Chain, Ptr}; 5767 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5768 } 5769 5770 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 5771 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 5772 if (Ops.size() == 1) 5773 return Ops[0]; 5774 5775 SmallVector<EVT, 4> VTs; 5776 VTs.reserve(Ops.size()); 5777 for (unsigned i = 0; i < Ops.size(); ++i) 5778 VTs.push_back(Ops[i].getValueType()); 5779 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 5780 } 5781 5782 SDValue SelectionDAG::getMemIntrinsicNode( 5783 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 5784 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, 5785 MachineMemOperand::Flags Flags, unsigned Size) { 5786 if (Align == 0) // Ensure that codegen never sees alignment 0 5787 Align = getEVTAlignment(MemVT); 5788 5789 if (!Size) 5790 Size = MemVT.getStoreSize(); 5791 5792 MachineFunction &MF = getMachineFunction(); 5793 MachineMemOperand *MMO = 5794 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 5795 5796 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 5797 } 5798 5799 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 5800 SDVTList VTList, 5801 ArrayRef<SDValue> Ops, EVT MemVT, 5802 MachineMemOperand *MMO) { 5803 assert((Opcode == ISD::INTRINSIC_VOID || 5804 Opcode == ISD::INTRINSIC_W_CHAIN || 5805 Opcode == ISD::PREFETCH || 5806 Opcode == ISD::LIFETIME_START || 5807 Opcode == ISD::LIFETIME_END || 5808 ((int)Opcode <= std::numeric_limits<int>::max() && 5809 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 5810 "Opcode is not a memory-accessing opcode!"); 5811 5812 // Memoize the node unless it returns a flag. 5813 MemIntrinsicSDNode *N; 5814 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5815 FoldingSetNodeID ID; 5816 AddNodeIDNode(ID, Opcode, VTList, Ops); 5817 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 5818 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 5819 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5820 void *IP = nullptr; 5821 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5822 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 5823 return SDValue(E, 0); 5824 } 5825 5826 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5827 VTList, MemVT, MMO); 5828 createOperands(N, Ops); 5829 5830 CSEMap.InsertNode(N, IP); 5831 } else { 5832 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5833 VTList, MemVT, MMO); 5834 createOperands(N, Ops); 5835 } 5836 InsertNode(N); 5837 return SDValue(N, 0); 5838 } 5839 5840 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5841 /// MachinePointerInfo record from it. This is particularly useful because the 5842 /// code generator has many cases where it doesn't bother passing in a 5843 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5844 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 5845 SelectionDAG &DAG, SDValue Ptr, 5846 int64_t Offset = 0) { 5847 // If this is FI+Offset, we can model it. 5848 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 5849 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 5850 FI->getIndex(), Offset); 5851 5852 // If this is (FI+Offset1)+Offset2, we can model it. 5853 if (Ptr.getOpcode() != ISD::ADD || 5854 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 5855 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 5856 return Info; 5857 5858 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 5859 return MachinePointerInfo::getFixedStack( 5860 DAG.getMachineFunction(), FI, 5861 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 5862 } 5863 5864 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5865 /// MachinePointerInfo record from it. This is particularly useful because the 5866 /// code generator has many cases where it doesn't bother passing in a 5867 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5868 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 5869 SelectionDAG &DAG, SDValue Ptr, 5870 SDValue OffsetOp) { 5871 // If the 'Offset' value isn't a constant, we can't handle this. 5872 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 5873 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 5874 if (OffsetOp.isUndef()) 5875 return InferPointerInfo(Info, DAG, Ptr); 5876 return Info; 5877 } 5878 5879 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5880 EVT VT, const SDLoc &dl, SDValue Chain, 5881 SDValue Ptr, SDValue Offset, 5882 MachinePointerInfo PtrInfo, EVT MemVT, 5883 unsigned Alignment, 5884 MachineMemOperand::Flags MMOFlags, 5885 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5886 assert(Chain.getValueType() == MVT::Other && 5887 "Invalid chain type"); 5888 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5889 Alignment = getEVTAlignment(MemVT); 5890 5891 MMOFlags |= MachineMemOperand::MOLoad; 5892 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 5893 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 5894 // clients. 5895 if (PtrInfo.V.isNull()) 5896 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 5897 5898 MachineFunction &MF = getMachineFunction(); 5899 MachineMemOperand *MMO = MF.getMachineMemOperand( 5900 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 5901 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 5902 } 5903 5904 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5905 EVT VT, const SDLoc &dl, SDValue Chain, 5906 SDValue Ptr, SDValue Offset, EVT MemVT, 5907 MachineMemOperand *MMO) { 5908 if (VT == MemVT) { 5909 ExtType = ISD::NON_EXTLOAD; 5910 } else if (ExtType == ISD::NON_EXTLOAD) { 5911 assert(VT == MemVT && "Non-extending load from different memory type!"); 5912 } else { 5913 // Extending load. 5914 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 5915 "Should only be an extending load, not truncating!"); 5916 assert(VT.isInteger() == MemVT.isInteger() && 5917 "Cannot convert from FP to Int or Int -> FP!"); 5918 assert(VT.isVector() == MemVT.isVector() && 5919 "Cannot use an ext load to convert to or from a vector!"); 5920 assert((!VT.isVector() || 5921 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 5922 "Cannot use an ext load to change the number of vector elements!"); 5923 } 5924 5925 bool Indexed = AM != ISD::UNINDEXED; 5926 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 5927 5928 SDVTList VTs = Indexed ? 5929 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 5930 SDValue Ops[] = { Chain, Ptr, Offset }; 5931 FoldingSetNodeID ID; 5932 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 5933 ID.AddInteger(MemVT.getRawBits()); 5934 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 5935 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 5936 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5937 void *IP = nullptr; 5938 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5939 cast<LoadSDNode>(E)->refineAlignment(MMO); 5940 return SDValue(E, 0); 5941 } 5942 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5943 ExtType, MemVT, MMO); 5944 createOperands(N, Ops); 5945 5946 CSEMap.InsertNode(N, IP); 5947 InsertNode(N); 5948 SDValue V(N, 0); 5949 NewSDValueDbgMsg(V, "Creating new node: ", this); 5950 return V; 5951 } 5952 5953 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5954 SDValue Ptr, MachinePointerInfo PtrInfo, 5955 unsigned Alignment, 5956 MachineMemOperand::Flags MMOFlags, 5957 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5958 SDValue Undef = getUNDEF(Ptr.getValueType()); 5959 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5960 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 5961 } 5962 5963 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5964 SDValue Ptr, MachineMemOperand *MMO) { 5965 SDValue Undef = getUNDEF(Ptr.getValueType()); 5966 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5967 VT, MMO); 5968 } 5969 5970 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5971 EVT VT, SDValue Chain, SDValue Ptr, 5972 MachinePointerInfo PtrInfo, EVT MemVT, 5973 unsigned Alignment, 5974 MachineMemOperand::Flags MMOFlags, 5975 const AAMDNodes &AAInfo) { 5976 SDValue Undef = getUNDEF(Ptr.getValueType()); 5977 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 5978 MemVT, Alignment, MMOFlags, AAInfo); 5979 } 5980 5981 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5982 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 5983 MachineMemOperand *MMO) { 5984 SDValue Undef = getUNDEF(Ptr.getValueType()); 5985 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 5986 MemVT, MMO); 5987 } 5988 5989 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 5990 SDValue Base, SDValue Offset, 5991 ISD::MemIndexedMode AM) { 5992 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 5993 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 5994 // Don't propagate the invariant or dereferenceable flags. 5995 auto MMOFlags = 5996 LD->getMemOperand()->getFlags() & 5997 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 5998 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 5999 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6000 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6001 LD->getAAInfo()); 6002 } 6003 6004 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6005 SDValue Ptr, MachinePointerInfo PtrInfo, 6006 unsigned Alignment, 6007 MachineMemOperand::Flags MMOFlags, 6008 const AAMDNodes &AAInfo) { 6009 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6010 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6011 Alignment = getEVTAlignment(Val.getValueType()); 6012 6013 MMOFlags |= MachineMemOperand::MOStore; 6014 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6015 6016 if (PtrInfo.V.isNull()) 6017 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6018 6019 MachineFunction &MF = getMachineFunction(); 6020 MachineMemOperand *MMO = MF.getMachineMemOperand( 6021 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 6022 return getStore(Chain, dl, Val, Ptr, MMO); 6023 } 6024 6025 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6026 SDValue Ptr, MachineMemOperand *MMO) { 6027 assert(Chain.getValueType() == MVT::Other && 6028 "Invalid chain type"); 6029 EVT VT = Val.getValueType(); 6030 SDVTList VTs = getVTList(MVT::Other); 6031 SDValue Undef = getUNDEF(Ptr.getValueType()); 6032 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6033 FoldingSetNodeID ID; 6034 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6035 ID.AddInteger(VT.getRawBits()); 6036 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6037 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6038 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6039 void *IP = nullptr; 6040 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6041 cast<StoreSDNode>(E)->refineAlignment(MMO); 6042 return SDValue(E, 0); 6043 } 6044 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6045 ISD::UNINDEXED, false, VT, MMO); 6046 createOperands(N, Ops); 6047 6048 CSEMap.InsertNode(N, IP); 6049 InsertNode(N); 6050 SDValue V(N, 0); 6051 NewSDValueDbgMsg(V, "Creating new node: ", this); 6052 return V; 6053 } 6054 6055 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6056 SDValue Ptr, MachinePointerInfo PtrInfo, 6057 EVT SVT, unsigned Alignment, 6058 MachineMemOperand::Flags MMOFlags, 6059 const AAMDNodes &AAInfo) { 6060 assert(Chain.getValueType() == MVT::Other && 6061 "Invalid chain type"); 6062 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6063 Alignment = getEVTAlignment(SVT); 6064 6065 MMOFlags |= MachineMemOperand::MOStore; 6066 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6067 6068 if (PtrInfo.V.isNull()) 6069 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6070 6071 MachineFunction &MF = getMachineFunction(); 6072 MachineMemOperand *MMO = MF.getMachineMemOperand( 6073 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6074 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 6075 } 6076 6077 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6078 SDValue Ptr, EVT SVT, 6079 MachineMemOperand *MMO) { 6080 EVT VT = Val.getValueType(); 6081 6082 assert(Chain.getValueType() == MVT::Other && 6083 "Invalid chain type"); 6084 if (VT == SVT) 6085 return getStore(Chain, dl, Val, Ptr, MMO); 6086 6087 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 6088 "Should only be a truncating store, not extending!"); 6089 assert(VT.isInteger() == SVT.isInteger() && 6090 "Can't do FP-INT conversion!"); 6091 assert(VT.isVector() == SVT.isVector() && 6092 "Cannot use trunc store to convert to or from a vector!"); 6093 assert((!VT.isVector() || 6094 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 6095 "Cannot use trunc store to change the number of vector elements!"); 6096 6097 SDVTList VTs = getVTList(MVT::Other); 6098 SDValue Undef = getUNDEF(Ptr.getValueType()); 6099 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6100 FoldingSetNodeID ID; 6101 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6102 ID.AddInteger(SVT.getRawBits()); 6103 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6104 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 6105 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6106 void *IP = nullptr; 6107 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6108 cast<StoreSDNode>(E)->refineAlignment(MMO); 6109 return SDValue(E, 0); 6110 } 6111 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6112 ISD::UNINDEXED, true, SVT, MMO); 6113 createOperands(N, Ops); 6114 6115 CSEMap.InsertNode(N, IP); 6116 InsertNode(N); 6117 SDValue V(N, 0); 6118 NewSDValueDbgMsg(V, "Creating new node: ", this); 6119 return V; 6120 } 6121 6122 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 6123 SDValue Base, SDValue Offset, 6124 ISD::MemIndexedMode AM) { 6125 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 6126 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 6127 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 6128 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 6129 FoldingSetNodeID ID; 6130 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6131 ID.AddInteger(ST->getMemoryVT().getRawBits()); 6132 ID.AddInteger(ST->getRawSubclassData()); 6133 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 6134 void *IP = nullptr; 6135 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6136 return SDValue(E, 0); 6137 6138 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6139 ST->isTruncatingStore(), ST->getMemoryVT(), 6140 ST->getMemOperand()); 6141 createOperands(N, Ops); 6142 6143 CSEMap.InsertNode(N, IP); 6144 InsertNode(N); 6145 SDValue V(N, 0); 6146 NewSDValueDbgMsg(V, "Creating new node: ", this); 6147 return V; 6148 } 6149 6150 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6151 SDValue Ptr, SDValue Mask, SDValue Src0, 6152 EVT MemVT, MachineMemOperand *MMO, 6153 ISD::LoadExtType ExtTy, bool isExpanding) { 6154 SDVTList VTs = getVTList(VT, MVT::Other); 6155 SDValue Ops[] = { Chain, Ptr, Mask, Src0 }; 6156 FoldingSetNodeID ID; 6157 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 6158 ID.AddInteger(VT.getRawBits()); 6159 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 6160 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 6161 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6162 void *IP = nullptr; 6163 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6164 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 6165 return SDValue(E, 0); 6166 } 6167 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6168 ExtTy, isExpanding, MemVT, MMO); 6169 createOperands(N, Ops); 6170 6171 CSEMap.InsertNode(N, IP); 6172 InsertNode(N); 6173 SDValue V(N, 0); 6174 NewSDValueDbgMsg(V, "Creating new node: ", this); 6175 return V; 6176 } 6177 6178 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 6179 SDValue Val, SDValue Ptr, SDValue Mask, 6180 EVT MemVT, MachineMemOperand *MMO, 6181 bool IsTruncating, bool IsCompressing) { 6182 assert(Chain.getValueType() == MVT::Other && 6183 "Invalid chain type"); 6184 EVT VT = Val.getValueType(); 6185 SDVTList VTs = getVTList(MVT::Other); 6186 SDValue Ops[] = { Chain, Ptr, Mask, Val }; 6187 FoldingSetNodeID ID; 6188 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 6189 ID.AddInteger(VT.getRawBits()); 6190 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 6191 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 6192 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6193 void *IP = nullptr; 6194 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6195 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 6196 return SDValue(E, 0); 6197 } 6198 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6199 IsTruncating, IsCompressing, MemVT, MMO); 6200 createOperands(N, Ops); 6201 6202 CSEMap.InsertNode(N, IP); 6203 InsertNode(N); 6204 SDValue V(N, 0); 6205 NewSDValueDbgMsg(V, "Creating new node: ", this); 6206 return V; 6207 } 6208 6209 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 6210 ArrayRef<SDValue> Ops, 6211 MachineMemOperand *MMO) { 6212 assert(Ops.size() == 6 && "Incompatible number of operands"); 6213 6214 FoldingSetNodeID ID; 6215 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 6216 ID.AddInteger(VT.getRawBits()); 6217 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 6218 dl.getIROrder(), VTs, VT, MMO)); 6219 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6220 void *IP = nullptr; 6221 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6222 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 6223 return SDValue(E, 0); 6224 } 6225 6226 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6227 VTs, VT, MMO); 6228 createOperands(N, Ops); 6229 6230 assert(N->getValue().getValueType() == N->getValueType(0) && 6231 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 6232 assert(N->getMask().getValueType().getVectorNumElements() == 6233 N->getValueType(0).getVectorNumElements() && 6234 "Vector width mismatch between mask and data"); 6235 assert(N->getIndex().getValueType().getVectorNumElements() == 6236 N->getValueType(0).getVectorNumElements() && 6237 "Vector width mismatch between index and data"); 6238 assert(isa<ConstantSDNode>(N->getScale()) && 6239 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 6240 "Scale should be a constant power of 2"); 6241 6242 CSEMap.InsertNode(N, IP); 6243 InsertNode(N); 6244 SDValue V(N, 0); 6245 NewSDValueDbgMsg(V, "Creating new node: ", this); 6246 return V; 6247 } 6248 6249 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 6250 ArrayRef<SDValue> Ops, 6251 MachineMemOperand *MMO) { 6252 assert(Ops.size() == 6 && "Incompatible number of operands"); 6253 6254 FoldingSetNodeID ID; 6255 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 6256 ID.AddInteger(VT.getRawBits()); 6257 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 6258 dl.getIROrder(), VTs, VT, MMO)); 6259 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6260 void *IP = nullptr; 6261 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6262 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 6263 return SDValue(E, 0); 6264 } 6265 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6266 VTs, VT, MMO); 6267 createOperands(N, Ops); 6268 6269 assert(N->getMask().getValueType().getVectorNumElements() == 6270 N->getValue().getValueType().getVectorNumElements() && 6271 "Vector width mismatch between mask and data"); 6272 assert(N->getIndex().getValueType().getVectorNumElements() == 6273 N->getValue().getValueType().getVectorNumElements() && 6274 "Vector width mismatch between index and data"); 6275 assert(isa<ConstantSDNode>(N->getScale()) && 6276 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 6277 "Scale should be a constant power of 2"); 6278 6279 CSEMap.InsertNode(N, IP); 6280 InsertNode(N); 6281 SDValue V(N, 0); 6282 NewSDValueDbgMsg(V, "Creating new node: ", this); 6283 return V; 6284 } 6285 6286 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 6287 SDValue Ptr, SDValue SV, unsigned Align) { 6288 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 6289 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 6290 } 6291 6292 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6293 ArrayRef<SDUse> Ops) { 6294 switch (Ops.size()) { 6295 case 0: return getNode(Opcode, DL, VT); 6296 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 6297 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 6298 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 6299 default: break; 6300 } 6301 6302 // Copy from an SDUse array into an SDValue array for use with 6303 // the regular getNode logic. 6304 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 6305 return getNode(Opcode, DL, VT, NewOps); 6306 } 6307 6308 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6309 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 6310 unsigned NumOps = Ops.size(); 6311 switch (NumOps) { 6312 case 0: return getNode(Opcode, DL, VT); 6313 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 6314 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 6315 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 6316 default: break; 6317 } 6318 6319 switch (Opcode) { 6320 default: break; 6321 case ISD::CONCAT_VECTORS: 6322 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 6323 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 6324 return V; 6325 break; 6326 case ISD::SELECT_CC: 6327 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 6328 assert(Ops[0].getValueType() == Ops[1].getValueType() && 6329 "LHS and RHS of condition must have same type!"); 6330 assert(Ops[2].getValueType() == Ops[3].getValueType() && 6331 "True and False arms of SelectCC must have same type!"); 6332 assert(Ops[2].getValueType() == VT && 6333 "select_cc node must be of same type as true and false value!"); 6334 break; 6335 case ISD::BR_CC: 6336 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 6337 assert(Ops[2].getValueType() == Ops[3].getValueType() && 6338 "LHS/RHS of comparison should match types!"); 6339 break; 6340 } 6341 6342 // Memoize nodes. 6343 SDNode *N; 6344 SDVTList VTs = getVTList(VT); 6345 6346 if (VT != MVT::Glue) { 6347 FoldingSetNodeID ID; 6348 AddNodeIDNode(ID, Opcode, VTs, Ops); 6349 void *IP = nullptr; 6350 6351 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6352 return SDValue(E, 0); 6353 6354 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6355 createOperands(N, Ops); 6356 6357 CSEMap.InsertNode(N, IP); 6358 } else { 6359 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6360 createOperands(N, Ops); 6361 } 6362 6363 InsertNode(N); 6364 SDValue V(N, 0); 6365 NewSDValueDbgMsg(V, "Creating new node: ", this); 6366 return V; 6367 } 6368 6369 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 6370 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 6371 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 6372 } 6373 6374 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6375 ArrayRef<SDValue> Ops) { 6376 if (VTList.NumVTs == 1) 6377 return getNode(Opcode, DL, VTList.VTs[0], Ops); 6378 6379 #if 0 6380 switch (Opcode) { 6381 // FIXME: figure out how to safely handle things like 6382 // int foo(int x) { return 1 << (x & 255); } 6383 // int bar() { return foo(256); } 6384 case ISD::SRA_PARTS: 6385 case ISD::SRL_PARTS: 6386 case ISD::SHL_PARTS: 6387 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 6388 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 6389 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6390 else if (N3.getOpcode() == ISD::AND) 6391 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 6392 // If the and is only masking out bits that cannot effect the shift, 6393 // eliminate the and. 6394 unsigned NumBits = VT.getScalarSizeInBits()*2; 6395 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 6396 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6397 } 6398 break; 6399 } 6400 #endif 6401 6402 // Memoize the node unless it returns a flag. 6403 SDNode *N; 6404 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6405 FoldingSetNodeID ID; 6406 AddNodeIDNode(ID, Opcode, VTList, Ops); 6407 void *IP = nullptr; 6408 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6409 return SDValue(E, 0); 6410 6411 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6412 createOperands(N, Ops); 6413 CSEMap.InsertNode(N, IP); 6414 } else { 6415 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6416 createOperands(N, Ops); 6417 } 6418 InsertNode(N); 6419 SDValue V(N, 0); 6420 NewSDValueDbgMsg(V, "Creating new node: ", this); 6421 return V; 6422 } 6423 6424 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 6425 SDVTList VTList) { 6426 return getNode(Opcode, DL, VTList, None); 6427 } 6428 6429 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6430 SDValue N1) { 6431 SDValue Ops[] = { N1 }; 6432 return getNode(Opcode, DL, VTList, Ops); 6433 } 6434 6435 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6436 SDValue N1, SDValue N2) { 6437 SDValue Ops[] = { N1, N2 }; 6438 return getNode(Opcode, DL, VTList, Ops); 6439 } 6440 6441 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6442 SDValue N1, SDValue N2, SDValue N3) { 6443 SDValue Ops[] = { N1, N2, N3 }; 6444 return getNode(Opcode, DL, VTList, Ops); 6445 } 6446 6447 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6448 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6449 SDValue Ops[] = { N1, N2, N3, N4 }; 6450 return getNode(Opcode, DL, VTList, Ops); 6451 } 6452 6453 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6454 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6455 SDValue N5) { 6456 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6457 return getNode(Opcode, DL, VTList, Ops); 6458 } 6459 6460 SDVTList SelectionDAG::getVTList(EVT VT) { 6461 return makeVTList(SDNode::getValueTypeList(VT), 1); 6462 } 6463 6464 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 6465 FoldingSetNodeID ID; 6466 ID.AddInteger(2U); 6467 ID.AddInteger(VT1.getRawBits()); 6468 ID.AddInteger(VT2.getRawBits()); 6469 6470 void *IP = nullptr; 6471 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6472 if (!Result) { 6473 EVT *Array = Allocator.Allocate<EVT>(2); 6474 Array[0] = VT1; 6475 Array[1] = VT2; 6476 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 6477 VTListMap.InsertNode(Result, IP); 6478 } 6479 return Result->getSDVTList(); 6480 } 6481 6482 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 6483 FoldingSetNodeID ID; 6484 ID.AddInteger(3U); 6485 ID.AddInteger(VT1.getRawBits()); 6486 ID.AddInteger(VT2.getRawBits()); 6487 ID.AddInteger(VT3.getRawBits()); 6488 6489 void *IP = nullptr; 6490 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6491 if (!Result) { 6492 EVT *Array = Allocator.Allocate<EVT>(3); 6493 Array[0] = VT1; 6494 Array[1] = VT2; 6495 Array[2] = VT3; 6496 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 6497 VTListMap.InsertNode(Result, IP); 6498 } 6499 return Result->getSDVTList(); 6500 } 6501 6502 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 6503 FoldingSetNodeID ID; 6504 ID.AddInteger(4U); 6505 ID.AddInteger(VT1.getRawBits()); 6506 ID.AddInteger(VT2.getRawBits()); 6507 ID.AddInteger(VT3.getRawBits()); 6508 ID.AddInteger(VT4.getRawBits()); 6509 6510 void *IP = nullptr; 6511 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6512 if (!Result) { 6513 EVT *Array = Allocator.Allocate<EVT>(4); 6514 Array[0] = VT1; 6515 Array[1] = VT2; 6516 Array[2] = VT3; 6517 Array[3] = VT4; 6518 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 6519 VTListMap.InsertNode(Result, IP); 6520 } 6521 return Result->getSDVTList(); 6522 } 6523 6524 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 6525 unsigned NumVTs = VTs.size(); 6526 FoldingSetNodeID ID; 6527 ID.AddInteger(NumVTs); 6528 for (unsigned index = 0; index < NumVTs; index++) { 6529 ID.AddInteger(VTs[index].getRawBits()); 6530 } 6531 6532 void *IP = nullptr; 6533 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6534 if (!Result) { 6535 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 6536 std::copy(VTs.begin(), VTs.end(), Array); 6537 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 6538 VTListMap.InsertNode(Result, IP); 6539 } 6540 return Result->getSDVTList(); 6541 } 6542 6543 6544 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 6545 /// specified operands. If the resultant node already exists in the DAG, 6546 /// this does not modify the specified node, instead it returns the node that 6547 /// already exists. If the resultant node does not exist in the DAG, the 6548 /// input node is returned. As a degenerate case, if you specify the same 6549 /// input operands as the node already has, the input node is returned. 6550 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 6551 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 6552 6553 // Check to see if there is no change. 6554 if (Op == N->getOperand(0)) return N; 6555 6556 // See if the modified node already exists. 6557 void *InsertPos = nullptr; 6558 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 6559 return Existing; 6560 6561 // Nope it doesn't. Remove the node from its current place in the maps. 6562 if (InsertPos) 6563 if (!RemoveNodeFromCSEMaps(N)) 6564 InsertPos = nullptr; 6565 6566 // Now we update the operands. 6567 N->OperandList[0].set(Op); 6568 6569 // If this gets put into a CSE map, add it. 6570 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6571 return N; 6572 } 6573 6574 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 6575 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 6576 6577 // Check to see if there is no change. 6578 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 6579 return N; // No operands changed, just return the input node. 6580 6581 // See if the modified node already exists. 6582 void *InsertPos = nullptr; 6583 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 6584 return Existing; 6585 6586 // Nope it doesn't. Remove the node from its current place in the maps. 6587 if (InsertPos) 6588 if (!RemoveNodeFromCSEMaps(N)) 6589 InsertPos = nullptr; 6590 6591 // Now we update the operands. 6592 if (N->OperandList[0] != Op1) 6593 N->OperandList[0].set(Op1); 6594 if (N->OperandList[1] != Op2) 6595 N->OperandList[1].set(Op2); 6596 6597 // If this gets put into a CSE map, add it. 6598 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6599 return N; 6600 } 6601 6602 SDNode *SelectionDAG:: 6603 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 6604 SDValue Ops[] = { Op1, Op2, Op3 }; 6605 return UpdateNodeOperands(N, Ops); 6606 } 6607 6608 SDNode *SelectionDAG:: 6609 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6610 SDValue Op3, SDValue Op4) { 6611 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 6612 return UpdateNodeOperands(N, Ops); 6613 } 6614 6615 SDNode *SelectionDAG:: 6616 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6617 SDValue Op3, SDValue Op4, SDValue Op5) { 6618 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 6619 return UpdateNodeOperands(N, Ops); 6620 } 6621 6622 SDNode *SelectionDAG:: 6623 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 6624 unsigned NumOps = Ops.size(); 6625 assert(N->getNumOperands() == NumOps && 6626 "Update with wrong number of operands"); 6627 6628 // If no operands changed just return the input node. 6629 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 6630 return N; 6631 6632 // See if the modified node already exists. 6633 void *InsertPos = nullptr; 6634 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 6635 return Existing; 6636 6637 // Nope it doesn't. Remove the node from its current place in the maps. 6638 if (InsertPos) 6639 if (!RemoveNodeFromCSEMaps(N)) 6640 InsertPos = nullptr; 6641 6642 // Now we update the operands. 6643 for (unsigned i = 0; i != NumOps; ++i) 6644 if (N->OperandList[i] != Ops[i]) 6645 N->OperandList[i].set(Ops[i]); 6646 6647 // If this gets put into a CSE map, add it. 6648 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6649 return N; 6650 } 6651 6652 /// DropOperands - Release the operands and set this node to have 6653 /// zero operands. 6654 void SDNode::DropOperands() { 6655 // Unlike the code in MorphNodeTo that does this, we don't need to 6656 // watch for dead nodes here. 6657 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 6658 SDUse &Use = *I++; 6659 Use.set(SDValue()); 6660 } 6661 } 6662 6663 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 6664 /// machine opcode. 6665 /// 6666 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6667 EVT VT) { 6668 SDVTList VTs = getVTList(VT); 6669 return SelectNodeTo(N, MachineOpc, VTs, None); 6670 } 6671 6672 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6673 EVT VT, SDValue Op1) { 6674 SDVTList VTs = getVTList(VT); 6675 SDValue Ops[] = { Op1 }; 6676 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6677 } 6678 6679 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6680 EVT VT, SDValue Op1, 6681 SDValue Op2) { 6682 SDVTList VTs = getVTList(VT); 6683 SDValue Ops[] = { Op1, Op2 }; 6684 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6685 } 6686 6687 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6688 EVT VT, SDValue Op1, 6689 SDValue Op2, SDValue Op3) { 6690 SDVTList VTs = getVTList(VT); 6691 SDValue Ops[] = { Op1, Op2, Op3 }; 6692 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6693 } 6694 6695 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6696 EVT VT, ArrayRef<SDValue> Ops) { 6697 SDVTList VTs = getVTList(VT); 6698 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6699 } 6700 6701 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6702 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 6703 SDVTList VTs = getVTList(VT1, VT2); 6704 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6705 } 6706 6707 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6708 EVT VT1, EVT VT2) { 6709 SDVTList VTs = getVTList(VT1, VT2); 6710 return SelectNodeTo(N, MachineOpc, VTs, None); 6711 } 6712 6713 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6714 EVT VT1, EVT VT2, EVT VT3, 6715 ArrayRef<SDValue> Ops) { 6716 SDVTList VTs = getVTList(VT1, VT2, VT3); 6717 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6718 } 6719 6720 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6721 EVT VT1, EVT VT2, 6722 SDValue Op1, SDValue Op2) { 6723 SDVTList VTs = getVTList(VT1, VT2); 6724 SDValue Ops[] = { Op1, Op2 }; 6725 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6726 } 6727 6728 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6729 SDVTList VTs,ArrayRef<SDValue> Ops) { 6730 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 6731 // Reset the NodeID to -1. 6732 New->setNodeId(-1); 6733 if (New != N) { 6734 ReplaceAllUsesWith(N, New); 6735 RemoveDeadNode(N); 6736 } 6737 return New; 6738 } 6739 6740 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 6741 /// the line number information on the merged node since it is not possible to 6742 /// preserve the information that operation is associated with multiple lines. 6743 /// This will make the debugger working better at -O0, were there is a higher 6744 /// probability having other instructions associated with that line. 6745 /// 6746 /// For IROrder, we keep the smaller of the two 6747 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 6748 DebugLoc NLoc = N->getDebugLoc(); 6749 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 6750 N->setDebugLoc(DebugLoc()); 6751 } 6752 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 6753 N->setIROrder(Order); 6754 return N; 6755 } 6756 6757 /// MorphNodeTo - This *mutates* the specified node to have the specified 6758 /// return type, opcode, and operands. 6759 /// 6760 /// Note that MorphNodeTo returns the resultant node. If there is already a 6761 /// node of the specified opcode and operands, it returns that node instead of 6762 /// the current one. Note that the SDLoc need not be the same. 6763 /// 6764 /// Using MorphNodeTo is faster than creating a new node and swapping it in 6765 /// with ReplaceAllUsesWith both because it often avoids allocating a new 6766 /// node, and because it doesn't require CSE recalculation for any of 6767 /// the node's users. 6768 /// 6769 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 6770 /// As a consequence it isn't appropriate to use from within the DAG combiner or 6771 /// the legalizer which maintain worklists that would need to be updated when 6772 /// deleting things. 6773 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 6774 SDVTList VTs, ArrayRef<SDValue> Ops) { 6775 // If an identical node already exists, use it. 6776 void *IP = nullptr; 6777 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 6778 FoldingSetNodeID ID; 6779 AddNodeIDNode(ID, Opc, VTs, Ops); 6780 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 6781 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 6782 } 6783 6784 if (!RemoveNodeFromCSEMaps(N)) 6785 IP = nullptr; 6786 6787 // Start the morphing. 6788 N->NodeType = Opc; 6789 N->ValueList = VTs.VTs; 6790 N->NumValues = VTs.NumVTs; 6791 6792 // Clear the operands list, updating used nodes to remove this from their 6793 // use list. Keep track of any operands that become dead as a result. 6794 SmallPtrSet<SDNode*, 16> DeadNodeSet; 6795 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 6796 SDUse &Use = *I++; 6797 SDNode *Used = Use.getNode(); 6798 Use.set(SDValue()); 6799 if (Used->use_empty()) 6800 DeadNodeSet.insert(Used); 6801 } 6802 6803 // For MachineNode, initialize the memory references information. 6804 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 6805 MN->setMemRefs(nullptr, nullptr); 6806 6807 // Swap for an appropriately sized array from the recycler. 6808 removeOperands(N); 6809 createOperands(N, Ops); 6810 6811 // Delete any nodes that are still dead after adding the uses for the 6812 // new operands. 6813 if (!DeadNodeSet.empty()) { 6814 SmallVector<SDNode *, 16> DeadNodes; 6815 for (SDNode *N : DeadNodeSet) 6816 if (N->use_empty()) 6817 DeadNodes.push_back(N); 6818 RemoveDeadNodes(DeadNodes); 6819 } 6820 6821 if (IP) 6822 CSEMap.InsertNode(N, IP); // Memoize the new node. 6823 return N; 6824 } 6825 6826 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 6827 unsigned OrigOpc = Node->getOpcode(); 6828 unsigned NewOpc; 6829 bool IsUnary = false; 6830 bool IsTernary = false; 6831 switch (OrigOpc) { 6832 default: 6833 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 6834 case ISD::STRICT_FADD: NewOpc = ISD::FADD; break; 6835 case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break; 6836 case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break; 6837 case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break; 6838 case ISD::STRICT_FREM: NewOpc = ISD::FREM; break; 6839 case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break; 6840 case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break; 6841 case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break; 6842 case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break; 6843 case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break; 6844 case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break; 6845 case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break; 6846 case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break; 6847 case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break; 6848 case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break; 6849 case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break; 6850 case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break; 6851 case ISD::STRICT_FNEARBYINT: 6852 NewOpc = ISD::FNEARBYINT; 6853 IsUnary = true; 6854 break; 6855 } 6856 6857 // We're taking this node out of the chain, so we need to re-link things. 6858 SDValue InputChain = Node->getOperand(0); 6859 SDValue OutputChain = SDValue(Node, 1); 6860 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 6861 6862 SDVTList VTs = getVTList(Node->getOperand(1).getValueType()); 6863 SDNode *Res = nullptr; 6864 if (IsUnary) 6865 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) }); 6866 else if (IsTernary) 6867 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 6868 Node->getOperand(2), 6869 Node->getOperand(3)}); 6870 else 6871 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 6872 Node->getOperand(2) }); 6873 6874 // MorphNodeTo can operate in two ways: if an existing node with the 6875 // specified operands exists, it can just return it. Otherwise, it 6876 // updates the node in place to have the requested operands. 6877 if (Res == Node) { 6878 // If we updated the node in place, reset the node ID. To the isel, 6879 // this should be just like a newly allocated machine node. 6880 Res->setNodeId(-1); 6881 } else { 6882 ReplaceAllUsesWith(Node, Res); 6883 RemoveDeadNode(Node); 6884 } 6885 6886 return Res; 6887 } 6888 6889 /// getMachineNode - These are used for target selectors to create a new node 6890 /// with specified return type(s), MachineInstr opcode, and operands. 6891 /// 6892 /// Note that getMachineNode returns the resultant node. If there is already a 6893 /// node of the specified opcode and operands, it returns that node instead of 6894 /// the current one. 6895 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6896 EVT VT) { 6897 SDVTList VTs = getVTList(VT); 6898 return getMachineNode(Opcode, dl, VTs, None); 6899 } 6900 6901 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6902 EVT VT, SDValue Op1) { 6903 SDVTList VTs = getVTList(VT); 6904 SDValue Ops[] = { Op1 }; 6905 return getMachineNode(Opcode, dl, VTs, Ops); 6906 } 6907 6908 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6909 EVT VT, SDValue Op1, SDValue Op2) { 6910 SDVTList VTs = getVTList(VT); 6911 SDValue Ops[] = { Op1, Op2 }; 6912 return getMachineNode(Opcode, dl, VTs, Ops); 6913 } 6914 6915 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6916 EVT VT, SDValue Op1, SDValue Op2, 6917 SDValue Op3) { 6918 SDVTList VTs = getVTList(VT); 6919 SDValue Ops[] = { Op1, Op2, Op3 }; 6920 return getMachineNode(Opcode, dl, VTs, Ops); 6921 } 6922 6923 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6924 EVT VT, ArrayRef<SDValue> Ops) { 6925 SDVTList VTs = getVTList(VT); 6926 return getMachineNode(Opcode, dl, VTs, Ops); 6927 } 6928 6929 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6930 EVT VT1, EVT VT2, SDValue Op1, 6931 SDValue Op2) { 6932 SDVTList VTs = getVTList(VT1, VT2); 6933 SDValue Ops[] = { Op1, Op2 }; 6934 return getMachineNode(Opcode, dl, VTs, Ops); 6935 } 6936 6937 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6938 EVT VT1, EVT VT2, SDValue Op1, 6939 SDValue Op2, SDValue Op3) { 6940 SDVTList VTs = getVTList(VT1, VT2); 6941 SDValue Ops[] = { Op1, Op2, Op3 }; 6942 return getMachineNode(Opcode, dl, VTs, Ops); 6943 } 6944 6945 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6946 EVT VT1, EVT VT2, 6947 ArrayRef<SDValue> Ops) { 6948 SDVTList VTs = getVTList(VT1, VT2); 6949 return getMachineNode(Opcode, dl, VTs, Ops); 6950 } 6951 6952 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6953 EVT VT1, EVT VT2, EVT VT3, 6954 SDValue Op1, SDValue Op2) { 6955 SDVTList VTs = getVTList(VT1, VT2, VT3); 6956 SDValue Ops[] = { Op1, Op2 }; 6957 return getMachineNode(Opcode, dl, VTs, Ops); 6958 } 6959 6960 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6961 EVT VT1, EVT VT2, EVT VT3, 6962 SDValue Op1, SDValue Op2, 6963 SDValue Op3) { 6964 SDVTList VTs = getVTList(VT1, VT2, VT3); 6965 SDValue Ops[] = { Op1, Op2, Op3 }; 6966 return getMachineNode(Opcode, dl, VTs, Ops); 6967 } 6968 6969 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6970 EVT VT1, EVT VT2, EVT VT3, 6971 ArrayRef<SDValue> Ops) { 6972 SDVTList VTs = getVTList(VT1, VT2, VT3); 6973 return getMachineNode(Opcode, dl, VTs, Ops); 6974 } 6975 6976 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6977 ArrayRef<EVT> ResultTys, 6978 ArrayRef<SDValue> Ops) { 6979 SDVTList VTs = getVTList(ResultTys); 6980 return getMachineNode(Opcode, dl, VTs, Ops); 6981 } 6982 6983 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 6984 SDVTList VTs, 6985 ArrayRef<SDValue> Ops) { 6986 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 6987 MachineSDNode *N; 6988 void *IP = nullptr; 6989 6990 if (DoCSE) { 6991 FoldingSetNodeID ID; 6992 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 6993 IP = nullptr; 6994 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6995 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 6996 } 6997 } 6998 6999 // Allocate a new MachineSDNode. 7000 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7001 createOperands(N, Ops); 7002 7003 if (DoCSE) 7004 CSEMap.InsertNode(N, IP); 7005 7006 InsertNode(N); 7007 return N; 7008 } 7009 7010 /// getTargetExtractSubreg - A convenience function for creating 7011 /// TargetOpcode::EXTRACT_SUBREG nodes. 7012 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7013 SDValue Operand) { 7014 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7015 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 7016 VT, Operand, SRIdxVal); 7017 return SDValue(Subreg, 0); 7018 } 7019 7020 /// getTargetInsertSubreg - A convenience function for creating 7021 /// TargetOpcode::INSERT_SUBREG nodes. 7022 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7023 SDValue Operand, SDValue Subreg) { 7024 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7025 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 7026 VT, Operand, Subreg, SRIdxVal); 7027 return SDValue(Result, 0); 7028 } 7029 7030 /// getNodeIfExists - Get the specified node if it's already available, or 7031 /// else return NULL. 7032 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 7033 ArrayRef<SDValue> Ops, 7034 const SDNodeFlags Flags) { 7035 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 7036 FoldingSetNodeID ID; 7037 AddNodeIDNode(ID, Opcode, VTList, Ops); 7038 void *IP = nullptr; 7039 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 7040 E->intersectFlagsWith(Flags); 7041 return E; 7042 } 7043 } 7044 return nullptr; 7045 } 7046 7047 /// getDbgValue - Creates a SDDbgValue node. 7048 /// 7049 /// SDNode 7050 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 7051 SDNode *N, unsigned R, bool IsIndirect, 7052 const DebugLoc &DL, unsigned O) { 7053 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7054 "Expected inlined-at fields to agree"); 7055 return new (DbgInfo->getAlloc()) 7056 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 7057 } 7058 7059 /// Constant 7060 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 7061 DIExpression *Expr, 7062 const Value *C, 7063 const DebugLoc &DL, unsigned O) { 7064 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7065 "Expected inlined-at fields to agree"); 7066 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 7067 } 7068 7069 /// FrameIndex 7070 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 7071 DIExpression *Expr, unsigned FI, 7072 const DebugLoc &DL, 7073 unsigned O) { 7074 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7075 "Expected inlined-at fields to agree"); 7076 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, DL, O); 7077 } 7078 7079 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 7080 unsigned OffsetInBits, unsigned SizeInBits, 7081 bool InvalidateDbg) { 7082 SDNode *FromNode = From.getNode(); 7083 SDNode *ToNode = To.getNode(); 7084 assert(FromNode && ToNode && "Can't modify dbg values"); 7085 7086 // PR35338 7087 // TODO: assert(From != To && "Redundant dbg value transfer"); 7088 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 7089 if (From == To || FromNode == ToNode) 7090 return; 7091 7092 if (!FromNode->getHasDebugValue()) 7093 return; 7094 7095 SmallVector<SDDbgValue *, 2> ClonedDVs; 7096 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 7097 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 7098 continue; 7099 7100 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 7101 7102 // Just transfer the dbg value attached to From. 7103 if (Dbg->getResNo() != From.getResNo()) 7104 continue; 7105 7106 DIVariable *Var = Dbg->getVariable(); 7107 auto *Expr = Dbg->getExpression(); 7108 // If a fragment is requested, update the expression. 7109 if (SizeInBits) { 7110 // When splitting a larger (e.g., sign-extended) value whose 7111 // lower bits are described with an SDDbgValue, do not attempt 7112 // to transfer the SDDbgValue to the upper bits. 7113 if (auto FI = Expr->getFragmentInfo()) 7114 if (OffsetInBits + SizeInBits > FI->SizeInBits) 7115 continue; 7116 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 7117 SizeInBits); 7118 if (!Fragment) 7119 continue; 7120 Expr = *Fragment; 7121 } 7122 // Clone the SDDbgValue and move it to To. 7123 SDDbgValue *Clone = 7124 getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), 7125 Dbg->getDebugLoc(), Dbg->getOrder()); 7126 ClonedDVs.push_back(Clone); 7127 7128 if (InvalidateDbg) 7129 Dbg->setIsInvalidated(); 7130 } 7131 7132 for (SDDbgValue *Dbg : ClonedDVs) 7133 AddDbgValue(Dbg, ToNode, false); 7134 } 7135 7136 void SelectionDAG::salvageDebugInfo(SDNode &N) { 7137 if (!N.getHasDebugValue()) 7138 return; 7139 7140 SmallVector<SDDbgValue *, 2> ClonedDVs; 7141 for (auto DV : GetDbgValues(&N)) { 7142 if (DV->isInvalidated()) 7143 continue; 7144 switch (N.getOpcode()) { 7145 default: 7146 break; 7147 case ISD::ADD: 7148 SDValue N0 = N.getOperand(0); 7149 SDValue N1 = N.getOperand(1); 7150 if (!isConstantIntBuildVectorOrConstantInt(N0) && 7151 isConstantIntBuildVectorOrConstantInt(N1)) { 7152 uint64_t Offset = N.getConstantOperandVal(1); 7153 // Rewrite an ADD constant node into a DIExpression. Since we are 7154 // performing arithmetic to compute the variable's *value* in the 7155 // DIExpression, we need to mark the expression with a 7156 // DW_OP_stack_value. 7157 auto *DIExpr = DV->getExpression(); 7158 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset, 7159 DIExpression::NoDeref, 7160 DIExpression::WithStackValue); 7161 SDDbgValue *Clone = 7162 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 7163 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 7164 ClonedDVs.push_back(Clone); 7165 DV->setIsInvalidated(); 7166 DEBUG(dbgs() << "SALVAGE: Rewriting"; N0.getNode()->dumprFull(this); 7167 dbgs() << " into " << *DIExpr << '\n'); 7168 } 7169 } 7170 } 7171 7172 for (SDDbgValue *Dbg : ClonedDVs) 7173 AddDbgValue(Dbg, Dbg->getSDNode(), false); 7174 } 7175 7176 namespace { 7177 7178 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 7179 /// pointed to by a use iterator is deleted, increment the use iterator 7180 /// so that it doesn't dangle. 7181 /// 7182 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 7183 SDNode::use_iterator &UI; 7184 SDNode::use_iterator &UE; 7185 7186 void NodeDeleted(SDNode *N, SDNode *E) override { 7187 // Increment the iterator as needed. 7188 while (UI != UE && N == *UI) 7189 ++UI; 7190 } 7191 7192 public: 7193 RAUWUpdateListener(SelectionDAG &d, 7194 SDNode::use_iterator &ui, 7195 SDNode::use_iterator &ue) 7196 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 7197 }; 7198 7199 } // end anonymous namespace 7200 7201 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7202 /// This can cause recursive merging of nodes in the DAG. 7203 /// 7204 /// This version assumes From has a single result value. 7205 /// 7206 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 7207 SDNode *From = FromN.getNode(); 7208 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 7209 "Cannot replace with this method!"); 7210 assert(From != To.getNode() && "Cannot replace uses of with self"); 7211 7212 // Preserve Debug Values 7213 transferDbgValues(FromN, To); 7214 7215 // Iterate over all the existing uses of From. New uses will be added 7216 // to the beginning of the use list, which we avoid visiting. 7217 // This specifically avoids visiting uses of From that arise while the 7218 // replacement is happening, because any such uses would be the result 7219 // of CSE: If an existing node looks like From after one of its operands 7220 // is replaced by To, we don't want to replace of all its users with To 7221 // too. See PR3018 for more info. 7222 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7223 RAUWUpdateListener Listener(*this, UI, UE); 7224 while (UI != UE) { 7225 SDNode *User = *UI; 7226 7227 // This node is about to morph, remove its old self from the CSE maps. 7228 RemoveNodeFromCSEMaps(User); 7229 7230 // A user can appear in a use list multiple times, and when this 7231 // happens the uses are usually next to each other in the list. 7232 // To help reduce the number of CSE recomputations, process all 7233 // the uses of this user that we can find this way. 7234 do { 7235 SDUse &Use = UI.getUse(); 7236 ++UI; 7237 Use.set(To); 7238 } while (UI != UE && *UI == User); 7239 7240 // Now that we have modified User, add it back to the CSE maps. If it 7241 // already exists there, recursively merge the results together. 7242 AddModifiedNodeToCSEMaps(User); 7243 } 7244 7245 // If we just RAUW'd the root, take note. 7246 if (FromN == getRoot()) 7247 setRoot(To); 7248 } 7249 7250 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7251 /// This can cause recursive merging of nodes in the DAG. 7252 /// 7253 /// This version assumes that for each value of From, there is a 7254 /// corresponding value in To in the same position with the same type. 7255 /// 7256 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 7257 #ifndef NDEBUG 7258 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7259 assert((!From->hasAnyUseOfValue(i) || 7260 From->getValueType(i) == To->getValueType(i)) && 7261 "Cannot use this version of ReplaceAllUsesWith!"); 7262 #endif 7263 7264 // Handle the trivial case. 7265 if (From == To) 7266 return; 7267 7268 // Preserve Debug Info. Only do this if there's a use. 7269 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7270 if (From->hasAnyUseOfValue(i)) { 7271 assert((i < To->getNumValues()) && "Invalid To location"); 7272 transferDbgValues(SDValue(From, i), SDValue(To, i)); 7273 } 7274 7275 // Iterate over just the existing users of From. See the comments in 7276 // the ReplaceAllUsesWith above. 7277 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7278 RAUWUpdateListener Listener(*this, UI, UE); 7279 while (UI != UE) { 7280 SDNode *User = *UI; 7281 7282 // This node is about to morph, remove its old self from the CSE maps. 7283 RemoveNodeFromCSEMaps(User); 7284 7285 // A user can appear in a use list multiple times, and when this 7286 // happens the uses are usually next to each other in the list. 7287 // To help reduce the number of CSE recomputations, process all 7288 // the uses of this user that we can find this way. 7289 do { 7290 SDUse &Use = UI.getUse(); 7291 ++UI; 7292 Use.setNode(To); 7293 } while (UI != UE && *UI == User); 7294 7295 // Now that we have modified User, add it back to the CSE maps. If it 7296 // already exists there, recursively merge the results together. 7297 AddModifiedNodeToCSEMaps(User); 7298 } 7299 7300 // If we just RAUW'd the root, take note. 7301 if (From == getRoot().getNode()) 7302 setRoot(SDValue(To, getRoot().getResNo())); 7303 } 7304 7305 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7306 /// This can cause recursive merging of nodes in the DAG. 7307 /// 7308 /// This version can replace From with any result values. To must match the 7309 /// number and types of values returned by From. 7310 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 7311 if (From->getNumValues() == 1) // Handle the simple case efficiently. 7312 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 7313 7314 // Preserve Debug Info. 7315 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7316 transferDbgValues(SDValue(From, i), *To); 7317 7318 // Iterate over just the existing users of From. See the comments in 7319 // the ReplaceAllUsesWith above. 7320 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7321 RAUWUpdateListener Listener(*this, UI, UE); 7322 while (UI != UE) { 7323 SDNode *User = *UI; 7324 7325 // This node is about to morph, remove its old self from the CSE maps. 7326 RemoveNodeFromCSEMaps(User); 7327 7328 // A user can appear in a use list multiple times, and when this 7329 // happens the uses are usually next to each other in the list. 7330 // To help reduce the number of CSE recomputations, process all 7331 // the uses of this user that we can find this way. 7332 do { 7333 SDUse &Use = UI.getUse(); 7334 const SDValue &ToOp = To[Use.getResNo()]; 7335 ++UI; 7336 Use.set(ToOp); 7337 } while (UI != UE && *UI == User); 7338 7339 // Now that we have modified User, add it back to the CSE maps. If it 7340 // already exists there, recursively merge the results together. 7341 AddModifiedNodeToCSEMaps(User); 7342 } 7343 7344 // If we just RAUW'd the root, take note. 7345 if (From == getRoot().getNode()) 7346 setRoot(SDValue(To[getRoot().getResNo()])); 7347 } 7348 7349 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 7350 /// uses of other values produced by From.getNode() alone. The Deleted 7351 /// vector is handled the same way as for ReplaceAllUsesWith. 7352 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 7353 // Handle the really simple, really trivial case efficiently. 7354 if (From == To) return; 7355 7356 // Handle the simple, trivial, case efficiently. 7357 if (From.getNode()->getNumValues() == 1) { 7358 ReplaceAllUsesWith(From, To); 7359 return; 7360 } 7361 7362 // Preserve Debug Info. 7363 transferDbgValues(From, To); 7364 7365 // Iterate over just the existing users of From. See the comments in 7366 // the ReplaceAllUsesWith above. 7367 SDNode::use_iterator UI = From.getNode()->use_begin(), 7368 UE = From.getNode()->use_end(); 7369 RAUWUpdateListener Listener(*this, UI, UE); 7370 while (UI != UE) { 7371 SDNode *User = *UI; 7372 bool UserRemovedFromCSEMaps = false; 7373 7374 // A user can appear in a use list multiple times, and when this 7375 // happens the uses are usually next to each other in the list. 7376 // To help reduce the number of CSE recomputations, process all 7377 // the uses of this user that we can find this way. 7378 do { 7379 SDUse &Use = UI.getUse(); 7380 7381 // Skip uses of different values from the same node. 7382 if (Use.getResNo() != From.getResNo()) { 7383 ++UI; 7384 continue; 7385 } 7386 7387 // If this node hasn't been modified yet, it's still in the CSE maps, 7388 // so remove its old self from the CSE maps. 7389 if (!UserRemovedFromCSEMaps) { 7390 RemoveNodeFromCSEMaps(User); 7391 UserRemovedFromCSEMaps = true; 7392 } 7393 7394 ++UI; 7395 Use.set(To); 7396 } while (UI != UE && *UI == User); 7397 7398 // We are iterating over all uses of the From node, so if a use 7399 // doesn't use the specific value, no changes are made. 7400 if (!UserRemovedFromCSEMaps) 7401 continue; 7402 7403 // Now that we have modified User, add it back to the CSE maps. If it 7404 // already exists there, recursively merge the results together. 7405 AddModifiedNodeToCSEMaps(User); 7406 } 7407 7408 // If we just RAUW'd the root, take note. 7409 if (From == getRoot()) 7410 setRoot(To); 7411 } 7412 7413 namespace { 7414 7415 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 7416 /// to record information about a use. 7417 struct UseMemo { 7418 SDNode *User; 7419 unsigned Index; 7420 SDUse *Use; 7421 }; 7422 7423 /// operator< - Sort Memos by User. 7424 bool operator<(const UseMemo &L, const UseMemo &R) { 7425 return (intptr_t)L.User < (intptr_t)R.User; 7426 } 7427 7428 } // end anonymous namespace 7429 7430 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 7431 /// uses of other values produced by From.getNode() alone. The same value 7432 /// may appear in both the From and To list. The Deleted vector is 7433 /// handled the same way as for ReplaceAllUsesWith. 7434 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 7435 const SDValue *To, 7436 unsigned Num){ 7437 // Handle the simple, trivial case efficiently. 7438 if (Num == 1) 7439 return ReplaceAllUsesOfValueWith(*From, *To); 7440 7441 transferDbgValues(*From, *To); 7442 7443 // Read up all the uses and make records of them. This helps 7444 // processing new uses that are introduced during the 7445 // replacement process. 7446 SmallVector<UseMemo, 4> Uses; 7447 for (unsigned i = 0; i != Num; ++i) { 7448 unsigned FromResNo = From[i].getResNo(); 7449 SDNode *FromNode = From[i].getNode(); 7450 for (SDNode::use_iterator UI = FromNode->use_begin(), 7451 E = FromNode->use_end(); UI != E; ++UI) { 7452 SDUse &Use = UI.getUse(); 7453 if (Use.getResNo() == FromResNo) { 7454 UseMemo Memo = { *UI, i, &Use }; 7455 Uses.push_back(Memo); 7456 } 7457 } 7458 } 7459 7460 // Sort the uses, so that all the uses from a given User are together. 7461 std::sort(Uses.begin(), Uses.end()); 7462 7463 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 7464 UseIndex != UseIndexEnd; ) { 7465 // We know that this user uses some value of From. If it is the right 7466 // value, update it. 7467 SDNode *User = Uses[UseIndex].User; 7468 7469 // This node is about to morph, remove its old self from the CSE maps. 7470 RemoveNodeFromCSEMaps(User); 7471 7472 // The Uses array is sorted, so all the uses for a given User 7473 // are next to each other in the list. 7474 // To help reduce the number of CSE recomputations, process all 7475 // the uses of this user that we can find this way. 7476 do { 7477 unsigned i = Uses[UseIndex].Index; 7478 SDUse &Use = *Uses[UseIndex].Use; 7479 ++UseIndex; 7480 7481 Use.set(To[i]); 7482 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 7483 7484 // Now that we have modified User, add it back to the CSE maps. If it 7485 // already exists there, recursively merge the results together. 7486 AddModifiedNodeToCSEMaps(User); 7487 } 7488 } 7489 7490 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 7491 /// based on their topological order. It returns the maximum id and a vector 7492 /// of the SDNodes* in assigned order by reference. 7493 unsigned SelectionDAG::AssignTopologicalOrder() { 7494 unsigned DAGSize = 0; 7495 7496 // SortedPos tracks the progress of the algorithm. Nodes before it are 7497 // sorted, nodes after it are unsorted. When the algorithm completes 7498 // it is at the end of the list. 7499 allnodes_iterator SortedPos = allnodes_begin(); 7500 7501 // Visit all the nodes. Move nodes with no operands to the front of 7502 // the list immediately. Annotate nodes that do have operands with their 7503 // operand count. Before we do this, the Node Id fields of the nodes 7504 // may contain arbitrary values. After, the Node Id fields for nodes 7505 // before SortedPos will contain the topological sort index, and the 7506 // Node Id fields for nodes At SortedPos and after will contain the 7507 // count of outstanding operands. 7508 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 7509 SDNode *N = &*I++; 7510 checkForCycles(N, this); 7511 unsigned Degree = N->getNumOperands(); 7512 if (Degree == 0) { 7513 // A node with no uses, add it to the result array immediately. 7514 N->setNodeId(DAGSize++); 7515 allnodes_iterator Q(N); 7516 if (Q != SortedPos) 7517 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 7518 assert(SortedPos != AllNodes.end() && "Overran node list"); 7519 ++SortedPos; 7520 } else { 7521 // Temporarily use the Node Id as scratch space for the degree count. 7522 N->setNodeId(Degree); 7523 } 7524 } 7525 7526 // Visit all the nodes. As we iterate, move nodes into sorted order, 7527 // such that by the time the end is reached all nodes will be sorted. 7528 for (SDNode &Node : allnodes()) { 7529 SDNode *N = &Node; 7530 checkForCycles(N, this); 7531 // N is in sorted position, so all its uses have one less operand 7532 // that needs to be sorted. 7533 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 7534 UI != UE; ++UI) { 7535 SDNode *P = *UI; 7536 unsigned Degree = P->getNodeId(); 7537 assert(Degree != 0 && "Invalid node degree"); 7538 --Degree; 7539 if (Degree == 0) { 7540 // All of P's operands are sorted, so P may sorted now. 7541 P->setNodeId(DAGSize++); 7542 if (P->getIterator() != SortedPos) 7543 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 7544 assert(SortedPos != AllNodes.end() && "Overran node list"); 7545 ++SortedPos; 7546 } else { 7547 // Update P's outstanding operand count. 7548 P->setNodeId(Degree); 7549 } 7550 } 7551 if (Node.getIterator() == SortedPos) { 7552 #ifndef NDEBUG 7553 allnodes_iterator I(N); 7554 SDNode *S = &*++I; 7555 dbgs() << "Overran sorted position:\n"; 7556 S->dumprFull(this); dbgs() << "\n"; 7557 dbgs() << "Checking if this is due to cycles\n"; 7558 checkForCycles(this, true); 7559 #endif 7560 llvm_unreachable(nullptr); 7561 } 7562 } 7563 7564 assert(SortedPos == AllNodes.end() && 7565 "Topological sort incomplete!"); 7566 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 7567 "First node in topological sort is not the entry token!"); 7568 assert(AllNodes.front().getNodeId() == 0 && 7569 "First node in topological sort has non-zero id!"); 7570 assert(AllNodes.front().getNumOperands() == 0 && 7571 "First node in topological sort has operands!"); 7572 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 7573 "Last node in topologic sort has unexpected id!"); 7574 assert(AllNodes.back().use_empty() && 7575 "Last node in topologic sort has users!"); 7576 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 7577 return DAGSize; 7578 } 7579 7580 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 7581 /// value is produced by SD. 7582 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 7583 if (SD) { 7584 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 7585 SD->setHasDebugValue(true); 7586 } 7587 DbgInfo->add(DB, SD, isParameter); 7588 } 7589 7590 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 7591 SDValue NewMemOp) { 7592 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 7593 // The new memory operation must have the same position as the old load in 7594 // terms of memory dependency. Create a TokenFactor for the old load and new 7595 // memory operation and update uses of the old load's output chain to use that 7596 // TokenFactor. 7597 SDValue OldChain = SDValue(OldLoad, 1); 7598 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 7599 if (!OldLoad->hasAnyUseOfValue(1)) 7600 return NewChain; 7601 7602 SDValue TokenFactor = 7603 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 7604 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 7605 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 7606 return TokenFactor; 7607 } 7608 7609 //===----------------------------------------------------------------------===// 7610 // SDNode Class 7611 //===----------------------------------------------------------------------===// 7612 7613 bool llvm::isNullConstant(SDValue V) { 7614 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7615 return Const != nullptr && Const->isNullValue(); 7616 } 7617 7618 bool llvm::isNullFPConstant(SDValue V) { 7619 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 7620 return Const != nullptr && Const->isZero() && !Const->isNegative(); 7621 } 7622 7623 bool llvm::isAllOnesConstant(SDValue V) { 7624 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7625 return Const != nullptr && Const->isAllOnesValue(); 7626 } 7627 7628 bool llvm::isOneConstant(SDValue V) { 7629 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7630 return Const != nullptr && Const->isOne(); 7631 } 7632 7633 bool llvm::isBitwiseNot(SDValue V) { 7634 return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1)); 7635 } 7636 7637 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) { 7638 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 7639 return CN; 7640 7641 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 7642 BitVector UndefElements; 7643 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 7644 7645 // BuildVectors can truncate their operands. Ignore that case here. 7646 // FIXME: We blindly ignore splats which include undef which is overly 7647 // pessimistic. 7648 if (CN && UndefElements.none() && 7649 CN->getValueType(0) == N.getValueType().getScalarType()) 7650 return CN; 7651 } 7652 7653 return nullptr; 7654 } 7655 7656 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) { 7657 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 7658 return CN; 7659 7660 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 7661 BitVector UndefElements; 7662 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 7663 7664 if (CN && UndefElements.none()) 7665 return CN; 7666 } 7667 7668 return nullptr; 7669 } 7670 7671 HandleSDNode::~HandleSDNode() { 7672 DropOperands(); 7673 } 7674 7675 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 7676 const DebugLoc &DL, 7677 const GlobalValue *GA, EVT VT, 7678 int64_t o, unsigned char TF) 7679 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 7680 TheGlobal = GA; 7681 } 7682 7683 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 7684 EVT VT, unsigned SrcAS, 7685 unsigned DestAS) 7686 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 7687 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 7688 7689 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 7690 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 7691 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 7692 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 7693 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 7694 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 7695 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 7696 7697 // We check here that the size of the memory operand fits within the size of 7698 // the MMO. This is because the MMO might indicate only a possible address 7699 // range instead of specifying the affected memory addresses precisely. 7700 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 7701 } 7702 7703 /// Profile - Gather unique data for the node. 7704 /// 7705 void SDNode::Profile(FoldingSetNodeID &ID) const { 7706 AddNodeIDNode(ID, this); 7707 } 7708 7709 namespace { 7710 7711 struct EVTArray { 7712 std::vector<EVT> VTs; 7713 7714 EVTArray() { 7715 VTs.reserve(MVT::LAST_VALUETYPE); 7716 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 7717 VTs.push_back(MVT((MVT::SimpleValueType)i)); 7718 } 7719 }; 7720 7721 } // end anonymous namespace 7722 7723 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 7724 static ManagedStatic<EVTArray> SimpleVTArray; 7725 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 7726 7727 /// getValueTypeList - Return a pointer to the specified value type. 7728 /// 7729 const EVT *SDNode::getValueTypeList(EVT VT) { 7730 if (VT.isExtended()) { 7731 sys::SmartScopedLock<true> Lock(*VTMutex); 7732 return &(*EVTs->insert(VT).first); 7733 } else { 7734 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 7735 "Value type out of range!"); 7736 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 7737 } 7738 } 7739 7740 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 7741 /// indicated value. This method ignores uses of other values defined by this 7742 /// operation. 7743 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 7744 assert(Value < getNumValues() && "Bad value!"); 7745 7746 // TODO: Only iterate over uses of a given value of the node 7747 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 7748 if (UI.getUse().getResNo() == Value) { 7749 if (NUses == 0) 7750 return false; 7751 --NUses; 7752 } 7753 } 7754 7755 // Found exactly the right number of uses? 7756 return NUses == 0; 7757 } 7758 7759 /// hasAnyUseOfValue - Return true if there are any use of the indicated 7760 /// value. This method ignores uses of other values defined by this operation. 7761 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 7762 assert(Value < getNumValues() && "Bad value!"); 7763 7764 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 7765 if (UI.getUse().getResNo() == Value) 7766 return true; 7767 7768 return false; 7769 } 7770 7771 /// isOnlyUserOf - Return true if this node is the only use of N. 7772 bool SDNode::isOnlyUserOf(const SDNode *N) const { 7773 bool Seen = false; 7774 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7775 SDNode *User = *I; 7776 if (User == this) 7777 Seen = true; 7778 else 7779 return false; 7780 } 7781 7782 return Seen; 7783 } 7784 7785 /// Return true if the only users of N are contained in Nodes. 7786 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 7787 bool Seen = false; 7788 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7789 SDNode *User = *I; 7790 if (llvm::any_of(Nodes, 7791 [&User](const SDNode *Node) { return User == Node; })) 7792 Seen = true; 7793 else 7794 return false; 7795 } 7796 7797 return Seen; 7798 } 7799 7800 /// isOperand - Return true if this node is an operand of N. 7801 bool SDValue::isOperandOf(const SDNode *N) const { 7802 for (const SDValue &Op : N->op_values()) 7803 if (*this == Op) 7804 return true; 7805 return false; 7806 } 7807 7808 bool SDNode::isOperandOf(const SDNode *N) const { 7809 for (const SDValue &Op : N->op_values()) 7810 if (this == Op.getNode()) 7811 return true; 7812 return false; 7813 } 7814 7815 /// reachesChainWithoutSideEffects - Return true if this operand (which must 7816 /// be a chain) reaches the specified operand without crossing any 7817 /// side-effecting instructions on any chain path. In practice, this looks 7818 /// through token factors and non-volatile loads. In order to remain efficient, 7819 /// this only looks a couple of nodes in, it does not do an exhaustive search. 7820 /// 7821 /// Note that we only need to examine chains when we're searching for 7822 /// side-effects; SelectionDAG requires that all side-effects are represented 7823 /// by chains, even if another operand would force a specific ordering. This 7824 /// constraint is necessary to allow transformations like splitting loads. 7825 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 7826 unsigned Depth) const { 7827 if (*this == Dest) return true; 7828 7829 // Don't search too deeply, we just want to be able to see through 7830 // TokenFactor's etc. 7831 if (Depth == 0) return false; 7832 7833 // If this is a token factor, all inputs to the TF happen in parallel. 7834 if (getOpcode() == ISD::TokenFactor) { 7835 // First, try a shallow search. 7836 if (is_contained((*this)->ops(), Dest)) { 7837 // We found the chain we want as an operand of this TokenFactor. 7838 // Essentially, we reach the chain without side-effects if we could 7839 // serialize the TokenFactor into a simple chain of operations with 7840 // Dest as the last operation. This is automatically true if the 7841 // chain has one use: there are no other ordering constraints. 7842 // If the chain has more than one use, we give up: some other 7843 // use of Dest might force a side-effect between Dest and the current 7844 // node. 7845 if (Dest.hasOneUse()) 7846 return true; 7847 } 7848 // Next, try a deep search: check whether every operand of the TokenFactor 7849 // reaches Dest. 7850 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 7851 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 7852 }); 7853 } 7854 7855 // Loads don't have side effects, look through them. 7856 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 7857 if (!Ld->isVolatile()) 7858 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 7859 } 7860 return false; 7861 } 7862 7863 bool SDNode::hasPredecessor(const SDNode *N) const { 7864 SmallPtrSet<const SDNode *, 32> Visited; 7865 SmallVector<const SDNode *, 16> Worklist; 7866 Worklist.push_back(this); 7867 return hasPredecessorHelper(N, Visited, Worklist); 7868 } 7869 7870 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 7871 this->Flags.intersectWith(Flags); 7872 } 7873 7874 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 7875 assert(N->getNumValues() == 1 && 7876 "Can't unroll a vector with multiple results!"); 7877 7878 EVT VT = N->getValueType(0); 7879 unsigned NE = VT.getVectorNumElements(); 7880 EVT EltVT = VT.getVectorElementType(); 7881 SDLoc dl(N); 7882 7883 SmallVector<SDValue, 8> Scalars; 7884 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 7885 7886 // If ResNE is 0, fully unroll the vector op. 7887 if (ResNE == 0) 7888 ResNE = NE; 7889 else if (NE > ResNE) 7890 NE = ResNE; 7891 7892 unsigned i; 7893 for (i= 0; i != NE; ++i) { 7894 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 7895 SDValue Operand = N->getOperand(j); 7896 EVT OperandVT = Operand.getValueType(); 7897 if (OperandVT.isVector()) { 7898 // A vector operand; extract a single element. 7899 EVT OperandEltVT = OperandVT.getVectorElementType(); 7900 Operands[j] = 7901 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 7902 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 7903 } else { 7904 // A scalar operand; just use it as is. 7905 Operands[j] = Operand; 7906 } 7907 } 7908 7909 switch (N->getOpcode()) { 7910 default: { 7911 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 7912 N->getFlags())); 7913 break; 7914 } 7915 case ISD::VSELECT: 7916 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 7917 break; 7918 case ISD::SHL: 7919 case ISD::SRA: 7920 case ISD::SRL: 7921 case ISD::ROTL: 7922 case ISD::ROTR: 7923 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 7924 getShiftAmountOperand(Operands[0].getValueType(), 7925 Operands[1]))); 7926 break; 7927 case ISD::SIGN_EXTEND_INREG: 7928 case ISD::FP_ROUND_INREG: { 7929 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 7930 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 7931 Operands[0], 7932 getValueType(ExtVT))); 7933 } 7934 } 7935 } 7936 7937 for (; i < ResNE; ++i) 7938 Scalars.push_back(getUNDEF(EltVT)); 7939 7940 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 7941 return getBuildVector(VecVT, dl, Scalars); 7942 } 7943 7944 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 7945 LoadSDNode *Base, 7946 unsigned Bytes, 7947 int Dist) const { 7948 if (LD->isVolatile() || Base->isVolatile()) 7949 return false; 7950 if (LD->isIndexed() || Base->isIndexed()) 7951 return false; 7952 if (LD->getChain() != Base->getChain()) 7953 return false; 7954 EVT VT = LD->getValueType(0); 7955 if (VT.getSizeInBits() / 8 != Bytes) 7956 return false; 7957 7958 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 7959 auto LocDecomp = BaseIndexOffset::match(LD, *this); 7960 7961 int64_t Offset = 0; 7962 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 7963 return (Dist * Bytes == Offset); 7964 return false; 7965 } 7966 7967 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 7968 /// it cannot be inferred. 7969 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 7970 // If this is a GlobalAddress + cst, return the alignment. 7971 const GlobalValue *GV; 7972 int64_t GVOffset = 0; 7973 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 7974 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 7975 KnownBits Known(PtrWidth); 7976 llvm::computeKnownBits(GV, Known, getDataLayout()); 7977 unsigned AlignBits = Known.countMinTrailingZeros(); 7978 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 7979 if (Align) 7980 return MinAlign(Align, GVOffset); 7981 } 7982 7983 // If this is a direct reference to a stack slot, use information about the 7984 // stack slot's alignment. 7985 int FrameIdx = 1 << 31; 7986 int64_t FrameOffset = 0; 7987 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 7988 FrameIdx = FI->getIndex(); 7989 } else if (isBaseWithConstantOffset(Ptr) && 7990 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 7991 // Handle FI+Cst 7992 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7993 FrameOffset = Ptr.getConstantOperandVal(1); 7994 } 7995 7996 if (FrameIdx != (1 << 31)) { 7997 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 7998 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 7999 FrameOffset); 8000 return FIInfoAlign; 8001 } 8002 8003 return 0; 8004 } 8005 8006 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 8007 /// which is split (or expanded) into two not necessarily identical pieces. 8008 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 8009 // Currently all types are split in half. 8010 EVT LoVT, HiVT; 8011 if (!VT.isVector()) 8012 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 8013 else 8014 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 8015 8016 return std::make_pair(LoVT, HiVT); 8017 } 8018 8019 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 8020 /// low/high part. 8021 std::pair<SDValue, SDValue> 8022 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 8023 const EVT &HiVT) { 8024 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 8025 N.getValueType().getVectorNumElements() && 8026 "More vector elements requested than available!"); 8027 SDValue Lo, Hi; 8028 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 8029 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 8030 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 8031 getConstant(LoVT.getVectorNumElements(), DL, 8032 TLI->getVectorIdxTy(getDataLayout()))); 8033 return std::make_pair(Lo, Hi); 8034 } 8035 8036 void SelectionDAG::ExtractVectorElements(SDValue Op, 8037 SmallVectorImpl<SDValue> &Args, 8038 unsigned Start, unsigned Count) { 8039 EVT VT = Op.getValueType(); 8040 if (Count == 0) 8041 Count = VT.getVectorNumElements(); 8042 8043 EVT EltVT = VT.getVectorElementType(); 8044 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 8045 SDLoc SL(Op); 8046 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 8047 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 8048 Op, getConstant(i, SL, IdxTy))); 8049 } 8050 } 8051 8052 // getAddressSpace - Return the address space this GlobalAddress belongs to. 8053 unsigned GlobalAddressSDNode::getAddressSpace() const { 8054 return getGlobal()->getType()->getAddressSpace(); 8055 } 8056 8057 Type *ConstantPoolSDNode::getType() const { 8058 if (isMachineConstantPoolEntry()) 8059 return Val.MachineCPVal->getType(); 8060 return Val.ConstVal->getType(); 8061 } 8062 8063 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 8064 unsigned &SplatBitSize, 8065 bool &HasAnyUndefs, 8066 unsigned MinSplatBits, 8067 bool IsBigEndian) const { 8068 EVT VT = getValueType(0); 8069 assert(VT.isVector() && "Expected a vector type"); 8070 unsigned VecWidth = VT.getSizeInBits(); 8071 if (MinSplatBits > VecWidth) 8072 return false; 8073 8074 // FIXME: The widths are based on this node's type, but build vectors can 8075 // truncate their operands. 8076 SplatValue = APInt(VecWidth, 0); 8077 SplatUndef = APInt(VecWidth, 0); 8078 8079 // Get the bits. Bits with undefined values (when the corresponding element 8080 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 8081 // in SplatValue. If any of the values are not constant, give up and return 8082 // false. 8083 unsigned int NumOps = getNumOperands(); 8084 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 8085 unsigned EltWidth = VT.getScalarSizeInBits(); 8086 8087 for (unsigned j = 0; j < NumOps; ++j) { 8088 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 8089 SDValue OpVal = getOperand(i); 8090 unsigned BitPos = j * EltWidth; 8091 8092 if (OpVal.isUndef()) 8093 SplatUndef.setBits(BitPos, BitPos + EltWidth); 8094 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 8095 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 8096 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 8097 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 8098 else 8099 return false; 8100 } 8101 8102 // The build_vector is all constants or undefs. Find the smallest element 8103 // size that splats the vector. 8104 HasAnyUndefs = (SplatUndef != 0); 8105 8106 // FIXME: This does not work for vectors with elements less than 8 bits. 8107 while (VecWidth > 8) { 8108 unsigned HalfSize = VecWidth / 2; 8109 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 8110 APInt LowValue = SplatValue.trunc(HalfSize); 8111 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 8112 APInt LowUndef = SplatUndef.trunc(HalfSize); 8113 8114 // If the two halves do not match (ignoring undef bits), stop here. 8115 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 8116 MinSplatBits > HalfSize) 8117 break; 8118 8119 SplatValue = HighValue | LowValue; 8120 SplatUndef = HighUndef & LowUndef; 8121 8122 VecWidth = HalfSize; 8123 } 8124 8125 SplatBitSize = VecWidth; 8126 return true; 8127 } 8128 8129 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 8130 if (UndefElements) { 8131 UndefElements->clear(); 8132 UndefElements->resize(getNumOperands()); 8133 } 8134 SDValue Splatted; 8135 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 8136 SDValue Op = getOperand(i); 8137 if (Op.isUndef()) { 8138 if (UndefElements) 8139 (*UndefElements)[i] = true; 8140 } else if (!Splatted) { 8141 Splatted = Op; 8142 } else if (Splatted != Op) { 8143 return SDValue(); 8144 } 8145 } 8146 8147 if (!Splatted) { 8148 assert(getOperand(0).isUndef() && 8149 "Can only have a splat without a constant for all undefs."); 8150 return getOperand(0); 8151 } 8152 8153 return Splatted; 8154 } 8155 8156 ConstantSDNode * 8157 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 8158 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 8159 } 8160 8161 ConstantFPSDNode * 8162 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 8163 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 8164 } 8165 8166 int32_t 8167 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 8168 uint32_t BitWidth) const { 8169 if (ConstantFPSDNode *CN = 8170 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 8171 bool IsExact; 8172 APSInt IntVal(BitWidth); 8173 const APFloat &APF = CN->getValueAPF(); 8174 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 8175 APFloat::opOK || 8176 !IsExact) 8177 return -1; 8178 8179 return IntVal.exactLogBase2(); 8180 } 8181 return -1; 8182 } 8183 8184 bool BuildVectorSDNode::isConstant() const { 8185 for (const SDValue &Op : op_values()) { 8186 unsigned Opc = Op.getOpcode(); 8187 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 8188 return false; 8189 } 8190 return true; 8191 } 8192 8193 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 8194 // Find the first non-undef value in the shuffle mask. 8195 unsigned i, e; 8196 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 8197 /* search */; 8198 8199 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); 8200 8201 // Make sure all remaining elements are either undef or the same as the first 8202 // non-undef value. 8203 for (int Idx = Mask[i]; i != e; ++i) 8204 if (Mask[i] >= 0 && Mask[i] != Idx) 8205 return false; 8206 return true; 8207 } 8208 8209 // \brief Returns the SDNode if it is a constant integer BuildVector 8210 // or constant integer. 8211 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 8212 if (isa<ConstantSDNode>(N)) 8213 return N.getNode(); 8214 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 8215 return N.getNode(); 8216 // Treat a GlobalAddress supporting constant offset folding as a 8217 // constant integer. 8218 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 8219 if (GA->getOpcode() == ISD::GlobalAddress && 8220 TLI->isOffsetFoldingLegal(GA)) 8221 return GA; 8222 return nullptr; 8223 } 8224 8225 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 8226 if (isa<ConstantFPSDNode>(N)) 8227 return N.getNode(); 8228 8229 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 8230 return N.getNode(); 8231 8232 return nullptr; 8233 } 8234 8235 #ifndef NDEBUG 8236 static void checkForCyclesHelper(const SDNode *N, 8237 SmallPtrSetImpl<const SDNode*> &Visited, 8238 SmallPtrSetImpl<const SDNode*> &Checked, 8239 const llvm::SelectionDAG *DAG) { 8240 // If this node has already been checked, don't check it again. 8241 if (Checked.count(N)) 8242 return; 8243 8244 // If a node has already been visited on this depth-first walk, reject it as 8245 // a cycle. 8246 if (!Visited.insert(N).second) { 8247 errs() << "Detected cycle in SelectionDAG\n"; 8248 dbgs() << "Offending node:\n"; 8249 N->dumprFull(DAG); dbgs() << "\n"; 8250 abort(); 8251 } 8252 8253 for (const SDValue &Op : N->op_values()) 8254 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 8255 8256 Checked.insert(N); 8257 Visited.erase(N); 8258 } 8259 #endif 8260 8261 void llvm::checkForCycles(const llvm::SDNode *N, 8262 const llvm::SelectionDAG *DAG, 8263 bool force) { 8264 #ifndef NDEBUG 8265 bool check = force; 8266 #ifdef EXPENSIVE_CHECKS 8267 check = true; 8268 #endif // EXPENSIVE_CHECKS 8269 if (check) { 8270 assert(N && "Checking nonexistent SDNode"); 8271 SmallPtrSet<const SDNode*, 32> visited; 8272 SmallPtrSet<const SDNode*, 32> checked; 8273 checkForCyclesHelper(N, visited, checked, DAG); 8274 } 8275 #endif // !NDEBUG 8276 } 8277 8278 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 8279 checkForCycles(DAG->getRoot().getNode(), DAG, force); 8280 } 8281