1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/RuntimeLibcalls.h"
40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
41 #include "llvm/CodeGen/SelectionDAGNodes.h"
42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetLowering.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/CodeGen/ValueTypes.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugInfoMetadata.h"
52 #include "llvm/IR/DebugLoc.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MachineValueType.h"
66 #include "llvm/Support/ManagedStatic.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/Mutex.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include "llvm/Target/TargetOptions.h"
72 #include "llvm/Transforms/Utils/SizeOpts.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <cstdlib>
77 #include <limits>
78 #include <set>
79 #include <string>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 
85 /// makeVTList - Return an instance of the SDVTList struct initialized with the
86 /// specified members.
87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
88   SDVTList Res = {VTs, NumVTs};
89   return Res;
90 }
91 
92 // Default null implementations of the callbacks.
93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
96 
97 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
98 
99 #define DEBUG_TYPE "selectiondag"
100 
101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
102        cl::Hidden, cl::init(true),
103        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
104 
105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
106        cl::desc("Number limit for gluing ld/st of memcpy."),
107        cl::Hidden, cl::init(0));
108 
109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
110   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
111 }
112 
113 //===----------------------------------------------------------------------===//
114 //                              ConstantFPSDNode Class
115 //===----------------------------------------------------------------------===//
116 
117 /// isExactlyValue - We don't rely on operator== working on double values, as
118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
119 /// As such, this method can be used to do an exact bit-for-bit comparison of
120 /// two floating point values.
121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
122   return getValueAPF().bitwiseIsEqual(V);
123 }
124 
125 bool ConstantFPSDNode::isValueValidForType(EVT VT,
126                                            const APFloat& Val) {
127   assert(VT.isFloatingPoint() && "Can only convert between FP types");
128 
129   // convert modifies in place, so make a copy.
130   APFloat Val2 = APFloat(Val);
131   bool losesInfo;
132   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
133                       APFloat::rmNearestTiesToEven,
134                       &losesInfo);
135   return !losesInfo;
136 }
137 
138 //===----------------------------------------------------------------------===//
139 //                              ISD Namespace
140 //===----------------------------------------------------------------------===//
141 
142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
143   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
144     unsigned EltSize =
145         N->getValueType(0).getVectorElementType().getSizeInBits();
146     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
147       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
148       return true;
149     }
150     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
151       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
152       return true;
153     }
154   }
155 
156   auto *BV = dyn_cast<BuildVectorSDNode>(N);
157   if (!BV)
158     return false;
159 
160   APInt SplatUndef;
161   unsigned SplatBitSize;
162   bool HasUndefs;
163   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
164   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
165                              EltSize) &&
166          EltSize == SplatBitSize;
167 }
168 
169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
170 // specializations of the more general isConstantSplatVector()?
171 
172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
173   // Look through a bit convert.
174   while (N->getOpcode() == ISD::BITCAST)
175     N = N->getOperand(0).getNode();
176 
177   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
178     APInt SplatVal;
179     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
180   }
181 
182   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
183 
184   unsigned i = 0, e = N->getNumOperands();
185 
186   // Skip over all of the undef values.
187   while (i != e && N->getOperand(i).isUndef())
188     ++i;
189 
190   // Do not accept an all-undef vector.
191   if (i == e) return false;
192 
193   // Do not accept build_vectors that aren't all constants or which have non-~0
194   // elements. We have to be a bit careful here, as the type of the constant
195   // may not be the same as the type of the vector elements due to type
196   // legalization (the elements are promoted to a legal type for the target and
197   // a vector of a type may be legal when the base element type is not).
198   // We only want to check enough bits to cover the vector elements, because
199   // we care if the resultant vector is all ones, not whether the individual
200   // constants are.
201   SDValue NotZero = N->getOperand(i);
202   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
203   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
204     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
205       return false;
206   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
207     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
208       return false;
209   } else
210     return false;
211 
212   // Okay, we have at least one ~0 value, check to see if the rest match or are
213   // undefs. Even with the above element type twiddling, this should be OK, as
214   // the same type legalization should have applied to all the elements.
215   for (++i; i != e; ++i)
216     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
217       return false;
218   return true;
219 }
220 
221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
222   // Look through a bit convert.
223   while (N->getOpcode() == ISD::BITCAST)
224     N = N->getOperand(0).getNode();
225 
226   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
227     APInt SplatVal;
228     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
229   }
230 
231   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
232 
233   bool IsAllUndef = true;
234   for (const SDValue &Op : N->op_values()) {
235     if (Op.isUndef())
236       continue;
237     IsAllUndef = false;
238     // Do not accept build_vectors that aren't all constants or which have non-0
239     // elements. We have to be a bit careful here, as the type of the constant
240     // may not be the same as the type of the vector elements due to type
241     // legalization (the elements are promoted to a legal type for the target
242     // and a vector of a type may be legal when the base element type is not).
243     // We only want to check enough bits to cover the vector elements, because
244     // we care if the resultant vector is all zeros, not whether the individual
245     // constants are.
246     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
247     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
248       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
249         return false;
250     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
251       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
252         return false;
253     } else
254       return false;
255   }
256 
257   // Do not accept an all-undef vector.
258   if (IsAllUndef)
259     return false;
260   return true;
261 }
262 
263 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
264   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
265 }
266 
267 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
268   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
269 }
270 
271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
272   if (N->getOpcode() != ISD::BUILD_VECTOR)
273     return false;
274 
275   for (const SDValue &Op : N->op_values()) {
276     if (Op.isUndef())
277       continue;
278     if (!isa<ConstantSDNode>(Op))
279       return false;
280   }
281   return true;
282 }
283 
284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
285   if (N->getOpcode() != ISD::BUILD_VECTOR)
286     return false;
287 
288   for (const SDValue &Op : N->op_values()) {
289     if (Op.isUndef())
290       continue;
291     if (!isa<ConstantFPSDNode>(Op))
292       return false;
293   }
294   return true;
295 }
296 
297 bool ISD::allOperandsUndef(const SDNode *N) {
298   // Return false if the node has no operands.
299   // This is "logically inconsistent" with the definition of "all" but
300   // is probably the desired behavior.
301   if (N->getNumOperands() == 0)
302     return false;
303   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
304 }
305 
306 bool ISD::matchUnaryPredicate(SDValue Op,
307                               std::function<bool(ConstantSDNode *)> Match,
308                               bool AllowUndefs) {
309   // FIXME: Add support for scalar UNDEF cases?
310   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
311     return Match(Cst);
312 
313   // FIXME: Add support for vector UNDEF cases?
314   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
315       ISD::SPLAT_VECTOR != Op.getOpcode())
316     return false;
317 
318   EVT SVT = Op.getValueType().getScalarType();
319   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
320     if (AllowUndefs && Op.getOperand(i).isUndef()) {
321       if (!Match(nullptr))
322         return false;
323       continue;
324     }
325 
326     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
327     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
328       return false;
329   }
330   return true;
331 }
332 
333 bool ISD::matchBinaryPredicate(
334     SDValue LHS, SDValue RHS,
335     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
336     bool AllowUndefs, bool AllowTypeMismatch) {
337   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
338     return false;
339 
340   // TODO: Add support for scalar UNDEF cases?
341   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
342     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
343       return Match(LHSCst, RHSCst);
344 
345   // TODO: Add support for vector UNDEF cases?
346   if (LHS.getOpcode() != RHS.getOpcode() ||
347       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
348        LHS.getOpcode() != ISD::SPLAT_VECTOR))
349     return false;
350 
351   EVT SVT = LHS.getValueType().getScalarType();
352   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
353     SDValue LHSOp = LHS.getOperand(i);
354     SDValue RHSOp = RHS.getOperand(i);
355     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
356     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
357     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
358     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
359     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
360       return false;
361     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
362                                LHSOp.getValueType() != RHSOp.getValueType()))
363       return false;
364     if (!Match(LHSCst, RHSCst))
365       return false;
366   }
367   return true;
368 }
369 
370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
371   switch (VecReduceOpcode) {
372   default:
373     llvm_unreachable("Expected VECREDUCE opcode");
374   case ISD::VECREDUCE_FADD:
375   case ISD::VECREDUCE_SEQ_FADD:
376   case ISD::VP_REDUCE_FADD:
377   case ISD::VP_REDUCE_SEQ_FADD:
378     return ISD::FADD;
379   case ISD::VECREDUCE_FMUL:
380   case ISD::VECREDUCE_SEQ_FMUL:
381   case ISD::VP_REDUCE_FMUL:
382   case ISD::VP_REDUCE_SEQ_FMUL:
383     return ISD::FMUL;
384   case ISD::VECREDUCE_ADD:
385   case ISD::VP_REDUCE_ADD:
386     return ISD::ADD;
387   case ISD::VECREDUCE_MUL:
388   case ISD::VP_REDUCE_MUL:
389     return ISD::MUL;
390   case ISD::VECREDUCE_AND:
391   case ISD::VP_REDUCE_AND:
392     return ISD::AND;
393   case ISD::VECREDUCE_OR:
394   case ISD::VP_REDUCE_OR:
395     return ISD::OR;
396   case ISD::VECREDUCE_XOR:
397   case ISD::VP_REDUCE_XOR:
398     return ISD::XOR;
399   case ISD::VECREDUCE_SMAX:
400   case ISD::VP_REDUCE_SMAX:
401     return ISD::SMAX;
402   case ISD::VECREDUCE_SMIN:
403   case ISD::VP_REDUCE_SMIN:
404     return ISD::SMIN;
405   case ISD::VECREDUCE_UMAX:
406   case ISD::VP_REDUCE_UMAX:
407     return ISD::UMAX;
408   case ISD::VECREDUCE_UMIN:
409   case ISD::VP_REDUCE_UMIN:
410     return ISD::UMIN;
411   case ISD::VECREDUCE_FMAX:
412   case ISD::VP_REDUCE_FMAX:
413     return ISD::FMAXNUM;
414   case ISD::VECREDUCE_FMIN:
415   case ISD::VP_REDUCE_FMIN:
416     return ISD::FMINNUM;
417   }
418 }
419 
420 bool ISD::isVPOpcode(unsigned Opcode) {
421   switch (Opcode) {
422   default:
423     return false;
424 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...)                                    \
425   case ISD::VPSD:                                                              \
426     return true;
427 #include "llvm/IR/VPIntrinsics.def"
428   }
429 }
430 
431 bool ISD::isVPBinaryOp(unsigned Opcode) {
432   switch (Opcode) {
433   default:
434     break;
435 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
436 #define VP_PROPERTY_BINARYOP return true;
437 #define END_REGISTER_VP_SDNODE(VPSD) break;
438 #include "llvm/IR/VPIntrinsics.def"
439   }
440   return false;
441 }
442 
443 bool ISD::isVPReduction(unsigned Opcode) {
444   switch (Opcode) {
445   default:
446     break;
447 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
448 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
449 #define END_REGISTER_VP_SDNODE(VPSD) break;
450 #include "llvm/IR/VPIntrinsics.def"
451   }
452   return false;
453 }
454 
455 /// The operand position of the vector mask.
456 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
457   switch (Opcode) {
458   default:
459     return None;
460 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...)         \
461   case ISD::VPSD:                                                              \
462     return MASKPOS;
463 #include "llvm/IR/VPIntrinsics.def"
464   }
465 }
466 
467 /// The operand position of the explicit vector length parameter.
468 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
469   switch (Opcode) {
470   default:
471     return None;
472 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS)      \
473   case ISD::VPSD:                                                              \
474     return EVLPOS;
475 #include "llvm/IR/VPIntrinsics.def"
476   }
477 }
478 
479 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
480   switch (ExtType) {
481   case ISD::EXTLOAD:
482     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
483   case ISD::SEXTLOAD:
484     return ISD::SIGN_EXTEND;
485   case ISD::ZEXTLOAD:
486     return ISD::ZERO_EXTEND;
487   default:
488     break;
489   }
490 
491   llvm_unreachable("Invalid LoadExtType");
492 }
493 
494 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
495   // To perform this operation, we just need to swap the L and G bits of the
496   // operation.
497   unsigned OldL = (Operation >> 2) & 1;
498   unsigned OldG = (Operation >> 1) & 1;
499   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
500                        (OldL << 1) |       // New G bit
501                        (OldG << 2));       // New L bit.
502 }
503 
504 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
505   unsigned Operation = Op;
506   if (isIntegerLike)
507     Operation ^= 7;   // Flip L, G, E bits, but not U.
508   else
509     Operation ^= 15;  // Flip all of the condition bits.
510 
511   if (Operation > ISD::SETTRUE2)
512     Operation &= ~8;  // Don't let N and U bits get set.
513 
514   return ISD::CondCode(Operation);
515 }
516 
517 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
518   return getSetCCInverseImpl(Op, Type.isInteger());
519 }
520 
521 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
522                                                bool isIntegerLike) {
523   return getSetCCInverseImpl(Op, isIntegerLike);
524 }
525 
526 /// For an integer comparison, return 1 if the comparison is a signed operation
527 /// and 2 if the result is an unsigned comparison. Return zero if the operation
528 /// does not depend on the sign of the input (setne and seteq).
529 static int isSignedOp(ISD::CondCode Opcode) {
530   switch (Opcode) {
531   default: llvm_unreachable("Illegal integer setcc operation!");
532   case ISD::SETEQ:
533   case ISD::SETNE: return 0;
534   case ISD::SETLT:
535   case ISD::SETLE:
536   case ISD::SETGT:
537   case ISD::SETGE: return 1;
538   case ISD::SETULT:
539   case ISD::SETULE:
540   case ISD::SETUGT:
541   case ISD::SETUGE: return 2;
542   }
543 }
544 
545 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
546                                        EVT Type) {
547   bool IsInteger = Type.isInteger();
548   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
549     // Cannot fold a signed integer setcc with an unsigned integer setcc.
550     return ISD::SETCC_INVALID;
551 
552   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
553 
554   // If the N and U bits get set, then the resultant comparison DOES suddenly
555   // care about orderedness, and it is true when ordered.
556   if (Op > ISD::SETTRUE2)
557     Op &= ~16;     // Clear the U bit if the N bit is set.
558 
559   // Canonicalize illegal integer setcc's.
560   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
561     Op = ISD::SETNE;
562 
563   return ISD::CondCode(Op);
564 }
565 
566 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
567                                         EVT Type) {
568   bool IsInteger = Type.isInteger();
569   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
570     // Cannot fold a signed setcc with an unsigned setcc.
571     return ISD::SETCC_INVALID;
572 
573   // Combine all of the condition bits.
574   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
575 
576   // Canonicalize illegal integer setcc's.
577   if (IsInteger) {
578     switch (Result) {
579     default: break;
580     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
581     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
582     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
583     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
584     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
585     }
586   }
587 
588   return Result;
589 }
590 
591 //===----------------------------------------------------------------------===//
592 //                           SDNode Profile Support
593 //===----------------------------------------------------------------------===//
594 
595 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
596 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
597   ID.AddInteger(OpC);
598 }
599 
600 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
601 /// solely with their pointer.
602 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
603   ID.AddPointer(VTList.VTs);
604 }
605 
606 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
607 static void AddNodeIDOperands(FoldingSetNodeID &ID,
608                               ArrayRef<SDValue> Ops) {
609   for (auto& Op : Ops) {
610     ID.AddPointer(Op.getNode());
611     ID.AddInteger(Op.getResNo());
612   }
613 }
614 
615 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
616 static void AddNodeIDOperands(FoldingSetNodeID &ID,
617                               ArrayRef<SDUse> Ops) {
618   for (auto& Op : Ops) {
619     ID.AddPointer(Op.getNode());
620     ID.AddInteger(Op.getResNo());
621   }
622 }
623 
624 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
625                           SDVTList VTList, ArrayRef<SDValue> OpList) {
626   AddNodeIDOpcode(ID, OpC);
627   AddNodeIDValueTypes(ID, VTList);
628   AddNodeIDOperands(ID, OpList);
629 }
630 
631 /// If this is an SDNode with special info, add this info to the NodeID data.
632 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
633   switch (N->getOpcode()) {
634   case ISD::TargetExternalSymbol:
635   case ISD::ExternalSymbol:
636   case ISD::MCSymbol:
637     llvm_unreachable("Should only be used on nodes with operands");
638   default: break;  // Normal nodes don't need extra info.
639   case ISD::TargetConstant:
640   case ISD::Constant: {
641     const ConstantSDNode *C = cast<ConstantSDNode>(N);
642     ID.AddPointer(C->getConstantIntValue());
643     ID.AddBoolean(C->isOpaque());
644     break;
645   }
646   case ISD::TargetConstantFP:
647   case ISD::ConstantFP:
648     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
649     break;
650   case ISD::TargetGlobalAddress:
651   case ISD::GlobalAddress:
652   case ISD::TargetGlobalTLSAddress:
653   case ISD::GlobalTLSAddress: {
654     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
655     ID.AddPointer(GA->getGlobal());
656     ID.AddInteger(GA->getOffset());
657     ID.AddInteger(GA->getTargetFlags());
658     break;
659   }
660   case ISD::BasicBlock:
661     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
662     break;
663   case ISD::Register:
664     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
665     break;
666   case ISD::RegisterMask:
667     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
668     break;
669   case ISD::SRCVALUE:
670     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
671     break;
672   case ISD::FrameIndex:
673   case ISD::TargetFrameIndex:
674     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
675     break;
676   case ISD::LIFETIME_START:
677   case ISD::LIFETIME_END:
678     if (cast<LifetimeSDNode>(N)->hasOffset()) {
679       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
680       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
681     }
682     break;
683   case ISD::PSEUDO_PROBE:
684     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
685     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
686     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
687     break;
688   case ISD::JumpTable:
689   case ISD::TargetJumpTable:
690     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
691     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
692     break;
693   case ISD::ConstantPool:
694   case ISD::TargetConstantPool: {
695     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
696     ID.AddInteger(CP->getAlign().value());
697     ID.AddInteger(CP->getOffset());
698     if (CP->isMachineConstantPoolEntry())
699       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
700     else
701       ID.AddPointer(CP->getConstVal());
702     ID.AddInteger(CP->getTargetFlags());
703     break;
704   }
705   case ISD::TargetIndex: {
706     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
707     ID.AddInteger(TI->getIndex());
708     ID.AddInteger(TI->getOffset());
709     ID.AddInteger(TI->getTargetFlags());
710     break;
711   }
712   case ISD::LOAD: {
713     const LoadSDNode *LD = cast<LoadSDNode>(N);
714     ID.AddInteger(LD->getMemoryVT().getRawBits());
715     ID.AddInteger(LD->getRawSubclassData());
716     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
717     break;
718   }
719   case ISD::STORE: {
720     const StoreSDNode *ST = cast<StoreSDNode>(N);
721     ID.AddInteger(ST->getMemoryVT().getRawBits());
722     ID.AddInteger(ST->getRawSubclassData());
723     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
724     break;
725   }
726   case ISD::VP_LOAD: {
727     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
728     ID.AddInteger(ELD->getMemoryVT().getRawBits());
729     ID.AddInteger(ELD->getRawSubclassData());
730     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
731     break;
732   }
733   case ISD::VP_STORE: {
734     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
735     ID.AddInteger(EST->getMemoryVT().getRawBits());
736     ID.AddInteger(EST->getRawSubclassData());
737     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
738     break;
739   }
740   case ISD::VP_GATHER: {
741     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
742     ID.AddInteger(EG->getMemoryVT().getRawBits());
743     ID.AddInteger(EG->getRawSubclassData());
744     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
745     break;
746   }
747   case ISD::VP_SCATTER: {
748     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
749     ID.AddInteger(ES->getMemoryVT().getRawBits());
750     ID.AddInteger(ES->getRawSubclassData());
751     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
752     break;
753   }
754   case ISD::MLOAD: {
755     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
756     ID.AddInteger(MLD->getMemoryVT().getRawBits());
757     ID.AddInteger(MLD->getRawSubclassData());
758     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
759     break;
760   }
761   case ISD::MSTORE: {
762     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
763     ID.AddInteger(MST->getMemoryVT().getRawBits());
764     ID.AddInteger(MST->getRawSubclassData());
765     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
766     break;
767   }
768   case ISD::MGATHER: {
769     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
770     ID.AddInteger(MG->getMemoryVT().getRawBits());
771     ID.AddInteger(MG->getRawSubclassData());
772     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
773     break;
774   }
775   case ISD::MSCATTER: {
776     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
777     ID.AddInteger(MS->getMemoryVT().getRawBits());
778     ID.AddInteger(MS->getRawSubclassData());
779     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
780     break;
781   }
782   case ISD::ATOMIC_CMP_SWAP:
783   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
784   case ISD::ATOMIC_SWAP:
785   case ISD::ATOMIC_LOAD_ADD:
786   case ISD::ATOMIC_LOAD_SUB:
787   case ISD::ATOMIC_LOAD_AND:
788   case ISD::ATOMIC_LOAD_CLR:
789   case ISD::ATOMIC_LOAD_OR:
790   case ISD::ATOMIC_LOAD_XOR:
791   case ISD::ATOMIC_LOAD_NAND:
792   case ISD::ATOMIC_LOAD_MIN:
793   case ISD::ATOMIC_LOAD_MAX:
794   case ISD::ATOMIC_LOAD_UMIN:
795   case ISD::ATOMIC_LOAD_UMAX:
796   case ISD::ATOMIC_LOAD:
797   case ISD::ATOMIC_STORE: {
798     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
799     ID.AddInteger(AT->getMemoryVT().getRawBits());
800     ID.AddInteger(AT->getRawSubclassData());
801     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
802     break;
803   }
804   case ISD::PREFETCH: {
805     const MemSDNode *PF = cast<MemSDNode>(N);
806     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
807     break;
808   }
809   case ISD::VECTOR_SHUFFLE: {
810     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
811     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
812          i != e; ++i)
813       ID.AddInteger(SVN->getMaskElt(i));
814     break;
815   }
816   case ISD::TargetBlockAddress:
817   case ISD::BlockAddress: {
818     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
819     ID.AddPointer(BA->getBlockAddress());
820     ID.AddInteger(BA->getOffset());
821     ID.AddInteger(BA->getTargetFlags());
822     break;
823   }
824   } // end switch (N->getOpcode())
825 
826   // Target specific memory nodes could also have address spaces to check.
827   if (N->isTargetMemoryOpcode())
828     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
829 }
830 
831 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
832 /// data.
833 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
834   AddNodeIDOpcode(ID, N->getOpcode());
835   // Add the return value info.
836   AddNodeIDValueTypes(ID, N->getVTList());
837   // Add the operand info.
838   AddNodeIDOperands(ID, N->ops());
839 
840   // Handle SDNode leafs with special info.
841   AddNodeIDCustom(ID, N);
842 }
843 
844 //===----------------------------------------------------------------------===//
845 //                              SelectionDAG Class
846 //===----------------------------------------------------------------------===//
847 
848 /// doNotCSE - Return true if CSE should not be performed for this node.
849 static bool doNotCSE(SDNode *N) {
850   if (N->getValueType(0) == MVT::Glue)
851     return true; // Never CSE anything that produces a flag.
852 
853   switch (N->getOpcode()) {
854   default: break;
855   case ISD::HANDLENODE:
856   case ISD::EH_LABEL:
857     return true;   // Never CSE these nodes.
858   }
859 
860   // Check that remaining values produced are not flags.
861   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
862     if (N->getValueType(i) == MVT::Glue)
863       return true; // Never CSE anything that produces a flag.
864 
865   return false;
866 }
867 
868 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
869 /// SelectionDAG.
870 void SelectionDAG::RemoveDeadNodes() {
871   // Create a dummy node (which is not added to allnodes), that adds a reference
872   // to the root node, preventing it from being deleted.
873   HandleSDNode Dummy(getRoot());
874 
875   SmallVector<SDNode*, 128> DeadNodes;
876 
877   // Add all obviously-dead nodes to the DeadNodes worklist.
878   for (SDNode &Node : allnodes())
879     if (Node.use_empty())
880       DeadNodes.push_back(&Node);
881 
882   RemoveDeadNodes(DeadNodes);
883 
884   // If the root changed (e.g. it was a dead load, update the root).
885   setRoot(Dummy.getValue());
886 }
887 
888 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
889 /// given list, and any nodes that become unreachable as a result.
890 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
891 
892   // Process the worklist, deleting the nodes and adding their uses to the
893   // worklist.
894   while (!DeadNodes.empty()) {
895     SDNode *N = DeadNodes.pop_back_val();
896     // Skip to next node if we've already managed to delete the node. This could
897     // happen if replacing a node causes a node previously added to the node to
898     // be deleted.
899     if (N->getOpcode() == ISD::DELETED_NODE)
900       continue;
901 
902     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
903       DUL->NodeDeleted(N, nullptr);
904 
905     // Take the node out of the appropriate CSE map.
906     RemoveNodeFromCSEMaps(N);
907 
908     // Next, brutally remove the operand list.  This is safe to do, as there are
909     // no cycles in the graph.
910     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
911       SDUse &Use = *I++;
912       SDNode *Operand = Use.getNode();
913       Use.set(SDValue());
914 
915       // Now that we removed this operand, see if there are no uses of it left.
916       if (Operand->use_empty())
917         DeadNodes.push_back(Operand);
918     }
919 
920     DeallocateNode(N);
921   }
922 }
923 
924 void SelectionDAG::RemoveDeadNode(SDNode *N){
925   SmallVector<SDNode*, 16> DeadNodes(1, N);
926 
927   // Create a dummy node that adds a reference to the root node, preventing
928   // it from being deleted.  (This matters if the root is an operand of the
929   // dead node.)
930   HandleSDNode Dummy(getRoot());
931 
932   RemoveDeadNodes(DeadNodes);
933 }
934 
935 void SelectionDAG::DeleteNode(SDNode *N) {
936   // First take this out of the appropriate CSE map.
937   RemoveNodeFromCSEMaps(N);
938 
939   // Finally, remove uses due to operands of this node, remove from the
940   // AllNodes list, and delete the node.
941   DeleteNodeNotInCSEMaps(N);
942 }
943 
944 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
945   assert(N->getIterator() != AllNodes.begin() &&
946          "Cannot delete the entry node!");
947   assert(N->use_empty() && "Cannot delete a node that is not dead!");
948 
949   // Drop all of the operands and decrement used node's use counts.
950   N->DropOperands();
951 
952   DeallocateNode(N);
953 }
954 
955 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
956   assert(!(V->isVariadic() && isParameter));
957   if (isParameter)
958     ByvalParmDbgValues.push_back(V);
959   else
960     DbgValues.push_back(V);
961   for (const SDNode *Node : V->getSDNodes())
962     if (Node)
963       DbgValMap[Node].push_back(V);
964 }
965 
966 void SDDbgInfo::erase(const SDNode *Node) {
967   DbgValMapType::iterator I = DbgValMap.find(Node);
968   if (I == DbgValMap.end())
969     return;
970   for (auto &Val: I->second)
971     Val->setIsInvalidated();
972   DbgValMap.erase(I);
973 }
974 
975 void SelectionDAG::DeallocateNode(SDNode *N) {
976   // If we have operands, deallocate them.
977   removeOperands(N);
978 
979   NodeAllocator.Deallocate(AllNodes.remove(N));
980 
981   // Set the opcode to DELETED_NODE to help catch bugs when node
982   // memory is reallocated.
983   // FIXME: There are places in SDag that have grown a dependency on the opcode
984   // value in the released node.
985   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
986   N->NodeType = ISD::DELETED_NODE;
987 
988   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
989   // them and forget about that node.
990   DbgInfo->erase(N);
991 }
992 
993 #ifndef NDEBUG
994 /// VerifySDNode - Check the given SDNode.  Aborts if it is invalid.
995 static void VerifySDNode(SDNode *N) {
996   switch (N->getOpcode()) {
997   default:
998     break;
999   case ISD::BUILD_PAIR: {
1000     EVT VT = N->getValueType(0);
1001     assert(N->getNumValues() == 1 && "Too many results!");
1002     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1003            "Wrong return type!");
1004     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1005     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1006            "Mismatched operand types!");
1007     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1008            "Wrong operand type!");
1009     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1010            "Wrong return type size");
1011     break;
1012   }
1013   case ISD::BUILD_VECTOR: {
1014     assert(N->getNumValues() == 1 && "Too many results!");
1015     assert(N->getValueType(0).isVector() && "Wrong return type!");
1016     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1017            "Wrong number of operands!");
1018     EVT EltVT = N->getValueType(0).getVectorElementType();
1019     for (const SDUse &Op : N->ops()) {
1020       assert((Op.getValueType() == EltVT ||
1021               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1022                EltVT.bitsLE(Op.getValueType()))) &&
1023              "Wrong operand type!");
1024       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1025              "Operands must all have the same type");
1026     }
1027     break;
1028   }
1029   }
1030 }
1031 #endif // NDEBUG
1032 
1033 /// Insert a newly allocated node into the DAG.
1034 ///
1035 /// Handles insertion into the all nodes list and CSE map, as well as
1036 /// verification and other common operations when a new node is allocated.
1037 void SelectionDAG::InsertNode(SDNode *N) {
1038   AllNodes.push_back(N);
1039 #ifndef NDEBUG
1040   N->PersistentId = NextPersistentId++;
1041   VerifySDNode(N);
1042 #endif
1043   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1044     DUL->NodeInserted(N);
1045 }
1046 
1047 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1048 /// correspond to it.  This is useful when we're about to delete or repurpose
1049 /// the node.  We don't want future request for structurally identical nodes
1050 /// to return N anymore.
1051 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1052   bool Erased = false;
1053   switch (N->getOpcode()) {
1054   case ISD::HANDLENODE: return false;  // noop.
1055   case ISD::CONDCODE:
1056     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1057            "Cond code doesn't exist!");
1058     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1059     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1060     break;
1061   case ISD::ExternalSymbol:
1062     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1063     break;
1064   case ISD::TargetExternalSymbol: {
1065     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1066     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1067         ESN->getSymbol(), ESN->getTargetFlags()));
1068     break;
1069   }
1070   case ISD::MCSymbol: {
1071     auto *MCSN = cast<MCSymbolSDNode>(N);
1072     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1073     break;
1074   }
1075   case ISD::VALUETYPE: {
1076     EVT VT = cast<VTSDNode>(N)->getVT();
1077     if (VT.isExtended()) {
1078       Erased = ExtendedValueTypeNodes.erase(VT);
1079     } else {
1080       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1081       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1082     }
1083     break;
1084   }
1085   default:
1086     // Remove it from the CSE Map.
1087     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1088     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1089     Erased = CSEMap.RemoveNode(N);
1090     break;
1091   }
1092 #ifndef NDEBUG
1093   // Verify that the node was actually in one of the CSE maps, unless it has a
1094   // flag result (which cannot be CSE'd) or is one of the special cases that are
1095   // not subject to CSE.
1096   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1097       !N->isMachineOpcode() && !doNotCSE(N)) {
1098     N->dump(this);
1099     dbgs() << "\n";
1100     llvm_unreachable("Node is not in map!");
1101   }
1102 #endif
1103   return Erased;
1104 }
1105 
1106 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1107 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1108 /// node already exists, in which case transfer all its users to the existing
1109 /// node. This transfer can potentially trigger recursive merging.
1110 void
1111 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1112   // For node types that aren't CSE'd, just act as if no identical node
1113   // already exists.
1114   if (!doNotCSE(N)) {
1115     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1116     if (Existing != N) {
1117       // If there was already an existing matching node, use ReplaceAllUsesWith
1118       // to replace the dead one with the existing one.  This can cause
1119       // recursive merging of other unrelated nodes down the line.
1120       ReplaceAllUsesWith(N, Existing);
1121 
1122       // N is now dead. Inform the listeners and delete it.
1123       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1124         DUL->NodeDeleted(N, Existing);
1125       DeleteNodeNotInCSEMaps(N);
1126       return;
1127     }
1128   }
1129 
1130   // If the node doesn't already exist, we updated it.  Inform listeners.
1131   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1132     DUL->NodeUpdated(N);
1133 }
1134 
1135 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1136 /// were replaced with those specified.  If this node is never memoized,
1137 /// return null, otherwise return a pointer to the slot it would take.  If a
1138 /// node already exists with these operands, the slot will be non-null.
1139 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1140                                            void *&InsertPos) {
1141   if (doNotCSE(N))
1142     return nullptr;
1143 
1144   SDValue Ops[] = { Op };
1145   FoldingSetNodeID ID;
1146   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1147   AddNodeIDCustom(ID, N);
1148   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1149   if (Node)
1150     Node->intersectFlagsWith(N->getFlags());
1151   return Node;
1152 }
1153 
1154 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1155 /// were replaced with those specified.  If this node is never memoized,
1156 /// return null, otherwise return a pointer to the slot it would take.  If a
1157 /// node already exists with these operands, the slot will be non-null.
1158 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1159                                            SDValue Op1, SDValue Op2,
1160                                            void *&InsertPos) {
1161   if (doNotCSE(N))
1162     return nullptr;
1163 
1164   SDValue Ops[] = { Op1, Op2 };
1165   FoldingSetNodeID ID;
1166   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1167   AddNodeIDCustom(ID, N);
1168   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1169   if (Node)
1170     Node->intersectFlagsWith(N->getFlags());
1171   return Node;
1172 }
1173 
1174 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1175 /// were replaced with those specified.  If this node is never memoized,
1176 /// return null, otherwise return a pointer to the slot it would take.  If a
1177 /// node already exists with these operands, the slot will be non-null.
1178 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1179                                            void *&InsertPos) {
1180   if (doNotCSE(N))
1181     return nullptr;
1182 
1183   FoldingSetNodeID ID;
1184   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1185   AddNodeIDCustom(ID, N);
1186   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1187   if (Node)
1188     Node->intersectFlagsWith(N->getFlags());
1189   return Node;
1190 }
1191 
1192 Align SelectionDAG::getEVTAlign(EVT VT) const {
1193   Type *Ty = VT == MVT::iPTR ?
1194                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1195                    VT.getTypeForEVT(*getContext());
1196 
1197   return getDataLayout().getABITypeAlign(Ty);
1198 }
1199 
1200 // EntryNode could meaningfully have debug info if we can find it...
1201 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1202     : TM(tm), OptLevel(OL),
1203       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1204       Root(getEntryNode()) {
1205   InsertNode(&EntryNode);
1206   DbgInfo = new SDDbgInfo();
1207 }
1208 
1209 void SelectionDAG::init(MachineFunction &NewMF,
1210                         OptimizationRemarkEmitter &NewORE,
1211                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1212                         LegacyDivergenceAnalysis * Divergence,
1213                         ProfileSummaryInfo *PSIin,
1214                         BlockFrequencyInfo *BFIin) {
1215   MF = &NewMF;
1216   SDAGISelPass = PassPtr;
1217   ORE = &NewORE;
1218   TLI = getSubtarget().getTargetLowering();
1219   TSI = getSubtarget().getSelectionDAGInfo();
1220   LibInfo = LibraryInfo;
1221   Context = &MF->getFunction().getContext();
1222   DA = Divergence;
1223   PSI = PSIin;
1224   BFI = BFIin;
1225 }
1226 
1227 SelectionDAG::~SelectionDAG() {
1228   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1229   allnodes_clear();
1230   OperandRecycler.clear(OperandAllocator);
1231   delete DbgInfo;
1232 }
1233 
1234 bool SelectionDAG::shouldOptForSize() const {
1235   return MF->getFunction().hasOptSize() ||
1236       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1237 }
1238 
1239 void SelectionDAG::allnodes_clear() {
1240   assert(&*AllNodes.begin() == &EntryNode);
1241   AllNodes.remove(AllNodes.begin());
1242   while (!AllNodes.empty())
1243     DeallocateNode(&AllNodes.front());
1244 #ifndef NDEBUG
1245   NextPersistentId = 0;
1246 #endif
1247 }
1248 
1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1250                                           void *&InsertPos) {
1251   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1252   if (N) {
1253     switch (N->getOpcode()) {
1254     default: break;
1255     case ISD::Constant:
1256     case ISD::ConstantFP:
1257       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1258                        "debug location.  Use another overload.");
1259     }
1260   }
1261   return N;
1262 }
1263 
1264 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1265                                           const SDLoc &DL, void *&InsertPos) {
1266   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1267   if (N) {
1268     switch (N->getOpcode()) {
1269     case ISD::Constant:
1270     case ISD::ConstantFP:
1271       // Erase debug location from the node if the node is used at several
1272       // different places. Do not propagate one location to all uses as it
1273       // will cause a worse single stepping debugging experience.
1274       if (N->getDebugLoc() != DL.getDebugLoc())
1275         N->setDebugLoc(DebugLoc());
1276       break;
1277     default:
1278       // When the node's point of use is located earlier in the instruction
1279       // sequence than its prior point of use, update its debug info to the
1280       // earlier location.
1281       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1282         N->setDebugLoc(DL.getDebugLoc());
1283       break;
1284     }
1285   }
1286   return N;
1287 }
1288 
1289 void SelectionDAG::clear() {
1290   allnodes_clear();
1291   OperandRecycler.clear(OperandAllocator);
1292   OperandAllocator.Reset();
1293   CSEMap.clear();
1294 
1295   ExtendedValueTypeNodes.clear();
1296   ExternalSymbols.clear();
1297   TargetExternalSymbols.clear();
1298   MCSymbols.clear();
1299   SDCallSiteDbgInfo.clear();
1300   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1301             static_cast<CondCodeSDNode*>(nullptr));
1302   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1303             static_cast<SDNode*>(nullptr));
1304 
1305   EntryNode.UseList = nullptr;
1306   InsertNode(&EntryNode);
1307   Root = getEntryNode();
1308   DbgInfo->clear();
1309 }
1310 
1311 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1312   return VT.bitsGT(Op.getValueType())
1313              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1314              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1315 }
1316 
1317 std::pair<SDValue, SDValue>
1318 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1319                                        const SDLoc &DL, EVT VT) {
1320   assert(!VT.bitsEq(Op.getValueType()) &&
1321          "Strict no-op FP extend/round not allowed.");
1322   SDValue Res =
1323       VT.bitsGT(Op.getValueType())
1324           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1325           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1326                     {Chain, Op, getIntPtrConstant(0, DL)});
1327 
1328   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1329 }
1330 
1331 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1332   return VT.bitsGT(Op.getValueType()) ?
1333     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1334     getNode(ISD::TRUNCATE, DL, VT, Op);
1335 }
1336 
1337 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1338   return VT.bitsGT(Op.getValueType()) ?
1339     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1340     getNode(ISD::TRUNCATE, DL, VT, Op);
1341 }
1342 
1343 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1344   return VT.bitsGT(Op.getValueType()) ?
1345     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1346     getNode(ISD::TRUNCATE, DL, VT, Op);
1347 }
1348 
1349 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1350                                         EVT OpVT) {
1351   if (VT.bitsLE(Op.getValueType()))
1352     return getNode(ISD::TRUNCATE, SL, VT, Op);
1353 
1354   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1355   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1356 }
1357 
1358 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1359   EVT OpVT = Op.getValueType();
1360   assert(VT.isInteger() && OpVT.isInteger() &&
1361          "Cannot getZeroExtendInReg FP types");
1362   assert(VT.isVector() == OpVT.isVector() &&
1363          "getZeroExtendInReg type should be vector iff the operand "
1364          "type is vector!");
1365   assert((!VT.isVector() ||
1366           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1367          "Vector element counts must match in getZeroExtendInReg");
1368   assert(VT.bitsLE(OpVT) && "Not extending!");
1369   if (OpVT == VT)
1370     return Op;
1371   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1372                                    VT.getScalarSizeInBits());
1373   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1374 }
1375 
1376 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1377   // Only unsigned pointer semantics are supported right now. In the future this
1378   // might delegate to TLI to check pointer signedness.
1379   return getZExtOrTrunc(Op, DL, VT);
1380 }
1381 
1382 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1383   // Only unsigned pointer semantics are supported right now. In the future this
1384   // might delegate to TLI to check pointer signedness.
1385   return getZeroExtendInReg(Op, DL, VT);
1386 }
1387 
1388 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1389 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1390   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1391 }
1392 
1393 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1394   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1395   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1396 }
1397 
1398 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1399                                       EVT OpVT) {
1400   if (!V)
1401     return getConstant(0, DL, VT);
1402 
1403   switch (TLI->getBooleanContents(OpVT)) {
1404   case TargetLowering::ZeroOrOneBooleanContent:
1405   case TargetLowering::UndefinedBooleanContent:
1406     return getConstant(1, DL, VT);
1407   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1408     return getAllOnesConstant(DL, VT);
1409   }
1410   llvm_unreachable("Unexpected boolean content enum!");
1411 }
1412 
1413 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1414                                   bool isT, bool isO) {
1415   EVT EltVT = VT.getScalarType();
1416   assert((EltVT.getSizeInBits() >= 64 ||
1417           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1418          "getConstant with a uint64_t value that doesn't fit in the type!");
1419   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1420 }
1421 
1422 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1423                                   bool isT, bool isO) {
1424   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1425 }
1426 
1427 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1428                                   EVT VT, bool isT, bool isO) {
1429   assert(VT.isInteger() && "Cannot create FP integer constant!");
1430 
1431   EVT EltVT = VT.getScalarType();
1432   const ConstantInt *Elt = &Val;
1433 
1434   // In some cases the vector type is legal but the element type is illegal and
1435   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1436   // inserted value (the type does not need to match the vector element type).
1437   // Any extra bits introduced will be truncated away.
1438   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1439                            TargetLowering::TypePromoteInteger) {
1440     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1441     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1442     Elt = ConstantInt::get(*getContext(), NewVal);
1443   }
1444   // In other cases the element type is illegal and needs to be expanded, for
1445   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1446   // the value into n parts and use a vector type with n-times the elements.
1447   // Then bitcast to the type requested.
1448   // Legalizing constants too early makes the DAGCombiner's job harder so we
1449   // only legalize if the DAG tells us we must produce legal types.
1450   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1451            TLI->getTypeAction(*getContext(), EltVT) ==
1452                TargetLowering::TypeExpandInteger) {
1453     const APInt &NewVal = Elt->getValue();
1454     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1455     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1456 
1457     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1458     if (VT.isScalableVector()) {
1459       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1460              "Can only handle an even split!");
1461       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1462 
1463       SmallVector<SDValue, 2> ScalarParts;
1464       for (unsigned i = 0; i != Parts; ++i)
1465         ScalarParts.push_back(getConstant(
1466             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1467             ViaEltVT, isT, isO));
1468 
1469       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1470     }
1471 
1472     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1473     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1474 
1475     // Check the temporary vector is the correct size. If this fails then
1476     // getTypeToTransformTo() probably returned a type whose size (in bits)
1477     // isn't a power-of-2 factor of the requested type size.
1478     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1479 
1480     SmallVector<SDValue, 2> EltParts;
1481     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1482       EltParts.push_back(getConstant(
1483           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1484           ViaEltVT, isT, isO));
1485 
1486     // EltParts is currently in little endian order. If we actually want
1487     // big-endian order then reverse it now.
1488     if (getDataLayout().isBigEndian())
1489       std::reverse(EltParts.begin(), EltParts.end());
1490 
1491     // The elements must be reversed when the element order is different
1492     // to the endianness of the elements (because the BITCAST is itself a
1493     // vector shuffle in this situation). However, we do not need any code to
1494     // perform this reversal because getConstant() is producing a vector
1495     // splat.
1496     // This situation occurs in MIPS MSA.
1497 
1498     SmallVector<SDValue, 8> Ops;
1499     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1500       llvm::append_range(Ops, EltParts);
1501 
1502     SDValue V =
1503         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1504     return V;
1505   }
1506 
1507   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1508          "APInt size does not match type size!");
1509   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1510   FoldingSetNodeID ID;
1511   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1512   ID.AddPointer(Elt);
1513   ID.AddBoolean(isO);
1514   void *IP = nullptr;
1515   SDNode *N = nullptr;
1516   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1517     if (!VT.isVector())
1518       return SDValue(N, 0);
1519 
1520   if (!N) {
1521     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1522     CSEMap.InsertNode(N, IP);
1523     InsertNode(N);
1524     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1525   }
1526 
1527   SDValue Result(N, 0);
1528   if (VT.isScalableVector())
1529     Result = getSplatVector(VT, DL, Result);
1530   else if (VT.isVector())
1531     Result = getSplatBuildVector(VT, DL, Result);
1532 
1533   return Result;
1534 }
1535 
1536 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1537                                         bool isTarget) {
1538   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1539 }
1540 
1541 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1542                                              const SDLoc &DL, bool LegalTypes) {
1543   assert(VT.isInteger() && "Shift amount is not an integer type!");
1544   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1545   return getConstant(Val, DL, ShiftVT);
1546 }
1547 
1548 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1549                                            bool isTarget) {
1550   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1551 }
1552 
1553 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1554                                     bool isTarget) {
1555   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1556 }
1557 
1558 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1559                                     EVT VT, bool isTarget) {
1560   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1561 
1562   EVT EltVT = VT.getScalarType();
1563 
1564   // Do the map lookup using the actual bit pattern for the floating point
1565   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1566   // we don't have issues with SNANs.
1567   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1568   FoldingSetNodeID ID;
1569   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1570   ID.AddPointer(&V);
1571   void *IP = nullptr;
1572   SDNode *N = nullptr;
1573   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1574     if (!VT.isVector())
1575       return SDValue(N, 0);
1576 
1577   if (!N) {
1578     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1579     CSEMap.InsertNode(N, IP);
1580     InsertNode(N);
1581   }
1582 
1583   SDValue Result(N, 0);
1584   if (VT.isScalableVector())
1585     Result = getSplatVector(VT, DL, Result);
1586   else if (VT.isVector())
1587     Result = getSplatBuildVector(VT, DL, Result);
1588   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1589   return Result;
1590 }
1591 
1592 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1593                                     bool isTarget) {
1594   EVT EltVT = VT.getScalarType();
1595   if (EltVT == MVT::f32)
1596     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1597   if (EltVT == MVT::f64)
1598     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1599   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1600       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1601     bool Ignored;
1602     APFloat APF = APFloat(Val);
1603     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1604                 &Ignored);
1605     return getConstantFP(APF, DL, VT, isTarget);
1606   }
1607   llvm_unreachable("Unsupported type in getConstantFP");
1608 }
1609 
1610 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1611                                        EVT VT, int64_t Offset, bool isTargetGA,
1612                                        unsigned TargetFlags) {
1613   assert((TargetFlags == 0 || isTargetGA) &&
1614          "Cannot set target flags on target-independent globals");
1615 
1616   // Truncate (with sign-extension) the offset value to the pointer size.
1617   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1618   if (BitWidth < 64)
1619     Offset = SignExtend64(Offset, BitWidth);
1620 
1621   unsigned Opc;
1622   if (GV->isThreadLocal())
1623     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1624   else
1625     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1626 
1627   FoldingSetNodeID ID;
1628   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1629   ID.AddPointer(GV);
1630   ID.AddInteger(Offset);
1631   ID.AddInteger(TargetFlags);
1632   void *IP = nullptr;
1633   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1634     return SDValue(E, 0);
1635 
1636   auto *N = newSDNode<GlobalAddressSDNode>(
1637       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1638   CSEMap.InsertNode(N, IP);
1639     InsertNode(N);
1640   return SDValue(N, 0);
1641 }
1642 
1643 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1644   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1645   FoldingSetNodeID ID;
1646   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1647   ID.AddInteger(FI);
1648   void *IP = nullptr;
1649   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1650     return SDValue(E, 0);
1651 
1652   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1653   CSEMap.InsertNode(N, IP);
1654   InsertNode(N);
1655   return SDValue(N, 0);
1656 }
1657 
1658 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1659                                    unsigned TargetFlags) {
1660   assert((TargetFlags == 0 || isTarget) &&
1661          "Cannot set target flags on target-independent jump tables");
1662   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1663   FoldingSetNodeID ID;
1664   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1665   ID.AddInteger(JTI);
1666   ID.AddInteger(TargetFlags);
1667   void *IP = nullptr;
1668   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1669     return SDValue(E, 0);
1670 
1671   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1672   CSEMap.InsertNode(N, IP);
1673   InsertNode(N);
1674   return SDValue(N, 0);
1675 }
1676 
1677 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1678                                       MaybeAlign Alignment, int Offset,
1679                                       bool isTarget, unsigned TargetFlags) {
1680   assert((TargetFlags == 0 || isTarget) &&
1681          "Cannot set target flags on target-independent globals");
1682   if (!Alignment)
1683     Alignment = shouldOptForSize()
1684                     ? getDataLayout().getABITypeAlign(C->getType())
1685                     : getDataLayout().getPrefTypeAlign(C->getType());
1686   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1687   FoldingSetNodeID ID;
1688   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1689   ID.AddInteger(Alignment->value());
1690   ID.AddInteger(Offset);
1691   ID.AddPointer(C);
1692   ID.AddInteger(TargetFlags);
1693   void *IP = nullptr;
1694   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1695     return SDValue(E, 0);
1696 
1697   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1698                                           TargetFlags);
1699   CSEMap.InsertNode(N, IP);
1700   InsertNode(N);
1701   SDValue V = SDValue(N, 0);
1702   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1703   return V;
1704 }
1705 
1706 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1707                                       MaybeAlign Alignment, int Offset,
1708                                       bool isTarget, unsigned TargetFlags) {
1709   assert((TargetFlags == 0 || isTarget) &&
1710          "Cannot set target flags on target-independent globals");
1711   if (!Alignment)
1712     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1713   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1714   FoldingSetNodeID ID;
1715   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1716   ID.AddInteger(Alignment->value());
1717   ID.AddInteger(Offset);
1718   C->addSelectionDAGCSEId(ID);
1719   ID.AddInteger(TargetFlags);
1720   void *IP = nullptr;
1721   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1722     return SDValue(E, 0);
1723 
1724   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1725                                           TargetFlags);
1726   CSEMap.InsertNode(N, IP);
1727   InsertNode(N);
1728   return SDValue(N, 0);
1729 }
1730 
1731 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1732                                      unsigned TargetFlags) {
1733   FoldingSetNodeID ID;
1734   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1735   ID.AddInteger(Index);
1736   ID.AddInteger(Offset);
1737   ID.AddInteger(TargetFlags);
1738   void *IP = nullptr;
1739   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1740     return SDValue(E, 0);
1741 
1742   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1743   CSEMap.InsertNode(N, IP);
1744   InsertNode(N);
1745   return SDValue(N, 0);
1746 }
1747 
1748 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1749   FoldingSetNodeID ID;
1750   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1751   ID.AddPointer(MBB);
1752   void *IP = nullptr;
1753   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1754     return SDValue(E, 0);
1755 
1756   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1757   CSEMap.InsertNode(N, IP);
1758   InsertNode(N);
1759   return SDValue(N, 0);
1760 }
1761 
1762 SDValue SelectionDAG::getValueType(EVT VT) {
1763   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1764       ValueTypeNodes.size())
1765     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1766 
1767   SDNode *&N = VT.isExtended() ?
1768     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1769 
1770   if (N) return SDValue(N, 0);
1771   N = newSDNode<VTSDNode>(VT);
1772   InsertNode(N);
1773   return SDValue(N, 0);
1774 }
1775 
1776 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1777   SDNode *&N = ExternalSymbols[Sym];
1778   if (N) return SDValue(N, 0);
1779   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1780   InsertNode(N);
1781   return SDValue(N, 0);
1782 }
1783 
1784 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1785   SDNode *&N = MCSymbols[Sym];
1786   if (N)
1787     return SDValue(N, 0);
1788   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1789   InsertNode(N);
1790   return SDValue(N, 0);
1791 }
1792 
1793 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1794                                               unsigned TargetFlags) {
1795   SDNode *&N =
1796       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1797   if (N) return SDValue(N, 0);
1798   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1799   InsertNode(N);
1800   return SDValue(N, 0);
1801 }
1802 
1803 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1804   if ((unsigned)Cond >= CondCodeNodes.size())
1805     CondCodeNodes.resize(Cond+1);
1806 
1807   if (!CondCodeNodes[Cond]) {
1808     auto *N = newSDNode<CondCodeSDNode>(Cond);
1809     CondCodeNodes[Cond] = N;
1810     InsertNode(N);
1811   }
1812 
1813   return SDValue(CondCodeNodes[Cond], 0);
1814 }
1815 
1816 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1817   APInt One(ResVT.getScalarSizeInBits(), 1);
1818   return getStepVector(DL, ResVT, One);
1819 }
1820 
1821 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1822   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1823   if (ResVT.isScalableVector())
1824     return getNode(
1825         ISD::STEP_VECTOR, DL, ResVT,
1826         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1827 
1828   SmallVector<SDValue, 16> OpsStepConstants;
1829   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1830     OpsStepConstants.push_back(
1831         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1832   return getBuildVector(ResVT, DL, OpsStepConstants);
1833 }
1834 
1835 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1836 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1837 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1838   std::swap(N1, N2);
1839   ShuffleVectorSDNode::commuteMask(M);
1840 }
1841 
1842 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1843                                        SDValue N2, ArrayRef<int> Mask) {
1844   assert(VT.getVectorNumElements() == Mask.size() &&
1845          "Must have the same number of vector elements as mask elements!");
1846   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1847          "Invalid VECTOR_SHUFFLE");
1848 
1849   // Canonicalize shuffle undef, undef -> undef
1850   if (N1.isUndef() && N2.isUndef())
1851     return getUNDEF(VT);
1852 
1853   // Validate that all indices in Mask are within the range of the elements
1854   // input to the shuffle.
1855   int NElts = Mask.size();
1856   assert(llvm::all_of(Mask,
1857                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1858          "Index out of range");
1859 
1860   // Copy the mask so we can do any needed cleanup.
1861   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1862 
1863   // Canonicalize shuffle v, v -> v, undef
1864   if (N1 == N2) {
1865     N2 = getUNDEF(VT);
1866     for (int i = 0; i != NElts; ++i)
1867       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1868   }
1869 
1870   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1871   if (N1.isUndef())
1872     commuteShuffle(N1, N2, MaskVec);
1873 
1874   if (TLI->hasVectorBlend()) {
1875     // If shuffling a splat, try to blend the splat instead. We do this here so
1876     // that even when this arises during lowering we don't have to re-handle it.
1877     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1878       BitVector UndefElements;
1879       SDValue Splat = BV->getSplatValue(&UndefElements);
1880       if (!Splat)
1881         return;
1882 
1883       for (int i = 0; i < NElts; ++i) {
1884         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1885           continue;
1886 
1887         // If this input comes from undef, mark it as such.
1888         if (UndefElements[MaskVec[i] - Offset]) {
1889           MaskVec[i] = -1;
1890           continue;
1891         }
1892 
1893         // If we can blend a non-undef lane, use that instead.
1894         if (!UndefElements[i])
1895           MaskVec[i] = i + Offset;
1896       }
1897     };
1898     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1899       BlendSplat(N1BV, 0);
1900     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1901       BlendSplat(N2BV, NElts);
1902   }
1903 
1904   // Canonicalize all index into lhs, -> shuffle lhs, undef
1905   // Canonicalize all index into rhs, -> shuffle rhs, undef
1906   bool AllLHS = true, AllRHS = true;
1907   bool N2Undef = N2.isUndef();
1908   for (int i = 0; i != NElts; ++i) {
1909     if (MaskVec[i] >= NElts) {
1910       if (N2Undef)
1911         MaskVec[i] = -1;
1912       else
1913         AllLHS = false;
1914     } else if (MaskVec[i] >= 0) {
1915       AllRHS = false;
1916     }
1917   }
1918   if (AllLHS && AllRHS)
1919     return getUNDEF(VT);
1920   if (AllLHS && !N2Undef)
1921     N2 = getUNDEF(VT);
1922   if (AllRHS) {
1923     N1 = getUNDEF(VT);
1924     commuteShuffle(N1, N2, MaskVec);
1925   }
1926   // Reset our undef status after accounting for the mask.
1927   N2Undef = N2.isUndef();
1928   // Re-check whether both sides ended up undef.
1929   if (N1.isUndef() && N2Undef)
1930     return getUNDEF(VT);
1931 
1932   // If Identity shuffle return that node.
1933   bool Identity = true, AllSame = true;
1934   for (int i = 0; i != NElts; ++i) {
1935     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1936     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1937   }
1938   if (Identity && NElts)
1939     return N1;
1940 
1941   // Shuffling a constant splat doesn't change the result.
1942   if (N2Undef) {
1943     SDValue V = N1;
1944 
1945     // Look through any bitcasts. We check that these don't change the number
1946     // (and size) of elements and just changes their types.
1947     while (V.getOpcode() == ISD::BITCAST)
1948       V = V->getOperand(0);
1949 
1950     // A splat should always show up as a build vector node.
1951     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1952       BitVector UndefElements;
1953       SDValue Splat = BV->getSplatValue(&UndefElements);
1954       // If this is a splat of an undef, shuffling it is also undef.
1955       if (Splat && Splat.isUndef())
1956         return getUNDEF(VT);
1957 
1958       bool SameNumElts =
1959           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1960 
1961       // We only have a splat which can skip shuffles if there is a splatted
1962       // value and no undef lanes rearranged by the shuffle.
1963       if (Splat && UndefElements.none()) {
1964         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1965         // number of elements match or the value splatted is a zero constant.
1966         if (SameNumElts)
1967           return N1;
1968         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1969           if (C->isZero())
1970             return N1;
1971       }
1972 
1973       // If the shuffle itself creates a splat, build the vector directly.
1974       if (AllSame && SameNumElts) {
1975         EVT BuildVT = BV->getValueType(0);
1976         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1977         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1978 
1979         // We may have jumped through bitcasts, so the type of the
1980         // BUILD_VECTOR may not match the type of the shuffle.
1981         if (BuildVT != VT)
1982           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1983         return NewBV;
1984       }
1985     }
1986   }
1987 
1988   FoldingSetNodeID ID;
1989   SDValue Ops[2] = { N1, N2 };
1990   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1991   for (int i = 0; i != NElts; ++i)
1992     ID.AddInteger(MaskVec[i]);
1993 
1994   void* IP = nullptr;
1995   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1996     return SDValue(E, 0);
1997 
1998   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1999   // SDNode doesn't have access to it.  This memory will be "leaked" when
2000   // the node is deallocated, but recovered when the NodeAllocator is released.
2001   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2002   llvm::copy(MaskVec, MaskAlloc);
2003 
2004   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
2005                                            dl.getDebugLoc(), MaskAlloc);
2006   createOperands(N, Ops);
2007 
2008   CSEMap.InsertNode(N, IP);
2009   InsertNode(N);
2010   SDValue V = SDValue(N, 0);
2011   NewSDValueDbgMsg(V, "Creating new node: ", this);
2012   return V;
2013 }
2014 
2015 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2016   EVT VT = SV.getValueType(0);
2017   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
2018   ShuffleVectorSDNode::commuteMask(MaskVec);
2019 
2020   SDValue Op0 = SV.getOperand(0);
2021   SDValue Op1 = SV.getOperand(1);
2022   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2023 }
2024 
2025 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2026   FoldingSetNodeID ID;
2027   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
2028   ID.AddInteger(RegNo);
2029   void *IP = nullptr;
2030   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2031     return SDValue(E, 0);
2032 
2033   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2034   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
2035   CSEMap.InsertNode(N, IP);
2036   InsertNode(N);
2037   return SDValue(N, 0);
2038 }
2039 
2040 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2041   FoldingSetNodeID ID;
2042   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2043   ID.AddPointer(RegMask);
2044   void *IP = nullptr;
2045   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2046     return SDValue(E, 0);
2047 
2048   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2049   CSEMap.InsertNode(N, IP);
2050   InsertNode(N);
2051   return SDValue(N, 0);
2052 }
2053 
2054 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2055                                  MCSymbol *Label) {
2056   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2057 }
2058 
2059 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2060                                    SDValue Root, MCSymbol *Label) {
2061   FoldingSetNodeID ID;
2062   SDValue Ops[] = { Root };
2063   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2064   ID.AddPointer(Label);
2065   void *IP = nullptr;
2066   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2067     return SDValue(E, 0);
2068 
2069   auto *N =
2070       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2071   createOperands(N, Ops);
2072 
2073   CSEMap.InsertNode(N, IP);
2074   InsertNode(N);
2075   return SDValue(N, 0);
2076 }
2077 
2078 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2079                                       int64_t Offset, bool isTarget,
2080                                       unsigned TargetFlags) {
2081   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2082 
2083   FoldingSetNodeID ID;
2084   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2085   ID.AddPointer(BA);
2086   ID.AddInteger(Offset);
2087   ID.AddInteger(TargetFlags);
2088   void *IP = nullptr;
2089   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2090     return SDValue(E, 0);
2091 
2092   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2093   CSEMap.InsertNode(N, IP);
2094   InsertNode(N);
2095   return SDValue(N, 0);
2096 }
2097 
2098 SDValue SelectionDAG::getSrcValue(const Value *V) {
2099   FoldingSetNodeID ID;
2100   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2101   ID.AddPointer(V);
2102 
2103   void *IP = nullptr;
2104   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2105     return SDValue(E, 0);
2106 
2107   auto *N = newSDNode<SrcValueSDNode>(V);
2108   CSEMap.InsertNode(N, IP);
2109   InsertNode(N);
2110   return SDValue(N, 0);
2111 }
2112 
2113 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2114   FoldingSetNodeID ID;
2115   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2116   ID.AddPointer(MD);
2117 
2118   void *IP = nullptr;
2119   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2120     return SDValue(E, 0);
2121 
2122   auto *N = newSDNode<MDNodeSDNode>(MD);
2123   CSEMap.InsertNode(N, IP);
2124   InsertNode(N);
2125   return SDValue(N, 0);
2126 }
2127 
2128 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2129   if (VT == V.getValueType())
2130     return V;
2131 
2132   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2133 }
2134 
2135 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2136                                        unsigned SrcAS, unsigned DestAS) {
2137   SDValue Ops[] = {Ptr};
2138   FoldingSetNodeID ID;
2139   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2140   ID.AddInteger(SrcAS);
2141   ID.AddInteger(DestAS);
2142 
2143   void *IP = nullptr;
2144   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2145     return SDValue(E, 0);
2146 
2147   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2148                                            VT, SrcAS, DestAS);
2149   createOperands(N, Ops);
2150 
2151   CSEMap.InsertNode(N, IP);
2152   InsertNode(N);
2153   return SDValue(N, 0);
2154 }
2155 
2156 SDValue SelectionDAG::getFreeze(SDValue V) {
2157   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2158 }
2159 
2160 /// getShiftAmountOperand - Return the specified value casted to
2161 /// the target's desired shift amount type.
2162 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2163   EVT OpTy = Op.getValueType();
2164   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2165   if (OpTy == ShTy || OpTy.isVector()) return Op;
2166 
2167   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2168 }
2169 
2170 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2171   SDLoc dl(Node);
2172   const TargetLowering &TLI = getTargetLoweringInfo();
2173   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2174   EVT VT = Node->getValueType(0);
2175   SDValue Tmp1 = Node->getOperand(0);
2176   SDValue Tmp2 = Node->getOperand(1);
2177   const MaybeAlign MA(Node->getConstantOperandVal(3));
2178 
2179   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2180                                Tmp2, MachinePointerInfo(V));
2181   SDValue VAList = VAListLoad;
2182 
2183   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2184     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2185                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2186 
2187     VAList =
2188         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2189                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2190   }
2191 
2192   // Increment the pointer, VAList, to the next vaarg
2193   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2194                  getConstant(getDataLayout().getTypeAllocSize(
2195                                                VT.getTypeForEVT(*getContext())),
2196                              dl, VAList.getValueType()));
2197   // Store the incremented VAList to the legalized pointer
2198   Tmp1 =
2199       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2200   // Load the actual argument out of the pointer VAList
2201   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2202 }
2203 
2204 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2205   SDLoc dl(Node);
2206   const TargetLowering &TLI = getTargetLoweringInfo();
2207   // This defaults to loading a pointer from the input and storing it to the
2208   // output, returning the chain.
2209   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2210   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2211   SDValue Tmp1 =
2212       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2213               Node->getOperand(2), MachinePointerInfo(VS));
2214   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2215                   MachinePointerInfo(VD));
2216 }
2217 
2218 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2219   const DataLayout &DL = getDataLayout();
2220   Type *Ty = VT.getTypeForEVT(*getContext());
2221   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2222 
2223   if (TLI->isTypeLegal(VT) || !VT.isVector())
2224     return RedAlign;
2225 
2226   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2227   const Align StackAlign = TFI->getStackAlign();
2228 
2229   // See if we can choose a smaller ABI alignment in cases where it's an
2230   // illegal vector type that will get broken down.
2231   if (RedAlign > StackAlign) {
2232     EVT IntermediateVT;
2233     MVT RegisterVT;
2234     unsigned NumIntermediates;
2235     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2236                                 NumIntermediates, RegisterVT);
2237     Ty = IntermediateVT.getTypeForEVT(*getContext());
2238     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2239     if (RedAlign2 < RedAlign)
2240       RedAlign = RedAlign2;
2241   }
2242 
2243   return RedAlign;
2244 }
2245 
2246 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2247   MachineFrameInfo &MFI = MF->getFrameInfo();
2248   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2249   int StackID = 0;
2250   if (Bytes.isScalable())
2251     StackID = TFI->getStackIDForScalableVectors();
2252   // The stack id gives an indication of whether the object is scalable or
2253   // not, so it's safe to pass in the minimum size here.
2254   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2255                                        false, nullptr, StackID);
2256   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2257 }
2258 
2259 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2260   Type *Ty = VT.getTypeForEVT(*getContext());
2261   Align StackAlign =
2262       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2263   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2264 }
2265 
2266 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2267   TypeSize VT1Size = VT1.getStoreSize();
2268   TypeSize VT2Size = VT2.getStoreSize();
2269   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2270          "Don't know how to choose the maximum size when creating a stack "
2271          "temporary");
2272   TypeSize Bytes =
2273       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2274 
2275   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2276   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2277   const DataLayout &DL = getDataLayout();
2278   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2279   return CreateStackTemporary(Bytes, Align);
2280 }
2281 
2282 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2283                                 ISD::CondCode Cond, const SDLoc &dl) {
2284   EVT OpVT = N1.getValueType();
2285 
2286   // These setcc operations always fold.
2287   switch (Cond) {
2288   default: break;
2289   case ISD::SETFALSE:
2290   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2291   case ISD::SETTRUE:
2292   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2293 
2294   case ISD::SETOEQ:
2295   case ISD::SETOGT:
2296   case ISD::SETOGE:
2297   case ISD::SETOLT:
2298   case ISD::SETOLE:
2299   case ISD::SETONE:
2300   case ISD::SETO:
2301   case ISD::SETUO:
2302   case ISD::SETUEQ:
2303   case ISD::SETUNE:
2304     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2305     break;
2306   }
2307 
2308   if (OpVT.isInteger()) {
2309     // For EQ and NE, we can always pick a value for the undef to make the
2310     // predicate pass or fail, so we can return undef.
2311     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2312     // icmp eq/ne X, undef -> undef.
2313     if ((N1.isUndef() || N2.isUndef()) &&
2314         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2315       return getUNDEF(VT);
2316 
2317     // If both operands are undef, we can return undef for int comparison.
2318     // icmp undef, undef -> undef.
2319     if (N1.isUndef() && N2.isUndef())
2320       return getUNDEF(VT);
2321 
2322     // icmp X, X -> true/false
2323     // icmp X, undef -> true/false because undef could be X.
2324     if (N1 == N2)
2325       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2326   }
2327 
2328   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2329     const APInt &C2 = N2C->getAPIntValue();
2330     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2331       const APInt &C1 = N1C->getAPIntValue();
2332 
2333       return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2334                              dl, VT, OpVT);
2335     }
2336   }
2337 
2338   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2339   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2340 
2341   if (N1CFP && N2CFP) {
2342     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2343     switch (Cond) {
2344     default: break;
2345     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2346                         return getUNDEF(VT);
2347                       LLVM_FALLTHROUGH;
2348     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2349                                              OpVT);
2350     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2351                         return getUNDEF(VT);
2352                       LLVM_FALLTHROUGH;
2353     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2354                                              R==APFloat::cmpLessThan, dl, VT,
2355                                              OpVT);
2356     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2357                         return getUNDEF(VT);
2358                       LLVM_FALLTHROUGH;
2359     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2360                                              OpVT);
2361     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2362                         return getUNDEF(VT);
2363                       LLVM_FALLTHROUGH;
2364     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2365                                              VT, OpVT);
2366     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2367                         return getUNDEF(VT);
2368                       LLVM_FALLTHROUGH;
2369     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2370                                              R==APFloat::cmpEqual, dl, VT,
2371                                              OpVT);
2372     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2373                         return getUNDEF(VT);
2374                       LLVM_FALLTHROUGH;
2375     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2376                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2377     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2378                                              OpVT);
2379     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2380                                              OpVT);
2381     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2382                                              R==APFloat::cmpEqual, dl, VT,
2383                                              OpVT);
2384     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2385                                              OpVT);
2386     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2387                                              R==APFloat::cmpLessThan, dl, VT,
2388                                              OpVT);
2389     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2390                                              R==APFloat::cmpUnordered, dl, VT,
2391                                              OpVT);
2392     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2393                                              VT, OpVT);
2394     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2395                                              OpVT);
2396     }
2397   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2398     // Ensure that the constant occurs on the RHS.
2399     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2400     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2401       return SDValue();
2402     return getSetCC(dl, VT, N2, N1, SwappedCond);
2403   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2404              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2405     // If an operand is known to be a nan (or undef that could be a nan), we can
2406     // fold it.
2407     // Choosing NaN for the undef will always make unordered comparison succeed
2408     // and ordered comparison fails.
2409     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2410     switch (ISD::getUnorderedFlavor(Cond)) {
2411     default:
2412       llvm_unreachable("Unknown flavor!");
2413     case 0: // Known false.
2414       return getBoolConstant(false, dl, VT, OpVT);
2415     case 1: // Known true.
2416       return getBoolConstant(true, dl, VT, OpVT);
2417     case 2: // Undefined.
2418       return getUNDEF(VT);
2419     }
2420   }
2421 
2422   // Could not fold it.
2423   return SDValue();
2424 }
2425 
2426 /// See if the specified operand can be simplified with the knowledge that only
2427 /// the bits specified by DemandedBits are used.
2428 /// TODO: really we should be making this into the DAG equivalent of
2429 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2430 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2431   EVT VT = V.getValueType();
2432 
2433   if (VT.isScalableVector())
2434     return SDValue();
2435 
2436   APInt DemandedElts = VT.isVector()
2437                            ? APInt::getAllOnes(VT.getVectorNumElements())
2438                            : APInt(1, 1);
2439   return GetDemandedBits(V, DemandedBits, DemandedElts);
2440 }
2441 
2442 /// See if the specified operand can be simplified with the knowledge that only
2443 /// the bits specified by DemandedBits are used in the elements specified by
2444 /// DemandedElts.
2445 /// TODO: really we should be making this into the DAG equivalent of
2446 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2447 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2448                                       const APInt &DemandedElts) {
2449   switch (V.getOpcode()) {
2450   default:
2451     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2452                                                 *this, 0);
2453   case ISD::Constant: {
2454     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2455     APInt NewVal = CVal & DemandedBits;
2456     if (NewVal != CVal)
2457       return getConstant(NewVal, SDLoc(V), V.getValueType());
2458     break;
2459   }
2460   case ISD::SRL:
2461     // Only look at single-use SRLs.
2462     if (!V.getNode()->hasOneUse())
2463       break;
2464     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2465       // See if we can recursively simplify the LHS.
2466       unsigned Amt = RHSC->getZExtValue();
2467 
2468       // Watch out for shift count overflow though.
2469       if (Amt >= DemandedBits.getBitWidth())
2470         break;
2471       APInt SrcDemandedBits = DemandedBits << Amt;
2472       if (SDValue SimplifyLHS =
2473               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2474         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2475                        V.getOperand(1));
2476     }
2477     break;
2478   }
2479   return SDValue();
2480 }
2481 
2482 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2483 /// use this predicate to simplify operations downstream.
2484 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2485   unsigned BitWidth = Op.getScalarValueSizeInBits();
2486   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2487 }
2488 
2489 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2490 /// this predicate to simplify operations downstream.  Mask is known to be zero
2491 /// for bits that V cannot have.
2492 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2493                                      unsigned Depth) const {
2494   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2495 }
2496 
2497 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2498 /// DemandedElts.  We use this predicate to simplify operations downstream.
2499 /// Mask is known to be zero for bits that V cannot have.
2500 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2501                                      const APInt &DemandedElts,
2502                                      unsigned Depth) const {
2503   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2504 }
2505 
2506 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2507 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2508                                         unsigned Depth) const {
2509   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2510 }
2511 
2512 /// isSplatValue - Return true if the vector V has the same value
2513 /// across all DemandedElts. For scalable vectors it does not make
2514 /// sense to specify which elements are demanded or undefined, therefore
2515 /// they are simply ignored.
2516 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2517                                 APInt &UndefElts, unsigned Depth) const {
2518   unsigned Opcode = V.getOpcode();
2519   EVT VT = V.getValueType();
2520   assert(VT.isVector() && "Vector type expected");
2521 
2522   if (!VT.isScalableVector() && !DemandedElts)
2523     return false; // No demanded elts, better to assume we don't know anything.
2524 
2525   if (Depth >= MaxRecursionDepth)
2526     return false; // Limit search depth.
2527 
2528   // Deal with some common cases here that work for both fixed and scalable
2529   // vector types.
2530   switch (Opcode) {
2531   case ISD::SPLAT_VECTOR:
2532     UndefElts = V.getOperand(0).isUndef()
2533                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2534                     : APInt(DemandedElts.getBitWidth(), 0);
2535     return true;
2536   case ISD::ADD:
2537   case ISD::SUB:
2538   case ISD::AND:
2539   case ISD::XOR:
2540   case ISD::OR: {
2541     APInt UndefLHS, UndefRHS;
2542     SDValue LHS = V.getOperand(0);
2543     SDValue RHS = V.getOperand(1);
2544     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2545         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2546       UndefElts = UndefLHS | UndefRHS;
2547       return true;
2548     }
2549     return false;
2550   }
2551   case ISD::ABS:
2552   case ISD::TRUNCATE:
2553   case ISD::SIGN_EXTEND:
2554   case ISD::ZERO_EXTEND:
2555     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2556   default:
2557     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
2558         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
2559       return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth);
2560     break;
2561 }
2562 
2563   // We don't support other cases than those above for scalable vectors at
2564   // the moment.
2565   if (VT.isScalableVector())
2566     return false;
2567 
2568   unsigned NumElts = VT.getVectorNumElements();
2569   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2570   UndefElts = APInt::getZero(NumElts);
2571 
2572   switch (Opcode) {
2573   case ISD::BUILD_VECTOR: {
2574     SDValue Scl;
2575     for (unsigned i = 0; i != NumElts; ++i) {
2576       SDValue Op = V.getOperand(i);
2577       if (Op.isUndef()) {
2578         UndefElts.setBit(i);
2579         continue;
2580       }
2581       if (!DemandedElts[i])
2582         continue;
2583       if (Scl && Scl != Op)
2584         return false;
2585       Scl = Op;
2586     }
2587     return true;
2588   }
2589   case ISD::VECTOR_SHUFFLE: {
2590     // Check if this is a shuffle node doing a splat.
2591     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2592     int SplatIndex = -1;
2593     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2594     for (int i = 0; i != (int)NumElts; ++i) {
2595       int M = Mask[i];
2596       if (M < 0) {
2597         UndefElts.setBit(i);
2598         continue;
2599       }
2600       if (!DemandedElts[i])
2601         continue;
2602       if (0 <= SplatIndex && SplatIndex != M)
2603         return false;
2604       SplatIndex = M;
2605     }
2606     return true;
2607   }
2608   case ISD::EXTRACT_SUBVECTOR: {
2609     // Offset the demanded elts by the subvector index.
2610     SDValue Src = V.getOperand(0);
2611     // We don't support scalable vectors at the moment.
2612     if (Src.getValueType().isScalableVector())
2613       return false;
2614     uint64_t Idx = V.getConstantOperandVal(1);
2615     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2616     APInt UndefSrcElts;
2617     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2618     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2619       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2620       return true;
2621     }
2622     break;
2623   }
2624   case ISD::ANY_EXTEND_VECTOR_INREG:
2625   case ISD::SIGN_EXTEND_VECTOR_INREG:
2626   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2627     // Widen the demanded elts by the src element count.
2628     SDValue Src = V.getOperand(0);
2629     // We don't support scalable vectors at the moment.
2630     if (Src.getValueType().isScalableVector())
2631       return false;
2632     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2633     APInt UndefSrcElts;
2634     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2635     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2636       UndefElts = UndefSrcElts.truncOrSelf(NumElts);
2637       return true;
2638     }
2639     break;
2640   }
2641   }
2642 
2643   return false;
2644 }
2645 
2646 /// Helper wrapper to main isSplatValue function.
2647 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
2648   EVT VT = V.getValueType();
2649   assert(VT.isVector() && "Vector type expected");
2650 
2651   APInt UndefElts;
2652   APInt DemandedElts;
2653 
2654   // For now we don't support this with scalable vectors.
2655   if (!VT.isScalableVector())
2656     DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2657   return isSplatValue(V, DemandedElts, UndefElts) &&
2658          (AllowUndefs || !UndefElts);
2659 }
2660 
2661 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2662   V = peekThroughExtractSubvectors(V);
2663 
2664   EVT VT = V.getValueType();
2665   unsigned Opcode = V.getOpcode();
2666   switch (Opcode) {
2667   default: {
2668     APInt UndefElts;
2669     APInt DemandedElts;
2670 
2671     if (!VT.isScalableVector())
2672       DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2673 
2674     if (isSplatValue(V, DemandedElts, UndefElts)) {
2675       if (VT.isScalableVector()) {
2676         // DemandedElts and UndefElts are ignored for scalable vectors, since
2677         // the only supported cases are SPLAT_VECTOR nodes.
2678         SplatIdx = 0;
2679       } else {
2680         // Handle case where all demanded elements are UNDEF.
2681         if (DemandedElts.isSubsetOf(UndefElts)) {
2682           SplatIdx = 0;
2683           return getUNDEF(VT);
2684         }
2685         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2686       }
2687       return V;
2688     }
2689     break;
2690   }
2691   case ISD::SPLAT_VECTOR:
2692     SplatIdx = 0;
2693     return V;
2694   case ISD::VECTOR_SHUFFLE: {
2695     if (VT.isScalableVector())
2696       return SDValue();
2697 
2698     // Check if this is a shuffle node doing a splat.
2699     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2700     // getTargetVShiftNode currently struggles without the splat source.
2701     auto *SVN = cast<ShuffleVectorSDNode>(V);
2702     if (!SVN->isSplat())
2703       break;
2704     int Idx = SVN->getSplatIndex();
2705     int NumElts = V.getValueType().getVectorNumElements();
2706     SplatIdx = Idx % NumElts;
2707     return V.getOperand(Idx / NumElts);
2708   }
2709   }
2710 
2711   return SDValue();
2712 }
2713 
2714 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2715   int SplatIdx;
2716   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2717     EVT SVT = SrcVector.getValueType().getScalarType();
2718     EVT LegalSVT = SVT;
2719     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2720       if (!SVT.isInteger())
2721         return SDValue();
2722       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2723       if (LegalSVT.bitsLT(SVT))
2724         return SDValue();
2725     }
2726     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2727                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2728   }
2729   return SDValue();
2730 }
2731 
2732 const APInt *
2733 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2734                                           const APInt &DemandedElts) const {
2735   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2736           V.getOpcode() == ISD::SRA) &&
2737          "Unknown shift node");
2738   unsigned BitWidth = V.getScalarValueSizeInBits();
2739   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2740     // Shifting more than the bitwidth is not valid.
2741     const APInt &ShAmt = SA->getAPIntValue();
2742     if (ShAmt.ult(BitWidth))
2743       return &ShAmt;
2744   }
2745   return nullptr;
2746 }
2747 
2748 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2749     SDValue V, const APInt &DemandedElts) const {
2750   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2751           V.getOpcode() == ISD::SRA) &&
2752          "Unknown shift node");
2753   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2754     return ValidAmt;
2755   unsigned BitWidth = V.getScalarValueSizeInBits();
2756   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2757   if (!BV)
2758     return nullptr;
2759   const APInt *MinShAmt = nullptr;
2760   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2761     if (!DemandedElts[i])
2762       continue;
2763     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2764     if (!SA)
2765       return nullptr;
2766     // Shifting more than the bitwidth is not valid.
2767     const APInt &ShAmt = SA->getAPIntValue();
2768     if (ShAmt.uge(BitWidth))
2769       return nullptr;
2770     if (MinShAmt && MinShAmt->ule(ShAmt))
2771       continue;
2772     MinShAmt = &ShAmt;
2773   }
2774   return MinShAmt;
2775 }
2776 
2777 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2778     SDValue V, const APInt &DemandedElts) const {
2779   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2780           V.getOpcode() == ISD::SRA) &&
2781          "Unknown shift node");
2782   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2783     return ValidAmt;
2784   unsigned BitWidth = V.getScalarValueSizeInBits();
2785   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2786   if (!BV)
2787     return nullptr;
2788   const APInt *MaxShAmt = nullptr;
2789   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2790     if (!DemandedElts[i])
2791       continue;
2792     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2793     if (!SA)
2794       return nullptr;
2795     // Shifting more than the bitwidth is not valid.
2796     const APInt &ShAmt = SA->getAPIntValue();
2797     if (ShAmt.uge(BitWidth))
2798       return nullptr;
2799     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2800       continue;
2801     MaxShAmt = &ShAmt;
2802   }
2803   return MaxShAmt;
2804 }
2805 
2806 /// Determine which bits of Op are known to be either zero or one and return
2807 /// them in Known. For vectors, the known bits are those that are shared by
2808 /// every vector element.
2809 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2810   EVT VT = Op.getValueType();
2811 
2812   // TOOD: Until we have a plan for how to represent demanded elements for
2813   // scalable vectors, we can just bail out for now.
2814   if (Op.getValueType().isScalableVector()) {
2815     unsigned BitWidth = Op.getScalarValueSizeInBits();
2816     return KnownBits(BitWidth);
2817   }
2818 
2819   APInt DemandedElts = VT.isVector()
2820                            ? APInt::getAllOnes(VT.getVectorNumElements())
2821                            : APInt(1, 1);
2822   return computeKnownBits(Op, DemandedElts, Depth);
2823 }
2824 
2825 /// Determine which bits of Op are known to be either zero or one and return
2826 /// them in Known. The DemandedElts argument allows us to only collect the known
2827 /// bits that are shared by the requested vector elements.
2828 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2829                                          unsigned Depth) const {
2830   unsigned BitWidth = Op.getScalarValueSizeInBits();
2831 
2832   KnownBits Known(BitWidth);   // Don't know anything.
2833 
2834   // TOOD: Until we have a plan for how to represent demanded elements for
2835   // scalable vectors, we can just bail out for now.
2836   if (Op.getValueType().isScalableVector())
2837     return Known;
2838 
2839   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2840     // We know all of the bits for a constant!
2841     return KnownBits::makeConstant(C->getAPIntValue());
2842   }
2843   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2844     // We know all of the bits for a constant fp!
2845     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2846   }
2847 
2848   if (Depth >= MaxRecursionDepth)
2849     return Known;  // Limit search depth.
2850 
2851   KnownBits Known2;
2852   unsigned NumElts = DemandedElts.getBitWidth();
2853   assert((!Op.getValueType().isVector() ||
2854           NumElts == Op.getValueType().getVectorNumElements()) &&
2855          "Unexpected vector size");
2856 
2857   if (!DemandedElts)
2858     return Known;  // No demanded elts, better to assume we don't know anything.
2859 
2860   unsigned Opcode = Op.getOpcode();
2861   switch (Opcode) {
2862   case ISD::BUILD_VECTOR:
2863     // Collect the known bits that are shared by every demanded vector element.
2864     Known.Zero.setAllBits(); Known.One.setAllBits();
2865     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2866       if (!DemandedElts[i])
2867         continue;
2868 
2869       SDValue SrcOp = Op.getOperand(i);
2870       Known2 = computeKnownBits(SrcOp, Depth + 1);
2871 
2872       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2873       if (SrcOp.getValueSizeInBits() != BitWidth) {
2874         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2875                "Expected BUILD_VECTOR implicit truncation");
2876         Known2 = Known2.trunc(BitWidth);
2877       }
2878 
2879       // Known bits are the values that are shared by every demanded element.
2880       Known = KnownBits::commonBits(Known, Known2);
2881 
2882       // If we don't know any bits, early out.
2883       if (Known.isUnknown())
2884         break;
2885     }
2886     break;
2887   case ISD::VECTOR_SHUFFLE: {
2888     // Collect the known bits that are shared by every vector element referenced
2889     // by the shuffle.
2890     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2891     Known.Zero.setAllBits(); Known.One.setAllBits();
2892     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2893     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2894     for (unsigned i = 0; i != NumElts; ++i) {
2895       if (!DemandedElts[i])
2896         continue;
2897 
2898       int M = SVN->getMaskElt(i);
2899       if (M < 0) {
2900         // For UNDEF elements, we don't know anything about the common state of
2901         // the shuffle result.
2902         Known.resetAll();
2903         DemandedLHS.clearAllBits();
2904         DemandedRHS.clearAllBits();
2905         break;
2906       }
2907 
2908       if ((unsigned)M < NumElts)
2909         DemandedLHS.setBit((unsigned)M % NumElts);
2910       else
2911         DemandedRHS.setBit((unsigned)M % NumElts);
2912     }
2913     // Known bits are the values that are shared by every demanded element.
2914     if (!!DemandedLHS) {
2915       SDValue LHS = Op.getOperand(0);
2916       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2917       Known = KnownBits::commonBits(Known, Known2);
2918     }
2919     // If we don't know any bits, early out.
2920     if (Known.isUnknown())
2921       break;
2922     if (!!DemandedRHS) {
2923       SDValue RHS = Op.getOperand(1);
2924       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2925       Known = KnownBits::commonBits(Known, Known2);
2926     }
2927     break;
2928   }
2929   case ISD::CONCAT_VECTORS: {
2930     // Split DemandedElts and test each of the demanded subvectors.
2931     Known.Zero.setAllBits(); Known.One.setAllBits();
2932     EVT SubVectorVT = Op.getOperand(0).getValueType();
2933     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2934     unsigned NumSubVectors = Op.getNumOperands();
2935     for (unsigned i = 0; i != NumSubVectors; ++i) {
2936       APInt DemandedSub =
2937           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
2938       if (!!DemandedSub) {
2939         SDValue Sub = Op.getOperand(i);
2940         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2941         Known = KnownBits::commonBits(Known, Known2);
2942       }
2943       // If we don't know any bits, early out.
2944       if (Known.isUnknown())
2945         break;
2946     }
2947     break;
2948   }
2949   case ISD::INSERT_SUBVECTOR: {
2950     // Demand any elements from the subvector and the remainder from the src its
2951     // inserted into.
2952     SDValue Src = Op.getOperand(0);
2953     SDValue Sub = Op.getOperand(1);
2954     uint64_t Idx = Op.getConstantOperandVal(2);
2955     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2956     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2957     APInt DemandedSrcElts = DemandedElts;
2958     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2959 
2960     Known.One.setAllBits();
2961     Known.Zero.setAllBits();
2962     if (!!DemandedSubElts) {
2963       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2964       if (Known.isUnknown())
2965         break; // early-out.
2966     }
2967     if (!!DemandedSrcElts) {
2968       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2969       Known = KnownBits::commonBits(Known, Known2);
2970     }
2971     break;
2972   }
2973   case ISD::EXTRACT_SUBVECTOR: {
2974     // Offset the demanded elts by the subvector index.
2975     SDValue Src = Op.getOperand(0);
2976     // Bail until we can represent demanded elements for scalable vectors.
2977     if (Src.getValueType().isScalableVector())
2978       break;
2979     uint64_t Idx = Op.getConstantOperandVal(1);
2980     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2981     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2982     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2983     break;
2984   }
2985   case ISD::SCALAR_TO_VECTOR: {
2986     // We know about scalar_to_vector as much as we know about it source,
2987     // which becomes the first element of otherwise unknown vector.
2988     if (DemandedElts != 1)
2989       break;
2990 
2991     SDValue N0 = Op.getOperand(0);
2992     Known = computeKnownBits(N0, Depth + 1);
2993     if (N0.getValueSizeInBits() != BitWidth)
2994       Known = Known.trunc(BitWidth);
2995 
2996     break;
2997   }
2998   case ISD::BITCAST: {
2999     SDValue N0 = Op.getOperand(0);
3000     EVT SubVT = N0.getValueType();
3001     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3002 
3003     // Ignore bitcasts from unsupported types.
3004     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3005       break;
3006 
3007     // Fast handling of 'identity' bitcasts.
3008     if (BitWidth == SubBitWidth) {
3009       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3010       break;
3011     }
3012 
3013     bool IsLE = getDataLayout().isLittleEndian();
3014 
3015     // Bitcast 'small element' vector to 'large element' scalar/vector.
3016     if ((BitWidth % SubBitWidth) == 0) {
3017       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3018 
3019       // Collect known bits for the (larger) output by collecting the known
3020       // bits from each set of sub elements and shift these into place.
3021       // We need to separately call computeKnownBits for each set of
3022       // sub elements as the knownbits for each is likely to be different.
3023       unsigned SubScale = BitWidth / SubBitWidth;
3024       APInt SubDemandedElts(NumElts * SubScale, 0);
3025       for (unsigned i = 0; i != NumElts; ++i)
3026         if (DemandedElts[i])
3027           SubDemandedElts.setBit(i * SubScale);
3028 
3029       for (unsigned i = 0; i != SubScale; ++i) {
3030         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3031                          Depth + 1);
3032         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3033         Known.insertBits(Known2, SubBitWidth * Shifts);
3034       }
3035     }
3036 
3037     // Bitcast 'large element' scalar/vector to 'small element' vector.
3038     if ((SubBitWidth % BitWidth) == 0) {
3039       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3040 
3041       // Collect known bits for the (smaller) output by collecting the known
3042       // bits from the overlapping larger input elements and extracting the
3043       // sub sections we actually care about.
3044       unsigned SubScale = SubBitWidth / BitWidth;
3045       APInt SubDemandedElts =
3046           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3047       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3048 
3049       Known.Zero.setAllBits(); Known.One.setAllBits();
3050       for (unsigned i = 0; i != NumElts; ++i)
3051         if (DemandedElts[i]) {
3052           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3053           unsigned Offset = (Shifts % SubScale) * BitWidth;
3054           Known = KnownBits::commonBits(Known,
3055                                         Known2.extractBits(BitWidth, Offset));
3056           // If we don't know any bits, early out.
3057           if (Known.isUnknown())
3058             break;
3059         }
3060     }
3061     break;
3062   }
3063   case ISD::AND:
3064     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3065     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3066 
3067     Known &= Known2;
3068     break;
3069   case ISD::OR:
3070     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3071     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3072 
3073     Known |= Known2;
3074     break;
3075   case ISD::XOR:
3076     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3077     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3078 
3079     Known ^= Known2;
3080     break;
3081   case ISD::MUL: {
3082     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3083     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3084     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3085     Known = KnownBits::mul(Known, Known2, SelfMultiply);
3086     break;
3087   }
3088   case ISD::MULHU: {
3089     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3090     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3091     Known = KnownBits::mulhu(Known, Known2);
3092     break;
3093   }
3094   case ISD::MULHS: {
3095     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3096     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3097     Known = KnownBits::mulhs(Known, Known2);
3098     break;
3099   }
3100   case ISD::UMUL_LOHI: {
3101     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3102     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3103     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3104     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3105     if (Op.getResNo() == 0)
3106       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3107     else
3108       Known = KnownBits::mulhu(Known, Known2);
3109     break;
3110   }
3111   case ISD::SMUL_LOHI: {
3112     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3113     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3114     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3115     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3116     if (Op.getResNo() == 0)
3117       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3118     else
3119       Known = KnownBits::mulhs(Known, Known2);
3120     break;
3121   }
3122   case ISD::UDIV: {
3123     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3124     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3125     Known = KnownBits::udiv(Known, Known2);
3126     break;
3127   }
3128   case ISD::SELECT:
3129   case ISD::VSELECT:
3130     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3131     // If we don't know any bits, early out.
3132     if (Known.isUnknown())
3133       break;
3134     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3135 
3136     // Only known if known in both the LHS and RHS.
3137     Known = KnownBits::commonBits(Known, Known2);
3138     break;
3139   case ISD::SELECT_CC:
3140     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3141     // If we don't know any bits, early out.
3142     if (Known.isUnknown())
3143       break;
3144     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3145 
3146     // Only known if known in both the LHS and RHS.
3147     Known = KnownBits::commonBits(Known, Known2);
3148     break;
3149   case ISD::SMULO:
3150   case ISD::UMULO:
3151     if (Op.getResNo() != 1)
3152       break;
3153     // The boolean result conforms to getBooleanContents.
3154     // If we know the result of a setcc has the top bits zero, use this info.
3155     // We know that we have an integer-based boolean since these operations
3156     // are only available for integer.
3157     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3158             TargetLowering::ZeroOrOneBooleanContent &&
3159         BitWidth > 1)
3160       Known.Zero.setBitsFrom(1);
3161     break;
3162   case ISD::SETCC:
3163   case ISD::STRICT_FSETCC:
3164   case ISD::STRICT_FSETCCS: {
3165     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3166     // If we know the result of a setcc has the top bits zero, use this info.
3167     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3168             TargetLowering::ZeroOrOneBooleanContent &&
3169         BitWidth > 1)
3170       Known.Zero.setBitsFrom(1);
3171     break;
3172   }
3173   case ISD::SHL:
3174     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3175     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3176     Known = KnownBits::shl(Known, Known2);
3177 
3178     // Minimum shift low bits are known zero.
3179     if (const APInt *ShMinAmt =
3180             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3181       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3182     break;
3183   case ISD::SRL:
3184     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3185     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3186     Known = KnownBits::lshr(Known, Known2);
3187 
3188     // Minimum shift high bits are known zero.
3189     if (const APInt *ShMinAmt =
3190             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3191       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3192     break;
3193   case ISD::SRA:
3194     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3195     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3196     Known = KnownBits::ashr(Known, Known2);
3197     // TODO: Add minimum shift high known sign bits.
3198     break;
3199   case ISD::FSHL:
3200   case ISD::FSHR:
3201     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3202       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3203 
3204       // For fshl, 0-shift returns the 1st arg.
3205       // For fshr, 0-shift returns the 2nd arg.
3206       if (Amt == 0) {
3207         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3208                                  DemandedElts, Depth + 1);
3209         break;
3210       }
3211 
3212       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3213       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3214       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3215       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3216       if (Opcode == ISD::FSHL) {
3217         Known.One <<= Amt;
3218         Known.Zero <<= Amt;
3219         Known2.One.lshrInPlace(BitWidth - Amt);
3220         Known2.Zero.lshrInPlace(BitWidth - Amt);
3221       } else {
3222         Known.One <<= BitWidth - Amt;
3223         Known.Zero <<= BitWidth - Amt;
3224         Known2.One.lshrInPlace(Amt);
3225         Known2.Zero.lshrInPlace(Amt);
3226       }
3227       Known.One |= Known2.One;
3228       Known.Zero |= Known2.Zero;
3229     }
3230     break;
3231   case ISD::SIGN_EXTEND_INREG: {
3232     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3233     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3234     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3235     break;
3236   }
3237   case ISD::CTTZ:
3238   case ISD::CTTZ_ZERO_UNDEF: {
3239     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3240     // If we have a known 1, its position is our upper bound.
3241     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3242     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3243     Known.Zero.setBitsFrom(LowBits);
3244     break;
3245   }
3246   case ISD::CTLZ:
3247   case ISD::CTLZ_ZERO_UNDEF: {
3248     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3249     // If we have a known 1, its position is our upper bound.
3250     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3251     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3252     Known.Zero.setBitsFrom(LowBits);
3253     break;
3254   }
3255   case ISD::CTPOP: {
3256     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3257     // If we know some of the bits are zero, they can't be one.
3258     unsigned PossibleOnes = Known2.countMaxPopulation();
3259     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3260     break;
3261   }
3262   case ISD::PARITY: {
3263     // Parity returns 0 everywhere but the LSB.
3264     Known.Zero.setBitsFrom(1);
3265     break;
3266   }
3267   case ISD::LOAD: {
3268     LoadSDNode *LD = cast<LoadSDNode>(Op);
3269     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3270     if (ISD::isNON_EXTLoad(LD) && Cst) {
3271       // Determine any common known bits from the loaded constant pool value.
3272       Type *CstTy = Cst->getType();
3273       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3274         // If its a vector splat, then we can (quickly) reuse the scalar path.
3275         // NOTE: We assume all elements match and none are UNDEF.
3276         if (CstTy->isVectorTy()) {
3277           if (const Constant *Splat = Cst->getSplatValue()) {
3278             Cst = Splat;
3279             CstTy = Cst->getType();
3280           }
3281         }
3282         // TODO - do we need to handle different bitwidths?
3283         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3284           // Iterate across all vector elements finding common known bits.
3285           Known.One.setAllBits();
3286           Known.Zero.setAllBits();
3287           for (unsigned i = 0; i != NumElts; ++i) {
3288             if (!DemandedElts[i])
3289               continue;
3290             if (Constant *Elt = Cst->getAggregateElement(i)) {
3291               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3292                 const APInt &Value = CInt->getValue();
3293                 Known.One &= Value;
3294                 Known.Zero &= ~Value;
3295                 continue;
3296               }
3297               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3298                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3299                 Known.One &= Value;
3300                 Known.Zero &= ~Value;
3301                 continue;
3302               }
3303             }
3304             Known.One.clearAllBits();
3305             Known.Zero.clearAllBits();
3306             break;
3307           }
3308         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3309           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3310             Known = KnownBits::makeConstant(CInt->getValue());
3311           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3312             Known =
3313                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3314           }
3315         }
3316       }
3317     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3318       // If this is a ZEXTLoad and we are looking at the loaded value.
3319       EVT VT = LD->getMemoryVT();
3320       unsigned MemBits = VT.getScalarSizeInBits();
3321       Known.Zero.setBitsFrom(MemBits);
3322     } else if (const MDNode *Ranges = LD->getRanges()) {
3323       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3324         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3325     }
3326     break;
3327   }
3328   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3329     EVT InVT = Op.getOperand(0).getValueType();
3330     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3331     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3332     Known = Known.zext(BitWidth);
3333     break;
3334   }
3335   case ISD::ZERO_EXTEND: {
3336     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3337     Known = Known.zext(BitWidth);
3338     break;
3339   }
3340   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3341     EVT InVT = Op.getOperand(0).getValueType();
3342     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3343     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3344     // If the sign bit is known to be zero or one, then sext will extend
3345     // it to the top bits, else it will just zext.
3346     Known = Known.sext(BitWidth);
3347     break;
3348   }
3349   case ISD::SIGN_EXTEND: {
3350     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3351     // If the sign bit is known to be zero or one, then sext will extend
3352     // it to the top bits, else it will just zext.
3353     Known = Known.sext(BitWidth);
3354     break;
3355   }
3356   case ISD::ANY_EXTEND_VECTOR_INREG: {
3357     EVT InVT = Op.getOperand(0).getValueType();
3358     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3359     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3360     Known = Known.anyext(BitWidth);
3361     break;
3362   }
3363   case ISD::ANY_EXTEND: {
3364     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3365     Known = Known.anyext(BitWidth);
3366     break;
3367   }
3368   case ISD::TRUNCATE: {
3369     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3370     Known = Known.trunc(BitWidth);
3371     break;
3372   }
3373   case ISD::AssertZext: {
3374     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3375     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3376     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3377     Known.Zero |= (~InMask);
3378     Known.One  &= (~Known.Zero);
3379     break;
3380   }
3381   case ISD::AssertAlign: {
3382     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3383     assert(LogOfAlign != 0);
3384 
3385     // TODO: Should use maximum with source
3386     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3387     // well as clearing one bits.
3388     Known.Zero.setLowBits(LogOfAlign);
3389     Known.One.clearLowBits(LogOfAlign);
3390     break;
3391   }
3392   case ISD::FGETSIGN:
3393     // All bits are zero except the low bit.
3394     Known.Zero.setBitsFrom(1);
3395     break;
3396   case ISD::USUBO:
3397   case ISD::SSUBO:
3398     if (Op.getResNo() == 1) {
3399       // If we know the result of a setcc has the top bits zero, use this info.
3400       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3401               TargetLowering::ZeroOrOneBooleanContent &&
3402           BitWidth > 1)
3403         Known.Zero.setBitsFrom(1);
3404       break;
3405     }
3406     LLVM_FALLTHROUGH;
3407   case ISD::SUB:
3408   case ISD::SUBC: {
3409     assert(Op.getResNo() == 0 &&
3410            "We only compute knownbits for the difference here.");
3411 
3412     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3413     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3414     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3415                                         Known, Known2);
3416     break;
3417   }
3418   case ISD::UADDO:
3419   case ISD::SADDO:
3420   case ISD::ADDCARRY:
3421     if (Op.getResNo() == 1) {
3422       // If we know the result of a setcc has the top bits zero, use this info.
3423       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3424               TargetLowering::ZeroOrOneBooleanContent &&
3425           BitWidth > 1)
3426         Known.Zero.setBitsFrom(1);
3427       break;
3428     }
3429     LLVM_FALLTHROUGH;
3430   case ISD::ADD:
3431   case ISD::ADDC:
3432   case ISD::ADDE: {
3433     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3434 
3435     // With ADDE and ADDCARRY, a carry bit may be added in.
3436     KnownBits Carry(1);
3437     if (Opcode == ISD::ADDE)
3438       // Can't track carry from glue, set carry to unknown.
3439       Carry.resetAll();
3440     else if (Opcode == ISD::ADDCARRY)
3441       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3442       // the trouble (how often will we find a known carry bit). And I haven't
3443       // tested this very much yet, but something like this might work:
3444       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3445       //   Carry = Carry.zextOrTrunc(1, false);
3446       Carry.resetAll();
3447     else
3448       Carry.setAllZero();
3449 
3450     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3451     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3452     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3453     break;
3454   }
3455   case ISD::SREM: {
3456     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3457     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3458     Known = KnownBits::srem(Known, Known2);
3459     break;
3460   }
3461   case ISD::UREM: {
3462     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3463     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3464     Known = KnownBits::urem(Known, Known2);
3465     break;
3466   }
3467   case ISD::EXTRACT_ELEMENT: {
3468     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3469     const unsigned Index = Op.getConstantOperandVal(1);
3470     const unsigned EltBitWidth = Op.getValueSizeInBits();
3471 
3472     // Remove low part of known bits mask
3473     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3474     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3475 
3476     // Remove high part of known bit mask
3477     Known = Known.trunc(EltBitWidth);
3478     break;
3479   }
3480   case ISD::EXTRACT_VECTOR_ELT: {
3481     SDValue InVec = Op.getOperand(0);
3482     SDValue EltNo = Op.getOperand(1);
3483     EVT VecVT = InVec.getValueType();
3484     // computeKnownBits not yet implemented for scalable vectors.
3485     if (VecVT.isScalableVector())
3486       break;
3487     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3488     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3489 
3490     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3491     // anything about the extended bits.
3492     if (BitWidth > EltBitWidth)
3493       Known = Known.trunc(EltBitWidth);
3494 
3495     // If we know the element index, just demand that vector element, else for
3496     // an unknown element index, ignore DemandedElts and demand them all.
3497     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3498     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3499     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3500       DemandedSrcElts =
3501           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3502 
3503     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3504     if (BitWidth > EltBitWidth)
3505       Known = Known.anyext(BitWidth);
3506     break;
3507   }
3508   case ISD::INSERT_VECTOR_ELT: {
3509     // If we know the element index, split the demand between the
3510     // source vector and the inserted element, otherwise assume we need
3511     // the original demanded vector elements and the value.
3512     SDValue InVec = Op.getOperand(0);
3513     SDValue InVal = Op.getOperand(1);
3514     SDValue EltNo = Op.getOperand(2);
3515     bool DemandedVal = true;
3516     APInt DemandedVecElts = DemandedElts;
3517     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3518     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3519       unsigned EltIdx = CEltNo->getZExtValue();
3520       DemandedVal = !!DemandedElts[EltIdx];
3521       DemandedVecElts.clearBit(EltIdx);
3522     }
3523     Known.One.setAllBits();
3524     Known.Zero.setAllBits();
3525     if (DemandedVal) {
3526       Known2 = computeKnownBits(InVal, Depth + 1);
3527       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3528     }
3529     if (!!DemandedVecElts) {
3530       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3531       Known = KnownBits::commonBits(Known, Known2);
3532     }
3533     break;
3534   }
3535   case ISD::BITREVERSE: {
3536     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3537     Known = Known2.reverseBits();
3538     break;
3539   }
3540   case ISD::BSWAP: {
3541     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3542     Known = Known2.byteSwap();
3543     break;
3544   }
3545   case ISD::ABS: {
3546     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3547     Known = Known2.abs();
3548     break;
3549   }
3550   case ISD::USUBSAT: {
3551     // The result of usubsat will never be larger than the LHS.
3552     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3553     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3554     break;
3555   }
3556   case ISD::UMIN: {
3557     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3558     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3559     Known = KnownBits::umin(Known, Known2);
3560     break;
3561   }
3562   case ISD::UMAX: {
3563     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3564     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3565     Known = KnownBits::umax(Known, Known2);
3566     break;
3567   }
3568   case ISD::SMIN:
3569   case ISD::SMAX: {
3570     // If we have a clamp pattern, we know that the number of sign bits will be
3571     // the minimum of the clamp min/max range.
3572     bool IsMax = (Opcode == ISD::SMAX);
3573     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3574     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3575       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3576         CstHigh =
3577             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3578     if (CstLow && CstHigh) {
3579       if (!IsMax)
3580         std::swap(CstLow, CstHigh);
3581 
3582       const APInt &ValueLow = CstLow->getAPIntValue();
3583       const APInt &ValueHigh = CstHigh->getAPIntValue();
3584       if (ValueLow.sle(ValueHigh)) {
3585         unsigned LowSignBits = ValueLow.getNumSignBits();
3586         unsigned HighSignBits = ValueHigh.getNumSignBits();
3587         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3588         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3589           Known.One.setHighBits(MinSignBits);
3590           break;
3591         }
3592         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3593           Known.Zero.setHighBits(MinSignBits);
3594           break;
3595         }
3596       }
3597     }
3598 
3599     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3600     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3601     if (IsMax)
3602       Known = KnownBits::smax(Known, Known2);
3603     else
3604       Known = KnownBits::smin(Known, Known2);
3605     break;
3606   }
3607   case ISD::FP_TO_UINT_SAT: {
3608     // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
3609     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3610     Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
3611     break;
3612   }
3613   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3614     if (Op.getResNo() == 1) {
3615       // The boolean result conforms to getBooleanContents.
3616       // If we know the result of a setcc has the top bits zero, use this info.
3617       // We know that we have an integer-based boolean since these operations
3618       // are only available for integer.
3619       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3620               TargetLowering::ZeroOrOneBooleanContent &&
3621           BitWidth > 1)
3622         Known.Zero.setBitsFrom(1);
3623       break;
3624     }
3625     LLVM_FALLTHROUGH;
3626   case ISD::ATOMIC_CMP_SWAP:
3627   case ISD::ATOMIC_SWAP:
3628   case ISD::ATOMIC_LOAD_ADD:
3629   case ISD::ATOMIC_LOAD_SUB:
3630   case ISD::ATOMIC_LOAD_AND:
3631   case ISD::ATOMIC_LOAD_CLR:
3632   case ISD::ATOMIC_LOAD_OR:
3633   case ISD::ATOMIC_LOAD_XOR:
3634   case ISD::ATOMIC_LOAD_NAND:
3635   case ISD::ATOMIC_LOAD_MIN:
3636   case ISD::ATOMIC_LOAD_MAX:
3637   case ISD::ATOMIC_LOAD_UMIN:
3638   case ISD::ATOMIC_LOAD_UMAX:
3639   case ISD::ATOMIC_LOAD: {
3640     unsigned MemBits =
3641         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3642     // If we are looking at the loaded value.
3643     if (Op.getResNo() == 0) {
3644       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3645         Known.Zero.setBitsFrom(MemBits);
3646     }
3647     break;
3648   }
3649   case ISD::FrameIndex:
3650   case ISD::TargetFrameIndex:
3651     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3652                                        Known, getMachineFunction());
3653     break;
3654 
3655   default:
3656     if (Opcode < ISD::BUILTIN_OP_END)
3657       break;
3658     LLVM_FALLTHROUGH;
3659   case ISD::INTRINSIC_WO_CHAIN:
3660   case ISD::INTRINSIC_W_CHAIN:
3661   case ISD::INTRINSIC_VOID:
3662     // Allow the target to implement this method for its nodes.
3663     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3664     break;
3665   }
3666 
3667   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3668   return Known;
3669 }
3670 
3671 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3672                                                              SDValue N1) const {
3673   // X + 0 never overflow
3674   if (isNullConstant(N1))
3675     return OFK_Never;
3676 
3677   KnownBits N1Known = computeKnownBits(N1);
3678   if (N1Known.Zero.getBoolValue()) {
3679     KnownBits N0Known = computeKnownBits(N0);
3680 
3681     bool overflow;
3682     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3683     if (!overflow)
3684       return OFK_Never;
3685   }
3686 
3687   // mulhi + 1 never overflow
3688   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3689       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3690     return OFK_Never;
3691 
3692   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3693     KnownBits N0Known = computeKnownBits(N0);
3694 
3695     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3696       return OFK_Never;
3697   }
3698 
3699   return OFK_Sometime;
3700 }
3701 
3702 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3703   EVT OpVT = Val.getValueType();
3704   unsigned BitWidth = OpVT.getScalarSizeInBits();
3705 
3706   // Is the constant a known power of 2?
3707   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3708     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3709 
3710   // A left-shift of a constant one will have exactly one bit set because
3711   // shifting the bit off the end is undefined.
3712   if (Val.getOpcode() == ISD::SHL) {
3713     auto *C = isConstOrConstSplat(Val.getOperand(0));
3714     if (C && C->getAPIntValue() == 1)
3715       return true;
3716   }
3717 
3718   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3719   // one bit set.
3720   if (Val.getOpcode() == ISD::SRL) {
3721     auto *C = isConstOrConstSplat(Val.getOperand(0));
3722     if (C && C->getAPIntValue().isSignMask())
3723       return true;
3724   }
3725 
3726   // Are all operands of a build vector constant powers of two?
3727   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3728     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3729           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3730             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3731           return false;
3732         }))
3733       return true;
3734 
3735   // Is the operand of a splat vector a constant power of two?
3736   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3737     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3738       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3739         return true;
3740 
3741   // More could be done here, though the above checks are enough
3742   // to handle some common cases.
3743 
3744   // Fall back to computeKnownBits to catch other known cases.
3745   KnownBits Known = computeKnownBits(Val);
3746   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3747 }
3748 
3749 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3750   EVT VT = Op.getValueType();
3751 
3752   // TODO: Assume we don't know anything for now.
3753   if (VT.isScalableVector())
3754     return 1;
3755 
3756   APInt DemandedElts = VT.isVector()
3757                            ? APInt::getAllOnes(VT.getVectorNumElements())
3758                            : APInt(1, 1);
3759   return ComputeNumSignBits(Op, DemandedElts, Depth);
3760 }
3761 
3762 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3763                                           unsigned Depth) const {
3764   EVT VT = Op.getValueType();
3765   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3766   unsigned VTBits = VT.getScalarSizeInBits();
3767   unsigned NumElts = DemandedElts.getBitWidth();
3768   unsigned Tmp, Tmp2;
3769   unsigned FirstAnswer = 1;
3770 
3771   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3772     const APInt &Val = C->getAPIntValue();
3773     return Val.getNumSignBits();
3774   }
3775 
3776   if (Depth >= MaxRecursionDepth)
3777     return 1;  // Limit search depth.
3778 
3779   if (!DemandedElts || VT.isScalableVector())
3780     return 1;  // No demanded elts, better to assume we don't know anything.
3781 
3782   unsigned Opcode = Op.getOpcode();
3783   switch (Opcode) {
3784   default: break;
3785   case ISD::AssertSext:
3786     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3787     return VTBits-Tmp+1;
3788   case ISD::AssertZext:
3789     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3790     return VTBits-Tmp;
3791 
3792   case ISD::BUILD_VECTOR:
3793     Tmp = VTBits;
3794     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3795       if (!DemandedElts[i])
3796         continue;
3797 
3798       SDValue SrcOp = Op.getOperand(i);
3799       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3800 
3801       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3802       if (SrcOp.getValueSizeInBits() != VTBits) {
3803         assert(SrcOp.getValueSizeInBits() > VTBits &&
3804                "Expected BUILD_VECTOR implicit truncation");
3805         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3806         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3807       }
3808       Tmp = std::min(Tmp, Tmp2);
3809     }
3810     return Tmp;
3811 
3812   case ISD::VECTOR_SHUFFLE: {
3813     // Collect the minimum number of sign bits that are shared by every vector
3814     // element referenced by the shuffle.
3815     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3816     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3817     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3818     for (unsigned i = 0; i != NumElts; ++i) {
3819       int M = SVN->getMaskElt(i);
3820       if (!DemandedElts[i])
3821         continue;
3822       // For UNDEF elements, we don't know anything about the common state of
3823       // the shuffle result.
3824       if (M < 0)
3825         return 1;
3826       if ((unsigned)M < NumElts)
3827         DemandedLHS.setBit((unsigned)M % NumElts);
3828       else
3829         DemandedRHS.setBit((unsigned)M % NumElts);
3830     }
3831     Tmp = std::numeric_limits<unsigned>::max();
3832     if (!!DemandedLHS)
3833       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3834     if (!!DemandedRHS) {
3835       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3836       Tmp = std::min(Tmp, Tmp2);
3837     }
3838     // If we don't know anything, early out and try computeKnownBits fall-back.
3839     if (Tmp == 1)
3840       break;
3841     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3842     return Tmp;
3843   }
3844 
3845   case ISD::BITCAST: {
3846     SDValue N0 = Op.getOperand(0);
3847     EVT SrcVT = N0.getValueType();
3848     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3849 
3850     // Ignore bitcasts from unsupported types..
3851     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3852       break;
3853 
3854     // Fast handling of 'identity' bitcasts.
3855     if (VTBits == SrcBits)
3856       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3857 
3858     bool IsLE = getDataLayout().isLittleEndian();
3859 
3860     // Bitcast 'large element' scalar/vector to 'small element' vector.
3861     if ((SrcBits % VTBits) == 0) {
3862       assert(VT.isVector() && "Expected bitcast to vector");
3863 
3864       unsigned Scale = SrcBits / VTBits;
3865       APInt SrcDemandedElts =
3866           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
3867 
3868       // Fast case - sign splat can be simply split across the small elements.
3869       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3870       if (Tmp == SrcBits)
3871         return VTBits;
3872 
3873       // Slow case - determine how far the sign extends into each sub-element.
3874       Tmp2 = VTBits;
3875       for (unsigned i = 0; i != NumElts; ++i)
3876         if (DemandedElts[i]) {
3877           unsigned SubOffset = i % Scale;
3878           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3879           SubOffset = SubOffset * VTBits;
3880           if (Tmp <= SubOffset)
3881             return 1;
3882           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3883         }
3884       return Tmp2;
3885     }
3886     break;
3887   }
3888 
3889   case ISD::FP_TO_SINT_SAT:
3890     // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
3891     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3892     return VTBits - Tmp + 1;
3893   case ISD::SIGN_EXTEND:
3894     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3895     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3896   case ISD::SIGN_EXTEND_INREG:
3897     // Max of the input and what this extends.
3898     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3899     Tmp = VTBits-Tmp+1;
3900     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3901     return std::max(Tmp, Tmp2);
3902   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3903     SDValue Src = Op.getOperand(0);
3904     EVT SrcVT = Src.getValueType();
3905     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3906     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3907     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3908   }
3909   case ISD::SRA:
3910     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3911     // SRA X, C -> adds C sign bits.
3912     if (const APInt *ShAmt =
3913             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3914       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3915     return Tmp;
3916   case ISD::SHL:
3917     if (const APInt *ShAmt =
3918             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3919       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3920       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3921       if (ShAmt->ult(Tmp))
3922         return Tmp - ShAmt->getZExtValue();
3923     }
3924     break;
3925   case ISD::AND:
3926   case ISD::OR:
3927   case ISD::XOR:    // NOT is handled here.
3928     // Logical binary ops preserve the number of sign bits at the worst.
3929     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3930     if (Tmp != 1) {
3931       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3932       FirstAnswer = std::min(Tmp, Tmp2);
3933       // We computed what we know about the sign bits as our first
3934       // answer. Now proceed to the generic code that uses
3935       // computeKnownBits, and pick whichever answer is better.
3936     }
3937     break;
3938 
3939   case ISD::SELECT:
3940   case ISD::VSELECT:
3941     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3942     if (Tmp == 1) return 1;  // Early out.
3943     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3944     return std::min(Tmp, Tmp2);
3945   case ISD::SELECT_CC:
3946     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3947     if (Tmp == 1) return 1;  // Early out.
3948     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3949     return std::min(Tmp, Tmp2);
3950 
3951   case ISD::SMIN:
3952   case ISD::SMAX: {
3953     // If we have a clamp pattern, we know that the number of sign bits will be
3954     // the minimum of the clamp min/max range.
3955     bool IsMax = (Opcode == ISD::SMAX);
3956     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3957     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3958       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3959         CstHigh =
3960             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3961     if (CstLow && CstHigh) {
3962       if (!IsMax)
3963         std::swap(CstLow, CstHigh);
3964       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3965         Tmp = CstLow->getAPIntValue().getNumSignBits();
3966         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3967         return std::min(Tmp, Tmp2);
3968       }
3969     }
3970 
3971     // Fallback - just get the minimum number of sign bits of the operands.
3972     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3973     if (Tmp == 1)
3974       return 1;  // Early out.
3975     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3976     return std::min(Tmp, Tmp2);
3977   }
3978   case ISD::UMIN:
3979   case ISD::UMAX:
3980     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3981     if (Tmp == 1)
3982       return 1;  // Early out.
3983     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3984     return std::min(Tmp, Tmp2);
3985   case ISD::SADDO:
3986   case ISD::UADDO:
3987   case ISD::SSUBO:
3988   case ISD::USUBO:
3989   case ISD::SMULO:
3990   case ISD::UMULO:
3991     if (Op.getResNo() != 1)
3992       break;
3993     // The boolean result conforms to getBooleanContents.  Fall through.
3994     // If setcc returns 0/-1, all bits are sign bits.
3995     // We know that we have an integer-based boolean since these operations
3996     // are only available for integer.
3997     if (TLI->getBooleanContents(VT.isVector(), false) ==
3998         TargetLowering::ZeroOrNegativeOneBooleanContent)
3999       return VTBits;
4000     break;
4001   case ISD::SETCC:
4002   case ISD::STRICT_FSETCC:
4003   case ISD::STRICT_FSETCCS: {
4004     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
4005     // If setcc returns 0/-1, all bits are sign bits.
4006     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
4007         TargetLowering::ZeroOrNegativeOneBooleanContent)
4008       return VTBits;
4009     break;
4010   }
4011   case ISD::ROTL:
4012   case ISD::ROTR:
4013     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4014 
4015     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
4016     if (Tmp == VTBits)
4017       return VTBits;
4018 
4019     if (ConstantSDNode *C =
4020             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
4021       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
4022 
4023       // Handle rotate right by N like a rotate left by 32-N.
4024       if (Opcode == ISD::ROTR)
4025         RotAmt = (VTBits - RotAmt) % VTBits;
4026 
4027       // If we aren't rotating out all of the known-in sign bits, return the
4028       // number that are left.  This handles rotl(sext(x), 1) for example.
4029       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
4030     }
4031     break;
4032   case ISD::ADD:
4033   case ISD::ADDC:
4034     // Add can have at most one carry bit.  Thus we know that the output
4035     // is, at worst, one more bit than the inputs.
4036     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4037     if (Tmp == 1) return 1; // Early out.
4038 
4039     // Special case decrementing a value (ADD X, -1):
4040     if (ConstantSDNode *CRHS =
4041             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
4042       if (CRHS->isAllOnes()) {
4043         KnownBits Known =
4044             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4045 
4046         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4047         // sign bits set.
4048         if ((Known.Zero | 1).isAllOnes())
4049           return VTBits;
4050 
4051         // If we are subtracting one from a positive number, there is no carry
4052         // out of the result.
4053         if (Known.isNonNegative())
4054           return Tmp;
4055       }
4056 
4057     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4058     if (Tmp2 == 1) return 1; // Early out.
4059     return std::min(Tmp, Tmp2) - 1;
4060   case ISD::SUB:
4061     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4062     if (Tmp2 == 1) return 1; // Early out.
4063 
4064     // Handle NEG.
4065     if (ConstantSDNode *CLHS =
4066             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4067       if (CLHS->isZero()) {
4068         KnownBits Known =
4069             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4070         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4071         // sign bits set.
4072         if ((Known.Zero | 1).isAllOnes())
4073           return VTBits;
4074 
4075         // If the input is known to be positive (the sign bit is known clear),
4076         // the output of the NEG has the same number of sign bits as the input.
4077         if (Known.isNonNegative())
4078           return Tmp2;
4079 
4080         // Otherwise, we treat this like a SUB.
4081       }
4082 
4083     // Sub can have at most one carry bit.  Thus we know that the output
4084     // is, at worst, one more bit than the inputs.
4085     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4086     if (Tmp == 1) return 1; // Early out.
4087     return std::min(Tmp, Tmp2) - 1;
4088   case ISD::MUL: {
4089     // The output of the Mul can be at most twice the valid bits in the inputs.
4090     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4091     if (SignBitsOp0 == 1)
4092       break;
4093     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4094     if (SignBitsOp1 == 1)
4095       break;
4096     unsigned OutValidBits =
4097         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4098     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4099   }
4100   case ISD::SREM:
4101     // The sign bit is the LHS's sign bit, except when the result of the
4102     // remainder is zero. The magnitude of the result should be less than or
4103     // equal to the magnitude of the LHS. Therefore, the result should have
4104     // at least as many sign bits as the left hand side.
4105     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4106   case ISD::TRUNCATE: {
4107     // Check if the sign bits of source go down as far as the truncated value.
4108     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4109     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4110     if (NumSrcSignBits > (NumSrcBits - VTBits))
4111       return NumSrcSignBits - (NumSrcBits - VTBits);
4112     break;
4113   }
4114   case ISD::EXTRACT_ELEMENT: {
4115     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4116     const int BitWidth = Op.getValueSizeInBits();
4117     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4118 
4119     // Get reverse index (starting from 1), Op1 value indexes elements from
4120     // little end. Sign starts at big end.
4121     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4122 
4123     // If the sign portion ends in our element the subtraction gives correct
4124     // result. Otherwise it gives either negative or > bitwidth result
4125     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4126   }
4127   case ISD::INSERT_VECTOR_ELT: {
4128     // If we know the element index, split the demand between the
4129     // source vector and the inserted element, otherwise assume we need
4130     // the original demanded vector elements and the value.
4131     SDValue InVec = Op.getOperand(0);
4132     SDValue InVal = Op.getOperand(1);
4133     SDValue EltNo = Op.getOperand(2);
4134     bool DemandedVal = true;
4135     APInt DemandedVecElts = DemandedElts;
4136     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4137     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4138       unsigned EltIdx = CEltNo->getZExtValue();
4139       DemandedVal = !!DemandedElts[EltIdx];
4140       DemandedVecElts.clearBit(EltIdx);
4141     }
4142     Tmp = std::numeric_limits<unsigned>::max();
4143     if (DemandedVal) {
4144       // TODO - handle implicit truncation of inserted elements.
4145       if (InVal.getScalarValueSizeInBits() != VTBits)
4146         break;
4147       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4148       Tmp = std::min(Tmp, Tmp2);
4149     }
4150     if (!!DemandedVecElts) {
4151       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4152       Tmp = std::min(Tmp, Tmp2);
4153     }
4154     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4155     return Tmp;
4156   }
4157   case ISD::EXTRACT_VECTOR_ELT: {
4158     SDValue InVec = Op.getOperand(0);
4159     SDValue EltNo = Op.getOperand(1);
4160     EVT VecVT = InVec.getValueType();
4161     // ComputeNumSignBits not yet implemented for scalable vectors.
4162     if (VecVT.isScalableVector())
4163       break;
4164     const unsigned BitWidth = Op.getValueSizeInBits();
4165     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4166     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4167 
4168     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4169     // anything about sign bits. But if the sizes match we can derive knowledge
4170     // about sign bits from the vector operand.
4171     if (BitWidth != EltBitWidth)
4172       break;
4173 
4174     // If we know the element index, just demand that vector element, else for
4175     // an unknown element index, ignore DemandedElts and demand them all.
4176     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4177     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4178     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4179       DemandedSrcElts =
4180           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4181 
4182     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4183   }
4184   case ISD::EXTRACT_SUBVECTOR: {
4185     // Offset the demanded elts by the subvector index.
4186     SDValue Src = Op.getOperand(0);
4187     // Bail until we can represent demanded elements for scalable vectors.
4188     if (Src.getValueType().isScalableVector())
4189       break;
4190     uint64_t Idx = Op.getConstantOperandVal(1);
4191     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4192     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4193     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4194   }
4195   case ISD::CONCAT_VECTORS: {
4196     // Determine the minimum number of sign bits across all demanded
4197     // elts of the input vectors. Early out if the result is already 1.
4198     Tmp = std::numeric_limits<unsigned>::max();
4199     EVT SubVectorVT = Op.getOperand(0).getValueType();
4200     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4201     unsigned NumSubVectors = Op.getNumOperands();
4202     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4203       APInt DemandedSub =
4204           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4205       if (!DemandedSub)
4206         continue;
4207       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4208       Tmp = std::min(Tmp, Tmp2);
4209     }
4210     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4211     return Tmp;
4212   }
4213   case ISD::INSERT_SUBVECTOR: {
4214     // Demand any elements from the subvector and the remainder from the src its
4215     // inserted into.
4216     SDValue Src = Op.getOperand(0);
4217     SDValue Sub = Op.getOperand(1);
4218     uint64_t Idx = Op.getConstantOperandVal(2);
4219     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4220     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4221     APInt DemandedSrcElts = DemandedElts;
4222     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4223 
4224     Tmp = std::numeric_limits<unsigned>::max();
4225     if (!!DemandedSubElts) {
4226       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4227       if (Tmp == 1)
4228         return 1; // early-out
4229     }
4230     if (!!DemandedSrcElts) {
4231       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4232       Tmp = std::min(Tmp, Tmp2);
4233     }
4234     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4235     return Tmp;
4236   }
4237   case ISD::ATOMIC_CMP_SWAP:
4238   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4239   case ISD::ATOMIC_SWAP:
4240   case ISD::ATOMIC_LOAD_ADD:
4241   case ISD::ATOMIC_LOAD_SUB:
4242   case ISD::ATOMIC_LOAD_AND:
4243   case ISD::ATOMIC_LOAD_CLR:
4244   case ISD::ATOMIC_LOAD_OR:
4245   case ISD::ATOMIC_LOAD_XOR:
4246   case ISD::ATOMIC_LOAD_NAND:
4247   case ISD::ATOMIC_LOAD_MIN:
4248   case ISD::ATOMIC_LOAD_MAX:
4249   case ISD::ATOMIC_LOAD_UMIN:
4250   case ISD::ATOMIC_LOAD_UMAX:
4251   case ISD::ATOMIC_LOAD: {
4252     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4253     // If we are looking at the loaded value.
4254     if (Op.getResNo() == 0) {
4255       if (Tmp == VTBits)
4256         return 1; // early-out
4257       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4258         return VTBits - Tmp + 1;
4259       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4260         return VTBits - Tmp;
4261     }
4262     break;
4263   }
4264   }
4265 
4266   // If we are looking at the loaded value of the SDNode.
4267   if (Op.getResNo() == 0) {
4268     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4269     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4270       unsigned ExtType = LD->getExtensionType();
4271       switch (ExtType) {
4272       default: break;
4273       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4274         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4275         return VTBits - Tmp + 1;
4276       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4277         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4278         return VTBits - Tmp;
4279       case ISD::NON_EXTLOAD:
4280         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4281           // We only need to handle vectors - computeKnownBits should handle
4282           // scalar cases.
4283           Type *CstTy = Cst->getType();
4284           if (CstTy->isVectorTy() &&
4285               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
4286               VTBits == CstTy->getScalarSizeInBits()) {
4287             Tmp = VTBits;
4288             for (unsigned i = 0; i != NumElts; ++i) {
4289               if (!DemandedElts[i])
4290                 continue;
4291               if (Constant *Elt = Cst->getAggregateElement(i)) {
4292                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4293                   const APInt &Value = CInt->getValue();
4294                   Tmp = std::min(Tmp, Value.getNumSignBits());
4295                   continue;
4296                 }
4297                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4298                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4299                   Tmp = std::min(Tmp, Value.getNumSignBits());
4300                   continue;
4301                 }
4302               }
4303               // Unknown type. Conservatively assume no bits match sign bit.
4304               return 1;
4305             }
4306             return Tmp;
4307           }
4308         }
4309         break;
4310       }
4311     }
4312   }
4313 
4314   // Allow the target to implement this method for its nodes.
4315   if (Opcode >= ISD::BUILTIN_OP_END ||
4316       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4317       Opcode == ISD::INTRINSIC_W_CHAIN ||
4318       Opcode == ISD::INTRINSIC_VOID) {
4319     unsigned NumBits =
4320         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4321     if (NumBits > 1)
4322       FirstAnswer = std::max(FirstAnswer, NumBits);
4323   }
4324 
4325   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4326   // use this information.
4327   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4328   return std::max(FirstAnswer, Known.countMinSignBits());
4329 }
4330 
4331 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4332                                                  unsigned Depth) const {
4333   unsigned SignBits = ComputeNumSignBits(Op, Depth);
4334   return Op.getScalarValueSizeInBits() - SignBits + 1;
4335 }
4336 
4337 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4338                                                  const APInt &DemandedElts,
4339                                                  unsigned Depth) const {
4340   unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
4341   return Op.getScalarValueSizeInBits() - SignBits + 1;
4342 }
4343 
4344 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4345                                                     unsigned Depth) const {
4346   // Early out for FREEZE.
4347   if (Op.getOpcode() == ISD::FREEZE)
4348     return true;
4349 
4350   // TODO: Assume we don't know anything for now.
4351   EVT VT = Op.getValueType();
4352   if (VT.isScalableVector())
4353     return false;
4354 
4355   APInt DemandedElts = VT.isVector()
4356                            ? APInt::getAllOnes(VT.getVectorNumElements())
4357                            : APInt(1, 1);
4358   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4359 }
4360 
4361 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4362                                                     const APInt &DemandedElts,
4363                                                     bool PoisonOnly,
4364                                                     unsigned Depth) const {
4365   unsigned Opcode = Op.getOpcode();
4366 
4367   // Early out for FREEZE.
4368   if (Opcode == ISD::FREEZE)
4369     return true;
4370 
4371   if (Depth >= MaxRecursionDepth)
4372     return false; // Limit search depth.
4373 
4374   if (isIntOrFPConstant(Op))
4375     return true;
4376 
4377   switch (Opcode) {
4378   case ISD::UNDEF:
4379     return PoisonOnly;
4380 
4381   case ISD::BUILD_VECTOR:
4382     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4383     // this shouldn't affect the result.
4384     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4385       if (!DemandedElts[i])
4386         continue;
4387       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4388                                             Depth + 1))
4389         return false;
4390     }
4391     return true;
4392 
4393   // TODO: Search for noundef attributes from library functions.
4394 
4395   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4396 
4397   default:
4398     // Allow the target to implement this method for its nodes.
4399     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4400         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4401       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4402           Op, DemandedElts, *this, PoisonOnly, Depth);
4403     break;
4404   }
4405 
4406   return false;
4407 }
4408 
4409 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4410   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4411       !isa<ConstantSDNode>(Op.getOperand(1)))
4412     return false;
4413 
4414   if (Op.getOpcode() == ISD::OR &&
4415       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4416     return false;
4417 
4418   return true;
4419 }
4420 
4421 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4422   // If we're told that NaNs won't happen, assume they won't.
4423   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4424     return true;
4425 
4426   if (Depth >= MaxRecursionDepth)
4427     return false; // Limit search depth.
4428 
4429   // TODO: Handle vectors.
4430   // If the value is a constant, we can obviously see if it is a NaN or not.
4431   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4432     return !C->getValueAPF().isNaN() ||
4433            (SNaN && !C->getValueAPF().isSignaling());
4434   }
4435 
4436   unsigned Opcode = Op.getOpcode();
4437   switch (Opcode) {
4438   case ISD::FADD:
4439   case ISD::FSUB:
4440   case ISD::FMUL:
4441   case ISD::FDIV:
4442   case ISD::FREM:
4443   case ISD::FSIN:
4444   case ISD::FCOS: {
4445     if (SNaN)
4446       return true;
4447     // TODO: Need isKnownNeverInfinity
4448     return false;
4449   }
4450   case ISD::FCANONICALIZE:
4451   case ISD::FEXP:
4452   case ISD::FEXP2:
4453   case ISD::FTRUNC:
4454   case ISD::FFLOOR:
4455   case ISD::FCEIL:
4456   case ISD::FROUND:
4457   case ISD::FROUNDEVEN:
4458   case ISD::FRINT:
4459   case ISD::FNEARBYINT: {
4460     if (SNaN)
4461       return true;
4462     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4463   }
4464   case ISD::FABS:
4465   case ISD::FNEG:
4466   case ISD::FCOPYSIGN: {
4467     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4468   }
4469   case ISD::SELECT:
4470     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4471            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4472   case ISD::FP_EXTEND:
4473   case ISD::FP_ROUND: {
4474     if (SNaN)
4475       return true;
4476     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4477   }
4478   case ISD::SINT_TO_FP:
4479   case ISD::UINT_TO_FP:
4480     return true;
4481   case ISD::FMA:
4482   case ISD::FMAD: {
4483     if (SNaN)
4484       return true;
4485     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4486            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4487            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4488   }
4489   case ISD::FSQRT: // Need is known positive
4490   case ISD::FLOG:
4491   case ISD::FLOG2:
4492   case ISD::FLOG10:
4493   case ISD::FPOWI:
4494   case ISD::FPOW: {
4495     if (SNaN)
4496       return true;
4497     // TODO: Refine on operand
4498     return false;
4499   }
4500   case ISD::FMINNUM:
4501   case ISD::FMAXNUM: {
4502     // Only one needs to be known not-nan, since it will be returned if the
4503     // other ends up being one.
4504     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4505            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4506   }
4507   case ISD::FMINNUM_IEEE:
4508   case ISD::FMAXNUM_IEEE: {
4509     if (SNaN)
4510       return true;
4511     // This can return a NaN if either operand is an sNaN, or if both operands
4512     // are NaN.
4513     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4514             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4515            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4516             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4517   }
4518   case ISD::FMINIMUM:
4519   case ISD::FMAXIMUM: {
4520     // TODO: Does this quiet or return the origina NaN as-is?
4521     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4522            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4523   }
4524   case ISD::EXTRACT_VECTOR_ELT: {
4525     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4526   }
4527   default:
4528     if (Opcode >= ISD::BUILTIN_OP_END ||
4529         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4530         Opcode == ISD::INTRINSIC_W_CHAIN ||
4531         Opcode == ISD::INTRINSIC_VOID) {
4532       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4533     }
4534 
4535     return false;
4536   }
4537 }
4538 
4539 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4540   assert(Op.getValueType().isFloatingPoint() &&
4541          "Floating point type expected");
4542 
4543   // If the value is a constant, we can obviously see if it is a zero or not.
4544   // TODO: Add BuildVector support.
4545   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4546     return !C->isZero();
4547   return false;
4548 }
4549 
4550 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4551   assert(!Op.getValueType().isFloatingPoint() &&
4552          "Floating point types unsupported - use isKnownNeverZeroFloat");
4553 
4554   // If the value is a constant, we can obviously see if it is a zero or not.
4555   if (ISD::matchUnaryPredicate(Op,
4556                                [](ConstantSDNode *C) { return !C->isZero(); }))
4557     return true;
4558 
4559   // TODO: Recognize more cases here.
4560   switch (Op.getOpcode()) {
4561   default: break;
4562   case ISD::OR:
4563     if (isKnownNeverZero(Op.getOperand(1)) ||
4564         isKnownNeverZero(Op.getOperand(0)))
4565       return true;
4566     break;
4567   }
4568 
4569   return false;
4570 }
4571 
4572 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4573   // Check the obvious case.
4574   if (A == B) return true;
4575 
4576   // For for negative and positive zero.
4577   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4578     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4579       if (CA->isZero() && CB->isZero()) return true;
4580 
4581   // Otherwise they may not be equal.
4582   return false;
4583 }
4584 
4585 // FIXME: unify with llvm::haveNoCommonBitsSet.
4586 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4587   assert(A.getValueType() == B.getValueType() &&
4588          "Values must have the same type");
4589   // Match masked merge pattern (X & ~M) op (Y & M)
4590   if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) {
4591     auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) {
4592       if (isBitwiseNot(NotM, true)) {
4593         SDValue NotOperand = NotM->getOperand(0);
4594         return NotOperand == And->getOperand(0) ||
4595                NotOperand == And->getOperand(1);
4596       }
4597       return false;
4598     };
4599     if (MatchNoCommonBitsPattern(A->getOperand(0), B) ||
4600         MatchNoCommonBitsPattern(A->getOperand(1), B) ||
4601         MatchNoCommonBitsPattern(B->getOperand(0), A) ||
4602         MatchNoCommonBitsPattern(B->getOperand(1), A))
4603       return true;
4604   }
4605   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4606                                         computeKnownBits(B));
4607 }
4608 
4609 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4610                                SelectionDAG &DAG) {
4611   if (cast<ConstantSDNode>(Step)->isZero())
4612     return DAG.getConstant(0, DL, VT);
4613 
4614   return SDValue();
4615 }
4616 
4617 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4618                                 ArrayRef<SDValue> Ops,
4619                                 SelectionDAG &DAG) {
4620   int NumOps = Ops.size();
4621   assert(NumOps != 0 && "Can't build an empty vector!");
4622   assert(!VT.isScalableVector() &&
4623          "BUILD_VECTOR cannot be used with scalable types");
4624   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4625          "Incorrect element count in BUILD_VECTOR!");
4626 
4627   // BUILD_VECTOR of UNDEFs is UNDEF.
4628   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4629     return DAG.getUNDEF(VT);
4630 
4631   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4632   SDValue IdentitySrc;
4633   bool IsIdentity = true;
4634   for (int i = 0; i != NumOps; ++i) {
4635     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4636         Ops[i].getOperand(0).getValueType() != VT ||
4637         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4638         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4639         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4640       IsIdentity = false;
4641       break;
4642     }
4643     IdentitySrc = Ops[i].getOperand(0);
4644   }
4645   if (IsIdentity)
4646     return IdentitySrc;
4647 
4648   return SDValue();
4649 }
4650 
4651 /// Try to simplify vector concatenation to an input value, undef, or build
4652 /// vector.
4653 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4654                                   ArrayRef<SDValue> Ops,
4655                                   SelectionDAG &DAG) {
4656   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4657   assert(llvm::all_of(Ops,
4658                       [Ops](SDValue Op) {
4659                         return Ops[0].getValueType() == Op.getValueType();
4660                       }) &&
4661          "Concatenation of vectors with inconsistent value types!");
4662   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4663              VT.getVectorElementCount() &&
4664          "Incorrect element count in vector concatenation!");
4665 
4666   if (Ops.size() == 1)
4667     return Ops[0];
4668 
4669   // Concat of UNDEFs is UNDEF.
4670   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4671     return DAG.getUNDEF(VT);
4672 
4673   // Scan the operands and look for extract operations from a single source
4674   // that correspond to insertion at the same location via this concatenation:
4675   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4676   SDValue IdentitySrc;
4677   bool IsIdentity = true;
4678   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4679     SDValue Op = Ops[i];
4680     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4681     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4682         Op.getOperand(0).getValueType() != VT ||
4683         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4684         Op.getConstantOperandVal(1) != IdentityIndex) {
4685       IsIdentity = false;
4686       break;
4687     }
4688     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4689            "Unexpected identity source vector for concat of extracts");
4690     IdentitySrc = Op.getOperand(0);
4691   }
4692   if (IsIdentity) {
4693     assert(IdentitySrc && "Failed to set source vector of extracts");
4694     return IdentitySrc;
4695   }
4696 
4697   // The code below this point is only designed to work for fixed width
4698   // vectors, so we bail out for now.
4699   if (VT.isScalableVector())
4700     return SDValue();
4701 
4702   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4703   // simplified to one big BUILD_VECTOR.
4704   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4705   EVT SVT = VT.getScalarType();
4706   SmallVector<SDValue, 16> Elts;
4707   for (SDValue Op : Ops) {
4708     EVT OpVT = Op.getValueType();
4709     if (Op.isUndef())
4710       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4711     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4712       Elts.append(Op->op_begin(), Op->op_end());
4713     else
4714       return SDValue();
4715   }
4716 
4717   // BUILD_VECTOR requires all inputs to be of the same type, find the
4718   // maximum type and extend them all.
4719   for (SDValue Op : Elts)
4720     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4721 
4722   if (SVT.bitsGT(VT.getScalarType())) {
4723     for (SDValue &Op : Elts) {
4724       if (Op.isUndef())
4725         Op = DAG.getUNDEF(SVT);
4726       else
4727         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4728                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4729                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4730     }
4731   }
4732 
4733   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4734   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4735   return V;
4736 }
4737 
4738 /// Gets or creates the specified node.
4739 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4740   FoldingSetNodeID ID;
4741   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4742   void *IP = nullptr;
4743   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4744     return SDValue(E, 0);
4745 
4746   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4747                               getVTList(VT));
4748   CSEMap.InsertNode(N, IP);
4749 
4750   InsertNode(N);
4751   SDValue V = SDValue(N, 0);
4752   NewSDValueDbgMsg(V, "Creating new node: ", this);
4753   return V;
4754 }
4755 
4756 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4757                               SDValue Operand) {
4758   SDNodeFlags Flags;
4759   if (Inserter)
4760     Flags = Inserter->getFlags();
4761   return getNode(Opcode, DL, VT, Operand, Flags);
4762 }
4763 
4764 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4765                               SDValue Operand, const SDNodeFlags Flags) {
4766   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4767          "Operand is DELETED_NODE!");
4768   // Constant fold unary operations with an integer constant operand. Even
4769   // opaque constant will be folded, because the folding of unary operations
4770   // doesn't create new constants with different values. Nevertheless, the
4771   // opaque flag is preserved during folding to prevent future folding with
4772   // other constants.
4773   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4774     const APInt &Val = C->getAPIntValue();
4775     switch (Opcode) {
4776     default: break;
4777     case ISD::SIGN_EXTEND:
4778       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4779                          C->isTargetOpcode(), C->isOpaque());
4780     case ISD::TRUNCATE:
4781       if (C->isOpaque())
4782         break;
4783       LLVM_FALLTHROUGH;
4784     case ISD::ZERO_EXTEND:
4785       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4786                          C->isTargetOpcode(), C->isOpaque());
4787     case ISD::ANY_EXTEND:
4788       // Some targets like RISCV prefer to sign extend some types.
4789       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4790         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4791                            C->isTargetOpcode(), C->isOpaque());
4792       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4793                          C->isTargetOpcode(), C->isOpaque());
4794     case ISD::UINT_TO_FP:
4795     case ISD::SINT_TO_FP: {
4796       APFloat apf(EVTToAPFloatSemantics(VT),
4797                   APInt::getZero(VT.getSizeInBits()));
4798       (void)apf.convertFromAPInt(Val,
4799                                  Opcode==ISD::SINT_TO_FP,
4800                                  APFloat::rmNearestTiesToEven);
4801       return getConstantFP(apf, DL, VT);
4802     }
4803     case ISD::BITCAST:
4804       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4805         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4806       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4807         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4808       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4809         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4810       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4811         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4812       break;
4813     case ISD::ABS:
4814       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4815                          C->isOpaque());
4816     case ISD::BITREVERSE:
4817       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4818                          C->isOpaque());
4819     case ISD::BSWAP:
4820       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4821                          C->isOpaque());
4822     case ISD::CTPOP:
4823       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4824                          C->isOpaque());
4825     case ISD::CTLZ:
4826     case ISD::CTLZ_ZERO_UNDEF:
4827       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4828                          C->isOpaque());
4829     case ISD::CTTZ:
4830     case ISD::CTTZ_ZERO_UNDEF:
4831       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4832                          C->isOpaque());
4833     case ISD::FP16_TO_FP: {
4834       bool Ignored;
4835       APFloat FPV(APFloat::IEEEhalf(),
4836                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4837 
4838       // This can return overflow, underflow, or inexact; we don't care.
4839       // FIXME need to be more flexible about rounding mode.
4840       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4841                         APFloat::rmNearestTiesToEven, &Ignored);
4842       return getConstantFP(FPV, DL, VT);
4843     }
4844     case ISD::STEP_VECTOR: {
4845       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4846         return V;
4847       break;
4848     }
4849     }
4850   }
4851 
4852   // Constant fold unary operations with a floating point constant operand.
4853   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4854     APFloat V = C->getValueAPF();    // make copy
4855     switch (Opcode) {
4856     case ISD::FNEG:
4857       V.changeSign();
4858       return getConstantFP(V, DL, VT);
4859     case ISD::FABS:
4860       V.clearSign();
4861       return getConstantFP(V, DL, VT);
4862     case ISD::FCEIL: {
4863       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4864       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4865         return getConstantFP(V, DL, VT);
4866       break;
4867     }
4868     case ISD::FTRUNC: {
4869       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4870       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4871         return getConstantFP(V, DL, VT);
4872       break;
4873     }
4874     case ISD::FFLOOR: {
4875       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4876       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4877         return getConstantFP(V, DL, VT);
4878       break;
4879     }
4880     case ISD::FP_EXTEND: {
4881       bool ignored;
4882       // This can return overflow, underflow, or inexact; we don't care.
4883       // FIXME need to be more flexible about rounding mode.
4884       (void)V.convert(EVTToAPFloatSemantics(VT),
4885                       APFloat::rmNearestTiesToEven, &ignored);
4886       return getConstantFP(V, DL, VT);
4887     }
4888     case ISD::FP_TO_SINT:
4889     case ISD::FP_TO_UINT: {
4890       bool ignored;
4891       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4892       // FIXME need to be more flexible about rounding mode.
4893       APFloat::opStatus s =
4894           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4895       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4896         break;
4897       return getConstant(IntVal, DL, VT);
4898     }
4899     case ISD::BITCAST:
4900       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4901         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4902       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4903         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4904       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4905         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4906       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4907         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4908       break;
4909     case ISD::FP_TO_FP16: {
4910       bool Ignored;
4911       // This can return overflow, underflow, or inexact; we don't care.
4912       // FIXME need to be more flexible about rounding mode.
4913       (void)V.convert(APFloat::IEEEhalf(),
4914                       APFloat::rmNearestTiesToEven, &Ignored);
4915       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4916     }
4917     }
4918   }
4919 
4920   // Constant fold unary operations with a vector integer or float operand.
4921   switch (Opcode) {
4922   default:
4923     // FIXME: Entirely reasonable to perform folding of other unary
4924     // operations here as the need arises.
4925     break;
4926   case ISD::FNEG:
4927   case ISD::FABS:
4928   case ISD::FCEIL:
4929   case ISD::FTRUNC:
4930   case ISD::FFLOOR:
4931   case ISD::FP_EXTEND:
4932   case ISD::FP_TO_SINT:
4933   case ISD::FP_TO_UINT:
4934   case ISD::TRUNCATE:
4935   case ISD::ANY_EXTEND:
4936   case ISD::ZERO_EXTEND:
4937   case ISD::SIGN_EXTEND:
4938   case ISD::UINT_TO_FP:
4939   case ISD::SINT_TO_FP:
4940   case ISD::ABS:
4941   case ISD::BITREVERSE:
4942   case ISD::BSWAP:
4943   case ISD::CTLZ:
4944   case ISD::CTLZ_ZERO_UNDEF:
4945   case ISD::CTTZ:
4946   case ISD::CTTZ_ZERO_UNDEF:
4947   case ISD::CTPOP: {
4948     SDValue Ops = {Operand};
4949     if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
4950       return Fold;
4951   }
4952   }
4953 
4954   unsigned OpOpcode = Operand.getNode()->getOpcode();
4955   switch (Opcode) {
4956   case ISD::STEP_VECTOR:
4957     assert(VT.isScalableVector() &&
4958            "STEP_VECTOR can only be used with scalable types");
4959     assert(OpOpcode == ISD::TargetConstant &&
4960            VT.getVectorElementType() == Operand.getValueType() &&
4961            "Unexpected step operand");
4962     break;
4963   case ISD::FREEZE:
4964     assert(VT == Operand.getValueType() && "Unexpected VT!");
4965     break;
4966   case ISD::TokenFactor:
4967   case ISD::MERGE_VALUES:
4968   case ISD::CONCAT_VECTORS:
4969     return Operand;         // Factor, merge or concat of one node?  No need.
4970   case ISD::BUILD_VECTOR: {
4971     // Attempt to simplify BUILD_VECTOR.
4972     SDValue Ops[] = {Operand};
4973     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4974       return V;
4975     break;
4976   }
4977   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4978   case ISD::FP_EXTEND:
4979     assert(VT.isFloatingPoint() &&
4980            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4981     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4982     assert((!VT.isVector() ||
4983             VT.getVectorElementCount() ==
4984             Operand.getValueType().getVectorElementCount()) &&
4985            "Vector element count mismatch!");
4986     assert(Operand.getValueType().bitsLT(VT) &&
4987            "Invalid fpext node, dst < src!");
4988     if (Operand.isUndef())
4989       return getUNDEF(VT);
4990     break;
4991   case ISD::FP_TO_SINT:
4992   case ISD::FP_TO_UINT:
4993     if (Operand.isUndef())
4994       return getUNDEF(VT);
4995     break;
4996   case ISD::SINT_TO_FP:
4997   case ISD::UINT_TO_FP:
4998     // [us]itofp(undef) = 0, because the result value is bounded.
4999     if (Operand.isUndef())
5000       return getConstantFP(0.0, DL, VT);
5001     break;
5002   case ISD::SIGN_EXTEND:
5003     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5004            "Invalid SIGN_EXTEND!");
5005     assert(VT.isVector() == Operand.getValueType().isVector() &&
5006            "SIGN_EXTEND result type type should be vector iff the operand "
5007            "type is vector!");
5008     if (Operand.getValueType() == VT) return Operand;   // noop extension
5009     assert((!VT.isVector() ||
5010             VT.getVectorElementCount() ==
5011                 Operand.getValueType().getVectorElementCount()) &&
5012            "Vector element count mismatch!");
5013     assert(Operand.getValueType().bitsLT(VT) &&
5014            "Invalid sext node, dst < src!");
5015     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
5016       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5017     if (OpOpcode == ISD::UNDEF)
5018       // sext(undef) = 0, because the top bits will all be the same.
5019       return getConstant(0, DL, VT);
5020     break;
5021   case ISD::ZERO_EXTEND:
5022     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5023            "Invalid ZERO_EXTEND!");
5024     assert(VT.isVector() == Operand.getValueType().isVector() &&
5025            "ZERO_EXTEND result type type should be vector iff the operand "
5026            "type is vector!");
5027     if (Operand.getValueType() == VT) return Operand;   // noop extension
5028     assert((!VT.isVector() ||
5029             VT.getVectorElementCount() ==
5030                 Operand.getValueType().getVectorElementCount()) &&
5031            "Vector element count mismatch!");
5032     assert(Operand.getValueType().bitsLT(VT) &&
5033            "Invalid zext node, dst < src!");
5034     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
5035       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
5036     if (OpOpcode == ISD::UNDEF)
5037       // zext(undef) = 0, because the top bits will be zero.
5038       return getConstant(0, DL, VT);
5039     break;
5040   case ISD::ANY_EXTEND:
5041     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5042            "Invalid ANY_EXTEND!");
5043     assert(VT.isVector() == Operand.getValueType().isVector() &&
5044            "ANY_EXTEND result type type should be vector iff the operand "
5045            "type is vector!");
5046     if (Operand.getValueType() == VT) return Operand;   // noop extension
5047     assert((!VT.isVector() ||
5048             VT.getVectorElementCount() ==
5049                 Operand.getValueType().getVectorElementCount()) &&
5050            "Vector element count mismatch!");
5051     assert(Operand.getValueType().bitsLT(VT) &&
5052            "Invalid anyext node, dst < src!");
5053 
5054     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5055         OpOpcode == ISD::ANY_EXTEND)
5056       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
5057       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5058     if (OpOpcode == ISD::UNDEF)
5059       return getUNDEF(VT);
5060 
5061     // (ext (trunc x)) -> x
5062     if (OpOpcode == ISD::TRUNCATE) {
5063       SDValue OpOp = Operand.getOperand(0);
5064       if (OpOp.getValueType() == VT) {
5065         transferDbgValues(Operand, OpOp);
5066         return OpOp;
5067       }
5068     }
5069     break;
5070   case ISD::TRUNCATE:
5071     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5072            "Invalid TRUNCATE!");
5073     assert(VT.isVector() == Operand.getValueType().isVector() &&
5074            "TRUNCATE result type type should be vector iff the operand "
5075            "type is vector!");
5076     if (Operand.getValueType() == VT) return Operand;   // noop truncate
5077     assert((!VT.isVector() ||
5078             VT.getVectorElementCount() ==
5079                 Operand.getValueType().getVectorElementCount()) &&
5080            "Vector element count mismatch!");
5081     assert(Operand.getValueType().bitsGT(VT) &&
5082            "Invalid truncate node, src < dst!");
5083     if (OpOpcode == ISD::TRUNCATE)
5084       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5085     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5086         OpOpcode == ISD::ANY_EXTEND) {
5087       // If the source is smaller than the dest, we still need an extend.
5088       if (Operand.getOperand(0).getValueType().getScalarType()
5089             .bitsLT(VT.getScalarType()))
5090         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5091       if (Operand.getOperand(0).getValueType().bitsGT(VT))
5092         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5093       return Operand.getOperand(0);
5094     }
5095     if (OpOpcode == ISD::UNDEF)
5096       return getUNDEF(VT);
5097     if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
5098       return getVScale(DL, VT, Operand.getConstantOperandAPInt(0));
5099     break;
5100   case ISD::ANY_EXTEND_VECTOR_INREG:
5101   case ISD::ZERO_EXTEND_VECTOR_INREG:
5102   case ISD::SIGN_EXTEND_VECTOR_INREG:
5103     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5104     assert(Operand.getValueType().bitsLE(VT) &&
5105            "The input must be the same size or smaller than the result.");
5106     assert(VT.getVectorMinNumElements() <
5107                Operand.getValueType().getVectorMinNumElements() &&
5108            "The destination vector type must have fewer lanes than the input.");
5109     break;
5110   case ISD::ABS:
5111     assert(VT.isInteger() && VT == Operand.getValueType() &&
5112            "Invalid ABS!");
5113     if (OpOpcode == ISD::UNDEF)
5114       return getUNDEF(VT);
5115     break;
5116   case ISD::BSWAP:
5117     assert(VT.isInteger() && VT == Operand.getValueType() &&
5118            "Invalid BSWAP!");
5119     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5120            "BSWAP types must be a multiple of 16 bits!");
5121     if (OpOpcode == ISD::UNDEF)
5122       return getUNDEF(VT);
5123     // bswap(bswap(X)) -> X.
5124     if (OpOpcode == ISD::BSWAP)
5125       return Operand.getOperand(0);
5126     break;
5127   case ISD::BITREVERSE:
5128     assert(VT.isInteger() && VT == Operand.getValueType() &&
5129            "Invalid BITREVERSE!");
5130     if (OpOpcode == ISD::UNDEF)
5131       return getUNDEF(VT);
5132     break;
5133   case ISD::BITCAST:
5134     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5135            "Cannot BITCAST between types of different sizes!");
5136     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5137     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5138       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5139     if (OpOpcode == ISD::UNDEF)
5140       return getUNDEF(VT);
5141     break;
5142   case ISD::SCALAR_TO_VECTOR:
5143     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5144            (VT.getVectorElementType() == Operand.getValueType() ||
5145             (VT.getVectorElementType().isInteger() &&
5146              Operand.getValueType().isInteger() &&
5147              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5148            "Illegal SCALAR_TO_VECTOR node!");
5149     if (OpOpcode == ISD::UNDEF)
5150       return getUNDEF(VT);
5151     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5152     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5153         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5154         Operand.getConstantOperandVal(1) == 0 &&
5155         Operand.getOperand(0).getValueType() == VT)
5156       return Operand.getOperand(0);
5157     break;
5158   case ISD::FNEG:
5159     // Negation of an unknown bag of bits is still completely undefined.
5160     if (OpOpcode == ISD::UNDEF)
5161       return getUNDEF(VT);
5162 
5163     if (OpOpcode == ISD::FNEG)  // --X -> X
5164       return Operand.getOperand(0);
5165     break;
5166   case ISD::FABS:
5167     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5168       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5169     break;
5170   case ISD::VSCALE:
5171     assert(VT == Operand.getValueType() && "Unexpected VT!");
5172     break;
5173   case ISD::CTPOP:
5174     if (Operand.getValueType().getScalarType() == MVT::i1)
5175       return Operand;
5176     break;
5177   case ISD::CTLZ:
5178   case ISD::CTTZ:
5179     if (Operand.getValueType().getScalarType() == MVT::i1)
5180       return getNOT(DL, Operand, Operand.getValueType());
5181     break;
5182   case ISD::VECREDUCE_SMIN:
5183   case ISD::VECREDUCE_UMAX:
5184     if (Operand.getValueType().getScalarType() == MVT::i1)
5185       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5186     break;
5187   case ISD::VECREDUCE_SMAX:
5188   case ISD::VECREDUCE_UMIN:
5189     if (Operand.getValueType().getScalarType() == MVT::i1)
5190       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5191     break;
5192   }
5193 
5194   SDNode *N;
5195   SDVTList VTs = getVTList(VT);
5196   SDValue Ops[] = {Operand};
5197   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5198     FoldingSetNodeID ID;
5199     AddNodeIDNode(ID, Opcode, VTs, Ops);
5200     void *IP = nullptr;
5201     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5202       E->intersectFlagsWith(Flags);
5203       return SDValue(E, 0);
5204     }
5205 
5206     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5207     N->setFlags(Flags);
5208     createOperands(N, Ops);
5209     CSEMap.InsertNode(N, IP);
5210   } else {
5211     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5212     createOperands(N, Ops);
5213   }
5214 
5215   InsertNode(N);
5216   SDValue V = SDValue(N, 0);
5217   NewSDValueDbgMsg(V, "Creating new node: ", this);
5218   return V;
5219 }
5220 
5221 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5222                                        const APInt &C2) {
5223   switch (Opcode) {
5224   case ISD::ADD:  return C1 + C2;
5225   case ISD::SUB:  return C1 - C2;
5226   case ISD::MUL:  return C1 * C2;
5227   case ISD::AND:  return C1 & C2;
5228   case ISD::OR:   return C1 | C2;
5229   case ISD::XOR:  return C1 ^ C2;
5230   case ISD::SHL:  return C1 << C2;
5231   case ISD::SRL:  return C1.lshr(C2);
5232   case ISD::SRA:  return C1.ashr(C2);
5233   case ISD::ROTL: return C1.rotl(C2);
5234   case ISD::ROTR: return C1.rotr(C2);
5235   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5236   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5237   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5238   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5239   case ISD::SADDSAT: return C1.sadd_sat(C2);
5240   case ISD::UADDSAT: return C1.uadd_sat(C2);
5241   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5242   case ISD::USUBSAT: return C1.usub_sat(C2);
5243   case ISD::UDIV:
5244     if (!C2.getBoolValue())
5245       break;
5246     return C1.udiv(C2);
5247   case ISD::UREM:
5248     if (!C2.getBoolValue())
5249       break;
5250     return C1.urem(C2);
5251   case ISD::SDIV:
5252     if (!C2.getBoolValue())
5253       break;
5254     return C1.sdiv(C2);
5255   case ISD::SREM:
5256     if (!C2.getBoolValue())
5257       break;
5258     return C1.srem(C2);
5259   case ISD::MULHS: {
5260     unsigned FullWidth = C1.getBitWidth() * 2;
5261     APInt C1Ext = C1.sext(FullWidth);
5262     APInt C2Ext = C2.sext(FullWidth);
5263     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5264   }
5265   case ISD::MULHU: {
5266     unsigned FullWidth = C1.getBitWidth() * 2;
5267     APInt C1Ext = C1.zext(FullWidth);
5268     APInt C2Ext = C2.zext(FullWidth);
5269     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5270   }
5271   }
5272   return llvm::None;
5273 }
5274 
5275 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5276                                        const GlobalAddressSDNode *GA,
5277                                        const SDNode *N2) {
5278   if (GA->getOpcode() != ISD::GlobalAddress)
5279     return SDValue();
5280   if (!TLI->isOffsetFoldingLegal(GA))
5281     return SDValue();
5282   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5283   if (!C2)
5284     return SDValue();
5285   int64_t Offset = C2->getSExtValue();
5286   switch (Opcode) {
5287   case ISD::ADD: break;
5288   case ISD::SUB: Offset = -uint64_t(Offset); break;
5289   default: return SDValue();
5290   }
5291   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5292                           GA->getOffset() + uint64_t(Offset));
5293 }
5294 
5295 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5296   switch (Opcode) {
5297   case ISD::SDIV:
5298   case ISD::UDIV:
5299   case ISD::SREM:
5300   case ISD::UREM: {
5301     // If a divisor is zero/undef or any element of a divisor vector is
5302     // zero/undef, the whole op is undef.
5303     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5304     SDValue Divisor = Ops[1];
5305     if (Divisor.isUndef() || isNullConstant(Divisor))
5306       return true;
5307 
5308     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5309            llvm::any_of(Divisor->op_values(),
5310                         [](SDValue V) { return V.isUndef() ||
5311                                         isNullConstant(V); });
5312     // TODO: Handle signed overflow.
5313   }
5314   // TODO: Handle oversized shifts.
5315   default:
5316     return false;
5317   }
5318 }
5319 
5320 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5321                                              EVT VT, ArrayRef<SDValue> Ops) {
5322   // If the opcode is a target-specific ISD node, there's nothing we can
5323   // do here and the operand rules may not line up with the below, so
5324   // bail early.
5325   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5326   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5327   // foldCONCAT_VECTORS in getNode before this is called.
5328   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5329     return SDValue();
5330 
5331   unsigned NumOps = Ops.size();
5332   if (NumOps == 0)
5333     return SDValue();
5334 
5335   if (isUndef(Opcode, Ops))
5336     return getUNDEF(VT);
5337 
5338   // Handle binops special cases.
5339   if (NumOps == 2) {
5340     if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1]))
5341       return CFP;
5342 
5343     if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
5344       if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
5345         if (C1->isOpaque() || C2->isOpaque())
5346           return SDValue();
5347 
5348         Optional<APInt> FoldAttempt =
5349             FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5350         if (!FoldAttempt)
5351           return SDValue();
5352 
5353         SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5354         assert((!Folded || !VT.isVector()) &&
5355                "Can't fold vectors ops with scalar operands");
5356         return Folded;
5357       }
5358     }
5359 
5360     // fold (add Sym, c) -> Sym+c
5361     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
5362       return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
5363     if (TLI->isCommutativeBinOp(Opcode))
5364       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
5365         return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
5366   }
5367 
5368   // This is for vector folding only from here on.
5369   if (!VT.isVector())
5370     return SDValue();
5371 
5372   ElementCount NumElts = VT.getVectorElementCount();
5373 
5374   // See if we can fold through bitcasted integer ops.
5375   // TODO: Can we handle undef elements?
5376   if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
5377       Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
5378       Ops[0].getOpcode() == ISD::BITCAST &&
5379       Ops[1].getOpcode() == ISD::BITCAST) {
5380     SDValue N1 = peekThroughBitcasts(Ops[0]);
5381     SDValue N2 = peekThroughBitcasts(Ops[1]);
5382     auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5383     auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5384     EVT BVVT = N1.getValueType();
5385     if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
5386       bool IsLE = getDataLayout().isLittleEndian();
5387       unsigned EltBits = VT.getScalarSizeInBits();
5388       SmallVector<APInt> RawBits1, RawBits2;
5389       BitVector UndefElts1, UndefElts2;
5390       if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
5391           BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) &&
5392           UndefElts1.none() && UndefElts2.none()) {
5393         SmallVector<APInt> RawBits;
5394         for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
5395           Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]);
5396           if (!Fold)
5397             break;
5398           RawBits.push_back(Fold.getValue());
5399         }
5400         if (RawBits.size() == NumElts.getFixedValue()) {
5401           // We have constant folded, but we need to cast this again back to
5402           // the original (possibly legalized) type.
5403           SmallVector<APInt> DstBits;
5404           BitVector DstUndefs;
5405           BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
5406                                            DstBits, RawBits, DstUndefs,
5407                                            BitVector(RawBits.size(), false));
5408           EVT BVEltVT = BV1->getOperand(0).getValueType();
5409           unsigned BVEltBits = BVEltVT.getSizeInBits();
5410           SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
5411           for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
5412             if (DstUndefs[I])
5413               continue;
5414             Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT);
5415           }
5416           return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
5417         }
5418       }
5419     }
5420   }
5421 
5422   // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
5423   //      (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
5424   if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
5425       Ops[0].getOpcode() == ISD::STEP_VECTOR) {
5426     APInt RHSVal;
5427     if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
5428       APInt NewStep = Opcode == ISD::MUL
5429                           ? Ops[0].getConstantOperandAPInt(0) * RHSVal
5430                           : Ops[0].getConstantOperandAPInt(0) << RHSVal;
5431       return getStepVector(DL, VT, NewStep);
5432     }
5433   }
5434 
5435   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5436     return !Op.getValueType().isVector() ||
5437            Op.getValueType().getVectorElementCount() == NumElts;
5438   };
5439 
5440   auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5441     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5442            Op.getOpcode() == ISD::BUILD_VECTOR ||
5443            Op.getOpcode() == ISD::SPLAT_VECTOR;
5444   };
5445 
5446   // All operands must be vector types with the same number of elements as
5447   // the result type and must be either UNDEF or a build/splat vector
5448   // or UNDEF scalars.
5449   if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
5450       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5451     return SDValue();
5452 
5453   // If we are comparing vectors, then the result needs to be a i1 boolean
5454   // that is then sign-extended back to the legal result type.
5455   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5456 
5457   // Find legal integer scalar type for constant promotion and
5458   // ensure that its scalar size is at least as large as source.
5459   EVT LegalSVT = VT.getScalarType();
5460   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5461     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5462     if (LegalSVT.bitsLT(VT.getScalarType()))
5463       return SDValue();
5464   }
5465 
5466   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5467   // only have one operand to check. For fixed-length vector types we may have
5468   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5469   unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5470 
5471   // Constant fold each scalar lane separately.
5472   SmallVector<SDValue, 4> ScalarResults;
5473   for (unsigned I = 0; I != NumVectorElts; I++) {
5474     SmallVector<SDValue, 4> ScalarOps;
5475     for (SDValue Op : Ops) {
5476       EVT InSVT = Op.getValueType().getScalarType();
5477       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5478           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5479         if (Op.isUndef())
5480           ScalarOps.push_back(getUNDEF(InSVT));
5481         else
5482           ScalarOps.push_back(Op);
5483         continue;
5484       }
5485 
5486       SDValue ScalarOp =
5487           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5488       EVT ScalarVT = ScalarOp.getValueType();
5489 
5490       // Build vector (integer) scalar operands may need implicit
5491       // truncation - do this before constant folding.
5492       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5493         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5494 
5495       ScalarOps.push_back(ScalarOp);
5496     }
5497 
5498     // Constant fold the scalar operands.
5499     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
5500 
5501     // Legalize the (integer) scalar constant if necessary.
5502     if (LegalSVT != SVT)
5503       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5504 
5505     // Scalar folding only succeeded if the result is a constant or UNDEF.
5506     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5507         ScalarResult.getOpcode() != ISD::ConstantFP)
5508       return SDValue();
5509     ScalarResults.push_back(ScalarResult);
5510   }
5511 
5512   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5513                                    : getBuildVector(VT, DL, ScalarResults);
5514   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5515   return V;
5516 }
5517 
5518 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5519                                          EVT VT, SDValue N1, SDValue N2) {
5520   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5521   //       should. That will require dealing with a potentially non-default
5522   //       rounding mode, checking the "opStatus" return value from the APFloat
5523   //       math calculations, and possibly other variations.
5524   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
5525   ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
5526   if (N1CFP && N2CFP) {
5527     APFloat C1 = N1CFP->getValueAPF(); // make copy
5528     const APFloat &C2 = N2CFP->getValueAPF();
5529     switch (Opcode) {
5530     case ISD::FADD:
5531       C1.add(C2, APFloat::rmNearestTiesToEven);
5532       return getConstantFP(C1, DL, VT);
5533     case ISD::FSUB:
5534       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5535       return getConstantFP(C1, DL, VT);
5536     case ISD::FMUL:
5537       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5538       return getConstantFP(C1, DL, VT);
5539     case ISD::FDIV:
5540       C1.divide(C2, APFloat::rmNearestTiesToEven);
5541       return getConstantFP(C1, DL, VT);
5542     case ISD::FREM:
5543       C1.mod(C2);
5544       return getConstantFP(C1, DL, VT);
5545     case ISD::FCOPYSIGN:
5546       C1.copySign(C2);
5547       return getConstantFP(C1, DL, VT);
5548     case ISD::FMINNUM:
5549       return getConstantFP(minnum(C1, C2), DL, VT);
5550     case ISD::FMAXNUM:
5551       return getConstantFP(maxnum(C1, C2), DL, VT);
5552     case ISD::FMINIMUM:
5553       return getConstantFP(minimum(C1, C2), DL, VT);
5554     case ISD::FMAXIMUM:
5555       return getConstantFP(maximum(C1, C2), DL, VT);
5556     default: break;
5557     }
5558   }
5559   if (N1CFP && Opcode == ISD::FP_ROUND) {
5560     APFloat C1 = N1CFP->getValueAPF();    // make copy
5561     bool Unused;
5562     // This can return overflow, underflow, or inexact; we don't care.
5563     // FIXME need to be more flexible about rounding mode.
5564     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5565                       &Unused);
5566     return getConstantFP(C1, DL, VT);
5567   }
5568 
5569   switch (Opcode) {
5570   case ISD::FSUB:
5571     // -0.0 - undef --> undef (consistent with "fneg undef")
5572     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
5573       if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
5574         return getUNDEF(VT);
5575     LLVM_FALLTHROUGH;
5576 
5577   case ISD::FADD:
5578   case ISD::FMUL:
5579   case ISD::FDIV:
5580   case ISD::FREM:
5581     // If both operands are undef, the result is undef. If 1 operand is undef,
5582     // the result is NaN. This should match the behavior of the IR optimizer.
5583     if (N1.isUndef() && N2.isUndef())
5584       return getUNDEF(VT);
5585     if (N1.isUndef() || N2.isUndef())
5586       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5587   }
5588   return SDValue();
5589 }
5590 
5591 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5592   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5593 
5594   // There's no need to assert on a byte-aligned pointer. All pointers are at
5595   // least byte aligned.
5596   if (A == Align(1))
5597     return Val;
5598 
5599   FoldingSetNodeID ID;
5600   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5601   ID.AddInteger(A.value());
5602 
5603   void *IP = nullptr;
5604   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5605     return SDValue(E, 0);
5606 
5607   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5608                                          Val.getValueType(), A);
5609   createOperands(N, {Val});
5610 
5611   CSEMap.InsertNode(N, IP);
5612   InsertNode(N);
5613 
5614   SDValue V(N, 0);
5615   NewSDValueDbgMsg(V, "Creating new node: ", this);
5616   return V;
5617 }
5618 
5619 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5620                               SDValue N1, SDValue N2) {
5621   SDNodeFlags Flags;
5622   if (Inserter)
5623     Flags = Inserter->getFlags();
5624   return getNode(Opcode, DL, VT, N1, N2, Flags);
5625 }
5626 
5627 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5628                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5629   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5630          N2.getOpcode() != ISD::DELETED_NODE &&
5631          "Operand is DELETED_NODE!");
5632   // Canonicalize constant to RHS if commutative.
5633   if (TLI->isCommutativeBinOp(Opcode)) {
5634     bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1);
5635     bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2);
5636     bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1);
5637     bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2);
5638     if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP))
5639       std::swap(N1, N2);
5640   }
5641 
5642   auto *N1C = dyn_cast<ConstantSDNode>(N1);
5643   auto *N2C = dyn_cast<ConstantSDNode>(N2);
5644 
5645   // Don't allow undefs in vector splats - we might be returning N2 when folding
5646   // to zero etc.
5647   ConstantSDNode *N2CV =
5648       isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
5649 
5650   switch (Opcode) {
5651   default: break;
5652   case ISD::TokenFactor:
5653     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5654            N2.getValueType() == MVT::Other && "Invalid token factor!");
5655     // Fold trivial token factors.
5656     if (N1.getOpcode() == ISD::EntryToken) return N2;
5657     if (N2.getOpcode() == ISD::EntryToken) return N1;
5658     if (N1 == N2) return N1;
5659     break;
5660   case ISD::BUILD_VECTOR: {
5661     // Attempt to simplify BUILD_VECTOR.
5662     SDValue Ops[] = {N1, N2};
5663     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5664       return V;
5665     break;
5666   }
5667   case ISD::CONCAT_VECTORS: {
5668     SDValue Ops[] = {N1, N2};
5669     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5670       return V;
5671     break;
5672   }
5673   case ISD::AND:
5674     assert(VT.isInteger() && "This operator does not apply to FP types!");
5675     assert(N1.getValueType() == N2.getValueType() &&
5676            N1.getValueType() == VT && "Binary operator types must match!");
5677     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5678     // worth handling here.
5679     if (N2CV && N2CV->isZero())
5680       return N2;
5681     if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
5682       return N1;
5683     break;
5684   case ISD::OR:
5685   case ISD::XOR:
5686   case ISD::ADD:
5687   case ISD::SUB:
5688     assert(VT.isInteger() && "This operator does not apply to FP types!");
5689     assert(N1.getValueType() == N2.getValueType() &&
5690            N1.getValueType() == VT && "Binary operator types must match!");
5691     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5692     // it's worth handling here.
5693     if (N2CV && N2CV->isZero())
5694       return N1;
5695     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5696         VT.getVectorElementType() == MVT::i1)
5697       return getNode(ISD::XOR, DL, VT, N1, N2);
5698     break;
5699   case ISD::MUL:
5700     assert(VT.isInteger() && "This operator does not apply to FP types!");
5701     assert(N1.getValueType() == N2.getValueType() &&
5702            N1.getValueType() == VT && "Binary operator types must match!");
5703     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5704       return getNode(ISD::AND, DL, VT, N1, N2);
5705     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5706       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5707       const APInt &N2CImm = N2C->getAPIntValue();
5708       return getVScale(DL, VT, MulImm * N2CImm);
5709     }
5710     break;
5711   case ISD::UDIV:
5712   case ISD::UREM:
5713   case ISD::MULHU:
5714   case ISD::MULHS:
5715   case ISD::SDIV:
5716   case ISD::SREM:
5717   case ISD::SADDSAT:
5718   case ISD::SSUBSAT:
5719   case ISD::UADDSAT:
5720   case ISD::USUBSAT:
5721     assert(VT.isInteger() && "This operator does not apply to FP types!");
5722     assert(N1.getValueType() == N2.getValueType() &&
5723            N1.getValueType() == VT && "Binary operator types must match!");
5724     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5725       // fold (add_sat x, y) -> (or x, y) for bool types.
5726       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5727         return getNode(ISD::OR, DL, VT, N1, N2);
5728       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5729       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5730         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5731     }
5732     break;
5733   case ISD::SMIN:
5734   case ISD::UMAX:
5735     assert(VT.isInteger() && "This operator does not apply to FP types!");
5736     assert(N1.getValueType() == N2.getValueType() &&
5737            N1.getValueType() == VT && "Binary operator types must match!");
5738     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5739       return getNode(ISD::OR, DL, VT, N1, N2);
5740     break;
5741   case ISD::SMAX:
5742   case ISD::UMIN:
5743     assert(VT.isInteger() && "This operator does not apply to FP types!");
5744     assert(N1.getValueType() == N2.getValueType() &&
5745            N1.getValueType() == VT && "Binary operator types must match!");
5746     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5747       return getNode(ISD::AND, DL, VT, N1, N2);
5748     break;
5749   case ISD::FADD:
5750   case ISD::FSUB:
5751   case ISD::FMUL:
5752   case ISD::FDIV:
5753   case ISD::FREM:
5754     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5755     assert(N1.getValueType() == N2.getValueType() &&
5756            N1.getValueType() == VT && "Binary operator types must match!");
5757     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5758       return V;
5759     break;
5760   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5761     assert(N1.getValueType() == VT &&
5762            N1.getValueType().isFloatingPoint() &&
5763            N2.getValueType().isFloatingPoint() &&
5764            "Invalid FCOPYSIGN!");
5765     break;
5766   case ISD::SHL:
5767     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5768       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5769       const APInt &ShiftImm = N2C->getAPIntValue();
5770       return getVScale(DL, VT, MulImm << ShiftImm);
5771     }
5772     LLVM_FALLTHROUGH;
5773   case ISD::SRA:
5774   case ISD::SRL:
5775     if (SDValue V = simplifyShift(N1, N2))
5776       return V;
5777     LLVM_FALLTHROUGH;
5778   case ISD::ROTL:
5779   case ISD::ROTR:
5780     assert(VT == N1.getValueType() &&
5781            "Shift operators return type must be the same as their first arg");
5782     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5783            "Shifts only work on integers");
5784     assert((!VT.isVector() || VT == N2.getValueType()) &&
5785            "Vector shift amounts must be in the same as their first arg");
5786     // Verify that the shift amount VT is big enough to hold valid shift
5787     // amounts.  This catches things like trying to shift an i1024 value by an
5788     // i8, which is easy to fall into in generic code that uses
5789     // TLI.getShiftAmount().
5790     assert(N2.getValueType().getScalarSizeInBits() >=
5791                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5792            "Invalid use of small shift amount with oversized value!");
5793 
5794     // Always fold shifts of i1 values so the code generator doesn't need to
5795     // handle them.  Since we know the size of the shift has to be less than the
5796     // size of the value, the shift/rotate count is guaranteed to be zero.
5797     if (VT == MVT::i1)
5798       return N1;
5799     if (N2CV && N2CV->isZero())
5800       return N1;
5801     break;
5802   case ISD::FP_ROUND:
5803     assert(VT.isFloatingPoint() &&
5804            N1.getValueType().isFloatingPoint() &&
5805            VT.bitsLE(N1.getValueType()) &&
5806            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5807            "Invalid FP_ROUND!");
5808     if (N1.getValueType() == VT) return N1;  // noop conversion.
5809     break;
5810   case ISD::AssertSext:
5811   case ISD::AssertZext: {
5812     EVT EVT = cast<VTSDNode>(N2)->getVT();
5813     assert(VT == N1.getValueType() && "Not an inreg extend!");
5814     assert(VT.isInteger() && EVT.isInteger() &&
5815            "Cannot *_EXTEND_INREG FP types");
5816     assert(!EVT.isVector() &&
5817            "AssertSExt/AssertZExt type should be the vector element type "
5818            "rather than the vector type!");
5819     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5820     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5821     break;
5822   }
5823   case ISD::SIGN_EXTEND_INREG: {
5824     EVT EVT = cast<VTSDNode>(N2)->getVT();
5825     assert(VT == N1.getValueType() && "Not an inreg extend!");
5826     assert(VT.isInteger() && EVT.isInteger() &&
5827            "Cannot *_EXTEND_INREG FP types");
5828     assert(EVT.isVector() == VT.isVector() &&
5829            "SIGN_EXTEND_INREG type should be vector iff the operand "
5830            "type is vector!");
5831     assert((!EVT.isVector() ||
5832             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5833            "Vector element counts must match in SIGN_EXTEND_INREG");
5834     assert(EVT.bitsLE(VT) && "Not extending!");
5835     if (EVT == VT) return N1;  // Not actually extending
5836 
5837     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5838       unsigned FromBits = EVT.getScalarSizeInBits();
5839       Val <<= Val.getBitWidth() - FromBits;
5840       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5841       return getConstant(Val, DL, ConstantVT);
5842     };
5843 
5844     if (N1C) {
5845       const APInt &Val = N1C->getAPIntValue();
5846       return SignExtendInReg(Val, VT);
5847     }
5848 
5849     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5850       SmallVector<SDValue, 8> Ops;
5851       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5852       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5853         SDValue Op = N1.getOperand(i);
5854         if (Op.isUndef()) {
5855           Ops.push_back(getUNDEF(OpVT));
5856           continue;
5857         }
5858         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5859         APInt Val = C->getAPIntValue();
5860         Ops.push_back(SignExtendInReg(Val, OpVT));
5861       }
5862       return getBuildVector(VT, DL, Ops);
5863     }
5864     break;
5865   }
5866   case ISD::FP_TO_SINT_SAT:
5867   case ISD::FP_TO_UINT_SAT: {
5868     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
5869            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
5870     assert(N1.getValueType().isVector() == VT.isVector() &&
5871            "FP_TO_*INT_SAT type should be vector iff the operand type is "
5872            "vector!");
5873     assert((!VT.isVector() || VT.getVectorNumElements() ==
5874                                   N1.getValueType().getVectorNumElements()) &&
5875            "Vector element counts must match in FP_TO_*INT_SAT");
5876     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
5877            "Type to saturate to must be a scalar.");
5878     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
5879            "Not extending!");
5880     break;
5881   }
5882   case ISD::EXTRACT_VECTOR_ELT:
5883     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5884            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5885              element type of the vector.");
5886 
5887     // Extract from an undefined value or using an undefined index is undefined.
5888     if (N1.isUndef() || N2.isUndef())
5889       return getUNDEF(VT);
5890 
5891     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5892     // vectors. For scalable vectors we will provide appropriate support for
5893     // dealing with arbitrary indices.
5894     if (N2C && N1.getValueType().isFixedLengthVector() &&
5895         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5896       return getUNDEF(VT);
5897 
5898     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5899     // expanding copies of large vectors from registers. This only works for
5900     // fixed length vectors, since we need to know the exact number of
5901     // elements.
5902     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5903         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5904       unsigned Factor =
5905         N1.getOperand(0).getValueType().getVectorNumElements();
5906       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5907                      N1.getOperand(N2C->getZExtValue() / Factor),
5908                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5909     }
5910 
5911     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5912     // lowering is expanding large vector constants.
5913     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5914                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5915       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5916               N1.getValueType().isFixedLengthVector()) &&
5917              "BUILD_VECTOR used for scalable vectors");
5918       unsigned Index =
5919           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5920       SDValue Elt = N1.getOperand(Index);
5921 
5922       if (VT != Elt.getValueType())
5923         // If the vector element type is not legal, the BUILD_VECTOR operands
5924         // are promoted and implicitly truncated, and the result implicitly
5925         // extended. Make that explicit here.
5926         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5927 
5928       return Elt;
5929     }
5930 
5931     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5932     // operations are lowered to scalars.
5933     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5934       // If the indices are the same, return the inserted element else
5935       // if the indices are known different, extract the element from
5936       // the original vector.
5937       SDValue N1Op2 = N1.getOperand(2);
5938       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5939 
5940       if (N1Op2C && N2C) {
5941         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5942           if (VT == N1.getOperand(1).getValueType())
5943             return N1.getOperand(1);
5944           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5945         }
5946         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5947       }
5948     }
5949 
5950     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5951     // when vector types are scalarized and v1iX is legal.
5952     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5953     // Here we are completely ignoring the extract element index (N2),
5954     // which is fine for fixed width vectors, since any index other than 0
5955     // is undefined anyway. However, this cannot be ignored for scalable
5956     // vectors - in theory we could support this, but we don't want to do this
5957     // without a profitability check.
5958     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5959         N1.getValueType().isFixedLengthVector() &&
5960         N1.getValueType().getVectorNumElements() == 1) {
5961       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5962                      N1.getOperand(1));
5963     }
5964     break;
5965   case ISD::EXTRACT_ELEMENT:
5966     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5967     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5968            (N1.getValueType().isInteger() == VT.isInteger()) &&
5969            N1.getValueType() != VT &&
5970            "Wrong types for EXTRACT_ELEMENT!");
5971 
5972     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5973     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5974     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5975     if (N1.getOpcode() == ISD::BUILD_PAIR)
5976       return N1.getOperand(N2C->getZExtValue());
5977 
5978     // EXTRACT_ELEMENT of a constant int is also very common.
5979     if (N1C) {
5980       unsigned ElementSize = VT.getSizeInBits();
5981       unsigned Shift = ElementSize * N2C->getZExtValue();
5982       const APInt &Val = N1C->getAPIntValue();
5983       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5984     }
5985     break;
5986   case ISD::EXTRACT_SUBVECTOR: {
5987     EVT N1VT = N1.getValueType();
5988     assert(VT.isVector() && N1VT.isVector() &&
5989            "Extract subvector VTs must be vectors!");
5990     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5991            "Extract subvector VTs must have the same element type!");
5992     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5993            "Cannot extract a scalable vector from a fixed length vector!");
5994     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5995             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5996            "Extract subvector must be from larger vector to smaller vector!");
5997     assert(N2C && "Extract subvector index must be a constant");
5998     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5999             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
6000                 N1VT.getVectorMinNumElements()) &&
6001            "Extract subvector overflow!");
6002     assert(N2C->getAPIntValue().getBitWidth() ==
6003                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6004            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
6005 
6006     // Trivial extraction.
6007     if (VT == N1VT)
6008       return N1;
6009 
6010     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
6011     if (N1.isUndef())
6012       return getUNDEF(VT);
6013 
6014     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
6015     // the concat have the same type as the extract.
6016     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
6017         VT == N1.getOperand(0).getValueType()) {
6018       unsigned Factor = VT.getVectorMinNumElements();
6019       return N1.getOperand(N2C->getZExtValue() / Factor);
6020     }
6021 
6022     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
6023     // during shuffle legalization.
6024     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
6025         VT == N1.getOperand(1).getValueType())
6026       return N1.getOperand(1);
6027     break;
6028   }
6029   }
6030 
6031   // Perform trivial constant folding.
6032   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
6033     return SV;
6034 
6035   // Canonicalize an UNDEF to the RHS, even over a constant.
6036   if (N1.isUndef()) {
6037     if (TLI->isCommutativeBinOp(Opcode)) {
6038       std::swap(N1, N2);
6039     } else {
6040       switch (Opcode) {
6041       case ISD::SIGN_EXTEND_INREG:
6042       case ISD::SUB:
6043         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
6044       case ISD::UDIV:
6045       case ISD::SDIV:
6046       case ISD::UREM:
6047       case ISD::SREM:
6048       case ISD::SSUBSAT:
6049       case ISD::USUBSAT:
6050         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6051       }
6052     }
6053   }
6054 
6055   // Fold a bunch of operators when the RHS is undef.
6056   if (N2.isUndef()) {
6057     switch (Opcode) {
6058     case ISD::XOR:
6059       if (N1.isUndef())
6060         // Handle undef ^ undef -> 0 special case. This is a common
6061         // idiom (misuse).
6062         return getConstant(0, DL, VT);
6063       LLVM_FALLTHROUGH;
6064     case ISD::ADD:
6065     case ISD::SUB:
6066     case ISD::UDIV:
6067     case ISD::SDIV:
6068     case ISD::UREM:
6069     case ISD::SREM:
6070       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6071     case ISD::MUL:
6072     case ISD::AND:
6073     case ISD::SSUBSAT:
6074     case ISD::USUBSAT:
6075       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6076     case ISD::OR:
6077     case ISD::SADDSAT:
6078     case ISD::UADDSAT:
6079       return getAllOnesConstant(DL, VT);
6080     }
6081   }
6082 
6083   // Memoize this node if possible.
6084   SDNode *N;
6085   SDVTList VTs = getVTList(VT);
6086   SDValue Ops[] = {N1, N2};
6087   if (VT != MVT::Glue) {
6088     FoldingSetNodeID ID;
6089     AddNodeIDNode(ID, Opcode, VTs, Ops);
6090     void *IP = nullptr;
6091     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6092       E->intersectFlagsWith(Flags);
6093       return SDValue(E, 0);
6094     }
6095 
6096     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6097     N->setFlags(Flags);
6098     createOperands(N, Ops);
6099     CSEMap.InsertNode(N, IP);
6100   } else {
6101     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6102     createOperands(N, Ops);
6103   }
6104 
6105   InsertNode(N);
6106   SDValue V = SDValue(N, 0);
6107   NewSDValueDbgMsg(V, "Creating new node: ", this);
6108   return V;
6109 }
6110 
6111 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6112                               SDValue N1, SDValue N2, SDValue N3) {
6113   SDNodeFlags Flags;
6114   if (Inserter)
6115     Flags = Inserter->getFlags();
6116   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6117 }
6118 
6119 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6120                               SDValue N1, SDValue N2, SDValue N3,
6121                               const SDNodeFlags Flags) {
6122   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6123          N2.getOpcode() != ISD::DELETED_NODE &&
6124          N3.getOpcode() != ISD::DELETED_NODE &&
6125          "Operand is DELETED_NODE!");
6126   // Perform various simplifications.
6127   switch (Opcode) {
6128   case ISD::FMA: {
6129     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6130     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6131            N3.getValueType() == VT && "FMA types must match!");
6132     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6133     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6134     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6135     if (N1CFP && N2CFP && N3CFP) {
6136       APFloat  V1 = N1CFP->getValueAPF();
6137       const APFloat &V2 = N2CFP->getValueAPF();
6138       const APFloat &V3 = N3CFP->getValueAPF();
6139       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6140       return getConstantFP(V1, DL, VT);
6141     }
6142     break;
6143   }
6144   case ISD::BUILD_VECTOR: {
6145     // Attempt to simplify BUILD_VECTOR.
6146     SDValue Ops[] = {N1, N2, N3};
6147     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6148       return V;
6149     break;
6150   }
6151   case ISD::CONCAT_VECTORS: {
6152     SDValue Ops[] = {N1, N2, N3};
6153     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6154       return V;
6155     break;
6156   }
6157   case ISD::SETCC: {
6158     assert(VT.isInteger() && "SETCC result type must be an integer!");
6159     assert(N1.getValueType() == N2.getValueType() &&
6160            "SETCC operands must have the same type!");
6161     assert(VT.isVector() == N1.getValueType().isVector() &&
6162            "SETCC type should be vector iff the operand type is vector!");
6163     assert((!VT.isVector() || VT.getVectorElementCount() ==
6164                                   N1.getValueType().getVectorElementCount()) &&
6165            "SETCC vector element counts must match!");
6166     // Use FoldSetCC to simplify SETCC's.
6167     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6168       return V;
6169     // Vector constant folding.
6170     SDValue Ops[] = {N1, N2, N3};
6171     if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
6172       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6173       return V;
6174     }
6175     break;
6176   }
6177   case ISD::SELECT:
6178   case ISD::VSELECT:
6179     if (SDValue V = simplifySelect(N1, N2, N3))
6180       return V;
6181     break;
6182   case ISD::VECTOR_SHUFFLE:
6183     llvm_unreachable("should use getVectorShuffle constructor!");
6184   case ISD::VECTOR_SPLICE: {
6185     if (cast<ConstantSDNode>(N3)->isNullValue())
6186       return N1;
6187     break;
6188   }
6189   case ISD::INSERT_VECTOR_ELT: {
6190     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6191     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6192     // for scalable vectors where we will generate appropriate code to
6193     // deal with out-of-bounds cases correctly.
6194     if (N3C && N1.getValueType().isFixedLengthVector() &&
6195         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6196       return getUNDEF(VT);
6197 
6198     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6199     if (N3.isUndef())
6200       return getUNDEF(VT);
6201 
6202     // If the inserted element is an UNDEF, just use the input vector.
6203     if (N2.isUndef())
6204       return N1;
6205 
6206     break;
6207   }
6208   case ISD::INSERT_SUBVECTOR: {
6209     // Inserting undef into undef is still undef.
6210     if (N1.isUndef() && N2.isUndef())
6211       return getUNDEF(VT);
6212 
6213     EVT N2VT = N2.getValueType();
6214     assert(VT == N1.getValueType() &&
6215            "Dest and insert subvector source types must match!");
6216     assert(VT.isVector() && N2VT.isVector() &&
6217            "Insert subvector VTs must be vectors!");
6218     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6219            "Cannot insert a scalable vector into a fixed length vector!");
6220     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6221             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6222            "Insert subvector must be from smaller vector to larger vector!");
6223     assert(isa<ConstantSDNode>(N3) &&
6224            "Insert subvector index must be constant");
6225     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6226             (N2VT.getVectorMinNumElements() +
6227              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6228                 VT.getVectorMinNumElements()) &&
6229            "Insert subvector overflow!");
6230     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6231                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6232            "Constant index for INSERT_SUBVECTOR has an invalid size");
6233 
6234     // Trivial insertion.
6235     if (VT == N2VT)
6236       return N2;
6237 
6238     // If this is an insert of an extracted vector into an undef vector, we
6239     // can just use the input to the extract.
6240     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6241         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6242       return N2.getOperand(0);
6243     break;
6244   }
6245   case ISD::BITCAST:
6246     // Fold bit_convert nodes from a type to themselves.
6247     if (N1.getValueType() == VT)
6248       return N1;
6249     break;
6250   }
6251 
6252   // Memoize node if it doesn't produce a flag.
6253   SDNode *N;
6254   SDVTList VTs = getVTList(VT);
6255   SDValue Ops[] = {N1, N2, N3};
6256   if (VT != MVT::Glue) {
6257     FoldingSetNodeID ID;
6258     AddNodeIDNode(ID, Opcode, VTs, Ops);
6259     void *IP = nullptr;
6260     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6261       E->intersectFlagsWith(Flags);
6262       return SDValue(E, 0);
6263     }
6264 
6265     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6266     N->setFlags(Flags);
6267     createOperands(N, Ops);
6268     CSEMap.InsertNode(N, IP);
6269   } else {
6270     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6271     createOperands(N, Ops);
6272   }
6273 
6274   InsertNode(N);
6275   SDValue V = SDValue(N, 0);
6276   NewSDValueDbgMsg(V, "Creating new node: ", this);
6277   return V;
6278 }
6279 
6280 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6281                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6282   SDValue Ops[] = { N1, N2, N3, N4 };
6283   return getNode(Opcode, DL, VT, Ops);
6284 }
6285 
6286 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6287                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6288                               SDValue N5) {
6289   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6290   return getNode(Opcode, DL, VT, Ops);
6291 }
6292 
6293 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6294 /// the incoming stack arguments to be loaded from the stack.
6295 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6296   SmallVector<SDValue, 8> ArgChains;
6297 
6298   // Include the original chain at the beginning of the list. When this is
6299   // used by target LowerCall hooks, this helps legalize find the
6300   // CALLSEQ_BEGIN node.
6301   ArgChains.push_back(Chain);
6302 
6303   // Add a chain value for each stack argument.
6304   for (SDNode *U : getEntryNode().getNode()->uses())
6305     if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
6306       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6307         if (FI->getIndex() < 0)
6308           ArgChains.push_back(SDValue(L, 1));
6309 
6310   // Build a tokenfactor for all the chains.
6311   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6312 }
6313 
6314 /// getMemsetValue - Vectorized representation of the memset value
6315 /// operand.
6316 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6317                               const SDLoc &dl) {
6318   assert(!Value.isUndef());
6319 
6320   unsigned NumBits = VT.getScalarSizeInBits();
6321   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6322     assert(C->getAPIntValue().getBitWidth() == 8);
6323     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6324     if (VT.isInteger()) {
6325       bool IsOpaque = VT.getSizeInBits() > 64 ||
6326           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6327       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6328     }
6329     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6330                              VT);
6331   }
6332 
6333   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6334   EVT IntVT = VT.getScalarType();
6335   if (!IntVT.isInteger())
6336     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6337 
6338   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6339   if (NumBits > 8) {
6340     // Use a multiplication with 0x010101... to extend the input to the
6341     // required length.
6342     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6343     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6344                         DAG.getConstant(Magic, dl, IntVT));
6345   }
6346 
6347   if (VT != Value.getValueType() && !VT.isInteger())
6348     Value = DAG.getBitcast(VT.getScalarType(), Value);
6349   if (VT != Value.getValueType())
6350     Value = DAG.getSplatBuildVector(VT, dl, Value);
6351 
6352   return Value;
6353 }
6354 
6355 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6356 /// used when a memcpy is turned into a memset when the source is a constant
6357 /// string ptr.
6358 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6359                                   const TargetLowering &TLI,
6360                                   const ConstantDataArraySlice &Slice) {
6361   // Handle vector with all elements zero.
6362   if (Slice.Array == nullptr) {
6363     if (VT.isInteger())
6364       return DAG.getConstant(0, dl, VT);
6365     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6366       return DAG.getConstantFP(0.0, dl, VT);
6367     if (VT.isVector()) {
6368       unsigned NumElts = VT.getVectorNumElements();
6369       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6370       return DAG.getNode(ISD::BITCAST, dl, VT,
6371                          DAG.getConstant(0, dl,
6372                                          EVT::getVectorVT(*DAG.getContext(),
6373                                                           EltVT, NumElts)));
6374     }
6375     llvm_unreachable("Expected type!");
6376   }
6377 
6378   assert(!VT.isVector() && "Can't handle vector type here!");
6379   unsigned NumVTBits = VT.getSizeInBits();
6380   unsigned NumVTBytes = NumVTBits / 8;
6381   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6382 
6383   APInt Val(NumVTBits, 0);
6384   if (DAG.getDataLayout().isLittleEndian()) {
6385     for (unsigned i = 0; i != NumBytes; ++i)
6386       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6387   } else {
6388     for (unsigned i = 0; i != NumBytes; ++i)
6389       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6390   }
6391 
6392   // If the "cost" of materializing the integer immediate is less than the cost
6393   // of a load, then it is cost effective to turn the load into the immediate.
6394   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6395   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6396     return DAG.getConstant(Val, dl, VT);
6397   return SDValue();
6398 }
6399 
6400 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6401                                            const SDLoc &DL,
6402                                            const SDNodeFlags Flags) {
6403   EVT VT = Base.getValueType();
6404   SDValue Index;
6405 
6406   if (Offset.isScalable())
6407     Index = getVScale(DL, Base.getValueType(),
6408                       APInt(Base.getValueSizeInBits().getFixedSize(),
6409                             Offset.getKnownMinSize()));
6410   else
6411     Index = getConstant(Offset.getFixedSize(), DL, VT);
6412 
6413   return getMemBasePlusOffset(Base, Index, DL, Flags);
6414 }
6415 
6416 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6417                                            const SDLoc &DL,
6418                                            const SDNodeFlags Flags) {
6419   assert(Offset.getValueType().isInteger());
6420   EVT BasePtrVT = Ptr.getValueType();
6421   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6422 }
6423 
6424 /// Returns true if memcpy source is constant data.
6425 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6426   uint64_t SrcDelta = 0;
6427   GlobalAddressSDNode *G = nullptr;
6428   if (Src.getOpcode() == ISD::GlobalAddress)
6429     G = cast<GlobalAddressSDNode>(Src);
6430   else if (Src.getOpcode() == ISD::ADD &&
6431            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6432            Src.getOperand(1).getOpcode() == ISD::Constant) {
6433     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6434     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6435   }
6436   if (!G)
6437     return false;
6438 
6439   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6440                                   SrcDelta + G->getOffset());
6441 }
6442 
6443 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6444                                       SelectionDAG &DAG) {
6445   // On Darwin, -Os means optimize for size without hurting performance, so
6446   // only really optimize for size when -Oz (MinSize) is used.
6447   if (MF.getTarget().getTargetTriple().isOSDarwin())
6448     return MF.getFunction().hasMinSize();
6449   return DAG.shouldOptForSize();
6450 }
6451 
6452 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6453                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6454                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6455                           SmallVector<SDValue, 16> &OutStoreChains) {
6456   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6457   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6458   SmallVector<SDValue, 16> GluedLoadChains;
6459   for (unsigned i = From; i < To; ++i) {
6460     OutChains.push_back(OutLoadChains[i]);
6461     GluedLoadChains.push_back(OutLoadChains[i]);
6462   }
6463 
6464   // Chain for all loads.
6465   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6466                                   GluedLoadChains);
6467 
6468   for (unsigned i = From; i < To; ++i) {
6469     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6470     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6471                                   ST->getBasePtr(), ST->getMemoryVT(),
6472                                   ST->getMemOperand());
6473     OutChains.push_back(NewStore);
6474   }
6475 }
6476 
6477 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6478                                        SDValue Chain, SDValue Dst, SDValue Src,
6479                                        uint64_t Size, Align Alignment,
6480                                        bool isVol, bool AlwaysInline,
6481                                        MachinePointerInfo DstPtrInfo,
6482                                        MachinePointerInfo SrcPtrInfo,
6483                                        const AAMDNodes &AAInfo) {
6484   // Turn a memcpy of undef to nop.
6485   // FIXME: We need to honor volatile even is Src is undef.
6486   if (Src.isUndef())
6487     return Chain;
6488 
6489   // Expand memcpy to a series of load and store ops if the size operand falls
6490   // below a certain threshold.
6491   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6492   // rather than maybe a humongous number of loads and stores.
6493   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6494   const DataLayout &DL = DAG.getDataLayout();
6495   LLVMContext &C = *DAG.getContext();
6496   std::vector<EVT> MemOps;
6497   bool DstAlignCanChange = false;
6498   MachineFunction &MF = DAG.getMachineFunction();
6499   MachineFrameInfo &MFI = MF.getFrameInfo();
6500   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6501   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6502   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6503     DstAlignCanChange = true;
6504   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6505   if (!SrcAlign || Alignment > *SrcAlign)
6506     SrcAlign = Alignment;
6507   assert(SrcAlign && "SrcAlign must be set");
6508   ConstantDataArraySlice Slice;
6509   // If marked as volatile, perform a copy even when marked as constant.
6510   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6511   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6512   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6513   const MemOp Op = isZeroConstant
6514                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6515                                     /*IsZeroMemset*/ true, isVol)
6516                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6517                                      *SrcAlign, isVol, CopyFromConstant);
6518   if (!TLI.findOptimalMemOpLowering(
6519           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6520           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6521     return SDValue();
6522 
6523   if (DstAlignCanChange) {
6524     Type *Ty = MemOps[0].getTypeForEVT(C);
6525     Align NewAlign = DL.getABITypeAlign(Ty);
6526 
6527     // Don't promote to an alignment that would require dynamic stack
6528     // realignment.
6529     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6530     if (!TRI->hasStackRealignment(MF))
6531       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6532         NewAlign = NewAlign / 2;
6533 
6534     if (NewAlign > Alignment) {
6535       // Give the stack frame object a larger alignment if needed.
6536       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6537         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6538       Alignment = NewAlign;
6539     }
6540   }
6541 
6542   // Prepare AAInfo for loads/stores after lowering this memcpy.
6543   AAMDNodes NewAAInfo = AAInfo;
6544   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6545 
6546   MachineMemOperand::Flags MMOFlags =
6547       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6548   SmallVector<SDValue, 16> OutLoadChains;
6549   SmallVector<SDValue, 16> OutStoreChains;
6550   SmallVector<SDValue, 32> OutChains;
6551   unsigned NumMemOps = MemOps.size();
6552   uint64_t SrcOff = 0, DstOff = 0;
6553   for (unsigned i = 0; i != NumMemOps; ++i) {
6554     EVT VT = MemOps[i];
6555     unsigned VTSize = VT.getSizeInBits() / 8;
6556     SDValue Value, Store;
6557 
6558     if (VTSize > Size) {
6559       // Issuing an unaligned load / store pair  that overlaps with the previous
6560       // pair. Adjust the offset accordingly.
6561       assert(i == NumMemOps-1 && i != 0);
6562       SrcOff -= VTSize - Size;
6563       DstOff -= VTSize - Size;
6564     }
6565 
6566     if (CopyFromConstant &&
6567         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6568       // It's unlikely a store of a vector immediate can be done in a single
6569       // instruction. It would require a load from a constantpool first.
6570       // We only handle zero vectors here.
6571       // FIXME: Handle other cases where store of vector immediate is done in
6572       // a single instruction.
6573       ConstantDataArraySlice SubSlice;
6574       if (SrcOff < Slice.Length) {
6575         SubSlice = Slice;
6576         SubSlice.move(SrcOff);
6577       } else {
6578         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6579         SubSlice.Array = nullptr;
6580         SubSlice.Offset = 0;
6581         SubSlice.Length = VTSize;
6582       }
6583       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6584       if (Value.getNode()) {
6585         Store = DAG.getStore(
6586             Chain, dl, Value,
6587             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6588             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6589         OutChains.push_back(Store);
6590       }
6591     }
6592 
6593     if (!Store.getNode()) {
6594       // The type might not be legal for the target.  This should only happen
6595       // if the type is smaller than a legal type, as on PPC, so the right
6596       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6597       // to Load/Store if NVT==VT.
6598       // FIXME does the case above also need this?
6599       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6600       assert(NVT.bitsGE(VT));
6601 
6602       bool isDereferenceable =
6603         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6604       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6605       if (isDereferenceable)
6606         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6607 
6608       Value = DAG.getExtLoad(
6609           ISD::EXTLOAD, dl, NVT, Chain,
6610           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6611           SrcPtrInfo.getWithOffset(SrcOff), VT,
6612           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6613       OutLoadChains.push_back(Value.getValue(1));
6614 
6615       Store = DAG.getTruncStore(
6616           Chain, dl, Value,
6617           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6618           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6619       OutStoreChains.push_back(Store);
6620     }
6621     SrcOff += VTSize;
6622     DstOff += VTSize;
6623     Size -= VTSize;
6624   }
6625 
6626   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6627                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6628   unsigned NumLdStInMemcpy = OutStoreChains.size();
6629 
6630   if (NumLdStInMemcpy) {
6631     // It may be that memcpy might be converted to memset if it's memcpy
6632     // of constants. In such a case, we won't have loads and stores, but
6633     // just stores. In the absence of loads, there is nothing to gang up.
6634     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6635       // If target does not care, just leave as it.
6636       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6637         OutChains.push_back(OutLoadChains[i]);
6638         OutChains.push_back(OutStoreChains[i]);
6639       }
6640     } else {
6641       // Ld/St less than/equal limit set by target.
6642       if (NumLdStInMemcpy <= GluedLdStLimit) {
6643           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6644                                         NumLdStInMemcpy, OutLoadChains,
6645                                         OutStoreChains);
6646       } else {
6647         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6648         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6649         unsigned GlueIter = 0;
6650 
6651         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6652           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6653           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6654 
6655           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6656                                        OutLoadChains, OutStoreChains);
6657           GlueIter += GluedLdStLimit;
6658         }
6659 
6660         // Residual ld/st.
6661         if (RemainingLdStInMemcpy) {
6662           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6663                                         RemainingLdStInMemcpy, OutLoadChains,
6664                                         OutStoreChains);
6665         }
6666       }
6667     }
6668   }
6669   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6670 }
6671 
6672 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6673                                         SDValue Chain, SDValue Dst, SDValue Src,
6674                                         uint64_t Size, Align Alignment,
6675                                         bool isVol, bool AlwaysInline,
6676                                         MachinePointerInfo DstPtrInfo,
6677                                         MachinePointerInfo SrcPtrInfo,
6678                                         const AAMDNodes &AAInfo) {
6679   // Turn a memmove of undef to nop.
6680   // FIXME: We need to honor volatile even is Src is undef.
6681   if (Src.isUndef())
6682     return Chain;
6683 
6684   // Expand memmove to a series of load and store ops if the size operand falls
6685   // below a certain threshold.
6686   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6687   const DataLayout &DL = DAG.getDataLayout();
6688   LLVMContext &C = *DAG.getContext();
6689   std::vector<EVT> MemOps;
6690   bool DstAlignCanChange = false;
6691   MachineFunction &MF = DAG.getMachineFunction();
6692   MachineFrameInfo &MFI = MF.getFrameInfo();
6693   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6694   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6695   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6696     DstAlignCanChange = true;
6697   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6698   if (!SrcAlign || Alignment > *SrcAlign)
6699     SrcAlign = Alignment;
6700   assert(SrcAlign && "SrcAlign must be set");
6701   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6702   if (!TLI.findOptimalMemOpLowering(
6703           MemOps, Limit,
6704           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6705                       /*IsVolatile*/ true),
6706           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6707           MF.getFunction().getAttributes()))
6708     return SDValue();
6709 
6710   if (DstAlignCanChange) {
6711     Type *Ty = MemOps[0].getTypeForEVT(C);
6712     Align NewAlign = DL.getABITypeAlign(Ty);
6713     if (NewAlign > Alignment) {
6714       // Give the stack frame object a larger alignment if needed.
6715       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6716         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6717       Alignment = NewAlign;
6718     }
6719   }
6720 
6721   // Prepare AAInfo for loads/stores after lowering this memmove.
6722   AAMDNodes NewAAInfo = AAInfo;
6723   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6724 
6725   MachineMemOperand::Flags MMOFlags =
6726       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6727   uint64_t SrcOff = 0, DstOff = 0;
6728   SmallVector<SDValue, 8> LoadValues;
6729   SmallVector<SDValue, 8> LoadChains;
6730   SmallVector<SDValue, 8> OutChains;
6731   unsigned NumMemOps = MemOps.size();
6732   for (unsigned i = 0; i < NumMemOps; i++) {
6733     EVT VT = MemOps[i];
6734     unsigned VTSize = VT.getSizeInBits() / 8;
6735     SDValue Value;
6736 
6737     bool isDereferenceable =
6738       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6739     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6740     if (isDereferenceable)
6741       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6742 
6743     Value = DAG.getLoad(
6744         VT, dl, Chain,
6745         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6746         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6747     LoadValues.push_back(Value);
6748     LoadChains.push_back(Value.getValue(1));
6749     SrcOff += VTSize;
6750   }
6751   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6752   OutChains.clear();
6753   for (unsigned i = 0; i < NumMemOps; i++) {
6754     EVT VT = MemOps[i];
6755     unsigned VTSize = VT.getSizeInBits() / 8;
6756     SDValue Store;
6757 
6758     Store = DAG.getStore(
6759         Chain, dl, LoadValues[i],
6760         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6761         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6762     OutChains.push_back(Store);
6763     DstOff += VTSize;
6764   }
6765 
6766   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6767 }
6768 
6769 /// Lower the call to 'memset' intrinsic function into a series of store
6770 /// operations.
6771 ///
6772 /// \param DAG Selection DAG where lowered code is placed.
6773 /// \param dl Link to corresponding IR location.
6774 /// \param Chain Control flow dependency.
6775 /// \param Dst Pointer to destination memory location.
6776 /// \param Src Value of byte to write into the memory.
6777 /// \param Size Number of bytes to write.
6778 /// \param Alignment Alignment of the destination in bytes.
6779 /// \param isVol True if destination is volatile.
6780 /// \param DstPtrInfo IR information on the memory pointer.
6781 /// \returns New head in the control flow, if lowering was successful, empty
6782 /// SDValue otherwise.
6783 ///
6784 /// The function tries to replace 'llvm.memset' intrinsic with several store
6785 /// operations and value calculation code. This is usually profitable for small
6786 /// memory size.
6787 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6788                                SDValue Chain, SDValue Dst, SDValue Src,
6789                                uint64_t Size, Align Alignment, bool isVol,
6790                                MachinePointerInfo DstPtrInfo,
6791                                const AAMDNodes &AAInfo) {
6792   // Turn a memset of undef to nop.
6793   // FIXME: We need to honor volatile even is Src is undef.
6794   if (Src.isUndef())
6795     return Chain;
6796 
6797   // Expand memset to a series of load/store ops if the size operand
6798   // falls below a certain threshold.
6799   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6800   std::vector<EVT> MemOps;
6801   bool DstAlignCanChange = false;
6802   MachineFunction &MF = DAG.getMachineFunction();
6803   MachineFrameInfo &MFI = MF.getFrameInfo();
6804   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6805   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6806   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6807     DstAlignCanChange = true;
6808   bool IsZeroVal =
6809       isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
6810   if (!TLI.findOptimalMemOpLowering(
6811           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6812           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6813           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6814     return SDValue();
6815 
6816   if (DstAlignCanChange) {
6817     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6818     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6819     if (NewAlign > Alignment) {
6820       // Give the stack frame object a larger alignment if needed.
6821       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6822         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6823       Alignment = NewAlign;
6824     }
6825   }
6826 
6827   SmallVector<SDValue, 8> OutChains;
6828   uint64_t DstOff = 0;
6829   unsigned NumMemOps = MemOps.size();
6830 
6831   // Find the largest store and generate the bit pattern for it.
6832   EVT LargestVT = MemOps[0];
6833   for (unsigned i = 1; i < NumMemOps; i++)
6834     if (MemOps[i].bitsGT(LargestVT))
6835       LargestVT = MemOps[i];
6836   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6837 
6838   // Prepare AAInfo for loads/stores after lowering this memset.
6839   AAMDNodes NewAAInfo = AAInfo;
6840   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6841 
6842   for (unsigned i = 0; i < NumMemOps; i++) {
6843     EVT VT = MemOps[i];
6844     unsigned VTSize = VT.getSizeInBits() / 8;
6845     if (VTSize > Size) {
6846       // Issuing an unaligned load / store pair  that overlaps with the previous
6847       // pair. Adjust the offset accordingly.
6848       assert(i == NumMemOps-1 && i != 0);
6849       DstOff -= VTSize - Size;
6850     }
6851 
6852     // If this store is smaller than the largest store see whether we can get
6853     // the smaller value for free with a truncate.
6854     SDValue Value = MemSetValue;
6855     if (VT.bitsLT(LargestVT)) {
6856       if (!LargestVT.isVector() && !VT.isVector() &&
6857           TLI.isTruncateFree(LargestVT, VT))
6858         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6859       else
6860         Value = getMemsetValue(Src, VT, DAG, dl);
6861     }
6862     assert(Value.getValueType() == VT && "Value with wrong type.");
6863     SDValue Store = DAG.getStore(
6864         Chain, dl, Value,
6865         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6866         DstPtrInfo.getWithOffset(DstOff), Alignment,
6867         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
6868         NewAAInfo);
6869     OutChains.push_back(Store);
6870     DstOff += VT.getSizeInBits() / 8;
6871     Size -= VTSize;
6872   }
6873 
6874   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6875 }
6876 
6877 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6878                                             unsigned AS) {
6879   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6880   // pointer operands can be losslessly bitcasted to pointers of address space 0
6881   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6882     report_fatal_error("cannot lower memory intrinsic in address space " +
6883                        Twine(AS));
6884   }
6885 }
6886 
6887 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6888                                 SDValue Src, SDValue Size, Align Alignment,
6889                                 bool isVol, bool AlwaysInline, bool isTailCall,
6890                                 MachinePointerInfo DstPtrInfo,
6891                                 MachinePointerInfo SrcPtrInfo,
6892                                 const AAMDNodes &AAInfo) {
6893   // Check to see if we should lower the memcpy to loads and stores first.
6894   // For cases within the target-specified limits, this is the best choice.
6895   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6896   if (ConstantSize) {
6897     // Memcpy with size zero? Just return the original chain.
6898     if (ConstantSize->isZero())
6899       return Chain;
6900 
6901     SDValue Result = getMemcpyLoadsAndStores(
6902         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6903         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6904     if (Result.getNode())
6905       return Result;
6906   }
6907 
6908   // Then check to see if we should lower the memcpy with target-specific
6909   // code. If the target chooses to do this, this is the next best.
6910   if (TSI) {
6911     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6912         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6913         DstPtrInfo, SrcPtrInfo);
6914     if (Result.getNode())
6915       return Result;
6916   }
6917 
6918   // If we really need inline code and the target declined to provide it,
6919   // use a (potentially long) sequence of loads and stores.
6920   if (AlwaysInline) {
6921     assert(ConstantSize && "AlwaysInline requires a constant size!");
6922     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6923                                    ConstantSize->getZExtValue(), Alignment,
6924                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
6925   }
6926 
6927   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6928   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6929 
6930   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6931   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6932   // respect volatile, so they may do things like read or write memory
6933   // beyond the given memory regions. But fixing this isn't easy, and most
6934   // people don't care.
6935 
6936   // Emit a library call.
6937   TargetLowering::ArgListTy Args;
6938   TargetLowering::ArgListEntry Entry;
6939   Entry.Ty = Type::getInt8PtrTy(*getContext());
6940   Entry.Node = Dst; Args.push_back(Entry);
6941   Entry.Node = Src; Args.push_back(Entry);
6942 
6943   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6944   Entry.Node = Size; Args.push_back(Entry);
6945   // FIXME: pass in SDLoc
6946   TargetLowering::CallLoweringInfo CLI(*this);
6947   CLI.setDebugLoc(dl)
6948       .setChain(Chain)
6949       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6950                     Dst.getValueType().getTypeForEVT(*getContext()),
6951                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6952                                       TLI->getPointerTy(getDataLayout())),
6953                     std::move(Args))
6954       .setDiscardResult()
6955       .setTailCall(isTailCall);
6956 
6957   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6958   return CallResult.second;
6959 }
6960 
6961 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6962                                       SDValue Dst, unsigned DstAlign,
6963                                       SDValue Src, unsigned SrcAlign,
6964                                       SDValue Size, Type *SizeTy,
6965                                       unsigned ElemSz, bool isTailCall,
6966                                       MachinePointerInfo DstPtrInfo,
6967                                       MachinePointerInfo SrcPtrInfo) {
6968   // Emit a library call.
6969   TargetLowering::ArgListTy Args;
6970   TargetLowering::ArgListEntry Entry;
6971   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6972   Entry.Node = Dst;
6973   Args.push_back(Entry);
6974 
6975   Entry.Node = Src;
6976   Args.push_back(Entry);
6977 
6978   Entry.Ty = SizeTy;
6979   Entry.Node = Size;
6980   Args.push_back(Entry);
6981 
6982   RTLIB::Libcall LibraryCall =
6983       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6984   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6985     report_fatal_error("Unsupported element size");
6986 
6987   TargetLowering::CallLoweringInfo CLI(*this);
6988   CLI.setDebugLoc(dl)
6989       .setChain(Chain)
6990       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6991                     Type::getVoidTy(*getContext()),
6992                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6993                                       TLI->getPointerTy(getDataLayout())),
6994                     std::move(Args))
6995       .setDiscardResult()
6996       .setTailCall(isTailCall);
6997 
6998   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6999   return CallResult.second;
7000 }
7001 
7002 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
7003                                  SDValue Src, SDValue Size, Align Alignment,
7004                                  bool isVol, bool isTailCall,
7005                                  MachinePointerInfo DstPtrInfo,
7006                                  MachinePointerInfo SrcPtrInfo,
7007                                  const AAMDNodes &AAInfo) {
7008   // Check to see if we should lower the memmove to loads and stores first.
7009   // For cases within the target-specified limits, this is the best choice.
7010   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7011   if (ConstantSize) {
7012     // Memmove with size zero? Just return the original chain.
7013     if (ConstantSize->isZero())
7014       return Chain;
7015 
7016     SDValue Result = getMemmoveLoadsAndStores(
7017         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7018         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7019     if (Result.getNode())
7020       return Result;
7021   }
7022 
7023   // Then check to see if we should lower the memmove with target-specific
7024   // code. If the target chooses to do this, this is the next best.
7025   if (TSI) {
7026     SDValue Result =
7027         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
7028                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
7029     if (Result.getNode())
7030       return Result;
7031   }
7032 
7033   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7034   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7035 
7036   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7037   // not be safe.  See memcpy above for more details.
7038 
7039   // Emit a library call.
7040   TargetLowering::ArgListTy Args;
7041   TargetLowering::ArgListEntry Entry;
7042   Entry.Ty = Type::getInt8PtrTy(*getContext());
7043   Entry.Node = Dst; Args.push_back(Entry);
7044   Entry.Node = Src; Args.push_back(Entry);
7045 
7046   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7047   Entry.Node = Size; Args.push_back(Entry);
7048   // FIXME:  pass in SDLoc
7049   TargetLowering::CallLoweringInfo CLI(*this);
7050   CLI.setDebugLoc(dl)
7051       .setChain(Chain)
7052       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7053                     Dst.getValueType().getTypeForEVT(*getContext()),
7054                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7055                                       TLI->getPointerTy(getDataLayout())),
7056                     std::move(Args))
7057       .setDiscardResult()
7058       .setTailCall(isTailCall);
7059 
7060   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7061   return CallResult.second;
7062 }
7063 
7064 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7065                                        SDValue Dst, unsigned DstAlign,
7066                                        SDValue Src, unsigned SrcAlign,
7067                                        SDValue Size, Type *SizeTy,
7068                                        unsigned ElemSz, bool isTailCall,
7069                                        MachinePointerInfo DstPtrInfo,
7070                                        MachinePointerInfo SrcPtrInfo) {
7071   // Emit a library call.
7072   TargetLowering::ArgListTy Args;
7073   TargetLowering::ArgListEntry Entry;
7074   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7075   Entry.Node = Dst;
7076   Args.push_back(Entry);
7077 
7078   Entry.Node = Src;
7079   Args.push_back(Entry);
7080 
7081   Entry.Ty = SizeTy;
7082   Entry.Node = Size;
7083   Args.push_back(Entry);
7084 
7085   RTLIB::Libcall LibraryCall =
7086       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7087   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7088     report_fatal_error("Unsupported element size");
7089 
7090   TargetLowering::CallLoweringInfo CLI(*this);
7091   CLI.setDebugLoc(dl)
7092       .setChain(Chain)
7093       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7094                     Type::getVoidTy(*getContext()),
7095                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7096                                       TLI->getPointerTy(getDataLayout())),
7097                     std::move(Args))
7098       .setDiscardResult()
7099       .setTailCall(isTailCall);
7100 
7101   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7102   return CallResult.second;
7103 }
7104 
7105 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7106                                 SDValue Src, SDValue Size, Align Alignment,
7107                                 bool isVol, bool isTailCall,
7108                                 MachinePointerInfo DstPtrInfo,
7109                                 const AAMDNodes &AAInfo) {
7110   // Check to see if we should lower the memset to stores first.
7111   // For cases within the target-specified limits, this is the best choice.
7112   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7113   if (ConstantSize) {
7114     // Memset with size zero? Just return the original chain.
7115     if (ConstantSize->isZero())
7116       return Chain;
7117 
7118     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7119                                      ConstantSize->getZExtValue(), Alignment,
7120                                      isVol, DstPtrInfo, AAInfo);
7121 
7122     if (Result.getNode())
7123       return Result;
7124   }
7125 
7126   // Then check to see if we should lower the memset with target-specific
7127   // code. If the target chooses to do this, this is the next best.
7128   if (TSI) {
7129     SDValue Result = TSI->EmitTargetCodeForMemset(
7130         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
7131     if (Result.getNode())
7132       return Result;
7133   }
7134 
7135   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7136 
7137   // Emit a library call.
7138   TargetLowering::ArgListTy Args;
7139   TargetLowering::ArgListEntry Entry;
7140   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
7141   Args.push_back(Entry);
7142   Entry.Node = Src;
7143   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
7144   Args.push_back(Entry);
7145   Entry.Node = Size;
7146   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7147   Args.push_back(Entry);
7148 
7149   // FIXME: pass in SDLoc
7150   TargetLowering::CallLoweringInfo CLI(*this);
7151   CLI.setDebugLoc(dl)
7152       .setChain(Chain)
7153       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7154                     Dst.getValueType().getTypeForEVT(*getContext()),
7155                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7156                                       TLI->getPointerTy(getDataLayout())),
7157                     std::move(Args))
7158       .setDiscardResult()
7159       .setTailCall(isTailCall);
7160 
7161   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7162   return CallResult.second;
7163 }
7164 
7165 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7166                                       SDValue Dst, unsigned DstAlign,
7167                                       SDValue Value, SDValue Size, Type *SizeTy,
7168                                       unsigned ElemSz, bool isTailCall,
7169                                       MachinePointerInfo DstPtrInfo) {
7170   // Emit a library call.
7171   TargetLowering::ArgListTy Args;
7172   TargetLowering::ArgListEntry Entry;
7173   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7174   Entry.Node = Dst;
7175   Args.push_back(Entry);
7176 
7177   Entry.Ty = Type::getInt8Ty(*getContext());
7178   Entry.Node = Value;
7179   Args.push_back(Entry);
7180 
7181   Entry.Ty = SizeTy;
7182   Entry.Node = Size;
7183   Args.push_back(Entry);
7184 
7185   RTLIB::Libcall LibraryCall =
7186       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7187   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7188     report_fatal_error("Unsupported element size");
7189 
7190   TargetLowering::CallLoweringInfo CLI(*this);
7191   CLI.setDebugLoc(dl)
7192       .setChain(Chain)
7193       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7194                     Type::getVoidTy(*getContext()),
7195                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7196                                       TLI->getPointerTy(getDataLayout())),
7197                     std::move(Args))
7198       .setDiscardResult()
7199       .setTailCall(isTailCall);
7200 
7201   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7202   return CallResult.second;
7203 }
7204 
7205 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7206                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7207                                 MachineMemOperand *MMO) {
7208   FoldingSetNodeID ID;
7209   ID.AddInteger(MemVT.getRawBits());
7210   AddNodeIDNode(ID, Opcode, VTList, Ops);
7211   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7212   void* IP = nullptr;
7213   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7214     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7215     return SDValue(E, 0);
7216   }
7217 
7218   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7219                                     VTList, MemVT, MMO);
7220   createOperands(N, Ops);
7221 
7222   CSEMap.InsertNode(N, IP);
7223   InsertNode(N);
7224   return SDValue(N, 0);
7225 }
7226 
7227 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7228                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7229                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7230                                        MachineMemOperand *MMO) {
7231   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7232          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7233   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7234 
7235   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7236   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7237 }
7238 
7239 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7240                                 SDValue Chain, SDValue Ptr, SDValue Val,
7241                                 MachineMemOperand *MMO) {
7242   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7243           Opcode == ISD::ATOMIC_LOAD_SUB ||
7244           Opcode == ISD::ATOMIC_LOAD_AND ||
7245           Opcode == ISD::ATOMIC_LOAD_CLR ||
7246           Opcode == ISD::ATOMIC_LOAD_OR ||
7247           Opcode == ISD::ATOMIC_LOAD_XOR ||
7248           Opcode == ISD::ATOMIC_LOAD_NAND ||
7249           Opcode == ISD::ATOMIC_LOAD_MIN ||
7250           Opcode == ISD::ATOMIC_LOAD_MAX ||
7251           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7252           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7253           Opcode == ISD::ATOMIC_LOAD_FADD ||
7254           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7255           Opcode == ISD::ATOMIC_SWAP ||
7256           Opcode == ISD::ATOMIC_STORE) &&
7257          "Invalid Atomic Op");
7258 
7259   EVT VT = Val.getValueType();
7260 
7261   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7262                                                getVTList(VT, MVT::Other);
7263   SDValue Ops[] = {Chain, Ptr, Val};
7264   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7265 }
7266 
7267 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7268                                 EVT VT, SDValue Chain, SDValue Ptr,
7269                                 MachineMemOperand *MMO) {
7270   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7271 
7272   SDVTList VTs = getVTList(VT, MVT::Other);
7273   SDValue Ops[] = {Chain, Ptr};
7274   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7275 }
7276 
7277 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7278 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7279   if (Ops.size() == 1)
7280     return Ops[0];
7281 
7282   SmallVector<EVT, 4> VTs;
7283   VTs.reserve(Ops.size());
7284   for (const SDValue &Op : Ops)
7285     VTs.push_back(Op.getValueType());
7286   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7287 }
7288 
7289 SDValue SelectionDAG::getMemIntrinsicNode(
7290     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7291     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7292     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7293   if (!Size && MemVT.isScalableVector())
7294     Size = MemoryLocation::UnknownSize;
7295   else if (!Size)
7296     Size = MemVT.getStoreSize();
7297 
7298   MachineFunction &MF = getMachineFunction();
7299   MachineMemOperand *MMO =
7300       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7301 
7302   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7303 }
7304 
7305 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7306                                           SDVTList VTList,
7307                                           ArrayRef<SDValue> Ops, EVT MemVT,
7308                                           MachineMemOperand *MMO) {
7309   assert((Opcode == ISD::INTRINSIC_VOID ||
7310           Opcode == ISD::INTRINSIC_W_CHAIN ||
7311           Opcode == ISD::PREFETCH ||
7312           ((int)Opcode <= std::numeric_limits<int>::max() &&
7313            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7314          "Opcode is not a memory-accessing opcode!");
7315 
7316   // Memoize the node unless it returns a flag.
7317   MemIntrinsicSDNode *N;
7318   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7319     FoldingSetNodeID ID;
7320     AddNodeIDNode(ID, Opcode, VTList, Ops);
7321     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7322         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7323     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7324     void *IP = nullptr;
7325     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7326       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7327       return SDValue(E, 0);
7328     }
7329 
7330     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7331                                       VTList, MemVT, MMO);
7332     createOperands(N, Ops);
7333 
7334   CSEMap.InsertNode(N, IP);
7335   } else {
7336     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7337                                       VTList, MemVT, MMO);
7338     createOperands(N, Ops);
7339   }
7340   InsertNode(N);
7341   SDValue V(N, 0);
7342   NewSDValueDbgMsg(V, "Creating new node: ", this);
7343   return V;
7344 }
7345 
7346 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7347                                       SDValue Chain, int FrameIndex,
7348                                       int64_t Size, int64_t Offset) {
7349   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7350   const auto VTs = getVTList(MVT::Other);
7351   SDValue Ops[2] = {
7352       Chain,
7353       getFrameIndex(FrameIndex,
7354                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7355                     true)};
7356 
7357   FoldingSetNodeID ID;
7358   AddNodeIDNode(ID, Opcode, VTs, Ops);
7359   ID.AddInteger(FrameIndex);
7360   ID.AddInteger(Size);
7361   ID.AddInteger(Offset);
7362   void *IP = nullptr;
7363   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7364     return SDValue(E, 0);
7365 
7366   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7367       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7368   createOperands(N, Ops);
7369   CSEMap.InsertNode(N, IP);
7370   InsertNode(N);
7371   SDValue V(N, 0);
7372   NewSDValueDbgMsg(V, "Creating new node: ", this);
7373   return V;
7374 }
7375 
7376 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7377                                          uint64_t Guid, uint64_t Index,
7378                                          uint32_t Attr) {
7379   const unsigned Opcode = ISD::PSEUDO_PROBE;
7380   const auto VTs = getVTList(MVT::Other);
7381   SDValue Ops[] = {Chain};
7382   FoldingSetNodeID ID;
7383   AddNodeIDNode(ID, Opcode, VTs, Ops);
7384   ID.AddInteger(Guid);
7385   ID.AddInteger(Index);
7386   void *IP = nullptr;
7387   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7388     return SDValue(E, 0);
7389 
7390   auto *N = newSDNode<PseudoProbeSDNode>(
7391       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7392   createOperands(N, Ops);
7393   CSEMap.InsertNode(N, IP);
7394   InsertNode(N);
7395   SDValue V(N, 0);
7396   NewSDValueDbgMsg(V, "Creating new node: ", this);
7397   return V;
7398 }
7399 
7400 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7401 /// MachinePointerInfo record from it.  This is particularly useful because the
7402 /// code generator has many cases where it doesn't bother passing in a
7403 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7404 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7405                                            SelectionDAG &DAG, SDValue Ptr,
7406                                            int64_t Offset = 0) {
7407   // If this is FI+Offset, we can model it.
7408   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7409     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7410                                              FI->getIndex(), Offset);
7411 
7412   // If this is (FI+Offset1)+Offset2, we can model it.
7413   if (Ptr.getOpcode() != ISD::ADD ||
7414       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7415       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7416     return Info;
7417 
7418   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7419   return MachinePointerInfo::getFixedStack(
7420       DAG.getMachineFunction(), FI,
7421       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7422 }
7423 
7424 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7425 /// MachinePointerInfo record from it.  This is particularly useful because the
7426 /// code generator has many cases where it doesn't bother passing in a
7427 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7428 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7429                                            SelectionDAG &DAG, SDValue Ptr,
7430                                            SDValue OffsetOp) {
7431   // If the 'Offset' value isn't a constant, we can't handle this.
7432   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7433     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7434   if (OffsetOp.isUndef())
7435     return InferPointerInfo(Info, DAG, Ptr);
7436   return Info;
7437 }
7438 
7439 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7440                               EVT VT, const SDLoc &dl, SDValue Chain,
7441                               SDValue Ptr, SDValue Offset,
7442                               MachinePointerInfo PtrInfo, EVT MemVT,
7443                               Align Alignment,
7444                               MachineMemOperand::Flags MMOFlags,
7445                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7446   assert(Chain.getValueType() == MVT::Other &&
7447         "Invalid chain type");
7448 
7449   MMOFlags |= MachineMemOperand::MOLoad;
7450   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7451   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7452   // clients.
7453   if (PtrInfo.V.isNull())
7454     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7455 
7456   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7457   MachineFunction &MF = getMachineFunction();
7458   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7459                                                    Alignment, AAInfo, Ranges);
7460   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7461 }
7462 
7463 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7464                               EVT VT, const SDLoc &dl, SDValue Chain,
7465                               SDValue Ptr, SDValue Offset, EVT MemVT,
7466                               MachineMemOperand *MMO) {
7467   if (VT == MemVT) {
7468     ExtType = ISD::NON_EXTLOAD;
7469   } else if (ExtType == ISD::NON_EXTLOAD) {
7470     assert(VT == MemVT && "Non-extending load from different memory type!");
7471   } else {
7472     // Extending load.
7473     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7474            "Should only be an extending load, not truncating!");
7475     assert(VT.isInteger() == MemVT.isInteger() &&
7476            "Cannot convert from FP to Int or Int -> FP!");
7477     assert(VT.isVector() == MemVT.isVector() &&
7478            "Cannot use an ext load to convert to or from a vector!");
7479     assert((!VT.isVector() ||
7480             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7481            "Cannot use an ext load to change the number of vector elements!");
7482   }
7483 
7484   bool Indexed = AM != ISD::UNINDEXED;
7485   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7486 
7487   SDVTList VTs = Indexed ?
7488     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7489   SDValue Ops[] = { Chain, Ptr, Offset };
7490   FoldingSetNodeID ID;
7491   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7492   ID.AddInteger(MemVT.getRawBits());
7493   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7494       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7495   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7496   void *IP = nullptr;
7497   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7498     cast<LoadSDNode>(E)->refineAlignment(MMO);
7499     return SDValue(E, 0);
7500   }
7501   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7502                                   ExtType, MemVT, MMO);
7503   createOperands(N, Ops);
7504 
7505   CSEMap.InsertNode(N, IP);
7506   InsertNode(N);
7507   SDValue V(N, 0);
7508   NewSDValueDbgMsg(V, "Creating new node: ", this);
7509   return V;
7510 }
7511 
7512 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7513                               SDValue Ptr, MachinePointerInfo PtrInfo,
7514                               MaybeAlign Alignment,
7515                               MachineMemOperand::Flags MMOFlags,
7516                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7517   SDValue Undef = getUNDEF(Ptr.getValueType());
7518   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7519                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7520 }
7521 
7522 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7523                               SDValue Ptr, MachineMemOperand *MMO) {
7524   SDValue Undef = getUNDEF(Ptr.getValueType());
7525   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7526                  VT, MMO);
7527 }
7528 
7529 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7530                                  EVT VT, SDValue Chain, SDValue Ptr,
7531                                  MachinePointerInfo PtrInfo, EVT MemVT,
7532                                  MaybeAlign Alignment,
7533                                  MachineMemOperand::Flags MMOFlags,
7534                                  const AAMDNodes &AAInfo) {
7535   SDValue Undef = getUNDEF(Ptr.getValueType());
7536   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7537                  MemVT, Alignment, MMOFlags, AAInfo);
7538 }
7539 
7540 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7541                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7542                                  MachineMemOperand *MMO) {
7543   SDValue Undef = getUNDEF(Ptr.getValueType());
7544   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7545                  MemVT, MMO);
7546 }
7547 
7548 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7549                                      SDValue Base, SDValue Offset,
7550                                      ISD::MemIndexedMode AM) {
7551   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7552   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7553   // Don't propagate the invariant or dereferenceable flags.
7554   auto MMOFlags =
7555       LD->getMemOperand()->getFlags() &
7556       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7557   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7558                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7559                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7560 }
7561 
7562 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7563                                SDValue Ptr, MachinePointerInfo PtrInfo,
7564                                Align Alignment,
7565                                MachineMemOperand::Flags MMOFlags,
7566                                const AAMDNodes &AAInfo) {
7567   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7568 
7569   MMOFlags |= MachineMemOperand::MOStore;
7570   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7571 
7572   if (PtrInfo.V.isNull())
7573     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7574 
7575   MachineFunction &MF = getMachineFunction();
7576   uint64_t Size =
7577       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7578   MachineMemOperand *MMO =
7579       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7580   return getStore(Chain, dl, Val, Ptr, MMO);
7581 }
7582 
7583 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7584                                SDValue Ptr, MachineMemOperand *MMO) {
7585   assert(Chain.getValueType() == MVT::Other &&
7586         "Invalid chain type");
7587   EVT VT = Val.getValueType();
7588   SDVTList VTs = getVTList(MVT::Other);
7589   SDValue Undef = getUNDEF(Ptr.getValueType());
7590   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7591   FoldingSetNodeID ID;
7592   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7593   ID.AddInteger(VT.getRawBits());
7594   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7595       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7596   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7597   void *IP = nullptr;
7598   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7599     cast<StoreSDNode>(E)->refineAlignment(MMO);
7600     return SDValue(E, 0);
7601   }
7602   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7603                                    ISD::UNINDEXED, false, VT, MMO);
7604   createOperands(N, Ops);
7605 
7606   CSEMap.InsertNode(N, IP);
7607   InsertNode(N);
7608   SDValue V(N, 0);
7609   NewSDValueDbgMsg(V, "Creating new node: ", this);
7610   return V;
7611 }
7612 
7613 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7614                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7615                                     EVT SVT, Align Alignment,
7616                                     MachineMemOperand::Flags MMOFlags,
7617                                     const AAMDNodes &AAInfo) {
7618   assert(Chain.getValueType() == MVT::Other &&
7619         "Invalid chain type");
7620 
7621   MMOFlags |= MachineMemOperand::MOStore;
7622   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7623 
7624   if (PtrInfo.V.isNull())
7625     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7626 
7627   MachineFunction &MF = getMachineFunction();
7628   MachineMemOperand *MMO = MF.getMachineMemOperand(
7629       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7630       Alignment, AAInfo);
7631   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7632 }
7633 
7634 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7635                                     SDValue Ptr, EVT SVT,
7636                                     MachineMemOperand *MMO) {
7637   EVT VT = Val.getValueType();
7638 
7639   assert(Chain.getValueType() == MVT::Other &&
7640         "Invalid chain type");
7641   if (VT == SVT)
7642     return getStore(Chain, dl, Val, Ptr, MMO);
7643 
7644   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7645          "Should only be a truncating store, not extending!");
7646   assert(VT.isInteger() == SVT.isInteger() &&
7647          "Can't do FP-INT conversion!");
7648   assert(VT.isVector() == SVT.isVector() &&
7649          "Cannot use trunc store to convert to or from a vector!");
7650   assert((!VT.isVector() ||
7651           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7652          "Cannot use trunc store to change the number of vector elements!");
7653 
7654   SDVTList VTs = getVTList(MVT::Other);
7655   SDValue Undef = getUNDEF(Ptr.getValueType());
7656   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7657   FoldingSetNodeID ID;
7658   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7659   ID.AddInteger(SVT.getRawBits());
7660   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7661       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7662   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7663   void *IP = nullptr;
7664   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7665     cast<StoreSDNode>(E)->refineAlignment(MMO);
7666     return SDValue(E, 0);
7667   }
7668   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7669                                    ISD::UNINDEXED, true, SVT, MMO);
7670   createOperands(N, Ops);
7671 
7672   CSEMap.InsertNode(N, IP);
7673   InsertNode(N);
7674   SDValue V(N, 0);
7675   NewSDValueDbgMsg(V, "Creating new node: ", this);
7676   return V;
7677 }
7678 
7679 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7680                                       SDValue Base, SDValue Offset,
7681                                       ISD::MemIndexedMode AM) {
7682   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7683   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7684   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7685   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7686   FoldingSetNodeID ID;
7687   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7688   ID.AddInteger(ST->getMemoryVT().getRawBits());
7689   ID.AddInteger(ST->getRawSubclassData());
7690   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7691   void *IP = nullptr;
7692   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7693     return SDValue(E, 0);
7694 
7695   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7696                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7697                                    ST->getMemOperand());
7698   createOperands(N, Ops);
7699 
7700   CSEMap.InsertNode(N, IP);
7701   InsertNode(N);
7702   SDValue V(N, 0);
7703   NewSDValueDbgMsg(V, "Creating new node: ", this);
7704   return V;
7705 }
7706 
7707 SDValue SelectionDAG::getLoadVP(
7708     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
7709     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
7710     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
7711     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
7712     const MDNode *Ranges, bool IsExpanding) {
7713   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7714 
7715   MMOFlags |= MachineMemOperand::MOLoad;
7716   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7717   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7718   // clients.
7719   if (PtrInfo.V.isNull())
7720     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7721 
7722   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7723   MachineFunction &MF = getMachineFunction();
7724   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7725                                                    Alignment, AAInfo, Ranges);
7726   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
7727                    MMO, IsExpanding);
7728 }
7729 
7730 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
7731                                 ISD::LoadExtType ExtType, EVT VT,
7732                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
7733                                 SDValue Offset, SDValue Mask, SDValue EVL,
7734                                 EVT MemVT, MachineMemOperand *MMO,
7735                                 bool IsExpanding) {
7736   bool Indexed = AM != ISD::UNINDEXED;
7737   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7738 
7739   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
7740                          : getVTList(VT, MVT::Other);
7741   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
7742   FoldingSetNodeID ID;
7743   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
7744   ID.AddInteger(VT.getRawBits());
7745   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
7746       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
7747   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7748   void *IP = nullptr;
7749   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7750     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
7751     return SDValue(E, 0);
7752   }
7753   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7754                                     ExtType, IsExpanding, MemVT, MMO);
7755   createOperands(N, Ops);
7756 
7757   CSEMap.InsertNode(N, IP);
7758   InsertNode(N);
7759   SDValue V(N, 0);
7760   NewSDValueDbgMsg(V, "Creating new node: ", this);
7761   return V;
7762 }
7763 
7764 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7765                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7766                                 MachinePointerInfo PtrInfo,
7767                                 MaybeAlign Alignment,
7768                                 MachineMemOperand::Flags MMOFlags,
7769                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
7770                                 bool IsExpanding) {
7771   SDValue Undef = getUNDEF(Ptr.getValueType());
7772   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7773                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
7774                    IsExpanding);
7775 }
7776 
7777 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7778                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7779                                 MachineMemOperand *MMO, bool IsExpanding) {
7780   SDValue Undef = getUNDEF(Ptr.getValueType());
7781   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7782                    Mask, EVL, VT, MMO, IsExpanding);
7783 }
7784 
7785 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7786                                    EVT VT, SDValue Chain, SDValue Ptr,
7787                                    SDValue Mask, SDValue EVL,
7788                                    MachinePointerInfo PtrInfo, EVT MemVT,
7789                                    MaybeAlign Alignment,
7790                                    MachineMemOperand::Flags MMOFlags,
7791                                    const AAMDNodes &AAInfo, bool IsExpanding) {
7792   SDValue Undef = getUNDEF(Ptr.getValueType());
7793   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7794                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
7795                    IsExpanding);
7796 }
7797 
7798 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7799                                    EVT VT, SDValue Chain, SDValue Ptr,
7800                                    SDValue Mask, SDValue EVL, EVT MemVT,
7801                                    MachineMemOperand *MMO, bool IsExpanding) {
7802   SDValue Undef = getUNDEF(Ptr.getValueType());
7803   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7804                    EVL, MemVT, MMO, IsExpanding);
7805 }
7806 
7807 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
7808                                        SDValue Base, SDValue Offset,
7809                                        ISD::MemIndexedMode AM) {
7810   auto *LD = cast<VPLoadSDNode>(OrigLoad);
7811   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7812   // Don't propagate the invariant or dereferenceable flags.
7813   auto MMOFlags =
7814       LD->getMemOperand()->getFlags() &
7815       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7816   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7817                    LD->getChain(), Base, Offset, LD->getMask(),
7818                    LD->getVectorLength(), LD->getPointerInfo(),
7819                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
7820                    nullptr, LD->isExpandingLoad());
7821 }
7822 
7823 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7824                                  SDValue Ptr, SDValue Offset, SDValue Mask,
7825                                  SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
7826                                  ISD::MemIndexedMode AM, bool IsTruncating,
7827                                  bool IsCompressing) {
7828   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7829   bool Indexed = AM != ISD::UNINDEXED;
7830   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
7831   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
7832                          : getVTList(MVT::Other);
7833   SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
7834   FoldingSetNodeID ID;
7835   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7836   ID.AddInteger(MemVT.getRawBits());
7837   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7838       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7839   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7840   void *IP = nullptr;
7841   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7842     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7843     return SDValue(E, 0);
7844   }
7845   auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7846                                      IsTruncating, IsCompressing, MemVT, MMO);
7847   createOperands(N, Ops);
7848 
7849   CSEMap.InsertNode(N, IP);
7850   InsertNode(N);
7851   SDValue V(N, 0);
7852   NewSDValueDbgMsg(V, "Creating new node: ", this);
7853   return V;
7854 }
7855 
7856 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7857                                       SDValue Val, SDValue Ptr, SDValue Mask,
7858                                       SDValue EVL, MachinePointerInfo PtrInfo,
7859                                       EVT SVT, Align Alignment,
7860                                       MachineMemOperand::Flags MMOFlags,
7861                                       const AAMDNodes &AAInfo,
7862                                       bool IsCompressing) {
7863   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7864 
7865   MMOFlags |= MachineMemOperand::MOStore;
7866   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7867 
7868   if (PtrInfo.V.isNull())
7869     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7870 
7871   MachineFunction &MF = getMachineFunction();
7872   MachineMemOperand *MMO = MF.getMachineMemOperand(
7873       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7874       Alignment, AAInfo);
7875   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
7876                          IsCompressing);
7877 }
7878 
7879 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7880                                       SDValue Val, SDValue Ptr, SDValue Mask,
7881                                       SDValue EVL, EVT SVT,
7882                                       MachineMemOperand *MMO,
7883                                       bool IsCompressing) {
7884   EVT VT = Val.getValueType();
7885 
7886   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7887   if (VT == SVT)
7888     return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
7889                       EVL, VT, MMO, ISD::UNINDEXED,
7890                       /*IsTruncating*/ false, IsCompressing);
7891 
7892   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7893          "Should only be a truncating store, not extending!");
7894   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
7895   assert(VT.isVector() == SVT.isVector() &&
7896          "Cannot use trunc store to convert to or from a vector!");
7897   assert((!VT.isVector() ||
7898           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7899          "Cannot use trunc store to change the number of vector elements!");
7900 
7901   SDVTList VTs = getVTList(MVT::Other);
7902   SDValue Undef = getUNDEF(Ptr.getValueType());
7903   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
7904   FoldingSetNodeID ID;
7905   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7906   ID.AddInteger(SVT.getRawBits());
7907   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7908       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
7909   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7910   void *IP = nullptr;
7911   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7912     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7913     return SDValue(E, 0);
7914   }
7915   auto *N =
7916       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7917                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
7918   createOperands(N, Ops);
7919 
7920   CSEMap.InsertNode(N, IP);
7921   InsertNode(N);
7922   SDValue V(N, 0);
7923   NewSDValueDbgMsg(V, "Creating new node: ", this);
7924   return V;
7925 }
7926 
7927 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
7928                                         SDValue Base, SDValue Offset,
7929                                         ISD::MemIndexedMode AM) {
7930   auto *ST = cast<VPStoreSDNode>(OrigStore);
7931   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
7932   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7933   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
7934                    Offset,         ST->getMask(),  ST->getVectorLength()};
7935   FoldingSetNodeID ID;
7936   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7937   ID.AddInteger(ST->getMemoryVT().getRawBits());
7938   ID.AddInteger(ST->getRawSubclassData());
7939   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7940   void *IP = nullptr;
7941   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7942     return SDValue(E, 0);
7943 
7944   auto *N = newSDNode<VPStoreSDNode>(
7945       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
7946       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
7947   createOperands(N, Ops);
7948 
7949   CSEMap.InsertNode(N, IP);
7950   InsertNode(N);
7951   SDValue V(N, 0);
7952   NewSDValueDbgMsg(V, "Creating new node: ", this);
7953   return V;
7954 }
7955 
7956 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
7957                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
7958                                   ISD::MemIndexType IndexType) {
7959   assert(Ops.size() == 6 && "Incompatible number of operands");
7960 
7961   FoldingSetNodeID ID;
7962   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
7963   ID.AddInteger(VT.getRawBits());
7964   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
7965       dl.getIROrder(), VTs, VT, MMO, IndexType));
7966   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7967   void *IP = nullptr;
7968   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7969     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
7970     return SDValue(E, 0);
7971   }
7972 
7973   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7974                                       VT, MMO, IndexType);
7975   createOperands(N, Ops);
7976 
7977   assert(N->getMask().getValueType().getVectorElementCount() ==
7978              N->getValueType(0).getVectorElementCount() &&
7979          "Vector width mismatch between mask and data");
7980   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7981              N->getValueType(0).getVectorElementCount().isScalable() &&
7982          "Scalable flags of index and data do not match");
7983   assert(ElementCount::isKnownGE(
7984              N->getIndex().getValueType().getVectorElementCount(),
7985              N->getValueType(0).getVectorElementCount()) &&
7986          "Vector width mismatch between index and data");
7987   assert(isa<ConstantSDNode>(N->getScale()) &&
7988          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7989          "Scale should be a constant power of 2");
7990 
7991   CSEMap.InsertNode(N, IP);
7992   InsertNode(N);
7993   SDValue V(N, 0);
7994   NewSDValueDbgMsg(V, "Creating new node: ", this);
7995   return V;
7996 }
7997 
7998 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
7999                                    ArrayRef<SDValue> Ops,
8000                                    MachineMemOperand *MMO,
8001                                    ISD::MemIndexType IndexType) {
8002   assert(Ops.size() == 7 && "Incompatible number of operands");
8003 
8004   FoldingSetNodeID ID;
8005   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
8006   ID.AddInteger(VT.getRawBits());
8007   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
8008       dl.getIROrder(), VTs, VT, MMO, IndexType));
8009   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8010   void *IP = nullptr;
8011   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8012     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
8013     return SDValue(E, 0);
8014   }
8015   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8016                                        VT, MMO, IndexType);
8017   createOperands(N, Ops);
8018 
8019   assert(N->getMask().getValueType().getVectorElementCount() ==
8020              N->getValue().getValueType().getVectorElementCount() &&
8021          "Vector width mismatch between mask and data");
8022   assert(
8023       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8024           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8025       "Scalable flags of index and data do not match");
8026   assert(ElementCount::isKnownGE(
8027              N->getIndex().getValueType().getVectorElementCount(),
8028              N->getValue().getValueType().getVectorElementCount()) &&
8029          "Vector width mismatch between index and data");
8030   assert(isa<ConstantSDNode>(N->getScale()) &&
8031          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8032          "Scale should be a constant power of 2");
8033 
8034   CSEMap.InsertNode(N, IP);
8035   InsertNode(N);
8036   SDValue V(N, 0);
8037   NewSDValueDbgMsg(V, "Creating new node: ", this);
8038   return V;
8039 }
8040 
8041 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8042                                     SDValue Base, SDValue Offset, SDValue Mask,
8043                                     SDValue PassThru, EVT MemVT,
8044                                     MachineMemOperand *MMO,
8045                                     ISD::MemIndexedMode AM,
8046                                     ISD::LoadExtType ExtTy, bool isExpanding) {
8047   bool Indexed = AM != ISD::UNINDEXED;
8048   assert((Indexed || Offset.isUndef()) &&
8049          "Unindexed masked load with an offset!");
8050   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8051                          : getVTList(VT, MVT::Other);
8052   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8053   FoldingSetNodeID ID;
8054   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8055   ID.AddInteger(MemVT.getRawBits());
8056   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8057       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8058   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8059   void *IP = nullptr;
8060   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8061     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8062     return SDValue(E, 0);
8063   }
8064   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8065                                         AM, ExtTy, isExpanding, MemVT, MMO);
8066   createOperands(N, Ops);
8067 
8068   CSEMap.InsertNode(N, IP);
8069   InsertNode(N);
8070   SDValue V(N, 0);
8071   NewSDValueDbgMsg(V, "Creating new node: ", this);
8072   return V;
8073 }
8074 
8075 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8076                                            SDValue Base, SDValue Offset,
8077                                            ISD::MemIndexedMode AM) {
8078   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8079   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8080   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8081                        Offset, LD->getMask(), LD->getPassThru(),
8082                        LD->getMemoryVT(), LD->getMemOperand(), AM,
8083                        LD->getExtensionType(), LD->isExpandingLoad());
8084 }
8085 
8086 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8087                                      SDValue Val, SDValue Base, SDValue Offset,
8088                                      SDValue Mask, EVT MemVT,
8089                                      MachineMemOperand *MMO,
8090                                      ISD::MemIndexedMode AM, bool IsTruncating,
8091                                      bool IsCompressing) {
8092   assert(Chain.getValueType() == MVT::Other &&
8093         "Invalid chain type");
8094   bool Indexed = AM != ISD::UNINDEXED;
8095   assert((Indexed || Offset.isUndef()) &&
8096          "Unindexed masked store with an offset!");
8097   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8098                          : getVTList(MVT::Other);
8099   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8100   FoldingSetNodeID ID;
8101   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8102   ID.AddInteger(MemVT.getRawBits());
8103   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8104       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8105   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8106   void *IP = nullptr;
8107   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8108     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8109     return SDValue(E, 0);
8110   }
8111   auto *N =
8112       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8113                                    IsTruncating, IsCompressing, MemVT, MMO);
8114   createOperands(N, Ops);
8115 
8116   CSEMap.InsertNode(N, IP);
8117   InsertNode(N);
8118   SDValue V(N, 0);
8119   NewSDValueDbgMsg(V, "Creating new node: ", this);
8120   return V;
8121 }
8122 
8123 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8124                                             SDValue Base, SDValue Offset,
8125                                             ISD::MemIndexedMode AM) {
8126   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8127   assert(ST->getOffset().isUndef() &&
8128          "Masked store is already a indexed store!");
8129   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8130                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8131                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
8132 }
8133 
8134 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8135                                       ArrayRef<SDValue> Ops,
8136                                       MachineMemOperand *MMO,
8137                                       ISD::MemIndexType IndexType,
8138                                       ISD::LoadExtType ExtTy) {
8139   assert(Ops.size() == 6 && "Incompatible number of operands");
8140 
8141   FoldingSetNodeID ID;
8142   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8143   ID.AddInteger(MemVT.getRawBits());
8144   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8145       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8146   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8147   void *IP = nullptr;
8148   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8149     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8150     return SDValue(E, 0);
8151   }
8152 
8153   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8154   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8155                                           VTs, MemVT, MMO, IndexType, ExtTy);
8156   createOperands(N, Ops);
8157 
8158   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8159          "Incompatible type of the PassThru value in MaskedGatherSDNode");
8160   assert(N->getMask().getValueType().getVectorElementCount() ==
8161              N->getValueType(0).getVectorElementCount() &&
8162          "Vector width mismatch between mask and data");
8163   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8164              N->getValueType(0).getVectorElementCount().isScalable() &&
8165          "Scalable flags of index and data do not match");
8166   assert(ElementCount::isKnownGE(
8167              N->getIndex().getValueType().getVectorElementCount(),
8168              N->getValueType(0).getVectorElementCount()) &&
8169          "Vector width mismatch between index and data");
8170   assert(isa<ConstantSDNode>(N->getScale()) &&
8171          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8172          "Scale should be a constant power of 2");
8173 
8174   CSEMap.InsertNode(N, IP);
8175   InsertNode(N);
8176   SDValue V(N, 0);
8177   NewSDValueDbgMsg(V, "Creating new node: ", this);
8178   return V;
8179 }
8180 
8181 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8182                                        ArrayRef<SDValue> Ops,
8183                                        MachineMemOperand *MMO,
8184                                        ISD::MemIndexType IndexType,
8185                                        bool IsTrunc) {
8186   assert(Ops.size() == 6 && "Incompatible number of operands");
8187 
8188   FoldingSetNodeID ID;
8189   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8190   ID.AddInteger(MemVT.getRawBits());
8191   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8192       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8193   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8194   void *IP = nullptr;
8195   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8196     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8197     return SDValue(E, 0);
8198   }
8199 
8200   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8201   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8202                                            VTs, MemVT, MMO, IndexType, IsTrunc);
8203   createOperands(N, Ops);
8204 
8205   assert(N->getMask().getValueType().getVectorElementCount() ==
8206              N->getValue().getValueType().getVectorElementCount() &&
8207          "Vector width mismatch between mask and data");
8208   assert(
8209       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8210           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8211       "Scalable flags of index and data do not match");
8212   assert(ElementCount::isKnownGE(
8213              N->getIndex().getValueType().getVectorElementCount(),
8214              N->getValue().getValueType().getVectorElementCount()) &&
8215          "Vector width mismatch between index and data");
8216   assert(isa<ConstantSDNode>(N->getScale()) &&
8217          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8218          "Scale should be a constant power of 2");
8219 
8220   CSEMap.InsertNode(N, IP);
8221   InsertNode(N);
8222   SDValue V(N, 0);
8223   NewSDValueDbgMsg(V, "Creating new node: ", this);
8224   return V;
8225 }
8226 
8227 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8228   // select undef, T, F --> T (if T is a constant), otherwise F
8229   // select, ?, undef, F --> F
8230   // select, ?, T, undef --> T
8231   if (Cond.isUndef())
8232     return isConstantValueOfAnyType(T) ? T : F;
8233   if (T.isUndef())
8234     return F;
8235   if (F.isUndef())
8236     return T;
8237 
8238   // select true, T, F --> T
8239   // select false, T, F --> F
8240   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8241     return CondC->isZero() ? F : T;
8242 
8243   // TODO: This should simplify VSELECT with constant condition using something
8244   // like this (but check boolean contents to be complete?):
8245   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8246   //    return T;
8247   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8248   //    return F;
8249 
8250   // select ?, T, T --> T
8251   if (T == F)
8252     return T;
8253 
8254   return SDValue();
8255 }
8256 
8257 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8258   // shift undef, Y --> 0 (can always assume that the undef value is 0)
8259   if (X.isUndef())
8260     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8261   // shift X, undef --> undef (because it may shift by the bitwidth)
8262   if (Y.isUndef())
8263     return getUNDEF(X.getValueType());
8264 
8265   // shift 0, Y --> 0
8266   // shift X, 0 --> X
8267   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8268     return X;
8269 
8270   // shift X, C >= bitwidth(X) --> undef
8271   // All vector elements must be too big (or undef) to avoid partial undefs.
8272   auto isShiftTooBig = [X](ConstantSDNode *Val) {
8273     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8274   };
8275   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8276     return getUNDEF(X.getValueType());
8277 
8278   return SDValue();
8279 }
8280 
8281 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8282                                       SDNodeFlags Flags) {
8283   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8284   // (an undef operand can be chosen to be Nan/Inf), then the result of this
8285   // operation is poison. That result can be relaxed to undef.
8286   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8287   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8288   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8289                 (YC && YC->getValueAPF().isNaN());
8290   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8291                 (YC && YC->getValueAPF().isInfinity());
8292 
8293   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8294     return getUNDEF(X.getValueType());
8295 
8296   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8297     return getUNDEF(X.getValueType());
8298 
8299   if (!YC)
8300     return SDValue();
8301 
8302   // X + -0.0 --> X
8303   if (Opcode == ISD::FADD)
8304     if (YC->getValueAPF().isNegZero())
8305       return X;
8306 
8307   // X - +0.0 --> X
8308   if (Opcode == ISD::FSUB)
8309     if (YC->getValueAPF().isPosZero())
8310       return X;
8311 
8312   // X * 1.0 --> X
8313   // X / 1.0 --> X
8314   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8315     if (YC->getValueAPF().isExactlyValue(1.0))
8316       return X;
8317 
8318   // X * 0.0 --> 0.0
8319   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8320     if (YC->getValueAPF().isZero())
8321       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8322 
8323   return SDValue();
8324 }
8325 
8326 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8327                                SDValue Ptr, SDValue SV, unsigned Align) {
8328   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8329   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8330 }
8331 
8332 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8333                               ArrayRef<SDUse> Ops) {
8334   switch (Ops.size()) {
8335   case 0: return getNode(Opcode, DL, VT);
8336   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8337   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8338   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8339   default: break;
8340   }
8341 
8342   // Copy from an SDUse array into an SDValue array for use with
8343   // the regular getNode logic.
8344   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8345   return getNode(Opcode, DL, VT, NewOps);
8346 }
8347 
8348 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8349                               ArrayRef<SDValue> Ops) {
8350   SDNodeFlags Flags;
8351   if (Inserter)
8352     Flags = Inserter->getFlags();
8353   return getNode(Opcode, DL, VT, Ops, Flags);
8354 }
8355 
8356 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8357                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8358   unsigned NumOps = Ops.size();
8359   switch (NumOps) {
8360   case 0: return getNode(Opcode, DL, VT);
8361   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8362   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8363   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8364   default: break;
8365   }
8366 
8367 #ifndef NDEBUG
8368   for (auto &Op : Ops)
8369     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8370            "Operand is DELETED_NODE!");
8371 #endif
8372 
8373   switch (Opcode) {
8374   default: break;
8375   case ISD::BUILD_VECTOR:
8376     // Attempt to simplify BUILD_VECTOR.
8377     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8378       return V;
8379     break;
8380   case ISD::CONCAT_VECTORS:
8381     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8382       return V;
8383     break;
8384   case ISD::SELECT_CC:
8385     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8386     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8387            "LHS and RHS of condition must have same type!");
8388     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8389            "True and False arms of SelectCC must have same type!");
8390     assert(Ops[2].getValueType() == VT &&
8391            "select_cc node must be of same type as true and false value!");
8392     break;
8393   case ISD::BR_CC:
8394     assert(NumOps == 5 && "BR_CC takes 5 operands!");
8395     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8396            "LHS/RHS of comparison should match types!");
8397     break;
8398   }
8399 
8400   // Memoize nodes.
8401   SDNode *N;
8402   SDVTList VTs = getVTList(VT);
8403 
8404   if (VT != MVT::Glue) {
8405     FoldingSetNodeID ID;
8406     AddNodeIDNode(ID, Opcode, VTs, Ops);
8407     void *IP = nullptr;
8408 
8409     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8410       return SDValue(E, 0);
8411 
8412     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8413     createOperands(N, Ops);
8414 
8415     CSEMap.InsertNode(N, IP);
8416   } else {
8417     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8418     createOperands(N, Ops);
8419   }
8420 
8421   N->setFlags(Flags);
8422   InsertNode(N);
8423   SDValue V(N, 0);
8424   NewSDValueDbgMsg(V, "Creating new node: ", this);
8425   return V;
8426 }
8427 
8428 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8429                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8430   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8431 }
8432 
8433 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8434                               ArrayRef<SDValue> Ops) {
8435   SDNodeFlags Flags;
8436   if (Inserter)
8437     Flags = Inserter->getFlags();
8438   return getNode(Opcode, DL, VTList, Ops, Flags);
8439 }
8440 
8441 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8442                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8443   if (VTList.NumVTs == 1)
8444     return getNode(Opcode, DL, VTList.VTs[0], Ops);
8445 
8446 #ifndef NDEBUG
8447   for (auto &Op : Ops)
8448     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8449            "Operand is DELETED_NODE!");
8450 #endif
8451 
8452   switch (Opcode) {
8453   case ISD::STRICT_FP_EXTEND:
8454     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
8455            "Invalid STRICT_FP_EXTEND!");
8456     assert(VTList.VTs[0].isFloatingPoint() &&
8457            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8458     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8459            "STRICT_FP_EXTEND result type should be vector iff the operand "
8460            "type is vector!");
8461     assert((!VTList.VTs[0].isVector() ||
8462             VTList.VTs[0].getVectorNumElements() ==
8463             Ops[1].getValueType().getVectorNumElements()) &&
8464            "Vector element count mismatch!");
8465     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
8466            "Invalid fpext node, dst <= src!");
8467     break;
8468   case ISD::STRICT_FP_ROUND:
8469     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
8470     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8471            "STRICT_FP_ROUND result type should be vector iff the operand "
8472            "type is vector!");
8473     assert((!VTList.VTs[0].isVector() ||
8474             VTList.VTs[0].getVectorNumElements() ==
8475             Ops[1].getValueType().getVectorNumElements()) &&
8476            "Vector element count mismatch!");
8477     assert(VTList.VTs[0].isFloatingPoint() &&
8478            Ops[1].getValueType().isFloatingPoint() &&
8479            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
8480            isa<ConstantSDNode>(Ops[2]) &&
8481            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
8482             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
8483            "Invalid STRICT_FP_ROUND!");
8484     break;
8485 #if 0
8486   // FIXME: figure out how to safely handle things like
8487   // int foo(int x) { return 1 << (x & 255); }
8488   // int bar() { return foo(256); }
8489   case ISD::SRA_PARTS:
8490   case ISD::SRL_PARTS:
8491   case ISD::SHL_PARTS:
8492     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8493         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8494       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8495     else if (N3.getOpcode() == ISD::AND)
8496       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8497         // If the and is only masking out bits that cannot effect the shift,
8498         // eliminate the and.
8499         unsigned NumBits = VT.getScalarSizeInBits()*2;
8500         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8501           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8502       }
8503     break;
8504 #endif
8505   }
8506 
8507   // Memoize the node unless it returns a flag.
8508   SDNode *N;
8509   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8510     FoldingSetNodeID ID;
8511     AddNodeIDNode(ID, Opcode, VTList, Ops);
8512     void *IP = nullptr;
8513     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8514       return SDValue(E, 0);
8515 
8516     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8517     createOperands(N, Ops);
8518     CSEMap.InsertNode(N, IP);
8519   } else {
8520     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8521     createOperands(N, Ops);
8522   }
8523 
8524   N->setFlags(Flags);
8525   InsertNode(N);
8526   SDValue V(N, 0);
8527   NewSDValueDbgMsg(V, "Creating new node: ", this);
8528   return V;
8529 }
8530 
8531 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8532                               SDVTList VTList) {
8533   return getNode(Opcode, DL, VTList, None);
8534 }
8535 
8536 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8537                               SDValue N1) {
8538   SDValue Ops[] = { N1 };
8539   return getNode(Opcode, DL, VTList, Ops);
8540 }
8541 
8542 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8543                               SDValue N1, SDValue N2) {
8544   SDValue Ops[] = { N1, N2 };
8545   return getNode(Opcode, DL, VTList, Ops);
8546 }
8547 
8548 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8549                               SDValue N1, SDValue N2, SDValue N3) {
8550   SDValue Ops[] = { N1, N2, N3 };
8551   return getNode(Opcode, DL, VTList, Ops);
8552 }
8553 
8554 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8555                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8556   SDValue Ops[] = { N1, N2, N3, N4 };
8557   return getNode(Opcode, DL, VTList, Ops);
8558 }
8559 
8560 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8561                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8562                               SDValue N5) {
8563   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8564   return getNode(Opcode, DL, VTList, Ops);
8565 }
8566 
8567 SDVTList SelectionDAG::getVTList(EVT VT) {
8568   return makeVTList(SDNode::getValueTypeList(VT), 1);
8569 }
8570 
8571 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8572   FoldingSetNodeID ID;
8573   ID.AddInteger(2U);
8574   ID.AddInteger(VT1.getRawBits());
8575   ID.AddInteger(VT2.getRawBits());
8576 
8577   void *IP = nullptr;
8578   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8579   if (!Result) {
8580     EVT *Array = Allocator.Allocate<EVT>(2);
8581     Array[0] = VT1;
8582     Array[1] = VT2;
8583     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8584     VTListMap.InsertNode(Result, IP);
8585   }
8586   return Result->getSDVTList();
8587 }
8588 
8589 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8590   FoldingSetNodeID ID;
8591   ID.AddInteger(3U);
8592   ID.AddInteger(VT1.getRawBits());
8593   ID.AddInteger(VT2.getRawBits());
8594   ID.AddInteger(VT3.getRawBits());
8595 
8596   void *IP = nullptr;
8597   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8598   if (!Result) {
8599     EVT *Array = Allocator.Allocate<EVT>(3);
8600     Array[0] = VT1;
8601     Array[1] = VT2;
8602     Array[2] = VT3;
8603     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8604     VTListMap.InsertNode(Result, IP);
8605   }
8606   return Result->getSDVTList();
8607 }
8608 
8609 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8610   FoldingSetNodeID ID;
8611   ID.AddInteger(4U);
8612   ID.AddInteger(VT1.getRawBits());
8613   ID.AddInteger(VT2.getRawBits());
8614   ID.AddInteger(VT3.getRawBits());
8615   ID.AddInteger(VT4.getRawBits());
8616 
8617   void *IP = nullptr;
8618   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8619   if (!Result) {
8620     EVT *Array = Allocator.Allocate<EVT>(4);
8621     Array[0] = VT1;
8622     Array[1] = VT2;
8623     Array[2] = VT3;
8624     Array[3] = VT4;
8625     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8626     VTListMap.InsertNode(Result, IP);
8627   }
8628   return Result->getSDVTList();
8629 }
8630 
8631 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8632   unsigned NumVTs = VTs.size();
8633   FoldingSetNodeID ID;
8634   ID.AddInteger(NumVTs);
8635   for (unsigned index = 0; index < NumVTs; index++) {
8636     ID.AddInteger(VTs[index].getRawBits());
8637   }
8638 
8639   void *IP = nullptr;
8640   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8641   if (!Result) {
8642     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8643     llvm::copy(VTs, Array);
8644     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8645     VTListMap.InsertNode(Result, IP);
8646   }
8647   return Result->getSDVTList();
8648 }
8649 
8650 
8651 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8652 /// specified operands.  If the resultant node already exists in the DAG,
8653 /// this does not modify the specified node, instead it returns the node that
8654 /// already exists.  If the resultant node does not exist in the DAG, the
8655 /// input node is returned.  As a degenerate case, if you specify the same
8656 /// input operands as the node already has, the input node is returned.
8657 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8658   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8659 
8660   // Check to see if there is no change.
8661   if (Op == N->getOperand(0)) return N;
8662 
8663   // See if the modified node already exists.
8664   void *InsertPos = nullptr;
8665   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8666     return Existing;
8667 
8668   // Nope it doesn't.  Remove the node from its current place in the maps.
8669   if (InsertPos)
8670     if (!RemoveNodeFromCSEMaps(N))
8671       InsertPos = nullptr;
8672 
8673   // Now we update the operands.
8674   N->OperandList[0].set(Op);
8675 
8676   updateDivergence(N);
8677   // If this gets put into a CSE map, add it.
8678   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8679   return N;
8680 }
8681 
8682 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8683   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8684 
8685   // Check to see if there is no change.
8686   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8687     return N;   // No operands changed, just return the input node.
8688 
8689   // See if the modified node already exists.
8690   void *InsertPos = nullptr;
8691   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8692     return Existing;
8693 
8694   // Nope it doesn't.  Remove the node from its current place in the maps.
8695   if (InsertPos)
8696     if (!RemoveNodeFromCSEMaps(N))
8697       InsertPos = nullptr;
8698 
8699   // Now we update the operands.
8700   if (N->OperandList[0] != Op1)
8701     N->OperandList[0].set(Op1);
8702   if (N->OperandList[1] != Op2)
8703     N->OperandList[1].set(Op2);
8704 
8705   updateDivergence(N);
8706   // If this gets put into a CSE map, add it.
8707   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8708   return N;
8709 }
8710 
8711 SDNode *SelectionDAG::
8712 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8713   SDValue Ops[] = { Op1, Op2, Op3 };
8714   return UpdateNodeOperands(N, Ops);
8715 }
8716 
8717 SDNode *SelectionDAG::
8718 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8719                    SDValue Op3, SDValue Op4) {
8720   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8721   return UpdateNodeOperands(N, Ops);
8722 }
8723 
8724 SDNode *SelectionDAG::
8725 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8726                    SDValue Op3, SDValue Op4, SDValue Op5) {
8727   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8728   return UpdateNodeOperands(N, Ops);
8729 }
8730 
8731 SDNode *SelectionDAG::
8732 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8733   unsigned NumOps = Ops.size();
8734   assert(N->getNumOperands() == NumOps &&
8735          "Update with wrong number of operands");
8736 
8737   // If no operands changed just return the input node.
8738   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8739     return N;
8740 
8741   // See if the modified node already exists.
8742   void *InsertPos = nullptr;
8743   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8744     return Existing;
8745 
8746   // Nope it doesn't.  Remove the node from its current place in the maps.
8747   if (InsertPos)
8748     if (!RemoveNodeFromCSEMaps(N))
8749       InsertPos = nullptr;
8750 
8751   // Now we update the operands.
8752   for (unsigned i = 0; i != NumOps; ++i)
8753     if (N->OperandList[i] != Ops[i])
8754       N->OperandList[i].set(Ops[i]);
8755 
8756   updateDivergence(N);
8757   // If this gets put into a CSE map, add it.
8758   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8759   return N;
8760 }
8761 
8762 /// DropOperands - Release the operands and set this node to have
8763 /// zero operands.
8764 void SDNode::DropOperands() {
8765   // Unlike the code in MorphNodeTo that does this, we don't need to
8766   // watch for dead nodes here.
8767   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8768     SDUse &Use = *I++;
8769     Use.set(SDValue());
8770   }
8771 }
8772 
8773 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8774                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8775   if (NewMemRefs.empty()) {
8776     N->clearMemRefs();
8777     return;
8778   }
8779 
8780   // Check if we can avoid allocating by storing a single reference directly.
8781   if (NewMemRefs.size() == 1) {
8782     N->MemRefs = NewMemRefs[0];
8783     N->NumMemRefs = 1;
8784     return;
8785   }
8786 
8787   MachineMemOperand **MemRefsBuffer =
8788       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8789   llvm::copy(NewMemRefs, MemRefsBuffer);
8790   N->MemRefs = MemRefsBuffer;
8791   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8792 }
8793 
8794 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8795 /// machine opcode.
8796 ///
8797 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8798                                    EVT VT) {
8799   SDVTList VTs = getVTList(VT);
8800   return SelectNodeTo(N, MachineOpc, VTs, None);
8801 }
8802 
8803 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8804                                    EVT VT, SDValue Op1) {
8805   SDVTList VTs = getVTList(VT);
8806   SDValue Ops[] = { Op1 };
8807   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8808 }
8809 
8810 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8811                                    EVT VT, SDValue Op1,
8812                                    SDValue Op2) {
8813   SDVTList VTs = getVTList(VT);
8814   SDValue Ops[] = { Op1, Op2 };
8815   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8816 }
8817 
8818 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8819                                    EVT VT, SDValue Op1,
8820                                    SDValue Op2, SDValue Op3) {
8821   SDVTList VTs = getVTList(VT);
8822   SDValue Ops[] = { Op1, Op2, Op3 };
8823   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8824 }
8825 
8826 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8827                                    EVT VT, ArrayRef<SDValue> Ops) {
8828   SDVTList VTs = getVTList(VT);
8829   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8830 }
8831 
8832 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8833                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8834   SDVTList VTs = getVTList(VT1, VT2);
8835   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8836 }
8837 
8838 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8839                                    EVT VT1, EVT VT2) {
8840   SDVTList VTs = getVTList(VT1, VT2);
8841   return SelectNodeTo(N, MachineOpc, VTs, None);
8842 }
8843 
8844 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8845                                    EVT VT1, EVT VT2, EVT VT3,
8846                                    ArrayRef<SDValue> Ops) {
8847   SDVTList VTs = getVTList(VT1, VT2, VT3);
8848   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8849 }
8850 
8851 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8852                                    EVT VT1, EVT VT2,
8853                                    SDValue Op1, SDValue Op2) {
8854   SDVTList VTs = getVTList(VT1, VT2);
8855   SDValue Ops[] = { Op1, Op2 };
8856   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8857 }
8858 
8859 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8860                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8861   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8862   // Reset the NodeID to -1.
8863   New->setNodeId(-1);
8864   if (New != N) {
8865     ReplaceAllUsesWith(N, New);
8866     RemoveDeadNode(N);
8867   }
8868   return New;
8869 }
8870 
8871 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8872 /// the line number information on the merged node since it is not possible to
8873 /// preserve the information that operation is associated with multiple lines.
8874 /// This will make the debugger working better at -O0, were there is a higher
8875 /// probability having other instructions associated with that line.
8876 ///
8877 /// For IROrder, we keep the smaller of the two
8878 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8879   DebugLoc NLoc = N->getDebugLoc();
8880   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8881     N->setDebugLoc(DebugLoc());
8882   }
8883   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8884   N->setIROrder(Order);
8885   return N;
8886 }
8887 
8888 /// MorphNodeTo - This *mutates* the specified node to have the specified
8889 /// return type, opcode, and operands.
8890 ///
8891 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8892 /// node of the specified opcode and operands, it returns that node instead of
8893 /// the current one.  Note that the SDLoc need not be the same.
8894 ///
8895 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8896 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8897 /// node, and because it doesn't require CSE recalculation for any of
8898 /// the node's users.
8899 ///
8900 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8901 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8902 /// the legalizer which maintain worklists that would need to be updated when
8903 /// deleting things.
8904 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8905                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8906   // If an identical node already exists, use it.
8907   void *IP = nullptr;
8908   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8909     FoldingSetNodeID ID;
8910     AddNodeIDNode(ID, Opc, VTs, Ops);
8911     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8912       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8913   }
8914 
8915   if (!RemoveNodeFromCSEMaps(N))
8916     IP = nullptr;
8917 
8918   // Start the morphing.
8919   N->NodeType = Opc;
8920   N->ValueList = VTs.VTs;
8921   N->NumValues = VTs.NumVTs;
8922 
8923   // Clear the operands list, updating used nodes to remove this from their
8924   // use list.  Keep track of any operands that become dead as a result.
8925   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8926   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8927     SDUse &Use = *I++;
8928     SDNode *Used = Use.getNode();
8929     Use.set(SDValue());
8930     if (Used->use_empty())
8931       DeadNodeSet.insert(Used);
8932   }
8933 
8934   // For MachineNode, initialize the memory references information.
8935   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8936     MN->clearMemRefs();
8937 
8938   // Swap for an appropriately sized array from the recycler.
8939   removeOperands(N);
8940   createOperands(N, Ops);
8941 
8942   // Delete any nodes that are still dead after adding the uses for the
8943   // new operands.
8944   if (!DeadNodeSet.empty()) {
8945     SmallVector<SDNode *, 16> DeadNodes;
8946     for (SDNode *N : DeadNodeSet)
8947       if (N->use_empty())
8948         DeadNodes.push_back(N);
8949     RemoveDeadNodes(DeadNodes);
8950   }
8951 
8952   if (IP)
8953     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8954   return N;
8955 }
8956 
8957 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8958   unsigned OrigOpc = Node->getOpcode();
8959   unsigned NewOpc;
8960   switch (OrigOpc) {
8961   default:
8962     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8963 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8964   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8965 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8966   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8967 #include "llvm/IR/ConstrainedOps.def"
8968   }
8969 
8970   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8971 
8972   // We're taking this node out of the chain, so we need to re-link things.
8973   SDValue InputChain = Node->getOperand(0);
8974   SDValue OutputChain = SDValue(Node, 1);
8975   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8976 
8977   SmallVector<SDValue, 3> Ops;
8978   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8979     Ops.push_back(Node->getOperand(i));
8980 
8981   SDVTList VTs = getVTList(Node->getValueType(0));
8982   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8983 
8984   // MorphNodeTo can operate in two ways: if an existing node with the
8985   // specified operands exists, it can just return it.  Otherwise, it
8986   // updates the node in place to have the requested operands.
8987   if (Res == Node) {
8988     // If we updated the node in place, reset the node ID.  To the isel,
8989     // this should be just like a newly allocated machine node.
8990     Res->setNodeId(-1);
8991   } else {
8992     ReplaceAllUsesWith(Node, Res);
8993     RemoveDeadNode(Node);
8994   }
8995 
8996   return Res;
8997 }
8998 
8999 /// getMachineNode - These are used for target selectors to create a new node
9000 /// with specified return type(s), MachineInstr opcode, and operands.
9001 ///
9002 /// Note that getMachineNode returns the resultant node.  If there is already a
9003 /// node of the specified opcode and operands, it returns that node instead of
9004 /// the current one.
9005 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9006                                             EVT VT) {
9007   SDVTList VTs = getVTList(VT);
9008   return getMachineNode(Opcode, dl, VTs, None);
9009 }
9010 
9011 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9012                                             EVT VT, SDValue Op1) {
9013   SDVTList VTs = getVTList(VT);
9014   SDValue Ops[] = { Op1 };
9015   return getMachineNode(Opcode, dl, VTs, Ops);
9016 }
9017 
9018 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9019                                             EVT VT, SDValue Op1, SDValue Op2) {
9020   SDVTList VTs = getVTList(VT);
9021   SDValue Ops[] = { Op1, Op2 };
9022   return getMachineNode(Opcode, dl, VTs, Ops);
9023 }
9024 
9025 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9026                                             EVT VT, SDValue Op1, SDValue Op2,
9027                                             SDValue Op3) {
9028   SDVTList VTs = getVTList(VT);
9029   SDValue Ops[] = { Op1, Op2, Op3 };
9030   return getMachineNode(Opcode, dl, VTs, Ops);
9031 }
9032 
9033 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9034                                             EVT VT, ArrayRef<SDValue> Ops) {
9035   SDVTList VTs = getVTList(VT);
9036   return getMachineNode(Opcode, dl, VTs, Ops);
9037 }
9038 
9039 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9040                                             EVT VT1, EVT VT2, SDValue Op1,
9041                                             SDValue Op2) {
9042   SDVTList VTs = getVTList(VT1, VT2);
9043   SDValue Ops[] = { Op1, Op2 };
9044   return getMachineNode(Opcode, dl, VTs, Ops);
9045 }
9046 
9047 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9048                                             EVT VT1, EVT VT2, SDValue Op1,
9049                                             SDValue Op2, SDValue Op3) {
9050   SDVTList VTs = getVTList(VT1, VT2);
9051   SDValue Ops[] = { Op1, Op2, Op3 };
9052   return getMachineNode(Opcode, dl, VTs, Ops);
9053 }
9054 
9055 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9056                                             EVT VT1, EVT VT2,
9057                                             ArrayRef<SDValue> Ops) {
9058   SDVTList VTs = getVTList(VT1, VT2);
9059   return getMachineNode(Opcode, dl, VTs, Ops);
9060 }
9061 
9062 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9063                                             EVT VT1, EVT VT2, EVT VT3,
9064                                             SDValue Op1, SDValue Op2) {
9065   SDVTList VTs = getVTList(VT1, VT2, VT3);
9066   SDValue Ops[] = { Op1, Op2 };
9067   return getMachineNode(Opcode, dl, VTs, Ops);
9068 }
9069 
9070 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9071                                             EVT VT1, EVT VT2, EVT VT3,
9072                                             SDValue Op1, SDValue Op2,
9073                                             SDValue Op3) {
9074   SDVTList VTs = getVTList(VT1, VT2, VT3);
9075   SDValue Ops[] = { Op1, Op2, Op3 };
9076   return getMachineNode(Opcode, dl, VTs, Ops);
9077 }
9078 
9079 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9080                                             EVT VT1, EVT VT2, EVT VT3,
9081                                             ArrayRef<SDValue> Ops) {
9082   SDVTList VTs = getVTList(VT1, VT2, VT3);
9083   return getMachineNode(Opcode, dl, VTs, Ops);
9084 }
9085 
9086 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9087                                             ArrayRef<EVT> ResultTys,
9088                                             ArrayRef<SDValue> Ops) {
9089   SDVTList VTs = getVTList(ResultTys);
9090   return getMachineNode(Opcode, dl, VTs, Ops);
9091 }
9092 
9093 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9094                                             SDVTList VTs,
9095                                             ArrayRef<SDValue> Ops) {
9096   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9097   MachineSDNode *N;
9098   void *IP = nullptr;
9099 
9100   if (DoCSE) {
9101     FoldingSetNodeID ID;
9102     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9103     IP = nullptr;
9104     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9105       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9106     }
9107   }
9108 
9109   // Allocate a new MachineSDNode.
9110   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9111   createOperands(N, Ops);
9112 
9113   if (DoCSE)
9114     CSEMap.InsertNode(N, IP);
9115 
9116   InsertNode(N);
9117   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9118   return N;
9119 }
9120 
9121 /// getTargetExtractSubreg - A convenience function for creating
9122 /// TargetOpcode::EXTRACT_SUBREG nodes.
9123 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9124                                              SDValue Operand) {
9125   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9126   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9127                                   VT, Operand, SRIdxVal);
9128   return SDValue(Subreg, 0);
9129 }
9130 
9131 /// getTargetInsertSubreg - A convenience function for creating
9132 /// TargetOpcode::INSERT_SUBREG nodes.
9133 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9134                                             SDValue Operand, SDValue Subreg) {
9135   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9136   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9137                                   VT, Operand, Subreg, SRIdxVal);
9138   return SDValue(Result, 0);
9139 }
9140 
9141 /// getNodeIfExists - Get the specified node if it's already available, or
9142 /// else return NULL.
9143 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9144                                       ArrayRef<SDValue> Ops) {
9145   SDNodeFlags Flags;
9146   if (Inserter)
9147     Flags = Inserter->getFlags();
9148   return getNodeIfExists(Opcode, VTList, Ops, Flags);
9149 }
9150 
9151 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9152                                       ArrayRef<SDValue> Ops,
9153                                       const SDNodeFlags Flags) {
9154   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9155     FoldingSetNodeID ID;
9156     AddNodeIDNode(ID, Opcode, VTList, Ops);
9157     void *IP = nullptr;
9158     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9159       E->intersectFlagsWith(Flags);
9160       return E;
9161     }
9162   }
9163   return nullptr;
9164 }
9165 
9166 /// doesNodeExist - Check if a node exists without modifying its flags.
9167 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9168                                  ArrayRef<SDValue> Ops) {
9169   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9170     FoldingSetNodeID ID;
9171     AddNodeIDNode(ID, Opcode, VTList, Ops);
9172     void *IP = nullptr;
9173     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9174       return true;
9175   }
9176   return false;
9177 }
9178 
9179 /// getDbgValue - Creates a SDDbgValue node.
9180 ///
9181 /// SDNode
9182 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9183                                       SDNode *N, unsigned R, bool IsIndirect,
9184                                       const DebugLoc &DL, unsigned O) {
9185   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9186          "Expected inlined-at fields to agree");
9187   return new (DbgInfo->getAlloc())
9188       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9189                  {}, IsIndirect, DL, O,
9190                  /*IsVariadic=*/false);
9191 }
9192 
9193 /// Constant
9194 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9195                                               DIExpression *Expr,
9196                                               const Value *C,
9197                                               const DebugLoc &DL, unsigned O) {
9198   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9199          "Expected inlined-at fields to agree");
9200   return new (DbgInfo->getAlloc())
9201       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9202                  /*IsIndirect=*/false, DL, O,
9203                  /*IsVariadic=*/false);
9204 }
9205 
9206 /// FrameIndex
9207 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9208                                                 DIExpression *Expr, unsigned FI,
9209                                                 bool IsIndirect,
9210                                                 const DebugLoc &DL,
9211                                                 unsigned O) {
9212   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9213          "Expected inlined-at fields to agree");
9214   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9215 }
9216 
9217 /// FrameIndex with dependencies
9218 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9219                                                 DIExpression *Expr, unsigned FI,
9220                                                 ArrayRef<SDNode *> Dependencies,
9221                                                 bool IsIndirect,
9222                                                 const DebugLoc &DL,
9223                                                 unsigned O) {
9224   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9225          "Expected inlined-at fields to agree");
9226   return new (DbgInfo->getAlloc())
9227       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9228                  Dependencies, IsIndirect, DL, O,
9229                  /*IsVariadic=*/false);
9230 }
9231 
9232 /// VReg
9233 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9234                                           unsigned VReg, bool IsIndirect,
9235                                           const DebugLoc &DL, unsigned O) {
9236   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9237          "Expected inlined-at fields to agree");
9238   return new (DbgInfo->getAlloc())
9239       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9240                  {}, IsIndirect, DL, O,
9241                  /*IsVariadic=*/false);
9242 }
9243 
9244 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9245                                           ArrayRef<SDDbgOperand> Locs,
9246                                           ArrayRef<SDNode *> Dependencies,
9247                                           bool IsIndirect, const DebugLoc &DL,
9248                                           unsigned O, bool IsVariadic) {
9249   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9250          "Expected inlined-at fields to agree");
9251   return new (DbgInfo->getAlloc())
9252       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9253                  DL, O, IsVariadic);
9254 }
9255 
9256 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9257                                      unsigned OffsetInBits, unsigned SizeInBits,
9258                                      bool InvalidateDbg) {
9259   SDNode *FromNode = From.getNode();
9260   SDNode *ToNode = To.getNode();
9261   assert(FromNode && ToNode && "Can't modify dbg values");
9262 
9263   // PR35338
9264   // TODO: assert(From != To && "Redundant dbg value transfer");
9265   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9266   if (From == To || FromNode == ToNode)
9267     return;
9268 
9269   if (!FromNode->getHasDebugValue())
9270     return;
9271 
9272   SDDbgOperand FromLocOp =
9273       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9274   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9275 
9276   SmallVector<SDDbgValue *, 2> ClonedDVs;
9277   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9278     if (Dbg->isInvalidated())
9279       continue;
9280 
9281     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9282 
9283     // Create a new location ops vector that is equal to the old vector, but
9284     // with each instance of FromLocOp replaced with ToLocOp.
9285     bool Changed = false;
9286     auto NewLocOps = Dbg->copyLocationOps();
9287     std::replace_if(
9288         NewLocOps.begin(), NewLocOps.end(),
9289         [&Changed, FromLocOp](const SDDbgOperand &Op) {
9290           bool Match = Op == FromLocOp;
9291           Changed |= Match;
9292           return Match;
9293         },
9294         ToLocOp);
9295     // Ignore this SDDbgValue if we didn't find a matching location.
9296     if (!Changed)
9297       continue;
9298 
9299     DIVariable *Var = Dbg->getVariable();
9300     auto *Expr = Dbg->getExpression();
9301     // If a fragment is requested, update the expression.
9302     if (SizeInBits) {
9303       // When splitting a larger (e.g., sign-extended) value whose
9304       // lower bits are described with an SDDbgValue, do not attempt
9305       // to transfer the SDDbgValue to the upper bits.
9306       if (auto FI = Expr->getFragmentInfo())
9307         if (OffsetInBits + SizeInBits > FI->SizeInBits)
9308           continue;
9309       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9310                                                              SizeInBits);
9311       if (!Fragment)
9312         continue;
9313       Expr = *Fragment;
9314     }
9315 
9316     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9317     // Clone the SDDbgValue and move it to To.
9318     SDDbgValue *Clone = getDbgValueList(
9319         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9320         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9321         Dbg->isVariadic());
9322     ClonedDVs.push_back(Clone);
9323 
9324     if (InvalidateDbg) {
9325       // Invalidate value and indicate the SDDbgValue should not be emitted.
9326       Dbg->setIsInvalidated();
9327       Dbg->setIsEmitted();
9328     }
9329   }
9330 
9331   for (SDDbgValue *Dbg : ClonedDVs) {
9332     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9333            "Transferred DbgValues should depend on the new SDNode");
9334     AddDbgValue(Dbg, false);
9335   }
9336 }
9337 
9338 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9339   if (!N.getHasDebugValue())
9340     return;
9341 
9342   SmallVector<SDDbgValue *, 2> ClonedDVs;
9343   for (auto DV : GetDbgValues(&N)) {
9344     if (DV->isInvalidated())
9345       continue;
9346     switch (N.getOpcode()) {
9347     default:
9348       break;
9349     case ISD::ADD:
9350       SDValue N0 = N.getOperand(0);
9351       SDValue N1 = N.getOperand(1);
9352       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
9353           isConstantIntBuildVectorOrConstantInt(N1)) {
9354         uint64_t Offset = N.getConstantOperandVal(1);
9355 
9356         // Rewrite an ADD constant node into a DIExpression. Since we are
9357         // performing arithmetic to compute the variable's *value* in the
9358         // DIExpression, we need to mark the expression with a
9359         // DW_OP_stack_value.
9360         auto *DIExpr = DV->getExpression();
9361         auto NewLocOps = DV->copyLocationOps();
9362         bool Changed = false;
9363         for (size_t i = 0; i < NewLocOps.size(); ++i) {
9364           // We're not given a ResNo to compare against because the whole
9365           // node is going away. We know that any ISD::ADD only has one
9366           // result, so we can assume any node match is using the result.
9367           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
9368               NewLocOps[i].getSDNode() != &N)
9369             continue;
9370           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
9371           SmallVector<uint64_t, 3> ExprOps;
9372           DIExpression::appendOffset(ExprOps, Offset);
9373           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
9374           Changed = true;
9375         }
9376         (void)Changed;
9377         assert(Changed && "Salvage target doesn't use N");
9378 
9379         auto AdditionalDependencies = DV->getAdditionalDependencies();
9380         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
9381                                             NewLocOps, AdditionalDependencies,
9382                                             DV->isIndirect(), DV->getDebugLoc(),
9383                                             DV->getOrder(), DV->isVariadic());
9384         ClonedDVs.push_back(Clone);
9385         DV->setIsInvalidated();
9386         DV->setIsEmitted();
9387         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
9388                    N0.getNode()->dumprFull(this);
9389                    dbgs() << " into " << *DIExpr << '\n');
9390       }
9391     }
9392   }
9393 
9394   for (SDDbgValue *Dbg : ClonedDVs) {
9395     assert(!Dbg->getSDNodes().empty() &&
9396            "Salvaged DbgValue should depend on a new SDNode");
9397     AddDbgValue(Dbg, false);
9398   }
9399 }
9400 
9401 /// Creates a SDDbgLabel node.
9402 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
9403                                       const DebugLoc &DL, unsigned O) {
9404   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
9405          "Expected inlined-at fields to agree");
9406   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
9407 }
9408 
9409 namespace {
9410 
9411 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9412 /// pointed to by a use iterator is deleted, increment the use iterator
9413 /// so that it doesn't dangle.
9414 ///
9415 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
9416   SDNode::use_iterator &UI;
9417   SDNode::use_iterator &UE;
9418 
9419   void NodeDeleted(SDNode *N, SDNode *E) override {
9420     // Increment the iterator as needed.
9421     while (UI != UE && N == *UI)
9422       ++UI;
9423   }
9424 
9425 public:
9426   RAUWUpdateListener(SelectionDAG &d,
9427                      SDNode::use_iterator &ui,
9428                      SDNode::use_iterator &ue)
9429     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9430 };
9431 
9432 } // end anonymous namespace
9433 
9434 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9435 /// This can cause recursive merging of nodes in the DAG.
9436 ///
9437 /// This version assumes From has a single result value.
9438 ///
9439 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9440   SDNode *From = FromN.getNode();
9441   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9442          "Cannot replace with this method!");
9443   assert(From != To.getNode() && "Cannot replace uses of with self");
9444 
9445   // Preserve Debug Values
9446   transferDbgValues(FromN, To);
9447 
9448   // Iterate over all the existing uses of From. New uses will be added
9449   // to the beginning of the use list, which we avoid visiting.
9450   // This specifically avoids visiting uses of From that arise while the
9451   // replacement is happening, because any such uses would be the result
9452   // of CSE: If an existing node looks like From after one of its operands
9453   // is replaced by To, we don't want to replace of all its users with To
9454   // too. See PR3018 for more info.
9455   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9456   RAUWUpdateListener Listener(*this, UI, UE);
9457   while (UI != UE) {
9458     SDNode *User = *UI;
9459 
9460     // This node is about to morph, remove its old self from the CSE maps.
9461     RemoveNodeFromCSEMaps(User);
9462 
9463     // A user can appear in a use list multiple times, and when this
9464     // happens the uses are usually next to each other in the list.
9465     // To help reduce the number of CSE recomputations, process all
9466     // the uses of this user that we can find this way.
9467     do {
9468       SDUse &Use = UI.getUse();
9469       ++UI;
9470       Use.set(To);
9471       if (To->isDivergent() != From->isDivergent())
9472         updateDivergence(User);
9473     } while (UI != UE && *UI == User);
9474     // Now that we have modified User, add it back to the CSE maps.  If it
9475     // already exists there, recursively merge the results together.
9476     AddModifiedNodeToCSEMaps(User);
9477   }
9478 
9479   // If we just RAUW'd the root, take note.
9480   if (FromN == getRoot())
9481     setRoot(To);
9482 }
9483 
9484 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9485 /// This can cause recursive merging of nodes in the DAG.
9486 ///
9487 /// This version assumes that for each value of From, there is a
9488 /// corresponding value in To in the same position with the same type.
9489 ///
9490 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9491 #ifndef NDEBUG
9492   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9493     assert((!From->hasAnyUseOfValue(i) ||
9494             From->getValueType(i) == To->getValueType(i)) &&
9495            "Cannot use this version of ReplaceAllUsesWith!");
9496 #endif
9497 
9498   // Handle the trivial case.
9499   if (From == To)
9500     return;
9501 
9502   // Preserve Debug Info. Only do this if there's a use.
9503   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9504     if (From->hasAnyUseOfValue(i)) {
9505       assert((i < To->getNumValues()) && "Invalid To location");
9506       transferDbgValues(SDValue(From, i), SDValue(To, i));
9507     }
9508 
9509   // Iterate over just the existing users of From. See the comments in
9510   // the ReplaceAllUsesWith above.
9511   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9512   RAUWUpdateListener Listener(*this, UI, UE);
9513   while (UI != UE) {
9514     SDNode *User = *UI;
9515 
9516     // This node is about to morph, remove its old self from the CSE maps.
9517     RemoveNodeFromCSEMaps(User);
9518 
9519     // A user can appear in a use list multiple times, and when this
9520     // happens the uses are usually next to each other in the list.
9521     // To help reduce the number of CSE recomputations, process all
9522     // the uses of this user that we can find this way.
9523     do {
9524       SDUse &Use = UI.getUse();
9525       ++UI;
9526       Use.setNode(To);
9527       if (To->isDivergent() != From->isDivergent())
9528         updateDivergence(User);
9529     } while (UI != UE && *UI == User);
9530 
9531     // Now that we have modified User, add it back to the CSE maps.  If it
9532     // already exists there, recursively merge the results together.
9533     AddModifiedNodeToCSEMaps(User);
9534   }
9535 
9536   // If we just RAUW'd the root, take note.
9537   if (From == getRoot().getNode())
9538     setRoot(SDValue(To, getRoot().getResNo()));
9539 }
9540 
9541 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9542 /// This can cause recursive merging of nodes in the DAG.
9543 ///
9544 /// This version can replace From with any result values.  To must match the
9545 /// number and types of values returned by From.
9546 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9547   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9548     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9549 
9550   // Preserve Debug Info.
9551   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9552     transferDbgValues(SDValue(From, i), To[i]);
9553 
9554   // Iterate over just the existing users of From. See the comments in
9555   // the ReplaceAllUsesWith above.
9556   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9557   RAUWUpdateListener Listener(*this, UI, UE);
9558   while (UI != UE) {
9559     SDNode *User = *UI;
9560 
9561     // This node is about to morph, remove its old self from the CSE maps.
9562     RemoveNodeFromCSEMaps(User);
9563 
9564     // A user can appear in a use list multiple times, and when this happens the
9565     // uses are usually next to each other in the list.  To help reduce the
9566     // number of CSE and divergence recomputations, process all the uses of this
9567     // user that we can find this way.
9568     bool To_IsDivergent = false;
9569     do {
9570       SDUse &Use = UI.getUse();
9571       const SDValue &ToOp = To[Use.getResNo()];
9572       ++UI;
9573       Use.set(ToOp);
9574       To_IsDivergent |= ToOp->isDivergent();
9575     } while (UI != UE && *UI == User);
9576 
9577     if (To_IsDivergent != From->isDivergent())
9578       updateDivergence(User);
9579 
9580     // Now that we have modified User, add it back to the CSE maps.  If it
9581     // already exists there, recursively merge the results together.
9582     AddModifiedNodeToCSEMaps(User);
9583   }
9584 
9585   // If we just RAUW'd the root, take note.
9586   if (From == getRoot().getNode())
9587     setRoot(SDValue(To[getRoot().getResNo()]));
9588 }
9589 
9590 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9591 /// uses of other values produced by From.getNode() alone.  The Deleted
9592 /// vector is handled the same way as for ReplaceAllUsesWith.
9593 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9594   // Handle the really simple, really trivial case efficiently.
9595   if (From == To) return;
9596 
9597   // Handle the simple, trivial, case efficiently.
9598   if (From.getNode()->getNumValues() == 1) {
9599     ReplaceAllUsesWith(From, To);
9600     return;
9601   }
9602 
9603   // Preserve Debug Info.
9604   transferDbgValues(From, To);
9605 
9606   // Iterate over just the existing users of From. See the comments in
9607   // the ReplaceAllUsesWith above.
9608   SDNode::use_iterator UI = From.getNode()->use_begin(),
9609                        UE = From.getNode()->use_end();
9610   RAUWUpdateListener Listener(*this, UI, UE);
9611   while (UI != UE) {
9612     SDNode *User = *UI;
9613     bool UserRemovedFromCSEMaps = false;
9614 
9615     // A user can appear in a use list multiple times, and when this
9616     // happens the uses are usually next to each other in the list.
9617     // To help reduce the number of CSE recomputations, process all
9618     // the uses of this user that we can find this way.
9619     do {
9620       SDUse &Use = UI.getUse();
9621 
9622       // Skip uses of different values from the same node.
9623       if (Use.getResNo() != From.getResNo()) {
9624         ++UI;
9625         continue;
9626       }
9627 
9628       // If this node hasn't been modified yet, it's still in the CSE maps,
9629       // so remove its old self from the CSE maps.
9630       if (!UserRemovedFromCSEMaps) {
9631         RemoveNodeFromCSEMaps(User);
9632         UserRemovedFromCSEMaps = true;
9633       }
9634 
9635       ++UI;
9636       Use.set(To);
9637       if (To->isDivergent() != From->isDivergent())
9638         updateDivergence(User);
9639     } while (UI != UE && *UI == User);
9640     // We are iterating over all uses of the From node, so if a use
9641     // doesn't use the specific value, no changes are made.
9642     if (!UserRemovedFromCSEMaps)
9643       continue;
9644 
9645     // Now that we have modified User, add it back to the CSE maps.  If it
9646     // already exists there, recursively merge the results together.
9647     AddModifiedNodeToCSEMaps(User);
9648   }
9649 
9650   // If we just RAUW'd the root, take note.
9651   if (From == getRoot())
9652     setRoot(To);
9653 }
9654 
9655 namespace {
9656 
9657   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9658   /// to record information about a use.
9659   struct UseMemo {
9660     SDNode *User;
9661     unsigned Index;
9662     SDUse *Use;
9663   };
9664 
9665   /// operator< - Sort Memos by User.
9666   bool operator<(const UseMemo &L, const UseMemo &R) {
9667     return (intptr_t)L.User < (intptr_t)R.User;
9668   }
9669 
9670 } // end anonymous namespace
9671 
9672 bool SelectionDAG::calculateDivergence(SDNode *N) {
9673   if (TLI->isSDNodeAlwaysUniform(N)) {
9674     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9675            "Conflicting divergence information!");
9676     return false;
9677   }
9678   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9679     return true;
9680   for (auto &Op : N->ops()) {
9681     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9682       return true;
9683   }
9684   return false;
9685 }
9686 
9687 void SelectionDAG::updateDivergence(SDNode *N) {
9688   SmallVector<SDNode *, 16> Worklist(1, N);
9689   do {
9690     N = Worklist.pop_back_val();
9691     bool IsDivergent = calculateDivergence(N);
9692     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9693       N->SDNodeBits.IsDivergent = IsDivergent;
9694       llvm::append_range(Worklist, N->uses());
9695     }
9696   } while (!Worklist.empty());
9697 }
9698 
9699 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9700   DenseMap<SDNode *, unsigned> Degree;
9701   Order.reserve(AllNodes.size());
9702   for (auto &N : allnodes()) {
9703     unsigned NOps = N.getNumOperands();
9704     Degree[&N] = NOps;
9705     if (0 == NOps)
9706       Order.push_back(&N);
9707   }
9708   for (size_t I = 0; I != Order.size(); ++I) {
9709     SDNode *N = Order[I];
9710     for (auto U : N->uses()) {
9711       unsigned &UnsortedOps = Degree[U];
9712       if (0 == --UnsortedOps)
9713         Order.push_back(U);
9714     }
9715   }
9716 }
9717 
9718 #ifndef NDEBUG
9719 void SelectionDAG::VerifyDAGDivergence() {
9720   std::vector<SDNode *> TopoOrder;
9721   CreateTopologicalOrder(TopoOrder);
9722   for (auto *N : TopoOrder) {
9723     assert(calculateDivergence(N) == N->isDivergent() &&
9724            "Divergence bit inconsistency detected");
9725   }
9726 }
9727 #endif
9728 
9729 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9730 /// uses of other values produced by From.getNode() alone.  The same value
9731 /// may appear in both the From and To list.  The Deleted vector is
9732 /// handled the same way as for ReplaceAllUsesWith.
9733 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9734                                               const SDValue *To,
9735                                               unsigned Num){
9736   // Handle the simple, trivial case efficiently.
9737   if (Num == 1)
9738     return ReplaceAllUsesOfValueWith(*From, *To);
9739 
9740   transferDbgValues(*From, *To);
9741 
9742   // Read up all the uses and make records of them. This helps
9743   // processing new uses that are introduced during the
9744   // replacement process.
9745   SmallVector<UseMemo, 4> Uses;
9746   for (unsigned i = 0; i != Num; ++i) {
9747     unsigned FromResNo = From[i].getResNo();
9748     SDNode *FromNode = From[i].getNode();
9749     for (SDNode::use_iterator UI = FromNode->use_begin(),
9750          E = FromNode->use_end(); UI != E; ++UI) {
9751       SDUse &Use = UI.getUse();
9752       if (Use.getResNo() == FromResNo) {
9753         UseMemo Memo = { *UI, i, &Use };
9754         Uses.push_back(Memo);
9755       }
9756     }
9757   }
9758 
9759   // Sort the uses, so that all the uses from a given User are together.
9760   llvm::sort(Uses);
9761 
9762   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9763        UseIndex != UseIndexEnd; ) {
9764     // We know that this user uses some value of From.  If it is the right
9765     // value, update it.
9766     SDNode *User = Uses[UseIndex].User;
9767 
9768     // This node is about to morph, remove its old self from the CSE maps.
9769     RemoveNodeFromCSEMaps(User);
9770 
9771     // The Uses array is sorted, so all the uses for a given User
9772     // are next to each other in the list.
9773     // To help reduce the number of CSE recomputations, process all
9774     // the uses of this user that we can find this way.
9775     do {
9776       unsigned i = Uses[UseIndex].Index;
9777       SDUse &Use = *Uses[UseIndex].Use;
9778       ++UseIndex;
9779 
9780       Use.set(To[i]);
9781     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9782 
9783     // Now that we have modified User, add it back to the CSE maps.  If it
9784     // already exists there, recursively merge the results together.
9785     AddModifiedNodeToCSEMaps(User);
9786   }
9787 }
9788 
9789 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9790 /// based on their topological order. It returns the maximum id and a vector
9791 /// of the SDNodes* in assigned order by reference.
9792 unsigned SelectionDAG::AssignTopologicalOrder() {
9793   unsigned DAGSize = 0;
9794 
9795   // SortedPos tracks the progress of the algorithm. Nodes before it are
9796   // sorted, nodes after it are unsorted. When the algorithm completes
9797   // it is at the end of the list.
9798   allnodes_iterator SortedPos = allnodes_begin();
9799 
9800   // Visit all the nodes. Move nodes with no operands to the front of
9801   // the list immediately. Annotate nodes that do have operands with their
9802   // operand count. Before we do this, the Node Id fields of the nodes
9803   // may contain arbitrary values. After, the Node Id fields for nodes
9804   // before SortedPos will contain the topological sort index, and the
9805   // Node Id fields for nodes At SortedPos and after will contain the
9806   // count of outstanding operands.
9807   for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
9808     checkForCycles(&N, this);
9809     unsigned Degree = N.getNumOperands();
9810     if (Degree == 0) {
9811       // A node with no uses, add it to the result array immediately.
9812       N.setNodeId(DAGSize++);
9813       allnodes_iterator Q(&N);
9814       if (Q != SortedPos)
9815         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9816       assert(SortedPos != AllNodes.end() && "Overran node list");
9817       ++SortedPos;
9818     } else {
9819       // Temporarily use the Node Id as scratch space for the degree count.
9820       N.setNodeId(Degree);
9821     }
9822   }
9823 
9824   // Visit all the nodes. As we iterate, move nodes into sorted order,
9825   // such that by the time the end is reached all nodes will be sorted.
9826   for (SDNode &Node : allnodes()) {
9827     SDNode *N = &Node;
9828     checkForCycles(N, this);
9829     // N is in sorted position, so all its uses have one less operand
9830     // that needs to be sorted.
9831     for (SDNode *P : N->uses()) {
9832       unsigned Degree = P->getNodeId();
9833       assert(Degree != 0 && "Invalid node degree");
9834       --Degree;
9835       if (Degree == 0) {
9836         // All of P's operands are sorted, so P may sorted now.
9837         P->setNodeId(DAGSize++);
9838         if (P->getIterator() != SortedPos)
9839           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9840         assert(SortedPos != AllNodes.end() && "Overran node list");
9841         ++SortedPos;
9842       } else {
9843         // Update P's outstanding operand count.
9844         P->setNodeId(Degree);
9845       }
9846     }
9847     if (Node.getIterator() == SortedPos) {
9848 #ifndef NDEBUG
9849       allnodes_iterator I(N);
9850       SDNode *S = &*++I;
9851       dbgs() << "Overran sorted position:\n";
9852       S->dumprFull(this); dbgs() << "\n";
9853       dbgs() << "Checking if this is due to cycles\n";
9854       checkForCycles(this, true);
9855 #endif
9856       llvm_unreachable(nullptr);
9857     }
9858   }
9859 
9860   assert(SortedPos == AllNodes.end() &&
9861          "Topological sort incomplete!");
9862   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9863          "First node in topological sort is not the entry token!");
9864   assert(AllNodes.front().getNodeId() == 0 &&
9865          "First node in topological sort has non-zero id!");
9866   assert(AllNodes.front().getNumOperands() == 0 &&
9867          "First node in topological sort has operands!");
9868   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9869          "Last node in topologic sort has unexpected id!");
9870   assert(AllNodes.back().use_empty() &&
9871          "Last node in topologic sort has users!");
9872   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9873   return DAGSize;
9874 }
9875 
9876 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9877 /// value is produced by SD.
9878 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9879   for (SDNode *SD : DB->getSDNodes()) {
9880     if (!SD)
9881       continue;
9882     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9883     SD->setHasDebugValue(true);
9884   }
9885   DbgInfo->add(DB, isParameter);
9886 }
9887 
9888 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9889 
9890 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9891                                                    SDValue NewMemOpChain) {
9892   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9893   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9894   // The new memory operation must have the same position as the old load in
9895   // terms of memory dependency. Create a TokenFactor for the old load and new
9896   // memory operation and update uses of the old load's output chain to use that
9897   // TokenFactor.
9898   if (OldChain == NewMemOpChain || OldChain.use_empty())
9899     return NewMemOpChain;
9900 
9901   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9902                                 OldChain, NewMemOpChain);
9903   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9904   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9905   return TokenFactor;
9906 }
9907 
9908 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9909                                                    SDValue NewMemOp) {
9910   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9911   SDValue OldChain = SDValue(OldLoad, 1);
9912   SDValue NewMemOpChain = NewMemOp.getValue(1);
9913   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9914 }
9915 
9916 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9917                                                      Function **OutFunction) {
9918   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9919 
9920   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9921   auto *Module = MF->getFunction().getParent();
9922   auto *Function = Module->getFunction(Symbol);
9923 
9924   if (OutFunction != nullptr)
9925       *OutFunction = Function;
9926 
9927   if (Function != nullptr) {
9928     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9929     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9930   }
9931 
9932   std::string ErrorStr;
9933   raw_string_ostream ErrorFormatter(ErrorStr);
9934   ErrorFormatter << "Undefined external symbol ";
9935   ErrorFormatter << '"' << Symbol << '"';
9936   report_fatal_error(Twine(ErrorFormatter.str()));
9937 }
9938 
9939 //===----------------------------------------------------------------------===//
9940 //                              SDNode Class
9941 //===----------------------------------------------------------------------===//
9942 
9943 bool llvm::isNullConstant(SDValue V) {
9944   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9945   return Const != nullptr && Const->isZero();
9946 }
9947 
9948 bool llvm::isNullFPConstant(SDValue V) {
9949   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9950   return Const != nullptr && Const->isZero() && !Const->isNegative();
9951 }
9952 
9953 bool llvm::isAllOnesConstant(SDValue V) {
9954   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9955   return Const != nullptr && Const->isAllOnes();
9956 }
9957 
9958 bool llvm::isOneConstant(SDValue V) {
9959   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9960   return Const != nullptr && Const->isOne();
9961 }
9962 
9963 SDValue llvm::peekThroughBitcasts(SDValue V) {
9964   while (V.getOpcode() == ISD::BITCAST)
9965     V = V.getOperand(0);
9966   return V;
9967 }
9968 
9969 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9970   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9971     V = V.getOperand(0);
9972   return V;
9973 }
9974 
9975 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9976   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9977     V = V.getOperand(0);
9978   return V;
9979 }
9980 
9981 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9982   if (V.getOpcode() != ISD::XOR)
9983     return false;
9984   V = peekThroughBitcasts(V.getOperand(1));
9985   unsigned NumBits = V.getScalarValueSizeInBits();
9986   ConstantSDNode *C =
9987       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9988   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9989 }
9990 
9991 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9992                                           bool AllowTruncation) {
9993   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9994     return CN;
9995 
9996   // SplatVectors can truncate their operands. Ignore that case here unless
9997   // AllowTruncation is set.
9998   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9999     EVT VecEltVT = N->getValueType(0).getVectorElementType();
10000     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10001       EVT CVT = CN->getValueType(0);
10002       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
10003       if (AllowTruncation || CVT == VecEltVT)
10004         return CN;
10005     }
10006   }
10007 
10008   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10009     BitVector UndefElements;
10010     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
10011 
10012     // BuildVectors can truncate their operands. Ignore that case here unless
10013     // AllowTruncation is set.
10014     if (CN && (UndefElements.none() || AllowUndefs)) {
10015       EVT CVT = CN->getValueType(0);
10016       EVT NSVT = N.getValueType().getScalarType();
10017       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10018       if (AllowTruncation || (CVT == NSVT))
10019         return CN;
10020     }
10021   }
10022 
10023   return nullptr;
10024 }
10025 
10026 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10027                                           bool AllowUndefs,
10028                                           bool AllowTruncation) {
10029   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10030     return CN;
10031 
10032   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10033     BitVector UndefElements;
10034     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10035 
10036     // BuildVectors can truncate their operands. Ignore that case here unless
10037     // AllowTruncation is set.
10038     if (CN && (UndefElements.none() || AllowUndefs)) {
10039       EVT CVT = CN->getValueType(0);
10040       EVT NSVT = N.getValueType().getScalarType();
10041       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10042       if (AllowTruncation || (CVT == NSVT))
10043         return CN;
10044     }
10045   }
10046 
10047   return nullptr;
10048 }
10049 
10050 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10051   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10052     return CN;
10053 
10054   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10055     BitVector UndefElements;
10056     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10057     if (CN && (UndefElements.none() || AllowUndefs))
10058       return CN;
10059   }
10060 
10061   if (N.getOpcode() == ISD::SPLAT_VECTOR)
10062     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10063       return CN;
10064 
10065   return nullptr;
10066 }
10067 
10068 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10069                                               const APInt &DemandedElts,
10070                                               bool AllowUndefs) {
10071   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10072     return CN;
10073 
10074   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10075     BitVector UndefElements;
10076     ConstantFPSDNode *CN =
10077         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10078     if (CN && (UndefElements.none() || AllowUndefs))
10079       return CN;
10080   }
10081 
10082   return nullptr;
10083 }
10084 
10085 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10086   // TODO: may want to use peekThroughBitcast() here.
10087   ConstantSDNode *C =
10088       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10089   return C && C->isZero();
10090 }
10091 
10092 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10093   // TODO: may want to use peekThroughBitcast() here.
10094   unsigned BitWidth = N.getScalarValueSizeInBits();
10095   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10096   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
10097 }
10098 
10099 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10100   N = peekThroughBitcasts(N);
10101   unsigned BitWidth = N.getScalarValueSizeInBits();
10102   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10103   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
10104 }
10105 
10106 HandleSDNode::~HandleSDNode() {
10107   DropOperands();
10108 }
10109 
10110 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10111                                          const DebugLoc &DL,
10112                                          const GlobalValue *GA, EVT VT,
10113                                          int64_t o, unsigned TF)
10114     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10115   TheGlobal = GA;
10116 }
10117 
10118 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10119                                          EVT VT, unsigned SrcAS,
10120                                          unsigned DestAS)
10121     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10122       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10123 
10124 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10125                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10126     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10127   MemSDNodeBits.IsVolatile = MMO->isVolatile();
10128   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10129   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10130   MemSDNodeBits.IsInvariant = MMO->isInvariant();
10131 
10132   // We check here that the size of the memory operand fits within the size of
10133   // the MMO. This is because the MMO might indicate only a possible address
10134   // range instead of specifying the affected memory addresses precisely.
10135   // TODO: Make MachineMemOperands aware of scalable vectors.
10136   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10137          "Size mismatch!");
10138 }
10139 
10140 /// Profile - Gather unique data for the node.
10141 ///
10142 void SDNode::Profile(FoldingSetNodeID &ID) const {
10143   AddNodeIDNode(ID, this);
10144 }
10145 
10146 namespace {
10147 
10148   struct EVTArray {
10149     std::vector<EVT> VTs;
10150 
10151     EVTArray() {
10152       VTs.reserve(MVT::VALUETYPE_SIZE);
10153       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10154         VTs.push_back(MVT((MVT::SimpleValueType)i));
10155     }
10156   };
10157 
10158 } // end anonymous namespace
10159 
10160 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
10161 static ManagedStatic<EVTArray> SimpleVTArray;
10162 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
10163 
10164 /// getValueTypeList - Return a pointer to the specified value type.
10165 ///
10166 const EVT *SDNode::getValueTypeList(EVT VT) {
10167   if (VT.isExtended()) {
10168     sys::SmartScopedLock<true> Lock(*VTMutex);
10169     return &(*EVTs->insert(VT).first);
10170   }
10171   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10172   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
10173 }
10174 
10175 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10176 /// indicated value.  This method ignores uses of other values defined by this
10177 /// operation.
10178 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10179   assert(Value < getNumValues() && "Bad value!");
10180 
10181   // TODO: Only iterate over uses of a given value of the node
10182   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10183     if (UI.getUse().getResNo() == Value) {
10184       if (NUses == 0)
10185         return false;
10186       --NUses;
10187     }
10188   }
10189 
10190   // Found exactly the right number of uses?
10191   return NUses == 0;
10192 }
10193 
10194 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10195 /// value. This method ignores uses of other values defined by this operation.
10196 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10197   assert(Value < getNumValues() && "Bad value!");
10198 
10199   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10200     if (UI.getUse().getResNo() == Value)
10201       return true;
10202 
10203   return false;
10204 }
10205 
10206 /// isOnlyUserOf - Return true if this node is the only use of N.
10207 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10208   bool Seen = false;
10209   for (const SDNode *User : N->uses()) {
10210     if (User == this)
10211       Seen = true;
10212     else
10213       return false;
10214   }
10215 
10216   return Seen;
10217 }
10218 
10219 /// Return true if the only users of N are contained in Nodes.
10220 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10221   bool Seen = false;
10222   for (const SDNode *User : N->uses()) {
10223     if (llvm::is_contained(Nodes, User))
10224       Seen = true;
10225     else
10226       return false;
10227   }
10228 
10229   return Seen;
10230 }
10231 
10232 /// isOperand - Return true if this node is an operand of N.
10233 bool SDValue::isOperandOf(const SDNode *N) const {
10234   return is_contained(N->op_values(), *this);
10235 }
10236 
10237 bool SDNode::isOperandOf(const SDNode *N) const {
10238   return any_of(N->op_values(),
10239                 [this](SDValue Op) { return this == Op.getNode(); });
10240 }
10241 
10242 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10243 /// be a chain) reaches the specified operand without crossing any
10244 /// side-effecting instructions on any chain path.  In practice, this looks
10245 /// through token factors and non-volatile loads.  In order to remain efficient,
10246 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10247 ///
10248 /// Note that we only need to examine chains when we're searching for
10249 /// side-effects; SelectionDAG requires that all side-effects are represented
10250 /// by chains, even if another operand would force a specific ordering. This
10251 /// constraint is necessary to allow transformations like splitting loads.
10252 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10253                                              unsigned Depth) const {
10254   if (*this == Dest) return true;
10255 
10256   // Don't search too deeply, we just want to be able to see through
10257   // TokenFactor's etc.
10258   if (Depth == 0) return false;
10259 
10260   // If this is a token factor, all inputs to the TF happen in parallel.
10261   if (getOpcode() == ISD::TokenFactor) {
10262     // First, try a shallow search.
10263     if (is_contained((*this)->ops(), Dest)) {
10264       // We found the chain we want as an operand of this TokenFactor.
10265       // Essentially, we reach the chain without side-effects if we could
10266       // serialize the TokenFactor into a simple chain of operations with
10267       // Dest as the last operation. This is automatically true if the
10268       // chain has one use: there are no other ordering constraints.
10269       // If the chain has more than one use, we give up: some other
10270       // use of Dest might force a side-effect between Dest and the current
10271       // node.
10272       if (Dest.hasOneUse())
10273         return true;
10274     }
10275     // Next, try a deep search: check whether every operand of the TokenFactor
10276     // reaches Dest.
10277     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10278       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10279     });
10280   }
10281 
10282   // Loads don't have side effects, look through them.
10283   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10284     if (Ld->isUnordered())
10285       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10286   }
10287   return false;
10288 }
10289 
10290 bool SDNode::hasPredecessor(const SDNode *N) const {
10291   SmallPtrSet<const SDNode *, 32> Visited;
10292   SmallVector<const SDNode *, 16> Worklist;
10293   Worklist.push_back(this);
10294   return hasPredecessorHelper(N, Visited, Worklist);
10295 }
10296 
10297 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10298   this->Flags.intersectWith(Flags);
10299 }
10300 
10301 SDValue
10302 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10303                                   ArrayRef<ISD::NodeType> CandidateBinOps,
10304                                   bool AllowPartials) {
10305   // The pattern must end in an extract from index 0.
10306   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10307       !isNullConstant(Extract->getOperand(1)))
10308     return SDValue();
10309 
10310   // Match against one of the candidate binary ops.
10311   SDValue Op = Extract->getOperand(0);
10312   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10313         return Op.getOpcode() == unsigned(BinOp);
10314       }))
10315     return SDValue();
10316 
10317   // Floating-point reductions may require relaxed constraints on the final step
10318   // of the reduction because they may reorder intermediate operations.
10319   unsigned CandidateBinOp = Op.getOpcode();
10320   if (Op.getValueType().isFloatingPoint()) {
10321     SDNodeFlags Flags = Op->getFlags();
10322     switch (CandidateBinOp) {
10323     case ISD::FADD:
10324       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
10325         return SDValue();
10326       break;
10327     default:
10328       llvm_unreachable("Unhandled FP opcode for binop reduction");
10329     }
10330   }
10331 
10332   // Matching failed - attempt to see if we did enough stages that a partial
10333   // reduction from a subvector is possible.
10334   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
10335     if (!AllowPartials || !Op)
10336       return SDValue();
10337     EVT OpVT = Op.getValueType();
10338     EVT OpSVT = OpVT.getScalarType();
10339     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
10340     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
10341       return SDValue();
10342     BinOp = (ISD::NodeType)CandidateBinOp;
10343     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
10344                    getVectorIdxConstant(0, SDLoc(Op)));
10345   };
10346 
10347   // At each stage, we're looking for something that looks like:
10348   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
10349   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
10350   //                               i32 undef, i32 undef, i32 undef, i32 undef>
10351   // %a = binop <8 x i32> %op, %s
10352   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
10353   // we expect something like:
10354   // <4,5,6,7,u,u,u,u>
10355   // <2,3,u,u,u,u,u,u>
10356   // <1,u,u,u,u,u,u,u>
10357   // While a partial reduction match would be:
10358   // <2,3,u,u,u,u,u,u>
10359   // <1,u,u,u,u,u,u,u>
10360   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
10361   SDValue PrevOp;
10362   for (unsigned i = 0; i < Stages; ++i) {
10363     unsigned MaskEnd = (1 << i);
10364 
10365     if (Op.getOpcode() != CandidateBinOp)
10366       return PartialReduction(PrevOp, MaskEnd);
10367 
10368     SDValue Op0 = Op.getOperand(0);
10369     SDValue Op1 = Op.getOperand(1);
10370 
10371     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
10372     if (Shuffle) {
10373       Op = Op1;
10374     } else {
10375       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
10376       Op = Op0;
10377     }
10378 
10379     // The first operand of the shuffle should be the same as the other operand
10380     // of the binop.
10381     if (!Shuffle || Shuffle->getOperand(0) != Op)
10382       return PartialReduction(PrevOp, MaskEnd);
10383 
10384     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
10385     for (int Index = 0; Index < (int)MaskEnd; ++Index)
10386       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
10387         return PartialReduction(PrevOp, MaskEnd);
10388 
10389     PrevOp = Op;
10390   }
10391 
10392   // Handle subvector reductions, which tend to appear after the shuffle
10393   // reduction stages.
10394   while (Op.getOpcode() == CandidateBinOp) {
10395     unsigned NumElts = Op.getValueType().getVectorNumElements();
10396     SDValue Op0 = Op.getOperand(0);
10397     SDValue Op1 = Op.getOperand(1);
10398     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10399         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10400         Op0.getOperand(0) != Op1.getOperand(0))
10401       break;
10402     SDValue Src = Op0.getOperand(0);
10403     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
10404     if (NumSrcElts != (2 * NumElts))
10405       break;
10406     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
10407           Op1.getConstantOperandAPInt(1) == NumElts) &&
10408         !(Op1.getConstantOperandAPInt(1) == 0 &&
10409           Op0.getConstantOperandAPInt(1) == NumElts))
10410       break;
10411     Op = Src;
10412   }
10413 
10414   BinOp = (ISD::NodeType)CandidateBinOp;
10415   return Op;
10416 }
10417 
10418 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
10419   assert(N->getNumValues() == 1 &&
10420          "Can't unroll a vector with multiple results!");
10421 
10422   EVT VT = N->getValueType(0);
10423   unsigned NE = VT.getVectorNumElements();
10424   EVT EltVT = VT.getVectorElementType();
10425   SDLoc dl(N);
10426 
10427   SmallVector<SDValue, 8> Scalars;
10428   SmallVector<SDValue, 4> Operands(N->getNumOperands());
10429 
10430   // If ResNE is 0, fully unroll the vector op.
10431   if (ResNE == 0)
10432     ResNE = NE;
10433   else if (NE > ResNE)
10434     NE = ResNE;
10435 
10436   unsigned i;
10437   for (i= 0; i != NE; ++i) {
10438     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
10439       SDValue Operand = N->getOperand(j);
10440       EVT OperandVT = Operand.getValueType();
10441       if (OperandVT.isVector()) {
10442         // A vector operand; extract a single element.
10443         EVT OperandEltVT = OperandVT.getVectorElementType();
10444         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
10445                               Operand, getVectorIdxConstant(i, dl));
10446       } else {
10447         // A scalar operand; just use it as is.
10448         Operands[j] = Operand;
10449       }
10450     }
10451 
10452     switch (N->getOpcode()) {
10453     default: {
10454       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
10455                                 N->getFlags()));
10456       break;
10457     }
10458     case ISD::VSELECT:
10459       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
10460       break;
10461     case ISD::SHL:
10462     case ISD::SRA:
10463     case ISD::SRL:
10464     case ISD::ROTL:
10465     case ISD::ROTR:
10466       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
10467                                getShiftAmountOperand(Operands[0].getValueType(),
10468                                                      Operands[1])));
10469       break;
10470     case ISD::SIGN_EXTEND_INREG: {
10471       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
10472       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
10473                                 Operands[0],
10474                                 getValueType(ExtVT)));
10475     }
10476     }
10477   }
10478 
10479   for (; i < ResNE; ++i)
10480     Scalars.push_back(getUNDEF(EltVT));
10481 
10482   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
10483   return getBuildVector(VecVT, dl, Scalars);
10484 }
10485 
10486 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
10487     SDNode *N, unsigned ResNE) {
10488   unsigned Opcode = N->getOpcode();
10489   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
10490           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
10491           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
10492          "Expected an overflow opcode");
10493 
10494   EVT ResVT = N->getValueType(0);
10495   EVT OvVT = N->getValueType(1);
10496   EVT ResEltVT = ResVT.getVectorElementType();
10497   EVT OvEltVT = OvVT.getVectorElementType();
10498   SDLoc dl(N);
10499 
10500   // If ResNE is 0, fully unroll the vector op.
10501   unsigned NE = ResVT.getVectorNumElements();
10502   if (ResNE == 0)
10503     ResNE = NE;
10504   else if (NE > ResNE)
10505     NE = ResNE;
10506 
10507   SmallVector<SDValue, 8> LHSScalars;
10508   SmallVector<SDValue, 8> RHSScalars;
10509   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10510   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10511 
10512   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10513   SDVTList VTs = getVTList(ResEltVT, SVT);
10514   SmallVector<SDValue, 8> ResScalars;
10515   SmallVector<SDValue, 8> OvScalars;
10516   for (unsigned i = 0; i < NE; ++i) {
10517     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10518     SDValue Ov =
10519         getSelect(dl, OvEltVT, Res.getValue(1),
10520                   getBoolConstant(true, dl, OvEltVT, ResVT),
10521                   getConstant(0, dl, OvEltVT));
10522 
10523     ResScalars.push_back(Res);
10524     OvScalars.push_back(Ov);
10525   }
10526 
10527   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10528   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10529 
10530   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10531   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10532   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10533                         getBuildVector(NewOvVT, dl, OvScalars));
10534 }
10535 
10536 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10537                                                   LoadSDNode *Base,
10538                                                   unsigned Bytes,
10539                                                   int Dist) const {
10540   if (LD->isVolatile() || Base->isVolatile())
10541     return false;
10542   // TODO: probably too restrictive for atomics, revisit
10543   if (!LD->isSimple())
10544     return false;
10545   if (LD->isIndexed() || Base->isIndexed())
10546     return false;
10547   if (LD->getChain() != Base->getChain())
10548     return false;
10549   EVT VT = LD->getValueType(0);
10550   if (VT.getSizeInBits() / 8 != Bytes)
10551     return false;
10552 
10553   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
10554   auto LocDecomp = BaseIndexOffset::match(LD, *this);
10555 
10556   int64_t Offset = 0;
10557   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
10558     return (Dist * Bytes == Offset);
10559   return false;
10560 }
10561 
10562 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10563 /// if it cannot be inferred.
10564 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
10565   // If this is a GlobalAddress + cst, return the alignment.
10566   const GlobalValue *GV = nullptr;
10567   int64_t GVOffset = 0;
10568   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
10569     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
10570     KnownBits Known(PtrWidth);
10571     llvm::computeKnownBits(GV, Known, getDataLayout());
10572     unsigned AlignBits = Known.countMinTrailingZeros();
10573     if (AlignBits)
10574       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
10575   }
10576 
10577   // If this is a direct reference to a stack slot, use information about the
10578   // stack slot's alignment.
10579   int FrameIdx = INT_MIN;
10580   int64_t FrameOffset = 0;
10581   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
10582     FrameIdx = FI->getIndex();
10583   } else if (isBaseWithConstantOffset(Ptr) &&
10584              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
10585     // Handle FI+Cst
10586     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
10587     FrameOffset = Ptr.getConstantOperandVal(1);
10588   }
10589 
10590   if (FrameIdx != INT_MIN) {
10591     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
10592     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10593   }
10594 
10595   return None;
10596 }
10597 
10598 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10599 /// which is split (or expanded) into two not necessarily identical pieces.
10600 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10601   // Currently all types are split in half.
10602   EVT LoVT, HiVT;
10603   if (!VT.isVector())
10604     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10605   else
10606     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10607 
10608   return std::make_pair(LoVT, HiVT);
10609 }
10610 
10611 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10612 /// type, dependent on an enveloping VT that has been split into two identical
10613 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10614 std::pair<EVT, EVT>
10615 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10616                                        bool *HiIsEmpty) const {
10617   EVT EltTp = VT.getVectorElementType();
10618   // Examples:
10619   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10620   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10621   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10622   //   etc.
10623   ElementCount VTNumElts = VT.getVectorElementCount();
10624   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10625   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10626          "Mixing fixed width and scalable vectors when enveloping a type");
10627   EVT LoVT, HiVT;
10628   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10629     LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
10630     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10631     *HiIsEmpty = false;
10632   } else {
10633     // Flag that hi type has zero storage size, but return split envelop type
10634     // (this would be easier if vector types with zero elements were allowed).
10635     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10636     HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
10637     *HiIsEmpty = true;
10638   }
10639   return std::make_pair(LoVT, HiVT);
10640 }
10641 
10642 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10643 /// low/high part.
10644 std::pair<SDValue, SDValue>
10645 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10646                           const EVT &HiVT) {
10647   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10648          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10649          "Splitting vector with an invalid mixture of fixed and scalable "
10650          "vector types");
10651   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10652              N.getValueType().getVectorMinNumElements() &&
10653          "More vector elements requested than available!");
10654   SDValue Lo, Hi;
10655   Lo =
10656       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10657   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10658   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10659   // IDX with the runtime scaling factor of the result vector type. For
10660   // fixed-width result vectors, that runtime scaling factor is 1.
10661   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10662                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10663   return std::make_pair(Lo, Hi);
10664 }
10665 
10666 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
10667                                                    const SDLoc &DL) {
10668   // Split the vector length parameter.
10669   // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
10670   EVT VT = N.getValueType();
10671   assert(VecVT.getVectorElementCount().isKnownEven() &&
10672          "Expecting the mask to be an evenly-sized vector");
10673   unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
10674   SDValue HalfNumElts =
10675       VecVT.isFixedLengthVector()
10676           ? getConstant(HalfMinNumElts, DL, VT)
10677           : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
10678   SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
10679   SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
10680   return std::make_pair(Lo, Hi);
10681 }
10682 
10683 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10684 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10685   EVT VT = N.getValueType();
10686   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10687                                 NextPowerOf2(VT.getVectorNumElements()));
10688   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10689                  getVectorIdxConstant(0, DL));
10690 }
10691 
10692 void SelectionDAG::ExtractVectorElements(SDValue Op,
10693                                          SmallVectorImpl<SDValue> &Args,
10694                                          unsigned Start, unsigned Count,
10695                                          EVT EltVT) {
10696   EVT VT = Op.getValueType();
10697   if (Count == 0)
10698     Count = VT.getVectorNumElements();
10699   if (EltVT == EVT())
10700     EltVT = VT.getVectorElementType();
10701   SDLoc SL(Op);
10702   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10703     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10704                            getVectorIdxConstant(i, SL)));
10705   }
10706 }
10707 
10708 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10709 unsigned GlobalAddressSDNode::getAddressSpace() const {
10710   return getGlobal()->getType()->getAddressSpace();
10711 }
10712 
10713 Type *ConstantPoolSDNode::getType() const {
10714   if (isMachineConstantPoolEntry())
10715     return Val.MachineCPVal->getType();
10716   return Val.ConstVal->getType();
10717 }
10718 
10719 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10720                                         unsigned &SplatBitSize,
10721                                         bool &HasAnyUndefs,
10722                                         unsigned MinSplatBits,
10723                                         bool IsBigEndian) const {
10724   EVT VT = getValueType(0);
10725   assert(VT.isVector() && "Expected a vector type");
10726   unsigned VecWidth = VT.getSizeInBits();
10727   if (MinSplatBits > VecWidth)
10728     return false;
10729 
10730   // FIXME: The widths are based on this node's type, but build vectors can
10731   // truncate their operands.
10732   SplatValue = APInt(VecWidth, 0);
10733   SplatUndef = APInt(VecWidth, 0);
10734 
10735   // Get the bits. Bits with undefined values (when the corresponding element
10736   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10737   // in SplatValue. If any of the values are not constant, give up and return
10738   // false.
10739   unsigned int NumOps = getNumOperands();
10740   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10741   unsigned EltWidth = VT.getScalarSizeInBits();
10742 
10743   for (unsigned j = 0; j < NumOps; ++j) {
10744     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10745     SDValue OpVal = getOperand(i);
10746     unsigned BitPos = j * EltWidth;
10747 
10748     if (OpVal.isUndef())
10749       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10750     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10751       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10752     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10753       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10754     else
10755       return false;
10756   }
10757 
10758   // The build_vector is all constants or undefs. Find the smallest element
10759   // size that splats the vector.
10760   HasAnyUndefs = (SplatUndef != 0);
10761 
10762   // FIXME: This does not work for vectors with elements less than 8 bits.
10763   while (VecWidth > 8) {
10764     unsigned HalfSize = VecWidth / 2;
10765     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
10766     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
10767     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
10768     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
10769 
10770     // If the two halves do not match (ignoring undef bits), stop here.
10771     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10772         MinSplatBits > HalfSize)
10773       break;
10774 
10775     SplatValue = HighValue | LowValue;
10776     SplatUndef = HighUndef & LowUndef;
10777 
10778     VecWidth = HalfSize;
10779   }
10780 
10781   SplatBitSize = VecWidth;
10782   return true;
10783 }
10784 
10785 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10786                                          BitVector *UndefElements) const {
10787   unsigned NumOps = getNumOperands();
10788   if (UndefElements) {
10789     UndefElements->clear();
10790     UndefElements->resize(NumOps);
10791   }
10792   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10793   if (!DemandedElts)
10794     return SDValue();
10795   SDValue Splatted;
10796   for (unsigned i = 0; i != NumOps; ++i) {
10797     if (!DemandedElts[i])
10798       continue;
10799     SDValue Op = getOperand(i);
10800     if (Op.isUndef()) {
10801       if (UndefElements)
10802         (*UndefElements)[i] = true;
10803     } else if (!Splatted) {
10804       Splatted = Op;
10805     } else if (Splatted != Op) {
10806       return SDValue();
10807     }
10808   }
10809 
10810   if (!Splatted) {
10811     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10812     assert(getOperand(FirstDemandedIdx).isUndef() &&
10813            "Can only have a splat without a constant for all undefs.");
10814     return getOperand(FirstDemandedIdx);
10815   }
10816 
10817   return Splatted;
10818 }
10819 
10820 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10821   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10822   return getSplatValue(DemandedElts, UndefElements);
10823 }
10824 
10825 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10826                                             SmallVectorImpl<SDValue> &Sequence,
10827                                             BitVector *UndefElements) const {
10828   unsigned NumOps = getNumOperands();
10829   Sequence.clear();
10830   if (UndefElements) {
10831     UndefElements->clear();
10832     UndefElements->resize(NumOps);
10833   }
10834   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10835   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10836     return false;
10837 
10838   // Set the undefs even if we don't find a sequence (like getSplatValue).
10839   if (UndefElements)
10840     for (unsigned I = 0; I != NumOps; ++I)
10841       if (DemandedElts[I] && getOperand(I).isUndef())
10842         (*UndefElements)[I] = true;
10843 
10844   // Iteratively widen the sequence length looking for repetitions.
10845   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10846     Sequence.append(SeqLen, SDValue());
10847     for (unsigned I = 0; I != NumOps; ++I) {
10848       if (!DemandedElts[I])
10849         continue;
10850       SDValue &SeqOp = Sequence[I % SeqLen];
10851       SDValue Op = getOperand(I);
10852       if (Op.isUndef()) {
10853         if (!SeqOp)
10854           SeqOp = Op;
10855         continue;
10856       }
10857       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10858         Sequence.clear();
10859         break;
10860       }
10861       SeqOp = Op;
10862     }
10863     if (!Sequence.empty())
10864       return true;
10865   }
10866 
10867   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10868   return false;
10869 }
10870 
10871 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10872                                             BitVector *UndefElements) const {
10873   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10874   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10875 }
10876 
10877 ConstantSDNode *
10878 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10879                                         BitVector *UndefElements) const {
10880   return dyn_cast_or_null<ConstantSDNode>(
10881       getSplatValue(DemandedElts, UndefElements));
10882 }
10883 
10884 ConstantSDNode *
10885 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10886   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10887 }
10888 
10889 ConstantFPSDNode *
10890 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10891                                           BitVector *UndefElements) const {
10892   return dyn_cast_or_null<ConstantFPSDNode>(
10893       getSplatValue(DemandedElts, UndefElements));
10894 }
10895 
10896 ConstantFPSDNode *
10897 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10898   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10899 }
10900 
10901 int32_t
10902 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10903                                                    uint32_t BitWidth) const {
10904   if (ConstantFPSDNode *CN =
10905           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10906     bool IsExact;
10907     APSInt IntVal(BitWidth);
10908     const APFloat &APF = CN->getValueAPF();
10909     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10910             APFloat::opOK ||
10911         !IsExact)
10912       return -1;
10913 
10914     return IntVal.exactLogBase2();
10915   }
10916   return -1;
10917 }
10918 
10919 bool BuildVectorSDNode::getConstantRawBits(
10920     bool IsLittleEndian, unsigned DstEltSizeInBits,
10921     SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
10922   // Early-out if this contains anything but Undef/Constant/ConstantFP.
10923   if (!isConstant())
10924     return false;
10925 
10926   unsigned NumSrcOps = getNumOperands();
10927   unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
10928   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
10929          "Invalid bitcast scale");
10930 
10931   // Extract raw src bits.
10932   SmallVector<APInt> SrcBitElements(NumSrcOps,
10933                                     APInt::getNullValue(SrcEltSizeInBits));
10934   BitVector SrcUndeElements(NumSrcOps, false);
10935 
10936   for (unsigned I = 0; I != NumSrcOps; ++I) {
10937     SDValue Op = getOperand(I);
10938     if (Op.isUndef()) {
10939       SrcUndeElements.set(I);
10940       continue;
10941     }
10942     auto *CInt = dyn_cast<ConstantSDNode>(Op);
10943     auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
10944     assert((CInt || CFP) && "Unknown constant");
10945     SrcBitElements[I] =
10946         CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits)
10947              : CFP->getValueAPF().bitcastToAPInt();
10948   }
10949 
10950   // Recast to dst width.
10951   recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
10952                 SrcBitElements, UndefElements, SrcUndeElements);
10953   return true;
10954 }
10955 
10956 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
10957                                       unsigned DstEltSizeInBits,
10958                                       SmallVectorImpl<APInt> &DstBitElements,
10959                                       ArrayRef<APInt> SrcBitElements,
10960                                       BitVector &DstUndefElements,
10961                                       const BitVector &SrcUndefElements) {
10962   unsigned NumSrcOps = SrcBitElements.size();
10963   unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
10964   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
10965          "Invalid bitcast scale");
10966   assert(NumSrcOps == SrcUndefElements.size() &&
10967          "Vector size mismatch");
10968 
10969   unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
10970   DstUndefElements.clear();
10971   DstUndefElements.resize(NumDstOps, false);
10972   DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits));
10973 
10974   // Concatenate src elements constant bits together into dst element.
10975   if (SrcEltSizeInBits <= DstEltSizeInBits) {
10976     unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
10977     for (unsigned I = 0; I != NumDstOps; ++I) {
10978       DstUndefElements.set(I);
10979       APInt &DstBits = DstBitElements[I];
10980       for (unsigned J = 0; J != Scale; ++J) {
10981         unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
10982         if (SrcUndefElements[Idx])
10983           continue;
10984         DstUndefElements.reset(I);
10985         const APInt &SrcBits = SrcBitElements[Idx];
10986         assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
10987                "Illegal constant bitwidths");
10988         DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
10989       }
10990     }
10991     return;
10992   }
10993 
10994   // Split src element constant bits into dst elements.
10995   unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
10996   for (unsigned I = 0; I != NumSrcOps; ++I) {
10997     if (SrcUndefElements[I]) {
10998       DstUndefElements.set(I * Scale, (I + 1) * Scale);
10999       continue;
11000     }
11001     const APInt &SrcBits = SrcBitElements[I];
11002     for (unsigned J = 0; J != Scale; ++J) {
11003       unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11004       APInt &DstBits = DstBitElements[Idx];
11005       DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
11006     }
11007   }
11008 }
11009 
11010 bool BuildVectorSDNode::isConstant() const {
11011   for (const SDValue &Op : op_values()) {
11012     unsigned Opc = Op.getOpcode();
11013     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
11014       return false;
11015   }
11016   return true;
11017 }
11018 
11019 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
11020   // Find the first non-undef value in the shuffle mask.
11021   unsigned i, e;
11022   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
11023     /* search */;
11024 
11025   // If all elements are undefined, this shuffle can be considered a splat
11026   // (although it should eventually get simplified away completely).
11027   if (i == e)
11028     return true;
11029 
11030   // Make sure all remaining elements are either undef or the same as the first
11031   // non-undef value.
11032   for (int Idx = Mask[i]; i != e; ++i)
11033     if (Mask[i] >= 0 && Mask[i] != Idx)
11034       return false;
11035   return true;
11036 }
11037 
11038 // Returns the SDNode if it is a constant integer BuildVector
11039 // or constant integer.
11040 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
11041   if (isa<ConstantSDNode>(N))
11042     return N.getNode();
11043   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
11044     return N.getNode();
11045   // Treat a GlobalAddress supporting constant offset folding as a
11046   // constant integer.
11047   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
11048     if (GA->getOpcode() == ISD::GlobalAddress &&
11049         TLI->isOffsetFoldingLegal(GA))
11050       return GA;
11051   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11052       isa<ConstantSDNode>(N.getOperand(0)))
11053     return N.getNode();
11054   return nullptr;
11055 }
11056 
11057 // Returns the SDNode if it is a constant float BuildVector
11058 // or constant float.
11059 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
11060   if (isa<ConstantFPSDNode>(N))
11061     return N.getNode();
11062 
11063   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
11064     return N.getNode();
11065 
11066   return nullptr;
11067 }
11068 
11069 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
11070   assert(!Node->OperandList && "Node already has operands");
11071   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
11072          "too many operands to fit into SDNode");
11073   SDUse *Ops = OperandRecycler.allocate(
11074       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
11075 
11076   bool IsDivergent = false;
11077   for (unsigned I = 0; I != Vals.size(); ++I) {
11078     Ops[I].setUser(Node);
11079     Ops[I].setInitial(Vals[I]);
11080     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
11081       IsDivergent |= Ops[I].getNode()->isDivergent();
11082   }
11083   Node->NumOperands = Vals.size();
11084   Node->OperandList = Ops;
11085   if (!TLI->isSDNodeAlwaysUniform(Node)) {
11086     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
11087     Node->SDNodeBits.IsDivergent = IsDivergent;
11088   }
11089   checkForCycles(Node);
11090 }
11091 
11092 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
11093                                      SmallVectorImpl<SDValue> &Vals) {
11094   size_t Limit = SDNode::getMaxNumOperands();
11095   while (Vals.size() > Limit) {
11096     unsigned SliceIdx = Vals.size() - Limit;
11097     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
11098     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
11099     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
11100     Vals.emplace_back(NewTF);
11101   }
11102   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
11103 }
11104 
11105 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
11106                                         EVT VT, SDNodeFlags Flags) {
11107   switch (Opcode) {
11108   default:
11109     return SDValue();
11110   case ISD::ADD:
11111   case ISD::OR:
11112   case ISD::XOR:
11113   case ISD::UMAX:
11114     return getConstant(0, DL, VT);
11115   case ISD::MUL:
11116     return getConstant(1, DL, VT);
11117   case ISD::AND:
11118   case ISD::UMIN:
11119     return getAllOnesConstant(DL, VT);
11120   case ISD::SMAX:
11121     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11122   case ISD::SMIN:
11123     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11124   case ISD::FADD:
11125     return getConstantFP(-0.0, DL, VT);
11126   case ISD::FMUL:
11127     return getConstantFP(1.0, DL, VT);
11128   case ISD::FMINNUM:
11129   case ISD::FMAXNUM: {
11130     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11131     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11132     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11133                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11134                         APFloat::getLargest(Semantics);
11135     if (Opcode == ISD::FMAXNUM)
11136       NeutralAF.changeSign();
11137 
11138     return getConstantFP(NeutralAF, DL, VT);
11139   }
11140   }
11141 }
11142 
11143 #ifndef NDEBUG
11144 static void checkForCyclesHelper(const SDNode *N,
11145                                  SmallPtrSetImpl<const SDNode*> &Visited,
11146                                  SmallPtrSetImpl<const SDNode*> &Checked,
11147                                  const llvm::SelectionDAG *DAG) {
11148   // If this node has already been checked, don't check it again.
11149   if (Checked.count(N))
11150     return;
11151 
11152   // If a node has already been visited on this depth-first walk, reject it as
11153   // a cycle.
11154   if (!Visited.insert(N).second) {
11155     errs() << "Detected cycle in SelectionDAG\n";
11156     dbgs() << "Offending node:\n";
11157     N->dumprFull(DAG); dbgs() << "\n";
11158     abort();
11159   }
11160 
11161   for (const SDValue &Op : N->op_values())
11162     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11163 
11164   Checked.insert(N);
11165   Visited.erase(N);
11166 }
11167 #endif
11168 
11169 void llvm::checkForCycles(const llvm::SDNode *N,
11170                           const llvm::SelectionDAG *DAG,
11171                           bool force) {
11172 #ifndef NDEBUG
11173   bool check = force;
11174 #ifdef EXPENSIVE_CHECKS
11175   check = true;
11176 #endif  // EXPENSIVE_CHECKS
11177   if (check) {
11178     assert(N && "Checking nonexistent SDNode");
11179     SmallPtrSet<const SDNode*, 32> visited;
11180     SmallPtrSet<const SDNode*, 32> checked;
11181     checkForCyclesHelper(N, visited, checked, DAG);
11182   }
11183 #endif  // !NDEBUG
11184 }
11185 
11186 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11187   checkForCycles(DAG->getRoot().getNode(), DAG, force);
11188 }
11189