1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAG class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/ManagedStatic.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Mutex.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetIntrinsicInfo.h" 45 #include "llvm/Target/TargetLowering.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Target/TargetRegisterInfo.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 #include <algorithm> 51 #include <cmath> 52 #include <utility> 53 54 using namespace llvm; 55 56 /// makeVTList - Return an instance of the SDVTList struct initialized with the 57 /// specified members. 58 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 59 SDVTList Res = {VTs, NumVTs}; 60 return Res; 61 } 62 63 // Default null implementations of the callbacks. 64 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 65 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 66 67 //===----------------------------------------------------------------------===// 68 // ConstantFPSDNode Class 69 //===----------------------------------------------------------------------===// 70 71 /// isExactlyValue - We don't rely on operator== working on double values, as 72 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 73 /// As such, this method can be used to do an exact bit-for-bit comparison of 74 /// two floating point values. 75 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 76 return getValueAPF().bitwiseIsEqual(V); 77 } 78 79 bool ConstantFPSDNode::isValueValidForType(EVT VT, 80 const APFloat& Val) { 81 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 82 83 // convert modifies in place, so make a copy. 84 APFloat Val2 = APFloat(Val); 85 bool losesInfo; 86 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 87 APFloat::rmNearestTiesToEven, 88 &losesInfo); 89 return !losesInfo; 90 } 91 92 //===----------------------------------------------------------------------===// 93 // ISD Namespace 94 //===----------------------------------------------------------------------===// 95 96 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 97 auto *BV = dyn_cast<BuildVectorSDNode>(N); 98 if (!BV) 99 return false; 100 101 APInt SplatUndef; 102 unsigned SplatBitSize; 103 bool HasUndefs; 104 EVT EltVT = N->getValueType(0).getVectorElementType(); 105 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs) && 106 EltVT.getSizeInBits() >= SplatBitSize; 107 } 108 109 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 110 // specializations of the more general isConstantSplatVector()? 111 112 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 113 // Look through a bit convert. 114 while (N->getOpcode() == ISD::BITCAST) 115 N = N->getOperand(0).getNode(); 116 117 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 118 119 unsigned i = 0, e = N->getNumOperands(); 120 121 // Skip over all of the undef values. 122 while (i != e && N->getOperand(i).isUndef()) 123 ++i; 124 125 // Do not accept an all-undef vector. 126 if (i == e) return false; 127 128 // Do not accept build_vectors that aren't all constants or which have non-~0 129 // elements. We have to be a bit careful here, as the type of the constant 130 // may not be the same as the type of the vector elements due to type 131 // legalization (the elements are promoted to a legal type for the target and 132 // a vector of a type may be legal when the base element type is not). 133 // We only want to check enough bits to cover the vector elements, because 134 // we care if the resultant vector is all ones, not whether the individual 135 // constants are. 136 SDValue NotZero = N->getOperand(i); 137 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 138 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 139 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 140 return false; 141 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 142 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 143 return false; 144 } else 145 return false; 146 147 // Okay, we have at least one ~0 value, check to see if the rest match or are 148 // undefs. Even with the above element type twiddling, this should be OK, as 149 // the same type legalization should have applied to all the elements. 150 for (++i; i != e; ++i) 151 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 152 return false; 153 return true; 154 } 155 156 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 157 // Look through a bit convert. 158 while (N->getOpcode() == ISD::BITCAST) 159 N = N->getOperand(0).getNode(); 160 161 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 162 163 bool IsAllUndef = true; 164 for (const SDValue &Op : N->op_values()) { 165 if (Op.isUndef()) 166 continue; 167 IsAllUndef = false; 168 // Do not accept build_vectors that aren't all constants or which have non-0 169 // elements. We have to be a bit careful here, as the type of the constant 170 // may not be the same as the type of the vector elements due to type 171 // legalization (the elements are promoted to a legal type for the target 172 // and a vector of a type may be legal when the base element type is not). 173 // We only want to check enough bits to cover the vector elements, because 174 // we care if the resultant vector is all zeros, not whether the individual 175 // constants are. 176 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 177 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 178 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 179 return false; 180 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 181 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 182 return false; 183 } else 184 return false; 185 } 186 187 // Do not accept an all-undef vector. 188 if (IsAllUndef) 189 return false; 190 return true; 191 } 192 193 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 194 if (N->getOpcode() != ISD::BUILD_VECTOR) 195 return false; 196 197 for (const SDValue &Op : N->op_values()) { 198 if (Op.isUndef()) 199 continue; 200 if (!isa<ConstantSDNode>(Op)) 201 return false; 202 } 203 return true; 204 } 205 206 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 207 if (N->getOpcode() != ISD::BUILD_VECTOR) 208 return false; 209 210 for (const SDValue &Op : N->op_values()) { 211 if (Op.isUndef()) 212 continue; 213 if (!isa<ConstantFPSDNode>(Op)) 214 return false; 215 } 216 return true; 217 } 218 219 bool ISD::allOperandsUndef(const SDNode *N) { 220 // Return false if the node has no operands. 221 // This is "logically inconsistent" with the definition of "all" but 222 // is probably the desired behavior. 223 if (N->getNumOperands() == 0) 224 return false; 225 226 for (const SDValue &Op : N->op_values()) 227 if (!Op.isUndef()) 228 return false; 229 230 return true; 231 } 232 233 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 234 switch (ExtType) { 235 case ISD::EXTLOAD: 236 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 237 case ISD::SEXTLOAD: 238 return ISD::SIGN_EXTEND; 239 case ISD::ZEXTLOAD: 240 return ISD::ZERO_EXTEND; 241 default: 242 break; 243 } 244 245 llvm_unreachable("Invalid LoadExtType"); 246 } 247 248 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 249 // To perform this operation, we just need to swap the L and G bits of the 250 // operation. 251 unsigned OldL = (Operation >> 2) & 1; 252 unsigned OldG = (Operation >> 1) & 1; 253 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 254 (OldL << 1) | // New G bit 255 (OldG << 2)); // New L bit. 256 } 257 258 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 259 unsigned Operation = Op; 260 if (isInteger) 261 Operation ^= 7; // Flip L, G, E bits, but not U. 262 else 263 Operation ^= 15; // Flip all of the condition bits. 264 265 if (Operation > ISD::SETTRUE2) 266 Operation &= ~8; // Don't let N and U bits get set. 267 268 return ISD::CondCode(Operation); 269 } 270 271 272 /// For an integer comparison, return 1 if the comparison is a signed operation 273 /// and 2 if the result is an unsigned comparison. Return zero if the operation 274 /// does not depend on the sign of the input (setne and seteq). 275 static int isSignedOp(ISD::CondCode Opcode) { 276 switch (Opcode) { 277 default: llvm_unreachable("Illegal integer setcc operation!"); 278 case ISD::SETEQ: 279 case ISD::SETNE: return 0; 280 case ISD::SETLT: 281 case ISD::SETLE: 282 case ISD::SETGT: 283 case ISD::SETGE: return 1; 284 case ISD::SETULT: 285 case ISD::SETULE: 286 case ISD::SETUGT: 287 case ISD::SETUGE: return 2; 288 } 289 } 290 291 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 292 bool isInteger) { 293 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 294 // Cannot fold a signed integer setcc with an unsigned integer setcc. 295 return ISD::SETCC_INVALID; 296 297 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 298 299 // If the N and U bits get set then the resultant comparison DOES suddenly 300 // care about orderedness, and is true when ordered. 301 if (Op > ISD::SETTRUE2) 302 Op &= ~16; // Clear the U bit if the N bit is set. 303 304 // Canonicalize illegal integer setcc's. 305 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 306 Op = ISD::SETNE; 307 308 return ISD::CondCode(Op); 309 } 310 311 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 312 bool isInteger) { 313 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 314 // Cannot fold a signed setcc with an unsigned setcc. 315 return ISD::SETCC_INVALID; 316 317 // Combine all of the condition bits. 318 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 319 320 // Canonicalize illegal integer setcc's. 321 if (isInteger) { 322 switch (Result) { 323 default: break; 324 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 325 case ISD::SETOEQ: // SETEQ & SETU[LG]E 326 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 327 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 328 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 329 } 330 } 331 332 return Result; 333 } 334 335 //===----------------------------------------------------------------------===// 336 // SDNode Profile Support 337 //===----------------------------------------------------------------------===// 338 339 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 340 /// 341 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 342 ID.AddInteger(OpC); 343 } 344 345 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 346 /// solely with their pointer. 347 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 348 ID.AddPointer(VTList.VTs); 349 } 350 351 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 352 /// 353 static void AddNodeIDOperands(FoldingSetNodeID &ID, 354 ArrayRef<SDValue> Ops) { 355 for (auto& Op : Ops) { 356 ID.AddPointer(Op.getNode()); 357 ID.AddInteger(Op.getResNo()); 358 } 359 } 360 361 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 362 /// 363 static void AddNodeIDOperands(FoldingSetNodeID &ID, 364 ArrayRef<SDUse> Ops) { 365 for (auto& Op : Ops) { 366 ID.AddPointer(Op.getNode()); 367 ID.AddInteger(Op.getResNo()); 368 } 369 } 370 371 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 372 SDVTList VTList, ArrayRef<SDValue> OpList) { 373 AddNodeIDOpcode(ID, OpC); 374 AddNodeIDValueTypes(ID, VTList); 375 AddNodeIDOperands(ID, OpList); 376 } 377 378 /// If this is an SDNode with special info, add this info to the NodeID data. 379 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 380 switch (N->getOpcode()) { 381 case ISD::TargetExternalSymbol: 382 case ISD::ExternalSymbol: 383 case ISD::MCSymbol: 384 llvm_unreachable("Should only be used on nodes with operands"); 385 default: break; // Normal nodes don't need extra info. 386 case ISD::TargetConstant: 387 case ISD::Constant: { 388 const ConstantSDNode *C = cast<ConstantSDNode>(N); 389 ID.AddPointer(C->getConstantIntValue()); 390 ID.AddBoolean(C->isOpaque()); 391 break; 392 } 393 case ISD::TargetConstantFP: 394 case ISD::ConstantFP: { 395 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 396 break; 397 } 398 case ISD::TargetGlobalAddress: 399 case ISD::GlobalAddress: 400 case ISD::TargetGlobalTLSAddress: 401 case ISD::GlobalTLSAddress: { 402 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 403 ID.AddPointer(GA->getGlobal()); 404 ID.AddInteger(GA->getOffset()); 405 ID.AddInteger(GA->getTargetFlags()); 406 ID.AddInteger(GA->getAddressSpace()); 407 break; 408 } 409 case ISD::BasicBlock: 410 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 411 break; 412 case ISD::Register: 413 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 414 break; 415 case ISD::RegisterMask: 416 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 417 break; 418 case ISD::SRCVALUE: 419 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 420 break; 421 case ISD::FrameIndex: 422 case ISD::TargetFrameIndex: 423 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 424 break; 425 case ISD::JumpTable: 426 case ISD::TargetJumpTable: 427 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 428 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 429 break; 430 case ISD::ConstantPool: 431 case ISD::TargetConstantPool: { 432 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 433 ID.AddInteger(CP->getAlignment()); 434 ID.AddInteger(CP->getOffset()); 435 if (CP->isMachineConstantPoolEntry()) 436 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 437 else 438 ID.AddPointer(CP->getConstVal()); 439 ID.AddInteger(CP->getTargetFlags()); 440 break; 441 } 442 case ISD::TargetIndex: { 443 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 444 ID.AddInteger(TI->getIndex()); 445 ID.AddInteger(TI->getOffset()); 446 ID.AddInteger(TI->getTargetFlags()); 447 break; 448 } 449 case ISD::LOAD: { 450 const LoadSDNode *LD = cast<LoadSDNode>(N); 451 ID.AddInteger(LD->getMemoryVT().getRawBits()); 452 ID.AddInteger(LD->getRawSubclassData()); 453 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 454 break; 455 } 456 case ISD::STORE: { 457 const StoreSDNode *ST = cast<StoreSDNode>(N); 458 ID.AddInteger(ST->getMemoryVT().getRawBits()); 459 ID.AddInteger(ST->getRawSubclassData()); 460 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 461 break; 462 } 463 case ISD::ATOMIC_CMP_SWAP: 464 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 465 case ISD::ATOMIC_SWAP: 466 case ISD::ATOMIC_LOAD_ADD: 467 case ISD::ATOMIC_LOAD_SUB: 468 case ISD::ATOMIC_LOAD_AND: 469 case ISD::ATOMIC_LOAD_OR: 470 case ISD::ATOMIC_LOAD_XOR: 471 case ISD::ATOMIC_LOAD_NAND: 472 case ISD::ATOMIC_LOAD_MIN: 473 case ISD::ATOMIC_LOAD_MAX: 474 case ISD::ATOMIC_LOAD_UMIN: 475 case ISD::ATOMIC_LOAD_UMAX: 476 case ISD::ATOMIC_LOAD: 477 case ISD::ATOMIC_STORE: { 478 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 479 ID.AddInteger(AT->getMemoryVT().getRawBits()); 480 ID.AddInteger(AT->getRawSubclassData()); 481 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 482 break; 483 } 484 case ISD::PREFETCH: { 485 const MemSDNode *PF = cast<MemSDNode>(N); 486 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 487 break; 488 } 489 case ISD::VECTOR_SHUFFLE: { 490 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 491 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 492 i != e; ++i) 493 ID.AddInteger(SVN->getMaskElt(i)); 494 break; 495 } 496 case ISD::TargetBlockAddress: 497 case ISD::BlockAddress: { 498 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 499 ID.AddPointer(BA->getBlockAddress()); 500 ID.AddInteger(BA->getOffset()); 501 ID.AddInteger(BA->getTargetFlags()); 502 break; 503 } 504 } // end switch (N->getOpcode()) 505 506 // Target specific memory nodes could also have address spaces to check. 507 if (N->isTargetMemoryOpcode()) 508 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 509 } 510 511 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 512 /// data. 513 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 514 AddNodeIDOpcode(ID, N->getOpcode()); 515 // Add the return value info. 516 AddNodeIDValueTypes(ID, N->getVTList()); 517 // Add the operand info. 518 AddNodeIDOperands(ID, N->ops()); 519 520 // Handle SDNode leafs with special info. 521 AddNodeIDCustom(ID, N); 522 } 523 524 //===----------------------------------------------------------------------===// 525 // SelectionDAG Class 526 //===----------------------------------------------------------------------===// 527 528 /// doNotCSE - Return true if CSE should not be performed for this node. 529 static bool doNotCSE(SDNode *N) { 530 if (N->getValueType(0) == MVT::Glue) 531 return true; // Never CSE anything that produces a flag. 532 533 switch (N->getOpcode()) { 534 default: break; 535 case ISD::HANDLENODE: 536 case ISD::EH_LABEL: 537 return true; // Never CSE these nodes. 538 } 539 540 // Check that remaining values produced are not flags. 541 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 542 if (N->getValueType(i) == MVT::Glue) 543 return true; // Never CSE anything that produces a flag. 544 545 return false; 546 } 547 548 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 549 /// SelectionDAG. 550 void SelectionDAG::RemoveDeadNodes() { 551 // Create a dummy node (which is not added to allnodes), that adds a reference 552 // to the root node, preventing it from being deleted. 553 HandleSDNode Dummy(getRoot()); 554 555 SmallVector<SDNode*, 128> DeadNodes; 556 557 // Add all obviously-dead nodes to the DeadNodes worklist. 558 for (SDNode &Node : allnodes()) 559 if (Node.use_empty()) 560 DeadNodes.push_back(&Node); 561 562 RemoveDeadNodes(DeadNodes); 563 564 // If the root changed (e.g. it was a dead load, update the root). 565 setRoot(Dummy.getValue()); 566 } 567 568 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 569 /// given list, and any nodes that become unreachable as a result. 570 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 571 572 // Process the worklist, deleting the nodes and adding their uses to the 573 // worklist. 574 while (!DeadNodes.empty()) { 575 SDNode *N = DeadNodes.pop_back_val(); 576 577 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 578 DUL->NodeDeleted(N, nullptr); 579 580 // Take the node out of the appropriate CSE map. 581 RemoveNodeFromCSEMaps(N); 582 583 // Next, brutally remove the operand list. This is safe to do, as there are 584 // no cycles in the graph. 585 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 586 SDUse &Use = *I++; 587 SDNode *Operand = Use.getNode(); 588 Use.set(SDValue()); 589 590 // Now that we removed this operand, see if there are no uses of it left. 591 if (Operand->use_empty()) 592 DeadNodes.push_back(Operand); 593 } 594 595 DeallocateNode(N); 596 } 597 } 598 599 void SelectionDAG::RemoveDeadNode(SDNode *N){ 600 SmallVector<SDNode*, 16> DeadNodes(1, N); 601 602 // Create a dummy node that adds a reference to the root node, preventing 603 // it from being deleted. (This matters if the root is an operand of the 604 // dead node.) 605 HandleSDNode Dummy(getRoot()); 606 607 RemoveDeadNodes(DeadNodes); 608 } 609 610 void SelectionDAG::DeleteNode(SDNode *N) { 611 // First take this out of the appropriate CSE map. 612 RemoveNodeFromCSEMaps(N); 613 614 // Finally, remove uses due to operands of this node, remove from the 615 // AllNodes list, and delete the node. 616 DeleteNodeNotInCSEMaps(N); 617 } 618 619 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 620 assert(N->getIterator() != AllNodes.begin() && 621 "Cannot delete the entry node!"); 622 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 623 624 // Drop all of the operands and decrement used node's use counts. 625 N->DropOperands(); 626 627 DeallocateNode(N); 628 } 629 630 void SDDbgInfo::erase(const SDNode *Node) { 631 DbgValMapType::iterator I = DbgValMap.find(Node); 632 if (I == DbgValMap.end()) 633 return; 634 for (auto &Val: I->second) 635 Val->setIsInvalidated(); 636 DbgValMap.erase(I); 637 } 638 639 void SelectionDAG::DeallocateNode(SDNode *N) { 640 // If we have operands, deallocate them. 641 removeOperands(N); 642 643 // Set the opcode to DELETED_NODE to help catch bugs when node 644 // memory is reallocated. 645 N->NodeType = ISD::DELETED_NODE; 646 647 NodeAllocator.Deallocate(AllNodes.remove(N)); 648 649 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 650 // them and forget about that node. 651 DbgInfo->erase(N); 652 } 653 654 #ifndef NDEBUG 655 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 656 static void VerifySDNode(SDNode *N) { 657 switch (N->getOpcode()) { 658 default: 659 break; 660 case ISD::BUILD_PAIR: { 661 EVT VT = N->getValueType(0); 662 assert(N->getNumValues() == 1 && "Too many results!"); 663 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 664 "Wrong return type!"); 665 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 666 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 667 "Mismatched operand types!"); 668 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 669 "Wrong operand type!"); 670 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 671 "Wrong return type size"); 672 break; 673 } 674 case ISD::BUILD_VECTOR: { 675 assert(N->getNumValues() == 1 && "Too many results!"); 676 assert(N->getValueType(0).isVector() && "Wrong return type!"); 677 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 678 "Wrong number of operands!"); 679 EVT EltVT = N->getValueType(0).getVectorElementType(); 680 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 681 assert((I->getValueType() == EltVT || 682 (EltVT.isInteger() && I->getValueType().isInteger() && 683 EltVT.bitsLE(I->getValueType()))) && 684 "Wrong operand type!"); 685 assert(I->getValueType() == N->getOperand(0).getValueType() && 686 "Operands must all have the same type"); 687 } 688 break; 689 } 690 } 691 } 692 #endif // NDEBUG 693 694 /// \brief Insert a newly allocated node into the DAG. 695 /// 696 /// Handles insertion into the all nodes list and CSE map, as well as 697 /// verification and other common operations when a new node is allocated. 698 void SelectionDAG::InsertNode(SDNode *N) { 699 AllNodes.push_back(N); 700 #ifndef NDEBUG 701 N->PersistentId = NextPersistentId++; 702 VerifySDNode(N); 703 #endif 704 } 705 706 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 707 /// correspond to it. This is useful when we're about to delete or repurpose 708 /// the node. We don't want future request for structurally identical nodes 709 /// to return N anymore. 710 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 711 bool Erased = false; 712 switch (N->getOpcode()) { 713 case ISD::HANDLENODE: return false; // noop. 714 case ISD::CONDCODE: 715 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 716 "Cond code doesn't exist!"); 717 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 718 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 719 break; 720 case ISD::ExternalSymbol: 721 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 722 break; 723 case ISD::TargetExternalSymbol: { 724 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 725 Erased = TargetExternalSymbols.erase( 726 std::pair<std::string,unsigned char>(ESN->getSymbol(), 727 ESN->getTargetFlags())); 728 break; 729 } 730 case ISD::MCSymbol: { 731 auto *MCSN = cast<MCSymbolSDNode>(N); 732 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 733 break; 734 } 735 case ISD::VALUETYPE: { 736 EVT VT = cast<VTSDNode>(N)->getVT(); 737 if (VT.isExtended()) { 738 Erased = ExtendedValueTypeNodes.erase(VT); 739 } else { 740 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 741 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 742 } 743 break; 744 } 745 default: 746 // Remove it from the CSE Map. 747 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 748 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 749 Erased = CSEMap.RemoveNode(N); 750 break; 751 } 752 #ifndef NDEBUG 753 // Verify that the node was actually in one of the CSE maps, unless it has a 754 // flag result (which cannot be CSE'd) or is one of the special cases that are 755 // not subject to CSE. 756 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 757 !N->isMachineOpcode() && !doNotCSE(N)) { 758 N->dump(this); 759 dbgs() << "\n"; 760 llvm_unreachable("Node is not in map!"); 761 } 762 #endif 763 return Erased; 764 } 765 766 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 767 /// maps and modified in place. Add it back to the CSE maps, unless an identical 768 /// node already exists, in which case transfer all its users to the existing 769 /// node. This transfer can potentially trigger recursive merging. 770 /// 771 void 772 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 773 // For node types that aren't CSE'd, just act as if no identical node 774 // already exists. 775 if (!doNotCSE(N)) { 776 SDNode *Existing = CSEMap.GetOrInsertNode(N); 777 if (Existing != N) { 778 // If there was already an existing matching node, use ReplaceAllUsesWith 779 // to replace the dead one with the existing one. This can cause 780 // recursive merging of other unrelated nodes down the line. 781 ReplaceAllUsesWith(N, Existing); 782 783 // N is now dead. Inform the listeners and delete it. 784 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 785 DUL->NodeDeleted(N, Existing); 786 DeleteNodeNotInCSEMaps(N); 787 return; 788 } 789 } 790 791 // If the node doesn't already exist, we updated it. Inform listeners. 792 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 793 DUL->NodeUpdated(N); 794 } 795 796 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 797 /// were replaced with those specified. If this node is never memoized, 798 /// return null, otherwise return a pointer to the slot it would take. If a 799 /// node already exists with these operands, the slot will be non-null. 800 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 801 void *&InsertPos) { 802 if (doNotCSE(N)) 803 return nullptr; 804 805 SDValue Ops[] = { Op }; 806 FoldingSetNodeID ID; 807 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 808 AddNodeIDCustom(ID, N); 809 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 810 if (Node) 811 if (const SDNodeFlags *Flags = N->getFlags()) 812 Node->intersectFlagsWith(Flags); 813 return Node; 814 } 815 816 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 817 /// were replaced with those specified. If this node is never memoized, 818 /// return null, otherwise return a pointer to the slot it would take. If a 819 /// node already exists with these operands, the slot will be non-null. 820 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 821 SDValue Op1, SDValue Op2, 822 void *&InsertPos) { 823 if (doNotCSE(N)) 824 return nullptr; 825 826 SDValue Ops[] = { Op1, Op2 }; 827 FoldingSetNodeID ID; 828 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 829 AddNodeIDCustom(ID, N); 830 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 831 if (Node) 832 if (const SDNodeFlags *Flags = N->getFlags()) 833 Node->intersectFlagsWith(Flags); 834 return Node; 835 } 836 837 838 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 839 /// were replaced with those specified. If this node is never memoized, 840 /// return null, otherwise return a pointer to the slot it would take. If a 841 /// node already exists with these operands, the slot will be non-null. 842 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 843 void *&InsertPos) { 844 if (doNotCSE(N)) 845 return nullptr; 846 847 FoldingSetNodeID ID; 848 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 849 AddNodeIDCustom(ID, N); 850 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 851 if (Node) 852 if (const SDNodeFlags *Flags = N->getFlags()) 853 Node->intersectFlagsWith(Flags); 854 return Node; 855 } 856 857 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 858 Type *Ty = VT == MVT::iPTR ? 859 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 860 VT.getTypeForEVT(*getContext()); 861 862 return getDataLayout().getABITypeAlignment(Ty); 863 } 864 865 // EntryNode could meaningfully have debug info if we can find it... 866 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 867 : TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL), 868 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 869 Root(getEntryNode()), NewNodesMustHaveLegalTypes(false), 870 UpdateListeners(nullptr) { 871 InsertNode(&EntryNode); 872 DbgInfo = new SDDbgInfo(); 873 } 874 875 void SelectionDAG::init(MachineFunction &mf) { 876 MF = &mf; 877 TLI = getSubtarget().getTargetLowering(); 878 TSI = getSubtarget().getSelectionDAGInfo(); 879 Context = &mf.getFunction()->getContext(); 880 } 881 882 SelectionDAG::~SelectionDAG() { 883 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 884 allnodes_clear(); 885 OperandRecycler.clear(OperandAllocator); 886 delete DbgInfo; 887 } 888 889 void SelectionDAG::allnodes_clear() { 890 assert(&*AllNodes.begin() == &EntryNode); 891 AllNodes.remove(AllNodes.begin()); 892 while (!AllNodes.empty()) 893 DeallocateNode(&AllNodes.front()); 894 #ifndef NDEBUG 895 NextPersistentId = 0; 896 #endif 897 } 898 899 SDNode *SelectionDAG::GetBinarySDNode(unsigned Opcode, const SDLoc &DL, 900 SDVTList VTs, SDValue N1, SDValue N2, 901 const SDNodeFlags *Flags) { 902 SDValue Ops[] = {N1, N2}; 903 904 if (isBinOpWithFlags(Opcode)) { 905 // If no flags were passed in, use a default flags object. 906 SDNodeFlags F; 907 if (Flags == nullptr) 908 Flags = &F; 909 910 auto *FN = newSDNode<BinaryWithFlagsSDNode>(Opcode, DL.getIROrder(), 911 DL.getDebugLoc(), VTs, *Flags); 912 createOperands(FN, Ops); 913 914 return FN; 915 } 916 917 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 918 createOperands(N, Ops); 919 return N; 920 } 921 922 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 923 void *&InsertPos) { 924 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 925 if (N) { 926 switch (N->getOpcode()) { 927 default: break; 928 case ISD::Constant: 929 case ISD::ConstantFP: 930 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 931 "debug location. Use another overload."); 932 } 933 } 934 return N; 935 } 936 937 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 938 const SDLoc &DL, void *&InsertPos) { 939 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 940 if (N) { 941 switch (N->getOpcode()) { 942 case ISD::Constant: 943 case ISD::ConstantFP: 944 // Erase debug location from the node if the node is used at several 945 // different places. Do not propagate one location to all uses as it 946 // will cause a worse single stepping debugging experience. 947 if (N->getDebugLoc() != DL.getDebugLoc()) 948 N->setDebugLoc(DebugLoc()); 949 break; 950 default: 951 // When the node's point of use is located earlier in the instruction 952 // sequence than its prior point of use, update its debug info to the 953 // earlier location. 954 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 955 N->setDebugLoc(DL.getDebugLoc()); 956 break; 957 } 958 } 959 return N; 960 } 961 962 void SelectionDAG::clear() { 963 allnodes_clear(); 964 OperandRecycler.clear(OperandAllocator); 965 OperandAllocator.Reset(); 966 CSEMap.clear(); 967 968 ExtendedValueTypeNodes.clear(); 969 ExternalSymbols.clear(); 970 TargetExternalSymbols.clear(); 971 MCSymbols.clear(); 972 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 973 static_cast<CondCodeSDNode*>(nullptr)); 974 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 975 static_cast<SDNode*>(nullptr)); 976 977 EntryNode.UseList = nullptr; 978 InsertNode(&EntryNode); 979 Root = getEntryNode(); 980 DbgInfo->clear(); 981 } 982 983 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 984 return VT.bitsGT(Op.getValueType()) ? 985 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 986 getNode(ISD::TRUNCATE, DL, VT, Op); 987 } 988 989 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 990 return VT.bitsGT(Op.getValueType()) ? 991 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 992 getNode(ISD::TRUNCATE, DL, VT, Op); 993 } 994 995 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 996 return VT.bitsGT(Op.getValueType()) ? 997 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 998 getNode(ISD::TRUNCATE, DL, VT, Op); 999 } 1000 1001 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1002 EVT OpVT) { 1003 if (VT.bitsLE(Op.getValueType())) 1004 return getNode(ISD::TRUNCATE, SL, VT, Op); 1005 1006 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1007 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1008 } 1009 1010 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1011 assert(!VT.isVector() && 1012 "getZeroExtendInReg should use the vector element type instead of " 1013 "the vector type!"); 1014 if (Op.getValueType() == VT) return Op; 1015 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1016 APInt Imm = APInt::getLowBitsSet(BitWidth, 1017 VT.getSizeInBits()); 1018 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1019 getConstant(Imm, DL, Op.getValueType())); 1020 } 1021 1022 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, 1023 EVT VT) { 1024 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1025 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1026 "The sizes of the input and result must match in order to perform the " 1027 "extend in-register."); 1028 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1029 "The destination vector type must have fewer lanes than the input."); 1030 return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op); 1031 } 1032 1033 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, 1034 EVT VT) { 1035 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1036 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1037 "The sizes of the input and result must match in order to perform the " 1038 "extend in-register."); 1039 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1040 "The destination vector type must have fewer lanes than the input."); 1041 return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op); 1042 } 1043 1044 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, 1045 EVT VT) { 1046 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1047 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1048 "The sizes of the input and result must match in order to perform the " 1049 "extend in-register."); 1050 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1051 "The destination vector type must have fewer lanes than the input."); 1052 return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op); 1053 } 1054 1055 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1056 /// 1057 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1058 EVT EltVT = VT.getScalarType(); 1059 SDValue NegOne = 1060 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1061 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1062 } 1063 1064 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1065 EVT EltVT = VT.getScalarType(); 1066 SDValue TrueValue; 1067 switch (TLI->getBooleanContents(VT)) { 1068 case TargetLowering::ZeroOrOneBooleanContent: 1069 case TargetLowering::UndefinedBooleanContent: 1070 TrueValue = getConstant(1, DL, VT); 1071 break; 1072 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1073 TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, 1074 VT); 1075 break; 1076 } 1077 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1078 } 1079 1080 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1081 bool isT, bool isO) { 1082 EVT EltVT = VT.getScalarType(); 1083 assert((EltVT.getSizeInBits() >= 64 || 1084 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1085 "getConstant with a uint64_t value that doesn't fit in the type!"); 1086 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1087 } 1088 1089 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1090 bool isT, bool isO) { 1091 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1092 } 1093 1094 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1095 EVT VT, bool isT, bool isO) { 1096 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1097 1098 EVT EltVT = VT.getScalarType(); 1099 const ConstantInt *Elt = &Val; 1100 1101 // In some cases the vector type is legal but the element type is illegal and 1102 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1103 // inserted value (the type does not need to match the vector element type). 1104 // Any extra bits introduced will be truncated away. 1105 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1106 TargetLowering::TypePromoteInteger) { 1107 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1108 APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits()); 1109 Elt = ConstantInt::get(*getContext(), NewVal); 1110 } 1111 // In other cases the element type is illegal and needs to be expanded, for 1112 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1113 // the value into n parts and use a vector type with n-times the elements. 1114 // Then bitcast to the type requested. 1115 // Legalizing constants too early makes the DAGCombiner's job harder so we 1116 // only legalize if the DAG tells us we must produce legal types. 1117 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1118 TLI->getTypeAction(*getContext(), EltVT) == 1119 TargetLowering::TypeExpandInteger) { 1120 const APInt &NewVal = Elt->getValue(); 1121 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1122 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1123 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1124 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1125 1126 // Check the temporary vector is the correct size. If this fails then 1127 // getTypeToTransformTo() probably returned a type whose size (in bits) 1128 // isn't a power-of-2 factor of the requested type size. 1129 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1130 1131 SmallVector<SDValue, 2> EltParts; 1132 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1133 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1134 .trunc(ViaEltSizeInBits), DL, 1135 ViaEltVT, isT, isO)); 1136 } 1137 1138 // EltParts is currently in little endian order. If we actually want 1139 // big-endian order then reverse it now. 1140 if (getDataLayout().isBigEndian()) 1141 std::reverse(EltParts.begin(), EltParts.end()); 1142 1143 // The elements must be reversed when the element order is different 1144 // to the endianness of the elements (because the BITCAST is itself a 1145 // vector shuffle in this situation). However, we do not need any code to 1146 // perform this reversal because getConstant() is producing a vector 1147 // splat. 1148 // This situation occurs in MIPS MSA. 1149 1150 SmallVector<SDValue, 8> Ops; 1151 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) 1152 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1153 1154 SDValue Result = getNode(ISD::BITCAST, DL, VT, 1155 getNode(ISD::BUILD_VECTOR, DL, ViaVecVT, Ops)); 1156 return Result; 1157 } 1158 1159 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1160 "APInt size does not match type size!"); 1161 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1162 FoldingSetNodeID ID; 1163 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1164 ID.AddPointer(Elt); 1165 ID.AddBoolean(isO); 1166 void *IP = nullptr; 1167 SDNode *N = nullptr; 1168 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1169 if (!VT.isVector()) 1170 return SDValue(N, 0); 1171 1172 if (!N) { 1173 N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT); 1174 CSEMap.InsertNode(N, IP); 1175 InsertNode(N); 1176 } 1177 1178 SDValue Result(N, 0); 1179 if (VT.isVector()) 1180 Result = getSplatBuildVector(VT, DL, Result); 1181 return Result; 1182 } 1183 1184 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1185 bool isTarget) { 1186 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1187 } 1188 1189 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1190 bool isTarget) { 1191 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1192 } 1193 1194 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1195 EVT VT, bool isTarget) { 1196 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1197 1198 EVT EltVT = VT.getScalarType(); 1199 1200 // Do the map lookup using the actual bit pattern for the floating point 1201 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1202 // we don't have issues with SNANs. 1203 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1204 FoldingSetNodeID ID; 1205 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1206 ID.AddPointer(&V); 1207 void *IP = nullptr; 1208 SDNode *N = nullptr; 1209 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1210 if (!VT.isVector()) 1211 return SDValue(N, 0); 1212 1213 if (!N) { 1214 N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT); 1215 CSEMap.InsertNode(N, IP); 1216 InsertNode(N); 1217 } 1218 1219 SDValue Result(N, 0); 1220 if (VT.isVector()) 1221 Result = getSplatBuildVector(VT, DL, Result); 1222 return Result; 1223 } 1224 1225 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1226 bool isTarget) { 1227 EVT EltVT = VT.getScalarType(); 1228 if (EltVT == MVT::f32) 1229 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1230 else if (EltVT == MVT::f64) 1231 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1232 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1233 EltVT == MVT::f16) { 1234 bool Ignored; 1235 APFloat APF = APFloat(Val); 1236 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1237 &Ignored); 1238 return getConstantFP(APF, DL, VT, isTarget); 1239 } else 1240 llvm_unreachable("Unsupported type in getConstantFP"); 1241 } 1242 1243 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1244 EVT VT, int64_t Offset, bool isTargetGA, 1245 unsigned char TargetFlags) { 1246 assert((TargetFlags == 0 || isTargetGA) && 1247 "Cannot set target flags on target-independent globals"); 1248 1249 // Truncate (with sign-extension) the offset value to the pointer size. 1250 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1251 if (BitWidth < 64) 1252 Offset = SignExtend64(Offset, BitWidth); 1253 1254 unsigned Opc; 1255 if (GV->isThreadLocal()) 1256 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1257 else 1258 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1259 1260 FoldingSetNodeID ID; 1261 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1262 ID.AddPointer(GV); 1263 ID.AddInteger(Offset); 1264 ID.AddInteger(TargetFlags); 1265 ID.AddInteger(GV->getType()->getAddressSpace()); 1266 void *IP = nullptr; 1267 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1268 return SDValue(E, 0); 1269 1270 auto *N = newSDNode<GlobalAddressSDNode>( 1271 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1272 CSEMap.InsertNode(N, IP); 1273 InsertNode(N); 1274 return SDValue(N, 0); 1275 } 1276 1277 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1278 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1279 FoldingSetNodeID ID; 1280 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1281 ID.AddInteger(FI); 1282 void *IP = nullptr; 1283 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1284 return SDValue(E, 0); 1285 1286 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1287 CSEMap.InsertNode(N, IP); 1288 InsertNode(N); 1289 return SDValue(N, 0); 1290 } 1291 1292 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1293 unsigned char TargetFlags) { 1294 assert((TargetFlags == 0 || isTarget) && 1295 "Cannot set target flags on target-independent jump tables"); 1296 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1297 FoldingSetNodeID ID; 1298 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1299 ID.AddInteger(JTI); 1300 ID.AddInteger(TargetFlags); 1301 void *IP = nullptr; 1302 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1303 return SDValue(E, 0); 1304 1305 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1306 CSEMap.InsertNode(N, IP); 1307 InsertNode(N); 1308 return SDValue(N, 0); 1309 } 1310 1311 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1312 unsigned Alignment, int Offset, 1313 bool isTarget, 1314 unsigned char TargetFlags) { 1315 assert((TargetFlags == 0 || isTarget) && 1316 "Cannot set target flags on target-independent globals"); 1317 if (Alignment == 0) 1318 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1319 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1320 FoldingSetNodeID ID; 1321 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1322 ID.AddInteger(Alignment); 1323 ID.AddInteger(Offset); 1324 ID.AddPointer(C); 1325 ID.AddInteger(TargetFlags); 1326 void *IP = nullptr; 1327 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1328 return SDValue(E, 0); 1329 1330 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1331 TargetFlags); 1332 CSEMap.InsertNode(N, IP); 1333 InsertNode(N); 1334 return SDValue(N, 0); 1335 } 1336 1337 1338 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1339 unsigned Alignment, int Offset, 1340 bool isTarget, 1341 unsigned char TargetFlags) { 1342 assert((TargetFlags == 0 || isTarget) && 1343 "Cannot set target flags on target-independent globals"); 1344 if (Alignment == 0) 1345 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1346 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1347 FoldingSetNodeID ID; 1348 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1349 ID.AddInteger(Alignment); 1350 ID.AddInteger(Offset); 1351 C->addSelectionDAGCSEId(ID); 1352 ID.AddInteger(TargetFlags); 1353 void *IP = nullptr; 1354 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1355 return SDValue(E, 0); 1356 1357 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1358 TargetFlags); 1359 CSEMap.InsertNode(N, IP); 1360 InsertNode(N); 1361 return SDValue(N, 0); 1362 } 1363 1364 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1365 unsigned char TargetFlags) { 1366 FoldingSetNodeID ID; 1367 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1368 ID.AddInteger(Index); 1369 ID.AddInteger(Offset); 1370 ID.AddInteger(TargetFlags); 1371 void *IP = nullptr; 1372 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1373 return SDValue(E, 0); 1374 1375 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1376 CSEMap.InsertNode(N, IP); 1377 InsertNode(N); 1378 return SDValue(N, 0); 1379 } 1380 1381 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1382 FoldingSetNodeID ID; 1383 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1384 ID.AddPointer(MBB); 1385 void *IP = nullptr; 1386 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1387 return SDValue(E, 0); 1388 1389 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1390 CSEMap.InsertNode(N, IP); 1391 InsertNode(N); 1392 return SDValue(N, 0); 1393 } 1394 1395 SDValue SelectionDAG::getValueType(EVT VT) { 1396 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1397 ValueTypeNodes.size()) 1398 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1399 1400 SDNode *&N = VT.isExtended() ? 1401 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1402 1403 if (N) return SDValue(N, 0); 1404 N = newSDNode<VTSDNode>(VT); 1405 InsertNode(N); 1406 return SDValue(N, 0); 1407 } 1408 1409 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1410 SDNode *&N = ExternalSymbols[Sym]; 1411 if (N) return SDValue(N, 0); 1412 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1413 InsertNode(N); 1414 return SDValue(N, 0); 1415 } 1416 1417 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1418 SDNode *&N = MCSymbols[Sym]; 1419 if (N) 1420 return SDValue(N, 0); 1421 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1422 InsertNode(N); 1423 return SDValue(N, 0); 1424 } 1425 1426 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1427 unsigned char TargetFlags) { 1428 SDNode *&N = 1429 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1430 TargetFlags)]; 1431 if (N) return SDValue(N, 0); 1432 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1433 InsertNode(N); 1434 return SDValue(N, 0); 1435 } 1436 1437 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1438 if ((unsigned)Cond >= CondCodeNodes.size()) 1439 CondCodeNodes.resize(Cond+1); 1440 1441 if (!CondCodeNodes[Cond]) { 1442 auto *N = newSDNode<CondCodeSDNode>(Cond); 1443 CondCodeNodes[Cond] = N; 1444 InsertNode(N); 1445 } 1446 1447 return SDValue(CondCodeNodes[Cond], 0); 1448 } 1449 1450 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1451 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1452 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1453 std::swap(N1, N2); 1454 ShuffleVectorSDNode::commuteMask(M); 1455 } 1456 1457 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1458 SDValue N2, ArrayRef<int> Mask) { 1459 assert(VT.getVectorNumElements() == Mask.size() && 1460 "Must have the same number of vector elements as mask elements!"); 1461 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1462 "Invalid VECTOR_SHUFFLE"); 1463 1464 // Canonicalize shuffle undef, undef -> undef 1465 if (N1.isUndef() && N2.isUndef()) 1466 return getUNDEF(VT); 1467 1468 // Validate that all indices in Mask are within the range of the elements 1469 // input to the shuffle. 1470 int NElts = Mask.size(); 1471 assert(all_of(Mask, [&](int M) { return M < (NElts * 2); }) && 1472 "Index out of range"); 1473 1474 // Copy the mask so we can do any needed cleanup. 1475 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1476 1477 // Canonicalize shuffle v, v -> v, undef 1478 if (N1 == N2) { 1479 N2 = getUNDEF(VT); 1480 for (int i = 0; i != NElts; ++i) 1481 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1482 } 1483 1484 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1485 if (N1.isUndef()) 1486 commuteShuffle(N1, N2, MaskVec); 1487 1488 // If shuffling a splat, try to blend the splat instead. We do this here so 1489 // that even when this arises during lowering we don't have to re-handle it. 1490 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1491 BitVector UndefElements; 1492 SDValue Splat = BV->getSplatValue(&UndefElements); 1493 if (!Splat) 1494 return; 1495 1496 for (int i = 0; i < NElts; ++i) { 1497 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1498 continue; 1499 1500 // If this input comes from undef, mark it as such. 1501 if (UndefElements[MaskVec[i] - Offset]) { 1502 MaskVec[i] = -1; 1503 continue; 1504 } 1505 1506 // If we can blend a non-undef lane, use that instead. 1507 if (!UndefElements[i]) 1508 MaskVec[i] = i + Offset; 1509 } 1510 }; 1511 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1512 BlendSplat(N1BV, 0); 1513 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1514 BlendSplat(N2BV, NElts); 1515 1516 // Canonicalize all index into lhs, -> shuffle lhs, undef 1517 // Canonicalize all index into rhs, -> shuffle rhs, undef 1518 bool AllLHS = true, AllRHS = true; 1519 bool N2Undef = N2.isUndef(); 1520 for (int i = 0; i != NElts; ++i) { 1521 if (MaskVec[i] >= NElts) { 1522 if (N2Undef) 1523 MaskVec[i] = -1; 1524 else 1525 AllLHS = false; 1526 } else if (MaskVec[i] >= 0) { 1527 AllRHS = false; 1528 } 1529 } 1530 if (AllLHS && AllRHS) 1531 return getUNDEF(VT); 1532 if (AllLHS && !N2Undef) 1533 N2 = getUNDEF(VT); 1534 if (AllRHS) { 1535 N1 = getUNDEF(VT); 1536 commuteShuffle(N1, N2, MaskVec); 1537 } 1538 // Reset our undef status after accounting for the mask. 1539 N2Undef = N2.isUndef(); 1540 // Re-check whether both sides ended up undef. 1541 if (N1.isUndef() && N2Undef) 1542 return getUNDEF(VT); 1543 1544 // If Identity shuffle return that node. 1545 bool Identity = true, AllSame = true; 1546 for (int i = 0; i != NElts; ++i) { 1547 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1548 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1549 } 1550 if (Identity && NElts) 1551 return N1; 1552 1553 // Shuffling a constant splat doesn't change the result. 1554 if (N2Undef) { 1555 SDValue V = N1; 1556 1557 // Look through any bitcasts. We check that these don't change the number 1558 // (and size) of elements and just changes their types. 1559 while (V.getOpcode() == ISD::BITCAST) 1560 V = V->getOperand(0); 1561 1562 // A splat should always show up as a build vector node. 1563 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1564 BitVector UndefElements; 1565 SDValue Splat = BV->getSplatValue(&UndefElements); 1566 // If this is a splat of an undef, shuffling it is also undef. 1567 if (Splat && Splat.isUndef()) 1568 return getUNDEF(VT); 1569 1570 bool SameNumElts = 1571 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1572 1573 // We only have a splat which can skip shuffles if there is a splatted 1574 // value and no undef lanes rearranged by the shuffle. 1575 if (Splat && UndefElements.none()) { 1576 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1577 // number of elements match or the value splatted is a zero constant. 1578 if (SameNumElts) 1579 return N1; 1580 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1581 if (C->isNullValue()) 1582 return N1; 1583 } 1584 1585 // If the shuffle itself creates a splat, build the vector directly. 1586 if (AllSame && SameNumElts) { 1587 EVT BuildVT = BV->getValueType(0); 1588 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1589 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1590 1591 // We may have jumped through bitcasts, so the type of the 1592 // BUILD_VECTOR may not match the type of the shuffle. 1593 if (BuildVT != VT) 1594 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1595 return NewBV; 1596 } 1597 } 1598 } 1599 1600 FoldingSetNodeID ID; 1601 SDValue Ops[2] = { N1, N2 }; 1602 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1603 for (int i = 0; i != NElts; ++i) 1604 ID.AddInteger(MaskVec[i]); 1605 1606 void* IP = nullptr; 1607 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1608 return SDValue(E, 0); 1609 1610 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1611 // SDNode doesn't have access to it. This memory will be "leaked" when 1612 // the node is deallocated, but recovered when the NodeAllocator is released. 1613 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1614 std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc); 1615 1616 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1617 dl.getDebugLoc(), MaskAlloc); 1618 createOperands(N, Ops); 1619 1620 CSEMap.InsertNode(N, IP); 1621 InsertNode(N); 1622 return SDValue(N, 0); 1623 } 1624 1625 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1626 MVT VT = SV.getSimpleValueType(0); 1627 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1628 ShuffleVectorSDNode::commuteMask(MaskVec); 1629 1630 SDValue Op0 = SV.getOperand(0); 1631 SDValue Op1 = SV.getOperand(1); 1632 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1633 } 1634 1635 SDValue SelectionDAG::getConvertRndSat(EVT VT, const SDLoc &dl, SDValue Val, 1636 SDValue DTy, SDValue STy, SDValue Rnd, 1637 SDValue Sat, ISD::CvtCode Code) { 1638 // If the src and dest types are the same and the conversion is between 1639 // integer types of the same sign or two floats, no conversion is necessary. 1640 if (DTy == STy && 1641 (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF)) 1642 return Val; 1643 1644 FoldingSetNodeID ID; 1645 SDValue Ops[] = { Val, DTy, STy, Rnd, Sat }; 1646 AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), Ops); 1647 void* IP = nullptr; 1648 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1649 return SDValue(E, 0); 1650 1651 auto *N = 1652 newSDNode<CvtRndSatSDNode>(VT, dl.getIROrder(), dl.getDebugLoc(), Code); 1653 createOperands(N, Ops); 1654 1655 CSEMap.InsertNode(N, IP); 1656 InsertNode(N); 1657 return SDValue(N, 0); 1658 } 1659 1660 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1661 FoldingSetNodeID ID; 1662 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1663 ID.AddInteger(RegNo); 1664 void *IP = nullptr; 1665 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1666 return SDValue(E, 0); 1667 1668 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1669 CSEMap.InsertNode(N, IP); 1670 InsertNode(N); 1671 return SDValue(N, 0); 1672 } 1673 1674 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1675 FoldingSetNodeID ID; 1676 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1677 ID.AddPointer(RegMask); 1678 void *IP = nullptr; 1679 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1680 return SDValue(E, 0); 1681 1682 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1683 CSEMap.InsertNode(N, IP); 1684 InsertNode(N); 1685 return SDValue(N, 0); 1686 } 1687 1688 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1689 MCSymbol *Label) { 1690 FoldingSetNodeID ID; 1691 SDValue Ops[] = { Root }; 1692 AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops); 1693 ID.AddPointer(Label); 1694 void *IP = nullptr; 1695 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1696 return SDValue(E, 0); 1697 1698 auto *N = newSDNode<EHLabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1699 createOperands(N, Ops); 1700 1701 CSEMap.InsertNode(N, IP); 1702 InsertNode(N); 1703 return SDValue(N, 0); 1704 } 1705 1706 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1707 int64_t Offset, 1708 bool isTarget, 1709 unsigned char TargetFlags) { 1710 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1711 1712 FoldingSetNodeID ID; 1713 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1714 ID.AddPointer(BA); 1715 ID.AddInteger(Offset); 1716 ID.AddInteger(TargetFlags); 1717 void *IP = nullptr; 1718 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1719 return SDValue(E, 0); 1720 1721 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1722 CSEMap.InsertNode(N, IP); 1723 InsertNode(N); 1724 return SDValue(N, 0); 1725 } 1726 1727 SDValue SelectionDAG::getSrcValue(const Value *V) { 1728 assert((!V || V->getType()->isPointerTy()) && 1729 "SrcValue is not a pointer?"); 1730 1731 FoldingSetNodeID ID; 1732 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1733 ID.AddPointer(V); 1734 1735 void *IP = nullptr; 1736 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1737 return SDValue(E, 0); 1738 1739 auto *N = newSDNode<SrcValueSDNode>(V); 1740 CSEMap.InsertNode(N, IP); 1741 InsertNode(N); 1742 return SDValue(N, 0); 1743 } 1744 1745 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1746 FoldingSetNodeID ID; 1747 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1748 ID.AddPointer(MD); 1749 1750 void *IP = nullptr; 1751 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1752 return SDValue(E, 0); 1753 1754 auto *N = newSDNode<MDNodeSDNode>(MD); 1755 CSEMap.InsertNode(N, IP); 1756 InsertNode(N); 1757 return SDValue(N, 0); 1758 } 1759 1760 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1761 if (VT == V.getValueType()) 1762 return V; 1763 1764 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1765 } 1766 1767 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1768 unsigned SrcAS, unsigned DestAS) { 1769 SDValue Ops[] = {Ptr}; 1770 FoldingSetNodeID ID; 1771 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1772 ID.AddInteger(SrcAS); 1773 ID.AddInteger(DestAS); 1774 1775 void *IP = nullptr; 1776 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1777 return SDValue(E, 0); 1778 1779 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1780 VT, SrcAS, DestAS); 1781 createOperands(N, Ops); 1782 1783 CSEMap.InsertNode(N, IP); 1784 InsertNode(N); 1785 return SDValue(N, 0); 1786 } 1787 1788 /// getShiftAmountOperand - Return the specified value casted to 1789 /// the target's desired shift amount type. 1790 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1791 EVT OpTy = Op.getValueType(); 1792 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1793 if (OpTy == ShTy || OpTy.isVector()) return Op; 1794 1795 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1796 } 1797 1798 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1799 SDLoc dl(Node); 1800 const TargetLowering &TLI = getTargetLoweringInfo(); 1801 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1802 EVT VT = Node->getValueType(0); 1803 SDValue Tmp1 = Node->getOperand(0); 1804 SDValue Tmp2 = Node->getOperand(1); 1805 unsigned Align = Node->getConstantOperandVal(3); 1806 1807 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1808 Tmp2, MachinePointerInfo(V)); 1809 SDValue VAList = VAListLoad; 1810 1811 if (Align > TLI.getMinStackArgumentAlignment()) { 1812 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1813 1814 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1815 getConstant(Align - 1, dl, VAList.getValueType())); 1816 1817 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1818 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1819 } 1820 1821 // Increment the pointer, VAList, to the next vaarg 1822 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1823 getConstant(getDataLayout().getTypeAllocSize( 1824 VT.getTypeForEVT(*getContext())), 1825 dl, VAList.getValueType())); 1826 // Store the incremented VAList to the legalized pointer 1827 Tmp1 = 1828 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1829 // Load the actual argument out of the pointer VAList 1830 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1831 } 1832 1833 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1834 SDLoc dl(Node); 1835 const TargetLowering &TLI = getTargetLoweringInfo(); 1836 // This defaults to loading a pointer from the input and storing it to the 1837 // output, returning the chain. 1838 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1839 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1840 SDValue Tmp1 = 1841 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1842 Node->getOperand(2), MachinePointerInfo(VS)); 1843 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1844 MachinePointerInfo(VD)); 1845 } 1846 1847 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1848 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1849 unsigned ByteSize = VT.getStoreSize(); 1850 Type *Ty = VT.getTypeForEVT(*getContext()); 1851 unsigned StackAlign = 1852 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1853 1854 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1855 return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout())); 1856 } 1857 1858 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1859 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1860 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1861 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1862 const DataLayout &DL = getDataLayout(); 1863 unsigned Align = 1864 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1865 1866 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1867 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1868 return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout())); 1869 } 1870 1871 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1872 ISD::CondCode Cond, const SDLoc &dl) { 1873 // These setcc operations always fold. 1874 switch (Cond) { 1875 default: break; 1876 case ISD::SETFALSE: 1877 case ISD::SETFALSE2: return getConstant(0, dl, VT); 1878 case ISD::SETTRUE: 1879 case ISD::SETTRUE2: { 1880 TargetLowering::BooleanContent Cnt = 1881 TLI->getBooleanContents(N1->getValueType(0)); 1882 return getConstant( 1883 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1884 VT); 1885 } 1886 1887 case ISD::SETOEQ: 1888 case ISD::SETOGT: 1889 case ISD::SETOGE: 1890 case ISD::SETOLT: 1891 case ISD::SETOLE: 1892 case ISD::SETONE: 1893 case ISD::SETO: 1894 case ISD::SETUO: 1895 case ISD::SETUEQ: 1896 case ISD::SETUNE: 1897 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); 1898 break; 1899 } 1900 1901 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 1902 const APInt &C2 = N2C->getAPIntValue(); 1903 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 1904 const APInt &C1 = N1C->getAPIntValue(); 1905 1906 switch (Cond) { 1907 default: llvm_unreachable("Unknown integer setcc!"); 1908 case ISD::SETEQ: return getConstant(C1 == C2, dl, VT); 1909 case ISD::SETNE: return getConstant(C1 != C2, dl, VT); 1910 case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT); 1911 case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT); 1912 case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT); 1913 case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT); 1914 case ISD::SETLT: return getConstant(C1.slt(C2), dl, VT); 1915 case ISD::SETGT: return getConstant(C1.sgt(C2), dl, VT); 1916 case ISD::SETLE: return getConstant(C1.sle(C2), dl, VT); 1917 case ISD::SETGE: return getConstant(C1.sge(C2), dl, VT); 1918 } 1919 } 1920 } 1921 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) { 1922 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) { 1923 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); 1924 switch (Cond) { 1925 default: break; 1926 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 1927 return getUNDEF(VT); 1928 LLVM_FALLTHROUGH; 1929 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT); 1930 case ISD::SETNE: if (R==APFloat::cmpUnordered) 1931 return getUNDEF(VT); 1932 LLVM_FALLTHROUGH; 1933 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || 1934 R==APFloat::cmpLessThan, dl, VT); 1935 case ISD::SETLT: if (R==APFloat::cmpUnordered) 1936 return getUNDEF(VT); 1937 LLVM_FALLTHROUGH; 1938 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT); 1939 case ISD::SETGT: if (R==APFloat::cmpUnordered) 1940 return getUNDEF(VT); 1941 LLVM_FALLTHROUGH; 1942 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT); 1943 case ISD::SETLE: if (R==APFloat::cmpUnordered) 1944 return getUNDEF(VT); 1945 LLVM_FALLTHROUGH; 1946 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || 1947 R==APFloat::cmpEqual, dl, VT); 1948 case ISD::SETGE: if (R==APFloat::cmpUnordered) 1949 return getUNDEF(VT); 1950 LLVM_FALLTHROUGH; 1951 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || 1952 R==APFloat::cmpEqual, dl, VT); 1953 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, dl, VT); 1954 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, dl, VT); 1955 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || 1956 R==APFloat::cmpEqual, dl, VT); 1957 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT); 1958 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || 1959 R==APFloat::cmpLessThan, dl, VT); 1960 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || 1961 R==APFloat::cmpUnordered, dl, VT); 1962 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT); 1963 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT); 1964 } 1965 } else { 1966 // Ensure that the constant occurs on the RHS. 1967 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 1968 MVT CompVT = N1.getValueType().getSimpleVT(); 1969 if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) 1970 return SDValue(); 1971 1972 return getSetCC(dl, VT, N2, N1, SwappedCond); 1973 } 1974 } 1975 1976 // Could not fold it. 1977 return SDValue(); 1978 } 1979 1980 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 1981 /// use this predicate to simplify operations downstream. 1982 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 1983 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1984 return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth); 1985 } 1986 1987 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 1988 /// this predicate to simplify operations downstream. Mask is known to be zero 1989 /// for bits that V cannot have. 1990 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 1991 unsigned Depth) const { 1992 APInt KnownZero, KnownOne; 1993 computeKnownBits(Op, KnownZero, KnownOne, Depth); 1994 return (KnownZero & Mask) == Mask; 1995 } 1996 1997 /// Determine which bits of Op are known to be either zero or one and return 1998 /// them in the KnownZero/KnownOne bitsets. 1999 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, 2000 APInt &KnownOne, unsigned Depth) const { 2001 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2002 2003 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. 2004 if (Depth == 6) 2005 return; // Limit search depth. 2006 2007 APInt KnownZero2, KnownOne2; 2008 2009 switch (Op.getOpcode()) { 2010 case ISD::Constant: 2011 // We know all of the bits for a constant! 2012 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 2013 KnownZero = ~KnownOne; 2014 break; 2015 case ISD::BUILD_VECTOR: 2016 // Collect the known bits that are shared by every vector element. 2017 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2018 for (SDValue SrcOp : Op->ops()) { 2019 computeKnownBits(SrcOp, KnownZero2, KnownOne2, Depth + 1); 2020 2021 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2022 if (SrcOp.getValueSizeInBits() != BitWidth) { 2023 assert(SrcOp.getValueSizeInBits() > BitWidth && 2024 "Expected BUILD_VECTOR implicit truncation"); 2025 KnownOne2 = KnownOne2.trunc(BitWidth); 2026 KnownZero2 = KnownZero2.trunc(BitWidth); 2027 } 2028 2029 // Known bits are the values that are shared by every element. 2030 // TODO: support per-element known bits. 2031 KnownOne &= KnownOne2; 2032 KnownZero &= KnownZero2; 2033 } 2034 break; 2035 case ISD::AND: 2036 // If either the LHS or the RHS are Zero, the result is zero. 2037 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2038 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2039 2040 // Output known-1 bits are only known if set in both the LHS & RHS. 2041 KnownOne &= KnownOne2; 2042 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2043 KnownZero |= KnownZero2; 2044 break; 2045 case ISD::OR: 2046 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2047 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2048 2049 // Output known-0 bits are only known if clear in both the LHS & RHS. 2050 KnownZero &= KnownZero2; 2051 // Output known-1 are known to be set if set in either the LHS | RHS. 2052 KnownOne |= KnownOne2; 2053 break; 2054 case ISD::XOR: { 2055 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2056 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2057 2058 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2059 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 2060 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2061 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 2062 KnownZero = KnownZeroOut; 2063 break; 2064 } 2065 case ISD::MUL: { 2066 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2067 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2068 2069 // If low bits are zero in either operand, output low known-0 bits. 2070 // Also compute a conserative estimate for high known-0 bits. 2071 // More trickiness is possible, but this is sufficient for the 2072 // interesting case of alignment computation. 2073 KnownOne.clearAllBits(); 2074 unsigned TrailZ = KnownZero.countTrailingOnes() + 2075 KnownZero2.countTrailingOnes(); 2076 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 2077 KnownZero2.countLeadingOnes(), 2078 BitWidth) - BitWidth; 2079 2080 TrailZ = std::min(TrailZ, BitWidth); 2081 LeadZ = std::min(LeadZ, BitWidth); 2082 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 2083 APInt::getHighBitsSet(BitWidth, LeadZ); 2084 break; 2085 } 2086 case ISD::UDIV: { 2087 // For the purposes of computing leading zeros we can conservatively 2088 // treat a udiv as a logical right shift by the power of 2 known to 2089 // be less than the denominator. 2090 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2091 unsigned LeadZ = KnownZero2.countLeadingOnes(); 2092 2093 KnownOne2.clearAllBits(); 2094 KnownZero2.clearAllBits(); 2095 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2096 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 2097 if (RHSUnknownLeadingOnes != BitWidth) 2098 LeadZ = std::min(BitWidth, 2099 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 2100 2101 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 2102 break; 2103 } 2104 case ISD::SELECT: 2105 computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1); 2106 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2107 2108 // Only known if known in both the LHS and RHS. 2109 KnownOne &= KnownOne2; 2110 KnownZero &= KnownZero2; 2111 break; 2112 case ISD::SELECT_CC: 2113 computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1); 2114 computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1); 2115 2116 // Only known if known in both the LHS and RHS. 2117 KnownOne &= KnownOne2; 2118 KnownZero &= KnownZero2; 2119 break; 2120 case ISD::SADDO: 2121 case ISD::UADDO: 2122 case ISD::SSUBO: 2123 case ISD::USUBO: 2124 case ISD::SMULO: 2125 case ISD::UMULO: 2126 if (Op.getResNo() != 1) 2127 break; 2128 // The boolean result conforms to getBooleanContents. 2129 // If we know the result of a setcc has the top bits zero, use this info. 2130 // We know that we have an integer-based boolean since these operations 2131 // are only available for integer. 2132 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2133 TargetLowering::ZeroOrOneBooleanContent && 2134 BitWidth > 1) 2135 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2136 break; 2137 case ISD::SETCC: 2138 // If we know the result of a setcc has the top bits zero, use this info. 2139 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2140 TargetLowering::ZeroOrOneBooleanContent && 2141 BitWidth > 1) 2142 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2143 break; 2144 case ISD::SHL: 2145 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 2146 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2147 unsigned ShAmt = SA->getZExtValue(); 2148 2149 // If the shift count is an invalid immediate, don't do anything. 2150 if (ShAmt >= BitWidth) 2151 break; 2152 2153 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2154 KnownZero <<= ShAmt; 2155 KnownOne <<= ShAmt; 2156 // low bits known zero. 2157 KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt); 2158 } 2159 break; 2160 case ISD::SRL: 2161 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 2162 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2163 unsigned ShAmt = SA->getZExtValue(); 2164 2165 // If the shift count is an invalid immediate, don't do anything. 2166 if (ShAmt >= BitWidth) 2167 break; 2168 2169 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2170 KnownZero = KnownZero.lshr(ShAmt); 2171 KnownOne = KnownOne.lshr(ShAmt); 2172 2173 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 2174 KnownZero |= HighBits; // High bits known zero. 2175 } 2176 break; 2177 case ISD::SRA: 2178 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2179 unsigned ShAmt = SA->getZExtValue(); 2180 2181 // If the shift count is an invalid immediate, don't do anything. 2182 if (ShAmt >= BitWidth) 2183 break; 2184 2185 // If any of the demanded bits are produced by the sign extension, we also 2186 // demand the input sign bit. 2187 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 2188 2189 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2190 KnownZero = KnownZero.lshr(ShAmt); 2191 KnownOne = KnownOne.lshr(ShAmt); 2192 2193 // Handle the sign bits. 2194 APInt SignBit = APInt::getSignBit(BitWidth); 2195 SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask. 2196 2197 if (KnownZero.intersects(SignBit)) { 2198 KnownZero |= HighBits; // New bits are known zero. 2199 } else if (KnownOne.intersects(SignBit)) { 2200 KnownOne |= HighBits; // New bits are known one. 2201 } 2202 } 2203 break; 2204 case ISD::SIGN_EXTEND_INREG: { 2205 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2206 unsigned EBits = EVT.getScalarSizeInBits(); 2207 2208 // Sign extension. Compute the demanded bits in the result that are not 2209 // present in the input. 2210 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2211 2212 APInt InSignBit = APInt::getSignBit(EBits); 2213 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2214 2215 // If the sign extended bits are demanded, we know that the sign 2216 // bit is demanded. 2217 InSignBit = InSignBit.zext(BitWidth); 2218 if (NewBits.getBoolValue()) 2219 InputDemandedBits |= InSignBit; 2220 2221 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2222 KnownOne &= InputDemandedBits; 2223 KnownZero &= InputDemandedBits; 2224 2225 // If the sign bit of the input is known set or clear, then we know the 2226 // top bits of the result. 2227 if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear 2228 KnownZero |= NewBits; 2229 KnownOne &= ~NewBits; 2230 } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 2231 KnownOne |= NewBits; 2232 KnownZero &= ~NewBits; 2233 } else { // Input sign bit unknown 2234 KnownZero &= ~NewBits; 2235 KnownOne &= ~NewBits; 2236 } 2237 break; 2238 } 2239 case ISD::CTTZ: 2240 case ISD::CTTZ_ZERO_UNDEF: 2241 case ISD::CTLZ: 2242 case ISD::CTLZ_ZERO_UNDEF: 2243 case ISD::CTPOP: { 2244 unsigned LowBits = Log2_32(BitWidth)+1; 2245 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 2246 KnownOne.clearAllBits(); 2247 break; 2248 } 2249 case ISD::LOAD: { 2250 LoadSDNode *LD = cast<LoadSDNode>(Op); 2251 // If this is a ZEXTLoad and we are looking at the loaded value. 2252 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2253 EVT VT = LD->getMemoryVT(); 2254 unsigned MemBits = VT.getScalarSizeInBits(); 2255 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); 2256 } else if (const MDNode *Ranges = LD->getRanges()) { 2257 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2258 computeKnownBitsFromRangeMetadata(*Ranges, KnownZero, KnownOne); 2259 } 2260 break; 2261 } 2262 case ISD::ZERO_EXTEND: { 2263 EVT InVT = Op.getOperand(0).getValueType(); 2264 unsigned InBits = InVT.getScalarSizeInBits(); 2265 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits); 2266 KnownZero = KnownZero.trunc(InBits); 2267 KnownOne = KnownOne.trunc(InBits); 2268 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2269 KnownZero = KnownZero.zext(BitWidth); 2270 KnownOne = KnownOne.zext(BitWidth); 2271 KnownZero |= NewBits; 2272 break; 2273 } 2274 case ISD::SIGN_EXTEND: { 2275 EVT InVT = Op.getOperand(0).getValueType(); 2276 unsigned InBits = InVT.getScalarSizeInBits(); 2277 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits); 2278 2279 KnownZero = KnownZero.trunc(InBits); 2280 KnownOne = KnownOne.trunc(InBits); 2281 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2282 2283 // Note if the sign bit is known to be zero or one. 2284 bool SignBitKnownZero = KnownZero.isNegative(); 2285 bool SignBitKnownOne = KnownOne.isNegative(); 2286 2287 KnownZero = KnownZero.zext(BitWidth); 2288 KnownOne = KnownOne.zext(BitWidth); 2289 2290 // If the sign bit is known zero or one, the top bits match. 2291 if (SignBitKnownZero) 2292 KnownZero |= NewBits; 2293 else if (SignBitKnownOne) 2294 KnownOne |= NewBits; 2295 break; 2296 } 2297 case ISD::ANY_EXTEND: { 2298 EVT InVT = Op.getOperand(0).getValueType(); 2299 unsigned InBits = InVT.getScalarSizeInBits(); 2300 KnownZero = KnownZero.trunc(InBits); 2301 KnownOne = KnownOne.trunc(InBits); 2302 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2303 KnownZero = KnownZero.zext(BitWidth); 2304 KnownOne = KnownOne.zext(BitWidth); 2305 break; 2306 } 2307 case ISD::TRUNCATE: { 2308 EVT InVT = Op.getOperand(0).getValueType(); 2309 unsigned InBits = InVT.getScalarSizeInBits(); 2310 KnownZero = KnownZero.zext(InBits); 2311 KnownOne = KnownOne.zext(InBits); 2312 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2313 KnownZero = KnownZero.trunc(BitWidth); 2314 KnownOne = KnownOne.trunc(BitWidth); 2315 break; 2316 } 2317 case ISD::AssertZext: { 2318 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2319 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2320 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2321 KnownZero |= (~InMask); 2322 KnownOne &= (~KnownZero); 2323 break; 2324 } 2325 case ISD::FGETSIGN: 2326 // All bits are zero except the low bit. 2327 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2328 break; 2329 2330 case ISD::SUB: { 2331 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) { 2332 // We know that the top bits of C-X are clear if X contains less bits 2333 // than C (i.e. no wrap-around can happen). For example, 20-X is 2334 // positive if we can prove that X is >= 0 and < 16. 2335 if (CLHS->getAPIntValue().isNonNegative()) { 2336 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); 2337 // NLZ can't be BitWidth with no sign bit 2338 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 2339 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2340 2341 // If all of the MaskV bits are known to be zero, then we know the 2342 // output top bits are zero, because we now know that the output is 2343 // from [0-C]. 2344 if ((KnownZero2 & MaskV) == MaskV) { 2345 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); 2346 // Top bits known zero. 2347 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 2348 } 2349 } 2350 } 2351 LLVM_FALLTHROUGH; 2352 } 2353 case ISD::ADD: 2354 case ISD::ADDE: { 2355 // Output known-0 bits are known if clear or set in both the low clear bits 2356 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the 2357 // low 3 bits clear. 2358 // Output known-0 bits are also known if the top bits of each input are 2359 // known to be clear. For example, if one input has the top 10 bits clear 2360 // and the other has the top 8 bits clear, we know the top 7 bits of the 2361 // output must be clear. 2362 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2363 unsigned KnownZeroHigh = KnownZero2.countLeadingOnes(); 2364 unsigned KnownZeroLow = KnownZero2.countTrailingOnes(); 2365 2366 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2367 KnownZeroHigh = std::min(KnownZeroHigh, 2368 KnownZero2.countLeadingOnes()); 2369 KnownZeroLow = std::min(KnownZeroLow, 2370 KnownZero2.countTrailingOnes()); 2371 2372 if (Op.getOpcode() == ISD::ADD) { 2373 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroLow); 2374 if (KnownZeroHigh > 1) 2375 KnownZero |= APInt::getHighBitsSet(BitWidth, KnownZeroHigh - 1); 2376 break; 2377 } 2378 2379 // With ADDE, a carry bit may be added in, so we can only use this 2380 // information if we know (at least) that the low two bits are clear. We 2381 // then return to the caller that the low bit is unknown but that other bits 2382 // are known zero. 2383 if (KnownZeroLow >= 2) // ADDE 2384 KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroLow); 2385 break; 2386 } 2387 case ISD::SREM: 2388 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2389 const APInt &RA = Rem->getAPIntValue().abs(); 2390 if (RA.isPowerOf2()) { 2391 APInt LowBits = RA - 1; 2392 computeKnownBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1); 2393 2394 // The low bits of the first operand are unchanged by the srem. 2395 KnownZero = KnownZero2 & LowBits; 2396 KnownOne = KnownOne2 & LowBits; 2397 2398 // If the first operand is non-negative or has all low bits zero, then 2399 // the upper bits are all zero. 2400 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 2401 KnownZero |= ~LowBits; 2402 2403 // If the first operand is negative and not all low bits are zero, then 2404 // the upper bits are all one. 2405 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 2406 KnownOne |= ~LowBits; 2407 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); 2408 } 2409 } 2410 break; 2411 case ISD::UREM: { 2412 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2413 const APInt &RA = Rem->getAPIntValue(); 2414 if (RA.isPowerOf2()) { 2415 APInt LowBits = (RA - 1); 2416 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth + 1); 2417 2418 // The upper bits are all zero, the lower ones are unchanged. 2419 KnownZero = KnownZero2 | ~LowBits; 2420 KnownOne = KnownOne2 & LowBits; 2421 break; 2422 } 2423 } 2424 2425 // Since the result is less than or equal to either operand, any leading 2426 // zero bits in either operand must also exist in the result. 2427 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2428 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2429 2430 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(), 2431 KnownZero2.countLeadingOnes()); 2432 KnownOne.clearAllBits(); 2433 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 2434 break; 2435 } 2436 case ISD::EXTRACT_ELEMENT: { 2437 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2438 const unsigned Index = 2439 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 2440 const unsigned BitWidth = Op.getValueSizeInBits(); 2441 2442 // Remove low part of known bits mask 2443 KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth); 2444 KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth); 2445 2446 // Remove high part of known bit mask 2447 KnownZero = KnownZero.trunc(BitWidth); 2448 KnownOne = KnownOne.trunc(BitWidth); 2449 break; 2450 } 2451 case ISD::EXTRACT_VECTOR_ELT: { 2452 // At the moment we keep this simple and skip tracking the specific 2453 // element. This way we get the lowest common denominator for all elements 2454 // of the vector. 2455 // TODO: get information for given vector element 2456 const unsigned BitWidth = Op.getValueSizeInBits(); 2457 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 2458 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2459 // anything about the extended bits. 2460 if (BitWidth > EltBitWidth) { 2461 KnownZero = KnownZero.trunc(EltBitWidth); 2462 KnownOne = KnownOne.trunc(EltBitWidth); 2463 } 2464 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2465 if (BitWidth > EltBitWidth) { 2466 KnownZero = KnownZero.zext(BitWidth); 2467 KnownOne = KnownOne.zext(BitWidth); 2468 } 2469 break; 2470 } 2471 case ISD::BSWAP: { 2472 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2473 KnownZero = KnownZero2.byteSwap(); 2474 KnownOne = KnownOne2.byteSwap(); 2475 break; 2476 } 2477 case ISD::SMIN: 2478 case ISD::SMAX: 2479 case ISD::UMIN: 2480 case ISD::UMAX: { 2481 APInt Op0Zero, Op0One; 2482 APInt Op1Zero, Op1One; 2483 computeKnownBits(Op.getOperand(0), Op0Zero, Op0One, Depth); 2484 computeKnownBits(Op.getOperand(1), Op1Zero, Op1One, Depth); 2485 2486 KnownZero = Op0Zero & Op1Zero; 2487 KnownOne = Op0One & Op1One; 2488 break; 2489 } 2490 case ISD::FrameIndex: 2491 case ISD::TargetFrameIndex: 2492 if (unsigned Align = InferPtrAlignment(Op)) { 2493 // The low bits are known zero if the pointer is aligned. 2494 KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align)); 2495 break; 2496 } 2497 break; 2498 2499 default: 2500 if (Op.getOpcode() < ISD::BUILTIN_OP_END) 2501 break; 2502 LLVM_FALLTHROUGH; 2503 case ISD::INTRINSIC_WO_CHAIN: 2504 case ISD::INTRINSIC_W_CHAIN: 2505 case ISD::INTRINSIC_VOID: 2506 // Allow the target to implement this method for its nodes. 2507 TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth); 2508 break; 2509 } 2510 2511 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 2512 } 2513 2514 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 2515 // A left-shift of a constant one will have exactly one bit set because 2516 // shifting the bit off the end is undefined. 2517 if (Val.getOpcode() == ISD::SHL) { 2518 auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0)); 2519 if (C && C->getAPIntValue() == 1) 2520 return true; 2521 } 2522 2523 // Similarly, a logical right-shift of a constant sign-bit will have exactly 2524 // one bit set. 2525 if (Val.getOpcode() == ISD::SRL) { 2526 auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0)); 2527 if (C && C->getAPIntValue().isSignBit()) 2528 return true; 2529 } 2530 2531 // More could be done here, though the above checks are enough 2532 // to handle some common cases. 2533 2534 // Fall back to computeKnownBits to catch other known cases. 2535 EVT OpVT = Val.getValueType(); 2536 unsigned BitWidth = OpVT.getScalarSizeInBits(); 2537 APInt KnownZero, KnownOne; 2538 computeKnownBits(Val, KnownZero, KnownOne); 2539 return (KnownZero.countPopulation() == BitWidth - 1) && 2540 (KnownOne.countPopulation() == 1); 2541 } 2542 2543 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 2544 EVT VT = Op.getValueType(); 2545 assert(VT.isInteger() && "Invalid VT!"); 2546 unsigned VTBits = VT.getScalarSizeInBits(); 2547 unsigned Tmp, Tmp2; 2548 unsigned FirstAnswer = 1; 2549 2550 if (Depth == 6) 2551 return 1; // Limit search depth. 2552 2553 switch (Op.getOpcode()) { 2554 default: break; 2555 case ISD::AssertSext: 2556 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2557 return VTBits-Tmp+1; 2558 case ISD::AssertZext: 2559 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2560 return VTBits-Tmp; 2561 2562 case ISD::Constant: { 2563 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue(); 2564 return Val.getNumSignBits(); 2565 } 2566 2567 case ISD::SIGN_EXTEND: 2568 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 2569 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; 2570 2571 case ISD::SIGN_EXTEND_INREG: 2572 // Max of the input and what this extends. 2573 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 2574 Tmp = VTBits-Tmp+1; 2575 2576 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2577 return std::max(Tmp, Tmp2); 2578 2579 case ISD::SRA: 2580 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2581 // SRA X, C -> adds C sign bits. 2582 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2583 Tmp += C->getZExtValue(); 2584 if (Tmp > VTBits) Tmp = VTBits; 2585 } 2586 return Tmp; 2587 case ISD::SHL: 2588 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2589 // shl destroys sign bits. 2590 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2591 if (C->getZExtValue() >= VTBits || // Bad shift. 2592 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out. 2593 return Tmp - C->getZExtValue(); 2594 } 2595 break; 2596 case ISD::AND: 2597 case ISD::OR: 2598 case ISD::XOR: // NOT is handled here. 2599 // Logical binary ops preserve the number of sign bits at the worst. 2600 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2601 if (Tmp != 1) { 2602 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2603 FirstAnswer = std::min(Tmp, Tmp2); 2604 // We computed what we know about the sign bits as our first 2605 // answer. Now proceed to the generic code that uses 2606 // computeKnownBits, and pick whichever answer is better. 2607 } 2608 break; 2609 2610 case ISD::SELECT: 2611 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2612 if (Tmp == 1) return 1; // Early out. 2613 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1); 2614 return std::min(Tmp, Tmp2); 2615 case ISD::SELECT_CC: 2616 Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1); 2617 if (Tmp == 1) return 1; // Early out. 2618 Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1); 2619 return std::min(Tmp, Tmp2); 2620 case ISD::SMIN: 2621 case ISD::SMAX: 2622 case ISD::UMIN: 2623 case ISD::UMAX: 2624 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2625 if (Tmp == 1) 2626 return 1; // Early out. 2627 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 2628 return std::min(Tmp, Tmp2); 2629 case ISD::SADDO: 2630 case ISD::UADDO: 2631 case ISD::SSUBO: 2632 case ISD::USUBO: 2633 case ISD::SMULO: 2634 case ISD::UMULO: 2635 if (Op.getResNo() != 1) 2636 break; 2637 // The boolean result conforms to getBooleanContents. Fall through. 2638 // If setcc returns 0/-1, all bits are sign bits. 2639 // We know that we have an integer-based boolean since these operations 2640 // are only available for integer. 2641 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2642 TargetLowering::ZeroOrNegativeOneBooleanContent) 2643 return VTBits; 2644 break; 2645 case ISD::SETCC: 2646 // If setcc returns 0/-1, all bits are sign bits. 2647 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2648 TargetLowering::ZeroOrNegativeOneBooleanContent) 2649 return VTBits; 2650 break; 2651 case ISD::ROTL: 2652 case ISD::ROTR: 2653 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2654 unsigned RotAmt = C->getZExtValue() & (VTBits-1); 2655 2656 // Handle rotate right by N like a rotate left by 32-N. 2657 if (Op.getOpcode() == ISD::ROTR) 2658 RotAmt = (VTBits-RotAmt) & (VTBits-1); 2659 2660 // If we aren't rotating out all of the known-in sign bits, return the 2661 // number that are left. This handles rotl(sext(x), 1) for example. 2662 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2663 if (Tmp > RotAmt+1) return Tmp-RotAmt; 2664 } 2665 break; 2666 case ISD::ADD: 2667 // Add can have at most one carry bit. Thus we know that the output 2668 // is, at worst, one more bit than the inputs. 2669 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2670 if (Tmp == 1) return 1; // Early out. 2671 2672 // Special case decrementing a value (ADD X, -1): 2673 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 2674 if (CRHS->isAllOnesValue()) { 2675 APInt KnownZero, KnownOne; 2676 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2677 2678 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2679 // sign bits set. 2680 if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) 2681 return VTBits; 2682 2683 // If we are subtracting one from a positive number, there is no carry 2684 // out of the result. 2685 if (KnownZero.isNegative()) 2686 return Tmp; 2687 } 2688 2689 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2690 if (Tmp2 == 1) return 1; 2691 return std::min(Tmp, Tmp2)-1; 2692 2693 case ISD::SUB: 2694 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2695 if (Tmp2 == 1) return 1; 2696 2697 // Handle NEG. 2698 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) 2699 if (CLHS->isNullValue()) { 2700 APInt KnownZero, KnownOne; 2701 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2702 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2703 // sign bits set. 2704 if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) 2705 return VTBits; 2706 2707 // If the input is known to be positive (the sign bit is known clear), 2708 // the output of the NEG has the same number of sign bits as the input. 2709 if (KnownZero.isNegative()) 2710 return Tmp2; 2711 2712 // Otherwise, we treat this like a SUB. 2713 } 2714 2715 // Sub can have at most one carry bit. Thus we know that the output 2716 // is, at worst, one more bit than the inputs. 2717 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2718 if (Tmp == 1) return 1; // Early out. 2719 return std::min(Tmp, Tmp2)-1; 2720 case ISD::TRUNCATE: 2721 // FIXME: it's tricky to do anything useful for this, but it is an important 2722 // case for targets like X86. 2723 break; 2724 case ISD::EXTRACT_ELEMENT: { 2725 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2726 const int BitWidth = Op.getValueSizeInBits(); 2727 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 2728 2729 // Get reverse index (starting from 1), Op1 value indexes elements from 2730 // little end. Sign starts at big end. 2731 const int rIndex = Items - 1 - 2732 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 2733 2734 // If the sign portion ends in our element the subtraction gives correct 2735 // result. Otherwise it gives either negative or > bitwidth result 2736 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 2737 } 2738 case ISD::EXTRACT_VECTOR_ELT: { 2739 // At the moment we keep this simple and skip tracking the specific 2740 // element. This way we get the lowest common denominator for all elements 2741 // of the vector. 2742 // TODO: get information for given vector element 2743 const unsigned BitWidth = Op.getValueSizeInBits(); 2744 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 2745 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 2746 // anything about sign bits. But if the sizes match we can derive knowledge 2747 // about sign bits from the vector operand. 2748 if (BitWidth == EltBitWidth) 2749 return ComputeNumSignBits(Op.getOperand(0), Depth+1); 2750 break; 2751 } 2752 } 2753 2754 // If we are looking at the loaded value of the SDNode. 2755 if (Op.getResNo() == 0) { 2756 // Handle LOADX separately here. EXTLOAD case will fallthrough. 2757 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 2758 unsigned ExtType = LD->getExtensionType(); 2759 switch (ExtType) { 2760 default: break; 2761 case ISD::SEXTLOAD: // '17' bits known 2762 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 2763 return VTBits-Tmp+1; 2764 case ISD::ZEXTLOAD: // '16' bits known 2765 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 2766 return VTBits-Tmp; 2767 } 2768 } 2769 } 2770 2771 // Allow the target to implement this method for its nodes. 2772 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2773 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2774 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2775 Op.getOpcode() == ISD::INTRINSIC_VOID) { 2776 unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, *this, Depth); 2777 if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits); 2778 } 2779 2780 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2781 // use this information. 2782 APInt KnownZero, KnownOne; 2783 computeKnownBits(Op, KnownZero, KnownOne, Depth); 2784 2785 APInt Mask; 2786 if (KnownZero.isNegative()) { // sign bit is 0 2787 Mask = KnownZero; 2788 } else if (KnownOne.isNegative()) { // sign bit is 1; 2789 Mask = KnownOne; 2790 } else { 2791 // Nothing known. 2792 return FirstAnswer; 2793 } 2794 2795 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2796 // the number of identical bits in the top of the input value. 2797 Mask = ~Mask; 2798 Mask <<= Mask.getBitWidth()-VTBits; 2799 // Return # leading zeros. We use 'min' here in case Val was zero before 2800 // shifting. We don't want to return '64' as for an i32 "0". 2801 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 2802 } 2803 2804 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 2805 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 2806 !isa<ConstantSDNode>(Op.getOperand(1))) 2807 return false; 2808 2809 if (Op.getOpcode() == ISD::OR && 2810 !MaskedValueIsZero(Op.getOperand(0), 2811 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) 2812 return false; 2813 2814 return true; 2815 } 2816 2817 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const { 2818 // If we're told that NaNs won't happen, assume they won't. 2819 if (getTarget().Options.NoNaNsFPMath) 2820 return true; 2821 2822 // If the value is a constant, we can obviously see if it is a NaN or not. 2823 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 2824 return !C->getValueAPF().isNaN(); 2825 2826 // TODO: Recognize more cases here. 2827 2828 return false; 2829 } 2830 2831 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 2832 // If the value is a constant, we can obviously see if it is a zero or not. 2833 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 2834 return !C->isZero(); 2835 2836 // TODO: Recognize more cases here. 2837 switch (Op.getOpcode()) { 2838 default: break; 2839 case ISD::OR: 2840 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 2841 return !C->isNullValue(); 2842 break; 2843 } 2844 2845 return false; 2846 } 2847 2848 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 2849 // Check the obvious case. 2850 if (A == B) return true; 2851 2852 // For for negative and positive zero. 2853 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 2854 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 2855 if (CA->isZero() && CB->isZero()) return true; 2856 2857 // Otherwise they may not be equal. 2858 return false; 2859 } 2860 2861 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 2862 assert(A.getValueType() == B.getValueType() && 2863 "Values must have the same type"); 2864 APInt AZero, AOne; 2865 APInt BZero, BOne; 2866 computeKnownBits(A, AZero, AOne); 2867 computeKnownBits(B, BZero, BOne); 2868 return (AZero | BZero).isAllOnesValue(); 2869 } 2870 2871 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 2872 ArrayRef<SDValue> Ops, 2873 llvm::SelectionDAG &DAG) { 2874 if (Ops.size() == 1) 2875 return Ops[0]; 2876 2877 // Concat of UNDEFs is UNDEF. 2878 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 2879 return DAG.getUNDEF(VT); 2880 2881 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 2882 // simplified to one big BUILD_VECTOR. 2883 // FIXME: Add support for SCALAR_TO_VECTOR as well. 2884 EVT SVT = VT.getScalarType(); 2885 SmallVector<SDValue, 16> Elts; 2886 for (SDValue Op : Ops) { 2887 EVT OpVT = Op.getValueType(); 2888 if (Op.isUndef()) 2889 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 2890 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 2891 Elts.append(Op->op_begin(), Op->op_end()); 2892 else 2893 return SDValue(); 2894 } 2895 2896 // BUILD_VECTOR requires all inputs to be of the same type, find the 2897 // maximum type and extend them all. 2898 for (SDValue Op : Elts) 2899 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 2900 2901 if (SVT.bitsGT(VT.getScalarType())) 2902 for (SDValue &Op : Elts) 2903 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 2904 ? DAG.getZExtOrTrunc(Op, DL, SVT) 2905 : DAG.getSExtOrTrunc(Op, DL, SVT); 2906 2907 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts); 2908 } 2909 2910 /// Gets or creates the specified node. 2911 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 2912 FoldingSetNodeID ID; 2913 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 2914 void *IP = nullptr; 2915 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 2916 return SDValue(E, 0); 2917 2918 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 2919 getVTList(VT)); 2920 CSEMap.InsertNode(N, IP); 2921 2922 InsertNode(N); 2923 return SDValue(N, 0); 2924 } 2925 2926 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 2927 SDValue Operand) { 2928 // Constant fold unary operations with an integer constant operand. Even 2929 // opaque constant will be folded, because the folding of unary operations 2930 // doesn't create new constants with different values. Nevertheless, the 2931 // opaque flag is preserved during folding to prevent future folding with 2932 // other constants. 2933 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 2934 const APInt &Val = C->getAPIntValue(); 2935 switch (Opcode) { 2936 default: break; 2937 case ISD::SIGN_EXTEND: 2938 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 2939 C->isTargetOpcode(), C->isOpaque()); 2940 case ISD::ANY_EXTEND: 2941 case ISD::ZERO_EXTEND: 2942 case ISD::TRUNCATE: 2943 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 2944 C->isTargetOpcode(), C->isOpaque()); 2945 case ISD::UINT_TO_FP: 2946 case ISD::SINT_TO_FP: { 2947 APFloat apf(EVTToAPFloatSemantics(VT), 2948 APInt::getNullValue(VT.getSizeInBits())); 2949 (void)apf.convertFromAPInt(Val, 2950 Opcode==ISD::SINT_TO_FP, 2951 APFloat::rmNearestTiesToEven); 2952 return getConstantFP(apf, DL, VT); 2953 } 2954 case ISD::BITCAST: 2955 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 2956 return getConstantFP(APFloat(APFloat::IEEEhalf, Val), DL, VT); 2957 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 2958 return getConstantFP(APFloat(APFloat::IEEEsingle, Val), DL, VT); 2959 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 2960 return getConstantFP(APFloat(APFloat::IEEEdouble, Val), DL, VT); 2961 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 2962 return getConstantFP(APFloat(APFloat::IEEEquad, Val), DL, VT); 2963 break; 2964 case ISD::BSWAP: 2965 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 2966 C->isOpaque()); 2967 case ISD::CTPOP: 2968 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 2969 C->isOpaque()); 2970 case ISD::CTLZ: 2971 case ISD::CTLZ_ZERO_UNDEF: 2972 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 2973 C->isOpaque()); 2974 case ISD::CTTZ: 2975 case ISD::CTTZ_ZERO_UNDEF: 2976 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 2977 C->isOpaque()); 2978 } 2979 } 2980 2981 // Constant fold unary operations with a floating point constant operand. 2982 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 2983 APFloat V = C->getValueAPF(); // make copy 2984 switch (Opcode) { 2985 case ISD::FNEG: 2986 V.changeSign(); 2987 return getConstantFP(V, DL, VT); 2988 case ISD::FABS: 2989 V.clearSign(); 2990 return getConstantFP(V, DL, VT); 2991 case ISD::FCEIL: { 2992 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 2993 if (fs == APFloat::opOK || fs == APFloat::opInexact) 2994 return getConstantFP(V, DL, VT); 2995 break; 2996 } 2997 case ISD::FTRUNC: { 2998 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 2999 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3000 return getConstantFP(V, DL, VT); 3001 break; 3002 } 3003 case ISD::FFLOOR: { 3004 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 3005 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3006 return getConstantFP(V, DL, VT); 3007 break; 3008 } 3009 case ISD::FP_EXTEND: { 3010 bool ignored; 3011 // This can return overflow, underflow, or inexact; we don't care. 3012 // FIXME need to be more flexible about rounding mode. 3013 (void)V.convert(EVTToAPFloatSemantics(VT), 3014 APFloat::rmNearestTiesToEven, &ignored); 3015 return getConstantFP(V, DL, VT); 3016 } 3017 case ISD::FP_TO_SINT: 3018 case ISD::FP_TO_UINT: { 3019 integerPart x[2]; 3020 bool ignored; 3021 static_assert(integerPartWidth >= 64, "APFloat parts too small!"); 3022 // FIXME need to be more flexible about rounding mode. 3023 APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(), 3024 Opcode==ISD::FP_TO_SINT, 3025 APFloat::rmTowardZero, &ignored); 3026 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual 3027 break; 3028 APInt api(VT.getSizeInBits(), x); 3029 return getConstant(api, DL, VT); 3030 } 3031 case ISD::BITCAST: 3032 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 3033 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3034 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 3035 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3036 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 3037 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 3038 break; 3039 } 3040 } 3041 3042 // Constant fold unary operations with a vector integer or float operand. 3043 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 3044 if (BV->isConstant()) { 3045 switch (Opcode) { 3046 default: 3047 // FIXME: Entirely reasonable to perform folding of other unary 3048 // operations here as the need arises. 3049 break; 3050 case ISD::FNEG: 3051 case ISD::FABS: 3052 case ISD::FCEIL: 3053 case ISD::FTRUNC: 3054 case ISD::FFLOOR: 3055 case ISD::FP_EXTEND: 3056 case ISD::FP_TO_SINT: 3057 case ISD::FP_TO_UINT: 3058 case ISD::TRUNCATE: 3059 case ISD::UINT_TO_FP: 3060 case ISD::SINT_TO_FP: 3061 case ISD::BSWAP: 3062 case ISD::CTLZ: 3063 case ISD::CTLZ_ZERO_UNDEF: 3064 case ISD::CTTZ: 3065 case ISD::CTTZ_ZERO_UNDEF: 3066 case ISD::CTPOP: { 3067 SDValue Ops = { Operand }; 3068 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 3069 return Fold; 3070 } 3071 } 3072 } 3073 } 3074 3075 unsigned OpOpcode = Operand.getNode()->getOpcode(); 3076 switch (Opcode) { 3077 case ISD::TokenFactor: 3078 case ISD::MERGE_VALUES: 3079 case ISD::CONCAT_VECTORS: 3080 return Operand; // Factor, merge or concat of one node? No need. 3081 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 3082 case ISD::FP_EXTEND: 3083 assert(VT.isFloatingPoint() && 3084 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 3085 if (Operand.getValueType() == VT) return Operand; // noop conversion. 3086 assert((!VT.isVector() || 3087 VT.getVectorNumElements() == 3088 Operand.getValueType().getVectorNumElements()) && 3089 "Vector element count mismatch!"); 3090 assert(Operand.getValueType().bitsLT(VT) && 3091 "Invalid fpext node, dst < src!"); 3092 if (Operand.isUndef()) 3093 return getUNDEF(VT); 3094 break; 3095 case ISD::SIGN_EXTEND: 3096 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3097 "Invalid SIGN_EXTEND!"); 3098 if (Operand.getValueType() == VT) return Operand; // noop extension 3099 assert((!VT.isVector() || 3100 VT.getVectorNumElements() == 3101 Operand.getValueType().getVectorNumElements()) && 3102 "Vector element count mismatch!"); 3103 assert(Operand.getValueType().bitsLT(VT) && 3104 "Invalid sext node, dst < src!"); 3105 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 3106 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3107 else if (OpOpcode == ISD::UNDEF) 3108 // sext(undef) = 0, because the top bits will all be the same. 3109 return getConstant(0, DL, VT); 3110 break; 3111 case ISD::ZERO_EXTEND: 3112 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3113 "Invalid ZERO_EXTEND!"); 3114 if (Operand.getValueType() == VT) return Operand; // noop extension 3115 assert((!VT.isVector() || 3116 VT.getVectorNumElements() == 3117 Operand.getValueType().getVectorNumElements()) && 3118 "Vector element count mismatch!"); 3119 assert(Operand.getValueType().bitsLT(VT) && 3120 "Invalid zext node, dst < src!"); 3121 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 3122 return getNode(ISD::ZERO_EXTEND, DL, VT, 3123 Operand.getNode()->getOperand(0)); 3124 else if (OpOpcode == ISD::UNDEF) 3125 // zext(undef) = 0, because the top bits will be zero. 3126 return getConstant(0, DL, VT); 3127 break; 3128 case ISD::ANY_EXTEND: 3129 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3130 "Invalid ANY_EXTEND!"); 3131 if (Operand.getValueType() == VT) return Operand; // noop extension 3132 assert((!VT.isVector() || 3133 VT.getVectorNumElements() == 3134 Operand.getValueType().getVectorNumElements()) && 3135 "Vector element count mismatch!"); 3136 assert(Operand.getValueType().bitsLT(VT) && 3137 "Invalid anyext node, dst < src!"); 3138 3139 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3140 OpOpcode == ISD::ANY_EXTEND) 3141 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 3142 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3143 else if (OpOpcode == ISD::UNDEF) 3144 return getUNDEF(VT); 3145 3146 // (ext (trunx x)) -> x 3147 if (OpOpcode == ISD::TRUNCATE) { 3148 SDValue OpOp = Operand.getNode()->getOperand(0); 3149 if (OpOp.getValueType() == VT) 3150 return OpOp; 3151 } 3152 break; 3153 case ISD::TRUNCATE: 3154 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3155 "Invalid TRUNCATE!"); 3156 if (Operand.getValueType() == VT) return Operand; // noop truncate 3157 assert((!VT.isVector() || 3158 VT.getVectorNumElements() == 3159 Operand.getValueType().getVectorNumElements()) && 3160 "Vector element count mismatch!"); 3161 assert(Operand.getValueType().bitsGT(VT) && 3162 "Invalid truncate node, src < dst!"); 3163 if (OpOpcode == ISD::TRUNCATE) 3164 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); 3165 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3166 OpOpcode == ISD::ANY_EXTEND) { 3167 // If the source is smaller than the dest, we still need an extend. 3168 if (Operand.getNode()->getOperand(0).getValueType().getScalarType() 3169 .bitsLT(VT.getScalarType())) 3170 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3171 if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT)) 3172 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); 3173 return Operand.getNode()->getOperand(0); 3174 } 3175 if (OpOpcode == ISD::UNDEF) 3176 return getUNDEF(VT); 3177 break; 3178 case ISD::BSWAP: 3179 assert(VT.isInteger() && VT == Operand.getValueType() && 3180 "Invalid BSWAP!"); 3181 assert((VT.getScalarSizeInBits() % 16 == 0) && 3182 "BSWAP types must be a multiple of 16 bits!"); 3183 if (OpOpcode == ISD::UNDEF) 3184 return getUNDEF(VT); 3185 break; 3186 case ISD::BITREVERSE: 3187 assert(VT.isInteger() && VT == Operand.getValueType() && 3188 "Invalid BITREVERSE!"); 3189 if (OpOpcode == ISD::UNDEF) 3190 return getUNDEF(VT); 3191 break; 3192 case ISD::BITCAST: 3193 // Basic sanity checking. 3194 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 3195 "Cannot BITCAST between types of different sizes!"); 3196 if (VT == Operand.getValueType()) return Operand; // noop conversion. 3197 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 3198 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 3199 if (OpOpcode == ISD::UNDEF) 3200 return getUNDEF(VT); 3201 break; 3202 case ISD::SCALAR_TO_VECTOR: 3203 assert(VT.isVector() && !Operand.getValueType().isVector() && 3204 (VT.getVectorElementType() == Operand.getValueType() || 3205 (VT.getVectorElementType().isInteger() && 3206 Operand.getValueType().isInteger() && 3207 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 3208 "Illegal SCALAR_TO_VECTOR node!"); 3209 if (OpOpcode == ISD::UNDEF) 3210 return getUNDEF(VT); 3211 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 3212 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 3213 isa<ConstantSDNode>(Operand.getOperand(1)) && 3214 Operand.getConstantOperandVal(1) == 0 && 3215 Operand.getOperand(0).getValueType() == VT) 3216 return Operand.getOperand(0); 3217 break; 3218 case ISD::FNEG: 3219 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 3220 if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB) 3221 // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags? 3222 return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1), 3223 Operand.getNode()->getOperand(0), 3224 &cast<BinaryWithFlagsSDNode>(Operand.getNode())->Flags); 3225 if (OpOpcode == ISD::FNEG) // --X -> X 3226 return Operand.getNode()->getOperand(0); 3227 break; 3228 case ISD::FABS: 3229 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 3230 return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0)); 3231 break; 3232 } 3233 3234 SDNode *N; 3235 SDVTList VTs = getVTList(VT); 3236 SDValue Ops[] = {Operand}; 3237 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 3238 FoldingSetNodeID ID; 3239 AddNodeIDNode(ID, Opcode, VTs, Ops); 3240 void *IP = nullptr; 3241 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3242 return SDValue(E, 0); 3243 3244 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3245 createOperands(N, Ops); 3246 CSEMap.InsertNode(N, IP); 3247 } else { 3248 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3249 createOperands(N, Ops); 3250 } 3251 3252 InsertNode(N); 3253 return SDValue(N, 0); 3254 } 3255 3256 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 3257 const APInt &C2) { 3258 switch (Opcode) { 3259 case ISD::ADD: return std::make_pair(C1 + C2, true); 3260 case ISD::SUB: return std::make_pair(C1 - C2, true); 3261 case ISD::MUL: return std::make_pair(C1 * C2, true); 3262 case ISD::AND: return std::make_pair(C1 & C2, true); 3263 case ISD::OR: return std::make_pair(C1 | C2, true); 3264 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 3265 case ISD::SHL: return std::make_pair(C1 << C2, true); 3266 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 3267 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 3268 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 3269 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 3270 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 3271 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 3272 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 3273 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 3274 case ISD::UDIV: 3275 if (!C2.getBoolValue()) 3276 break; 3277 return std::make_pair(C1.udiv(C2), true); 3278 case ISD::UREM: 3279 if (!C2.getBoolValue()) 3280 break; 3281 return std::make_pair(C1.urem(C2), true); 3282 case ISD::SDIV: 3283 if (!C2.getBoolValue()) 3284 break; 3285 return std::make_pair(C1.sdiv(C2), true); 3286 case ISD::SREM: 3287 if (!C2.getBoolValue()) 3288 break; 3289 return std::make_pair(C1.srem(C2), true); 3290 } 3291 return std::make_pair(APInt(1, 0), false); 3292 } 3293 3294 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3295 EVT VT, const ConstantSDNode *Cst1, 3296 const ConstantSDNode *Cst2) { 3297 if (Cst1->isOpaque() || Cst2->isOpaque()) 3298 return SDValue(); 3299 3300 std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), 3301 Cst2->getAPIntValue()); 3302 if (!Folded.second) 3303 return SDValue(); 3304 return getConstant(Folded.first, DL, VT); 3305 } 3306 3307 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 3308 const GlobalAddressSDNode *GA, 3309 const SDNode *N2) { 3310 if (GA->getOpcode() != ISD::GlobalAddress) 3311 return SDValue(); 3312 if (!TLI->isOffsetFoldingLegal(GA)) 3313 return SDValue(); 3314 const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2); 3315 if (!Cst2) 3316 return SDValue(); 3317 int64_t Offset = Cst2->getSExtValue(); 3318 switch (Opcode) { 3319 case ISD::ADD: break; 3320 case ISD::SUB: Offset = -uint64_t(Offset); break; 3321 default: return SDValue(); 3322 } 3323 return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT, 3324 GA->getOffset() + uint64_t(Offset)); 3325 } 3326 3327 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3328 EVT VT, SDNode *Cst1, 3329 SDNode *Cst2) { 3330 // If the opcode is a target-specific ISD node, there's nothing we can 3331 // do here and the operand rules may not line up with the below, so 3332 // bail early. 3333 if (Opcode >= ISD::BUILTIN_OP_END) 3334 return SDValue(); 3335 3336 // Handle the case of two scalars. 3337 if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { 3338 if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { 3339 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2); 3340 assert((!Folded || !VT.isVector()) && 3341 "Can't fold vectors ops with scalar operands"); 3342 return Folded; 3343 } 3344 } 3345 3346 // fold (add Sym, c) -> Sym+c 3347 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1)) 3348 return FoldSymbolOffset(Opcode, VT, GA, Cst2); 3349 if (isCommutativeBinOp(Opcode)) 3350 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2)) 3351 return FoldSymbolOffset(Opcode, VT, GA, Cst1); 3352 3353 // For vectors extract each constant element into Inputs so we can constant 3354 // fold them individually. 3355 BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); 3356 BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); 3357 if (!BV1 || !BV2) 3358 return SDValue(); 3359 3360 assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); 3361 3362 EVT SVT = VT.getScalarType(); 3363 SmallVector<SDValue, 4> Outputs; 3364 for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { 3365 ConstantSDNode *V1 = dyn_cast<ConstantSDNode>(BV1->getOperand(I)); 3366 ConstantSDNode *V2 = dyn_cast<ConstantSDNode>(BV2->getOperand(I)); 3367 if (!V1 || !V2) // Not a constant, bail. 3368 return SDValue(); 3369 3370 if (V1->isOpaque() || V2->isOpaque()) 3371 return SDValue(); 3372 3373 // Avoid BUILD_VECTOR nodes that perform implicit truncation. 3374 // FIXME: This is valid and could be handled by truncating the APInts. 3375 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 3376 return SDValue(); 3377 3378 // Fold one vector element. 3379 std::pair<APInt, bool> Folded = FoldValue(Opcode, V1->getAPIntValue(), 3380 V2->getAPIntValue()); 3381 if (!Folded.second) 3382 return SDValue(); 3383 Outputs.push_back(getConstant(Folded.first, DL, SVT)); 3384 } 3385 3386 assert(VT.getVectorNumElements() == Outputs.size() && 3387 "Vector size mismatch!"); 3388 3389 // We may have a vector type but a scalar result. Create a splat. 3390 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 3391 3392 // Build a big vector out of the scalar elements we generated. 3393 return getBuildVector(VT, SDLoc(), Outputs); 3394 } 3395 3396 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 3397 const SDLoc &DL, EVT VT, 3398 ArrayRef<SDValue> Ops, 3399 const SDNodeFlags *Flags) { 3400 // If the opcode is a target-specific ISD node, there's nothing we can 3401 // do here and the operand rules may not line up with the below, so 3402 // bail early. 3403 if (Opcode >= ISD::BUILTIN_OP_END) 3404 return SDValue(); 3405 3406 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 3407 if (!VT.isVector()) 3408 return SDValue(); 3409 3410 unsigned NumElts = VT.getVectorNumElements(); 3411 3412 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 3413 return !Op.getValueType().isVector() || 3414 Op.getValueType().getVectorNumElements() == NumElts; 3415 }; 3416 3417 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 3418 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 3419 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 3420 (BV && BV->isConstant()); 3421 }; 3422 3423 // All operands must be vector types with the same number of elements as 3424 // the result type and must be either UNDEF or a build vector of constant 3425 // or UNDEF scalars. 3426 if (!all_of(Ops, IsConstantBuildVectorOrUndef) || 3427 !all_of(Ops, IsScalarOrSameVectorSize)) 3428 return SDValue(); 3429 3430 // If we are comparing vectors, then the result needs to be a i1 boolean 3431 // that is then sign-extended back to the legal result type. 3432 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 3433 3434 // Find legal integer scalar type for constant promotion and 3435 // ensure that its scalar size is at least as large as source. 3436 EVT LegalSVT = VT.getScalarType(); 3437 if (LegalSVT.isInteger()) { 3438 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 3439 if (LegalSVT.bitsLT(VT.getScalarType())) 3440 return SDValue(); 3441 } 3442 3443 // Constant fold each scalar lane separately. 3444 SmallVector<SDValue, 4> ScalarResults; 3445 for (unsigned i = 0; i != NumElts; i++) { 3446 SmallVector<SDValue, 4> ScalarOps; 3447 for (SDValue Op : Ops) { 3448 EVT InSVT = Op.getValueType().getScalarType(); 3449 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 3450 if (!InBV) { 3451 // We've checked that this is UNDEF or a constant of some kind. 3452 if (Op.isUndef()) 3453 ScalarOps.push_back(getUNDEF(InSVT)); 3454 else 3455 ScalarOps.push_back(Op); 3456 continue; 3457 } 3458 3459 SDValue ScalarOp = InBV->getOperand(i); 3460 EVT ScalarVT = ScalarOp.getValueType(); 3461 3462 // Build vector (integer) scalar operands may need implicit 3463 // truncation - do this before constant folding. 3464 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 3465 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 3466 3467 ScalarOps.push_back(ScalarOp); 3468 } 3469 3470 // Constant fold the scalar operands. 3471 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 3472 3473 // Legalize the (integer) scalar constant if necessary. 3474 if (LegalSVT != SVT) 3475 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 3476 3477 // Scalar folding only succeeded if the result is a constant or UNDEF. 3478 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 3479 ScalarResult.getOpcode() != ISD::ConstantFP) 3480 return SDValue(); 3481 ScalarResults.push_back(ScalarResult); 3482 } 3483 3484 return getBuildVector(VT, DL, ScalarResults); 3485 } 3486 3487 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3488 SDValue N1, SDValue N2, 3489 const SDNodeFlags *Flags) { 3490 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3491 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 3492 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 3493 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 3494 3495 // Canonicalize constant to RHS if commutative. 3496 if (isCommutativeBinOp(Opcode)) { 3497 if (N1C && !N2C) { 3498 std::swap(N1C, N2C); 3499 std::swap(N1, N2); 3500 } else if (N1CFP && !N2CFP) { 3501 std::swap(N1CFP, N2CFP); 3502 std::swap(N1, N2); 3503 } 3504 } 3505 3506 switch (Opcode) { 3507 default: break; 3508 case ISD::TokenFactor: 3509 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 3510 N2.getValueType() == MVT::Other && "Invalid token factor!"); 3511 // Fold trivial token factors. 3512 if (N1.getOpcode() == ISD::EntryToken) return N2; 3513 if (N2.getOpcode() == ISD::EntryToken) return N1; 3514 if (N1 == N2) return N1; 3515 break; 3516 case ISD::CONCAT_VECTORS: { 3517 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 3518 SDValue Ops[] = {N1, N2}; 3519 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 3520 return V; 3521 break; 3522 } 3523 case ISD::AND: 3524 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3525 assert(N1.getValueType() == N2.getValueType() && 3526 N1.getValueType() == VT && "Binary operator types must match!"); 3527 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 3528 // worth handling here. 3529 if (N2C && N2C->isNullValue()) 3530 return N2; 3531 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 3532 return N1; 3533 break; 3534 case ISD::OR: 3535 case ISD::XOR: 3536 case ISD::ADD: 3537 case ISD::SUB: 3538 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3539 assert(N1.getValueType() == N2.getValueType() && 3540 N1.getValueType() == VT && "Binary operator types must match!"); 3541 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 3542 // it's worth handling here. 3543 if (N2C && N2C->isNullValue()) 3544 return N1; 3545 break; 3546 case ISD::UDIV: 3547 case ISD::UREM: 3548 case ISD::MULHU: 3549 case ISD::MULHS: 3550 case ISD::MUL: 3551 case ISD::SDIV: 3552 case ISD::SREM: 3553 case ISD::SMIN: 3554 case ISD::SMAX: 3555 case ISD::UMIN: 3556 case ISD::UMAX: 3557 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3558 assert(N1.getValueType() == N2.getValueType() && 3559 N1.getValueType() == VT && "Binary operator types must match!"); 3560 break; 3561 case ISD::FADD: 3562 case ISD::FSUB: 3563 case ISD::FMUL: 3564 case ISD::FDIV: 3565 case ISD::FREM: 3566 if (getTarget().Options.UnsafeFPMath) { 3567 if (Opcode == ISD::FADD) { 3568 // x+0 --> x 3569 if (N2CFP && N2CFP->getValueAPF().isZero()) 3570 return N1; 3571 } else if (Opcode == ISD::FSUB) { 3572 // x-0 --> x 3573 if (N2CFP && N2CFP->getValueAPF().isZero()) 3574 return N1; 3575 } else if (Opcode == ISD::FMUL) { 3576 // x*0 --> 0 3577 if (N2CFP && N2CFP->isZero()) 3578 return N2; 3579 // x*1 --> x 3580 if (N2CFP && N2CFP->isExactlyValue(1.0)) 3581 return N1; 3582 } 3583 } 3584 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 3585 assert(N1.getValueType() == N2.getValueType() && 3586 N1.getValueType() == VT && "Binary operator types must match!"); 3587 break; 3588 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 3589 assert(N1.getValueType() == VT && 3590 N1.getValueType().isFloatingPoint() && 3591 N2.getValueType().isFloatingPoint() && 3592 "Invalid FCOPYSIGN!"); 3593 break; 3594 case ISD::SHL: 3595 case ISD::SRA: 3596 case ISD::SRL: 3597 case ISD::ROTL: 3598 case ISD::ROTR: 3599 assert(VT == N1.getValueType() && 3600 "Shift operators return type must be the same as their first arg"); 3601 assert(VT.isInteger() && N2.getValueType().isInteger() && 3602 "Shifts only work on integers"); 3603 assert((!VT.isVector() || VT == N2.getValueType()) && 3604 "Vector shift amounts must be in the same as their first arg"); 3605 // Verify that the shift amount VT is bit enough to hold valid shift 3606 // amounts. This catches things like trying to shift an i1024 value by an 3607 // i8, which is easy to fall into in generic code that uses 3608 // TLI.getShiftAmount(). 3609 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 3610 "Invalid use of small shift amount with oversized value!"); 3611 3612 // Always fold shifts of i1 values so the code generator doesn't need to 3613 // handle them. Since we know the size of the shift has to be less than the 3614 // size of the value, the shift/rotate count is guaranteed to be zero. 3615 if (VT == MVT::i1) 3616 return N1; 3617 if (N2C && N2C->isNullValue()) 3618 return N1; 3619 break; 3620 case ISD::FP_ROUND_INREG: { 3621 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3622 assert(VT == N1.getValueType() && "Not an inreg round!"); 3623 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 3624 "Cannot FP_ROUND_INREG integer types"); 3625 assert(EVT.isVector() == VT.isVector() && 3626 "FP_ROUND_INREG type should be vector iff the operand " 3627 "type is vector!"); 3628 assert((!EVT.isVector() || 3629 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 3630 "Vector element counts must match in FP_ROUND_INREG"); 3631 assert(EVT.bitsLE(VT) && "Not rounding down!"); 3632 (void)EVT; 3633 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 3634 break; 3635 } 3636 case ISD::FP_ROUND: 3637 assert(VT.isFloatingPoint() && 3638 N1.getValueType().isFloatingPoint() && 3639 VT.bitsLE(N1.getValueType()) && 3640 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 3641 "Invalid FP_ROUND!"); 3642 if (N1.getValueType() == VT) return N1; // noop conversion. 3643 break; 3644 case ISD::AssertSext: 3645 case ISD::AssertZext: { 3646 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3647 assert(VT == N1.getValueType() && "Not an inreg extend!"); 3648 assert(VT.isInteger() && EVT.isInteger() && 3649 "Cannot *_EXTEND_INREG FP types"); 3650 assert(!EVT.isVector() && 3651 "AssertSExt/AssertZExt type should be the vector element type " 3652 "rather than the vector type!"); 3653 assert(EVT.bitsLE(VT) && "Not extending!"); 3654 if (VT == EVT) return N1; // noop assertion. 3655 break; 3656 } 3657 case ISD::SIGN_EXTEND_INREG: { 3658 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3659 assert(VT == N1.getValueType() && "Not an inreg extend!"); 3660 assert(VT.isInteger() && EVT.isInteger() && 3661 "Cannot *_EXTEND_INREG FP types"); 3662 assert(EVT.isVector() == VT.isVector() && 3663 "SIGN_EXTEND_INREG type should be vector iff the operand " 3664 "type is vector!"); 3665 assert((!EVT.isVector() || 3666 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 3667 "Vector element counts must match in SIGN_EXTEND_INREG"); 3668 assert(EVT.bitsLE(VT) && "Not extending!"); 3669 if (EVT == VT) return N1; // Not actually extending 3670 3671 auto SignExtendInReg = [&](APInt Val) { 3672 unsigned FromBits = EVT.getScalarSizeInBits(); 3673 Val <<= Val.getBitWidth() - FromBits; 3674 Val = Val.ashr(Val.getBitWidth() - FromBits); 3675 return getConstant(Val, DL, VT.getScalarType()); 3676 }; 3677 3678 if (N1C) { 3679 const APInt &Val = N1C->getAPIntValue(); 3680 return SignExtendInReg(Val); 3681 } 3682 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 3683 SmallVector<SDValue, 8> Ops; 3684 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 3685 SDValue Op = N1.getOperand(i); 3686 if (Op.isUndef()) { 3687 Ops.push_back(getUNDEF(VT.getScalarType())); 3688 continue; 3689 } 3690 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3691 APInt Val = C->getAPIntValue(); 3692 Val = Val.zextOrTrunc(VT.getScalarSizeInBits()); 3693 Ops.push_back(SignExtendInReg(Val)); 3694 continue; 3695 } 3696 break; 3697 } 3698 if (Ops.size() == VT.getVectorNumElements()) 3699 return getBuildVector(VT, DL, Ops); 3700 } 3701 break; 3702 } 3703 case ISD::EXTRACT_VECTOR_ELT: 3704 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 3705 if (N1.isUndef()) 3706 return getUNDEF(VT); 3707 3708 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 3709 if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 3710 return getUNDEF(VT); 3711 3712 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 3713 // expanding copies of large vectors from registers. 3714 if (N2C && 3715 N1.getOpcode() == ISD::CONCAT_VECTORS && 3716 N1.getNumOperands() > 0) { 3717 unsigned Factor = 3718 N1.getOperand(0).getValueType().getVectorNumElements(); 3719 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 3720 N1.getOperand(N2C->getZExtValue() / Factor), 3721 getConstant(N2C->getZExtValue() % Factor, DL, 3722 N2.getValueType())); 3723 } 3724 3725 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 3726 // expanding large vector constants. 3727 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 3728 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 3729 3730 if (VT != Elt.getValueType()) 3731 // If the vector element type is not legal, the BUILD_VECTOR operands 3732 // are promoted and implicitly truncated, and the result implicitly 3733 // extended. Make that explicit here. 3734 Elt = getAnyExtOrTrunc(Elt, DL, VT); 3735 3736 return Elt; 3737 } 3738 3739 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 3740 // operations are lowered to scalars. 3741 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 3742 // If the indices are the same, return the inserted element else 3743 // if the indices are known different, extract the element from 3744 // the original vector. 3745 SDValue N1Op2 = N1.getOperand(2); 3746 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 3747 3748 if (N1Op2C && N2C) { 3749 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 3750 if (VT == N1.getOperand(1).getValueType()) 3751 return N1.getOperand(1); 3752 else 3753 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 3754 } 3755 3756 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 3757 } 3758 } 3759 break; 3760 case ISD::EXTRACT_ELEMENT: 3761 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 3762 assert(!N1.getValueType().isVector() && !VT.isVector() && 3763 (N1.getValueType().isInteger() == VT.isInteger()) && 3764 N1.getValueType() != VT && 3765 "Wrong types for EXTRACT_ELEMENT!"); 3766 3767 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 3768 // 64-bit integers into 32-bit parts. Instead of building the extract of 3769 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 3770 if (N1.getOpcode() == ISD::BUILD_PAIR) 3771 return N1.getOperand(N2C->getZExtValue()); 3772 3773 // EXTRACT_ELEMENT of a constant int is also very common. 3774 if (N1C) { 3775 unsigned ElementSize = VT.getSizeInBits(); 3776 unsigned Shift = ElementSize * N2C->getZExtValue(); 3777 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 3778 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 3779 } 3780 break; 3781 case ISD::EXTRACT_SUBVECTOR: 3782 if (VT.isSimple() && N1.getValueType().isSimple()) { 3783 assert(VT.isVector() && N1.getValueType().isVector() && 3784 "Extract subvector VTs must be a vectors!"); 3785 assert(VT.getVectorElementType() == 3786 N1.getValueType().getVectorElementType() && 3787 "Extract subvector VTs must have the same element type!"); 3788 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 3789 "Extract subvector must be from larger vector to smaller vector!"); 3790 3791 if (N2C) { 3792 assert((VT.getVectorNumElements() + N2C->getZExtValue() 3793 <= N1.getValueType().getVectorNumElements()) 3794 && "Extract subvector overflow!"); 3795 } 3796 3797 // Trivial extraction. 3798 if (VT.getSimpleVT() == N1.getSimpleValueType()) 3799 return N1; 3800 3801 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 3802 // during shuffle legalization. 3803 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 3804 VT == N1.getOperand(1).getValueType()) 3805 return N1.getOperand(1); 3806 } 3807 break; 3808 } 3809 3810 // Perform trivial constant folding. 3811 if (SDValue SV = 3812 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 3813 return SV; 3814 3815 // Constant fold FP operations. 3816 bool HasFPExceptions = TLI->hasFloatingPointExceptions(); 3817 if (N1CFP) { 3818 if (N2CFP) { 3819 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); 3820 APFloat::opStatus s; 3821 switch (Opcode) { 3822 case ISD::FADD: 3823 s = V1.add(V2, APFloat::rmNearestTiesToEven); 3824 if (!HasFPExceptions || s != APFloat::opInvalidOp) 3825 return getConstantFP(V1, DL, VT); 3826 break; 3827 case ISD::FSUB: 3828 s = V1.subtract(V2, APFloat::rmNearestTiesToEven); 3829 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 3830 return getConstantFP(V1, DL, VT); 3831 break; 3832 case ISD::FMUL: 3833 s = V1.multiply(V2, APFloat::rmNearestTiesToEven); 3834 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 3835 return getConstantFP(V1, DL, VT); 3836 break; 3837 case ISD::FDIV: 3838 s = V1.divide(V2, APFloat::rmNearestTiesToEven); 3839 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 3840 s!=APFloat::opDivByZero)) { 3841 return getConstantFP(V1, DL, VT); 3842 } 3843 break; 3844 case ISD::FREM : 3845 s = V1.mod(V2); 3846 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 3847 s!=APFloat::opDivByZero)) { 3848 return getConstantFP(V1, DL, VT); 3849 } 3850 break; 3851 case ISD::FCOPYSIGN: 3852 V1.copySign(V2); 3853 return getConstantFP(V1, DL, VT); 3854 default: break; 3855 } 3856 } 3857 3858 if (Opcode == ISD::FP_ROUND) { 3859 APFloat V = N1CFP->getValueAPF(); // make copy 3860 bool ignored; 3861 // This can return overflow, underflow, or inexact; we don't care. 3862 // FIXME need to be more flexible about rounding mode. 3863 (void)V.convert(EVTToAPFloatSemantics(VT), 3864 APFloat::rmNearestTiesToEven, &ignored); 3865 return getConstantFP(V, DL, VT); 3866 } 3867 } 3868 3869 // Canonicalize an UNDEF to the RHS, even over a constant. 3870 if (N1.isUndef()) { 3871 if (isCommutativeBinOp(Opcode)) { 3872 std::swap(N1, N2); 3873 } else { 3874 switch (Opcode) { 3875 case ISD::FP_ROUND_INREG: 3876 case ISD::SIGN_EXTEND_INREG: 3877 case ISD::SUB: 3878 case ISD::FSUB: 3879 case ISD::FDIV: 3880 case ISD::FREM: 3881 case ISD::SRA: 3882 return N1; // fold op(undef, arg2) -> undef 3883 case ISD::UDIV: 3884 case ISD::SDIV: 3885 case ISD::UREM: 3886 case ISD::SREM: 3887 case ISD::SRL: 3888 case ISD::SHL: 3889 if (!VT.isVector()) 3890 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 3891 // For vectors, we can't easily build an all zero vector, just return 3892 // the LHS. 3893 return N2; 3894 } 3895 } 3896 } 3897 3898 // Fold a bunch of operators when the RHS is undef. 3899 if (N2.isUndef()) { 3900 switch (Opcode) { 3901 case ISD::XOR: 3902 if (N1.isUndef()) 3903 // Handle undef ^ undef -> 0 special case. This is a common 3904 // idiom (misuse). 3905 return getConstant(0, DL, VT); 3906 LLVM_FALLTHROUGH; 3907 case ISD::ADD: 3908 case ISD::ADDC: 3909 case ISD::ADDE: 3910 case ISD::SUB: 3911 case ISD::UDIV: 3912 case ISD::SDIV: 3913 case ISD::UREM: 3914 case ISD::SREM: 3915 return N2; // fold op(arg1, undef) -> undef 3916 case ISD::FADD: 3917 case ISD::FSUB: 3918 case ISD::FMUL: 3919 case ISD::FDIV: 3920 case ISD::FREM: 3921 if (getTarget().Options.UnsafeFPMath) 3922 return N2; 3923 break; 3924 case ISD::MUL: 3925 case ISD::AND: 3926 case ISD::SRL: 3927 case ISD::SHL: 3928 if (!VT.isVector()) 3929 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 3930 // For vectors, we can't easily build an all zero vector, just return 3931 // the LHS. 3932 return N1; 3933 case ISD::OR: 3934 if (!VT.isVector()) 3935 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT); 3936 // For vectors, we can't easily build an all one vector, just return 3937 // the LHS. 3938 return N1; 3939 case ISD::SRA: 3940 return N1; 3941 } 3942 } 3943 3944 // Memoize this node if possible. 3945 SDNode *N; 3946 SDVTList VTs = getVTList(VT); 3947 if (VT != MVT::Glue) { 3948 SDValue Ops[] = {N1, N2}; 3949 FoldingSetNodeID ID; 3950 AddNodeIDNode(ID, Opcode, VTs, Ops); 3951 void *IP = nullptr; 3952 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 3953 if (Flags) 3954 E->intersectFlagsWith(Flags); 3955 return SDValue(E, 0); 3956 } 3957 3958 N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); 3959 CSEMap.InsertNode(N, IP); 3960 } else { 3961 N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); 3962 } 3963 3964 InsertNode(N); 3965 return SDValue(N, 0); 3966 } 3967 3968 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3969 SDValue N1, SDValue N2, SDValue N3) { 3970 // Perform various simplifications. 3971 switch (Opcode) { 3972 case ISD::FMA: { 3973 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 3974 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 3975 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 3976 if (N1CFP && N2CFP && N3CFP) { 3977 APFloat V1 = N1CFP->getValueAPF(); 3978 const APFloat &V2 = N2CFP->getValueAPF(); 3979 const APFloat &V3 = N3CFP->getValueAPF(); 3980 APFloat::opStatus s = 3981 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 3982 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) 3983 return getConstantFP(V1, DL, VT); 3984 } 3985 break; 3986 } 3987 case ISD::CONCAT_VECTORS: { 3988 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 3989 SDValue Ops[] = {N1, N2, N3}; 3990 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 3991 return V; 3992 break; 3993 } 3994 case ISD::SETCC: { 3995 // Use FoldSetCC to simplify SETCC's. 3996 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 3997 return V; 3998 // Vector constant folding. 3999 SDValue Ops[] = {N1, N2, N3}; 4000 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4001 return V; 4002 break; 4003 } 4004 case ISD::SELECT: 4005 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 4006 if (N1C->getZExtValue()) 4007 return N2; // select true, X, Y -> X 4008 return N3; // select false, X, Y -> Y 4009 } 4010 4011 if (N2 == N3) return N2; // select C, X, X -> X 4012 break; 4013 case ISD::VECTOR_SHUFFLE: 4014 llvm_unreachable("should use getVectorShuffle constructor!"); 4015 case ISD::INSERT_SUBVECTOR: { 4016 SDValue Index = N3; 4017 if (VT.isSimple() && N1.getValueType().isSimple() 4018 && N2.getValueType().isSimple()) { 4019 assert(VT.isVector() && N1.getValueType().isVector() && 4020 N2.getValueType().isVector() && 4021 "Insert subvector VTs must be a vectors"); 4022 assert(VT == N1.getValueType() && 4023 "Dest and insert subvector source types must match!"); 4024 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 4025 "Insert subvector must be from smaller vector to larger vector!"); 4026 if (isa<ConstantSDNode>(Index)) { 4027 assert((N2.getValueType().getVectorNumElements() + 4028 cast<ConstantSDNode>(Index)->getZExtValue() 4029 <= VT.getVectorNumElements()) 4030 && "Insert subvector overflow!"); 4031 } 4032 4033 // Trivial insertion. 4034 if (VT.getSimpleVT() == N2.getSimpleValueType()) 4035 return N2; 4036 } 4037 break; 4038 } 4039 case ISD::BITCAST: 4040 // Fold bit_convert nodes from a type to themselves. 4041 if (N1.getValueType() == VT) 4042 return N1; 4043 break; 4044 } 4045 4046 // Memoize node if it doesn't produce a flag. 4047 SDNode *N; 4048 SDVTList VTs = getVTList(VT); 4049 SDValue Ops[] = {N1, N2, N3}; 4050 if (VT != MVT::Glue) { 4051 FoldingSetNodeID ID; 4052 AddNodeIDNode(ID, Opcode, VTs, Ops); 4053 void *IP = nullptr; 4054 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4055 return SDValue(E, 0); 4056 4057 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4058 createOperands(N, Ops); 4059 CSEMap.InsertNode(N, IP); 4060 } else { 4061 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4062 createOperands(N, Ops); 4063 } 4064 4065 InsertNode(N); 4066 return SDValue(N, 0); 4067 } 4068 4069 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4070 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 4071 SDValue Ops[] = { N1, N2, N3, N4 }; 4072 return getNode(Opcode, DL, VT, Ops); 4073 } 4074 4075 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4076 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 4077 SDValue N5) { 4078 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 4079 return getNode(Opcode, DL, VT, Ops); 4080 } 4081 4082 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 4083 /// the incoming stack arguments to be loaded from the stack. 4084 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 4085 SmallVector<SDValue, 8> ArgChains; 4086 4087 // Include the original chain at the beginning of the list. When this is 4088 // used by target LowerCall hooks, this helps legalize find the 4089 // CALLSEQ_BEGIN node. 4090 ArgChains.push_back(Chain); 4091 4092 // Add a chain value for each stack argument. 4093 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 4094 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 4095 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 4096 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 4097 if (FI->getIndex() < 0) 4098 ArgChains.push_back(SDValue(L, 1)); 4099 4100 // Build a tokenfactor for all the chains. 4101 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 4102 } 4103 4104 /// getMemsetValue - Vectorized representation of the memset value 4105 /// operand. 4106 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 4107 const SDLoc &dl) { 4108 assert(!Value.isUndef()); 4109 4110 unsigned NumBits = VT.getScalarSizeInBits(); 4111 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 4112 assert(C->getAPIntValue().getBitWidth() == 8); 4113 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 4114 if (VT.isInteger()) 4115 return DAG.getConstant(Val, dl, VT); 4116 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 4117 VT); 4118 } 4119 4120 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 4121 EVT IntVT = VT.getScalarType(); 4122 if (!IntVT.isInteger()) 4123 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 4124 4125 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 4126 if (NumBits > 8) { 4127 // Use a multiplication with 0x010101... to extend the input to the 4128 // required length. 4129 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 4130 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 4131 DAG.getConstant(Magic, dl, IntVT)); 4132 } 4133 4134 if (VT != Value.getValueType() && !VT.isInteger()) 4135 Value = DAG.getBitcast(VT.getScalarType(), Value); 4136 if (VT != Value.getValueType()) 4137 Value = DAG.getSplatBuildVector(VT, dl, Value); 4138 4139 return Value; 4140 } 4141 4142 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 4143 /// used when a memcpy is turned into a memset when the source is a constant 4144 /// string ptr. 4145 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 4146 const TargetLowering &TLI, StringRef Str) { 4147 // Handle vector with all elements zero. 4148 if (Str.empty()) { 4149 if (VT.isInteger()) 4150 return DAG.getConstant(0, dl, VT); 4151 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 4152 return DAG.getConstantFP(0.0, dl, VT); 4153 else if (VT.isVector()) { 4154 unsigned NumElts = VT.getVectorNumElements(); 4155 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 4156 return DAG.getNode(ISD::BITCAST, dl, VT, 4157 DAG.getConstant(0, dl, 4158 EVT::getVectorVT(*DAG.getContext(), 4159 EltVT, NumElts))); 4160 } else 4161 llvm_unreachable("Expected type!"); 4162 } 4163 4164 assert(!VT.isVector() && "Can't handle vector type here!"); 4165 unsigned NumVTBits = VT.getSizeInBits(); 4166 unsigned NumVTBytes = NumVTBits / 8; 4167 unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size())); 4168 4169 APInt Val(NumVTBits, 0); 4170 if (DAG.getDataLayout().isLittleEndian()) { 4171 for (unsigned i = 0; i != NumBytes; ++i) 4172 Val |= (uint64_t)(unsigned char)Str[i] << i*8; 4173 } else { 4174 for (unsigned i = 0; i != NumBytes; ++i) 4175 Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8; 4176 } 4177 4178 // If the "cost" of materializing the integer immediate is less than the cost 4179 // of a load, then it is cost effective to turn the load into the immediate. 4180 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 4181 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 4182 return DAG.getConstant(Val, dl, VT); 4183 return SDValue(nullptr, 0); 4184 } 4185 4186 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 4187 const SDLoc &DL) { 4188 EVT VT = Base.getValueType(); 4189 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 4190 } 4191 4192 /// isMemSrcFromString - Returns true if memcpy source is a string constant. 4193 /// 4194 static bool isMemSrcFromString(SDValue Src, StringRef &Str) { 4195 uint64_t SrcDelta = 0; 4196 GlobalAddressSDNode *G = nullptr; 4197 if (Src.getOpcode() == ISD::GlobalAddress) 4198 G = cast<GlobalAddressSDNode>(Src); 4199 else if (Src.getOpcode() == ISD::ADD && 4200 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 4201 Src.getOperand(1).getOpcode() == ISD::Constant) { 4202 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 4203 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 4204 } 4205 if (!G) 4206 return false; 4207 4208 return getConstantStringInfo(G->getGlobal(), Str, 4209 SrcDelta + G->getOffset(), false); 4210 } 4211 4212 /// Determines the optimal series of memory ops to replace the memset / memcpy. 4213 /// Return true if the number of memory ops is below the threshold (Limit). 4214 /// It returns the types of the sequence of memory ops to perform 4215 /// memset / memcpy by reference. 4216 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, 4217 unsigned Limit, uint64_t Size, 4218 unsigned DstAlign, unsigned SrcAlign, 4219 bool IsMemset, 4220 bool ZeroMemset, 4221 bool MemcpyStrSrc, 4222 bool AllowOverlap, 4223 unsigned DstAS, unsigned SrcAS, 4224 SelectionDAG &DAG, 4225 const TargetLowering &TLI) { 4226 assert((SrcAlign == 0 || SrcAlign >= DstAlign) && 4227 "Expecting memcpy / memset source to meet alignment requirement!"); 4228 // If 'SrcAlign' is zero, that means the memory operation does not need to 4229 // load the value, i.e. memset or memcpy from constant string. Otherwise, 4230 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 4231 // is the specified alignment of the memory operation. If it is zero, that 4232 // means it's possible to change the alignment of the destination. 4233 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 4234 // not need to be loaded. 4235 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, 4236 IsMemset, ZeroMemset, MemcpyStrSrc, 4237 DAG.getMachineFunction()); 4238 4239 if (VT == MVT::Other) { 4240 if (DstAlign >= DAG.getDataLayout().getPointerPrefAlignment(DstAS) || 4241 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) { 4242 VT = TLI.getPointerTy(DAG.getDataLayout(), DstAS); 4243 } else { 4244 switch (DstAlign & 7) { 4245 case 0: VT = MVT::i64; break; 4246 case 4: VT = MVT::i32; break; 4247 case 2: VT = MVT::i16; break; 4248 default: VT = MVT::i8; break; 4249 } 4250 } 4251 4252 MVT LVT = MVT::i64; 4253 while (!TLI.isTypeLegal(LVT)) 4254 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 4255 assert(LVT.isInteger()); 4256 4257 if (VT.bitsGT(LVT)) 4258 VT = LVT; 4259 } 4260 4261 unsigned NumMemOps = 0; 4262 while (Size != 0) { 4263 unsigned VTSize = VT.getSizeInBits() / 8; 4264 while (VTSize > Size) { 4265 // For now, only use non-vector load / store's for the left-over pieces. 4266 EVT NewVT = VT; 4267 unsigned NewVTSize; 4268 4269 bool Found = false; 4270 if (VT.isVector() || VT.isFloatingPoint()) { 4271 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 4272 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && 4273 TLI.isSafeMemOpType(NewVT.getSimpleVT())) 4274 Found = true; 4275 else if (NewVT == MVT::i64 && 4276 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 4277 TLI.isSafeMemOpType(MVT::f64)) { 4278 // i64 is usually not legal on 32-bit targets, but f64 may be. 4279 NewVT = MVT::f64; 4280 Found = true; 4281 } 4282 } 4283 4284 if (!Found) { 4285 do { 4286 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 4287 if (NewVT == MVT::i8) 4288 break; 4289 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); 4290 } 4291 NewVTSize = NewVT.getSizeInBits() / 8; 4292 4293 // If the new VT cannot cover all of the remaining bits, then consider 4294 // issuing a (or a pair of) unaligned and overlapping load / store. 4295 // FIXME: Only does this for 64-bit or more since we don't have proper 4296 // cost model for unaligned load / store. 4297 bool Fast; 4298 if (NumMemOps && AllowOverlap && 4299 VTSize >= 8 && NewVTSize < Size && 4300 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast) 4301 VTSize = Size; 4302 else { 4303 VT = NewVT; 4304 VTSize = NewVTSize; 4305 } 4306 } 4307 4308 if (++NumMemOps > Limit) 4309 return false; 4310 4311 MemOps.push_back(VT); 4312 Size -= VTSize; 4313 } 4314 4315 return true; 4316 } 4317 4318 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 4319 // On Darwin, -Os means optimize for size without hurting performance, so 4320 // only really optimize for size when -Oz (MinSize) is used. 4321 if (MF.getTarget().getTargetTriple().isOSDarwin()) 4322 return MF.getFunction()->optForMinSize(); 4323 return MF.getFunction()->optForSize(); 4324 } 4325 4326 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 4327 SDValue Chain, SDValue Dst, SDValue Src, 4328 uint64_t Size, unsigned Align, 4329 bool isVol, bool AlwaysInline, 4330 MachinePointerInfo DstPtrInfo, 4331 MachinePointerInfo SrcPtrInfo) { 4332 // Turn a memcpy of undef to nop. 4333 if (Src.isUndef()) 4334 return Chain; 4335 4336 // Expand memcpy to a series of load and store ops if the size operand falls 4337 // below a certain threshold. 4338 // TODO: In the AlwaysInline case, if the size is big then generate a loop 4339 // rather than maybe a humongous number of loads and stores. 4340 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4341 std::vector<EVT> MemOps; 4342 bool DstAlignCanChange = false; 4343 MachineFunction &MF = DAG.getMachineFunction(); 4344 MachineFrameInfo &MFI = MF.getFrameInfo(); 4345 bool OptSize = shouldLowerMemFuncForSize(MF); 4346 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4347 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4348 DstAlignCanChange = true; 4349 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 4350 if (Align > SrcAlign) 4351 SrcAlign = Align; 4352 StringRef Str; 4353 bool CopyFromStr = isMemSrcFromString(Src, Str); 4354 bool isZeroStr = CopyFromStr && Str.empty(); 4355 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 4356 4357 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 4358 (DstAlignCanChange ? 0 : Align), 4359 (isZeroStr ? 0 : SrcAlign), 4360 false, false, CopyFromStr, true, 4361 DstPtrInfo.getAddrSpace(), 4362 SrcPtrInfo.getAddrSpace(), 4363 DAG, TLI)) 4364 return SDValue(); 4365 4366 if (DstAlignCanChange) { 4367 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4368 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4369 4370 // Don't promote to an alignment that would require dynamic stack 4371 // realignment. 4372 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 4373 if (!TRI->needsStackRealignment(MF)) 4374 while (NewAlign > Align && 4375 DAG.getDataLayout().exceedsNaturalStackAlignment(NewAlign)) 4376 NewAlign /= 2; 4377 4378 if (NewAlign > Align) { 4379 // Give the stack frame object a larger alignment if needed. 4380 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4381 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4382 Align = NewAlign; 4383 } 4384 } 4385 4386 MachineMemOperand::Flags MMOFlags = 4387 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 4388 SmallVector<SDValue, 8> OutChains; 4389 unsigned NumMemOps = MemOps.size(); 4390 uint64_t SrcOff = 0, DstOff = 0; 4391 for (unsigned i = 0; i != NumMemOps; ++i) { 4392 EVT VT = MemOps[i]; 4393 unsigned VTSize = VT.getSizeInBits() / 8; 4394 SDValue Value, Store; 4395 4396 if (VTSize > Size) { 4397 // Issuing an unaligned load / store pair that overlaps with the previous 4398 // pair. Adjust the offset accordingly. 4399 assert(i == NumMemOps-1 && i != 0); 4400 SrcOff -= VTSize - Size; 4401 DstOff -= VTSize - Size; 4402 } 4403 4404 if (CopyFromStr && 4405 (isZeroStr || (VT.isInteger() && !VT.isVector()))) { 4406 // It's unlikely a store of a vector immediate can be done in a single 4407 // instruction. It would require a load from a constantpool first. 4408 // We only handle zero vectors here. 4409 // FIXME: Handle other cases where store of vector immediate is done in 4410 // a single instruction. 4411 Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff)); 4412 if (Value.getNode()) 4413 Store = DAG.getStore(Chain, dl, Value, 4414 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4415 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 4416 } 4417 4418 if (!Store.getNode()) { 4419 // The type might not be legal for the target. This should only happen 4420 // if the type is smaller than a legal type, as on PPC, so the right 4421 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 4422 // to Load/Store if NVT==VT. 4423 // FIXME does the case above also need this? 4424 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 4425 assert(NVT.bitsGE(VT)); 4426 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 4427 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 4428 SrcPtrInfo.getWithOffset(SrcOff), VT, 4429 MinAlign(SrcAlign, SrcOff), MMOFlags); 4430 OutChains.push_back(Value.getValue(1)); 4431 Store = DAG.getTruncStore( 4432 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4433 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 4434 } 4435 OutChains.push_back(Store); 4436 SrcOff += VTSize; 4437 DstOff += VTSize; 4438 Size -= VTSize; 4439 } 4440 4441 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4442 } 4443 4444 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 4445 SDValue Chain, SDValue Dst, SDValue Src, 4446 uint64_t Size, unsigned Align, 4447 bool isVol, bool AlwaysInline, 4448 MachinePointerInfo DstPtrInfo, 4449 MachinePointerInfo SrcPtrInfo) { 4450 // Turn a memmove of undef to nop. 4451 if (Src.isUndef()) 4452 return Chain; 4453 4454 // Expand memmove to a series of load and store ops if the size operand falls 4455 // below a certain threshold. 4456 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4457 std::vector<EVT> MemOps; 4458 bool DstAlignCanChange = false; 4459 MachineFunction &MF = DAG.getMachineFunction(); 4460 MachineFrameInfo &MFI = MF.getFrameInfo(); 4461 bool OptSize = shouldLowerMemFuncForSize(MF); 4462 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4463 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4464 DstAlignCanChange = true; 4465 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 4466 if (Align > SrcAlign) 4467 SrcAlign = Align; 4468 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 4469 4470 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 4471 (DstAlignCanChange ? 0 : Align), SrcAlign, 4472 false, false, false, false, 4473 DstPtrInfo.getAddrSpace(), 4474 SrcPtrInfo.getAddrSpace(), 4475 DAG, TLI)) 4476 return SDValue(); 4477 4478 if (DstAlignCanChange) { 4479 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4480 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4481 if (NewAlign > Align) { 4482 // Give the stack frame object a larger alignment if needed. 4483 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4484 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4485 Align = NewAlign; 4486 } 4487 } 4488 4489 MachineMemOperand::Flags MMOFlags = 4490 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 4491 uint64_t SrcOff = 0, DstOff = 0; 4492 SmallVector<SDValue, 8> LoadValues; 4493 SmallVector<SDValue, 8> LoadChains; 4494 SmallVector<SDValue, 8> OutChains; 4495 unsigned NumMemOps = MemOps.size(); 4496 for (unsigned i = 0; i < NumMemOps; i++) { 4497 EVT VT = MemOps[i]; 4498 unsigned VTSize = VT.getSizeInBits() / 8; 4499 SDValue Value; 4500 4501 Value = 4502 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 4503 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, MMOFlags); 4504 LoadValues.push_back(Value); 4505 LoadChains.push_back(Value.getValue(1)); 4506 SrcOff += VTSize; 4507 } 4508 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 4509 OutChains.clear(); 4510 for (unsigned i = 0; i < NumMemOps; i++) { 4511 EVT VT = MemOps[i]; 4512 unsigned VTSize = VT.getSizeInBits() / 8; 4513 SDValue Store; 4514 4515 Store = DAG.getStore(Chain, dl, LoadValues[i], 4516 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4517 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 4518 OutChains.push_back(Store); 4519 DstOff += VTSize; 4520 } 4521 4522 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4523 } 4524 4525 /// \brief Lower the call to 'memset' intrinsic function into a series of store 4526 /// operations. 4527 /// 4528 /// \param DAG Selection DAG where lowered code is placed. 4529 /// \param dl Link to corresponding IR location. 4530 /// \param Chain Control flow dependency. 4531 /// \param Dst Pointer to destination memory location. 4532 /// \param Src Value of byte to write into the memory. 4533 /// \param Size Number of bytes to write. 4534 /// \param Align Alignment of the destination in bytes. 4535 /// \param isVol True if destination is volatile. 4536 /// \param DstPtrInfo IR information on the memory pointer. 4537 /// \returns New head in the control flow, if lowering was successful, empty 4538 /// SDValue otherwise. 4539 /// 4540 /// The function tries to replace 'llvm.memset' intrinsic with several store 4541 /// operations and value calculation code. This is usually profitable for small 4542 /// memory size. 4543 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 4544 SDValue Chain, SDValue Dst, SDValue Src, 4545 uint64_t Size, unsigned Align, bool isVol, 4546 MachinePointerInfo DstPtrInfo) { 4547 // Turn a memset of undef to nop. 4548 if (Src.isUndef()) 4549 return Chain; 4550 4551 // Expand memset to a series of load/store ops if the size operand 4552 // falls below a certain threshold. 4553 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4554 std::vector<EVT> MemOps; 4555 bool DstAlignCanChange = false; 4556 MachineFunction &MF = DAG.getMachineFunction(); 4557 MachineFrameInfo &MFI = MF.getFrameInfo(); 4558 bool OptSize = shouldLowerMemFuncForSize(MF); 4559 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4560 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4561 DstAlignCanChange = true; 4562 bool IsZeroVal = 4563 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 4564 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 4565 Size, (DstAlignCanChange ? 0 : Align), 0, 4566 true, IsZeroVal, false, true, 4567 DstPtrInfo.getAddrSpace(), ~0u, 4568 DAG, TLI)) 4569 return SDValue(); 4570 4571 if (DstAlignCanChange) { 4572 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4573 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4574 if (NewAlign > Align) { 4575 // Give the stack frame object a larger alignment if needed. 4576 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4577 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4578 Align = NewAlign; 4579 } 4580 } 4581 4582 SmallVector<SDValue, 8> OutChains; 4583 uint64_t DstOff = 0; 4584 unsigned NumMemOps = MemOps.size(); 4585 4586 // Find the largest store and generate the bit pattern for it. 4587 EVT LargestVT = MemOps[0]; 4588 for (unsigned i = 1; i < NumMemOps; i++) 4589 if (MemOps[i].bitsGT(LargestVT)) 4590 LargestVT = MemOps[i]; 4591 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 4592 4593 for (unsigned i = 0; i < NumMemOps; i++) { 4594 EVT VT = MemOps[i]; 4595 unsigned VTSize = VT.getSizeInBits() / 8; 4596 if (VTSize > Size) { 4597 // Issuing an unaligned load / store pair that overlaps with the previous 4598 // pair. Adjust the offset accordingly. 4599 assert(i == NumMemOps-1 && i != 0); 4600 DstOff -= VTSize - Size; 4601 } 4602 4603 // If this store is smaller than the largest store see whether we can get 4604 // the smaller value for free with a truncate. 4605 SDValue Value = MemSetValue; 4606 if (VT.bitsLT(LargestVT)) { 4607 if (!LargestVT.isVector() && !VT.isVector() && 4608 TLI.isTruncateFree(LargestVT, VT)) 4609 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 4610 else 4611 Value = getMemsetValue(Src, VT, DAG, dl); 4612 } 4613 assert(Value.getValueType() == VT && "Value with wrong type."); 4614 SDValue Store = DAG.getStore( 4615 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4616 DstPtrInfo.getWithOffset(DstOff), Align, 4617 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 4618 OutChains.push_back(Store); 4619 DstOff += VT.getSizeInBits() / 8; 4620 Size -= VTSize; 4621 } 4622 4623 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4624 } 4625 4626 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 4627 unsigned AS) { 4628 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 4629 // pointer operands can be losslessly bitcasted to pointers of address space 0 4630 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 4631 report_fatal_error("cannot lower memory intrinsic in address space " + 4632 Twine(AS)); 4633 } 4634 } 4635 4636 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 4637 SDValue Src, SDValue Size, unsigned Align, 4638 bool isVol, bool AlwaysInline, bool isTailCall, 4639 MachinePointerInfo DstPtrInfo, 4640 MachinePointerInfo SrcPtrInfo) { 4641 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 4642 4643 // Check to see if we should lower the memcpy to loads and stores first. 4644 // For cases within the target-specified limits, this is the best choice. 4645 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4646 if (ConstantSize) { 4647 // Memcpy with size zero? Just return the original chain. 4648 if (ConstantSize->isNullValue()) 4649 return Chain; 4650 4651 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 4652 ConstantSize->getZExtValue(),Align, 4653 isVol, false, DstPtrInfo, SrcPtrInfo); 4654 if (Result.getNode()) 4655 return Result; 4656 } 4657 4658 // Then check to see if we should lower the memcpy with target-specific 4659 // code. If the target chooses to do this, this is the next best. 4660 if (TSI) { 4661 SDValue Result = TSI->EmitTargetCodeForMemcpy( 4662 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 4663 DstPtrInfo, SrcPtrInfo); 4664 if (Result.getNode()) 4665 return Result; 4666 } 4667 4668 // If we really need inline code and the target declined to provide it, 4669 // use a (potentially long) sequence of loads and stores. 4670 if (AlwaysInline) { 4671 assert(ConstantSize && "AlwaysInline requires a constant size!"); 4672 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 4673 ConstantSize->getZExtValue(), Align, isVol, 4674 true, DstPtrInfo, SrcPtrInfo); 4675 } 4676 4677 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 4678 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 4679 4680 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 4681 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 4682 // respect volatile, so they may do things like read or write memory 4683 // beyond the given memory regions. But fixing this isn't easy, and most 4684 // people don't care. 4685 4686 // Emit a library call. 4687 TargetLowering::ArgListTy Args; 4688 TargetLowering::ArgListEntry Entry; 4689 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 4690 Entry.Node = Dst; Args.push_back(Entry); 4691 Entry.Node = Src; Args.push_back(Entry); 4692 Entry.Node = Size; Args.push_back(Entry); 4693 // FIXME: pass in SDLoc 4694 TargetLowering::CallLoweringInfo CLI(*this); 4695 CLI.setDebugLoc(dl) 4696 .setChain(Chain) 4697 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 4698 Dst.getValueType().getTypeForEVT(*getContext()), 4699 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 4700 TLI->getPointerTy(getDataLayout())), 4701 std::move(Args)) 4702 .setDiscardResult() 4703 .setTailCall(isTailCall); 4704 4705 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 4706 return CallResult.second; 4707 } 4708 4709 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 4710 SDValue Src, SDValue Size, unsigned Align, 4711 bool isVol, bool isTailCall, 4712 MachinePointerInfo DstPtrInfo, 4713 MachinePointerInfo SrcPtrInfo) { 4714 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 4715 4716 // Check to see if we should lower the memmove to loads and stores first. 4717 // For cases within the target-specified limits, this is the best choice. 4718 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4719 if (ConstantSize) { 4720 // Memmove with size zero? Just return the original chain. 4721 if (ConstantSize->isNullValue()) 4722 return Chain; 4723 4724 SDValue Result = 4725 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 4726 ConstantSize->getZExtValue(), Align, isVol, 4727 false, DstPtrInfo, SrcPtrInfo); 4728 if (Result.getNode()) 4729 return Result; 4730 } 4731 4732 // Then check to see if we should lower the memmove with target-specific 4733 // code. If the target chooses to do this, this is the next best. 4734 if (TSI) { 4735 SDValue Result = TSI->EmitTargetCodeForMemmove( 4736 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 4737 if (Result.getNode()) 4738 return Result; 4739 } 4740 4741 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 4742 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 4743 4744 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 4745 // not be safe. See memcpy above for more details. 4746 4747 // Emit a library call. 4748 TargetLowering::ArgListTy Args; 4749 TargetLowering::ArgListEntry Entry; 4750 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 4751 Entry.Node = Dst; Args.push_back(Entry); 4752 Entry.Node = Src; Args.push_back(Entry); 4753 Entry.Node = Size; Args.push_back(Entry); 4754 // FIXME: pass in SDLoc 4755 TargetLowering::CallLoweringInfo CLI(*this); 4756 CLI.setDebugLoc(dl) 4757 .setChain(Chain) 4758 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 4759 Dst.getValueType().getTypeForEVT(*getContext()), 4760 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 4761 TLI->getPointerTy(getDataLayout())), 4762 std::move(Args)) 4763 .setDiscardResult() 4764 .setTailCall(isTailCall); 4765 4766 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 4767 return CallResult.second; 4768 } 4769 4770 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 4771 SDValue Src, SDValue Size, unsigned Align, 4772 bool isVol, bool isTailCall, 4773 MachinePointerInfo DstPtrInfo) { 4774 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 4775 4776 // Check to see if we should lower the memset to stores first. 4777 // For cases within the target-specified limits, this is the best choice. 4778 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4779 if (ConstantSize) { 4780 // Memset with size zero? Just return the original chain. 4781 if (ConstantSize->isNullValue()) 4782 return Chain; 4783 4784 SDValue Result = 4785 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 4786 Align, isVol, DstPtrInfo); 4787 4788 if (Result.getNode()) 4789 return Result; 4790 } 4791 4792 // Then check to see if we should lower the memset with target-specific 4793 // code. If the target chooses to do this, this is the next best. 4794 if (TSI) { 4795 SDValue Result = TSI->EmitTargetCodeForMemset( 4796 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 4797 if (Result.getNode()) 4798 return Result; 4799 } 4800 4801 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 4802 4803 // Emit a library call. 4804 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext()); 4805 TargetLowering::ArgListTy Args; 4806 TargetLowering::ArgListEntry Entry; 4807 Entry.Node = Dst; Entry.Ty = IntPtrTy; 4808 Args.push_back(Entry); 4809 Entry.Node = Src; 4810 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 4811 Args.push_back(Entry); 4812 Entry.Node = Size; 4813 Entry.Ty = IntPtrTy; 4814 Args.push_back(Entry); 4815 4816 // FIXME: pass in SDLoc 4817 TargetLowering::CallLoweringInfo CLI(*this); 4818 CLI.setDebugLoc(dl) 4819 .setChain(Chain) 4820 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 4821 Dst.getValueType().getTypeForEVT(*getContext()), 4822 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 4823 TLI->getPointerTy(getDataLayout())), 4824 std::move(Args)) 4825 .setDiscardResult() 4826 .setTailCall(isTailCall); 4827 4828 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 4829 return CallResult.second; 4830 } 4831 4832 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4833 SDVTList VTList, ArrayRef<SDValue> Ops, 4834 MachineMemOperand *MMO, 4835 AtomicOrdering SuccessOrdering, 4836 AtomicOrdering FailureOrdering, 4837 SynchronizationScope SynchScope) { 4838 FoldingSetNodeID ID; 4839 ID.AddInteger(MemVT.getRawBits()); 4840 AddNodeIDNode(ID, Opcode, VTList, Ops); 4841 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 4842 void* IP = nullptr; 4843 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 4844 cast<AtomicSDNode>(E)->refineAlignment(MMO); 4845 return SDValue(E, 0); 4846 } 4847 4848 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 4849 VTList, MemVT, MMO, SuccessOrdering, 4850 FailureOrdering, SynchScope); 4851 createOperands(N, Ops); 4852 4853 CSEMap.InsertNode(N, IP); 4854 InsertNode(N); 4855 return SDValue(N, 0); 4856 } 4857 4858 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4859 SDVTList VTList, ArrayRef<SDValue> Ops, 4860 MachineMemOperand *MMO, AtomicOrdering Ordering, 4861 SynchronizationScope SynchScope) { 4862 return getAtomic(Opcode, dl, MemVT, VTList, Ops, MMO, Ordering, 4863 Ordering, SynchScope); 4864 } 4865 4866 SDValue SelectionDAG::getAtomicCmpSwap( 4867 unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, 4868 SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, 4869 unsigned Alignment, AtomicOrdering SuccessOrdering, 4870 AtomicOrdering FailureOrdering, SynchronizationScope SynchScope) { 4871 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 4872 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 4873 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 4874 4875 if (Alignment == 0) // Ensure that codegen never sees alignment 0 4876 Alignment = getEVTAlignment(MemVT); 4877 4878 MachineFunction &MF = getMachineFunction(); 4879 4880 // FIXME: Volatile isn't really correct; we should keep track of atomic 4881 // orderings in the memoperand. 4882 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad | 4883 MachineMemOperand::MOStore; 4884 MachineMemOperand *MMO = 4885 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment); 4886 4887 return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO, 4888 SuccessOrdering, FailureOrdering, SynchScope); 4889 } 4890 4891 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 4892 EVT MemVT, SDVTList VTs, SDValue Chain, 4893 SDValue Ptr, SDValue Cmp, SDValue Swp, 4894 MachineMemOperand *MMO, 4895 AtomicOrdering SuccessOrdering, 4896 AtomicOrdering FailureOrdering, 4897 SynchronizationScope SynchScope) { 4898 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 4899 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 4900 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 4901 4902 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 4903 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, 4904 SuccessOrdering, FailureOrdering, SynchScope); 4905 } 4906 4907 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4908 SDValue Chain, SDValue Ptr, SDValue Val, 4909 const Value *PtrVal, unsigned Alignment, 4910 AtomicOrdering Ordering, 4911 SynchronizationScope SynchScope) { 4912 if (Alignment == 0) // Ensure that codegen never sees alignment 0 4913 Alignment = getEVTAlignment(MemVT); 4914 4915 MachineFunction &MF = getMachineFunction(); 4916 // An atomic store does not load. An atomic load does not store. 4917 // (An atomicrmw obviously both loads and stores.) 4918 // For now, atomics are considered to be volatile always, and they are 4919 // chained as such. 4920 // FIXME: Volatile isn't really correct; we should keep track of atomic 4921 // orderings in the memoperand. 4922 auto Flags = MachineMemOperand::MOVolatile; 4923 if (Opcode != ISD::ATOMIC_STORE) 4924 Flags |= MachineMemOperand::MOLoad; 4925 if (Opcode != ISD::ATOMIC_LOAD) 4926 Flags |= MachineMemOperand::MOStore; 4927 4928 MachineMemOperand *MMO = 4929 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, 4930 MemVT.getStoreSize(), Alignment); 4931 4932 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO, 4933 Ordering, SynchScope); 4934 } 4935 4936 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4937 SDValue Chain, SDValue Ptr, SDValue Val, 4938 MachineMemOperand *MMO, AtomicOrdering Ordering, 4939 SynchronizationScope SynchScope) { 4940 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 4941 Opcode == ISD::ATOMIC_LOAD_SUB || 4942 Opcode == ISD::ATOMIC_LOAD_AND || 4943 Opcode == ISD::ATOMIC_LOAD_OR || 4944 Opcode == ISD::ATOMIC_LOAD_XOR || 4945 Opcode == ISD::ATOMIC_LOAD_NAND || 4946 Opcode == ISD::ATOMIC_LOAD_MIN || 4947 Opcode == ISD::ATOMIC_LOAD_MAX || 4948 Opcode == ISD::ATOMIC_LOAD_UMIN || 4949 Opcode == ISD::ATOMIC_LOAD_UMAX || 4950 Opcode == ISD::ATOMIC_SWAP || 4951 Opcode == ISD::ATOMIC_STORE) && 4952 "Invalid Atomic Op"); 4953 4954 EVT VT = Val.getValueType(); 4955 4956 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 4957 getVTList(VT, MVT::Other); 4958 SDValue Ops[] = {Chain, Ptr, Val}; 4959 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope); 4960 } 4961 4962 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4963 EVT VT, SDValue Chain, SDValue Ptr, 4964 MachineMemOperand *MMO, AtomicOrdering Ordering, 4965 SynchronizationScope SynchScope) { 4966 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 4967 4968 SDVTList VTs = getVTList(VT, MVT::Other); 4969 SDValue Ops[] = {Chain, Ptr}; 4970 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope); 4971 } 4972 4973 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 4974 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 4975 if (Ops.size() == 1) 4976 return Ops[0]; 4977 4978 SmallVector<EVT, 4> VTs; 4979 VTs.reserve(Ops.size()); 4980 for (unsigned i = 0; i < Ops.size(); ++i) 4981 VTs.push_back(Ops[i].getValueType()); 4982 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 4983 } 4984 4985 SDValue SelectionDAG::getMemIntrinsicNode( 4986 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 4987 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol, 4988 bool ReadMem, bool WriteMem, unsigned Size) { 4989 if (Align == 0) // Ensure that codegen never sees alignment 0 4990 Align = getEVTAlignment(MemVT); 4991 4992 MachineFunction &MF = getMachineFunction(); 4993 auto Flags = MachineMemOperand::MONone; 4994 if (WriteMem) 4995 Flags |= MachineMemOperand::MOStore; 4996 if (ReadMem) 4997 Flags |= MachineMemOperand::MOLoad; 4998 if (Vol) 4999 Flags |= MachineMemOperand::MOVolatile; 5000 if (!Size) 5001 Size = MemVT.getStoreSize(); 5002 MachineMemOperand *MMO = 5003 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 5004 5005 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 5006 } 5007 5008 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 5009 SDVTList VTList, 5010 ArrayRef<SDValue> Ops, EVT MemVT, 5011 MachineMemOperand *MMO) { 5012 assert((Opcode == ISD::INTRINSIC_VOID || 5013 Opcode == ISD::INTRINSIC_W_CHAIN || 5014 Opcode == ISD::PREFETCH || 5015 Opcode == ISD::LIFETIME_START || 5016 Opcode == ISD::LIFETIME_END || 5017 (Opcode <= INT_MAX && 5018 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 5019 "Opcode is not a memory-accessing opcode!"); 5020 5021 // Memoize the node unless it returns a flag. 5022 MemIntrinsicSDNode *N; 5023 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5024 FoldingSetNodeID ID; 5025 AddNodeIDNode(ID, Opcode, VTList, Ops); 5026 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5027 void *IP = nullptr; 5028 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5029 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 5030 return SDValue(E, 0); 5031 } 5032 5033 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5034 VTList, MemVT, MMO); 5035 createOperands(N, Ops); 5036 5037 CSEMap.InsertNode(N, IP); 5038 } else { 5039 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5040 VTList, MemVT, MMO); 5041 createOperands(N, Ops); 5042 } 5043 InsertNode(N); 5044 return SDValue(N, 0); 5045 } 5046 5047 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5048 /// MachinePointerInfo record from it. This is particularly useful because the 5049 /// code generator has many cases where it doesn't bother passing in a 5050 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5051 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5052 int64_t Offset = 0) { 5053 // If this is FI+Offset, we can model it. 5054 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 5055 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 5056 FI->getIndex(), Offset); 5057 5058 // If this is (FI+Offset1)+Offset2, we can model it. 5059 if (Ptr.getOpcode() != ISD::ADD || 5060 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 5061 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 5062 return MachinePointerInfo(); 5063 5064 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 5065 return MachinePointerInfo::getFixedStack( 5066 DAG.getMachineFunction(), FI, 5067 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 5068 } 5069 5070 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5071 /// MachinePointerInfo record from it. This is particularly useful because the 5072 /// code generator has many cases where it doesn't bother passing in a 5073 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5074 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5075 SDValue OffsetOp) { 5076 // If the 'Offset' value isn't a constant, we can't handle this. 5077 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 5078 return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue()); 5079 if (OffsetOp.isUndef()) 5080 return InferPointerInfo(DAG, Ptr); 5081 return MachinePointerInfo(); 5082 } 5083 5084 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5085 EVT VT, const SDLoc &dl, SDValue Chain, 5086 SDValue Ptr, SDValue Offset, 5087 MachinePointerInfo PtrInfo, EVT MemVT, 5088 unsigned Alignment, 5089 MachineMemOperand::Flags MMOFlags, 5090 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5091 assert(Chain.getValueType() == MVT::Other && 5092 "Invalid chain type"); 5093 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5094 Alignment = getEVTAlignment(MemVT); 5095 5096 MMOFlags |= MachineMemOperand::MOLoad; 5097 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 5098 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 5099 // clients. 5100 if (PtrInfo.V.isNull()) 5101 PtrInfo = InferPointerInfo(*this, Ptr, Offset); 5102 5103 MachineFunction &MF = getMachineFunction(); 5104 MachineMemOperand *MMO = MF.getMachineMemOperand( 5105 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 5106 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 5107 } 5108 5109 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5110 EVT VT, const SDLoc &dl, SDValue Chain, 5111 SDValue Ptr, SDValue Offset, EVT MemVT, 5112 MachineMemOperand *MMO) { 5113 if (VT == MemVT) { 5114 ExtType = ISD::NON_EXTLOAD; 5115 } else if (ExtType == ISD::NON_EXTLOAD) { 5116 assert(VT == MemVT && "Non-extending load from different memory type!"); 5117 } else { 5118 // Extending load. 5119 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 5120 "Should only be an extending load, not truncating!"); 5121 assert(VT.isInteger() == MemVT.isInteger() && 5122 "Cannot convert from FP to Int or Int -> FP!"); 5123 assert(VT.isVector() == MemVT.isVector() && 5124 "Cannot use an ext load to convert to or from a vector!"); 5125 assert((!VT.isVector() || 5126 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 5127 "Cannot use an ext load to change the number of vector elements!"); 5128 } 5129 5130 bool Indexed = AM != ISD::UNINDEXED; 5131 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 5132 5133 SDVTList VTs = Indexed ? 5134 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 5135 SDValue Ops[] = { Chain, Ptr, Offset }; 5136 FoldingSetNodeID ID; 5137 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 5138 ID.AddInteger(MemVT.getRawBits()); 5139 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 5140 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 5141 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5142 void *IP = nullptr; 5143 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5144 cast<LoadSDNode>(E)->refineAlignment(MMO); 5145 return SDValue(E, 0); 5146 } 5147 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5148 ExtType, MemVT, MMO); 5149 createOperands(N, Ops); 5150 5151 CSEMap.InsertNode(N, IP); 5152 InsertNode(N); 5153 return SDValue(N, 0); 5154 } 5155 5156 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5157 SDValue Ptr, MachinePointerInfo PtrInfo, 5158 unsigned Alignment, 5159 MachineMemOperand::Flags MMOFlags, 5160 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5161 SDValue Undef = getUNDEF(Ptr.getValueType()); 5162 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5163 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 5164 } 5165 5166 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5167 SDValue Ptr, MachineMemOperand *MMO) { 5168 SDValue Undef = getUNDEF(Ptr.getValueType()); 5169 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5170 VT, MMO); 5171 } 5172 5173 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5174 EVT VT, SDValue Chain, SDValue Ptr, 5175 MachinePointerInfo PtrInfo, EVT MemVT, 5176 unsigned Alignment, 5177 MachineMemOperand::Flags MMOFlags, 5178 const AAMDNodes &AAInfo) { 5179 SDValue Undef = getUNDEF(Ptr.getValueType()); 5180 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 5181 MemVT, Alignment, MMOFlags, AAInfo); 5182 } 5183 5184 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5185 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 5186 MachineMemOperand *MMO) { 5187 SDValue Undef = getUNDEF(Ptr.getValueType()); 5188 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 5189 MemVT, MMO); 5190 } 5191 5192 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 5193 SDValue Base, SDValue Offset, 5194 ISD::MemIndexedMode AM) { 5195 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 5196 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 5197 // Don't propagate the invariant or dereferenceable flags. 5198 auto MMOFlags = 5199 LD->getMemOperand()->getFlags() & 5200 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 5201 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 5202 LD->getChain(), Base, Offset, LD->getPointerInfo(), 5203 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 5204 LD->getAAInfo()); 5205 } 5206 5207 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5208 SDValue Ptr, MachinePointerInfo PtrInfo, 5209 unsigned Alignment, 5210 MachineMemOperand::Flags MMOFlags, 5211 const AAMDNodes &AAInfo) { 5212 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 5213 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5214 Alignment = getEVTAlignment(Val.getValueType()); 5215 5216 MMOFlags |= MachineMemOperand::MOStore; 5217 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 5218 5219 if (PtrInfo.V.isNull()) 5220 PtrInfo = InferPointerInfo(*this, Ptr); 5221 5222 MachineFunction &MF = getMachineFunction(); 5223 MachineMemOperand *MMO = MF.getMachineMemOperand( 5224 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 5225 return getStore(Chain, dl, Val, Ptr, MMO); 5226 } 5227 5228 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5229 SDValue Ptr, MachineMemOperand *MMO) { 5230 assert(Chain.getValueType() == MVT::Other && 5231 "Invalid chain type"); 5232 EVT VT = Val.getValueType(); 5233 SDVTList VTs = getVTList(MVT::Other); 5234 SDValue Undef = getUNDEF(Ptr.getValueType()); 5235 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5236 FoldingSetNodeID ID; 5237 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5238 ID.AddInteger(VT.getRawBits()); 5239 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 5240 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 5241 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5242 void *IP = nullptr; 5243 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5244 cast<StoreSDNode>(E)->refineAlignment(MMO); 5245 return SDValue(E, 0); 5246 } 5247 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5248 ISD::UNINDEXED, false, VT, MMO); 5249 createOperands(N, Ops); 5250 5251 CSEMap.InsertNode(N, IP); 5252 InsertNode(N); 5253 return SDValue(N, 0); 5254 } 5255 5256 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5257 SDValue Ptr, MachinePointerInfo PtrInfo, 5258 EVT SVT, unsigned Alignment, 5259 MachineMemOperand::Flags MMOFlags, 5260 const AAMDNodes &AAInfo) { 5261 assert(Chain.getValueType() == MVT::Other && 5262 "Invalid chain type"); 5263 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5264 Alignment = getEVTAlignment(SVT); 5265 5266 MMOFlags |= MachineMemOperand::MOStore; 5267 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 5268 5269 if (PtrInfo.V.isNull()) 5270 PtrInfo = InferPointerInfo(*this, Ptr); 5271 5272 MachineFunction &MF = getMachineFunction(); 5273 MachineMemOperand *MMO = MF.getMachineMemOperand( 5274 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 5275 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 5276 } 5277 5278 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5279 SDValue Ptr, EVT SVT, 5280 MachineMemOperand *MMO) { 5281 EVT VT = Val.getValueType(); 5282 5283 assert(Chain.getValueType() == MVT::Other && 5284 "Invalid chain type"); 5285 if (VT == SVT) 5286 return getStore(Chain, dl, Val, Ptr, MMO); 5287 5288 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 5289 "Should only be a truncating store, not extending!"); 5290 assert(VT.isInteger() == SVT.isInteger() && 5291 "Can't do FP-INT conversion!"); 5292 assert(VT.isVector() == SVT.isVector() && 5293 "Cannot use trunc store to convert to or from a vector!"); 5294 assert((!VT.isVector() || 5295 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 5296 "Cannot use trunc store to change the number of vector elements!"); 5297 5298 SDVTList VTs = getVTList(MVT::Other); 5299 SDValue Undef = getUNDEF(Ptr.getValueType()); 5300 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5301 FoldingSetNodeID ID; 5302 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5303 ID.AddInteger(SVT.getRawBits()); 5304 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 5305 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 5306 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5307 void *IP = nullptr; 5308 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5309 cast<StoreSDNode>(E)->refineAlignment(MMO); 5310 return SDValue(E, 0); 5311 } 5312 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5313 ISD::UNINDEXED, true, SVT, MMO); 5314 createOperands(N, Ops); 5315 5316 CSEMap.InsertNode(N, IP); 5317 InsertNode(N); 5318 return SDValue(N, 0); 5319 } 5320 5321 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 5322 SDValue Base, SDValue Offset, 5323 ISD::MemIndexedMode AM) { 5324 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 5325 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 5326 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 5327 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 5328 FoldingSetNodeID ID; 5329 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5330 ID.AddInteger(ST->getMemoryVT().getRawBits()); 5331 ID.AddInteger(ST->getRawSubclassData()); 5332 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 5333 void *IP = nullptr; 5334 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 5335 return SDValue(E, 0); 5336 5337 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5338 ST->isTruncatingStore(), ST->getMemoryVT(), 5339 ST->getMemOperand()); 5340 createOperands(N, Ops); 5341 5342 CSEMap.InsertNode(N, IP); 5343 InsertNode(N); 5344 return SDValue(N, 0); 5345 } 5346 5347 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5348 SDValue Ptr, SDValue Mask, SDValue Src0, 5349 EVT MemVT, MachineMemOperand *MMO, 5350 ISD::LoadExtType ExtTy, bool isExpanding) { 5351 5352 SDVTList VTs = getVTList(VT, MVT::Other); 5353 SDValue Ops[] = { Chain, Ptr, Mask, Src0 }; 5354 FoldingSetNodeID ID; 5355 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 5356 ID.AddInteger(VT.getRawBits()); 5357 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 5358 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 5359 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5360 void *IP = nullptr; 5361 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5362 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 5363 return SDValue(E, 0); 5364 } 5365 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5366 ExtTy, isExpanding, MemVT, MMO); 5367 createOperands(N, Ops); 5368 5369 CSEMap.InsertNode(N, IP); 5370 InsertNode(N); 5371 return SDValue(N, 0); 5372 } 5373 5374 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 5375 SDValue Val, SDValue Ptr, SDValue Mask, 5376 EVT MemVT, MachineMemOperand *MMO, 5377 bool IsTruncating, bool IsCompressing) { 5378 assert(Chain.getValueType() == MVT::Other && 5379 "Invalid chain type"); 5380 EVT VT = Val.getValueType(); 5381 SDVTList VTs = getVTList(MVT::Other); 5382 SDValue Ops[] = { Chain, Ptr, Mask, Val }; 5383 FoldingSetNodeID ID; 5384 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 5385 ID.AddInteger(VT.getRawBits()); 5386 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 5387 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 5388 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5389 void *IP = nullptr; 5390 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5391 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 5392 return SDValue(E, 0); 5393 } 5394 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5395 IsTruncating, IsCompressing, MemVT, MMO); 5396 createOperands(N, Ops); 5397 5398 CSEMap.InsertNode(N, IP); 5399 InsertNode(N); 5400 return SDValue(N, 0); 5401 } 5402 5403 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 5404 ArrayRef<SDValue> Ops, 5405 MachineMemOperand *MMO) { 5406 assert(Ops.size() == 5 && "Incompatible number of operands"); 5407 5408 FoldingSetNodeID ID; 5409 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 5410 ID.AddInteger(VT.getRawBits()); 5411 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 5412 dl.getIROrder(), VTs, VT, MMO)); 5413 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5414 void *IP = nullptr; 5415 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5416 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 5417 return SDValue(E, 0); 5418 } 5419 5420 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 5421 VTs, VT, MMO); 5422 createOperands(N, Ops); 5423 5424 assert(N->getValue().getValueType() == N->getValueType(0) && 5425 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 5426 assert(N->getMask().getValueType().getVectorNumElements() == 5427 N->getValueType(0).getVectorNumElements() && 5428 "Vector width mismatch between mask and data"); 5429 assert(N->getIndex().getValueType().getVectorNumElements() == 5430 N->getValueType(0).getVectorNumElements() && 5431 "Vector width mismatch between index and data"); 5432 5433 CSEMap.InsertNode(N, IP); 5434 InsertNode(N); 5435 return SDValue(N, 0); 5436 } 5437 5438 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 5439 ArrayRef<SDValue> Ops, 5440 MachineMemOperand *MMO) { 5441 assert(Ops.size() == 5 && "Incompatible number of operands"); 5442 5443 FoldingSetNodeID ID; 5444 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 5445 ID.AddInteger(VT.getRawBits()); 5446 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 5447 dl.getIROrder(), VTs, VT, MMO)); 5448 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5449 void *IP = nullptr; 5450 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5451 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 5452 return SDValue(E, 0); 5453 } 5454 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 5455 VTs, VT, MMO); 5456 createOperands(N, Ops); 5457 5458 assert(N->getMask().getValueType().getVectorNumElements() == 5459 N->getValue().getValueType().getVectorNumElements() && 5460 "Vector width mismatch between mask and data"); 5461 assert(N->getIndex().getValueType().getVectorNumElements() == 5462 N->getValue().getValueType().getVectorNumElements() && 5463 "Vector width mismatch between index and data"); 5464 5465 CSEMap.InsertNode(N, IP); 5466 InsertNode(N); 5467 return SDValue(N, 0); 5468 } 5469 5470 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 5471 SDValue Ptr, SDValue SV, unsigned Align) { 5472 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 5473 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 5474 } 5475 5476 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5477 ArrayRef<SDUse> Ops) { 5478 switch (Ops.size()) { 5479 case 0: return getNode(Opcode, DL, VT); 5480 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 5481 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 5482 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 5483 default: break; 5484 } 5485 5486 // Copy from an SDUse array into an SDValue array for use with 5487 // the regular getNode logic. 5488 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 5489 return getNode(Opcode, DL, VT, NewOps); 5490 } 5491 5492 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5493 ArrayRef<SDValue> Ops, const SDNodeFlags *Flags) { 5494 unsigned NumOps = Ops.size(); 5495 switch (NumOps) { 5496 case 0: return getNode(Opcode, DL, VT); 5497 case 1: return getNode(Opcode, DL, VT, Ops[0]); 5498 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 5499 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 5500 default: break; 5501 } 5502 5503 switch (Opcode) { 5504 default: break; 5505 case ISD::CONCAT_VECTORS: { 5506 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 5507 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 5508 return V; 5509 break; 5510 } 5511 case ISD::SELECT_CC: { 5512 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 5513 assert(Ops[0].getValueType() == Ops[1].getValueType() && 5514 "LHS and RHS of condition must have same type!"); 5515 assert(Ops[2].getValueType() == Ops[3].getValueType() && 5516 "True and False arms of SelectCC must have same type!"); 5517 assert(Ops[2].getValueType() == VT && 5518 "select_cc node must be of same type as true and false value!"); 5519 break; 5520 } 5521 case ISD::BR_CC: { 5522 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 5523 assert(Ops[2].getValueType() == Ops[3].getValueType() && 5524 "LHS/RHS of comparison should match types!"); 5525 break; 5526 } 5527 } 5528 5529 // Memoize nodes. 5530 SDNode *N; 5531 SDVTList VTs = getVTList(VT); 5532 5533 if (VT != MVT::Glue) { 5534 FoldingSetNodeID ID; 5535 AddNodeIDNode(ID, Opcode, VTs, Ops); 5536 void *IP = nullptr; 5537 5538 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5539 return SDValue(E, 0); 5540 5541 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5542 createOperands(N, Ops); 5543 5544 CSEMap.InsertNode(N, IP); 5545 } else { 5546 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5547 createOperands(N, Ops); 5548 } 5549 5550 InsertNode(N); 5551 return SDValue(N, 0); 5552 } 5553 5554 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 5555 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 5556 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 5557 } 5558 5559 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5560 ArrayRef<SDValue> Ops) { 5561 if (VTList.NumVTs == 1) 5562 return getNode(Opcode, DL, VTList.VTs[0], Ops); 5563 5564 #if 0 5565 switch (Opcode) { 5566 // FIXME: figure out how to safely handle things like 5567 // int foo(int x) { return 1 << (x & 255); } 5568 // int bar() { return foo(256); } 5569 case ISD::SRA_PARTS: 5570 case ISD::SRL_PARTS: 5571 case ISD::SHL_PARTS: 5572 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 5573 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 5574 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 5575 else if (N3.getOpcode() == ISD::AND) 5576 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 5577 // If the and is only masking out bits that cannot effect the shift, 5578 // eliminate the and. 5579 unsigned NumBits = VT.getScalarSizeInBits()*2; 5580 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 5581 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 5582 } 5583 break; 5584 } 5585 #endif 5586 5587 // Memoize the node unless it returns a flag. 5588 SDNode *N; 5589 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5590 FoldingSetNodeID ID; 5591 AddNodeIDNode(ID, Opcode, VTList, Ops); 5592 void *IP = nullptr; 5593 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5594 return SDValue(E, 0); 5595 5596 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 5597 createOperands(N, Ops); 5598 CSEMap.InsertNode(N, IP); 5599 } else { 5600 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 5601 createOperands(N, Ops); 5602 } 5603 InsertNode(N); 5604 return SDValue(N, 0); 5605 } 5606 5607 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 5608 SDVTList VTList) { 5609 return getNode(Opcode, DL, VTList, None); 5610 } 5611 5612 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5613 SDValue N1) { 5614 SDValue Ops[] = { N1 }; 5615 return getNode(Opcode, DL, VTList, Ops); 5616 } 5617 5618 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5619 SDValue N1, SDValue N2) { 5620 SDValue Ops[] = { N1, N2 }; 5621 return getNode(Opcode, DL, VTList, Ops); 5622 } 5623 5624 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5625 SDValue N1, SDValue N2, SDValue N3) { 5626 SDValue Ops[] = { N1, N2, N3 }; 5627 return getNode(Opcode, DL, VTList, Ops); 5628 } 5629 5630 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5631 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5632 SDValue Ops[] = { N1, N2, N3, N4 }; 5633 return getNode(Opcode, DL, VTList, Ops); 5634 } 5635 5636 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5637 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5638 SDValue N5) { 5639 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5640 return getNode(Opcode, DL, VTList, Ops); 5641 } 5642 5643 SDVTList SelectionDAG::getVTList(EVT VT) { 5644 return makeVTList(SDNode::getValueTypeList(VT), 1); 5645 } 5646 5647 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 5648 FoldingSetNodeID ID; 5649 ID.AddInteger(2U); 5650 ID.AddInteger(VT1.getRawBits()); 5651 ID.AddInteger(VT2.getRawBits()); 5652 5653 void *IP = nullptr; 5654 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5655 if (!Result) { 5656 EVT *Array = Allocator.Allocate<EVT>(2); 5657 Array[0] = VT1; 5658 Array[1] = VT2; 5659 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 5660 VTListMap.InsertNode(Result, IP); 5661 } 5662 return Result->getSDVTList(); 5663 } 5664 5665 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 5666 FoldingSetNodeID ID; 5667 ID.AddInteger(3U); 5668 ID.AddInteger(VT1.getRawBits()); 5669 ID.AddInteger(VT2.getRawBits()); 5670 ID.AddInteger(VT3.getRawBits()); 5671 5672 void *IP = nullptr; 5673 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5674 if (!Result) { 5675 EVT *Array = Allocator.Allocate<EVT>(3); 5676 Array[0] = VT1; 5677 Array[1] = VT2; 5678 Array[2] = VT3; 5679 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 5680 VTListMap.InsertNode(Result, IP); 5681 } 5682 return Result->getSDVTList(); 5683 } 5684 5685 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 5686 FoldingSetNodeID ID; 5687 ID.AddInteger(4U); 5688 ID.AddInteger(VT1.getRawBits()); 5689 ID.AddInteger(VT2.getRawBits()); 5690 ID.AddInteger(VT3.getRawBits()); 5691 ID.AddInteger(VT4.getRawBits()); 5692 5693 void *IP = nullptr; 5694 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5695 if (!Result) { 5696 EVT *Array = Allocator.Allocate<EVT>(4); 5697 Array[0] = VT1; 5698 Array[1] = VT2; 5699 Array[2] = VT3; 5700 Array[3] = VT4; 5701 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 5702 VTListMap.InsertNode(Result, IP); 5703 } 5704 return Result->getSDVTList(); 5705 } 5706 5707 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 5708 unsigned NumVTs = VTs.size(); 5709 FoldingSetNodeID ID; 5710 ID.AddInteger(NumVTs); 5711 for (unsigned index = 0; index < NumVTs; index++) { 5712 ID.AddInteger(VTs[index].getRawBits()); 5713 } 5714 5715 void *IP = nullptr; 5716 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5717 if (!Result) { 5718 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 5719 std::copy(VTs.begin(), VTs.end(), Array); 5720 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 5721 VTListMap.InsertNode(Result, IP); 5722 } 5723 return Result->getSDVTList(); 5724 } 5725 5726 5727 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 5728 /// specified operands. If the resultant node already exists in the DAG, 5729 /// this does not modify the specified node, instead it returns the node that 5730 /// already exists. If the resultant node does not exist in the DAG, the 5731 /// input node is returned. As a degenerate case, if you specify the same 5732 /// input operands as the node already has, the input node is returned. 5733 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 5734 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 5735 5736 // Check to see if there is no change. 5737 if (Op == N->getOperand(0)) return N; 5738 5739 // See if the modified node already exists. 5740 void *InsertPos = nullptr; 5741 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 5742 return Existing; 5743 5744 // Nope it doesn't. Remove the node from its current place in the maps. 5745 if (InsertPos) 5746 if (!RemoveNodeFromCSEMaps(N)) 5747 InsertPos = nullptr; 5748 5749 // Now we update the operands. 5750 N->OperandList[0].set(Op); 5751 5752 // If this gets put into a CSE map, add it. 5753 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 5754 return N; 5755 } 5756 5757 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 5758 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 5759 5760 // Check to see if there is no change. 5761 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 5762 return N; // No operands changed, just return the input node. 5763 5764 // See if the modified node already exists. 5765 void *InsertPos = nullptr; 5766 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 5767 return Existing; 5768 5769 // Nope it doesn't. Remove the node from its current place in the maps. 5770 if (InsertPos) 5771 if (!RemoveNodeFromCSEMaps(N)) 5772 InsertPos = nullptr; 5773 5774 // Now we update the operands. 5775 if (N->OperandList[0] != Op1) 5776 N->OperandList[0].set(Op1); 5777 if (N->OperandList[1] != Op2) 5778 N->OperandList[1].set(Op2); 5779 5780 // If this gets put into a CSE map, add it. 5781 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 5782 return N; 5783 } 5784 5785 SDNode *SelectionDAG:: 5786 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 5787 SDValue Ops[] = { Op1, Op2, Op3 }; 5788 return UpdateNodeOperands(N, Ops); 5789 } 5790 5791 SDNode *SelectionDAG:: 5792 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 5793 SDValue Op3, SDValue Op4) { 5794 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 5795 return UpdateNodeOperands(N, Ops); 5796 } 5797 5798 SDNode *SelectionDAG:: 5799 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 5800 SDValue Op3, SDValue Op4, SDValue Op5) { 5801 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 5802 return UpdateNodeOperands(N, Ops); 5803 } 5804 5805 SDNode *SelectionDAG:: 5806 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 5807 unsigned NumOps = Ops.size(); 5808 assert(N->getNumOperands() == NumOps && 5809 "Update with wrong number of operands"); 5810 5811 // If no operands changed just return the input node. 5812 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 5813 return N; 5814 5815 // See if the modified node already exists. 5816 void *InsertPos = nullptr; 5817 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 5818 return Existing; 5819 5820 // Nope it doesn't. Remove the node from its current place in the maps. 5821 if (InsertPos) 5822 if (!RemoveNodeFromCSEMaps(N)) 5823 InsertPos = nullptr; 5824 5825 // Now we update the operands. 5826 for (unsigned i = 0; i != NumOps; ++i) 5827 if (N->OperandList[i] != Ops[i]) 5828 N->OperandList[i].set(Ops[i]); 5829 5830 // If this gets put into a CSE map, add it. 5831 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 5832 return N; 5833 } 5834 5835 /// DropOperands - Release the operands and set this node to have 5836 /// zero operands. 5837 void SDNode::DropOperands() { 5838 // Unlike the code in MorphNodeTo that does this, we don't need to 5839 // watch for dead nodes here. 5840 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 5841 SDUse &Use = *I++; 5842 Use.set(SDValue()); 5843 } 5844 } 5845 5846 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 5847 /// machine opcode. 5848 /// 5849 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5850 EVT VT) { 5851 SDVTList VTs = getVTList(VT); 5852 return SelectNodeTo(N, MachineOpc, VTs, None); 5853 } 5854 5855 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5856 EVT VT, SDValue Op1) { 5857 SDVTList VTs = getVTList(VT); 5858 SDValue Ops[] = { Op1 }; 5859 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5860 } 5861 5862 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5863 EVT VT, SDValue Op1, 5864 SDValue Op2) { 5865 SDVTList VTs = getVTList(VT); 5866 SDValue Ops[] = { Op1, Op2 }; 5867 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5868 } 5869 5870 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5871 EVT VT, SDValue Op1, 5872 SDValue Op2, SDValue Op3) { 5873 SDVTList VTs = getVTList(VT); 5874 SDValue Ops[] = { Op1, Op2, Op3 }; 5875 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5876 } 5877 5878 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5879 EVT VT, ArrayRef<SDValue> Ops) { 5880 SDVTList VTs = getVTList(VT); 5881 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5882 } 5883 5884 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5885 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 5886 SDVTList VTs = getVTList(VT1, VT2); 5887 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5888 } 5889 5890 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5891 EVT VT1, EVT VT2) { 5892 SDVTList VTs = getVTList(VT1, VT2); 5893 return SelectNodeTo(N, MachineOpc, VTs, None); 5894 } 5895 5896 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5897 EVT VT1, EVT VT2, EVT VT3, 5898 ArrayRef<SDValue> Ops) { 5899 SDVTList VTs = getVTList(VT1, VT2, VT3); 5900 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5901 } 5902 5903 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5904 EVT VT1, EVT VT2, 5905 SDValue Op1, SDValue Op2) { 5906 SDVTList VTs = getVTList(VT1, VT2); 5907 SDValue Ops[] = { Op1, Op2 }; 5908 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5909 } 5910 5911 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5912 SDVTList VTs,ArrayRef<SDValue> Ops) { 5913 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 5914 // Reset the NodeID to -1. 5915 New->setNodeId(-1); 5916 if (New != N) { 5917 ReplaceAllUsesWith(N, New); 5918 RemoveDeadNode(N); 5919 } 5920 return New; 5921 } 5922 5923 /// UpdadeSDLocOnMergedSDNode - If the opt level is -O0 then it throws away 5924 /// the line number information on the merged node since it is not possible to 5925 /// preserve the information that operation is associated with multiple lines. 5926 /// This will make the debugger working better at -O0, were there is a higher 5927 /// probability having other instructions associated with that line. 5928 /// 5929 /// For IROrder, we keep the smaller of the two 5930 SDNode *SelectionDAG::UpdadeSDLocOnMergedSDNode(SDNode *N, const SDLoc &OLoc) { 5931 DebugLoc NLoc = N->getDebugLoc(); 5932 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 5933 N->setDebugLoc(DebugLoc()); 5934 } 5935 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 5936 N->setIROrder(Order); 5937 return N; 5938 } 5939 5940 /// MorphNodeTo - This *mutates* the specified node to have the specified 5941 /// return type, opcode, and operands. 5942 /// 5943 /// Note that MorphNodeTo returns the resultant node. If there is already a 5944 /// node of the specified opcode and operands, it returns that node instead of 5945 /// the current one. Note that the SDLoc need not be the same. 5946 /// 5947 /// Using MorphNodeTo is faster than creating a new node and swapping it in 5948 /// with ReplaceAllUsesWith both because it often avoids allocating a new 5949 /// node, and because it doesn't require CSE recalculation for any of 5950 /// the node's users. 5951 /// 5952 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 5953 /// As a consequence it isn't appropriate to use from within the DAG combiner or 5954 /// the legalizer which maintain worklists that would need to be updated when 5955 /// deleting things. 5956 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 5957 SDVTList VTs, ArrayRef<SDValue> Ops) { 5958 // If an identical node already exists, use it. 5959 void *IP = nullptr; 5960 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 5961 FoldingSetNodeID ID; 5962 AddNodeIDNode(ID, Opc, VTs, Ops); 5963 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 5964 return UpdadeSDLocOnMergedSDNode(ON, SDLoc(N)); 5965 } 5966 5967 if (!RemoveNodeFromCSEMaps(N)) 5968 IP = nullptr; 5969 5970 // Start the morphing. 5971 N->NodeType = Opc; 5972 N->ValueList = VTs.VTs; 5973 N->NumValues = VTs.NumVTs; 5974 5975 // Clear the operands list, updating used nodes to remove this from their 5976 // use list. Keep track of any operands that become dead as a result. 5977 SmallPtrSet<SDNode*, 16> DeadNodeSet; 5978 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 5979 SDUse &Use = *I++; 5980 SDNode *Used = Use.getNode(); 5981 Use.set(SDValue()); 5982 if (Used->use_empty()) 5983 DeadNodeSet.insert(Used); 5984 } 5985 5986 // For MachineNode, initialize the memory references information. 5987 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 5988 MN->setMemRefs(nullptr, nullptr); 5989 5990 // Swap for an appropriately sized array from the recycler. 5991 removeOperands(N); 5992 createOperands(N, Ops); 5993 5994 // Delete any nodes that are still dead after adding the uses for the 5995 // new operands. 5996 if (!DeadNodeSet.empty()) { 5997 SmallVector<SDNode *, 16> DeadNodes; 5998 for (SDNode *N : DeadNodeSet) 5999 if (N->use_empty()) 6000 DeadNodes.push_back(N); 6001 RemoveDeadNodes(DeadNodes); 6002 } 6003 6004 if (IP) 6005 CSEMap.InsertNode(N, IP); // Memoize the new node. 6006 return N; 6007 } 6008 6009 6010 /// getMachineNode - These are used for target selectors to create a new node 6011 /// with specified return type(s), MachineInstr opcode, and operands. 6012 /// 6013 /// Note that getMachineNode returns the resultant node. If there is already a 6014 /// node of the specified opcode and operands, it returns that node instead of 6015 /// the current one. 6016 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6017 EVT VT) { 6018 SDVTList VTs = getVTList(VT); 6019 return getMachineNode(Opcode, dl, VTs, None); 6020 } 6021 6022 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6023 EVT VT, SDValue Op1) { 6024 SDVTList VTs = getVTList(VT); 6025 SDValue Ops[] = { Op1 }; 6026 return getMachineNode(Opcode, dl, VTs, Ops); 6027 } 6028 6029 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6030 EVT VT, SDValue Op1, SDValue Op2) { 6031 SDVTList VTs = getVTList(VT); 6032 SDValue Ops[] = { Op1, Op2 }; 6033 return getMachineNode(Opcode, dl, VTs, Ops); 6034 } 6035 6036 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6037 EVT VT, SDValue Op1, SDValue Op2, 6038 SDValue Op3) { 6039 SDVTList VTs = getVTList(VT); 6040 SDValue Ops[] = { Op1, Op2, Op3 }; 6041 return getMachineNode(Opcode, dl, VTs, Ops); 6042 } 6043 6044 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6045 EVT VT, ArrayRef<SDValue> Ops) { 6046 SDVTList VTs = getVTList(VT); 6047 return getMachineNode(Opcode, dl, VTs, Ops); 6048 } 6049 6050 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6051 EVT VT1, EVT VT2, SDValue Op1, 6052 SDValue Op2) { 6053 SDVTList VTs = getVTList(VT1, VT2); 6054 SDValue Ops[] = { Op1, Op2 }; 6055 return getMachineNode(Opcode, dl, VTs, Ops); 6056 } 6057 6058 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6059 EVT VT1, EVT VT2, SDValue Op1, 6060 SDValue Op2, SDValue Op3) { 6061 SDVTList VTs = getVTList(VT1, VT2); 6062 SDValue Ops[] = { Op1, Op2, Op3 }; 6063 return getMachineNode(Opcode, dl, VTs, Ops); 6064 } 6065 6066 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6067 EVT VT1, EVT VT2, 6068 ArrayRef<SDValue> Ops) { 6069 SDVTList VTs = getVTList(VT1, VT2); 6070 return getMachineNode(Opcode, dl, VTs, Ops); 6071 } 6072 6073 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6074 EVT VT1, EVT VT2, EVT VT3, 6075 SDValue Op1, SDValue Op2) { 6076 SDVTList VTs = getVTList(VT1, VT2, VT3); 6077 SDValue Ops[] = { Op1, Op2 }; 6078 return getMachineNode(Opcode, dl, VTs, Ops); 6079 } 6080 6081 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6082 EVT VT1, EVT VT2, EVT VT3, 6083 SDValue Op1, SDValue Op2, 6084 SDValue Op3) { 6085 SDVTList VTs = getVTList(VT1, VT2, VT3); 6086 SDValue Ops[] = { Op1, Op2, Op3 }; 6087 return getMachineNode(Opcode, dl, VTs, Ops); 6088 } 6089 6090 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6091 EVT VT1, EVT VT2, EVT VT3, 6092 ArrayRef<SDValue> Ops) { 6093 SDVTList VTs = getVTList(VT1, VT2, VT3); 6094 return getMachineNode(Opcode, dl, VTs, Ops); 6095 } 6096 6097 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6098 ArrayRef<EVT> ResultTys, 6099 ArrayRef<SDValue> Ops) { 6100 SDVTList VTs = getVTList(ResultTys); 6101 return getMachineNode(Opcode, dl, VTs, Ops); 6102 } 6103 6104 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 6105 SDVTList VTs, 6106 ArrayRef<SDValue> Ops) { 6107 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 6108 MachineSDNode *N; 6109 void *IP = nullptr; 6110 6111 if (DoCSE) { 6112 FoldingSetNodeID ID; 6113 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 6114 IP = nullptr; 6115 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6116 return cast<MachineSDNode>(UpdadeSDLocOnMergedSDNode(E, DL)); 6117 } 6118 } 6119 6120 // Allocate a new MachineSDNode. 6121 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6122 createOperands(N, Ops); 6123 6124 if (DoCSE) 6125 CSEMap.InsertNode(N, IP); 6126 6127 InsertNode(N); 6128 return N; 6129 } 6130 6131 /// getTargetExtractSubreg - A convenience function for creating 6132 /// TargetOpcode::EXTRACT_SUBREG nodes. 6133 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6134 SDValue Operand) { 6135 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6136 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 6137 VT, Operand, SRIdxVal); 6138 return SDValue(Subreg, 0); 6139 } 6140 6141 /// getTargetInsertSubreg - A convenience function for creating 6142 /// TargetOpcode::INSERT_SUBREG nodes. 6143 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6144 SDValue Operand, SDValue Subreg) { 6145 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6146 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 6147 VT, Operand, Subreg, SRIdxVal); 6148 return SDValue(Result, 0); 6149 } 6150 6151 /// getNodeIfExists - Get the specified node if it's already available, or 6152 /// else return NULL. 6153 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 6154 ArrayRef<SDValue> Ops, 6155 const SDNodeFlags *Flags) { 6156 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 6157 FoldingSetNodeID ID; 6158 AddNodeIDNode(ID, Opcode, VTList, Ops); 6159 void *IP = nullptr; 6160 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 6161 if (Flags) 6162 E->intersectFlagsWith(Flags); 6163 return E; 6164 } 6165 } 6166 return nullptr; 6167 } 6168 6169 /// getDbgValue - Creates a SDDbgValue node. 6170 /// 6171 /// SDNode 6172 SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N, 6173 unsigned R, bool IsIndirect, uint64_t Off, 6174 const DebugLoc &DL, unsigned O) { 6175 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6176 "Expected inlined-at fields to agree"); 6177 return new (DbgInfo->getAlloc()) 6178 SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O); 6179 } 6180 6181 /// Constant 6182 SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr, 6183 const Value *C, uint64_t Off, 6184 const DebugLoc &DL, unsigned O) { 6185 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6186 "Expected inlined-at fields to agree"); 6187 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, Off, DL, O); 6188 } 6189 6190 /// FrameIndex 6191 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr, 6192 unsigned FI, uint64_t Off, 6193 const DebugLoc &DL, 6194 unsigned O) { 6195 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6196 "Expected inlined-at fields to agree"); 6197 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, Off, DL, O); 6198 } 6199 6200 namespace { 6201 6202 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 6203 /// pointed to by a use iterator is deleted, increment the use iterator 6204 /// so that it doesn't dangle. 6205 /// 6206 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 6207 SDNode::use_iterator &UI; 6208 SDNode::use_iterator &UE; 6209 6210 void NodeDeleted(SDNode *N, SDNode *E) override { 6211 // Increment the iterator as needed. 6212 while (UI != UE && N == *UI) 6213 ++UI; 6214 } 6215 6216 public: 6217 RAUWUpdateListener(SelectionDAG &d, 6218 SDNode::use_iterator &ui, 6219 SDNode::use_iterator &ue) 6220 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 6221 }; 6222 6223 } 6224 6225 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6226 /// This can cause recursive merging of nodes in the DAG. 6227 /// 6228 /// This version assumes From has a single result value. 6229 /// 6230 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 6231 SDNode *From = FromN.getNode(); 6232 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 6233 "Cannot replace with this method!"); 6234 assert(From != To.getNode() && "Cannot replace uses of with self"); 6235 6236 // Preserve Debug Values 6237 TransferDbgValues(FromN, To); 6238 6239 // Iterate over all the existing uses of From. New uses will be added 6240 // to the beginning of the use list, which we avoid visiting. 6241 // This specifically avoids visiting uses of From that arise while the 6242 // replacement is happening, because any such uses would be the result 6243 // of CSE: If an existing node looks like From after one of its operands 6244 // is replaced by To, we don't want to replace of all its users with To 6245 // too. See PR3018 for more info. 6246 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6247 RAUWUpdateListener Listener(*this, UI, UE); 6248 while (UI != UE) { 6249 SDNode *User = *UI; 6250 6251 // This node is about to morph, remove its old self from the CSE maps. 6252 RemoveNodeFromCSEMaps(User); 6253 6254 // A user can appear in a use list multiple times, and when this 6255 // happens the uses are usually next to each other in the list. 6256 // To help reduce the number of CSE recomputations, process all 6257 // the uses of this user that we can find this way. 6258 do { 6259 SDUse &Use = UI.getUse(); 6260 ++UI; 6261 Use.set(To); 6262 } while (UI != UE && *UI == User); 6263 6264 // Now that we have modified User, add it back to the CSE maps. If it 6265 // already exists there, recursively merge the results together. 6266 AddModifiedNodeToCSEMaps(User); 6267 } 6268 6269 6270 // If we just RAUW'd the root, take note. 6271 if (FromN == getRoot()) 6272 setRoot(To); 6273 } 6274 6275 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6276 /// This can cause recursive merging of nodes in the DAG. 6277 /// 6278 /// This version assumes that for each value of From, there is a 6279 /// corresponding value in To in the same position with the same type. 6280 /// 6281 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 6282 #ifndef NDEBUG 6283 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6284 assert((!From->hasAnyUseOfValue(i) || 6285 From->getValueType(i) == To->getValueType(i)) && 6286 "Cannot use this version of ReplaceAllUsesWith!"); 6287 #endif 6288 6289 // Handle the trivial case. 6290 if (From == To) 6291 return; 6292 6293 // Preserve Debug Info. Only do this if there's a use. 6294 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6295 if (From->hasAnyUseOfValue(i)) { 6296 assert((i < To->getNumValues()) && "Invalid To location"); 6297 TransferDbgValues(SDValue(From, i), SDValue(To, i)); 6298 } 6299 6300 // Iterate over just the existing users of From. See the comments in 6301 // the ReplaceAllUsesWith above. 6302 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6303 RAUWUpdateListener Listener(*this, UI, UE); 6304 while (UI != UE) { 6305 SDNode *User = *UI; 6306 6307 // This node is about to morph, remove its old self from the CSE maps. 6308 RemoveNodeFromCSEMaps(User); 6309 6310 // A user can appear in a use list multiple times, and when this 6311 // happens the uses are usually next to each other in the list. 6312 // To help reduce the number of CSE recomputations, process all 6313 // the uses of this user that we can find this way. 6314 do { 6315 SDUse &Use = UI.getUse(); 6316 ++UI; 6317 Use.setNode(To); 6318 } while (UI != UE && *UI == User); 6319 6320 // Now that we have modified User, add it back to the CSE maps. If it 6321 // already exists there, recursively merge the results together. 6322 AddModifiedNodeToCSEMaps(User); 6323 } 6324 6325 // If we just RAUW'd the root, take note. 6326 if (From == getRoot().getNode()) 6327 setRoot(SDValue(To, getRoot().getResNo())); 6328 } 6329 6330 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6331 /// This can cause recursive merging of nodes in the DAG. 6332 /// 6333 /// This version can replace From with any result values. To must match the 6334 /// number and types of values returned by From. 6335 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 6336 if (From->getNumValues() == 1) // Handle the simple case efficiently. 6337 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 6338 6339 // Preserve Debug Info. 6340 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6341 TransferDbgValues(SDValue(From, i), *To); 6342 6343 // Iterate over just the existing users of From. See the comments in 6344 // the ReplaceAllUsesWith above. 6345 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6346 RAUWUpdateListener Listener(*this, UI, UE); 6347 while (UI != UE) { 6348 SDNode *User = *UI; 6349 6350 // This node is about to morph, remove its old self from the CSE maps. 6351 RemoveNodeFromCSEMaps(User); 6352 6353 // A user can appear in a use list multiple times, and when this 6354 // happens the uses are usually next to each other in the list. 6355 // To help reduce the number of CSE recomputations, process all 6356 // the uses of this user that we can find this way. 6357 do { 6358 SDUse &Use = UI.getUse(); 6359 const SDValue &ToOp = To[Use.getResNo()]; 6360 ++UI; 6361 Use.set(ToOp); 6362 } while (UI != UE && *UI == User); 6363 6364 // Now that we have modified User, add it back to the CSE maps. If it 6365 // already exists there, recursively merge the results together. 6366 AddModifiedNodeToCSEMaps(User); 6367 } 6368 6369 // If we just RAUW'd the root, take note. 6370 if (From == getRoot().getNode()) 6371 setRoot(SDValue(To[getRoot().getResNo()])); 6372 } 6373 6374 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 6375 /// uses of other values produced by From.getNode() alone. The Deleted 6376 /// vector is handled the same way as for ReplaceAllUsesWith. 6377 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 6378 // Handle the really simple, really trivial case efficiently. 6379 if (From == To) return; 6380 6381 // Handle the simple, trivial, case efficiently. 6382 if (From.getNode()->getNumValues() == 1) { 6383 ReplaceAllUsesWith(From, To); 6384 return; 6385 } 6386 6387 // Preserve Debug Info. 6388 TransferDbgValues(From, To); 6389 6390 // Iterate over just the existing users of From. See the comments in 6391 // the ReplaceAllUsesWith above. 6392 SDNode::use_iterator UI = From.getNode()->use_begin(), 6393 UE = From.getNode()->use_end(); 6394 RAUWUpdateListener Listener(*this, UI, UE); 6395 while (UI != UE) { 6396 SDNode *User = *UI; 6397 bool UserRemovedFromCSEMaps = false; 6398 6399 // A user can appear in a use list multiple times, and when this 6400 // happens the uses are usually next to each other in the list. 6401 // To help reduce the number of CSE recomputations, process all 6402 // the uses of this user that we can find this way. 6403 do { 6404 SDUse &Use = UI.getUse(); 6405 6406 // Skip uses of different values from the same node. 6407 if (Use.getResNo() != From.getResNo()) { 6408 ++UI; 6409 continue; 6410 } 6411 6412 // If this node hasn't been modified yet, it's still in the CSE maps, 6413 // so remove its old self from the CSE maps. 6414 if (!UserRemovedFromCSEMaps) { 6415 RemoveNodeFromCSEMaps(User); 6416 UserRemovedFromCSEMaps = true; 6417 } 6418 6419 ++UI; 6420 Use.set(To); 6421 } while (UI != UE && *UI == User); 6422 6423 // We are iterating over all uses of the From node, so if a use 6424 // doesn't use the specific value, no changes are made. 6425 if (!UserRemovedFromCSEMaps) 6426 continue; 6427 6428 // Now that we have modified User, add it back to the CSE maps. If it 6429 // already exists there, recursively merge the results together. 6430 AddModifiedNodeToCSEMaps(User); 6431 } 6432 6433 // If we just RAUW'd the root, take note. 6434 if (From == getRoot()) 6435 setRoot(To); 6436 } 6437 6438 namespace { 6439 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 6440 /// to record information about a use. 6441 struct UseMemo { 6442 SDNode *User; 6443 unsigned Index; 6444 SDUse *Use; 6445 }; 6446 6447 /// operator< - Sort Memos by User. 6448 bool operator<(const UseMemo &L, const UseMemo &R) { 6449 return (intptr_t)L.User < (intptr_t)R.User; 6450 } 6451 } 6452 6453 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 6454 /// uses of other values produced by From.getNode() alone. The same value 6455 /// may appear in both the From and To list. The Deleted vector is 6456 /// handled the same way as for ReplaceAllUsesWith. 6457 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 6458 const SDValue *To, 6459 unsigned Num){ 6460 // Handle the simple, trivial case efficiently. 6461 if (Num == 1) 6462 return ReplaceAllUsesOfValueWith(*From, *To); 6463 6464 TransferDbgValues(*From, *To); 6465 6466 // Read up all the uses and make records of them. This helps 6467 // processing new uses that are introduced during the 6468 // replacement process. 6469 SmallVector<UseMemo, 4> Uses; 6470 for (unsigned i = 0; i != Num; ++i) { 6471 unsigned FromResNo = From[i].getResNo(); 6472 SDNode *FromNode = From[i].getNode(); 6473 for (SDNode::use_iterator UI = FromNode->use_begin(), 6474 E = FromNode->use_end(); UI != E; ++UI) { 6475 SDUse &Use = UI.getUse(); 6476 if (Use.getResNo() == FromResNo) { 6477 UseMemo Memo = { *UI, i, &Use }; 6478 Uses.push_back(Memo); 6479 } 6480 } 6481 } 6482 6483 // Sort the uses, so that all the uses from a given User are together. 6484 std::sort(Uses.begin(), Uses.end()); 6485 6486 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 6487 UseIndex != UseIndexEnd; ) { 6488 // We know that this user uses some value of From. If it is the right 6489 // value, update it. 6490 SDNode *User = Uses[UseIndex].User; 6491 6492 // This node is about to morph, remove its old self from the CSE maps. 6493 RemoveNodeFromCSEMaps(User); 6494 6495 // The Uses array is sorted, so all the uses for a given User 6496 // are next to each other in the list. 6497 // To help reduce the number of CSE recomputations, process all 6498 // the uses of this user that we can find this way. 6499 do { 6500 unsigned i = Uses[UseIndex].Index; 6501 SDUse &Use = *Uses[UseIndex].Use; 6502 ++UseIndex; 6503 6504 Use.set(To[i]); 6505 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 6506 6507 // Now that we have modified User, add it back to the CSE maps. If it 6508 // already exists there, recursively merge the results together. 6509 AddModifiedNodeToCSEMaps(User); 6510 } 6511 } 6512 6513 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 6514 /// based on their topological order. It returns the maximum id and a vector 6515 /// of the SDNodes* in assigned order by reference. 6516 unsigned SelectionDAG::AssignTopologicalOrder() { 6517 6518 unsigned DAGSize = 0; 6519 6520 // SortedPos tracks the progress of the algorithm. Nodes before it are 6521 // sorted, nodes after it are unsorted. When the algorithm completes 6522 // it is at the end of the list. 6523 allnodes_iterator SortedPos = allnodes_begin(); 6524 6525 // Visit all the nodes. Move nodes with no operands to the front of 6526 // the list immediately. Annotate nodes that do have operands with their 6527 // operand count. Before we do this, the Node Id fields of the nodes 6528 // may contain arbitrary values. After, the Node Id fields for nodes 6529 // before SortedPos will contain the topological sort index, and the 6530 // Node Id fields for nodes At SortedPos and after will contain the 6531 // count of outstanding operands. 6532 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 6533 SDNode *N = &*I++; 6534 checkForCycles(N, this); 6535 unsigned Degree = N->getNumOperands(); 6536 if (Degree == 0) { 6537 // A node with no uses, add it to the result array immediately. 6538 N->setNodeId(DAGSize++); 6539 allnodes_iterator Q(N); 6540 if (Q != SortedPos) 6541 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 6542 assert(SortedPos != AllNodes.end() && "Overran node list"); 6543 ++SortedPos; 6544 } else { 6545 // Temporarily use the Node Id as scratch space for the degree count. 6546 N->setNodeId(Degree); 6547 } 6548 } 6549 6550 // Visit all the nodes. As we iterate, move nodes into sorted order, 6551 // such that by the time the end is reached all nodes will be sorted. 6552 for (SDNode &Node : allnodes()) { 6553 SDNode *N = &Node; 6554 checkForCycles(N, this); 6555 // N is in sorted position, so all its uses have one less operand 6556 // that needs to be sorted. 6557 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6558 UI != UE; ++UI) { 6559 SDNode *P = *UI; 6560 unsigned Degree = P->getNodeId(); 6561 assert(Degree != 0 && "Invalid node degree"); 6562 --Degree; 6563 if (Degree == 0) { 6564 // All of P's operands are sorted, so P may sorted now. 6565 P->setNodeId(DAGSize++); 6566 if (P->getIterator() != SortedPos) 6567 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 6568 assert(SortedPos != AllNodes.end() && "Overran node list"); 6569 ++SortedPos; 6570 } else { 6571 // Update P's outstanding operand count. 6572 P->setNodeId(Degree); 6573 } 6574 } 6575 if (Node.getIterator() == SortedPos) { 6576 #ifndef NDEBUG 6577 allnodes_iterator I(N); 6578 SDNode *S = &*++I; 6579 dbgs() << "Overran sorted position:\n"; 6580 S->dumprFull(this); dbgs() << "\n"; 6581 dbgs() << "Checking if this is due to cycles\n"; 6582 checkForCycles(this, true); 6583 #endif 6584 llvm_unreachable(nullptr); 6585 } 6586 } 6587 6588 assert(SortedPos == AllNodes.end() && 6589 "Topological sort incomplete!"); 6590 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 6591 "First node in topological sort is not the entry token!"); 6592 assert(AllNodes.front().getNodeId() == 0 && 6593 "First node in topological sort has non-zero id!"); 6594 assert(AllNodes.front().getNumOperands() == 0 && 6595 "First node in topological sort has operands!"); 6596 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 6597 "Last node in topologic sort has unexpected id!"); 6598 assert(AllNodes.back().use_empty() && 6599 "Last node in topologic sort has users!"); 6600 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 6601 return DAGSize; 6602 } 6603 6604 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 6605 /// value is produced by SD. 6606 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 6607 if (SD) { 6608 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 6609 SD->setHasDebugValue(true); 6610 } 6611 DbgInfo->add(DB, SD, isParameter); 6612 } 6613 6614 /// TransferDbgValues - Transfer SDDbgValues. Called in replace nodes. 6615 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) { 6616 if (From == To || !From.getNode()->getHasDebugValue()) 6617 return; 6618 SDNode *FromNode = From.getNode(); 6619 SDNode *ToNode = To.getNode(); 6620 ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode); 6621 SmallVector<SDDbgValue *, 2> ClonedDVs; 6622 for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end(); 6623 I != E; ++I) { 6624 SDDbgValue *Dbg = *I; 6625 // Only add Dbgvalues attached to same ResNo. 6626 if (Dbg->getKind() == SDDbgValue::SDNODE && 6627 Dbg->getSDNode() == From.getNode() && 6628 Dbg->getResNo() == From.getResNo() && !Dbg->isInvalidated()) { 6629 assert(FromNode != ToNode && 6630 "Should not transfer Debug Values intranode"); 6631 SDDbgValue *Clone = 6632 getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode, 6633 To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(), 6634 Dbg->getDebugLoc(), Dbg->getOrder()); 6635 ClonedDVs.push_back(Clone); 6636 Dbg->setIsInvalidated(); 6637 } 6638 } 6639 for (SDDbgValue *I : ClonedDVs) 6640 AddDbgValue(I, ToNode, false); 6641 } 6642 6643 //===----------------------------------------------------------------------===// 6644 // SDNode Class 6645 //===----------------------------------------------------------------------===// 6646 6647 bool llvm::isNullConstant(SDValue V) { 6648 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6649 return Const != nullptr && Const->isNullValue(); 6650 } 6651 6652 bool llvm::isNullFPConstant(SDValue V) { 6653 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 6654 return Const != nullptr && Const->isZero() && !Const->isNegative(); 6655 } 6656 6657 bool llvm::isAllOnesConstant(SDValue V) { 6658 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6659 return Const != nullptr && Const->isAllOnesValue(); 6660 } 6661 6662 bool llvm::isOneConstant(SDValue V) { 6663 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6664 return Const != nullptr && Const->isOne(); 6665 } 6666 6667 bool llvm::isBitwiseNot(SDValue V) { 6668 return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1)); 6669 } 6670 6671 HandleSDNode::~HandleSDNode() { 6672 DropOperands(); 6673 } 6674 6675 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 6676 const DebugLoc &DL, 6677 const GlobalValue *GA, EVT VT, 6678 int64_t o, unsigned char TF) 6679 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 6680 TheGlobal = GA; 6681 } 6682 6683 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 6684 EVT VT, unsigned SrcAS, 6685 unsigned DestAS) 6686 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 6687 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 6688 6689 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 6690 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 6691 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 6692 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 6693 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 6694 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 6695 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 6696 6697 // We check here that the size of the memory operand fits within the size of 6698 // the MMO. This is because the MMO might indicate only a possible address 6699 // range instead of specifying the affected memory addresses precisely. 6700 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 6701 } 6702 6703 /// Profile - Gather unique data for the node. 6704 /// 6705 void SDNode::Profile(FoldingSetNodeID &ID) const { 6706 AddNodeIDNode(ID, this); 6707 } 6708 6709 namespace { 6710 struct EVTArray { 6711 std::vector<EVT> VTs; 6712 6713 EVTArray() { 6714 VTs.reserve(MVT::LAST_VALUETYPE); 6715 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 6716 VTs.push_back(MVT((MVT::SimpleValueType)i)); 6717 } 6718 }; 6719 } 6720 6721 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs; 6722 static ManagedStatic<EVTArray> SimpleVTArray; 6723 static ManagedStatic<sys::SmartMutex<true> > VTMutex; 6724 6725 /// getValueTypeList - Return a pointer to the specified value type. 6726 /// 6727 const EVT *SDNode::getValueTypeList(EVT VT) { 6728 if (VT.isExtended()) { 6729 sys::SmartScopedLock<true> Lock(*VTMutex); 6730 return &(*EVTs->insert(VT).first); 6731 } else { 6732 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 6733 "Value type out of range!"); 6734 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 6735 } 6736 } 6737 6738 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 6739 /// indicated value. This method ignores uses of other values defined by this 6740 /// operation. 6741 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 6742 assert(Value < getNumValues() && "Bad value!"); 6743 6744 // TODO: Only iterate over uses of a given value of the node 6745 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 6746 if (UI.getUse().getResNo() == Value) { 6747 if (NUses == 0) 6748 return false; 6749 --NUses; 6750 } 6751 } 6752 6753 // Found exactly the right number of uses? 6754 return NUses == 0; 6755 } 6756 6757 6758 /// hasAnyUseOfValue - Return true if there are any use of the indicated 6759 /// value. This method ignores uses of other values defined by this operation. 6760 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 6761 assert(Value < getNumValues() && "Bad value!"); 6762 6763 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 6764 if (UI.getUse().getResNo() == Value) 6765 return true; 6766 6767 return false; 6768 } 6769 6770 6771 /// isOnlyUserOf - Return true if this node is the only use of N. 6772 /// 6773 bool SDNode::isOnlyUserOf(const SDNode *N) const { 6774 bool Seen = false; 6775 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 6776 SDNode *User = *I; 6777 if (User == this) 6778 Seen = true; 6779 else 6780 return false; 6781 } 6782 6783 return Seen; 6784 } 6785 6786 /// isOperand - Return true if this node is an operand of N. 6787 /// 6788 bool SDValue::isOperandOf(const SDNode *N) const { 6789 for (const SDValue &Op : N->op_values()) 6790 if (*this == Op) 6791 return true; 6792 return false; 6793 } 6794 6795 bool SDNode::isOperandOf(const SDNode *N) const { 6796 for (const SDValue &Op : N->op_values()) 6797 if (this == Op.getNode()) 6798 return true; 6799 return false; 6800 } 6801 6802 /// reachesChainWithoutSideEffects - Return true if this operand (which must 6803 /// be a chain) reaches the specified operand without crossing any 6804 /// side-effecting instructions on any chain path. In practice, this looks 6805 /// through token factors and non-volatile loads. In order to remain efficient, 6806 /// this only looks a couple of nodes in, it does not do an exhaustive search. 6807 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 6808 unsigned Depth) const { 6809 if (*this == Dest) return true; 6810 6811 // Don't search too deeply, we just want to be able to see through 6812 // TokenFactor's etc. 6813 if (Depth == 0) return false; 6814 6815 // If this is a token factor, all inputs to the TF happen in parallel. If any 6816 // of the operands of the TF does not reach dest, then we cannot do the xform. 6817 if (getOpcode() == ISD::TokenFactor) { 6818 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6819 if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1)) 6820 return false; 6821 return true; 6822 } 6823 6824 // Loads don't have side effects, look through them. 6825 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 6826 if (!Ld->isVolatile()) 6827 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 6828 } 6829 return false; 6830 } 6831 6832 bool SDNode::hasPredecessor(const SDNode *N) const { 6833 SmallPtrSet<const SDNode *, 32> Visited; 6834 SmallVector<const SDNode *, 16> Worklist; 6835 Worklist.push_back(this); 6836 return hasPredecessorHelper(N, Visited, Worklist); 6837 } 6838 6839 uint64_t SDNode::getConstantOperandVal(unsigned Num) const { 6840 assert(Num < NumOperands && "Invalid child # of SDNode!"); 6841 return cast<ConstantSDNode>(OperandList[Num])->getZExtValue(); 6842 } 6843 6844 const SDNodeFlags *SDNode::getFlags() const { 6845 if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this)) 6846 return &FlagsNode->Flags; 6847 return nullptr; 6848 } 6849 6850 void SDNode::intersectFlagsWith(const SDNodeFlags *Flags) { 6851 if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this)) 6852 FlagsNode->Flags.intersectWith(Flags); 6853 } 6854 6855 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 6856 assert(N->getNumValues() == 1 && 6857 "Can't unroll a vector with multiple results!"); 6858 6859 EVT VT = N->getValueType(0); 6860 unsigned NE = VT.getVectorNumElements(); 6861 EVT EltVT = VT.getVectorElementType(); 6862 SDLoc dl(N); 6863 6864 SmallVector<SDValue, 8> Scalars; 6865 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 6866 6867 // If ResNE is 0, fully unroll the vector op. 6868 if (ResNE == 0) 6869 ResNE = NE; 6870 else if (NE > ResNE) 6871 NE = ResNE; 6872 6873 unsigned i; 6874 for (i= 0; i != NE; ++i) { 6875 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 6876 SDValue Operand = N->getOperand(j); 6877 EVT OperandVT = Operand.getValueType(); 6878 if (OperandVT.isVector()) { 6879 // A vector operand; extract a single element. 6880 EVT OperandEltVT = OperandVT.getVectorElementType(); 6881 Operands[j] = 6882 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 6883 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 6884 } else { 6885 // A scalar operand; just use it as is. 6886 Operands[j] = Operand; 6887 } 6888 } 6889 6890 switch (N->getOpcode()) { 6891 default: { 6892 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 6893 N->getFlags())); 6894 break; 6895 } 6896 case ISD::VSELECT: 6897 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 6898 break; 6899 case ISD::SHL: 6900 case ISD::SRA: 6901 case ISD::SRL: 6902 case ISD::ROTL: 6903 case ISD::ROTR: 6904 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 6905 getShiftAmountOperand(Operands[0].getValueType(), 6906 Operands[1]))); 6907 break; 6908 case ISD::SIGN_EXTEND_INREG: 6909 case ISD::FP_ROUND_INREG: { 6910 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 6911 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 6912 Operands[0], 6913 getValueType(ExtVT))); 6914 } 6915 } 6916 } 6917 6918 for (; i < ResNE; ++i) 6919 Scalars.push_back(getUNDEF(EltVT)); 6920 6921 return getNode(ISD::BUILD_VECTOR, dl, 6922 EVT::getVectorVT(*getContext(), EltVT, ResNE), Scalars); 6923 } 6924 6925 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 6926 LoadSDNode *Base, 6927 unsigned Bytes, 6928 int Dist) const { 6929 if (LD->isVolatile() || Base->isVolatile()) 6930 return false; 6931 if (LD->isIndexed() || Base->isIndexed()) 6932 return false; 6933 if (LD->getChain() != Base->getChain()) 6934 return false; 6935 EVT VT = LD->getValueType(0); 6936 if (VT.getSizeInBits() / 8 != Bytes) 6937 return false; 6938 6939 SDValue Loc = LD->getOperand(1); 6940 SDValue BaseLoc = Base->getOperand(1); 6941 if (Loc.getOpcode() == ISD::FrameIndex) { 6942 if (BaseLoc.getOpcode() != ISD::FrameIndex) 6943 return false; 6944 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 6945 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 6946 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 6947 int FS = MFI.getObjectSize(FI); 6948 int BFS = MFI.getObjectSize(BFI); 6949 if (FS != BFS || FS != (int)Bytes) return false; 6950 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 6951 } 6952 6953 // Handle X + C. 6954 if (isBaseWithConstantOffset(Loc)) { 6955 int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 6956 if (Loc.getOperand(0) == BaseLoc) { 6957 // If the base location is a simple address with no offset itself, then 6958 // the second load's first add operand should be the base address. 6959 if (LocOffset == Dist * (int)Bytes) 6960 return true; 6961 } else if (isBaseWithConstantOffset(BaseLoc)) { 6962 // The base location itself has an offset, so subtract that value from the 6963 // second load's offset before comparing to distance * size. 6964 int64_t BOffset = 6965 cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue(); 6966 if (Loc.getOperand(0) == BaseLoc.getOperand(0)) { 6967 if ((LocOffset - BOffset) == Dist * (int)Bytes) 6968 return true; 6969 } 6970 } 6971 } 6972 const GlobalValue *GV1 = nullptr; 6973 const GlobalValue *GV2 = nullptr; 6974 int64_t Offset1 = 0; 6975 int64_t Offset2 = 0; 6976 bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1); 6977 bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 6978 if (isGA1 && isGA2 && GV1 == GV2) 6979 return Offset1 == (Offset2 + Dist*Bytes); 6980 return false; 6981 } 6982 6983 6984 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 6985 /// it cannot be inferred. 6986 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 6987 // If this is a GlobalAddress + cst, return the alignment. 6988 const GlobalValue *GV; 6989 int64_t GVOffset = 0; 6990 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 6991 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 6992 APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0); 6993 llvm::computeKnownBits(const_cast<GlobalValue *>(GV), KnownZero, KnownOne, 6994 getDataLayout()); 6995 unsigned AlignBits = KnownZero.countTrailingOnes(); 6996 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 6997 if (Align) 6998 return MinAlign(Align, GVOffset); 6999 } 7000 7001 // If this is a direct reference to a stack slot, use information about the 7002 // stack slot's alignment. 7003 int FrameIdx = 1 << 31; 7004 int64_t FrameOffset = 0; 7005 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 7006 FrameIdx = FI->getIndex(); 7007 } else if (isBaseWithConstantOffset(Ptr) && 7008 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 7009 // Handle FI+Cst 7010 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7011 FrameOffset = Ptr.getConstantOperandVal(1); 7012 } 7013 7014 if (FrameIdx != (1 << 31)) { 7015 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 7016 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 7017 FrameOffset); 7018 return FIInfoAlign; 7019 } 7020 7021 return 0; 7022 } 7023 7024 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 7025 /// which is split (or expanded) into two not necessarily identical pieces. 7026 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 7027 // Currently all types are split in half. 7028 EVT LoVT, HiVT; 7029 if (!VT.isVector()) { 7030 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 7031 } else { 7032 unsigned NumElements = VT.getVectorNumElements(); 7033 assert(!(NumElements & 1) && "Splitting vector, but not in half!"); 7034 LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 7035 NumElements/2); 7036 } 7037 return std::make_pair(LoVT, HiVT); 7038 } 7039 7040 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 7041 /// low/high part. 7042 std::pair<SDValue, SDValue> 7043 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 7044 const EVT &HiVT) { 7045 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 7046 N.getValueType().getVectorNumElements() && 7047 "More vector elements requested than available!"); 7048 SDValue Lo, Hi; 7049 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 7050 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 7051 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 7052 getConstant(LoVT.getVectorNumElements(), DL, 7053 TLI->getVectorIdxTy(getDataLayout()))); 7054 return std::make_pair(Lo, Hi); 7055 } 7056 7057 void SelectionDAG::ExtractVectorElements(SDValue Op, 7058 SmallVectorImpl<SDValue> &Args, 7059 unsigned Start, unsigned Count) { 7060 EVT VT = Op.getValueType(); 7061 if (Count == 0) 7062 Count = VT.getVectorNumElements(); 7063 7064 EVT EltVT = VT.getVectorElementType(); 7065 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 7066 SDLoc SL(Op); 7067 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 7068 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 7069 Op, getConstant(i, SL, IdxTy))); 7070 } 7071 } 7072 7073 // getAddressSpace - Return the address space this GlobalAddress belongs to. 7074 unsigned GlobalAddressSDNode::getAddressSpace() const { 7075 return getGlobal()->getType()->getAddressSpace(); 7076 } 7077 7078 7079 Type *ConstantPoolSDNode::getType() const { 7080 if (isMachineConstantPoolEntry()) 7081 return Val.MachineCPVal->getType(); 7082 return Val.ConstVal->getType(); 7083 } 7084 7085 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, 7086 APInt &SplatUndef, 7087 unsigned &SplatBitSize, 7088 bool &HasAnyUndefs, 7089 unsigned MinSplatBits, 7090 bool isBigEndian) const { 7091 EVT VT = getValueType(0); 7092 assert(VT.isVector() && "Expected a vector type"); 7093 unsigned sz = VT.getSizeInBits(); 7094 if (MinSplatBits > sz) 7095 return false; 7096 7097 SplatValue = APInt(sz, 0); 7098 SplatUndef = APInt(sz, 0); 7099 7100 // Get the bits. Bits with undefined values (when the corresponding element 7101 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 7102 // in SplatValue. If any of the values are not constant, give up and return 7103 // false. 7104 unsigned int nOps = getNumOperands(); 7105 assert(nOps > 0 && "isConstantSplat has 0-size build vector"); 7106 unsigned EltBitSize = VT.getScalarSizeInBits(); 7107 7108 for (unsigned j = 0; j < nOps; ++j) { 7109 unsigned i = isBigEndian ? nOps-1-j : j; 7110 SDValue OpVal = getOperand(i); 7111 unsigned BitPos = j * EltBitSize; 7112 7113 if (OpVal.isUndef()) 7114 SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize); 7115 else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) 7116 SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize). 7117 zextOrTrunc(sz) << BitPos; 7118 else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 7119 SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos; 7120 else 7121 return false; 7122 } 7123 7124 // The build_vector is all constants or undefs. Find the smallest element 7125 // size that splats the vector. 7126 7127 HasAnyUndefs = (SplatUndef != 0); 7128 while (sz > 8) { 7129 7130 unsigned HalfSize = sz / 2; 7131 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 7132 APInt LowValue = SplatValue.trunc(HalfSize); 7133 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 7134 APInt LowUndef = SplatUndef.trunc(HalfSize); 7135 7136 // If the two halves do not match (ignoring undef bits), stop here. 7137 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 7138 MinSplatBits > HalfSize) 7139 break; 7140 7141 SplatValue = HighValue | LowValue; 7142 SplatUndef = HighUndef & LowUndef; 7143 7144 sz = HalfSize; 7145 } 7146 7147 SplatBitSize = sz; 7148 return true; 7149 } 7150 7151 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 7152 if (UndefElements) { 7153 UndefElements->clear(); 7154 UndefElements->resize(getNumOperands()); 7155 } 7156 SDValue Splatted; 7157 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 7158 SDValue Op = getOperand(i); 7159 if (Op.isUndef()) { 7160 if (UndefElements) 7161 (*UndefElements)[i] = true; 7162 } else if (!Splatted) { 7163 Splatted = Op; 7164 } else if (Splatted != Op) { 7165 return SDValue(); 7166 } 7167 } 7168 7169 if (!Splatted) { 7170 assert(getOperand(0).isUndef() && 7171 "Can only have a splat without a constant for all undefs."); 7172 return getOperand(0); 7173 } 7174 7175 return Splatted; 7176 } 7177 7178 ConstantSDNode * 7179 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 7180 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 7181 } 7182 7183 ConstantFPSDNode * 7184 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 7185 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 7186 } 7187 7188 int32_t 7189 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 7190 uint32_t BitWidth) const { 7191 if (ConstantFPSDNode *CN = 7192 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 7193 bool IsExact; 7194 APSInt IntVal(BitWidth); 7195 const APFloat &APF = CN->getValueAPF(); 7196 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 7197 APFloat::opOK || 7198 !IsExact) 7199 return -1; 7200 7201 return IntVal.exactLogBase2(); 7202 } 7203 return -1; 7204 } 7205 7206 bool BuildVectorSDNode::isConstant() const { 7207 for (const SDValue &Op : op_values()) { 7208 unsigned Opc = Op.getOpcode(); 7209 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 7210 return false; 7211 } 7212 return true; 7213 } 7214 7215 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 7216 // Find the first non-undef value in the shuffle mask. 7217 unsigned i, e; 7218 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 7219 /* search */; 7220 7221 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); 7222 7223 // Make sure all remaining elements are either undef or the same as the first 7224 // non-undef value. 7225 for (int Idx = Mask[i]; i != e; ++i) 7226 if (Mask[i] >= 0 && Mask[i] != Idx) 7227 return false; 7228 return true; 7229 } 7230 7231 // \brief Returns the SDNode if it is a constant integer BuildVector 7232 // or constant integer. 7233 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 7234 if (isa<ConstantSDNode>(N)) 7235 return N.getNode(); 7236 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 7237 return N.getNode(); 7238 // Treat a GlobalAddress supporting constant offset folding as a 7239 // constant integer. 7240 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 7241 if (GA->getOpcode() == ISD::GlobalAddress && 7242 TLI->isOffsetFoldingLegal(GA)) 7243 return GA; 7244 return nullptr; 7245 } 7246 7247 #ifndef NDEBUG 7248 static void checkForCyclesHelper(const SDNode *N, 7249 SmallPtrSetImpl<const SDNode*> &Visited, 7250 SmallPtrSetImpl<const SDNode*> &Checked, 7251 const llvm::SelectionDAG *DAG) { 7252 // If this node has already been checked, don't check it again. 7253 if (Checked.count(N)) 7254 return; 7255 7256 // If a node has already been visited on this depth-first walk, reject it as 7257 // a cycle. 7258 if (!Visited.insert(N).second) { 7259 errs() << "Detected cycle in SelectionDAG\n"; 7260 dbgs() << "Offending node:\n"; 7261 N->dumprFull(DAG); dbgs() << "\n"; 7262 abort(); 7263 } 7264 7265 for (const SDValue &Op : N->op_values()) 7266 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 7267 7268 Checked.insert(N); 7269 Visited.erase(N); 7270 } 7271 #endif 7272 7273 void llvm::checkForCycles(const llvm::SDNode *N, 7274 const llvm::SelectionDAG *DAG, 7275 bool force) { 7276 #ifndef NDEBUG 7277 bool check = force; 7278 #ifdef EXPENSIVE_CHECKS 7279 check = true; 7280 #endif // EXPENSIVE_CHECKS 7281 if (check) { 7282 assert(N && "Checking nonexistent SDNode"); 7283 SmallPtrSet<const SDNode*, 32> visited; 7284 SmallPtrSet<const SDNode*, 32> checked; 7285 checkForCyclesHelper(N, visited, checked, DAG); 7286 } 7287 #endif // !NDEBUG 7288 } 7289 7290 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 7291 checkForCycles(DAG->getRoot().getNode(), DAG, force); 7292 } 7293