1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/ProfileSummaryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/CodeGen/ISDOpcodes.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineConstantPool.h" 33 #include "llvm/CodeGen/MachineFrameInfo.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/RuntimeLibcalls.h" 37 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/TargetLowering.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/TargetSubtargetInfo.h" 43 #include "llvm/CodeGen/ValueTypes.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GlobalValue.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CodeGen.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/KnownBits.h" 61 #include "llvm/Support/MachineValueType.h" 62 #include "llvm/Support/ManagedStatic.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/Mutex.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Target/TargetMachine.h" 67 #include "llvm/Target/TargetOptions.h" 68 #include "llvm/Transforms/Utils/SizeOpts.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstdint> 72 #include <cstdlib> 73 #include <limits> 74 #include <set> 75 #include <string> 76 #include <utility> 77 #include <vector> 78 79 using namespace llvm; 80 81 /// makeVTList - Return an instance of the SDVTList struct initialized with the 82 /// specified members. 83 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 84 SDVTList Res = {VTs, NumVTs}; 85 return Res; 86 } 87 88 // Default null implementations of the callbacks. 89 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 90 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 92 93 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 94 95 #define DEBUG_TYPE "selectiondag" 96 97 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 98 cl::Hidden, cl::init(true), 99 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 100 101 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 102 cl::desc("Number limit for gluing ld/st of memcpy."), 103 cl::Hidden, cl::init(0)); 104 105 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 106 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 107 } 108 109 //===----------------------------------------------------------------------===// 110 // ConstantFPSDNode Class 111 //===----------------------------------------------------------------------===// 112 113 /// isExactlyValue - We don't rely on operator== working on double values, as 114 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 115 /// As such, this method can be used to do an exact bit-for-bit comparison of 116 /// two floating point values. 117 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 118 return getValueAPF().bitwiseIsEqual(V); 119 } 120 121 bool ConstantFPSDNode::isValueValidForType(EVT VT, 122 const APFloat& Val) { 123 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 124 125 // convert modifies in place, so make a copy. 126 APFloat Val2 = APFloat(Val); 127 bool losesInfo; 128 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 129 APFloat::rmNearestTiesToEven, 130 &losesInfo); 131 return !losesInfo; 132 } 133 134 //===----------------------------------------------------------------------===// 135 // ISD Namespace 136 //===----------------------------------------------------------------------===// 137 138 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 139 auto *BV = dyn_cast<BuildVectorSDNode>(N); 140 if (!BV) 141 return false; 142 143 APInt SplatUndef; 144 unsigned SplatBitSize; 145 bool HasUndefs; 146 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 147 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 148 EltSize) && 149 EltSize == SplatBitSize; 150 } 151 152 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 153 // specializations of the more general isConstantSplatVector()? 154 155 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 156 // Look through a bit convert. 157 while (N->getOpcode() == ISD::BITCAST) 158 N = N->getOperand(0).getNode(); 159 160 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 161 162 unsigned i = 0, e = N->getNumOperands(); 163 164 // Skip over all of the undef values. 165 while (i != e && N->getOperand(i).isUndef()) 166 ++i; 167 168 // Do not accept an all-undef vector. 169 if (i == e) return false; 170 171 // Do not accept build_vectors that aren't all constants or which have non-~0 172 // elements. We have to be a bit careful here, as the type of the constant 173 // may not be the same as the type of the vector elements due to type 174 // legalization (the elements are promoted to a legal type for the target and 175 // a vector of a type may be legal when the base element type is not). 176 // We only want to check enough bits to cover the vector elements, because 177 // we care if the resultant vector is all ones, not whether the individual 178 // constants are. 179 SDValue NotZero = N->getOperand(i); 180 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 181 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 182 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 183 return false; 184 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 185 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 186 return false; 187 } else 188 return false; 189 190 // Okay, we have at least one ~0 value, check to see if the rest match or are 191 // undefs. Even with the above element type twiddling, this should be OK, as 192 // the same type legalization should have applied to all the elements. 193 for (++i; i != e; ++i) 194 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 195 return false; 196 return true; 197 } 198 199 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 200 // Look through a bit convert. 201 while (N->getOpcode() == ISD::BITCAST) 202 N = N->getOperand(0).getNode(); 203 204 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 205 206 bool IsAllUndef = true; 207 for (const SDValue &Op : N->op_values()) { 208 if (Op.isUndef()) 209 continue; 210 IsAllUndef = false; 211 // Do not accept build_vectors that aren't all constants or which have non-0 212 // elements. We have to be a bit careful here, as the type of the constant 213 // may not be the same as the type of the vector elements due to type 214 // legalization (the elements are promoted to a legal type for the target 215 // and a vector of a type may be legal when the base element type is not). 216 // We only want to check enough bits to cover the vector elements, because 217 // we care if the resultant vector is all zeros, not whether the individual 218 // constants are. 219 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 220 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 221 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 222 return false; 223 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 224 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 225 return false; 226 } else 227 return false; 228 } 229 230 // Do not accept an all-undef vector. 231 if (IsAllUndef) 232 return false; 233 return true; 234 } 235 236 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 237 if (N->getOpcode() != ISD::BUILD_VECTOR) 238 return false; 239 240 for (const SDValue &Op : N->op_values()) { 241 if (Op.isUndef()) 242 continue; 243 if (!isa<ConstantSDNode>(Op)) 244 return false; 245 } 246 return true; 247 } 248 249 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 250 if (N->getOpcode() != ISD::BUILD_VECTOR) 251 return false; 252 253 for (const SDValue &Op : N->op_values()) { 254 if (Op.isUndef()) 255 continue; 256 if (!isa<ConstantFPSDNode>(Op)) 257 return false; 258 } 259 return true; 260 } 261 262 bool ISD::allOperandsUndef(const SDNode *N) { 263 // Return false if the node has no operands. 264 // This is "logically inconsistent" with the definition of "all" but 265 // is probably the desired behavior. 266 if (N->getNumOperands() == 0) 267 return false; 268 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 269 } 270 271 bool ISD::matchUnaryPredicate(SDValue Op, 272 std::function<bool(ConstantSDNode *)> Match, 273 bool AllowUndefs) { 274 // FIXME: Add support for scalar UNDEF cases? 275 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 276 return Match(Cst); 277 278 // FIXME: Add support for vector UNDEF cases? 279 if (ISD::BUILD_VECTOR != Op.getOpcode()) 280 return false; 281 282 EVT SVT = Op.getValueType().getScalarType(); 283 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 284 if (AllowUndefs && Op.getOperand(i).isUndef()) { 285 if (!Match(nullptr)) 286 return false; 287 continue; 288 } 289 290 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 291 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::matchBinaryPredicate( 298 SDValue LHS, SDValue RHS, 299 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 300 bool AllowUndefs, bool AllowTypeMismatch) { 301 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 302 return false; 303 304 // TODO: Add support for scalar UNDEF cases? 305 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 306 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 307 return Match(LHSCst, RHSCst); 308 309 // TODO: Add support for vector UNDEF cases? 310 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 311 ISD::BUILD_VECTOR != RHS.getOpcode()) 312 return false; 313 314 EVT SVT = LHS.getValueType().getScalarType(); 315 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 316 SDValue LHSOp = LHS.getOperand(i); 317 SDValue RHSOp = RHS.getOperand(i); 318 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 319 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 320 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 321 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 322 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 323 return false; 324 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 325 LHSOp.getValueType() != RHSOp.getValueType())) 326 return false; 327 if (!Match(LHSCst, RHSCst)) 328 return false; 329 } 330 return true; 331 } 332 333 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 334 switch (ExtType) { 335 case ISD::EXTLOAD: 336 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 337 case ISD::SEXTLOAD: 338 return ISD::SIGN_EXTEND; 339 case ISD::ZEXTLOAD: 340 return ISD::ZERO_EXTEND; 341 default: 342 break; 343 } 344 345 llvm_unreachable("Invalid LoadExtType"); 346 } 347 348 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 349 // To perform this operation, we just need to swap the L and G bits of the 350 // operation. 351 unsigned OldL = (Operation >> 2) & 1; 352 unsigned OldG = (Operation >> 1) & 1; 353 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 354 (OldL << 1) | // New G bit 355 (OldG << 2)); // New L bit. 356 } 357 358 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 359 unsigned Operation = Op; 360 if (isInteger) 361 Operation ^= 7; // Flip L, G, E bits, but not U. 362 else 363 Operation ^= 15; // Flip all of the condition bits. 364 365 if (Operation > ISD::SETTRUE2) 366 Operation &= ~8; // Don't let N and U bits get set. 367 368 return ISD::CondCode(Operation); 369 } 370 371 /// For an integer comparison, return 1 if the comparison is a signed operation 372 /// and 2 if the result is an unsigned comparison. Return zero if the operation 373 /// does not depend on the sign of the input (setne and seteq). 374 static int isSignedOp(ISD::CondCode Opcode) { 375 switch (Opcode) { 376 default: llvm_unreachable("Illegal integer setcc operation!"); 377 case ISD::SETEQ: 378 case ISD::SETNE: return 0; 379 case ISD::SETLT: 380 case ISD::SETLE: 381 case ISD::SETGT: 382 case ISD::SETGE: return 1; 383 case ISD::SETULT: 384 case ISD::SETULE: 385 case ISD::SETUGT: 386 case ISD::SETUGE: return 2; 387 } 388 } 389 390 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 391 bool IsInteger) { 392 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 393 // Cannot fold a signed integer setcc with an unsigned integer setcc. 394 return ISD::SETCC_INVALID; 395 396 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 397 398 // If the N and U bits get set, then the resultant comparison DOES suddenly 399 // care about orderedness, and it is true when ordered. 400 if (Op > ISD::SETTRUE2) 401 Op &= ~16; // Clear the U bit if the N bit is set. 402 403 // Canonicalize illegal integer setcc's. 404 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 405 Op = ISD::SETNE; 406 407 return ISD::CondCode(Op); 408 } 409 410 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 411 bool IsInteger) { 412 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 413 // Cannot fold a signed setcc with an unsigned setcc. 414 return ISD::SETCC_INVALID; 415 416 // Combine all of the condition bits. 417 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 418 419 // Canonicalize illegal integer setcc's. 420 if (IsInteger) { 421 switch (Result) { 422 default: break; 423 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 424 case ISD::SETOEQ: // SETEQ & SETU[LG]E 425 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 426 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 427 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 428 } 429 } 430 431 return Result; 432 } 433 434 //===----------------------------------------------------------------------===// 435 // SDNode Profile Support 436 //===----------------------------------------------------------------------===// 437 438 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 439 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 440 ID.AddInteger(OpC); 441 } 442 443 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 444 /// solely with their pointer. 445 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 446 ID.AddPointer(VTList.VTs); 447 } 448 449 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 450 static void AddNodeIDOperands(FoldingSetNodeID &ID, 451 ArrayRef<SDValue> Ops) { 452 for (auto& Op : Ops) { 453 ID.AddPointer(Op.getNode()); 454 ID.AddInteger(Op.getResNo()); 455 } 456 } 457 458 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 459 static void AddNodeIDOperands(FoldingSetNodeID &ID, 460 ArrayRef<SDUse> Ops) { 461 for (auto& Op : Ops) { 462 ID.AddPointer(Op.getNode()); 463 ID.AddInteger(Op.getResNo()); 464 } 465 } 466 467 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 468 SDVTList VTList, ArrayRef<SDValue> OpList) { 469 AddNodeIDOpcode(ID, OpC); 470 AddNodeIDValueTypes(ID, VTList); 471 AddNodeIDOperands(ID, OpList); 472 } 473 474 /// If this is an SDNode with special info, add this info to the NodeID data. 475 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 476 switch (N->getOpcode()) { 477 case ISD::TargetExternalSymbol: 478 case ISD::ExternalSymbol: 479 case ISD::MCSymbol: 480 llvm_unreachable("Should only be used on nodes with operands"); 481 default: break; // Normal nodes don't need extra info. 482 case ISD::TargetConstant: 483 case ISD::Constant: { 484 const ConstantSDNode *C = cast<ConstantSDNode>(N); 485 ID.AddPointer(C->getConstantIntValue()); 486 ID.AddBoolean(C->isOpaque()); 487 break; 488 } 489 case ISD::TargetConstantFP: 490 case ISD::ConstantFP: 491 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 492 break; 493 case ISD::TargetGlobalAddress: 494 case ISD::GlobalAddress: 495 case ISD::TargetGlobalTLSAddress: 496 case ISD::GlobalTLSAddress: { 497 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 498 ID.AddPointer(GA->getGlobal()); 499 ID.AddInteger(GA->getOffset()); 500 ID.AddInteger(GA->getTargetFlags()); 501 break; 502 } 503 case ISD::BasicBlock: 504 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 505 break; 506 case ISD::Register: 507 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 508 break; 509 case ISD::RegisterMask: 510 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 511 break; 512 case ISD::SRCVALUE: 513 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 514 break; 515 case ISD::FrameIndex: 516 case ISD::TargetFrameIndex: 517 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 518 break; 519 case ISD::LIFETIME_START: 520 case ISD::LIFETIME_END: 521 if (cast<LifetimeSDNode>(N)->hasOffset()) { 522 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 523 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 524 } 525 break; 526 case ISD::JumpTable: 527 case ISD::TargetJumpTable: 528 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 529 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 530 break; 531 case ISD::ConstantPool: 532 case ISD::TargetConstantPool: { 533 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 534 ID.AddInteger(CP->getAlignment()); 535 ID.AddInteger(CP->getOffset()); 536 if (CP->isMachineConstantPoolEntry()) 537 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 538 else 539 ID.AddPointer(CP->getConstVal()); 540 ID.AddInteger(CP->getTargetFlags()); 541 break; 542 } 543 case ISD::TargetIndex: { 544 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 545 ID.AddInteger(TI->getIndex()); 546 ID.AddInteger(TI->getOffset()); 547 ID.AddInteger(TI->getTargetFlags()); 548 break; 549 } 550 case ISD::LOAD: { 551 const LoadSDNode *LD = cast<LoadSDNode>(N); 552 ID.AddInteger(LD->getMemoryVT().getRawBits()); 553 ID.AddInteger(LD->getRawSubclassData()); 554 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 555 break; 556 } 557 case ISD::STORE: { 558 const StoreSDNode *ST = cast<StoreSDNode>(N); 559 ID.AddInteger(ST->getMemoryVT().getRawBits()); 560 ID.AddInteger(ST->getRawSubclassData()); 561 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 562 break; 563 } 564 case ISD::MLOAD: { 565 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 566 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 567 ID.AddInteger(MLD->getRawSubclassData()); 568 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 569 break; 570 } 571 case ISD::MSTORE: { 572 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 573 ID.AddInteger(MST->getMemoryVT().getRawBits()); 574 ID.AddInteger(MST->getRawSubclassData()); 575 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 576 break; 577 } 578 case ISD::MGATHER: { 579 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 580 ID.AddInteger(MG->getMemoryVT().getRawBits()); 581 ID.AddInteger(MG->getRawSubclassData()); 582 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 583 break; 584 } 585 case ISD::MSCATTER: { 586 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 587 ID.AddInteger(MS->getMemoryVT().getRawBits()); 588 ID.AddInteger(MS->getRawSubclassData()); 589 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 590 break; 591 } 592 case ISD::ATOMIC_CMP_SWAP: 593 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 594 case ISD::ATOMIC_SWAP: 595 case ISD::ATOMIC_LOAD_ADD: 596 case ISD::ATOMIC_LOAD_SUB: 597 case ISD::ATOMIC_LOAD_AND: 598 case ISD::ATOMIC_LOAD_CLR: 599 case ISD::ATOMIC_LOAD_OR: 600 case ISD::ATOMIC_LOAD_XOR: 601 case ISD::ATOMIC_LOAD_NAND: 602 case ISD::ATOMIC_LOAD_MIN: 603 case ISD::ATOMIC_LOAD_MAX: 604 case ISD::ATOMIC_LOAD_UMIN: 605 case ISD::ATOMIC_LOAD_UMAX: 606 case ISD::ATOMIC_LOAD: 607 case ISD::ATOMIC_STORE: { 608 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 609 ID.AddInteger(AT->getMemoryVT().getRawBits()); 610 ID.AddInteger(AT->getRawSubclassData()); 611 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 612 break; 613 } 614 case ISD::PREFETCH: { 615 const MemSDNode *PF = cast<MemSDNode>(N); 616 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 617 break; 618 } 619 case ISD::VECTOR_SHUFFLE: { 620 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 621 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 622 i != e; ++i) 623 ID.AddInteger(SVN->getMaskElt(i)); 624 break; 625 } 626 case ISD::TargetBlockAddress: 627 case ISD::BlockAddress: { 628 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 629 ID.AddPointer(BA->getBlockAddress()); 630 ID.AddInteger(BA->getOffset()); 631 ID.AddInteger(BA->getTargetFlags()); 632 break; 633 } 634 } // end switch (N->getOpcode()) 635 636 // Target specific memory nodes could also have address spaces to check. 637 if (N->isTargetMemoryOpcode()) 638 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 639 } 640 641 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 642 /// data. 643 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 644 AddNodeIDOpcode(ID, N->getOpcode()); 645 // Add the return value info. 646 AddNodeIDValueTypes(ID, N->getVTList()); 647 // Add the operand info. 648 AddNodeIDOperands(ID, N->ops()); 649 650 // Handle SDNode leafs with special info. 651 AddNodeIDCustom(ID, N); 652 } 653 654 //===----------------------------------------------------------------------===// 655 // SelectionDAG Class 656 //===----------------------------------------------------------------------===// 657 658 /// doNotCSE - Return true if CSE should not be performed for this node. 659 static bool doNotCSE(SDNode *N) { 660 if (N->getValueType(0) == MVT::Glue) 661 return true; // Never CSE anything that produces a flag. 662 663 switch (N->getOpcode()) { 664 default: break; 665 case ISD::HANDLENODE: 666 case ISD::EH_LABEL: 667 return true; // Never CSE these nodes. 668 } 669 670 // Check that remaining values produced are not flags. 671 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 672 if (N->getValueType(i) == MVT::Glue) 673 return true; // Never CSE anything that produces a flag. 674 675 return false; 676 } 677 678 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 679 /// SelectionDAG. 680 void SelectionDAG::RemoveDeadNodes() { 681 // Create a dummy node (which is not added to allnodes), that adds a reference 682 // to the root node, preventing it from being deleted. 683 HandleSDNode Dummy(getRoot()); 684 685 SmallVector<SDNode*, 128> DeadNodes; 686 687 // Add all obviously-dead nodes to the DeadNodes worklist. 688 for (SDNode &Node : allnodes()) 689 if (Node.use_empty()) 690 DeadNodes.push_back(&Node); 691 692 RemoveDeadNodes(DeadNodes); 693 694 // If the root changed (e.g. it was a dead load, update the root). 695 setRoot(Dummy.getValue()); 696 } 697 698 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 699 /// given list, and any nodes that become unreachable as a result. 700 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 701 702 // Process the worklist, deleting the nodes and adding their uses to the 703 // worklist. 704 while (!DeadNodes.empty()) { 705 SDNode *N = DeadNodes.pop_back_val(); 706 // Skip to next node if we've already managed to delete the node. This could 707 // happen if replacing a node causes a node previously added to the node to 708 // be deleted. 709 if (N->getOpcode() == ISD::DELETED_NODE) 710 continue; 711 712 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 713 DUL->NodeDeleted(N, nullptr); 714 715 // Take the node out of the appropriate CSE map. 716 RemoveNodeFromCSEMaps(N); 717 718 // Next, brutally remove the operand list. This is safe to do, as there are 719 // no cycles in the graph. 720 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 721 SDUse &Use = *I++; 722 SDNode *Operand = Use.getNode(); 723 Use.set(SDValue()); 724 725 // Now that we removed this operand, see if there are no uses of it left. 726 if (Operand->use_empty()) 727 DeadNodes.push_back(Operand); 728 } 729 730 DeallocateNode(N); 731 } 732 } 733 734 void SelectionDAG::RemoveDeadNode(SDNode *N){ 735 SmallVector<SDNode*, 16> DeadNodes(1, N); 736 737 // Create a dummy node that adds a reference to the root node, preventing 738 // it from being deleted. (This matters if the root is an operand of the 739 // dead node.) 740 HandleSDNode Dummy(getRoot()); 741 742 RemoveDeadNodes(DeadNodes); 743 } 744 745 void SelectionDAG::DeleteNode(SDNode *N) { 746 // First take this out of the appropriate CSE map. 747 RemoveNodeFromCSEMaps(N); 748 749 // Finally, remove uses due to operands of this node, remove from the 750 // AllNodes list, and delete the node. 751 DeleteNodeNotInCSEMaps(N); 752 } 753 754 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 755 assert(N->getIterator() != AllNodes.begin() && 756 "Cannot delete the entry node!"); 757 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 758 759 // Drop all of the operands and decrement used node's use counts. 760 N->DropOperands(); 761 762 DeallocateNode(N); 763 } 764 765 void SDDbgInfo::erase(const SDNode *Node) { 766 DbgValMapType::iterator I = DbgValMap.find(Node); 767 if (I == DbgValMap.end()) 768 return; 769 for (auto &Val: I->second) 770 Val->setIsInvalidated(); 771 DbgValMap.erase(I); 772 } 773 774 void SelectionDAG::DeallocateNode(SDNode *N) { 775 // If we have operands, deallocate them. 776 removeOperands(N); 777 778 NodeAllocator.Deallocate(AllNodes.remove(N)); 779 780 // Set the opcode to DELETED_NODE to help catch bugs when node 781 // memory is reallocated. 782 // FIXME: There are places in SDag that have grown a dependency on the opcode 783 // value in the released node. 784 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 785 N->NodeType = ISD::DELETED_NODE; 786 787 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 788 // them and forget about that node. 789 DbgInfo->erase(N); 790 } 791 792 #ifndef NDEBUG 793 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 794 static void VerifySDNode(SDNode *N) { 795 switch (N->getOpcode()) { 796 default: 797 break; 798 case ISD::BUILD_PAIR: { 799 EVT VT = N->getValueType(0); 800 assert(N->getNumValues() == 1 && "Too many results!"); 801 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 802 "Wrong return type!"); 803 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 804 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 805 "Mismatched operand types!"); 806 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 807 "Wrong operand type!"); 808 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 809 "Wrong return type size"); 810 break; 811 } 812 case ISD::BUILD_VECTOR: { 813 assert(N->getNumValues() == 1 && "Too many results!"); 814 assert(N->getValueType(0).isVector() && "Wrong return type!"); 815 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 816 "Wrong number of operands!"); 817 EVT EltVT = N->getValueType(0).getVectorElementType(); 818 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 819 assert((I->getValueType() == EltVT || 820 (EltVT.isInteger() && I->getValueType().isInteger() && 821 EltVT.bitsLE(I->getValueType()))) && 822 "Wrong operand type!"); 823 assert(I->getValueType() == N->getOperand(0).getValueType() && 824 "Operands must all have the same type"); 825 } 826 break; 827 } 828 } 829 } 830 #endif // NDEBUG 831 832 /// Insert a newly allocated node into the DAG. 833 /// 834 /// Handles insertion into the all nodes list and CSE map, as well as 835 /// verification and other common operations when a new node is allocated. 836 void SelectionDAG::InsertNode(SDNode *N) { 837 AllNodes.push_back(N); 838 #ifndef NDEBUG 839 N->PersistentId = NextPersistentId++; 840 VerifySDNode(N); 841 #endif 842 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 843 DUL->NodeInserted(N); 844 } 845 846 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 847 /// correspond to it. This is useful when we're about to delete or repurpose 848 /// the node. We don't want future request for structurally identical nodes 849 /// to return N anymore. 850 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 851 bool Erased = false; 852 switch (N->getOpcode()) { 853 case ISD::HANDLENODE: return false; // noop. 854 case ISD::CONDCODE: 855 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 856 "Cond code doesn't exist!"); 857 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 858 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 859 break; 860 case ISD::ExternalSymbol: 861 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 862 break; 863 case ISD::TargetExternalSymbol: { 864 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 865 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 866 ESN->getSymbol(), ESN->getTargetFlags())); 867 break; 868 } 869 case ISD::MCSymbol: { 870 auto *MCSN = cast<MCSymbolSDNode>(N); 871 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 872 break; 873 } 874 case ISD::VALUETYPE: { 875 EVT VT = cast<VTSDNode>(N)->getVT(); 876 if (VT.isExtended()) { 877 Erased = ExtendedValueTypeNodes.erase(VT); 878 } else { 879 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 880 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 881 } 882 break; 883 } 884 default: 885 // Remove it from the CSE Map. 886 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 887 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 888 Erased = CSEMap.RemoveNode(N); 889 break; 890 } 891 #ifndef NDEBUG 892 // Verify that the node was actually in one of the CSE maps, unless it has a 893 // flag result (which cannot be CSE'd) or is one of the special cases that are 894 // not subject to CSE. 895 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 896 !N->isMachineOpcode() && !doNotCSE(N)) { 897 N->dump(this); 898 dbgs() << "\n"; 899 llvm_unreachable("Node is not in map!"); 900 } 901 #endif 902 return Erased; 903 } 904 905 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 906 /// maps and modified in place. Add it back to the CSE maps, unless an identical 907 /// node already exists, in which case transfer all its users to the existing 908 /// node. This transfer can potentially trigger recursive merging. 909 void 910 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 911 // For node types that aren't CSE'd, just act as if no identical node 912 // already exists. 913 if (!doNotCSE(N)) { 914 SDNode *Existing = CSEMap.GetOrInsertNode(N); 915 if (Existing != N) { 916 // If there was already an existing matching node, use ReplaceAllUsesWith 917 // to replace the dead one with the existing one. This can cause 918 // recursive merging of other unrelated nodes down the line. 919 ReplaceAllUsesWith(N, Existing); 920 921 // N is now dead. Inform the listeners and delete it. 922 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 923 DUL->NodeDeleted(N, Existing); 924 DeleteNodeNotInCSEMaps(N); 925 return; 926 } 927 } 928 929 // If the node doesn't already exist, we updated it. Inform listeners. 930 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 931 DUL->NodeUpdated(N); 932 } 933 934 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 935 /// were replaced with those specified. If this node is never memoized, 936 /// return null, otherwise return a pointer to the slot it would take. If a 937 /// node already exists with these operands, the slot will be non-null. 938 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 939 void *&InsertPos) { 940 if (doNotCSE(N)) 941 return nullptr; 942 943 SDValue Ops[] = { Op }; 944 FoldingSetNodeID ID; 945 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 946 AddNodeIDCustom(ID, N); 947 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 948 if (Node) 949 Node->intersectFlagsWith(N->getFlags()); 950 return Node; 951 } 952 953 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 954 /// were replaced with those specified. If this node is never memoized, 955 /// return null, otherwise return a pointer to the slot it would take. If a 956 /// node already exists with these operands, the slot will be non-null. 957 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 958 SDValue Op1, SDValue Op2, 959 void *&InsertPos) { 960 if (doNotCSE(N)) 961 return nullptr; 962 963 SDValue Ops[] = { Op1, Op2 }; 964 FoldingSetNodeID ID; 965 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 966 AddNodeIDCustom(ID, N); 967 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 968 if (Node) 969 Node->intersectFlagsWith(N->getFlags()); 970 return Node; 971 } 972 973 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 974 /// were replaced with those specified. If this node is never memoized, 975 /// return null, otherwise return a pointer to the slot it would take. If a 976 /// node already exists with these operands, the slot will be non-null. 977 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 978 void *&InsertPos) { 979 if (doNotCSE(N)) 980 return nullptr; 981 982 FoldingSetNodeID ID; 983 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 984 AddNodeIDCustom(ID, N); 985 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 986 if (Node) 987 Node->intersectFlagsWith(N->getFlags()); 988 return Node; 989 } 990 991 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 992 Type *Ty = VT == MVT::iPTR ? 993 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 994 VT.getTypeForEVT(*getContext()); 995 996 return getDataLayout().getABITypeAlignment(Ty); 997 } 998 999 // EntryNode could meaningfully have debug info if we can find it... 1000 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1001 : TM(tm), OptLevel(OL), 1002 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1003 Root(getEntryNode()) { 1004 InsertNode(&EntryNode); 1005 DbgInfo = new SDDbgInfo(); 1006 } 1007 1008 void SelectionDAG::init(MachineFunction &NewMF, 1009 OptimizationRemarkEmitter &NewORE, 1010 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1011 LegacyDivergenceAnalysis * Divergence, 1012 ProfileSummaryInfo *PSIin, 1013 BlockFrequencyInfo *BFIin) { 1014 MF = &NewMF; 1015 SDAGISelPass = PassPtr; 1016 ORE = &NewORE; 1017 TLI = getSubtarget().getTargetLowering(); 1018 TSI = getSubtarget().getSelectionDAGInfo(); 1019 LibInfo = LibraryInfo; 1020 Context = &MF->getFunction().getContext(); 1021 DA = Divergence; 1022 PSI = PSIin; 1023 BFI = BFIin; 1024 } 1025 1026 SelectionDAG::~SelectionDAG() { 1027 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1028 allnodes_clear(); 1029 OperandRecycler.clear(OperandAllocator); 1030 delete DbgInfo; 1031 } 1032 1033 bool SelectionDAG::shouldOptForSize() const { 1034 return MF->getFunction().hasOptSize() || 1035 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1036 } 1037 1038 void SelectionDAG::allnodes_clear() { 1039 assert(&*AllNodes.begin() == &EntryNode); 1040 AllNodes.remove(AllNodes.begin()); 1041 while (!AllNodes.empty()) 1042 DeallocateNode(&AllNodes.front()); 1043 #ifndef NDEBUG 1044 NextPersistentId = 0; 1045 #endif 1046 } 1047 1048 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1049 void *&InsertPos) { 1050 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1051 if (N) { 1052 switch (N->getOpcode()) { 1053 default: break; 1054 case ISD::Constant: 1055 case ISD::ConstantFP: 1056 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1057 "debug location. Use another overload."); 1058 } 1059 } 1060 return N; 1061 } 1062 1063 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1064 const SDLoc &DL, void *&InsertPos) { 1065 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1066 if (N) { 1067 switch (N->getOpcode()) { 1068 case ISD::Constant: 1069 case ISD::ConstantFP: 1070 // Erase debug location from the node if the node is used at several 1071 // different places. Do not propagate one location to all uses as it 1072 // will cause a worse single stepping debugging experience. 1073 if (N->getDebugLoc() != DL.getDebugLoc()) 1074 N->setDebugLoc(DebugLoc()); 1075 break; 1076 default: 1077 // When the node's point of use is located earlier in the instruction 1078 // sequence than its prior point of use, update its debug info to the 1079 // earlier location. 1080 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1081 N->setDebugLoc(DL.getDebugLoc()); 1082 break; 1083 } 1084 } 1085 return N; 1086 } 1087 1088 void SelectionDAG::clear() { 1089 allnodes_clear(); 1090 OperandRecycler.clear(OperandAllocator); 1091 OperandAllocator.Reset(); 1092 CSEMap.clear(); 1093 1094 ExtendedValueTypeNodes.clear(); 1095 ExternalSymbols.clear(); 1096 TargetExternalSymbols.clear(); 1097 MCSymbols.clear(); 1098 SDCallSiteDbgInfo.clear(); 1099 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1100 static_cast<CondCodeSDNode*>(nullptr)); 1101 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1102 static_cast<SDNode*>(nullptr)); 1103 1104 EntryNode.UseList = nullptr; 1105 InsertNode(&EntryNode); 1106 Root = getEntryNode(); 1107 DbgInfo->clear(); 1108 } 1109 1110 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1111 return VT.bitsGT(Op.getValueType()) 1112 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1113 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1114 } 1115 1116 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1117 return VT.bitsGT(Op.getValueType()) ? 1118 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1119 getNode(ISD::TRUNCATE, DL, VT, Op); 1120 } 1121 1122 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1123 return VT.bitsGT(Op.getValueType()) ? 1124 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1125 getNode(ISD::TRUNCATE, DL, VT, Op); 1126 } 1127 1128 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1129 return VT.bitsGT(Op.getValueType()) ? 1130 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1131 getNode(ISD::TRUNCATE, DL, VT, Op); 1132 } 1133 1134 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1135 EVT OpVT) { 1136 if (VT.bitsLE(Op.getValueType())) 1137 return getNode(ISD::TRUNCATE, SL, VT, Op); 1138 1139 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1140 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1141 } 1142 1143 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1144 assert(!VT.isVector() && 1145 "getZeroExtendInReg should use the vector element type instead of " 1146 "the vector type!"); 1147 if (Op.getValueType().getScalarType() == VT) return Op; 1148 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1149 APInt Imm = APInt::getLowBitsSet(BitWidth, 1150 VT.getSizeInBits()); 1151 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1152 getConstant(Imm, DL, Op.getValueType())); 1153 } 1154 1155 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1156 // Only unsigned pointer semantics are supported right now. In the future this 1157 // might delegate to TLI to check pointer signedness. 1158 return getZExtOrTrunc(Op, DL, VT); 1159 } 1160 1161 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1162 // Only unsigned pointer semantics are supported right now. In the future this 1163 // might delegate to TLI to check pointer signedness. 1164 return getZeroExtendInReg(Op, DL, VT); 1165 } 1166 1167 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1168 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1169 EVT EltVT = VT.getScalarType(); 1170 SDValue NegOne = 1171 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1172 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1173 } 1174 1175 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1176 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1177 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1178 } 1179 1180 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1181 EVT OpVT) { 1182 if (!V) 1183 return getConstant(0, DL, VT); 1184 1185 switch (TLI->getBooleanContents(OpVT)) { 1186 case TargetLowering::ZeroOrOneBooleanContent: 1187 case TargetLowering::UndefinedBooleanContent: 1188 return getConstant(1, DL, VT); 1189 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1190 return getAllOnesConstant(DL, VT); 1191 } 1192 llvm_unreachable("Unexpected boolean content enum!"); 1193 } 1194 1195 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1196 bool isT, bool isO) { 1197 EVT EltVT = VT.getScalarType(); 1198 assert((EltVT.getSizeInBits() >= 64 || 1199 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1200 "getConstant with a uint64_t value that doesn't fit in the type!"); 1201 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1202 } 1203 1204 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1205 bool isT, bool isO) { 1206 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1207 } 1208 1209 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1210 EVT VT, bool isT, bool isO) { 1211 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1212 1213 EVT EltVT = VT.getScalarType(); 1214 const ConstantInt *Elt = &Val; 1215 1216 // In some cases the vector type is legal but the element type is illegal and 1217 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1218 // inserted value (the type does not need to match the vector element type). 1219 // Any extra bits introduced will be truncated away. 1220 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1221 TargetLowering::TypePromoteInteger) { 1222 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1223 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1224 Elt = ConstantInt::get(*getContext(), NewVal); 1225 } 1226 // In other cases the element type is illegal and needs to be expanded, for 1227 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1228 // the value into n parts and use a vector type with n-times the elements. 1229 // Then bitcast to the type requested. 1230 // Legalizing constants too early makes the DAGCombiner's job harder so we 1231 // only legalize if the DAG tells us we must produce legal types. 1232 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1233 TLI->getTypeAction(*getContext(), EltVT) == 1234 TargetLowering::TypeExpandInteger) { 1235 const APInt &NewVal = Elt->getValue(); 1236 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1237 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1238 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1239 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1240 1241 // Check the temporary vector is the correct size. If this fails then 1242 // getTypeToTransformTo() probably returned a type whose size (in bits) 1243 // isn't a power-of-2 factor of the requested type size. 1244 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1245 1246 SmallVector<SDValue, 2> EltParts; 1247 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1248 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1249 .zextOrTrunc(ViaEltSizeInBits), DL, 1250 ViaEltVT, isT, isO)); 1251 } 1252 1253 // EltParts is currently in little endian order. If we actually want 1254 // big-endian order then reverse it now. 1255 if (getDataLayout().isBigEndian()) 1256 std::reverse(EltParts.begin(), EltParts.end()); 1257 1258 // The elements must be reversed when the element order is different 1259 // to the endianness of the elements (because the BITCAST is itself a 1260 // vector shuffle in this situation). However, we do not need any code to 1261 // perform this reversal because getConstant() is producing a vector 1262 // splat. 1263 // This situation occurs in MIPS MSA. 1264 1265 SmallVector<SDValue, 8> Ops; 1266 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1267 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1268 1269 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1270 return V; 1271 } 1272 1273 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1274 "APInt size does not match type size!"); 1275 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1276 FoldingSetNodeID ID; 1277 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1278 ID.AddPointer(Elt); 1279 ID.AddBoolean(isO); 1280 void *IP = nullptr; 1281 SDNode *N = nullptr; 1282 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1283 if (!VT.isVector()) 1284 return SDValue(N, 0); 1285 1286 if (!N) { 1287 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1288 CSEMap.InsertNode(N, IP); 1289 InsertNode(N); 1290 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1291 } 1292 1293 SDValue Result(N, 0); 1294 if (VT.isScalableVector()) 1295 Result = getSplatVector(VT, DL, Result); 1296 else if (VT.isVector()) 1297 Result = getSplatBuildVector(VT, DL, Result); 1298 1299 return Result; 1300 } 1301 1302 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1303 bool isTarget) { 1304 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1305 } 1306 1307 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1308 const SDLoc &DL, bool LegalTypes) { 1309 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1310 return getConstant(Val, DL, ShiftVT); 1311 } 1312 1313 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1314 bool isTarget) { 1315 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1316 } 1317 1318 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1319 EVT VT, bool isTarget) { 1320 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1321 1322 EVT EltVT = VT.getScalarType(); 1323 1324 // Do the map lookup using the actual bit pattern for the floating point 1325 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1326 // we don't have issues with SNANs. 1327 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1328 FoldingSetNodeID ID; 1329 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1330 ID.AddPointer(&V); 1331 void *IP = nullptr; 1332 SDNode *N = nullptr; 1333 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1334 if (!VT.isVector()) 1335 return SDValue(N, 0); 1336 1337 if (!N) { 1338 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1339 CSEMap.InsertNode(N, IP); 1340 InsertNode(N); 1341 } 1342 1343 SDValue Result(N, 0); 1344 if (VT.isVector()) 1345 Result = getSplatBuildVector(VT, DL, Result); 1346 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1347 return Result; 1348 } 1349 1350 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1351 bool isTarget) { 1352 EVT EltVT = VT.getScalarType(); 1353 if (EltVT == MVT::f32) 1354 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1355 else if (EltVT == MVT::f64) 1356 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1357 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1358 EltVT == MVT::f16) { 1359 bool Ignored; 1360 APFloat APF = APFloat(Val); 1361 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1362 &Ignored); 1363 return getConstantFP(APF, DL, VT, isTarget); 1364 } else 1365 llvm_unreachable("Unsupported type in getConstantFP"); 1366 } 1367 1368 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1369 EVT VT, int64_t Offset, bool isTargetGA, 1370 unsigned TargetFlags) { 1371 assert((TargetFlags == 0 || isTargetGA) && 1372 "Cannot set target flags on target-independent globals"); 1373 1374 // Truncate (with sign-extension) the offset value to the pointer size. 1375 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1376 if (BitWidth < 64) 1377 Offset = SignExtend64(Offset, BitWidth); 1378 1379 unsigned Opc; 1380 if (GV->isThreadLocal()) 1381 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1382 else 1383 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1384 1385 FoldingSetNodeID ID; 1386 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1387 ID.AddPointer(GV); 1388 ID.AddInteger(Offset); 1389 ID.AddInteger(TargetFlags); 1390 void *IP = nullptr; 1391 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1392 return SDValue(E, 0); 1393 1394 auto *N = newSDNode<GlobalAddressSDNode>( 1395 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1396 CSEMap.InsertNode(N, IP); 1397 InsertNode(N); 1398 return SDValue(N, 0); 1399 } 1400 1401 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1402 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1403 FoldingSetNodeID ID; 1404 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1405 ID.AddInteger(FI); 1406 void *IP = nullptr; 1407 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1408 return SDValue(E, 0); 1409 1410 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1411 CSEMap.InsertNode(N, IP); 1412 InsertNode(N); 1413 return SDValue(N, 0); 1414 } 1415 1416 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1417 unsigned TargetFlags) { 1418 assert((TargetFlags == 0 || isTarget) && 1419 "Cannot set target flags on target-independent jump tables"); 1420 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1421 FoldingSetNodeID ID; 1422 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1423 ID.AddInteger(JTI); 1424 ID.AddInteger(TargetFlags); 1425 void *IP = nullptr; 1426 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1427 return SDValue(E, 0); 1428 1429 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1430 CSEMap.InsertNode(N, IP); 1431 InsertNode(N); 1432 return SDValue(N, 0); 1433 } 1434 1435 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1436 unsigned Alignment, int Offset, 1437 bool isTarget, 1438 unsigned TargetFlags) { 1439 assert((TargetFlags == 0 || isTarget) && 1440 "Cannot set target flags on target-independent globals"); 1441 if (Alignment == 0) 1442 Alignment = shouldOptForSize() 1443 ? getDataLayout().getABITypeAlignment(C->getType()) 1444 : getDataLayout().getPrefTypeAlignment(C->getType()); 1445 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1446 FoldingSetNodeID ID; 1447 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1448 ID.AddInteger(Alignment); 1449 ID.AddInteger(Offset); 1450 ID.AddPointer(C); 1451 ID.AddInteger(TargetFlags); 1452 void *IP = nullptr; 1453 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1454 return SDValue(E, 0); 1455 1456 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1457 TargetFlags); 1458 CSEMap.InsertNode(N, IP); 1459 InsertNode(N); 1460 return SDValue(N, 0); 1461 } 1462 1463 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1464 unsigned Alignment, int Offset, 1465 bool isTarget, 1466 unsigned TargetFlags) { 1467 assert((TargetFlags == 0 || isTarget) && 1468 "Cannot set target flags on target-independent globals"); 1469 if (Alignment == 0) 1470 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1471 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1472 FoldingSetNodeID ID; 1473 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1474 ID.AddInteger(Alignment); 1475 ID.AddInteger(Offset); 1476 C->addSelectionDAGCSEId(ID); 1477 ID.AddInteger(TargetFlags); 1478 void *IP = nullptr; 1479 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1480 return SDValue(E, 0); 1481 1482 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1483 TargetFlags); 1484 CSEMap.InsertNode(N, IP); 1485 InsertNode(N); 1486 return SDValue(N, 0); 1487 } 1488 1489 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1490 unsigned TargetFlags) { 1491 FoldingSetNodeID ID; 1492 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1493 ID.AddInteger(Index); 1494 ID.AddInteger(Offset); 1495 ID.AddInteger(TargetFlags); 1496 void *IP = nullptr; 1497 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1498 return SDValue(E, 0); 1499 1500 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1501 CSEMap.InsertNode(N, IP); 1502 InsertNode(N); 1503 return SDValue(N, 0); 1504 } 1505 1506 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1507 FoldingSetNodeID ID; 1508 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1509 ID.AddPointer(MBB); 1510 void *IP = nullptr; 1511 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1512 return SDValue(E, 0); 1513 1514 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1515 CSEMap.InsertNode(N, IP); 1516 InsertNode(N); 1517 return SDValue(N, 0); 1518 } 1519 1520 SDValue SelectionDAG::getValueType(EVT VT) { 1521 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1522 ValueTypeNodes.size()) 1523 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1524 1525 SDNode *&N = VT.isExtended() ? 1526 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1527 1528 if (N) return SDValue(N, 0); 1529 N = newSDNode<VTSDNode>(VT); 1530 InsertNode(N); 1531 return SDValue(N, 0); 1532 } 1533 1534 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1535 SDNode *&N = ExternalSymbols[Sym]; 1536 if (N) return SDValue(N, 0); 1537 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1538 InsertNode(N); 1539 return SDValue(N, 0); 1540 } 1541 1542 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1543 SDNode *&N = MCSymbols[Sym]; 1544 if (N) 1545 return SDValue(N, 0); 1546 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1547 InsertNode(N); 1548 return SDValue(N, 0); 1549 } 1550 1551 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1552 unsigned TargetFlags) { 1553 SDNode *&N = 1554 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1555 if (N) return SDValue(N, 0); 1556 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1557 InsertNode(N); 1558 return SDValue(N, 0); 1559 } 1560 1561 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1562 if ((unsigned)Cond >= CondCodeNodes.size()) 1563 CondCodeNodes.resize(Cond+1); 1564 1565 if (!CondCodeNodes[Cond]) { 1566 auto *N = newSDNode<CondCodeSDNode>(Cond); 1567 CondCodeNodes[Cond] = N; 1568 InsertNode(N); 1569 } 1570 1571 return SDValue(CondCodeNodes[Cond], 0); 1572 } 1573 1574 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1575 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1576 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1577 std::swap(N1, N2); 1578 ShuffleVectorSDNode::commuteMask(M); 1579 } 1580 1581 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1582 SDValue N2, ArrayRef<int> Mask) { 1583 assert(VT.getVectorNumElements() == Mask.size() && 1584 "Must have the same number of vector elements as mask elements!"); 1585 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1586 "Invalid VECTOR_SHUFFLE"); 1587 1588 // Canonicalize shuffle undef, undef -> undef 1589 if (N1.isUndef() && N2.isUndef()) 1590 return getUNDEF(VT); 1591 1592 // Validate that all indices in Mask are within the range of the elements 1593 // input to the shuffle. 1594 int NElts = Mask.size(); 1595 assert(llvm::all_of(Mask, 1596 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1597 "Index out of range"); 1598 1599 // Copy the mask so we can do any needed cleanup. 1600 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1601 1602 // Canonicalize shuffle v, v -> v, undef 1603 if (N1 == N2) { 1604 N2 = getUNDEF(VT); 1605 for (int i = 0; i != NElts; ++i) 1606 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1607 } 1608 1609 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1610 if (N1.isUndef()) 1611 commuteShuffle(N1, N2, MaskVec); 1612 1613 if (TLI->hasVectorBlend()) { 1614 // If shuffling a splat, try to blend the splat instead. We do this here so 1615 // that even when this arises during lowering we don't have to re-handle it. 1616 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1617 BitVector UndefElements; 1618 SDValue Splat = BV->getSplatValue(&UndefElements); 1619 if (!Splat) 1620 return; 1621 1622 for (int i = 0; i < NElts; ++i) { 1623 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1624 continue; 1625 1626 // If this input comes from undef, mark it as such. 1627 if (UndefElements[MaskVec[i] - Offset]) { 1628 MaskVec[i] = -1; 1629 continue; 1630 } 1631 1632 // If we can blend a non-undef lane, use that instead. 1633 if (!UndefElements[i]) 1634 MaskVec[i] = i + Offset; 1635 } 1636 }; 1637 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1638 BlendSplat(N1BV, 0); 1639 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1640 BlendSplat(N2BV, NElts); 1641 } 1642 1643 // Canonicalize all index into lhs, -> shuffle lhs, undef 1644 // Canonicalize all index into rhs, -> shuffle rhs, undef 1645 bool AllLHS = true, AllRHS = true; 1646 bool N2Undef = N2.isUndef(); 1647 for (int i = 0; i != NElts; ++i) { 1648 if (MaskVec[i] >= NElts) { 1649 if (N2Undef) 1650 MaskVec[i] = -1; 1651 else 1652 AllLHS = false; 1653 } else if (MaskVec[i] >= 0) { 1654 AllRHS = false; 1655 } 1656 } 1657 if (AllLHS && AllRHS) 1658 return getUNDEF(VT); 1659 if (AllLHS && !N2Undef) 1660 N2 = getUNDEF(VT); 1661 if (AllRHS) { 1662 N1 = getUNDEF(VT); 1663 commuteShuffle(N1, N2, MaskVec); 1664 } 1665 // Reset our undef status after accounting for the mask. 1666 N2Undef = N2.isUndef(); 1667 // Re-check whether both sides ended up undef. 1668 if (N1.isUndef() && N2Undef) 1669 return getUNDEF(VT); 1670 1671 // If Identity shuffle return that node. 1672 bool Identity = true, AllSame = true; 1673 for (int i = 0; i != NElts; ++i) { 1674 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1675 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1676 } 1677 if (Identity && NElts) 1678 return N1; 1679 1680 // Shuffling a constant splat doesn't change the result. 1681 if (N2Undef) { 1682 SDValue V = N1; 1683 1684 // Look through any bitcasts. We check that these don't change the number 1685 // (and size) of elements and just changes their types. 1686 while (V.getOpcode() == ISD::BITCAST) 1687 V = V->getOperand(0); 1688 1689 // A splat should always show up as a build vector node. 1690 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1691 BitVector UndefElements; 1692 SDValue Splat = BV->getSplatValue(&UndefElements); 1693 // If this is a splat of an undef, shuffling it is also undef. 1694 if (Splat && Splat.isUndef()) 1695 return getUNDEF(VT); 1696 1697 bool SameNumElts = 1698 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1699 1700 // We only have a splat which can skip shuffles if there is a splatted 1701 // value and no undef lanes rearranged by the shuffle. 1702 if (Splat && UndefElements.none()) { 1703 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1704 // number of elements match or the value splatted is a zero constant. 1705 if (SameNumElts) 1706 return N1; 1707 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1708 if (C->isNullValue()) 1709 return N1; 1710 } 1711 1712 // If the shuffle itself creates a splat, build the vector directly. 1713 if (AllSame && SameNumElts) { 1714 EVT BuildVT = BV->getValueType(0); 1715 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1716 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1717 1718 // We may have jumped through bitcasts, so the type of the 1719 // BUILD_VECTOR may not match the type of the shuffle. 1720 if (BuildVT != VT) 1721 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1722 return NewBV; 1723 } 1724 } 1725 } 1726 1727 FoldingSetNodeID ID; 1728 SDValue Ops[2] = { N1, N2 }; 1729 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1730 for (int i = 0; i != NElts; ++i) 1731 ID.AddInteger(MaskVec[i]); 1732 1733 void* IP = nullptr; 1734 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1735 return SDValue(E, 0); 1736 1737 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1738 // SDNode doesn't have access to it. This memory will be "leaked" when 1739 // the node is deallocated, but recovered when the NodeAllocator is released. 1740 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1741 llvm::copy(MaskVec, MaskAlloc); 1742 1743 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1744 dl.getDebugLoc(), MaskAlloc); 1745 createOperands(N, Ops); 1746 1747 CSEMap.InsertNode(N, IP); 1748 InsertNode(N); 1749 SDValue V = SDValue(N, 0); 1750 NewSDValueDbgMsg(V, "Creating new node: ", this); 1751 return V; 1752 } 1753 1754 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1755 EVT VT = SV.getValueType(0); 1756 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1757 ShuffleVectorSDNode::commuteMask(MaskVec); 1758 1759 SDValue Op0 = SV.getOperand(0); 1760 SDValue Op1 = SV.getOperand(1); 1761 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1762 } 1763 1764 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1765 FoldingSetNodeID ID; 1766 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1767 ID.AddInteger(RegNo); 1768 void *IP = nullptr; 1769 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1770 return SDValue(E, 0); 1771 1772 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1773 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1774 CSEMap.InsertNode(N, IP); 1775 InsertNode(N); 1776 return SDValue(N, 0); 1777 } 1778 1779 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1780 FoldingSetNodeID ID; 1781 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1782 ID.AddPointer(RegMask); 1783 void *IP = nullptr; 1784 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1785 return SDValue(E, 0); 1786 1787 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1788 CSEMap.InsertNode(N, IP); 1789 InsertNode(N); 1790 return SDValue(N, 0); 1791 } 1792 1793 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1794 MCSymbol *Label) { 1795 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1796 } 1797 1798 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1799 SDValue Root, MCSymbol *Label) { 1800 FoldingSetNodeID ID; 1801 SDValue Ops[] = { Root }; 1802 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1803 ID.AddPointer(Label); 1804 void *IP = nullptr; 1805 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1806 return SDValue(E, 0); 1807 1808 auto *N = 1809 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1810 createOperands(N, Ops); 1811 1812 CSEMap.InsertNode(N, IP); 1813 InsertNode(N); 1814 return SDValue(N, 0); 1815 } 1816 1817 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1818 int64_t Offset, bool isTarget, 1819 unsigned TargetFlags) { 1820 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1821 1822 FoldingSetNodeID ID; 1823 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1824 ID.AddPointer(BA); 1825 ID.AddInteger(Offset); 1826 ID.AddInteger(TargetFlags); 1827 void *IP = nullptr; 1828 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1829 return SDValue(E, 0); 1830 1831 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1832 CSEMap.InsertNode(N, IP); 1833 InsertNode(N); 1834 return SDValue(N, 0); 1835 } 1836 1837 SDValue SelectionDAG::getSrcValue(const Value *V) { 1838 assert((!V || V->getType()->isPointerTy()) && 1839 "SrcValue is not a pointer?"); 1840 1841 FoldingSetNodeID ID; 1842 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1843 ID.AddPointer(V); 1844 1845 void *IP = nullptr; 1846 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1847 return SDValue(E, 0); 1848 1849 auto *N = newSDNode<SrcValueSDNode>(V); 1850 CSEMap.InsertNode(N, IP); 1851 InsertNode(N); 1852 return SDValue(N, 0); 1853 } 1854 1855 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1856 FoldingSetNodeID ID; 1857 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1858 ID.AddPointer(MD); 1859 1860 void *IP = nullptr; 1861 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1862 return SDValue(E, 0); 1863 1864 auto *N = newSDNode<MDNodeSDNode>(MD); 1865 CSEMap.InsertNode(N, IP); 1866 InsertNode(N); 1867 return SDValue(N, 0); 1868 } 1869 1870 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1871 if (VT == V.getValueType()) 1872 return V; 1873 1874 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1875 } 1876 1877 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1878 unsigned SrcAS, unsigned DestAS) { 1879 SDValue Ops[] = {Ptr}; 1880 FoldingSetNodeID ID; 1881 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1882 ID.AddInteger(SrcAS); 1883 ID.AddInteger(DestAS); 1884 1885 void *IP = nullptr; 1886 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1887 return SDValue(E, 0); 1888 1889 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1890 VT, SrcAS, DestAS); 1891 createOperands(N, Ops); 1892 1893 CSEMap.InsertNode(N, IP); 1894 InsertNode(N); 1895 return SDValue(N, 0); 1896 } 1897 1898 /// getShiftAmountOperand - Return the specified value casted to 1899 /// the target's desired shift amount type. 1900 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1901 EVT OpTy = Op.getValueType(); 1902 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1903 if (OpTy == ShTy || OpTy.isVector()) return Op; 1904 1905 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1906 } 1907 1908 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1909 SDLoc dl(Node); 1910 const TargetLowering &TLI = getTargetLoweringInfo(); 1911 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1912 EVT VT = Node->getValueType(0); 1913 SDValue Tmp1 = Node->getOperand(0); 1914 SDValue Tmp2 = Node->getOperand(1); 1915 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1916 1917 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1918 Tmp2, MachinePointerInfo(V)); 1919 SDValue VAList = VAListLoad; 1920 1921 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1922 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1923 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1924 1925 VAList = 1926 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1927 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1928 } 1929 1930 // Increment the pointer, VAList, to the next vaarg 1931 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1932 getConstant(getDataLayout().getTypeAllocSize( 1933 VT.getTypeForEVT(*getContext())), 1934 dl, VAList.getValueType())); 1935 // Store the incremented VAList to the legalized pointer 1936 Tmp1 = 1937 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1938 // Load the actual argument out of the pointer VAList 1939 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1940 } 1941 1942 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1943 SDLoc dl(Node); 1944 const TargetLowering &TLI = getTargetLoweringInfo(); 1945 // This defaults to loading a pointer from the input and storing it to the 1946 // output, returning the chain. 1947 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1948 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1949 SDValue Tmp1 = 1950 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1951 Node->getOperand(2), MachinePointerInfo(VS)); 1952 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1953 MachinePointerInfo(VD)); 1954 } 1955 1956 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1957 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1958 unsigned ByteSize = VT.getStoreSize(); 1959 Type *Ty = VT.getTypeForEVT(*getContext()); 1960 unsigned StackAlign = 1961 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1962 1963 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1964 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1965 } 1966 1967 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1968 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1969 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1970 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1971 const DataLayout &DL = getDataLayout(); 1972 unsigned Align = 1973 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1974 1975 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1976 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1977 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1978 } 1979 1980 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1981 ISD::CondCode Cond, const SDLoc &dl) { 1982 EVT OpVT = N1.getValueType(); 1983 1984 // These setcc operations always fold. 1985 switch (Cond) { 1986 default: break; 1987 case ISD::SETFALSE: 1988 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 1989 case ISD::SETTRUE: 1990 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 1991 1992 case ISD::SETOEQ: 1993 case ISD::SETOGT: 1994 case ISD::SETOGE: 1995 case ISD::SETOLT: 1996 case ISD::SETOLE: 1997 case ISD::SETONE: 1998 case ISD::SETO: 1999 case ISD::SETUO: 2000 case ISD::SETUEQ: 2001 case ISD::SETUNE: 2002 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2003 break; 2004 } 2005 2006 if (OpVT.isInteger()) { 2007 // For EQ and NE, we can always pick a value for the undef to make the 2008 // predicate pass or fail, so we can return undef. 2009 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2010 // icmp eq/ne X, undef -> undef. 2011 if ((N1.isUndef() || N2.isUndef()) && 2012 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2013 return getUNDEF(VT); 2014 2015 // If both operands are undef, we can return undef for int comparison. 2016 // icmp undef, undef -> undef. 2017 if (N1.isUndef() && N2.isUndef()) 2018 return getUNDEF(VT); 2019 2020 // icmp X, X -> true/false 2021 // icmp X, undef -> true/false because undef could be X. 2022 if (N1 == N2) 2023 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2024 } 2025 2026 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2027 const APInt &C2 = N2C->getAPIntValue(); 2028 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2029 const APInt &C1 = N1C->getAPIntValue(); 2030 2031 switch (Cond) { 2032 default: llvm_unreachable("Unknown integer setcc!"); 2033 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2034 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2035 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2036 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2037 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2038 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2039 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2040 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2041 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2042 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2043 } 2044 } 2045 } 2046 2047 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2048 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2049 2050 if (N1CFP && N2CFP) { 2051 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2052 switch (Cond) { 2053 default: break; 2054 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2055 return getUNDEF(VT); 2056 LLVM_FALLTHROUGH; 2057 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2058 OpVT); 2059 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2060 return getUNDEF(VT); 2061 LLVM_FALLTHROUGH; 2062 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2063 R==APFloat::cmpLessThan, dl, VT, 2064 OpVT); 2065 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2066 return getUNDEF(VT); 2067 LLVM_FALLTHROUGH; 2068 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2069 OpVT); 2070 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2071 return getUNDEF(VT); 2072 LLVM_FALLTHROUGH; 2073 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2074 VT, OpVT); 2075 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2076 return getUNDEF(VT); 2077 LLVM_FALLTHROUGH; 2078 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2079 R==APFloat::cmpEqual, dl, VT, 2080 OpVT); 2081 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2082 return getUNDEF(VT); 2083 LLVM_FALLTHROUGH; 2084 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2085 R==APFloat::cmpEqual, dl, VT, OpVT); 2086 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2087 OpVT); 2088 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2089 OpVT); 2090 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2091 R==APFloat::cmpEqual, dl, VT, 2092 OpVT); 2093 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2094 OpVT); 2095 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2096 R==APFloat::cmpLessThan, dl, VT, 2097 OpVT); 2098 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2099 R==APFloat::cmpUnordered, dl, VT, 2100 OpVT); 2101 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2102 VT, OpVT); 2103 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2104 OpVT); 2105 } 2106 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2107 // Ensure that the constant occurs on the RHS. 2108 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2109 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2110 return SDValue(); 2111 return getSetCC(dl, VT, N2, N1, SwappedCond); 2112 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2113 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2114 // If an operand is known to be a nan (or undef that could be a nan), we can 2115 // fold it. 2116 // Choosing NaN for the undef will always make unordered comparison succeed 2117 // and ordered comparison fails. 2118 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2119 switch (ISD::getUnorderedFlavor(Cond)) { 2120 default: 2121 llvm_unreachable("Unknown flavor!"); 2122 case 0: // Known false. 2123 return getBoolConstant(false, dl, VT, OpVT); 2124 case 1: // Known true. 2125 return getBoolConstant(true, dl, VT, OpVT); 2126 case 2: // Undefined. 2127 return getUNDEF(VT); 2128 } 2129 } 2130 2131 // Could not fold it. 2132 return SDValue(); 2133 } 2134 2135 /// See if the specified operand can be simplified with the knowledge that only 2136 /// the bits specified by DemandedBits are used. 2137 /// TODO: really we should be making this into the DAG equivalent of 2138 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2139 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2140 EVT VT = V.getValueType(); 2141 APInt DemandedElts = VT.isVector() 2142 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2143 : APInt(1, 1); 2144 return GetDemandedBits(V, DemandedBits, DemandedElts); 2145 } 2146 2147 /// See if the specified operand can be simplified with the knowledge that only 2148 /// the bits specified by DemandedBits are used in the elements specified by 2149 /// DemandedElts. 2150 /// TODO: really we should be making this into the DAG equivalent of 2151 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2152 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2153 const APInt &DemandedElts) { 2154 switch (V.getOpcode()) { 2155 default: 2156 break; 2157 case ISD::Constant: { 2158 auto *CV = cast<ConstantSDNode>(V.getNode()); 2159 assert(CV && "Const value should be ConstSDNode."); 2160 const APInt &CVal = CV->getAPIntValue(); 2161 APInt NewVal = CVal & DemandedBits; 2162 if (NewVal != CVal) 2163 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2164 break; 2165 } 2166 case ISD::OR: 2167 case ISD::XOR: 2168 case ISD::SIGN_EXTEND_INREG: 2169 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2170 *this, 0); 2171 case ISD::SRL: 2172 // Only look at single-use SRLs. 2173 if (!V.getNode()->hasOneUse()) 2174 break; 2175 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2176 // See if we can recursively simplify the LHS. 2177 unsigned Amt = RHSC->getZExtValue(); 2178 2179 // Watch out for shift count overflow though. 2180 if (Amt >= DemandedBits.getBitWidth()) 2181 break; 2182 APInt SrcDemandedBits = DemandedBits << Amt; 2183 if (SDValue SimplifyLHS = 2184 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2185 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2186 V.getOperand(1)); 2187 } 2188 break; 2189 case ISD::AND: { 2190 // X & -1 -> X (ignoring bits which aren't demanded). 2191 // Also handle the case where masked out bits in X are known to be zero. 2192 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2193 const APInt &AndVal = RHSC->getAPIntValue(); 2194 if (DemandedBits.isSubsetOf(AndVal) || 2195 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | 2196 AndVal)) 2197 return V.getOperand(0); 2198 } 2199 break; 2200 } 2201 case ISD::ANY_EXTEND: { 2202 SDValue Src = V.getOperand(0); 2203 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 2204 // Being conservative here - only peek through if we only demand bits in the 2205 // non-extended source (even though the extended bits are technically 2206 // undef). 2207 if (DemandedBits.getActiveBits() > SrcBitWidth) 2208 break; 2209 APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth); 2210 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits)) 2211 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); 2212 break; 2213 } 2214 } 2215 return SDValue(); 2216 } 2217 2218 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2219 /// use this predicate to simplify operations downstream. 2220 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2221 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2222 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2223 } 2224 2225 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2226 /// this predicate to simplify operations downstream. Mask is known to be zero 2227 /// for bits that V cannot have. 2228 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2229 unsigned Depth) const { 2230 EVT VT = V.getValueType(); 2231 APInt DemandedElts = VT.isVector() 2232 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2233 : APInt(1, 1); 2234 return MaskedValueIsZero(V, Mask, DemandedElts, Depth); 2235 } 2236 2237 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2238 /// DemandedElts. We use this predicate to simplify operations downstream. 2239 /// Mask is known to be zero for bits that V cannot have. 2240 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2241 const APInt &DemandedElts, 2242 unsigned Depth) const { 2243 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2244 } 2245 2246 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2247 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2248 unsigned Depth) const { 2249 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2250 } 2251 2252 /// isSplatValue - Return true if the vector V has the same value 2253 /// across all DemandedElts. 2254 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2255 APInt &UndefElts) { 2256 if (!DemandedElts) 2257 return false; // No demanded elts, better to assume we don't know anything. 2258 2259 EVT VT = V.getValueType(); 2260 assert(VT.isVector() && "Vector type expected"); 2261 2262 unsigned NumElts = VT.getVectorNumElements(); 2263 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2264 UndefElts = APInt::getNullValue(NumElts); 2265 2266 switch (V.getOpcode()) { 2267 case ISD::BUILD_VECTOR: { 2268 SDValue Scl; 2269 for (unsigned i = 0; i != NumElts; ++i) { 2270 SDValue Op = V.getOperand(i); 2271 if (Op.isUndef()) { 2272 UndefElts.setBit(i); 2273 continue; 2274 } 2275 if (!DemandedElts[i]) 2276 continue; 2277 if (Scl && Scl != Op) 2278 return false; 2279 Scl = Op; 2280 } 2281 return true; 2282 } 2283 case ISD::VECTOR_SHUFFLE: { 2284 // Check if this is a shuffle node doing a splat. 2285 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2286 int SplatIndex = -1; 2287 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2288 for (int i = 0; i != (int)NumElts; ++i) { 2289 int M = Mask[i]; 2290 if (M < 0) { 2291 UndefElts.setBit(i); 2292 continue; 2293 } 2294 if (!DemandedElts[i]) 2295 continue; 2296 if (0 <= SplatIndex && SplatIndex != M) 2297 return false; 2298 SplatIndex = M; 2299 } 2300 return true; 2301 } 2302 case ISD::EXTRACT_SUBVECTOR: { 2303 SDValue Src = V.getOperand(0); 2304 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1)); 2305 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2306 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2307 // Offset the demanded elts by the subvector index. 2308 uint64_t Idx = SubIdx->getZExtValue(); 2309 APInt UndefSrcElts; 2310 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2311 if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) { 2312 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2313 return true; 2314 } 2315 } 2316 break; 2317 } 2318 case ISD::ADD: 2319 case ISD::SUB: 2320 case ISD::AND: { 2321 APInt UndefLHS, UndefRHS; 2322 SDValue LHS = V.getOperand(0); 2323 SDValue RHS = V.getOperand(1); 2324 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2325 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2326 UndefElts = UndefLHS | UndefRHS; 2327 return true; 2328 } 2329 break; 2330 } 2331 } 2332 2333 return false; 2334 } 2335 2336 /// Helper wrapper to main isSplatValue function. 2337 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2338 EVT VT = V.getValueType(); 2339 assert(VT.isVector() && "Vector type expected"); 2340 unsigned NumElts = VT.getVectorNumElements(); 2341 2342 APInt UndefElts; 2343 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 2344 return isSplatValue(V, DemandedElts, UndefElts) && 2345 (AllowUndefs || !UndefElts); 2346 } 2347 2348 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2349 V = peekThroughExtractSubvectors(V); 2350 2351 EVT VT = V.getValueType(); 2352 unsigned Opcode = V.getOpcode(); 2353 switch (Opcode) { 2354 default: { 2355 APInt UndefElts; 2356 APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2357 if (isSplatValue(V, DemandedElts, UndefElts)) { 2358 // Handle case where all demanded elements are UNDEF. 2359 if (DemandedElts.isSubsetOf(UndefElts)) { 2360 SplatIdx = 0; 2361 return getUNDEF(VT); 2362 } 2363 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2364 return V; 2365 } 2366 break; 2367 } 2368 case ISD::VECTOR_SHUFFLE: { 2369 // Check if this is a shuffle node doing a splat. 2370 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2371 // getTargetVShiftNode currently struggles without the splat source. 2372 auto *SVN = cast<ShuffleVectorSDNode>(V); 2373 if (!SVN->isSplat()) 2374 break; 2375 int Idx = SVN->getSplatIndex(); 2376 int NumElts = V.getValueType().getVectorNumElements(); 2377 SplatIdx = Idx % NumElts; 2378 return V.getOperand(Idx / NumElts); 2379 } 2380 } 2381 2382 return SDValue(); 2383 } 2384 2385 SDValue SelectionDAG::getSplatValue(SDValue V) { 2386 int SplatIdx; 2387 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2388 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2389 SrcVector.getValueType().getScalarType(), SrcVector, 2390 getIntPtrConstant(SplatIdx, SDLoc(V))); 2391 return SDValue(); 2392 } 2393 2394 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 2395 /// is less than the element bit-width of the shift node, return it. 2396 static const APInt *getValidShiftAmountConstant(SDValue V) { 2397 unsigned BitWidth = V.getScalarValueSizeInBits(); 2398 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 2399 // Shifting more than the bitwidth is not valid. 2400 const APInt &ShAmt = SA->getAPIntValue(); 2401 if (ShAmt.ult(BitWidth)) 2402 return &ShAmt; 2403 } 2404 return nullptr; 2405 } 2406 2407 /// If a SHL/SRA/SRL node has constant vector shift amounts that are all less 2408 /// than the element bit-width of the shift node, return the minimum value. 2409 static const APInt *getValidMinimumShiftAmountConstant(SDValue V) { 2410 unsigned BitWidth = V.getScalarValueSizeInBits(); 2411 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2412 if (!BV) 2413 return nullptr; 2414 const APInt *MinShAmt = nullptr; 2415 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2416 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2417 if (!SA) 2418 return nullptr; 2419 // Shifting more than the bitwidth is not valid. 2420 const APInt &ShAmt = SA->getAPIntValue(); 2421 if (ShAmt.uge(BitWidth)) 2422 return nullptr; 2423 if (MinShAmt && MinShAmt->ule(ShAmt)) 2424 continue; 2425 MinShAmt = &ShAmt; 2426 } 2427 return MinShAmt; 2428 } 2429 2430 /// Determine which bits of Op are known to be either zero or one and return 2431 /// them in Known. For vectors, the known bits are those that are shared by 2432 /// every vector element. 2433 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2434 EVT VT = Op.getValueType(); 2435 APInt DemandedElts = VT.isVector() 2436 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2437 : APInt(1, 1); 2438 return computeKnownBits(Op, DemandedElts, Depth); 2439 } 2440 2441 /// Determine which bits of Op are known to be either zero or one and return 2442 /// them in Known. The DemandedElts argument allows us to only collect the known 2443 /// bits that are shared by the requested vector elements. 2444 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2445 unsigned Depth) const { 2446 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2447 2448 KnownBits Known(BitWidth); // Don't know anything. 2449 2450 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2451 // We know all of the bits for a constant! 2452 Known.One = C->getAPIntValue(); 2453 Known.Zero = ~Known.One; 2454 return Known; 2455 } 2456 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2457 // We know all of the bits for a constant fp! 2458 Known.One = C->getValueAPF().bitcastToAPInt(); 2459 Known.Zero = ~Known.One; 2460 return Known; 2461 } 2462 2463 if (Depth >= MaxRecursionDepth) 2464 return Known; // Limit search depth. 2465 2466 KnownBits Known2; 2467 unsigned NumElts = DemandedElts.getBitWidth(); 2468 assert((!Op.getValueType().isVector() || 2469 NumElts == Op.getValueType().getVectorNumElements()) && 2470 "Unexpected vector size"); 2471 2472 if (!DemandedElts) 2473 return Known; // No demanded elts, better to assume we don't know anything. 2474 2475 unsigned Opcode = Op.getOpcode(); 2476 switch (Opcode) { 2477 case ISD::BUILD_VECTOR: 2478 // Collect the known bits that are shared by every demanded vector element. 2479 Known.Zero.setAllBits(); Known.One.setAllBits(); 2480 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2481 if (!DemandedElts[i]) 2482 continue; 2483 2484 SDValue SrcOp = Op.getOperand(i); 2485 Known2 = computeKnownBits(SrcOp, Depth + 1); 2486 2487 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2488 if (SrcOp.getValueSizeInBits() != BitWidth) { 2489 assert(SrcOp.getValueSizeInBits() > BitWidth && 2490 "Expected BUILD_VECTOR implicit truncation"); 2491 Known2 = Known2.trunc(BitWidth); 2492 } 2493 2494 // Known bits are the values that are shared by every demanded element. 2495 Known.One &= Known2.One; 2496 Known.Zero &= Known2.Zero; 2497 2498 // If we don't know any bits, early out. 2499 if (Known.isUnknown()) 2500 break; 2501 } 2502 break; 2503 case ISD::VECTOR_SHUFFLE: { 2504 // Collect the known bits that are shared by every vector element referenced 2505 // by the shuffle. 2506 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2507 Known.Zero.setAllBits(); Known.One.setAllBits(); 2508 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2509 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2510 for (unsigned i = 0; i != NumElts; ++i) { 2511 if (!DemandedElts[i]) 2512 continue; 2513 2514 int M = SVN->getMaskElt(i); 2515 if (M < 0) { 2516 // For UNDEF elements, we don't know anything about the common state of 2517 // the shuffle result. 2518 Known.resetAll(); 2519 DemandedLHS.clearAllBits(); 2520 DemandedRHS.clearAllBits(); 2521 break; 2522 } 2523 2524 if ((unsigned)M < NumElts) 2525 DemandedLHS.setBit((unsigned)M % NumElts); 2526 else 2527 DemandedRHS.setBit((unsigned)M % NumElts); 2528 } 2529 // Known bits are the values that are shared by every demanded element. 2530 if (!!DemandedLHS) { 2531 SDValue LHS = Op.getOperand(0); 2532 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2533 Known.One &= Known2.One; 2534 Known.Zero &= Known2.Zero; 2535 } 2536 // If we don't know any bits, early out. 2537 if (Known.isUnknown()) 2538 break; 2539 if (!!DemandedRHS) { 2540 SDValue RHS = Op.getOperand(1); 2541 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2542 Known.One &= Known2.One; 2543 Known.Zero &= Known2.Zero; 2544 } 2545 break; 2546 } 2547 case ISD::CONCAT_VECTORS: { 2548 // Split DemandedElts and test each of the demanded subvectors. 2549 Known.Zero.setAllBits(); Known.One.setAllBits(); 2550 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2551 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2552 unsigned NumSubVectors = Op.getNumOperands(); 2553 for (unsigned i = 0; i != NumSubVectors; ++i) { 2554 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2555 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2556 if (!!DemandedSub) { 2557 SDValue Sub = Op.getOperand(i); 2558 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2559 Known.One &= Known2.One; 2560 Known.Zero &= Known2.Zero; 2561 } 2562 // If we don't know any bits, early out. 2563 if (Known.isUnknown()) 2564 break; 2565 } 2566 break; 2567 } 2568 case ISD::INSERT_SUBVECTOR: { 2569 // If we know the element index, demand any elements from the subvector and 2570 // the remainder from the src its inserted into, otherwise demand them all. 2571 SDValue Src = Op.getOperand(0); 2572 SDValue Sub = Op.getOperand(1); 2573 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2574 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2575 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2576 Known.One.setAllBits(); 2577 Known.Zero.setAllBits(); 2578 uint64_t Idx = SubIdx->getZExtValue(); 2579 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2580 if (!!DemandedSubElts) { 2581 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2582 if (Known.isUnknown()) 2583 break; // early-out. 2584 } 2585 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 2586 APInt DemandedSrcElts = DemandedElts & ~SubMask; 2587 if (!!DemandedSrcElts) { 2588 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2589 Known.One &= Known2.One; 2590 Known.Zero &= Known2.Zero; 2591 } 2592 } else { 2593 Known = computeKnownBits(Sub, Depth + 1); 2594 if (Known.isUnknown()) 2595 break; // early-out. 2596 Known2 = computeKnownBits(Src, Depth + 1); 2597 Known.One &= Known2.One; 2598 Known.Zero &= Known2.Zero; 2599 } 2600 break; 2601 } 2602 case ISD::EXTRACT_SUBVECTOR: { 2603 // If we know the element index, just demand that subvector elements, 2604 // otherwise demand them all. 2605 SDValue Src = Op.getOperand(0); 2606 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2607 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2608 APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts); 2609 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2610 // Offset the demanded elts by the subvector index. 2611 uint64_t Idx = SubIdx->getZExtValue(); 2612 DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2613 } 2614 Known = computeKnownBits(Src, DemandedSrc, Depth + 1); 2615 break; 2616 } 2617 case ISD::SCALAR_TO_VECTOR: { 2618 // We know about scalar_to_vector as much as we know about it source, 2619 // which becomes the first element of otherwise unknown vector. 2620 if (DemandedElts != 1) 2621 break; 2622 2623 SDValue N0 = Op.getOperand(0); 2624 Known = computeKnownBits(N0, Depth + 1); 2625 if (N0.getValueSizeInBits() != BitWidth) 2626 Known = Known.trunc(BitWidth); 2627 2628 break; 2629 } 2630 case ISD::BITCAST: { 2631 SDValue N0 = Op.getOperand(0); 2632 EVT SubVT = N0.getValueType(); 2633 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2634 2635 // Ignore bitcasts from unsupported types. 2636 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2637 break; 2638 2639 // Fast handling of 'identity' bitcasts. 2640 if (BitWidth == SubBitWidth) { 2641 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2642 break; 2643 } 2644 2645 bool IsLE = getDataLayout().isLittleEndian(); 2646 2647 // Bitcast 'small element' vector to 'large element' scalar/vector. 2648 if ((BitWidth % SubBitWidth) == 0) { 2649 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2650 2651 // Collect known bits for the (larger) output by collecting the known 2652 // bits from each set of sub elements and shift these into place. 2653 // We need to separately call computeKnownBits for each set of 2654 // sub elements as the knownbits for each is likely to be different. 2655 unsigned SubScale = BitWidth / SubBitWidth; 2656 APInt SubDemandedElts(NumElts * SubScale, 0); 2657 for (unsigned i = 0; i != NumElts; ++i) 2658 if (DemandedElts[i]) 2659 SubDemandedElts.setBit(i * SubScale); 2660 2661 for (unsigned i = 0; i != SubScale; ++i) { 2662 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2663 Depth + 1); 2664 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2665 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2666 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2667 } 2668 } 2669 2670 // Bitcast 'large element' scalar/vector to 'small element' vector. 2671 if ((SubBitWidth % BitWidth) == 0) { 2672 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2673 2674 // Collect known bits for the (smaller) output by collecting the known 2675 // bits from the overlapping larger input elements and extracting the 2676 // sub sections we actually care about. 2677 unsigned SubScale = SubBitWidth / BitWidth; 2678 APInt SubDemandedElts(NumElts / SubScale, 0); 2679 for (unsigned i = 0; i != NumElts; ++i) 2680 if (DemandedElts[i]) 2681 SubDemandedElts.setBit(i / SubScale); 2682 2683 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2684 2685 Known.Zero.setAllBits(); Known.One.setAllBits(); 2686 for (unsigned i = 0; i != NumElts; ++i) 2687 if (DemandedElts[i]) { 2688 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2689 unsigned Offset = (Shifts % SubScale) * BitWidth; 2690 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2691 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2692 // If we don't know any bits, early out. 2693 if (Known.isUnknown()) 2694 break; 2695 } 2696 } 2697 break; 2698 } 2699 case ISD::AND: 2700 // If either the LHS or the RHS are Zero, the result is zero. 2701 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2702 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2703 2704 // Output known-1 bits are only known if set in both the LHS & RHS. 2705 Known.One &= Known2.One; 2706 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2707 Known.Zero |= Known2.Zero; 2708 break; 2709 case ISD::OR: 2710 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2711 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2712 2713 // Output known-0 bits are only known if clear in both the LHS & RHS. 2714 Known.Zero &= Known2.Zero; 2715 // Output known-1 are known to be set if set in either the LHS | RHS. 2716 Known.One |= Known2.One; 2717 break; 2718 case ISD::XOR: { 2719 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2720 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2721 2722 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2723 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2724 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2725 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2726 Known.Zero = KnownZeroOut; 2727 break; 2728 } 2729 case ISD::MUL: { 2730 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2731 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2732 2733 // If low bits are zero in either operand, output low known-0 bits. 2734 // Also compute a conservative estimate for high known-0 bits. 2735 // More trickiness is possible, but this is sufficient for the 2736 // interesting case of alignment computation. 2737 unsigned TrailZ = Known.countMinTrailingZeros() + 2738 Known2.countMinTrailingZeros(); 2739 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2740 Known2.countMinLeadingZeros(), 2741 BitWidth) - BitWidth; 2742 2743 Known.resetAll(); 2744 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2745 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2746 break; 2747 } 2748 case ISD::UDIV: { 2749 // For the purposes of computing leading zeros we can conservatively 2750 // treat a udiv as a logical right shift by the power of 2 known to 2751 // be less than the denominator. 2752 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2753 unsigned LeadZ = Known2.countMinLeadingZeros(); 2754 2755 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2756 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2757 if (RHSMaxLeadingZeros != BitWidth) 2758 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2759 2760 Known.Zero.setHighBits(LeadZ); 2761 break; 2762 } 2763 case ISD::SELECT: 2764 case ISD::VSELECT: 2765 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2766 // If we don't know any bits, early out. 2767 if (Known.isUnknown()) 2768 break; 2769 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2770 2771 // Only known if known in both the LHS and RHS. 2772 Known.One &= Known2.One; 2773 Known.Zero &= Known2.Zero; 2774 break; 2775 case ISD::SELECT_CC: 2776 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2777 // If we don't know any bits, early out. 2778 if (Known.isUnknown()) 2779 break; 2780 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2781 2782 // Only known if known in both the LHS and RHS. 2783 Known.One &= Known2.One; 2784 Known.Zero &= Known2.Zero; 2785 break; 2786 case ISD::SMULO: 2787 case ISD::UMULO: 2788 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2789 if (Op.getResNo() != 1) 2790 break; 2791 // The boolean result conforms to getBooleanContents. 2792 // If we know the result of a setcc has the top bits zero, use this info. 2793 // We know that we have an integer-based boolean since these operations 2794 // are only available for integer. 2795 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2796 TargetLowering::ZeroOrOneBooleanContent && 2797 BitWidth > 1) 2798 Known.Zero.setBitsFrom(1); 2799 break; 2800 case ISD::SETCC: 2801 case ISD::STRICT_FSETCC: 2802 case ISD::STRICT_FSETCCS: { 2803 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2804 // If we know the result of a setcc has the top bits zero, use this info. 2805 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2806 TargetLowering::ZeroOrOneBooleanContent && 2807 BitWidth > 1) 2808 Known.Zero.setBitsFrom(1); 2809 break; 2810 } 2811 case ISD::SHL: 2812 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2813 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2814 unsigned Shift = ShAmt->getZExtValue(); 2815 Known.Zero <<= Shift; 2816 Known.One <<= Shift; 2817 // Low bits are known zero. 2818 Known.Zero.setLowBits(Shift); 2819 } 2820 break; 2821 case ISD::SRL: 2822 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2823 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2824 unsigned Shift = ShAmt->getZExtValue(); 2825 Known.Zero.lshrInPlace(Shift); 2826 Known.One.lshrInPlace(Shift); 2827 // High bits are known zero. 2828 Known.Zero.setHighBits(Shift); 2829 } else if (const APInt *ShMinAmt = getValidMinimumShiftAmountConstant(Op)) { 2830 // Minimum shift high bits are known zero. 2831 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2832 } 2833 break; 2834 case ISD::SRA: 2835 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2836 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2837 unsigned Shift = ShAmt->getZExtValue(); 2838 // Sign extend known zero/one bit (else is unknown). 2839 Known.Zero.ashrInPlace(Shift); 2840 Known.One.ashrInPlace(Shift); 2841 } 2842 break; 2843 case ISD::FSHL: 2844 case ISD::FSHR: 2845 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2846 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2847 2848 // For fshl, 0-shift returns the 1st arg. 2849 // For fshr, 0-shift returns the 2nd arg. 2850 if (Amt == 0) { 2851 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2852 DemandedElts, Depth + 1); 2853 break; 2854 } 2855 2856 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2857 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2858 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2859 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2860 if (Opcode == ISD::FSHL) { 2861 Known.One <<= Amt; 2862 Known.Zero <<= Amt; 2863 Known2.One.lshrInPlace(BitWidth - Amt); 2864 Known2.Zero.lshrInPlace(BitWidth - Amt); 2865 } else { 2866 Known.One <<= BitWidth - Amt; 2867 Known.Zero <<= BitWidth - Amt; 2868 Known2.One.lshrInPlace(Amt); 2869 Known2.Zero.lshrInPlace(Amt); 2870 } 2871 Known.One |= Known2.One; 2872 Known.Zero |= Known2.Zero; 2873 } 2874 break; 2875 case ISD::SIGN_EXTEND_INREG: { 2876 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2877 unsigned EBits = EVT.getScalarSizeInBits(); 2878 2879 // Sign extension. Compute the demanded bits in the result that are not 2880 // present in the input. 2881 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2882 2883 APInt InSignMask = APInt::getSignMask(EBits); 2884 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2885 2886 // If the sign extended bits are demanded, we know that the sign 2887 // bit is demanded. 2888 InSignMask = InSignMask.zext(BitWidth); 2889 if (NewBits.getBoolValue()) 2890 InputDemandedBits |= InSignMask; 2891 2892 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2893 Known.One &= InputDemandedBits; 2894 Known.Zero &= InputDemandedBits; 2895 2896 // If the sign bit of the input is known set or clear, then we know the 2897 // top bits of the result. 2898 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2899 Known.Zero |= NewBits; 2900 Known.One &= ~NewBits; 2901 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2902 Known.One |= NewBits; 2903 Known.Zero &= ~NewBits; 2904 } else { // Input sign bit unknown 2905 Known.Zero &= ~NewBits; 2906 Known.One &= ~NewBits; 2907 } 2908 break; 2909 } 2910 case ISD::CTTZ: 2911 case ISD::CTTZ_ZERO_UNDEF: { 2912 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2913 // If we have a known 1, its position is our upper bound. 2914 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2915 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2916 Known.Zero.setBitsFrom(LowBits); 2917 break; 2918 } 2919 case ISD::CTLZ: 2920 case ISD::CTLZ_ZERO_UNDEF: { 2921 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2922 // If we have a known 1, its position is our upper bound. 2923 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2924 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2925 Known.Zero.setBitsFrom(LowBits); 2926 break; 2927 } 2928 case ISD::CTPOP: { 2929 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2930 // If we know some of the bits are zero, they can't be one. 2931 unsigned PossibleOnes = Known2.countMaxPopulation(); 2932 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 2933 break; 2934 } 2935 case ISD::LOAD: { 2936 LoadSDNode *LD = cast<LoadSDNode>(Op); 2937 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 2938 if (ISD::isNON_EXTLoad(LD) && Cst) { 2939 // Determine any common known bits from the loaded constant pool value. 2940 Type *CstTy = Cst->getType(); 2941 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 2942 // If its a vector splat, then we can (quickly) reuse the scalar path. 2943 // NOTE: We assume all elements match and none are UNDEF. 2944 if (CstTy->isVectorTy()) { 2945 if (const Constant *Splat = Cst->getSplatValue()) { 2946 Cst = Splat; 2947 CstTy = Cst->getType(); 2948 } 2949 } 2950 // TODO - do we need to handle different bitwidths? 2951 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 2952 // Iterate across all vector elements finding common known bits. 2953 Known.One.setAllBits(); 2954 Known.Zero.setAllBits(); 2955 for (unsigned i = 0; i != NumElts; ++i) { 2956 if (!DemandedElts[i]) 2957 continue; 2958 if (Constant *Elt = Cst->getAggregateElement(i)) { 2959 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 2960 const APInt &Value = CInt->getValue(); 2961 Known.One &= Value; 2962 Known.Zero &= ~Value; 2963 continue; 2964 } 2965 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 2966 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 2967 Known.One &= Value; 2968 Known.Zero &= ~Value; 2969 continue; 2970 } 2971 } 2972 Known.One.clearAllBits(); 2973 Known.Zero.clearAllBits(); 2974 break; 2975 } 2976 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 2977 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 2978 const APInt &Value = CInt->getValue(); 2979 Known.One = Value; 2980 Known.Zero = ~Value; 2981 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 2982 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 2983 Known.One = Value; 2984 Known.Zero = ~Value; 2985 } 2986 } 2987 } 2988 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2989 // If this is a ZEXTLoad and we are looking at the loaded value. 2990 EVT VT = LD->getMemoryVT(); 2991 unsigned MemBits = VT.getScalarSizeInBits(); 2992 Known.Zero.setBitsFrom(MemBits); 2993 } else if (const MDNode *Ranges = LD->getRanges()) { 2994 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2995 computeKnownBitsFromRangeMetadata(*Ranges, Known); 2996 } 2997 break; 2998 } 2999 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3000 EVT InVT = Op.getOperand(0).getValueType(); 3001 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3002 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3003 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 3004 break; 3005 } 3006 case ISD::ZERO_EXTEND: { 3007 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3008 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 3009 break; 3010 } 3011 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3012 EVT InVT = Op.getOperand(0).getValueType(); 3013 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3014 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3015 // If the sign bit is known to be zero or one, then sext will extend 3016 // it to the top bits, else it will just zext. 3017 Known = Known.sext(BitWidth); 3018 break; 3019 } 3020 case ISD::SIGN_EXTEND: { 3021 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3022 // If the sign bit is known to be zero or one, then sext will extend 3023 // it to the top bits, else it will just zext. 3024 Known = Known.sext(BitWidth); 3025 break; 3026 } 3027 case ISD::ANY_EXTEND: { 3028 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3029 Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */); 3030 break; 3031 } 3032 case ISD::TRUNCATE: { 3033 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3034 Known = Known.trunc(BitWidth); 3035 break; 3036 } 3037 case ISD::AssertZext: { 3038 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3039 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3040 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3041 Known.Zero |= (~InMask); 3042 Known.One &= (~Known.Zero); 3043 break; 3044 } 3045 case ISD::FGETSIGN: 3046 // All bits are zero except the low bit. 3047 Known.Zero.setBitsFrom(1); 3048 break; 3049 case ISD::USUBO: 3050 case ISD::SSUBO: 3051 if (Op.getResNo() == 1) { 3052 // If we know the result of a setcc has the top bits zero, use this info. 3053 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3054 TargetLowering::ZeroOrOneBooleanContent && 3055 BitWidth > 1) 3056 Known.Zero.setBitsFrom(1); 3057 break; 3058 } 3059 LLVM_FALLTHROUGH; 3060 case ISD::SUB: 3061 case ISD::SUBC: { 3062 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3063 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3064 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3065 Known, Known2); 3066 break; 3067 } 3068 case ISD::UADDO: 3069 case ISD::SADDO: 3070 case ISD::ADDCARRY: 3071 if (Op.getResNo() == 1) { 3072 // If we know the result of a setcc has the top bits zero, use this info. 3073 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3074 TargetLowering::ZeroOrOneBooleanContent && 3075 BitWidth > 1) 3076 Known.Zero.setBitsFrom(1); 3077 break; 3078 } 3079 LLVM_FALLTHROUGH; 3080 case ISD::ADD: 3081 case ISD::ADDC: 3082 case ISD::ADDE: { 3083 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3084 3085 // With ADDE and ADDCARRY, a carry bit may be added in. 3086 KnownBits Carry(1); 3087 if (Opcode == ISD::ADDE) 3088 // Can't track carry from glue, set carry to unknown. 3089 Carry.resetAll(); 3090 else if (Opcode == ISD::ADDCARRY) 3091 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3092 // the trouble (how often will we find a known carry bit). And I haven't 3093 // tested this very much yet, but something like this might work: 3094 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3095 // Carry = Carry.zextOrTrunc(1, false); 3096 Carry.resetAll(); 3097 else 3098 Carry.setAllZero(); 3099 3100 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3101 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3102 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3103 break; 3104 } 3105 case ISD::SREM: 3106 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3107 const APInt &RA = Rem->getAPIntValue().abs(); 3108 if (RA.isPowerOf2()) { 3109 APInt LowBits = RA - 1; 3110 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3111 3112 // The low bits of the first operand are unchanged by the srem. 3113 Known.Zero = Known2.Zero & LowBits; 3114 Known.One = Known2.One & LowBits; 3115 3116 // If the first operand is non-negative or has all low bits zero, then 3117 // the upper bits are all zero. 3118 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3119 Known.Zero |= ~LowBits; 3120 3121 // If the first operand is negative and not all low bits are zero, then 3122 // the upper bits are all one. 3123 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3124 Known.One |= ~LowBits; 3125 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3126 } 3127 } 3128 break; 3129 case ISD::UREM: { 3130 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3131 const APInt &RA = Rem->getAPIntValue(); 3132 if (RA.isPowerOf2()) { 3133 APInt LowBits = (RA - 1); 3134 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3135 3136 // The upper bits are all zero, the lower ones are unchanged. 3137 Known.Zero = Known2.Zero | ~LowBits; 3138 Known.One = Known2.One & LowBits; 3139 break; 3140 } 3141 } 3142 3143 // Since the result is less than or equal to either operand, any leading 3144 // zero bits in either operand must also exist in the result. 3145 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3146 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3147 3148 uint32_t Leaders = 3149 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3150 Known.resetAll(); 3151 Known.Zero.setHighBits(Leaders); 3152 break; 3153 } 3154 case ISD::EXTRACT_ELEMENT: { 3155 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3156 const unsigned Index = Op.getConstantOperandVal(1); 3157 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3158 3159 // Remove low part of known bits mask 3160 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3161 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3162 3163 // Remove high part of known bit mask 3164 Known = Known.trunc(EltBitWidth); 3165 break; 3166 } 3167 case ISD::EXTRACT_VECTOR_ELT: { 3168 SDValue InVec = Op.getOperand(0); 3169 SDValue EltNo = Op.getOperand(1); 3170 EVT VecVT = InVec.getValueType(); 3171 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3172 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3173 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3174 // anything about the extended bits. 3175 if (BitWidth > EltBitWidth) 3176 Known = Known.trunc(EltBitWidth); 3177 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3178 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 3179 // If we know the element index, just demand that vector element. 3180 unsigned Idx = ConstEltNo->getZExtValue(); 3181 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 3182 Known = computeKnownBits(InVec, DemandedElt, Depth + 1); 3183 } else { 3184 // Unknown element index, so ignore DemandedElts and demand them all. 3185 Known = computeKnownBits(InVec, Depth + 1); 3186 } 3187 if (BitWidth > EltBitWidth) 3188 Known = Known.zext(BitWidth, false /* => any extend */); 3189 break; 3190 } 3191 case ISD::INSERT_VECTOR_ELT: { 3192 SDValue InVec = Op.getOperand(0); 3193 SDValue InVal = Op.getOperand(1); 3194 SDValue EltNo = Op.getOperand(2); 3195 3196 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3197 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3198 // If we know the element index, split the demand between the 3199 // source vector and the inserted element. 3200 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); 3201 unsigned EltIdx = CEltNo->getZExtValue(); 3202 3203 // If we demand the inserted element then add its common known bits. 3204 if (DemandedElts[EltIdx]) { 3205 Known2 = computeKnownBits(InVal, Depth + 1); 3206 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3207 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3208 } 3209 3210 // If we demand the source vector then add its common known bits, ensuring 3211 // that we don't demand the inserted element. 3212 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 3213 if (!!VectorElts) { 3214 Known2 = computeKnownBits(InVec, VectorElts, Depth + 1); 3215 Known.One &= Known2.One; 3216 Known.Zero &= Known2.Zero; 3217 } 3218 } else { 3219 // Unknown element index, so ignore DemandedElts and demand them all. 3220 Known = computeKnownBits(InVec, Depth + 1); 3221 Known2 = computeKnownBits(InVal, Depth + 1); 3222 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3223 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3224 } 3225 break; 3226 } 3227 case ISD::BITREVERSE: { 3228 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3229 Known.Zero = Known2.Zero.reverseBits(); 3230 Known.One = Known2.One.reverseBits(); 3231 break; 3232 } 3233 case ISD::BSWAP: { 3234 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3235 Known.Zero = Known2.Zero.byteSwap(); 3236 Known.One = Known2.One.byteSwap(); 3237 break; 3238 } 3239 case ISD::ABS: { 3240 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3241 3242 // If the source's MSB is zero then we know the rest of the bits already. 3243 if (Known2.isNonNegative()) { 3244 Known.Zero = Known2.Zero; 3245 Known.One = Known2.One; 3246 break; 3247 } 3248 3249 // We only know that the absolute values's MSB will be zero iff there is 3250 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3251 Known2.One.clearSignBit(); 3252 if (Known2.One.getBoolValue()) { 3253 Known.Zero = APInt::getSignMask(BitWidth); 3254 break; 3255 } 3256 break; 3257 } 3258 case ISD::UMIN: { 3259 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3260 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3261 3262 // UMIN - we know that the result will have the maximum of the 3263 // known zero leading bits of the inputs. 3264 unsigned LeadZero = Known.countMinLeadingZeros(); 3265 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3266 3267 Known.Zero &= Known2.Zero; 3268 Known.One &= Known2.One; 3269 Known.Zero.setHighBits(LeadZero); 3270 break; 3271 } 3272 case ISD::UMAX: { 3273 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3274 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3275 3276 // UMAX - we know that the result will have the maximum of the 3277 // known one leading bits of the inputs. 3278 unsigned LeadOne = Known.countMinLeadingOnes(); 3279 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3280 3281 Known.Zero &= Known2.Zero; 3282 Known.One &= Known2.One; 3283 Known.One.setHighBits(LeadOne); 3284 break; 3285 } 3286 case ISD::SMIN: 3287 case ISD::SMAX: { 3288 // If we have a clamp pattern, we know that the number of sign bits will be 3289 // the minimum of the clamp min/max range. 3290 bool IsMax = (Opcode == ISD::SMAX); 3291 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3292 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3293 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3294 CstHigh = 3295 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3296 if (CstLow && CstHigh) { 3297 if (!IsMax) 3298 std::swap(CstLow, CstHigh); 3299 3300 const APInt &ValueLow = CstLow->getAPIntValue(); 3301 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3302 if (ValueLow.sle(ValueHigh)) { 3303 unsigned LowSignBits = ValueLow.getNumSignBits(); 3304 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3305 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3306 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3307 Known.One.setHighBits(MinSignBits); 3308 break; 3309 } 3310 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3311 Known.Zero.setHighBits(MinSignBits); 3312 break; 3313 } 3314 } 3315 } 3316 3317 // Fallback - just get the shared known bits of the operands. 3318 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3319 if (Known.isUnknown()) break; // Early-out 3320 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3321 Known.Zero &= Known2.Zero; 3322 Known.One &= Known2.One; 3323 break; 3324 } 3325 case ISD::FrameIndex: 3326 case ISD::TargetFrameIndex: 3327 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3328 break; 3329 3330 default: 3331 if (Opcode < ISD::BUILTIN_OP_END) 3332 break; 3333 LLVM_FALLTHROUGH; 3334 case ISD::INTRINSIC_WO_CHAIN: 3335 case ISD::INTRINSIC_W_CHAIN: 3336 case ISD::INTRINSIC_VOID: 3337 // Allow the target to implement this method for its nodes. 3338 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3339 break; 3340 } 3341 3342 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3343 return Known; 3344 } 3345 3346 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3347 SDValue N1) const { 3348 // X + 0 never overflow 3349 if (isNullConstant(N1)) 3350 return OFK_Never; 3351 3352 KnownBits N1Known = computeKnownBits(N1); 3353 if (N1Known.Zero.getBoolValue()) { 3354 KnownBits N0Known = computeKnownBits(N0); 3355 3356 bool overflow; 3357 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3358 if (!overflow) 3359 return OFK_Never; 3360 } 3361 3362 // mulhi + 1 never overflow 3363 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3364 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3365 return OFK_Never; 3366 3367 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3368 KnownBits N0Known = computeKnownBits(N0); 3369 3370 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3371 return OFK_Never; 3372 } 3373 3374 return OFK_Sometime; 3375 } 3376 3377 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3378 EVT OpVT = Val.getValueType(); 3379 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3380 3381 // Is the constant a known power of 2? 3382 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3383 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3384 3385 // A left-shift of a constant one will have exactly one bit set because 3386 // shifting the bit off the end is undefined. 3387 if (Val.getOpcode() == ISD::SHL) { 3388 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3389 if (C && C->getAPIntValue() == 1) 3390 return true; 3391 } 3392 3393 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3394 // one bit set. 3395 if (Val.getOpcode() == ISD::SRL) { 3396 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3397 if (C && C->getAPIntValue().isSignMask()) 3398 return true; 3399 } 3400 3401 // Are all operands of a build vector constant powers of two? 3402 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3403 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3404 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3405 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3406 return false; 3407 })) 3408 return true; 3409 3410 // More could be done here, though the above checks are enough 3411 // to handle some common cases. 3412 3413 // Fall back to computeKnownBits to catch other known cases. 3414 KnownBits Known = computeKnownBits(Val); 3415 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3416 } 3417 3418 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3419 EVT VT = Op.getValueType(); 3420 APInt DemandedElts = VT.isVector() 3421 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3422 : APInt(1, 1); 3423 return ComputeNumSignBits(Op, DemandedElts, Depth); 3424 } 3425 3426 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3427 unsigned Depth) const { 3428 EVT VT = Op.getValueType(); 3429 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3430 unsigned VTBits = VT.getScalarSizeInBits(); 3431 unsigned NumElts = DemandedElts.getBitWidth(); 3432 unsigned Tmp, Tmp2; 3433 unsigned FirstAnswer = 1; 3434 3435 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3436 const APInt &Val = C->getAPIntValue(); 3437 return Val.getNumSignBits(); 3438 } 3439 3440 if (Depth >= MaxRecursionDepth) 3441 return 1; // Limit search depth. 3442 3443 if (!DemandedElts) 3444 return 1; // No demanded elts, better to assume we don't know anything. 3445 3446 unsigned Opcode = Op.getOpcode(); 3447 switch (Opcode) { 3448 default: break; 3449 case ISD::AssertSext: 3450 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3451 return VTBits-Tmp+1; 3452 case ISD::AssertZext: 3453 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3454 return VTBits-Tmp; 3455 3456 case ISD::BUILD_VECTOR: 3457 Tmp = VTBits; 3458 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3459 if (!DemandedElts[i]) 3460 continue; 3461 3462 SDValue SrcOp = Op.getOperand(i); 3463 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3464 3465 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3466 if (SrcOp.getValueSizeInBits() != VTBits) { 3467 assert(SrcOp.getValueSizeInBits() > VTBits && 3468 "Expected BUILD_VECTOR implicit truncation"); 3469 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3470 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3471 } 3472 Tmp = std::min(Tmp, Tmp2); 3473 } 3474 return Tmp; 3475 3476 case ISD::VECTOR_SHUFFLE: { 3477 // Collect the minimum number of sign bits that are shared by every vector 3478 // element referenced by the shuffle. 3479 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3480 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3481 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3482 for (unsigned i = 0; i != NumElts; ++i) { 3483 int M = SVN->getMaskElt(i); 3484 if (!DemandedElts[i]) 3485 continue; 3486 // For UNDEF elements, we don't know anything about the common state of 3487 // the shuffle result. 3488 if (M < 0) 3489 return 1; 3490 if ((unsigned)M < NumElts) 3491 DemandedLHS.setBit((unsigned)M % NumElts); 3492 else 3493 DemandedRHS.setBit((unsigned)M % NumElts); 3494 } 3495 Tmp = std::numeric_limits<unsigned>::max(); 3496 if (!!DemandedLHS) 3497 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3498 if (!!DemandedRHS) { 3499 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3500 Tmp = std::min(Tmp, Tmp2); 3501 } 3502 // If we don't know anything, early out and try computeKnownBits fall-back. 3503 if (Tmp == 1) 3504 break; 3505 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3506 return Tmp; 3507 } 3508 3509 case ISD::BITCAST: { 3510 SDValue N0 = Op.getOperand(0); 3511 EVT SrcVT = N0.getValueType(); 3512 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3513 3514 // Ignore bitcasts from unsupported types.. 3515 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3516 break; 3517 3518 // Fast handling of 'identity' bitcasts. 3519 if (VTBits == SrcBits) 3520 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3521 3522 bool IsLE = getDataLayout().isLittleEndian(); 3523 3524 // Bitcast 'large element' scalar/vector to 'small element' vector. 3525 if ((SrcBits % VTBits) == 0) { 3526 assert(VT.isVector() && "Expected bitcast to vector"); 3527 3528 unsigned Scale = SrcBits / VTBits; 3529 APInt SrcDemandedElts(NumElts / Scale, 0); 3530 for (unsigned i = 0; i != NumElts; ++i) 3531 if (DemandedElts[i]) 3532 SrcDemandedElts.setBit(i / Scale); 3533 3534 // Fast case - sign splat can be simply split across the small elements. 3535 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3536 if (Tmp == SrcBits) 3537 return VTBits; 3538 3539 // Slow case - determine how far the sign extends into each sub-element. 3540 Tmp2 = VTBits; 3541 for (unsigned i = 0; i != NumElts; ++i) 3542 if (DemandedElts[i]) { 3543 unsigned SubOffset = i % Scale; 3544 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3545 SubOffset = SubOffset * VTBits; 3546 if (Tmp <= SubOffset) 3547 return 1; 3548 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3549 } 3550 return Tmp2; 3551 } 3552 break; 3553 } 3554 3555 case ISD::SIGN_EXTEND: 3556 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3557 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3558 case ISD::SIGN_EXTEND_INREG: 3559 // Max of the input and what this extends. 3560 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3561 Tmp = VTBits-Tmp+1; 3562 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3563 return std::max(Tmp, Tmp2); 3564 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3565 SDValue Src = Op.getOperand(0); 3566 EVT SrcVT = Src.getValueType(); 3567 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3568 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3569 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3570 } 3571 3572 case ISD::SRA: 3573 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3574 // SRA X, C -> adds C sign bits. 3575 if (ConstantSDNode *C = 3576 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3577 APInt ShiftVal = C->getAPIntValue(); 3578 ShiftVal += Tmp; 3579 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 3580 } 3581 return Tmp; 3582 case ISD::SHL: 3583 if (ConstantSDNode *C = 3584 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3585 // shl destroys sign bits. 3586 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3587 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 3588 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 3589 return Tmp - C->getZExtValue(); 3590 } 3591 break; 3592 case ISD::AND: 3593 case ISD::OR: 3594 case ISD::XOR: // NOT is handled here. 3595 // Logical binary ops preserve the number of sign bits at the worst. 3596 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3597 if (Tmp != 1) { 3598 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3599 FirstAnswer = std::min(Tmp, Tmp2); 3600 // We computed what we know about the sign bits as our first 3601 // answer. Now proceed to the generic code that uses 3602 // computeKnownBits, and pick whichever answer is better. 3603 } 3604 break; 3605 3606 case ISD::SELECT: 3607 case ISD::VSELECT: 3608 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3609 if (Tmp == 1) return 1; // Early out. 3610 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3611 return std::min(Tmp, Tmp2); 3612 case ISD::SELECT_CC: 3613 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3614 if (Tmp == 1) return 1; // Early out. 3615 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3616 return std::min(Tmp, Tmp2); 3617 3618 case ISD::SMIN: 3619 case ISD::SMAX: { 3620 // If we have a clamp pattern, we know that the number of sign bits will be 3621 // the minimum of the clamp min/max range. 3622 bool IsMax = (Opcode == ISD::SMAX); 3623 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3624 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3625 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3626 CstHigh = 3627 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3628 if (CstLow && CstHigh) { 3629 if (!IsMax) 3630 std::swap(CstLow, CstHigh); 3631 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3632 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3633 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3634 return std::min(Tmp, Tmp2); 3635 } 3636 } 3637 3638 // Fallback - just get the minimum number of sign bits of the operands. 3639 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3640 if (Tmp == 1) 3641 return 1; // Early out. 3642 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3643 return std::min(Tmp, Tmp2); 3644 } 3645 case ISD::UMIN: 3646 case ISD::UMAX: 3647 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3648 if (Tmp == 1) 3649 return 1; // Early out. 3650 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3651 return std::min(Tmp, Tmp2); 3652 case ISD::SADDO: 3653 case ISD::UADDO: 3654 case ISD::SSUBO: 3655 case ISD::USUBO: 3656 case ISD::SMULO: 3657 case ISD::UMULO: 3658 if (Op.getResNo() != 1) 3659 break; 3660 // The boolean result conforms to getBooleanContents. Fall through. 3661 // If setcc returns 0/-1, all bits are sign bits. 3662 // We know that we have an integer-based boolean since these operations 3663 // are only available for integer. 3664 if (TLI->getBooleanContents(VT.isVector(), false) == 3665 TargetLowering::ZeroOrNegativeOneBooleanContent) 3666 return VTBits; 3667 break; 3668 case ISD::SETCC: 3669 case ISD::STRICT_FSETCC: 3670 case ISD::STRICT_FSETCCS: { 3671 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3672 // If setcc returns 0/-1, all bits are sign bits. 3673 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3674 TargetLowering::ZeroOrNegativeOneBooleanContent) 3675 return VTBits; 3676 break; 3677 } 3678 case ISD::ROTL: 3679 case ISD::ROTR: 3680 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3681 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3682 3683 // Handle rotate right by N like a rotate left by 32-N. 3684 if (Opcode == ISD::ROTR) 3685 RotAmt = (VTBits - RotAmt) % VTBits; 3686 3687 // If we aren't rotating out all of the known-in sign bits, return the 3688 // number that are left. This handles rotl(sext(x), 1) for example. 3689 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3690 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3691 } 3692 break; 3693 case ISD::ADD: 3694 case ISD::ADDC: 3695 // Add can have at most one carry bit. Thus we know that the output 3696 // is, at worst, one more bit than the inputs. 3697 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3698 if (Tmp == 1) return 1; // Early out. 3699 3700 // Special case decrementing a value (ADD X, -1): 3701 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3702 if (CRHS->isAllOnesValue()) { 3703 KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1); 3704 3705 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3706 // sign bits set. 3707 if ((Known.Zero | 1).isAllOnesValue()) 3708 return VTBits; 3709 3710 // If we are subtracting one from a positive number, there is no carry 3711 // out of the result. 3712 if (Known.isNonNegative()) 3713 return Tmp; 3714 } 3715 3716 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3717 if (Tmp2 == 1) return 1; 3718 return std::min(Tmp, Tmp2)-1; 3719 3720 case ISD::SUB: 3721 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3722 if (Tmp2 == 1) return 1; 3723 3724 // Handle NEG. 3725 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3726 if (CLHS->isNullValue()) { 3727 KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1); 3728 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3729 // sign bits set. 3730 if ((Known.Zero | 1).isAllOnesValue()) 3731 return VTBits; 3732 3733 // If the input is known to be positive (the sign bit is known clear), 3734 // the output of the NEG has the same number of sign bits as the input. 3735 if (Known.isNonNegative()) 3736 return Tmp2; 3737 3738 // Otherwise, we treat this like a SUB. 3739 } 3740 3741 // Sub can have at most one carry bit. Thus we know that the output 3742 // is, at worst, one more bit than the inputs. 3743 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3744 if (Tmp == 1) return 1; // Early out. 3745 return std::min(Tmp, Tmp2)-1; 3746 case ISD::MUL: { 3747 // The output of the Mul can be at most twice the valid bits in the inputs. 3748 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3749 if (SignBitsOp0 == 1) 3750 break; 3751 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3752 if (SignBitsOp1 == 1) 3753 break; 3754 unsigned OutValidBits = 3755 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3756 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3757 } 3758 case ISD::TRUNCATE: { 3759 // Check if the sign bits of source go down as far as the truncated value. 3760 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3761 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3762 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3763 return NumSrcSignBits - (NumSrcBits - VTBits); 3764 break; 3765 } 3766 case ISD::EXTRACT_ELEMENT: { 3767 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3768 const int BitWidth = Op.getValueSizeInBits(); 3769 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3770 3771 // Get reverse index (starting from 1), Op1 value indexes elements from 3772 // little end. Sign starts at big end. 3773 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3774 3775 // If the sign portion ends in our element the subtraction gives correct 3776 // result. Otherwise it gives either negative or > bitwidth result 3777 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3778 } 3779 case ISD::INSERT_VECTOR_ELT: { 3780 SDValue InVec = Op.getOperand(0); 3781 SDValue InVal = Op.getOperand(1); 3782 SDValue EltNo = Op.getOperand(2); 3783 3784 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3785 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3786 // If we know the element index, split the demand between the 3787 // source vector and the inserted element. 3788 unsigned EltIdx = CEltNo->getZExtValue(); 3789 3790 // If we demand the inserted element then get its sign bits. 3791 Tmp = std::numeric_limits<unsigned>::max(); 3792 if (DemandedElts[EltIdx]) { 3793 // TODO - handle implicit truncation of inserted elements. 3794 if (InVal.getScalarValueSizeInBits() != VTBits) 3795 break; 3796 Tmp = ComputeNumSignBits(InVal, Depth + 1); 3797 } 3798 3799 // If we demand the source vector then get its sign bits, and determine 3800 // the minimum. 3801 APInt VectorElts = DemandedElts; 3802 VectorElts.clearBit(EltIdx); 3803 if (!!VectorElts) { 3804 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); 3805 Tmp = std::min(Tmp, Tmp2); 3806 } 3807 } else { 3808 // Unknown element index, so ignore DemandedElts and demand them all. 3809 Tmp = ComputeNumSignBits(InVec, Depth + 1); 3810 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3811 Tmp = std::min(Tmp, Tmp2); 3812 } 3813 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3814 return Tmp; 3815 } 3816 case ISD::EXTRACT_VECTOR_ELT: { 3817 SDValue InVec = Op.getOperand(0); 3818 SDValue EltNo = Op.getOperand(1); 3819 EVT VecVT = InVec.getValueType(); 3820 const unsigned BitWidth = Op.getValueSizeInBits(); 3821 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3822 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3823 3824 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3825 // anything about sign bits. But if the sizes match we can derive knowledge 3826 // about sign bits from the vector operand. 3827 if (BitWidth != EltBitWidth) 3828 break; 3829 3830 // If we know the element index, just demand that vector element, else for 3831 // an unknown element index, ignore DemandedElts and demand them all. 3832 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3833 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3834 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3835 DemandedSrcElts = 3836 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3837 3838 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3839 } 3840 case ISD::EXTRACT_SUBVECTOR: { 3841 // If we know the element index, just demand that subvector elements, 3842 // otherwise demand them all. 3843 SDValue Src = Op.getOperand(0); 3844 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3845 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3846 APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts); 3847 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3848 // Offset the demanded elts by the subvector index. 3849 uint64_t Idx = SubIdx->getZExtValue(); 3850 DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3851 } 3852 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3853 } 3854 case ISD::CONCAT_VECTORS: { 3855 // Determine the minimum number of sign bits across all demanded 3856 // elts of the input vectors. Early out if the result is already 1. 3857 Tmp = std::numeric_limits<unsigned>::max(); 3858 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3859 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3860 unsigned NumSubVectors = Op.getNumOperands(); 3861 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3862 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3863 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3864 if (!DemandedSub) 3865 continue; 3866 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3867 Tmp = std::min(Tmp, Tmp2); 3868 } 3869 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3870 return Tmp; 3871 } 3872 case ISD::INSERT_SUBVECTOR: { 3873 // If we know the element index, demand any elements from the subvector and 3874 // the remainder from the src its inserted into, otherwise demand them all. 3875 SDValue Src = Op.getOperand(0); 3876 SDValue Sub = Op.getOperand(1); 3877 auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3878 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3879 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 3880 Tmp = std::numeric_limits<unsigned>::max(); 3881 uint64_t Idx = SubIdx->getZExtValue(); 3882 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3883 if (!!DemandedSubElts) { 3884 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3885 if (Tmp == 1) return 1; // early-out 3886 } 3887 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 3888 APInt DemandedSrcElts = DemandedElts & ~SubMask; 3889 if (!!DemandedSrcElts) { 3890 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3891 Tmp = std::min(Tmp, Tmp2); 3892 } 3893 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3894 return Tmp; 3895 } 3896 3897 // Not able to determine the index so just assume worst case. 3898 Tmp = ComputeNumSignBits(Sub, Depth + 1); 3899 if (Tmp == 1) return 1; // early-out 3900 Tmp2 = ComputeNumSignBits(Src, Depth + 1); 3901 Tmp = std::min(Tmp, Tmp2); 3902 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3903 return Tmp; 3904 } 3905 } 3906 3907 // If we are looking at the loaded value of the SDNode. 3908 if (Op.getResNo() == 0) { 3909 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3910 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3911 unsigned ExtType = LD->getExtensionType(); 3912 switch (ExtType) { 3913 default: break; 3914 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 3915 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3916 return VTBits - Tmp + 1; 3917 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 3918 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3919 return VTBits - Tmp; 3920 case ISD::NON_EXTLOAD: 3921 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 3922 // We only need to handle vectors - computeKnownBits should handle 3923 // scalar cases. 3924 Type *CstTy = Cst->getType(); 3925 if (CstTy->isVectorTy() && 3926 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 3927 Tmp = VTBits; 3928 for (unsigned i = 0; i != NumElts; ++i) { 3929 if (!DemandedElts[i]) 3930 continue; 3931 if (Constant *Elt = Cst->getAggregateElement(i)) { 3932 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3933 const APInt &Value = CInt->getValue(); 3934 Tmp = std::min(Tmp, Value.getNumSignBits()); 3935 continue; 3936 } 3937 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3938 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3939 Tmp = std::min(Tmp, Value.getNumSignBits()); 3940 continue; 3941 } 3942 } 3943 // Unknown type. Conservatively assume no bits match sign bit. 3944 return 1; 3945 } 3946 return Tmp; 3947 } 3948 } 3949 break; 3950 } 3951 } 3952 } 3953 3954 // Allow the target to implement this method for its nodes. 3955 if (Opcode >= ISD::BUILTIN_OP_END || 3956 Opcode == ISD::INTRINSIC_WO_CHAIN || 3957 Opcode == ISD::INTRINSIC_W_CHAIN || 3958 Opcode == ISD::INTRINSIC_VOID) { 3959 unsigned NumBits = 3960 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 3961 if (NumBits > 1) 3962 FirstAnswer = std::max(FirstAnswer, NumBits); 3963 } 3964 3965 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3966 // use this information. 3967 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 3968 3969 APInt Mask; 3970 if (Known.isNonNegative()) { // sign bit is 0 3971 Mask = Known.Zero; 3972 } else if (Known.isNegative()) { // sign bit is 1; 3973 Mask = Known.One; 3974 } else { 3975 // Nothing known. 3976 return FirstAnswer; 3977 } 3978 3979 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3980 // the number of identical bits in the top of the input value. 3981 Mask = ~Mask; 3982 Mask <<= Mask.getBitWidth()-VTBits; 3983 // Return # leading zeros. We use 'min' here in case Val was zero before 3984 // shifting. We don't want to return '64' as for an i32 "0". 3985 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3986 } 3987 3988 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3989 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3990 !isa<ConstantSDNode>(Op.getOperand(1))) 3991 return false; 3992 3993 if (Op.getOpcode() == ISD::OR && 3994 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 3995 return false; 3996 3997 return true; 3998 } 3999 4000 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4001 // If we're told that NaNs won't happen, assume they won't. 4002 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4003 return true; 4004 4005 if (Depth >= MaxRecursionDepth) 4006 return false; // Limit search depth. 4007 4008 // TODO: Handle vectors. 4009 // If the value is a constant, we can obviously see if it is a NaN or not. 4010 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4011 return !C->getValueAPF().isNaN() || 4012 (SNaN && !C->getValueAPF().isSignaling()); 4013 } 4014 4015 unsigned Opcode = Op.getOpcode(); 4016 switch (Opcode) { 4017 case ISD::FADD: 4018 case ISD::FSUB: 4019 case ISD::FMUL: 4020 case ISD::FDIV: 4021 case ISD::FREM: 4022 case ISD::FSIN: 4023 case ISD::FCOS: { 4024 if (SNaN) 4025 return true; 4026 // TODO: Need isKnownNeverInfinity 4027 return false; 4028 } 4029 case ISD::FCANONICALIZE: 4030 case ISD::FEXP: 4031 case ISD::FEXP2: 4032 case ISD::FTRUNC: 4033 case ISD::FFLOOR: 4034 case ISD::FCEIL: 4035 case ISD::FROUND: 4036 case ISD::FRINT: 4037 case ISD::FNEARBYINT: { 4038 if (SNaN) 4039 return true; 4040 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4041 } 4042 case ISD::FABS: 4043 case ISD::FNEG: 4044 case ISD::FCOPYSIGN: { 4045 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4046 } 4047 case ISD::SELECT: 4048 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4049 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4050 case ISD::FP_EXTEND: 4051 case ISD::FP_ROUND: { 4052 if (SNaN) 4053 return true; 4054 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4055 } 4056 case ISD::SINT_TO_FP: 4057 case ISD::UINT_TO_FP: 4058 return true; 4059 case ISD::FMA: 4060 case ISD::FMAD: { 4061 if (SNaN) 4062 return true; 4063 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4064 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4065 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4066 } 4067 case ISD::FSQRT: // Need is known positive 4068 case ISD::FLOG: 4069 case ISD::FLOG2: 4070 case ISD::FLOG10: 4071 case ISD::FPOWI: 4072 case ISD::FPOW: { 4073 if (SNaN) 4074 return true; 4075 // TODO: Refine on operand 4076 return false; 4077 } 4078 case ISD::FMINNUM: 4079 case ISD::FMAXNUM: { 4080 // Only one needs to be known not-nan, since it will be returned if the 4081 // other ends up being one. 4082 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4083 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4084 } 4085 case ISD::FMINNUM_IEEE: 4086 case ISD::FMAXNUM_IEEE: { 4087 if (SNaN) 4088 return true; 4089 // This can return a NaN if either operand is an sNaN, or if both operands 4090 // are NaN. 4091 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4092 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4093 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4094 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4095 } 4096 case ISD::FMINIMUM: 4097 case ISD::FMAXIMUM: { 4098 // TODO: Does this quiet or return the origina NaN as-is? 4099 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4100 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4101 } 4102 case ISD::EXTRACT_VECTOR_ELT: { 4103 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4104 } 4105 default: 4106 if (Opcode >= ISD::BUILTIN_OP_END || 4107 Opcode == ISD::INTRINSIC_WO_CHAIN || 4108 Opcode == ISD::INTRINSIC_W_CHAIN || 4109 Opcode == ISD::INTRINSIC_VOID) { 4110 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4111 } 4112 4113 return false; 4114 } 4115 } 4116 4117 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4118 assert(Op.getValueType().isFloatingPoint() && 4119 "Floating point type expected"); 4120 4121 // If the value is a constant, we can obviously see if it is a zero or not. 4122 // TODO: Add BuildVector support. 4123 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4124 return !C->isZero(); 4125 return false; 4126 } 4127 4128 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4129 assert(!Op.getValueType().isFloatingPoint() && 4130 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4131 4132 // If the value is a constant, we can obviously see if it is a zero or not. 4133 if (ISD::matchUnaryPredicate( 4134 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4135 return true; 4136 4137 // TODO: Recognize more cases here. 4138 switch (Op.getOpcode()) { 4139 default: break; 4140 case ISD::OR: 4141 if (isKnownNeverZero(Op.getOperand(1)) || 4142 isKnownNeverZero(Op.getOperand(0))) 4143 return true; 4144 break; 4145 } 4146 4147 return false; 4148 } 4149 4150 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4151 // Check the obvious case. 4152 if (A == B) return true; 4153 4154 // For for negative and positive zero. 4155 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4156 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4157 if (CA->isZero() && CB->isZero()) return true; 4158 4159 // Otherwise they may not be equal. 4160 return false; 4161 } 4162 4163 // FIXME: unify with llvm::haveNoCommonBitsSet. 4164 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4165 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4166 assert(A.getValueType() == B.getValueType() && 4167 "Values must have the same type"); 4168 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4169 } 4170 4171 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4172 ArrayRef<SDValue> Ops, 4173 SelectionDAG &DAG) { 4174 int NumOps = Ops.size(); 4175 assert(NumOps != 0 && "Can't build an empty vector!"); 4176 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4177 "Incorrect element count in BUILD_VECTOR!"); 4178 4179 // BUILD_VECTOR of UNDEFs is UNDEF. 4180 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4181 return DAG.getUNDEF(VT); 4182 4183 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4184 SDValue IdentitySrc; 4185 bool IsIdentity = true; 4186 for (int i = 0; i != NumOps; ++i) { 4187 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4188 Ops[i].getOperand(0).getValueType() != VT || 4189 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4190 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4191 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4192 IsIdentity = false; 4193 break; 4194 } 4195 IdentitySrc = Ops[i].getOperand(0); 4196 } 4197 if (IsIdentity) 4198 return IdentitySrc; 4199 4200 return SDValue(); 4201 } 4202 4203 /// Try to simplify vector concatenation to an input value, undef, or build 4204 /// vector. 4205 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4206 ArrayRef<SDValue> Ops, 4207 SelectionDAG &DAG) { 4208 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4209 assert(llvm::all_of(Ops, 4210 [Ops](SDValue Op) { 4211 return Ops[0].getValueType() == Op.getValueType(); 4212 }) && 4213 "Concatenation of vectors with inconsistent value types!"); 4214 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 4215 VT.getVectorNumElements() && 4216 "Incorrect element count in vector concatenation!"); 4217 4218 if (Ops.size() == 1) 4219 return Ops[0]; 4220 4221 // Concat of UNDEFs is UNDEF. 4222 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4223 return DAG.getUNDEF(VT); 4224 4225 // Scan the operands and look for extract operations from a single source 4226 // that correspond to insertion at the same location via this concatenation: 4227 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4228 SDValue IdentitySrc; 4229 bool IsIdentity = true; 4230 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4231 SDValue Op = Ops[i]; 4232 unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements(); 4233 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4234 Op.getOperand(0).getValueType() != VT || 4235 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4236 !isa<ConstantSDNode>(Op.getOperand(1)) || 4237 Op.getConstantOperandVal(1) != IdentityIndex) { 4238 IsIdentity = false; 4239 break; 4240 } 4241 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4242 "Unexpected identity source vector for concat of extracts"); 4243 IdentitySrc = Op.getOperand(0); 4244 } 4245 if (IsIdentity) { 4246 assert(IdentitySrc && "Failed to set source vector of extracts"); 4247 return IdentitySrc; 4248 } 4249 4250 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4251 // simplified to one big BUILD_VECTOR. 4252 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4253 EVT SVT = VT.getScalarType(); 4254 SmallVector<SDValue, 16> Elts; 4255 for (SDValue Op : Ops) { 4256 EVT OpVT = Op.getValueType(); 4257 if (Op.isUndef()) 4258 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4259 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4260 Elts.append(Op->op_begin(), Op->op_end()); 4261 else 4262 return SDValue(); 4263 } 4264 4265 // BUILD_VECTOR requires all inputs to be of the same type, find the 4266 // maximum type and extend them all. 4267 for (SDValue Op : Elts) 4268 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4269 4270 if (SVT.bitsGT(VT.getScalarType())) 4271 for (SDValue &Op : Elts) 4272 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4273 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4274 : DAG.getSExtOrTrunc(Op, DL, SVT); 4275 4276 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4277 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4278 return V; 4279 } 4280 4281 /// Gets or creates the specified node. 4282 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4283 FoldingSetNodeID ID; 4284 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4285 void *IP = nullptr; 4286 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4287 return SDValue(E, 0); 4288 4289 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4290 getVTList(VT)); 4291 CSEMap.InsertNode(N, IP); 4292 4293 InsertNode(N); 4294 SDValue V = SDValue(N, 0); 4295 NewSDValueDbgMsg(V, "Creating new node: ", this); 4296 return V; 4297 } 4298 4299 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4300 SDValue Operand, const SDNodeFlags Flags) { 4301 // Constant fold unary operations with an integer constant operand. Even 4302 // opaque constant will be folded, because the folding of unary operations 4303 // doesn't create new constants with different values. Nevertheless, the 4304 // opaque flag is preserved during folding to prevent future folding with 4305 // other constants. 4306 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4307 const APInt &Val = C->getAPIntValue(); 4308 switch (Opcode) { 4309 default: break; 4310 case ISD::SIGN_EXTEND: 4311 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4312 C->isTargetOpcode(), C->isOpaque()); 4313 case ISD::TRUNCATE: 4314 if (C->isOpaque()) 4315 break; 4316 LLVM_FALLTHROUGH; 4317 case ISD::ANY_EXTEND: 4318 case ISD::ZERO_EXTEND: 4319 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4320 C->isTargetOpcode(), C->isOpaque()); 4321 case ISD::UINT_TO_FP: 4322 case ISD::SINT_TO_FP: { 4323 APFloat apf(EVTToAPFloatSemantics(VT), 4324 APInt::getNullValue(VT.getSizeInBits())); 4325 (void)apf.convertFromAPInt(Val, 4326 Opcode==ISD::SINT_TO_FP, 4327 APFloat::rmNearestTiesToEven); 4328 return getConstantFP(apf, DL, VT); 4329 } 4330 case ISD::BITCAST: 4331 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4332 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4333 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4334 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4335 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4336 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4337 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4338 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4339 break; 4340 case ISD::ABS: 4341 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4342 C->isOpaque()); 4343 case ISD::BITREVERSE: 4344 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4345 C->isOpaque()); 4346 case ISD::BSWAP: 4347 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4348 C->isOpaque()); 4349 case ISD::CTPOP: 4350 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4351 C->isOpaque()); 4352 case ISD::CTLZ: 4353 case ISD::CTLZ_ZERO_UNDEF: 4354 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4355 C->isOpaque()); 4356 case ISD::CTTZ: 4357 case ISD::CTTZ_ZERO_UNDEF: 4358 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4359 C->isOpaque()); 4360 case ISD::FP16_TO_FP: { 4361 bool Ignored; 4362 APFloat FPV(APFloat::IEEEhalf(), 4363 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4364 4365 // This can return overflow, underflow, or inexact; we don't care. 4366 // FIXME need to be more flexible about rounding mode. 4367 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4368 APFloat::rmNearestTiesToEven, &Ignored); 4369 return getConstantFP(FPV, DL, VT); 4370 } 4371 } 4372 } 4373 4374 // Constant fold unary operations with a floating point constant operand. 4375 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4376 APFloat V = C->getValueAPF(); // make copy 4377 switch (Opcode) { 4378 case ISD::FNEG: 4379 V.changeSign(); 4380 return getConstantFP(V, DL, VT); 4381 case ISD::FABS: 4382 V.clearSign(); 4383 return getConstantFP(V, DL, VT); 4384 case ISD::FCEIL: { 4385 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4386 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4387 return getConstantFP(V, DL, VT); 4388 break; 4389 } 4390 case ISD::FTRUNC: { 4391 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4392 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4393 return getConstantFP(V, DL, VT); 4394 break; 4395 } 4396 case ISD::FFLOOR: { 4397 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4398 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4399 return getConstantFP(V, DL, VT); 4400 break; 4401 } 4402 case ISD::FP_EXTEND: { 4403 bool ignored; 4404 // This can return overflow, underflow, or inexact; we don't care. 4405 // FIXME need to be more flexible about rounding mode. 4406 (void)V.convert(EVTToAPFloatSemantics(VT), 4407 APFloat::rmNearestTiesToEven, &ignored); 4408 return getConstantFP(V, DL, VT); 4409 } 4410 case ISD::FP_TO_SINT: 4411 case ISD::FP_TO_UINT: { 4412 bool ignored; 4413 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4414 // FIXME need to be more flexible about rounding mode. 4415 APFloat::opStatus s = 4416 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4417 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4418 break; 4419 return getConstant(IntVal, DL, VT); 4420 } 4421 case ISD::BITCAST: 4422 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4423 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4424 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4425 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4426 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4427 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4428 break; 4429 case ISD::FP_TO_FP16: { 4430 bool Ignored; 4431 // This can return overflow, underflow, or inexact; we don't care. 4432 // FIXME need to be more flexible about rounding mode. 4433 (void)V.convert(APFloat::IEEEhalf(), 4434 APFloat::rmNearestTiesToEven, &Ignored); 4435 return getConstant(V.bitcastToAPInt(), DL, VT); 4436 } 4437 } 4438 } 4439 4440 // Constant fold unary operations with a vector integer or float operand. 4441 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4442 if (BV->isConstant()) { 4443 switch (Opcode) { 4444 default: 4445 // FIXME: Entirely reasonable to perform folding of other unary 4446 // operations here as the need arises. 4447 break; 4448 case ISD::FNEG: 4449 case ISD::FABS: 4450 case ISD::FCEIL: 4451 case ISD::FTRUNC: 4452 case ISD::FFLOOR: 4453 case ISD::FP_EXTEND: 4454 case ISD::FP_TO_SINT: 4455 case ISD::FP_TO_UINT: 4456 case ISD::TRUNCATE: 4457 case ISD::ANY_EXTEND: 4458 case ISD::ZERO_EXTEND: 4459 case ISD::SIGN_EXTEND: 4460 case ISD::UINT_TO_FP: 4461 case ISD::SINT_TO_FP: 4462 case ISD::ABS: 4463 case ISD::BITREVERSE: 4464 case ISD::BSWAP: 4465 case ISD::CTLZ: 4466 case ISD::CTLZ_ZERO_UNDEF: 4467 case ISD::CTTZ: 4468 case ISD::CTTZ_ZERO_UNDEF: 4469 case ISD::CTPOP: { 4470 SDValue Ops = { Operand }; 4471 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4472 return Fold; 4473 } 4474 } 4475 } 4476 } 4477 4478 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4479 switch (Opcode) { 4480 case ISD::TokenFactor: 4481 case ISD::MERGE_VALUES: 4482 case ISD::CONCAT_VECTORS: 4483 return Operand; // Factor, merge or concat of one node? No need. 4484 case ISD::BUILD_VECTOR: { 4485 // Attempt to simplify BUILD_VECTOR. 4486 SDValue Ops[] = {Operand}; 4487 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4488 return V; 4489 break; 4490 } 4491 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4492 case ISD::FP_EXTEND: 4493 assert(VT.isFloatingPoint() && 4494 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4495 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4496 assert((!VT.isVector() || 4497 VT.getVectorNumElements() == 4498 Operand.getValueType().getVectorNumElements()) && 4499 "Vector element count mismatch!"); 4500 assert(Operand.getValueType().bitsLT(VT) && 4501 "Invalid fpext node, dst < src!"); 4502 if (Operand.isUndef()) 4503 return getUNDEF(VT); 4504 break; 4505 case ISD::FP_TO_SINT: 4506 case ISD::FP_TO_UINT: 4507 if (Operand.isUndef()) 4508 return getUNDEF(VT); 4509 break; 4510 case ISD::SINT_TO_FP: 4511 case ISD::UINT_TO_FP: 4512 // [us]itofp(undef) = 0, because the result value is bounded. 4513 if (Operand.isUndef()) 4514 return getConstantFP(0.0, DL, VT); 4515 break; 4516 case ISD::SIGN_EXTEND: 4517 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4518 "Invalid SIGN_EXTEND!"); 4519 assert(VT.isVector() == Operand.getValueType().isVector() && 4520 "SIGN_EXTEND result type type should be vector iff the operand " 4521 "type is vector!"); 4522 if (Operand.getValueType() == VT) return Operand; // noop extension 4523 assert((!VT.isVector() || 4524 VT.getVectorNumElements() == 4525 Operand.getValueType().getVectorNumElements()) && 4526 "Vector element count mismatch!"); 4527 assert(Operand.getValueType().bitsLT(VT) && 4528 "Invalid sext node, dst < src!"); 4529 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4530 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4531 else if (OpOpcode == ISD::UNDEF) 4532 // sext(undef) = 0, because the top bits will all be the same. 4533 return getConstant(0, DL, VT); 4534 break; 4535 case ISD::ZERO_EXTEND: 4536 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4537 "Invalid ZERO_EXTEND!"); 4538 assert(VT.isVector() == Operand.getValueType().isVector() && 4539 "ZERO_EXTEND result type type should be vector iff the operand " 4540 "type is vector!"); 4541 if (Operand.getValueType() == VT) return Operand; // noop extension 4542 assert((!VT.isVector() || 4543 VT.getVectorNumElements() == 4544 Operand.getValueType().getVectorNumElements()) && 4545 "Vector element count mismatch!"); 4546 assert(Operand.getValueType().bitsLT(VT) && 4547 "Invalid zext node, dst < src!"); 4548 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4549 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4550 else if (OpOpcode == ISD::UNDEF) 4551 // zext(undef) = 0, because the top bits will be zero. 4552 return getConstant(0, DL, VT); 4553 break; 4554 case ISD::ANY_EXTEND: 4555 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4556 "Invalid ANY_EXTEND!"); 4557 assert(VT.isVector() == Operand.getValueType().isVector() && 4558 "ANY_EXTEND result type type should be vector iff the operand " 4559 "type is vector!"); 4560 if (Operand.getValueType() == VT) return Operand; // noop extension 4561 assert((!VT.isVector() || 4562 VT.getVectorNumElements() == 4563 Operand.getValueType().getVectorNumElements()) && 4564 "Vector element count mismatch!"); 4565 assert(Operand.getValueType().bitsLT(VT) && 4566 "Invalid anyext node, dst < src!"); 4567 4568 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4569 OpOpcode == ISD::ANY_EXTEND) 4570 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4571 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4572 else if (OpOpcode == ISD::UNDEF) 4573 return getUNDEF(VT); 4574 4575 // (ext (trunc x)) -> x 4576 if (OpOpcode == ISD::TRUNCATE) { 4577 SDValue OpOp = Operand.getOperand(0); 4578 if (OpOp.getValueType() == VT) { 4579 transferDbgValues(Operand, OpOp); 4580 return OpOp; 4581 } 4582 } 4583 break; 4584 case ISD::TRUNCATE: 4585 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4586 "Invalid TRUNCATE!"); 4587 assert(VT.isVector() == Operand.getValueType().isVector() && 4588 "TRUNCATE result type type should be vector iff the operand " 4589 "type is vector!"); 4590 if (Operand.getValueType() == VT) return Operand; // noop truncate 4591 assert((!VT.isVector() || 4592 VT.getVectorNumElements() == 4593 Operand.getValueType().getVectorNumElements()) && 4594 "Vector element count mismatch!"); 4595 assert(Operand.getValueType().bitsGT(VT) && 4596 "Invalid truncate node, src < dst!"); 4597 if (OpOpcode == ISD::TRUNCATE) 4598 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4599 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4600 OpOpcode == ISD::ANY_EXTEND) { 4601 // If the source is smaller than the dest, we still need an extend. 4602 if (Operand.getOperand(0).getValueType().getScalarType() 4603 .bitsLT(VT.getScalarType())) 4604 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4605 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4606 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4607 return Operand.getOperand(0); 4608 } 4609 if (OpOpcode == ISD::UNDEF) 4610 return getUNDEF(VT); 4611 break; 4612 case ISD::ANY_EXTEND_VECTOR_INREG: 4613 case ISD::ZERO_EXTEND_VECTOR_INREG: 4614 case ISD::SIGN_EXTEND_VECTOR_INREG: 4615 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4616 assert(Operand.getValueType().bitsLE(VT) && 4617 "The input must be the same size or smaller than the result."); 4618 assert(VT.getVectorNumElements() < 4619 Operand.getValueType().getVectorNumElements() && 4620 "The destination vector type must have fewer lanes than the input."); 4621 break; 4622 case ISD::ABS: 4623 assert(VT.isInteger() && VT == Operand.getValueType() && 4624 "Invalid ABS!"); 4625 if (OpOpcode == ISD::UNDEF) 4626 return getUNDEF(VT); 4627 break; 4628 case ISD::BSWAP: 4629 assert(VT.isInteger() && VT == Operand.getValueType() && 4630 "Invalid BSWAP!"); 4631 assert((VT.getScalarSizeInBits() % 16 == 0) && 4632 "BSWAP types must be a multiple of 16 bits!"); 4633 if (OpOpcode == ISD::UNDEF) 4634 return getUNDEF(VT); 4635 break; 4636 case ISD::BITREVERSE: 4637 assert(VT.isInteger() && VT == Operand.getValueType() && 4638 "Invalid BITREVERSE!"); 4639 if (OpOpcode == ISD::UNDEF) 4640 return getUNDEF(VT); 4641 break; 4642 case ISD::BITCAST: 4643 // Basic sanity checking. 4644 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4645 "Cannot BITCAST between types of different sizes!"); 4646 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4647 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4648 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4649 if (OpOpcode == ISD::UNDEF) 4650 return getUNDEF(VT); 4651 break; 4652 case ISD::SCALAR_TO_VECTOR: 4653 assert(VT.isVector() && !Operand.getValueType().isVector() && 4654 (VT.getVectorElementType() == Operand.getValueType() || 4655 (VT.getVectorElementType().isInteger() && 4656 Operand.getValueType().isInteger() && 4657 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4658 "Illegal SCALAR_TO_VECTOR node!"); 4659 if (OpOpcode == ISD::UNDEF) 4660 return getUNDEF(VT); 4661 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4662 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4663 isa<ConstantSDNode>(Operand.getOperand(1)) && 4664 Operand.getConstantOperandVal(1) == 0 && 4665 Operand.getOperand(0).getValueType() == VT) 4666 return Operand.getOperand(0); 4667 break; 4668 case ISD::FNEG: 4669 // Negation of an unknown bag of bits is still completely undefined. 4670 if (OpOpcode == ISD::UNDEF) 4671 return getUNDEF(VT); 4672 4673 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 4674 if ((getTarget().Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) && 4675 OpOpcode == ISD::FSUB) 4676 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), 4677 Operand.getOperand(0), Flags); 4678 if (OpOpcode == ISD::FNEG) // --X -> X 4679 return Operand.getOperand(0); 4680 break; 4681 case ISD::FABS: 4682 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4683 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4684 break; 4685 } 4686 4687 SDNode *N; 4688 SDVTList VTs = getVTList(VT); 4689 SDValue Ops[] = {Operand}; 4690 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4691 FoldingSetNodeID ID; 4692 AddNodeIDNode(ID, Opcode, VTs, Ops); 4693 void *IP = nullptr; 4694 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4695 E->intersectFlagsWith(Flags); 4696 return SDValue(E, 0); 4697 } 4698 4699 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4700 N->setFlags(Flags); 4701 createOperands(N, Ops); 4702 CSEMap.InsertNode(N, IP); 4703 } else { 4704 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4705 createOperands(N, Ops); 4706 } 4707 4708 InsertNode(N); 4709 SDValue V = SDValue(N, 0); 4710 NewSDValueDbgMsg(V, "Creating new node: ", this); 4711 return V; 4712 } 4713 4714 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 4715 const APInt &C2) { 4716 switch (Opcode) { 4717 case ISD::ADD: return std::make_pair(C1 + C2, true); 4718 case ISD::SUB: return std::make_pair(C1 - C2, true); 4719 case ISD::MUL: return std::make_pair(C1 * C2, true); 4720 case ISD::AND: return std::make_pair(C1 & C2, true); 4721 case ISD::OR: return std::make_pair(C1 | C2, true); 4722 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 4723 case ISD::SHL: return std::make_pair(C1 << C2, true); 4724 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 4725 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 4726 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 4727 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 4728 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 4729 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 4730 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 4731 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 4732 case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true); 4733 case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true); 4734 case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true); 4735 case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true); 4736 case ISD::UDIV: 4737 if (!C2.getBoolValue()) 4738 break; 4739 return std::make_pair(C1.udiv(C2), true); 4740 case ISD::UREM: 4741 if (!C2.getBoolValue()) 4742 break; 4743 return std::make_pair(C1.urem(C2), true); 4744 case ISD::SDIV: 4745 if (!C2.getBoolValue()) 4746 break; 4747 return std::make_pair(C1.sdiv(C2), true); 4748 case ISD::SREM: 4749 if (!C2.getBoolValue()) 4750 break; 4751 return std::make_pair(C1.srem(C2), true); 4752 } 4753 return std::make_pair(APInt(1, 0), false); 4754 } 4755 4756 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4757 EVT VT, const ConstantSDNode *C1, 4758 const ConstantSDNode *C2) { 4759 if (C1->isOpaque() || C2->isOpaque()) 4760 return SDValue(); 4761 4762 std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(), 4763 C2->getAPIntValue()); 4764 if (!Folded.second) 4765 return SDValue(); 4766 return getConstant(Folded.first, DL, VT); 4767 } 4768 4769 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4770 const GlobalAddressSDNode *GA, 4771 const SDNode *N2) { 4772 if (GA->getOpcode() != ISD::GlobalAddress) 4773 return SDValue(); 4774 if (!TLI->isOffsetFoldingLegal(GA)) 4775 return SDValue(); 4776 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4777 if (!C2) 4778 return SDValue(); 4779 int64_t Offset = C2->getSExtValue(); 4780 switch (Opcode) { 4781 case ISD::ADD: break; 4782 case ISD::SUB: Offset = -uint64_t(Offset); break; 4783 default: return SDValue(); 4784 } 4785 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4786 GA->getOffset() + uint64_t(Offset)); 4787 } 4788 4789 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4790 switch (Opcode) { 4791 case ISD::SDIV: 4792 case ISD::UDIV: 4793 case ISD::SREM: 4794 case ISD::UREM: { 4795 // If a divisor is zero/undef or any element of a divisor vector is 4796 // zero/undef, the whole op is undef. 4797 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4798 SDValue Divisor = Ops[1]; 4799 if (Divisor.isUndef() || isNullConstant(Divisor)) 4800 return true; 4801 4802 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4803 llvm::any_of(Divisor->op_values(), 4804 [](SDValue V) { return V.isUndef() || 4805 isNullConstant(V); }); 4806 // TODO: Handle signed overflow. 4807 } 4808 // TODO: Handle oversized shifts. 4809 default: 4810 return false; 4811 } 4812 } 4813 4814 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4815 EVT VT, SDNode *N1, SDNode *N2) { 4816 // If the opcode is a target-specific ISD node, there's nothing we can 4817 // do here and the operand rules may not line up with the below, so 4818 // bail early. 4819 if (Opcode >= ISD::BUILTIN_OP_END) 4820 return SDValue(); 4821 4822 if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)})) 4823 return getUNDEF(VT); 4824 4825 // Handle the case of two scalars. 4826 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4827 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4828 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2); 4829 assert((!Folded || !VT.isVector()) && 4830 "Can't fold vectors ops with scalar operands"); 4831 return Folded; 4832 } 4833 } 4834 4835 // fold (add Sym, c) -> Sym+c 4836 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4837 return FoldSymbolOffset(Opcode, VT, GA, N2); 4838 if (TLI->isCommutativeBinOp(Opcode)) 4839 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4840 return FoldSymbolOffset(Opcode, VT, GA, N1); 4841 4842 // For vectors, extract each constant element and fold them individually. 4843 // Either input may be an undef value. 4844 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4845 if (!BV1 && !N1->isUndef()) 4846 return SDValue(); 4847 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4848 if (!BV2 && !N2->isUndef()) 4849 return SDValue(); 4850 // If both operands are undef, that's handled the same way as scalars. 4851 if (!BV1 && !BV2) 4852 return SDValue(); 4853 4854 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4855 "Vector binop with different number of elements in operands?"); 4856 4857 EVT SVT = VT.getScalarType(); 4858 EVT LegalSVT = SVT; 4859 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4860 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4861 if (LegalSVT.bitsLT(SVT)) 4862 return SDValue(); 4863 } 4864 SmallVector<SDValue, 4> Outputs; 4865 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4866 for (unsigned I = 0; I != NumOps; ++I) { 4867 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4868 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4869 if (SVT.isInteger()) { 4870 if (V1->getValueType(0).bitsGT(SVT)) 4871 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4872 if (V2->getValueType(0).bitsGT(SVT)) 4873 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4874 } 4875 4876 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4877 return SDValue(); 4878 4879 // Fold one vector element. 4880 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4881 if (LegalSVT != SVT) 4882 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4883 4884 // Scalar folding only succeeded if the result is a constant or UNDEF. 4885 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4886 ScalarResult.getOpcode() != ISD::ConstantFP) 4887 return SDValue(); 4888 Outputs.push_back(ScalarResult); 4889 } 4890 4891 assert(VT.getVectorNumElements() == Outputs.size() && 4892 "Vector size mismatch!"); 4893 4894 // We may have a vector type but a scalar result. Create a splat. 4895 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4896 4897 // Build a big vector out of the scalar elements we generated. 4898 return getBuildVector(VT, SDLoc(), Outputs); 4899 } 4900 4901 // TODO: Merge with FoldConstantArithmetic 4902 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4903 const SDLoc &DL, EVT VT, 4904 ArrayRef<SDValue> Ops, 4905 const SDNodeFlags Flags) { 4906 // If the opcode is a target-specific ISD node, there's nothing we can 4907 // do here and the operand rules may not line up with the below, so 4908 // bail early. 4909 if (Opcode >= ISD::BUILTIN_OP_END) 4910 return SDValue(); 4911 4912 if (isUndef(Opcode, Ops)) 4913 return getUNDEF(VT); 4914 4915 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4916 if (!VT.isVector()) 4917 return SDValue(); 4918 4919 unsigned NumElts = VT.getVectorNumElements(); 4920 4921 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4922 return !Op.getValueType().isVector() || 4923 Op.getValueType().getVectorNumElements() == NumElts; 4924 }; 4925 4926 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4927 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4928 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 4929 (BV && BV->isConstant()); 4930 }; 4931 4932 // All operands must be vector types with the same number of elements as 4933 // the result type and must be either UNDEF or a build vector of constant 4934 // or UNDEF scalars. 4935 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 4936 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 4937 return SDValue(); 4938 4939 // If we are comparing vectors, then the result needs to be a i1 boolean 4940 // that is then sign-extended back to the legal result type. 4941 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 4942 4943 // Find legal integer scalar type for constant promotion and 4944 // ensure that its scalar size is at least as large as source. 4945 EVT LegalSVT = VT.getScalarType(); 4946 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4947 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4948 if (LegalSVT.bitsLT(VT.getScalarType())) 4949 return SDValue(); 4950 } 4951 4952 // Constant fold each scalar lane separately. 4953 SmallVector<SDValue, 4> ScalarResults; 4954 for (unsigned i = 0; i != NumElts; i++) { 4955 SmallVector<SDValue, 4> ScalarOps; 4956 for (SDValue Op : Ops) { 4957 EVT InSVT = Op.getValueType().getScalarType(); 4958 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 4959 if (!InBV) { 4960 // We've checked that this is UNDEF or a constant of some kind. 4961 if (Op.isUndef()) 4962 ScalarOps.push_back(getUNDEF(InSVT)); 4963 else 4964 ScalarOps.push_back(Op); 4965 continue; 4966 } 4967 4968 SDValue ScalarOp = InBV->getOperand(i); 4969 EVT ScalarVT = ScalarOp.getValueType(); 4970 4971 // Build vector (integer) scalar operands may need implicit 4972 // truncation - do this before constant folding. 4973 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 4974 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 4975 4976 ScalarOps.push_back(ScalarOp); 4977 } 4978 4979 // Constant fold the scalar operands. 4980 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 4981 4982 // Legalize the (integer) scalar constant if necessary. 4983 if (LegalSVT != SVT) 4984 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4985 4986 // Scalar folding only succeeded if the result is a constant or UNDEF. 4987 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4988 ScalarResult.getOpcode() != ISD::ConstantFP) 4989 return SDValue(); 4990 ScalarResults.push_back(ScalarResult); 4991 } 4992 4993 SDValue V = getBuildVector(VT, DL, ScalarResults); 4994 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 4995 return V; 4996 } 4997 4998 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 4999 EVT VT, SDValue N1, SDValue N2) { 5000 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5001 // should. That will require dealing with a potentially non-default 5002 // rounding mode, checking the "opStatus" return value from the APFloat 5003 // math calculations, and possibly other variations. 5004 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5005 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5006 if (N1CFP && N2CFP) { 5007 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5008 switch (Opcode) { 5009 case ISD::FADD: 5010 C1.add(C2, APFloat::rmNearestTiesToEven); 5011 return getConstantFP(C1, DL, VT); 5012 case ISD::FSUB: 5013 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5014 return getConstantFP(C1, DL, VT); 5015 case ISD::FMUL: 5016 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5017 return getConstantFP(C1, DL, VT); 5018 case ISD::FDIV: 5019 C1.divide(C2, APFloat::rmNearestTiesToEven); 5020 return getConstantFP(C1, DL, VT); 5021 case ISD::FREM: 5022 C1.mod(C2); 5023 return getConstantFP(C1, DL, VT); 5024 case ISD::FCOPYSIGN: 5025 C1.copySign(C2); 5026 return getConstantFP(C1, DL, VT); 5027 default: break; 5028 } 5029 } 5030 if (N1CFP && Opcode == ISD::FP_ROUND) { 5031 APFloat C1 = N1CFP->getValueAPF(); // make copy 5032 bool Unused; 5033 // This can return overflow, underflow, or inexact; we don't care. 5034 // FIXME need to be more flexible about rounding mode. 5035 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5036 &Unused); 5037 return getConstantFP(C1, DL, VT); 5038 } 5039 5040 switch (Opcode) { 5041 case ISD::FADD: 5042 case ISD::FSUB: 5043 case ISD::FMUL: 5044 case ISD::FDIV: 5045 case ISD::FREM: 5046 // If both operands are undef, the result is undef. If 1 operand is undef, 5047 // the result is NaN. This should match the behavior of the IR optimizer. 5048 if (N1.isUndef() && N2.isUndef()) 5049 return getUNDEF(VT); 5050 if (N1.isUndef() || N2.isUndef()) 5051 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5052 } 5053 return SDValue(); 5054 } 5055 5056 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5057 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5058 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5059 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5060 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5061 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5062 5063 // Canonicalize constant to RHS if commutative. 5064 if (TLI->isCommutativeBinOp(Opcode)) { 5065 if (N1C && !N2C) { 5066 std::swap(N1C, N2C); 5067 std::swap(N1, N2); 5068 } else if (N1CFP && !N2CFP) { 5069 std::swap(N1CFP, N2CFP); 5070 std::swap(N1, N2); 5071 } 5072 } 5073 5074 switch (Opcode) { 5075 default: break; 5076 case ISD::TokenFactor: 5077 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5078 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5079 // Fold trivial token factors. 5080 if (N1.getOpcode() == ISD::EntryToken) return N2; 5081 if (N2.getOpcode() == ISD::EntryToken) return N1; 5082 if (N1 == N2) return N1; 5083 break; 5084 case ISD::BUILD_VECTOR: { 5085 // Attempt to simplify BUILD_VECTOR. 5086 SDValue Ops[] = {N1, N2}; 5087 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5088 return V; 5089 break; 5090 } 5091 case ISD::CONCAT_VECTORS: { 5092 SDValue Ops[] = {N1, N2}; 5093 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5094 return V; 5095 break; 5096 } 5097 case ISD::AND: 5098 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5099 assert(N1.getValueType() == N2.getValueType() && 5100 N1.getValueType() == VT && "Binary operator types must match!"); 5101 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5102 // worth handling here. 5103 if (N2C && N2C->isNullValue()) 5104 return N2; 5105 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5106 return N1; 5107 break; 5108 case ISD::OR: 5109 case ISD::XOR: 5110 case ISD::ADD: 5111 case ISD::SUB: 5112 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5113 assert(N1.getValueType() == N2.getValueType() && 5114 N1.getValueType() == VT && "Binary operator types must match!"); 5115 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5116 // it's worth handling here. 5117 if (N2C && N2C->isNullValue()) 5118 return N1; 5119 break; 5120 case ISD::UDIV: 5121 case ISD::UREM: 5122 case ISD::MULHU: 5123 case ISD::MULHS: 5124 case ISD::MUL: 5125 case ISD::SDIV: 5126 case ISD::SREM: 5127 case ISD::SMIN: 5128 case ISD::SMAX: 5129 case ISD::UMIN: 5130 case ISD::UMAX: 5131 case ISD::SADDSAT: 5132 case ISD::SSUBSAT: 5133 case ISD::UADDSAT: 5134 case ISD::USUBSAT: 5135 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5136 assert(N1.getValueType() == N2.getValueType() && 5137 N1.getValueType() == VT && "Binary operator types must match!"); 5138 break; 5139 case ISD::FADD: 5140 case ISD::FSUB: 5141 case ISD::FMUL: 5142 case ISD::FDIV: 5143 case ISD::FREM: 5144 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5145 assert(N1.getValueType() == N2.getValueType() && 5146 N1.getValueType() == VT && "Binary operator types must match!"); 5147 if (SDValue V = simplifyFPBinop(Opcode, N1, N2)) 5148 return V; 5149 break; 5150 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5151 assert(N1.getValueType() == VT && 5152 N1.getValueType().isFloatingPoint() && 5153 N2.getValueType().isFloatingPoint() && 5154 "Invalid FCOPYSIGN!"); 5155 break; 5156 case ISD::SHL: 5157 case ISD::SRA: 5158 case ISD::SRL: 5159 if (SDValue V = simplifyShift(N1, N2)) 5160 return V; 5161 LLVM_FALLTHROUGH; 5162 case ISD::ROTL: 5163 case ISD::ROTR: 5164 assert(VT == N1.getValueType() && 5165 "Shift operators return type must be the same as their first arg"); 5166 assert(VT.isInteger() && N2.getValueType().isInteger() && 5167 "Shifts only work on integers"); 5168 assert((!VT.isVector() || VT == N2.getValueType()) && 5169 "Vector shift amounts must be in the same as their first arg"); 5170 // Verify that the shift amount VT is big enough to hold valid shift 5171 // amounts. This catches things like trying to shift an i1024 value by an 5172 // i8, which is easy to fall into in generic code that uses 5173 // TLI.getShiftAmount(). 5174 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 5175 "Invalid use of small shift amount with oversized value!"); 5176 5177 // Always fold shifts of i1 values so the code generator doesn't need to 5178 // handle them. Since we know the size of the shift has to be less than the 5179 // size of the value, the shift/rotate count is guaranteed to be zero. 5180 if (VT == MVT::i1) 5181 return N1; 5182 if (N2C && N2C->isNullValue()) 5183 return N1; 5184 break; 5185 case ISD::FP_ROUND: 5186 assert(VT.isFloatingPoint() && 5187 N1.getValueType().isFloatingPoint() && 5188 VT.bitsLE(N1.getValueType()) && 5189 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5190 "Invalid FP_ROUND!"); 5191 if (N1.getValueType() == VT) return N1; // noop conversion. 5192 break; 5193 case ISD::AssertSext: 5194 case ISD::AssertZext: { 5195 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5196 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5197 assert(VT.isInteger() && EVT.isInteger() && 5198 "Cannot *_EXTEND_INREG FP types"); 5199 assert(!EVT.isVector() && 5200 "AssertSExt/AssertZExt type should be the vector element type " 5201 "rather than the vector type!"); 5202 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5203 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5204 break; 5205 } 5206 case ISD::SIGN_EXTEND_INREG: { 5207 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5208 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5209 assert(VT.isInteger() && EVT.isInteger() && 5210 "Cannot *_EXTEND_INREG FP types"); 5211 assert(EVT.isVector() == VT.isVector() && 5212 "SIGN_EXTEND_INREG type should be vector iff the operand " 5213 "type is vector!"); 5214 assert((!EVT.isVector() || 5215 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 5216 "Vector element counts must match in SIGN_EXTEND_INREG"); 5217 assert(EVT.bitsLE(VT) && "Not extending!"); 5218 if (EVT == VT) return N1; // Not actually extending 5219 5220 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5221 unsigned FromBits = EVT.getScalarSizeInBits(); 5222 Val <<= Val.getBitWidth() - FromBits; 5223 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5224 return getConstant(Val, DL, ConstantVT); 5225 }; 5226 5227 if (N1C) { 5228 const APInt &Val = N1C->getAPIntValue(); 5229 return SignExtendInReg(Val, VT); 5230 } 5231 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5232 SmallVector<SDValue, 8> Ops; 5233 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5234 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5235 SDValue Op = N1.getOperand(i); 5236 if (Op.isUndef()) { 5237 Ops.push_back(getUNDEF(OpVT)); 5238 continue; 5239 } 5240 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5241 APInt Val = C->getAPIntValue(); 5242 Ops.push_back(SignExtendInReg(Val, OpVT)); 5243 } 5244 return getBuildVector(VT, DL, Ops); 5245 } 5246 break; 5247 } 5248 case ISD::EXTRACT_VECTOR_ELT: 5249 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5250 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5251 element type of the vector."); 5252 5253 // Extract from an undefined value or using an undefined index is undefined. 5254 if (N1.isUndef() || N2.isUndef()) 5255 return getUNDEF(VT); 5256 5257 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 5258 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5259 return getUNDEF(VT); 5260 5261 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5262 // expanding copies of large vectors from registers. 5263 if (N2C && 5264 N1.getOpcode() == ISD::CONCAT_VECTORS && 5265 N1.getNumOperands() > 0) { 5266 unsigned Factor = 5267 N1.getOperand(0).getValueType().getVectorNumElements(); 5268 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5269 N1.getOperand(N2C->getZExtValue() / Factor), 5270 getConstant(N2C->getZExtValue() % Factor, DL, 5271 N2.getValueType())); 5272 } 5273 5274 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 5275 // expanding large vector constants. 5276 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 5277 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 5278 5279 if (VT != Elt.getValueType()) 5280 // If the vector element type is not legal, the BUILD_VECTOR operands 5281 // are promoted and implicitly truncated, and the result implicitly 5282 // extended. Make that explicit here. 5283 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5284 5285 return Elt; 5286 } 5287 5288 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5289 // operations are lowered to scalars. 5290 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5291 // If the indices are the same, return the inserted element else 5292 // if the indices are known different, extract the element from 5293 // the original vector. 5294 SDValue N1Op2 = N1.getOperand(2); 5295 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5296 5297 if (N1Op2C && N2C) { 5298 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5299 if (VT == N1.getOperand(1).getValueType()) 5300 return N1.getOperand(1); 5301 else 5302 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5303 } 5304 5305 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5306 } 5307 } 5308 5309 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5310 // when vector types are scalarized and v1iX is legal. 5311 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 5312 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5313 N1.getValueType().getVectorNumElements() == 1) { 5314 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5315 N1.getOperand(1)); 5316 } 5317 break; 5318 case ISD::EXTRACT_ELEMENT: 5319 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5320 assert(!N1.getValueType().isVector() && !VT.isVector() && 5321 (N1.getValueType().isInteger() == VT.isInteger()) && 5322 N1.getValueType() != VT && 5323 "Wrong types for EXTRACT_ELEMENT!"); 5324 5325 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5326 // 64-bit integers into 32-bit parts. Instead of building the extract of 5327 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5328 if (N1.getOpcode() == ISD::BUILD_PAIR) 5329 return N1.getOperand(N2C->getZExtValue()); 5330 5331 // EXTRACT_ELEMENT of a constant int is also very common. 5332 if (N1C) { 5333 unsigned ElementSize = VT.getSizeInBits(); 5334 unsigned Shift = ElementSize * N2C->getZExtValue(); 5335 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5336 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5337 } 5338 break; 5339 case ISD::EXTRACT_SUBVECTOR: 5340 if (VT.isSimple() && N1.getValueType().isSimple()) { 5341 assert(VT.isVector() && N1.getValueType().isVector() && 5342 "Extract subvector VTs must be a vectors!"); 5343 assert(VT.getVectorElementType() == 5344 N1.getValueType().getVectorElementType() && 5345 "Extract subvector VTs must have the same element type!"); 5346 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 5347 "Extract subvector must be from larger vector to smaller vector!"); 5348 5349 if (N2C) { 5350 assert((VT.getVectorNumElements() + N2C->getZExtValue() 5351 <= N1.getValueType().getVectorNumElements()) 5352 && "Extract subvector overflow!"); 5353 } 5354 5355 // Trivial extraction. 5356 if (VT.getSimpleVT() == N1.getSimpleValueType()) 5357 return N1; 5358 5359 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5360 if (N1.isUndef()) 5361 return getUNDEF(VT); 5362 5363 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5364 // the concat have the same type as the extract. 5365 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5366 N1.getNumOperands() > 0 && 5367 VT == N1.getOperand(0).getValueType()) { 5368 unsigned Factor = VT.getVectorNumElements(); 5369 return N1.getOperand(N2C->getZExtValue() / Factor); 5370 } 5371 5372 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5373 // during shuffle legalization. 5374 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5375 VT == N1.getOperand(1).getValueType()) 5376 return N1.getOperand(1); 5377 } 5378 break; 5379 } 5380 5381 // Perform trivial constant folding. 5382 if (SDValue SV = 5383 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 5384 return SV; 5385 5386 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5387 return V; 5388 5389 // Canonicalize an UNDEF to the RHS, even over a constant. 5390 if (N1.isUndef()) { 5391 if (TLI->isCommutativeBinOp(Opcode)) { 5392 std::swap(N1, N2); 5393 } else { 5394 switch (Opcode) { 5395 case ISD::SIGN_EXTEND_INREG: 5396 case ISD::SUB: 5397 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5398 case ISD::UDIV: 5399 case ISD::SDIV: 5400 case ISD::UREM: 5401 case ISD::SREM: 5402 case ISD::SSUBSAT: 5403 case ISD::USUBSAT: 5404 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5405 } 5406 } 5407 } 5408 5409 // Fold a bunch of operators when the RHS is undef. 5410 if (N2.isUndef()) { 5411 switch (Opcode) { 5412 case ISD::XOR: 5413 if (N1.isUndef()) 5414 // Handle undef ^ undef -> 0 special case. This is a common 5415 // idiom (misuse). 5416 return getConstant(0, DL, VT); 5417 LLVM_FALLTHROUGH; 5418 case ISD::ADD: 5419 case ISD::SUB: 5420 case ISD::UDIV: 5421 case ISD::SDIV: 5422 case ISD::UREM: 5423 case ISD::SREM: 5424 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5425 case ISD::MUL: 5426 case ISD::AND: 5427 case ISD::SSUBSAT: 5428 case ISD::USUBSAT: 5429 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5430 case ISD::OR: 5431 case ISD::SADDSAT: 5432 case ISD::UADDSAT: 5433 return getAllOnesConstant(DL, VT); 5434 } 5435 } 5436 5437 // Memoize this node if possible. 5438 SDNode *N; 5439 SDVTList VTs = getVTList(VT); 5440 SDValue Ops[] = {N1, N2}; 5441 if (VT != MVT::Glue) { 5442 FoldingSetNodeID ID; 5443 AddNodeIDNode(ID, Opcode, VTs, Ops); 5444 void *IP = nullptr; 5445 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5446 E->intersectFlagsWith(Flags); 5447 return SDValue(E, 0); 5448 } 5449 5450 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5451 N->setFlags(Flags); 5452 createOperands(N, Ops); 5453 CSEMap.InsertNode(N, IP); 5454 } else { 5455 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5456 createOperands(N, Ops); 5457 } 5458 5459 InsertNode(N); 5460 SDValue V = SDValue(N, 0); 5461 NewSDValueDbgMsg(V, "Creating new node: ", this); 5462 return V; 5463 } 5464 5465 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5466 SDValue N1, SDValue N2, SDValue N3, 5467 const SDNodeFlags Flags) { 5468 // Perform various simplifications. 5469 switch (Opcode) { 5470 case ISD::FMA: { 5471 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5472 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5473 N3.getValueType() == VT && "FMA types must match!"); 5474 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5475 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5476 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5477 if (N1CFP && N2CFP && N3CFP) { 5478 APFloat V1 = N1CFP->getValueAPF(); 5479 const APFloat &V2 = N2CFP->getValueAPF(); 5480 const APFloat &V3 = N3CFP->getValueAPF(); 5481 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5482 return getConstantFP(V1, DL, VT); 5483 } 5484 break; 5485 } 5486 case ISD::BUILD_VECTOR: { 5487 // Attempt to simplify BUILD_VECTOR. 5488 SDValue Ops[] = {N1, N2, N3}; 5489 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5490 return V; 5491 break; 5492 } 5493 case ISD::CONCAT_VECTORS: { 5494 SDValue Ops[] = {N1, N2, N3}; 5495 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5496 return V; 5497 break; 5498 } 5499 case ISD::SETCC: { 5500 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5501 assert(N1.getValueType() == N2.getValueType() && 5502 "SETCC operands must have the same type!"); 5503 assert(VT.isVector() == N1.getValueType().isVector() && 5504 "SETCC type should be vector iff the operand type is vector!"); 5505 assert((!VT.isVector() || 5506 VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) && 5507 "SETCC vector element counts must match!"); 5508 // Use FoldSetCC to simplify SETCC's. 5509 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5510 return V; 5511 // Vector constant folding. 5512 SDValue Ops[] = {N1, N2, N3}; 5513 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5514 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5515 return V; 5516 } 5517 break; 5518 } 5519 case ISD::SELECT: 5520 case ISD::VSELECT: 5521 if (SDValue V = simplifySelect(N1, N2, N3)) 5522 return V; 5523 break; 5524 case ISD::VECTOR_SHUFFLE: 5525 llvm_unreachable("should use getVectorShuffle constructor!"); 5526 case ISD::INSERT_VECTOR_ELT: { 5527 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5528 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 5529 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5530 return getUNDEF(VT); 5531 5532 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5533 if (N3.isUndef()) 5534 return getUNDEF(VT); 5535 5536 // If the inserted element is an UNDEF, just use the input vector. 5537 if (N2.isUndef()) 5538 return N1; 5539 5540 break; 5541 } 5542 case ISD::INSERT_SUBVECTOR: { 5543 // Inserting undef into undef is still undef. 5544 if (N1.isUndef() && N2.isUndef()) 5545 return getUNDEF(VT); 5546 SDValue Index = N3; 5547 if (VT.isSimple() && N1.getValueType().isSimple() 5548 && N2.getValueType().isSimple()) { 5549 assert(VT.isVector() && N1.getValueType().isVector() && 5550 N2.getValueType().isVector() && 5551 "Insert subvector VTs must be a vectors"); 5552 assert(VT == N1.getValueType() && 5553 "Dest and insert subvector source types must match!"); 5554 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 5555 "Insert subvector must be from smaller vector to larger vector!"); 5556 if (isa<ConstantSDNode>(Index)) { 5557 assert((N2.getValueType().getVectorNumElements() + 5558 cast<ConstantSDNode>(Index)->getZExtValue() 5559 <= VT.getVectorNumElements()) 5560 && "Insert subvector overflow!"); 5561 } 5562 5563 // Trivial insertion. 5564 if (VT.getSimpleVT() == N2.getSimpleValueType()) 5565 return N2; 5566 5567 // If this is an insert of an extracted vector into an undef vector, we 5568 // can just use the input to the extract. 5569 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5570 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5571 return N2.getOperand(0); 5572 } 5573 break; 5574 } 5575 case ISD::BITCAST: 5576 // Fold bit_convert nodes from a type to themselves. 5577 if (N1.getValueType() == VT) 5578 return N1; 5579 break; 5580 } 5581 5582 // Memoize node if it doesn't produce a flag. 5583 SDNode *N; 5584 SDVTList VTs = getVTList(VT); 5585 SDValue Ops[] = {N1, N2, N3}; 5586 if (VT != MVT::Glue) { 5587 FoldingSetNodeID ID; 5588 AddNodeIDNode(ID, Opcode, VTs, Ops); 5589 void *IP = nullptr; 5590 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5591 E->intersectFlagsWith(Flags); 5592 return SDValue(E, 0); 5593 } 5594 5595 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5596 N->setFlags(Flags); 5597 createOperands(N, Ops); 5598 CSEMap.InsertNode(N, IP); 5599 } else { 5600 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5601 createOperands(N, Ops); 5602 } 5603 5604 InsertNode(N); 5605 SDValue V = SDValue(N, 0); 5606 NewSDValueDbgMsg(V, "Creating new node: ", this); 5607 return V; 5608 } 5609 5610 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5611 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5612 SDValue Ops[] = { N1, N2, N3, N4 }; 5613 return getNode(Opcode, DL, VT, Ops); 5614 } 5615 5616 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5617 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5618 SDValue N5) { 5619 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5620 return getNode(Opcode, DL, VT, Ops); 5621 } 5622 5623 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5624 /// the incoming stack arguments to be loaded from the stack. 5625 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5626 SmallVector<SDValue, 8> ArgChains; 5627 5628 // Include the original chain at the beginning of the list. When this is 5629 // used by target LowerCall hooks, this helps legalize find the 5630 // CALLSEQ_BEGIN node. 5631 ArgChains.push_back(Chain); 5632 5633 // Add a chain value for each stack argument. 5634 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5635 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5636 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5637 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5638 if (FI->getIndex() < 0) 5639 ArgChains.push_back(SDValue(L, 1)); 5640 5641 // Build a tokenfactor for all the chains. 5642 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5643 } 5644 5645 /// getMemsetValue - Vectorized representation of the memset value 5646 /// operand. 5647 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5648 const SDLoc &dl) { 5649 assert(!Value.isUndef()); 5650 5651 unsigned NumBits = VT.getScalarSizeInBits(); 5652 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5653 assert(C->getAPIntValue().getBitWidth() == 8); 5654 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5655 if (VT.isInteger()) { 5656 bool IsOpaque = VT.getSizeInBits() > 64 || 5657 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5658 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5659 } 5660 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5661 VT); 5662 } 5663 5664 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5665 EVT IntVT = VT.getScalarType(); 5666 if (!IntVT.isInteger()) 5667 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5668 5669 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5670 if (NumBits > 8) { 5671 // Use a multiplication with 0x010101... to extend the input to the 5672 // required length. 5673 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5674 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5675 DAG.getConstant(Magic, dl, IntVT)); 5676 } 5677 5678 if (VT != Value.getValueType() && !VT.isInteger()) 5679 Value = DAG.getBitcast(VT.getScalarType(), Value); 5680 if (VT != Value.getValueType()) 5681 Value = DAG.getSplatBuildVector(VT, dl, Value); 5682 5683 return Value; 5684 } 5685 5686 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5687 /// used when a memcpy is turned into a memset when the source is a constant 5688 /// string ptr. 5689 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5690 const TargetLowering &TLI, 5691 const ConstantDataArraySlice &Slice) { 5692 // Handle vector with all elements zero. 5693 if (Slice.Array == nullptr) { 5694 if (VT.isInteger()) 5695 return DAG.getConstant(0, dl, VT); 5696 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5697 return DAG.getConstantFP(0.0, dl, VT); 5698 else if (VT.isVector()) { 5699 unsigned NumElts = VT.getVectorNumElements(); 5700 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5701 return DAG.getNode(ISD::BITCAST, dl, VT, 5702 DAG.getConstant(0, dl, 5703 EVT::getVectorVT(*DAG.getContext(), 5704 EltVT, NumElts))); 5705 } else 5706 llvm_unreachable("Expected type!"); 5707 } 5708 5709 assert(!VT.isVector() && "Can't handle vector type here!"); 5710 unsigned NumVTBits = VT.getSizeInBits(); 5711 unsigned NumVTBytes = NumVTBits / 8; 5712 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5713 5714 APInt Val(NumVTBits, 0); 5715 if (DAG.getDataLayout().isLittleEndian()) { 5716 for (unsigned i = 0; i != NumBytes; ++i) 5717 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5718 } else { 5719 for (unsigned i = 0; i != NumBytes; ++i) 5720 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5721 } 5722 5723 // If the "cost" of materializing the integer immediate is less than the cost 5724 // of a load, then it is cost effective to turn the load into the immediate. 5725 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5726 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5727 return DAG.getConstant(Val, dl, VT); 5728 return SDValue(nullptr, 0); 5729 } 5730 5731 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 5732 const SDLoc &DL) { 5733 EVT VT = Base.getValueType(); 5734 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 5735 } 5736 5737 /// Returns true if memcpy source is constant data. 5738 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5739 uint64_t SrcDelta = 0; 5740 GlobalAddressSDNode *G = nullptr; 5741 if (Src.getOpcode() == ISD::GlobalAddress) 5742 G = cast<GlobalAddressSDNode>(Src); 5743 else if (Src.getOpcode() == ISD::ADD && 5744 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5745 Src.getOperand(1).getOpcode() == ISD::Constant) { 5746 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5747 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5748 } 5749 if (!G) 5750 return false; 5751 5752 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5753 SrcDelta + G->getOffset()); 5754 } 5755 5756 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5757 SelectionDAG &DAG) { 5758 // On Darwin, -Os means optimize for size without hurting performance, so 5759 // only really optimize for size when -Oz (MinSize) is used. 5760 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5761 return MF.getFunction().hasMinSize(); 5762 return DAG.shouldOptForSize(); 5763 } 5764 5765 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5766 SmallVector<SDValue, 32> &OutChains, unsigned From, 5767 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5768 SmallVector<SDValue, 16> &OutStoreChains) { 5769 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5770 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5771 SmallVector<SDValue, 16> GluedLoadChains; 5772 for (unsigned i = From; i < To; ++i) { 5773 OutChains.push_back(OutLoadChains[i]); 5774 GluedLoadChains.push_back(OutLoadChains[i]); 5775 } 5776 5777 // Chain for all loads. 5778 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5779 GluedLoadChains); 5780 5781 for (unsigned i = From; i < To; ++i) { 5782 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5783 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5784 ST->getBasePtr(), ST->getMemoryVT(), 5785 ST->getMemOperand()); 5786 OutChains.push_back(NewStore); 5787 } 5788 } 5789 5790 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5791 SDValue Chain, SDValue Dst, SDValue Src, 5792 uint64_t Size, unsigned Alignment, 5793 bool isVol, bool AlwaysInline, 5794 MachinePointerInfo DstPtrInfo, 5795 MachinePointerInfo SrcPtrInfo) { 5796 // Turn a memcpy of undef to nop. 5797 // FIXME: We need to honor volatile even is Src is undef. 5798 if (Src.isUndef()) 5799 return Chain; 5800 5801 // Expand memcpy to a series of load and store ops if the size operand falls 5802 // below a certain threshold. 5803 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5804 // rather than maybe a humongous number of loads and stores. 5805 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5806 const DataLayout &DL = DAG.getDataLayout(); 5807 LLVMContext &C = *DAG.getContext(); 5808 std::vector<EVT> MemOps; 5809 bool DstAlignCanChange = false; 5810 MachineFunction &MF = DAG.getMachineFunction(); 5811 MachineFrameInfo &MFI = MF.getFrameInfo(); 5812 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 5813 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5814 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5815 DstAlignCanChange = true; 5816 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5817 if (Alignment > SrcAlign) 5818 SrcAlign = Alignment; 5819 ConstantDataArraySlice Slice; 5820 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5821 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5822 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5823 5824 if (!TLI.findOptimalMemOpLowering( 5825 MemOps, Limit, Size, (DstAlignCanChange ? 0 : Alignment), 5826 (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false, 5827 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant, 5828 /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), 5829 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 5830 return SDValue(); 5831 5832 if (DstAlignCanChange) { 5833 Type *Ty = MemOps[0].getTypeForEVT(C); 5834 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5835 5836 // Don't promote to an alignment that would require dynamic stack 5837 // realignment. 5838 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5839 if (!TRI->needsStackRealignment(MF)) 5840 while (NewAlign > Alignment && 5841 DL.exceedsNaturalStackAlignment(Align(NewAlign))) 5842 NewAlign /= 2; 5843 5844 if (NewAlign > Alignment) { 5845 // Give the stack frame object a larger alignment if needed. 5846 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5847 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5848 Alignment = NewAlign; 5849 } 5850 } 5851 5852 MachineMemOperand::Flags MMOFlags = 5853 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5854 SmallVector<SDValue, 16> OutLoadChains; 5855 SmallVector<SDValue, 16> OutStoreChains; 5856 SmallVector<SDValue, 32> OutChains; 5857 unsigned NumMemOps = MemOps.size(); 5858 uint64_t SrcOff = 0, DstOff = 0; 5859 for (unsigned i = 0; i != NumMemOps; ++i) { 5860 EVT VT = MemOps[i]; 5861 unsigned VTSize = VT.getSizeInBits() / 8; 5862 SDValue Value, Store; 5863 5864 if (VTSize > Size) { 5865 // Issuing an unaligned load / store pair that overlaps with the previous 5866 // pair. Adjust the offset accordingly. 5867 assert(i == NumMemOps-1 && i != 0); 5868 SrcOff -= VTSize - Size; 5869 DstOff -= VTSize - Size; 5870 } 5871 5872 if (CopyFromConstant && 5873 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5874 // It's unlikely a store of a vector immediate can be done in a single 5875 // instruction. It would require a load from a constantpool first. 5876 // We only handle zero vectors here. 5877 // FIXME: Handle other cases where store of vector immediate is done in 5878 // a single instruction. 5879 ConstantDataArraySlice SubSlice; 5880 if (SrcOff < Slice.Length) { 5881 SubSlice = Slice; 5882 SubSlice.move(SrcOff); 5883 } else { 5884 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5885 SubSlice.Array = nullptr; 5886 SubSlice.Offset = 0; 5887 SubSlice.Length = VTSize; 5888 } 5889 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5890 if (Value.getNode()) { 5891 Store = DAG.getStore( 5892 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5893 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 5894 OutChains.push_back(Store); 5895 } 5896 } 5897 5898 if (!Store.getNode()) { 5899 // The type might not be legal for the target. This should only happen 5900 // if the type is smaller than a legal type, as on PPC, so the right 5901 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 5902 // to Load/Store if NVT==VT. 5903 // FIXME does the case above also need this? 5904 EVT NVT = TLI.getTypeToTransformTo(C, VT); 5905 assert(NVT.bitsGE(VT)); 5906 5907 bool isDereferenceable = 5908 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5909 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5910 if (isDereferenceable) 5911 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5912 5913 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 5914 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5915 SrcPtrInfo.getWithOffset(SrcOff), VT, 5916 MinAlign(SrcAlign, SrcOff), SrcMMOFlags); 5917 OutLoadChains.push_back(Value.getValue(1)); 5918 5919 Store = DAG.getTruncStore( 5920 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5921 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 5922 OutStoreChains.push_back(Store); 5923 } 5924 SrcOff += VTSize; 5925 DstOff += VTSize; 5926 Size -= VTSize; 5927 } 5928 5929 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 5930 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 5931 unsigned NumLdStInMemcpy = OutStoreChains.size(); 5932 5933 if (NumLdStInMemcpy) { 5934 // It may be that memcpy might be converted to memset if it's memcpy 5935 // of constants. In such a case, we won't have loads and stores, but 5936 // just stores. In the absence of loads, there is nothing to gang up. 5937 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 5938 // If target does not care, just leave as it. 5939 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 5940 OutChains.push_back(OutLoadChains[i]); 5941 OutChains.push_back(OutStoreChains[i]); 5942 } 5943 } else { 5944 // Ld/St less than/equal limit set by target. 5945 if (NumLdStInMemcpy <= GluedLdStLimit) { 5946 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5947 NumLdStInMemcpy, OutLoadChains, 5948 OutStoreChains); 5949 } else { 5950 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 5951 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 5952 unsigned GlueIter = 0; 5953 5954 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 5955 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 5956 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 5957 5958 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 5959 OutLoadChains, OutStoreChains); 5960 GlueIter += GluedLdStLimit; 5961 } 5962 5963 // Residual ld/st. 5964 if (RemainingLdStInMemcpy) { 5965 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5966 RemainingLdStInMemcpy, OutLoadChains, 5967 OutStoreChains); 5968 } 5969 } 5970 } 5971 } 5972 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5973 } 5974 5975 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5976 SDValue Chain, SDValue Dst, SDValue Src, 5977 uint64_t Size, unsigned Align, 5978 bool isVol, bool AlwaysInline, 5979 MachinePointerInfo DstPtrInfo, 5980 MachinePointerInfo SrcPtrInfo) { 5981 // Turn a memmove of undef to nop. 5982 // FIXME: We need to honor volatile even is Src is undef. 5983 if (Src.isUndef()) 5984 return Chain; 5985 5986 // Expand memmove to a series of load and store ops if the size operand falls 5987 // below a certain threshold. 5988 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5989 const DataLayout &DL = DAG.getDataLayout(); 5990 LLVMContext &C = *DAG.getContext(); 5991 std::vector<EVT> MemOps; 5992 bool DstAlignCanChange = false; 5993 MachineFunction &MF = DAG.getMachineFunction(); 5994 MachineFrameInfo &MFI = MF.getFrameInfo(); 5995 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 5996 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5997 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5998 DstAlignCanChange = true; 5999 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6000 if (Align > SrcAlign) 6001 SrcAlign = Align; 6002 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6003 // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in 6004 // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the 6005 // correct code. 6006 bool AllowOverlap = false; 6007 if (!TLI.findOptimalMemOpLowering( 6008 MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign, 6009 /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false, 6010 AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6011 MF.getFunction().getAttributes())) 6012 return SDValue(); 6013 6014 if (DstAlignCanChange) { 6015 Type *Ty = MemOps[0].getTypeForEVT(C); 6016 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 6017 if (NewAlign > Align) { 6018 // Give the stack frame object a larger alignment if needed. 6019 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 6020 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6021 Align = NewAlign; 6022 } 6023 } 6024 6025 MachineMemOperand::Flags MMOFlags = 6026 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6027 uint64_t SrcOff = 0, DstOff = 0; 6028 SmallVector<SDValue, 8> LoadValues; 6029 SmallVector<SDValue, 8> LoadChains; 6030 SmallVector<SDValue, 8> OutChains; 6031 unsigned NumMemOps = MemOps.size(); 6032 for (unsigned i = 0; i < NumMemOps; i++) { 6033 EVT VT = MemOps[i]; 6034 unsigned VTSize = VT.getSizeInBits() / 8; 6035 SDValue Value; 6036 6037 bool isDereferenceable = 6038 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6039 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6040 if (isDereferenceable) 6041 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6042 6043 Value = 6044 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6045 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); 6046 LoadValues.push_back(Value); 6047 LoadChains.push_back(Value.getValue(1)); 6048 SrcOff += VTSize; 6049 } 6050 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6051 OutChains.clear(); 6052 for (unsigned i = 0; i < NumMemOps; i++) { 6053 EVT VT = MemOps[i]; 6054 unsigned VTSize = VT.getSizeInBits() / 8; 6055 SDValue Store; 6056 6057 Store = DAG.getStore(Chain, dl, LoadValues[i], 6058 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6059 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 6060 OutChains.push_back(Store); 6061 DstOff += VTSize; 6062 } 6063 6064 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6065 } 6066 6067 /// Lower the call to 'memset' intrinsic function into a series of store 6068 /// operations. 6069 /// 6070 /// \param DAG Selection DAG where lowered code is placed. 6071 /// \param dl Link to corresponding IR location. 6072 /// \param Chain Control flow dependency. 6073 /// \param Dst Pointer to destination memory location. 6074 /// \param Src Value of byte to write into the memory. 6075 /// \param Size Number of bytes to write. 6076 /// \param Align Alignment of the destination in bytes. 6077 /// \param isVol True if destination is volatile. 6078 /// \param DstPtrInfo IR information on the memory pointer. 6079 /// \returns New head in the control flow, if lowering was successful, empty 6080 /// SDValue otherwise. 6081 /// 6082 /// The function tries to replace 'llvm.memset' intrinsic with several store 6083 /// operations and value calculation code. This is usually profitable for small 6084 /// memory size. 6085 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6086 SDValue Chain, SDValue Dst, SDValue Src, 6087 uint64_t Size, unsigned Align, bool isVol, 6088 MachinePointerInfo DstPtrInfo) { 6089 // Turn a memset of undef to nop. 6090 // FIXME: We need to honor volatile even is Src is undef. 6091 if (Src.isUndef()) 6092 return Chain; 6093 6094 // Expand memset to a series of load/store ops if the size operand 6095 // falls below a certain threshold. 6096 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6097 std::vector<EVT> MemOps; 6098 bool DstAlignCanChange = false; 6099 MachineFunction &MF = DAG.getMachineFunction(); 6100 MachineFrameInfo &MFI = MF.getFrameInfo(); 6101 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6102 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6103 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6104 DstAlignCanChange = true; 6105 bool IsZeroVal = 6106 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6107 if (!TLI.findOptimalMemOpLowering( 6108 MemOps, TLI.getMaxStoresPerMemset(OptSize), Size, 6109 (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true, 6110 /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false, 6111 /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u, 6112 MF.getFunction().getAttributes())) 6113 return SDValue(); 6114 6115 if (DstAlignCanChange) { 6116 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6117 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 6118 if (NewAlign > Align) { 6119 // Give the stack frame object a larger alignment if needed. 6120 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 6121 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6122 Align = NewAlign; 6123 } 6124 } 6125 6126 SmallVector<SDValue, 8> OutChains; 6127 uint64_t DstOff = 0; 6128 unsigned NumMemOps = MemOps.size(); 6129 6130 // Find the largest store and generate the bit pattern for it. 6131 EVT LargestVT = MemOps[0]; 6132 for (unsigned i = 1; i < NumMemOps; i++) 6133 if (MemOps[i].bitsGT(LargestVT)) 6134 LargestVT = MemOps[i]; 6135 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6136 6137 for (unsigned i = 0; i < NumMemOps; i++) { 6138 EVT VT = MemOps[i]; 6139 unsigned VTSize = VT.getSizeInBits() / 8; 6140 if (VTSize > Size) { 6141 // Issuing an unaligned load / store pair that overlaps with the previous 6142 // pair. Adjust the offset accordingly. 6143 assert(i == NumMemOps-1 && i != 0); 6144 DstOff -= VTSize - Size; 6145 } 6146 6147 // If this store is smaller than the largest store see whether we can get 6148 // the smaller value for free with a truncate. 6149 SDValue Value = MemSetValue; 6150 if (VT.bitsLT(LargestVT)) { 6151 if (!LargestVT.isVector() && !VT.isVector() && 6152 TLI.isTruncateFree(LargestVT, VT)) 6153 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6154 else 6155 Value = getMemsetValue(Src, VT, DAG, dl); 6156 } 6157 assert(Value.getValueType() == VT && "Value with wrong type."); 6158 SDValue Store = DAG.getStore( 6159 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6160 DstPtrInfo.getWithOffset(DstOff), Align, 6161 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6162 OutChains.push_back(Store); 6163 DstOff += VT.getSizeInBits() / 8; 6164 Size -= VTSize; 6165 } 6166 6167 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6168 } 6169 6170 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6171 unsigned AS) { 6172 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6173 // pointer operands can be losslessly bitcasted to pointers of address space 0 6174 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 6175 report_fatal_error("cannot lower memory intrinsic in address space " + 6176 Twine(AS)); 6177 } 6178 } 6179 6180 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6181 SDValue Src, SDValue Size, unsigned Align, 6182 bool isVol, bool AlwaysInline, bool isTailCall, 6183 MachinePointerInfo DstPtrInfo, 6184 MachinePointerInfo SrcPtrInfo) { 6185 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6186 6187 // Check to see if we should lower the memcpy to loads and stores first. 6188 // For cases within the target-specified limits, this is the best choice. 6189 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6190 if (ConstantSize) { 6191 // Memcpy with size zero? Just return the original chain. 6192 if (ConstantSize->isNullValue()) 6193 return Chain; 6194 6195 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6196 ConstantSize->getZExtValue(),Align, 6197 isVol, false, DstPtrInfo, SrcPtrInfo); 6198 if (Result.getNode()) 6199 return Result; 6200 } 6201 6202 // Then check to see if we should lower the memcpy with target-specific 6203 // code. If the target chooses to do this, this is the next best. 6204 if (TSI) { 6205 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6206 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 6207 DstPtrInfo, SrcPtrInfo); 6208 if (Result.getNode()) 6209 return Result; 6210 } 6211 6212 // If we really need inline code and the target declined to provide it, 6213 // use a (potentially long) sequence of loads and stores. 6214 if (AlwaysInline) { 6215 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6216 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6217 ConstantSize->getZExtValue(), Align, isVol, 6218 true, DstPtrInfo, SrcPtrInfo); 6219 } 6220 6221 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6222 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6223 6224 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6225 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6226 // respect volatile, so they may do things like read or write memory 6227 // beyond the given memory regions. But fixing this isn't easy, and most 6228 // people don't care. 6229 6230 // Emit a library call. 6231 TargetLowering::ArgListTy Args; 6232 TargetLowering::ArgListEntry Entry; 6233 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6234 Entry.Node = Dst; Args.push_back(Entry); 6235 Entry.Node = Src; Args.push_back(Entry); 6236 6237 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6238 Entry.Node = Size; Args.push_back(Entry); 6239 // FIXME: pass in SDLoc 6240 TargetLowering::CallLoweringInfo CLI(*this); 6241 CLI.setDebugLoc(dl) 6242 .setChain(Chain) 6243 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6244 Dst.getValueType().getTypeForEVT(*getContext()), 6245 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6246 TLI->getPointerTy(getDataLayout())), 6247 std::move(Args)) 6248 .setDiscardResult() 6249 .setTailCall(isTailCall); 6250 6251 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6252 return CallResult.second; 6253 } 6254 6255 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6256 SDValue Dst, unsigned DstAlign, 6257 SDValue Src, unsigned SrcAlign, 6258 SDValue Size, Type *SizeTy, 6259 unsigned ElemSz, bool isTailCall, 6260 MachinePointerInfo DstPtrInfo, 6261 MachinePointerInfo SrcPtrInfo) { 6262 // Emit a library call. 6263 TargetLowering::ArgListTy Args; 6264 TargetLowering::ArgListEntry Entry; 6265 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6266 Entry.Node = Dst; 6267 Args.push_back(Entry); 6268 6269 Entry.Node = Src; 6270 Args.push_back(Entry); 6271 6272 Entry.Ty = SizeTy; 6273 Entry.Node = Size; 6274 Args.push_back(Entry); 6275 6276 RTLIB::Libcall LibraryCall = 6277 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6278 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6279 report_fatal_error("Unsupported element size"); 6280 6281 TargetLowering::CallLoweringInfo CLI(*this); 6282 CLI.setDebugLoc(dl) 6283 .setChain(Chain) 6284 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6285 Type::getVoidTy(*getContext()), 6286 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6287 TLI->getPointerTy(getDataLayout())), 6288 std::move(Args)) 6289 .setDiscardResult() 6290 .setTailCall(isTailCall); 6291 6292 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6293 return CallResult.second; 6294 } 6295 6296 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6297 SDValue Src, SDValue Size, unsigned Align, 6298 bool isVol, bool isTailCall, 6299 MachinePointerInfo DstPtrInfo, 6300 MachinePointerInfo SrcPtrInfo) { 6301 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6302 6303 // Check to see if we should lower the memmove to loads and stores first. 6304 // For cases within the target-specified limits, this is the best choice. 6305 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6306 if (ConstantSize) { 6307 // Memmove with size zero? Just return the original chain. 6308 if (ConstantSize->isNullValue()) 6309 return Chain; 6310 6311 SDValue Result = 6312 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 6313 ConstantSize->getZExtValue(), Align, isVol, 6314 false, DstPtrInfo, SrcPtrInfo); 6315 if (Result.getNode()) 6316 return Result; 6317 } 6318 6319 // Then check to see if we should lower the memmove with target-specific 6320 // code. If the target chooses to do this, this is the next best. 6321 if (TSI) { 6322 SDValue Result = TSI->EmitTargetCodeForMemmove( 6323 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 6324 if (Result.getNode()) 6325 return Result; 6326 } 6327 6328 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6329 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6330 6331 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6332 // not be safe. See memcpy above for more details. 6333 6334 // Emit a library call. 6335 TargetLowering::ArgListTy Args; 6336 TargetLowering::ArgListEntry Entry; 6337 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6338 Entry.Node = Dst; Args.push_back(Entry); 6339 Entry.Node = Src; Args.push_back(Entry); 6340 6341 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6342 Entry.Node = Size; Args.push_back(Entry); 6343 // FIXME: pass in SDLoc 6344 TargetLowering::CallLoweringInfo CLI(*this); 6345 CLI.setDebugLoc(dl) 6346 .setChain(Chain) 6347 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6348 Dst.getValueType().getTypeForEVT(*getContext()), 6349 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6350 TLI->getPointerTy(getDataLayout())), 6351 std::move(Args)) 6352 .setDiscardResult() 6353 .setTailCall(isTailCall); 6354 6355 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6356 return CallResult.second; 6357 } 6358 6359 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6360 SDValue Dst, unsigned DstAlign, 6361 SDValue Src, unsigned SrcAlign, 6362 SDValue Size, Type *SizeTy, 6363 unsigned ElemSz, bool isTailCall, 6364 MachinePointerInfo DstPtrInfo, 6365 MachinePointerInfo SrcPtrInfo) { 6366 // Emit a library call. 6367 TargetLowering::ArgListTy Args; 6368 TargetLowering::ArgListEntry Entry; 6369 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6370 Entry.Node = Dst; 6371 Args.push_back(Entry); 6372 6373 Entry.Node = Src; 6374 Args.push_back(Entry); 6375 6376 Entry.Ty = SizeTy; 6377 Entry.Node = Size; 6378 Args.push_back(Entry); 6379 6380 RTLIB::Libcall LibraryCall = 6381 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6382 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6383 report_fatal_error("Unsupported element size"); 6384 6385 TargetLowering::CallLoweringInfo CLI(*this); 6386 CLI.setDebugLoc(dl) 6387 .setChain(Chain) 6388 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6389 Type::getVoidTy(*getContext()), 6390 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6391 TLI->getPointerTy(getDataLayout())), 6392 std::move(Args)) 6393 .setDiscardResult() 6394 .setTailCall(isTailCall); 6395 6396 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6397 return CallResult.second; 6398 } 6399 6400 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6401 SDValue Src, SDValue Size, unsigned Align, 6402 bool isVol, bool isTailCall, 6403 MachinePointerInfo DstPtrInfo) { 6404 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6405 6406 // Check to see if we should lower the memset to stores first. 6407 // For cases within the target-specified limits, this is the best choice. 6408 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6409 if (ConstantSize) { 6410 // Memset with size zero? Just return the original chain. 6411 if (ConstantSize->isNullValue()) 6412 return Chain; 6413 6414 SDValue Result = 6415 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 6416 Align, isVol, DstPtrInfo); 6417 6418 if (Result.getNode()) 6419 return Result; 6420 } 6421 6422 // Then check to see if we should lower the memset with target-specific 6423 // code. If the target chooses to do this, this is the next best. 6424 if (TSI) { 6425 SDValue Result = TSI->EmitTargetCodeForMemset( 6426 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 6427 if (Result.getNode()) 6428 return Result; 6429 } 6430 6431 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6432 6433 // Emit a library call. 6434 TargetLowering::ArgListTy Args; 6435 TargetLowering::ArgListEntry Entry; 6436 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6437 Args.push_back(Entry); 6438 Entry.Node = Src; 6439 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6440 Args.push_back(Entry); 6441 Entry.Node = Size; 6442 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6443 Args.push_back(Entry); 6444 6445 // FIXME: pass in SDLoc 6446 TargetLowering::CallLoweringInfo CLI(*this); 6447 CLI.setDebugLoc(dl) 6448 .setChain(Chain) 6449 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6450 Dst.getValueType().getTypeForEVT(*getContext()), 6451 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6452 TLI->getPointerTy(getDataLayout())), 6453 std::move(Args)) 6454 .setDiscardResult() 6455 .setTailCall(isTailCall); 6456 6457 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6458 return CallResult.second; 6459 } 6460 6461 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6462 SDValue Dst, unsigned DstAlign, 6463 SDValue Value, SDValue Size, Type *SizeTy, 6464 unsigned ElemSz, bool isTailCall, 6465 MachinePointerInfo DstPtrInfo) { 6466 // Emit a library call. 6467 TargetLowering::ArgListTy Args; 6468 TargetLowering::ArgListEntry Entry; 6469 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6470 Entry.Node = Dst; 6471 Args.push_back(Entry); 6472 6473 Entry.Ty = Type::getInt8Ty(*getContext()); 6474 Entry.Node = Value; 6475 Args.push_back(Entry); 6476 6477 Entry.Ty = SizeTy; 6478 Entry.Node = Size; 6479 Args.push_back(Entry); 6480 6481 RTLIB::Libcall LibraryCall = 6482 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6483 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6484 report_fatal_error("Unsupported element size"); 6485 6486 TargetLowering::CallLoweringInfo CLI(*this); 6487 CLI.setDebugLoc(dl) 6488 .setChain(Chain) 6489 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6490 Type::getVoidTy(*getContext()), 6491 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6492 TLI->getPointerTy(getDataLayout())), 6493 std::move(Args)) 6494 .setDiscardResult() 6495 .setTailCall(isTailCall); 6496 6497 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6498 return CallResult.second; 6499 } 6500 6501 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6502 SDVTList VTList, ArrayRef<SDValue> Ops, 6503 MachineMemOperand *MMO) { 6504 FoldingSetNodeID ID; 6505 ID.AddInteger(MemVT.getRawBits()); 6506 AddNodeIDNode(ID, Opcode, VTList, Ops); 6507 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6508 void* IP = nullptr; 6509 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6510 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6511 return SDValue(E, 0); 6512 } 6513 6514 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6515 VTList, MemVT, MMO); 6516 createOperands(N, Ops); 6517 6518 CSEMap.InsertNode(N, IP); 6519 InsertNode(N); 6520 return SDValue(N, 0); 6521 } 6522 6523 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6524 EVT MemVT, SDVTList VTs, SDValue Chain, 6525 SDValue Ptr, SDValue Cmp, SDValue Swp, 6526 MachineMemOperand *MMO) { 6527 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6528 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6529 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6530 6531 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6532 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6533 } 6534 6535 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6536 SDValue Chain, SDValue Ptr, SDValue Val, 6537 MachineMemOperand *MMO) { 6538 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6539 Opcode == ISD::ATOMIC_LOAD_SUB || 6540 Opcode == ISD::ATOMIC_LOAD_AND || 6541 Opcode == ISD::ATOMIC_LOAD_CLR || 6542 Opcode == ISD::ATOMIC_LOAD_OR || 6543 Opcode == ISD::ATOMIC_LOAD_XOR || 6544 Opcode == ISD::ATOMIC_LOAD_NAND || 6545 Opcode == ISD::ATOMIC_LOAD_MIN || 6546 Opcode == ISD::ATOMIC_LOAD_MAX || 6547 Opcode == ISD::ATOMIC_LOAD_UMIN || 6548 Opcode == ISD::ATOMIC_LOAD_UMAX || 6549 Opcode == ISD::ATOMIC_LOAD_FADD || 6550 Opcode == ISD::ATOMIC_LOAD_FSUB || 6551 Opcode == ISD::ATOMIC_SWAP || 6552 Opcode == ISD::ATOMIC_STORE) && 6553 "Invalid Atomic Op"); 6554 6555 EVT VT = Val.getValueType(); 6556 6557 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6558 getVTList(VT, MVT::Other); 6559 SDValue Ops[] = {Chain, Ptr, Val}; 6560 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6561 } 6562 6563 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6564 EVT VT, SDValue Chain, SDValue Ptr, 6565 MachineMemOperand *MMO) { 6566 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6567 6568 SDVTList VTs = getVTList(VT, MVT::Other); 6569 SDValue Ops[] = {Chain, Ptr}; 6570 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6571 } 6572 6573 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6574 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6575 if (Ops.size() == 1) 6576 return Ops[0]; 6577 6578 SmallVector<EVT, 4> VTs; 6579 VTs.reserve(Ops.size()); 6580 for (unsigned i = 0; i < Ops.size(); ++i) 6581 VTs.push_back(Ops[i].getValueType()); 6582 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6583 } 6584 6585 SDValue SelectionDAG::getMemIntrinsicNode( 6586 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6587 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, 6588 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6589 if (Align == 0) // Ensure that codegen never sees alignment 0 6590 Align = getEVTAlignment(MemVT); 6591 6592 if (!Size) 6593 Size = MemVT.getStoreSize(); 6594 6595 MachineFunction &MF = getMachineFunction(); 6596 MachineMemOperand *MMO = 6597 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo); 6598 6599 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6600 } 6601 6602 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6603 SDVTList VTList, 6604 ArrayRef<SDValue> Ops, EVT MemVT, 6605 MachineMemOperand *MMO) { 6606 assert((Opcode == ISD::INTRINSIC_VOID || 6607 Opcode == ISD::INTRINSIC_W_CHAIN || 6608 Opcode == ISD::PREFETCH || 6609 Opcode == ISD::LIFETIME_START || 6610 Opcode == ISD::LIFETIME_END || 6611 ((int)Opcode <= std::numeric_limits<int>::max() && 6612 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6613 "Opcode is not a memory-accessing opcode!"); 6614 6615 // Memoize the node unless it returns a flag. 6616 MemIntrinsicSDNode *N; 6617 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6618 FoldingSetNodeID ID; 6619 AddNodeIDNode(ID, Opcode, VTList, Ops); 6620 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6621 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6622 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6623 void *IP = nullptr; 6624 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6625 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6626 return SDValue(E, 0); 6627 } 6628 6629 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6630 VTList, MemVT, MMO); 6631 createOperands(N, Ops); 6632 6633 CSEMap.InsertNode(N, IP); 6634 } else { 6635 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6636 VTList, MemVT, MMO); 6637 createOperands(N, Ops); 6638 } 6639 InsertNode(N); 6640 SDValue V(N, 0); 6641 NewSDValueDbgMsg(V, "Creating new node: ", this); 6642 return V; 6643 } 6644 6645 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6646 SDValue Chain, int FrameIndex, 6647 int64_t Size, int64_t Offset) { 6648 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6649 const auto VTs = getVTList(MVT::Other); 6650 SDValue Ops[2] = { 6651 Chain, 6652 getFrameIndex(FrameIndex, 6653 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6654 true)}; 6655 6656 FoldingSetNodeID ID; 6657 AddNodeIDNode(ID, Opcode, VTs, Ops); 6658 ID.AddInteger(FrameIndex); 6659 ID.AddInteger(Size); 6660 ID.AddInteger(Offset); 6661 void *IP = nullptr; 6662 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6663 return SDValue(E, 0); 6664 6665 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6666 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6667 createOperands(N, Ops); 6668 CSEMap.InsertNode(N, IP); 6669 InsertNode(N); 6670 SDValue V(N, 0); 6671 NewSDValueDbgMsg(V, "Creating new node: ", this); 6672 return V; 6673 } 6674 6675 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6676 /// MachinePointerInfo record from it. This is particularly useful because the 6677 /// code generator has many cases where it doesn't bother passing in a 6678 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6679 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6680 SelectionDAG &DAG, SDValue Ptr, 6681 int64_t Offset = 0) { 6682 // If this is FI+Offset, we can model it. 6683 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6684 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6685 FI->getIndex(), Offset); 6686 6687 // If this is (FI+Offset1)+Offset2, we can model it. 6688 if (Ptr.getOpcode() != ISD::ADD || 6689 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6690 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6691 return Info; 6692 6693 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6694 return MachinePointerInfo::getFixedStack( 6695 DAG.getMachineFunction(), FI, 6696 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6697 } 6698 6699 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6700 /// MachinePointerInfo record from it. This is particularly useful because the 6701 /// code generator has many cases where it doesn't bother passing in a 6702 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6703 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6704 SelectionDAG &DAG, SDValue Ptr, 6705 SDValue OffsetOp) { 6706 // If the 'Offset' value isn't a constant, we can't handle this. 6707 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6708 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6709 if (OffsetOp.isUndef()) 6710 return InferPointerInfo(Info, DAG, Ptr); 6711 return Info; 6712 } 6713 6714 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6715 EVT VT, const SDLoc &dl, SDValue Chain, 6716 SDValue Ptr, SDValue Offset, 6717 MachinePointerInfo PtrInfo, EVT MemVT, 6718 unsigned Alignment, 6719 MachineMemOperand::Flags MMOFlags, 6720 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6721 assert(Chain.getValueType() == MVT::Other && 6722 "Invalid chain type"); 6723 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6724 Alignment = getEVTAlignment(MemVT); 6725 6726 MMOFlags |= MachineMemOperand::MOLoad; 6727 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6728 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6729 // clients. 6730 if (PtrInfo.V.isNull()) 6731 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6732 6733 MachineFunction &MF = getMachineFunction(); 6734 MachineMemOperand *MMO = MF.getMachineMemOperand( 6735 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 6736 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6737 } 6738 6739 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6740 EVT VT, const SDLoc &dl, SDValue Chain, 6741 SDValue Ptr, SDValue Offset, EVT MemVT, 6742 MachineMemOperand *MMO) { 6743 if (VT == MemVT) { 6744 ExtType = ISD::NON_EXTLOAD; 6745 } else if (ExtType == ISD::NON_EXTLOAD) { 6746 assert(VT == MemVT && "Non-extending load from different memory type!"); 6747 } else { 6748 // Extending load. 6749 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6750 "Should only be an extending load, not truncating!"); 6751 assert(VT.isInteger() == MemVT.isInteger() && 6752 "Cannot convert from FP to Int or Int -> FP!"); 6753 assert(VT.isVector() == MemVT.isVector() && 6754 "Cannot use an ext load to convert to or from a vector!"); 6755 assert((!VT.isVector() || 6756 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6757 "Cannot use an ext load to change the number of vector elements!"); 6758 } 6759 6760 bool Indexed = AM != ISD::UNINDEXED; 6761 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6762 6763 SDVTList VTs = Indexed ? 6764 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6765 SDValue Ops[] = { Chain, Ptr, Offset }; 6766 FoldingSetNodeID ID; 6767 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6768 ID.AddInteger(MemVT.getRawBits()); 6769 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6770 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6771 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6772 void *IP = nullptr; 6773 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6774 cast<LoadSDNode>(E)->refineAlignment(MMO); 6775 return SDValue(E, 0); 6776 } 6777 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6778 ExtType, MemVT, MMO); 6779 createOperands(N, Ops); 6780 6781 CSEMap.InsertNode(N, IP); 6782 InsertNode(N); 6783 SDValue V(N, 0); 6784 NewSDValueDbgMsg(V, "Creating new node: ", this); 6785 return V; 6786 } 6787 6788 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6789 SDValue Ptr, MachinePointerInfo PtrInfo, 6790 unsigned Alignment, 6791 MachineMemOperand::Flags MMOFlags, 6792 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6793 SDValue Undef = getUNDEF(Ptr.getValueType()); 6794 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6795 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6796 } 6797 6798 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6799 SDValue Ptr, MachineMemOperand *MMO) { 6800 SDValue Undef = getUNDEF(Ptr.getValueType()); 6801 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6802 VT, MMO); 6803 } 6804 6805 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6806 EVT VT, SDValue Chain, SDValue Ptr, 6807 MachinePointerInfo PtrInfo, EVT MemVT, 6808 unsigned Alignment, 6809 MachineMemOperand::Flags MMOFlags, 6810 const AAMDNodes &AAInfo) { 6811 SDValue Undef = getUNDEF(Ptr.getValueType()); 6812 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6813 MemVT, Alignment, MMOFlags, AAInfo); 6814 } 6815 6816 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6817 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6818 MachineMemOperand *MMO) { 6819 SDValue Undef = getUNDEF(Ptr.getValueType()); 6820 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6821 MemVT, MMO); 6822 } 6823 6824 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6825 SDValue Base, SDValue Offset, 6826 ISD::MemIndexedMode AM) { 6827 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6828 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6829 // Don't propagate the invariant or dereferenceable flags. 6830 auto MMOFlags = 6831 LD->getMemOperand()->getFlags() & 6832 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6833 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6834 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6835 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6836 LD->getAAInfo()); 6837 } 6838 6839 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6840 SDValue Ptr, MachinePointerInfo PtrInfo, 6841 unsigned Alignment, 6842 MachineMemOperand::Flags MMOFlags, 6843 const AAMDNodes &AAInfo) { 6844 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6845 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6846 Alignment = getEVTAlignment(Val.getValueType()); 6847 6848 MMOFlags |= MachineMemOperand::MOStore; 6849 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6850 6851 if (PtrInfo.V.isNull()) 6852 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6853 6854 MachineFunction &MF = getMachineFunction(); 6855 MachineMemOperand *MMO = MF.getMachineMemOperand( 6856 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 6857 return getStore(Chain, dl, Val, Ptr, MMO); 6858 } 6859 6860 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6861 SDValue Ptr, MachineMemOperand *MMO) { 6862 assert(Chain.getValueType() == MVT::Other && 6863 "Invalid chain type"); 6864 EVT VT = Val.getValueType(); 6865 SDVTList VTs = getVTList(MVT::Other); 6866 SDValue Undef = getUNDEF(Ptr.getValueType()); 6867 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6868 FoldingSetNodeID ID; 6869 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6870 ID.AddInteger(VT.getRawBits()); 6871 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6872 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6873 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6874 void *IP = nullptr; 6875 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6876 cast<StoreSDNode>(E)->refineAlignment(MMO); 6877 return SDValue(E, 0); 6878 } 6879 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6880 ISD::UNINDEXED, false, VT, MMO); 6881 createOperands(N, Ops); 6882 6883 CSEMap.InsertNode(N, IP); 6884 InsertNode(N); 6885 SDValue V(N, 0); 6886 NewSDValueDbgMsg(V, "Creating new node: ", this); 6887 return V; 6888 } 6889 6890 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6891 SDValue Ptr, MachinePointerInfo PtrInfo, 6892 EVT SVT, unsigned Alignment, 6893 MachineMemOperand::Flags MMOFlags, 6894 const AAMDNodes &AAInfo) { 6895 assert(Chain.getValueType() == MVT::Other && 6896 "Invalid chain type"); 6897 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6898 Alignment = getEVTAlignment(SVT); 6899 6900 MMOFlags |= MachineMemOperand::MOStore; 6901 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6902 6903 if (PtrInfo.V.isNull()) 6904 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6905 6906 MachineFunction &MF = getMachineFunction(); 6907 MachineMemOperand *MMO = MF.getMachineMemOperand( 6908 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6909 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 6910 } 6911 6912 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6913 SDValue Ptr, EVT SVT, 6914 MachineMemOperand *MMO) { 6915 EVT VT = Val.getValueType(); 6916 6917 assert(Chain.getValueType() == MVT::Other && 6918 "Invalid chain type"); 6919 if (VT == SVT) 6920 return getStore(Chain, dl, Val, Ptr, MMO); 6921 6922 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 6923 "Should only be a truncating store, not extending!"); 6924 assert(VT.isInteger() == SVT.isInteger() && 6925 "Can't do FP-INT conversion!"); 6926 assert(VT.isVector() == SVT.isVector() && 6927 "Cannot use trunc store to convert to or from a vector!"); 6928 assert((!VT.isVector() || 6929 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 6930 "Cannot use trunc store to change the number of vector elements!"); 6931 6932 SDVTList VTs = getVTList(MVT::Other); 6933 SDValue Undef = getUNDEF(Ptr.getValueType()); 6934 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6935 FoldingSetNodeID ID; 6936 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6937 ID.AddInteger(SVT.getRawBits()); 6938 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6939 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 6940 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6941 void *IP = nullptr; 6942 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6943 cast<StoreSDNode>(E)->refineAlignment(MMO); 6944 return SDValue(E, 0); 6945 } 6946 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6947 ISD::UNINDEXED, true, SVT, MMO); 6948 createOperands(N, Ops); 6949 6950 CSEMap.InsertNode(N, IP); 6951 InsertNode(N); 6952 SDValue V(N, 0); 6953 NewSDValueDbgMsg(V, "Creating new node: ", this); 6954 return V; 6955 } 6956 6957 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 6958 SDValue Base, SDValue Offset, 6959 ISD::MemIndexedMode AM) { 6960 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 6961 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 6962 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 6963 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 6964 FoldingSetNodeID ID; 6965 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6966 ID.AddInteger(ST->getMemoryVT().getRawBits()); 6967 ID.AddInteger(ST->getRawSubclassData()); 6968 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 6969 void *IP = nullptr; 6970 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6971 return SDValue(E, 0); 6972 6973 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6974 ST->isTruncatingStore(), ST->getMemoryVT(), 6975 ST->getMemOperand()); 6976 createOperands(N, Ops); 6977 6978 CSEMap.InsertNode(N, IP); 6979 InsertNode(N); 6980 SDValue V(N, 0); 6981 NewSDValueDbgMsg(V, "Creating new node: ", this); 6982 return V; 6983 } 6984 6985 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6986 SDValue Base, SDValue Offset, SDValue Mask, 6987 SDValue PassThru, EVT MemVT, 6988 MachineMemOperand *MMO, 6989 ISD::MemIndexedMode AM, 6990 ISD::LoadExtType ExtTy, bool isExpanding) { 6991 bool Indexed = AM != ISD::UNINDEXED; 6992 assert((Indexed || Offset.isUndef()) && 6993 "Unindexed masked load with an offset!"); 6994 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 6995 : getVTList(VT, MVT::Other); 6996 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 6997 FoldingSetNodeID ID; 6998 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 6999 ID.AddInteger(MemVT.getRawBits()); 7000 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7001 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7002 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7003 void *IP = nullptr; 7004 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7005 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7006 return SDValue(E, 0); 7007 } 7008 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7009 AM, ExtTy, isExpanding, MemVT, MMO); 7010 createOperands(N, Ops); 7011 7012 CSEMap.InsertNode(N, IP); 7013 InsertNode(N); 7014 SDValue V(N, 0); 7015 NewSDValueDbgMsg(V, "Creating new node: ", this); 7016 return V; 7017 } 7018 7019 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7020 SDValue Base, SDValue Offset, 7021 ISD::MemIndexedMode AM) { 7022 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7023 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7024 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7025 Offset, LD->getMask(), LD->getPassThru(), 7026 LD->getMemoryVT(), LD->getMemOperand(), AM, 7027 LD->getExtensionType(), LD->isExpandingLoad()); 7028 } 7029 7030 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7031 SDValue Val, SDValue Base, SDValue Offset, 7032 SDValue Mask, EVT MemVT, 7033 MachineMemOperand *MMO, 7034 ISD::MemIndexedMode AM, bool IsTruncating, 7035 bool IsCompressing) { 7036 assert(Chain.getValueType() == MVT::Other && 7037 "Invalid chain type"); 7038 bool Indexed = AM != ISD::UNINDEXED; 7039 assert((Indexed || Offset.isUndef()) && 7040 "Unindexed masked store with an offset!"); 7041 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7042 : getVTList(MVT::Other); 7043 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7044 FoldingSetNodeID ID; 7045 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7046 ID.AddInteger(MemVT.getRawBits()); 7047 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7048 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7049 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7050 void *IP = nullptr; 7051 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7052 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7053 return SDValue(E, 0); 7054 } 7055 auto *N = 7056 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7057 IsTruncating, IsCompressing, MemVT, MMO); 7058 createOperands(N, Ops); 7059 7060 CSEMap.InsertNode(N, IP); 7061 InsertNode(N); 7062 SDValue V(N, 0); 7063 NewSDValueDbgMsg(V, "Creating new node: ", this); 7064 return V; 7065 } 7066 7067 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7068 SDValue Base, SDValue Offset, 7069 ISD::MemIndexedMode AM) { 7070 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7071 assert(ST->getOffset().isUndef() && 7072 "Masked store is already a indexed store!"); 7073 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7074 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7075 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7076 } 7077 7078 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7079 ArrayRef<SDValue> Ops, 7080 MachineMemOperand *MMO, 7081 ISD::MemIndexType IndexType) { 7082 assert(Ops.size() == 6 && "Incompatible number of operands"); 7083 7084 FoldingSetNodeID ID; 7085 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7086 ID.AddInteger(VT.getRawBits()); 7087 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7088 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7089 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7090 void *IP = nullptr; 7091 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7092 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7093 return SDValue(E, 0); 7094 } 7095 7096 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7097 VTs, VT, MMO, IndexType); 7098 createOperands(N, Ops); 7099 7100 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7101 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7102 assert(N->getMask().getValueType().getVectorNumElements() == 7103 N->getValueType(0).getVectorNumElements() && 7104 "Vector width mismatch between mask and data"); 7105 assert(N->getIndex().getValueType().getVectorNumElements() >= 7106 N->getValueType(0).getVectorNumElements() && 7107 "Vector width mismatch between index and data"); 7108 assert(isa<ConstantSDNode>(N->getScale()) && 7109 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7110 "Scale should be a constant power of 2"); 7111 7112 CSEMap.InsertNode(N, IP); 7113 InsertNode(N); 7114 SDValue V(N, 0); 7115 NewSDValueDbgMsg(V, "Creating new node: ", this); 7116 return V; 7117 } 7118 7119 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7120 ArrayRef<SDValue> Ops, 7121 MachineMemOperand *MMO, 7122 ISD::MemIndexType IndexType) { 7123 assert(Ops.size() == 6 && "Incompatible number of operands"); 7124 7125 FoldingSetNodeID ID; 7126 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7127 ID.AddInteger(VT.getRawBits()); 7128 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7129 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7130 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7131 void *IP = nullptr; 7132 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7133 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7134 return SDValue(E, 0); 7135 } 7136 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7137 VTs, VT, MMO, IndexType); 7138 createOperands(N, Ops); 7139 7140 assert(N->getMask().getValueType().getVectorNumElements() == 7141 N->getValue().getValueType().getVectorNumElements() && 7142 "Vector width mismatch between mask and data"); 7143 assert(N->getIndex().getValueType().getVectorNumElements() >= 7144 N->getValue().getValueType().getVectorNumElements() && 7145 "Vector width mismatch between index and data"); 7146 assert(isa<ConstantSDNode>(N->getScale()) && 7147 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7148 "Scale should be a constant power of 2"); 7149 7150 CSEMap.InsertNode(N, IP); 7151 InsertNode(N); 7152 SDValue V(N, 0); 7153 NewSDValueDbgMsg(V, "Creating new node: ", this); 7154 return V; 7155 } 7156 7157 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7158 // select undef, T, F --> T (if T is a constant), otherwise F 7159 // select, ?, undef, F --> F 7160 // select, ?, T, undef --> T 7161 if (Cond.isUndef()) 7162 return isConstantValueOfAnyType(T) ? T : F; 7163 if (T.isUndef()) 7164 return F; 7165 if (F.isUndef()) 7166 return T; 7167 7168 // select true, T, F --> T 7169 // select false, T, F --> F 7170 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7171 return CondC->isNullValue() ? F : T; 7172 7173 // TODO: This should simplify VSELECT with constant condition using something 7174 // like this (but check boolean contents to be complete?): 7175 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7176 // return T; 7177 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7178 // return F; 7179 7180 // select ?, T, T --> T 7181 if (T == F) 7182 return T; 7183 7184 return SDValue(); 7185 } 7186 7187 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7188 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7189 if (X.isUndef()) 7190 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7191 // shift X, undef --> undef (because it may shift by the bitwidth) 7192 if (Y.isUndef()) 7193 return getUNDEF(X.getValueType()); 7194 7195 // shift 0, Y --> 0 7196 // shift X, 0 --> X 7197 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7198 return X; 7199 7200 // shift X, C >= bitwidth(X) --> undef 7201 // All vector elements must be too big (or undef) to avoid partial undefs. 7202 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7203 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7204 }; 7205 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7206 return getUNDEF(X.getValueType()); 7207 7208 return SDValue(); 7209 } 7210 7211 // TODO: Use fast-math-flags to enable more simplifications. 7212 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) { 7213 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7214 if (!YC) 7215 return SDValue(); 7216 7217 // X + -0.0 --> X 7218 if (Opcode == ISD::FADD) 7219 if (YC->getValueAPF().isNegZero()) 7220 return X; 7221 7222 // X - +0.0 --> X 7223 if (Opcode == ISD::FSUB) 7224 if (YC->getValueAPF().isPosZero()) 7225 return X; 7226 7227 // X * 1.0 --> X 7228 // X / 1.0 --> X 7229 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7230 if (YC->getValueAPF().isExactlyValue(1.0)) 7231 return X; 7232 7233 return SDValue(); 7234 } 7235 7236 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7237 SDValue Ptr, SDValue SV, unsigned Align) { 7238 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7239 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7240 } 7241 7242 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7243 ArrayRef<SDUse> Ops) { 7244 switch (Ops.size()) { 7245 case 0: return getNode(Opcode, DL, VT); 7246 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7247 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7248 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7249 default: break; 7250 } 7251 7252 // Copy from an SDUse array into an SDValue array for use with 7253 // the regular getNode logic. 7254 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7255 return getNode(Opcode, DL, VT, NewOps); 7256 } 7257 7258 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7259 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7260 unsigned NumOps = Ops.size(); 7261 switch (NumOps) { 7262 case 0: return getNode(Opcode, DL, VT); 7263 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7264 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7265 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7266 default: break; 7267 } 7268 7269 switch (Opcode) { 7270 default: break; 7271 case ISD::BUILD_VECTOR: 7272 // Attempt to simplify BUILD_VECTOR. 7273 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7274 return V; 7275 break; 7276 case ISD::CONCAT_VECTORS: 7277 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7278 return V; 7279 break; 7280 case ISD::SELECT_CC: 7281 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7282 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7283 "LHS and RHS of condition must have same type!"); 7284 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7285 "True and False arms of SelectCC must have same type!"); 7286 assert(Ops[2].getValueType() == VT && 7287 "select_cc node must be of same type as true and false value!"); 7288 break; 7289 case ISD::BR_CC: 7290 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7291 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7292 "LHS/RHS of comparison should match types!"); 7293 break; 7294 } 7295 7296 // Memoize nodes. 7297 SDNode *N; 7298 SDVTList VTs = getVTList(VT); 7299 7300 if (VT != MVT::Glue) { 7301 FoldingSetNodeID ID; 7302 AddNodeIDNode(ID, Opcode, VTs, Ops); 7303 void *IP = nullptr; 7304 7305 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7306 return SDValue(E, 0); 7307 7308 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7309 createOperands(N, Ops); 7310 7311 CSEMap.InsertNode(N, IP); 7312 } else { 7313 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7314 createOperands(N, Ops); 7315 } 7316 7317 InsertNode(N); 7318 SDValue V(N, 0); 7319 NewSDValueDbgMsg(V, "Creating new node: ", this); 7320 return V; 7321 } 7322 7323 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7324 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7325 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7326 } 7327 7328 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7329 ArrayRef<SDValue> Ops) { 7330 if (VTList.NumVTs == 1) 7331 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7332 7333 switch (Opcode) { 7334 case ISD::STRICT_FP_EXTEND: 7335 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7336 "Invalid STRICT_FP_EXTEND!"); 7337 assert(VTList.VTs[0].isFloatingPoint() && 7338 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7339 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7340 "STRICT_FP_EXTEND result type should be vector iff the operand " 7341 "type is vector!"); 7342 assert((!VTList.VTs[0].isVector() || 7343 VTList.VTs[0].getVectorNumElements() == 7344 Ops[1].getValueType().getVectorNumElements()) && 7345 "Vector element count mismatch!"); 7346 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7347 "Invalid fpext node, dst <= src!"); 7348 break; 7349 case ISD::STRICT_FP_ROUND: 7350 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7351 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7352 "STRICT_FP_ROUND result type should be vector iff the operand " 7353 "type is vector!"); 7354 assert((!VTList.VTs[0].isVector() || 7355 VTList.VTs[0].getVectorNumElements() == 7356 Ops[1].getValueType().getVectorNumElements()) && 7357 "Vector element count mismatch!"); 7358 assert(VTList.VTs[0].isFloatingPoint() && 7359 Ops[1].getValueType().isFloatingPoint() && 7360 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7361 isa<ConstantSDNode>(Ops[2]) && 7362 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7363 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7364 "Invalid STRICT_FP_ROUND!"); 7365 break; 7366 #if 0 7367 // FIXME: figure out how to safely handle things like 7368 // int foo(int x) { return 1 << (x & 255); } 7369 // int bar() { return foo(256); } 7370 case ISD::SRA_PARTS: 7371 case ISD::SRL_PARTS: 7372 case ISD::SHL_PARTS: 7373 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7374 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7375 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7376 else if (N3.getOpcode() == ISD::AND) 7377 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7378 // If the and is only masking out bits that cannot effect the shift, 7379 // eliminate the and. 7380 unsigned NumBits = VT.getScalarSizeInBits()*2; 7381 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7382 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7383 } 7384 break; 7385 #endif 7386 } 7387 7388 // Memoize the node unless it returns a flag. 7389 SDNode *N; 7390 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7391 FoldingSetNodeID ID; 7392 AddNodeIDNode(ID, Opcode, VTList, Ops); 7393 void *IP = nullptr; 7394 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7395 return SDValue(E, 0); 7396 7397 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7398 createOperands(N, Ops); 7399 CSEMap.InsertNode(N, IP); 7400 } else { 7401 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7402 createOperands(N, Ops); 7403 } 7404 InsertNode(N); 7405 SDValue V(N, 0); 7406 NewSDValueDbgMsg(V, "Creating new node: ", this); 7407 return V; 7408 } 7409 7410 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7411 SDVTList VTList) { 7412 return getNode(Opcode, DL, VTList, None); 7413 } 7414 7415 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7416 SDValue N1) { 7417 SDValue Ops[] = { N1 }; 7418 return getNode(Opcode, DL, VTList, Ops); 7419 } 7420 7421 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7422 SDValue N1, SDValue N2) { 7423 SDValue Ops[] = { N1, N2 }; 7424 return getNode(Opcode, DL, VTList, Ops); 7425 } 7426 7427 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7428 SDValue N1, SDValue N2, SDValue N3) { 7429 SDValue Ops[] = { N1, N2, N3 }; 7430 return getNode(Opcode, DL, VTList, Ops); 7431 } 7432 7433 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7434 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7435 SDValue Ops[] = { N1, N2, N3, N4 }; 7436 return getNode(Opcode, DL, VTList, Ops); 7437 } 7438 7439 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7440 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7441 SDValue N5) { 7442 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7443 return getNode(Opcode, DL, VTList, Ops); 7444 } 7445 7446 SDVTList SelectionDAG::getVTList(EVT VT) { 7447 return makeVTList(SDNode::getValueTypeList(VT), 1); 7448 } 7449 7450 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7451 FoldingSetNodeID ID; 7452 ID.AddInteger(2U); 7453 ID.AddInteger(VT1.getRawBits()); 7454 ID.AddInteger(VT2.getRawBits()); 7455 7456 void *IP = nullptr; 7457 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7458 if (!Result) { 7459 EVT *Array = Allocator.Allocate<EVT>(2); 7460 Array[0] = VT1; 7461 Array[1] = VT2; 7462 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7463 VTListMap.InsertNode(Result, IP); 7464 } 7465 return Result->getSDVTList(); 7466 } 7467 7468 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7469 FoldingSetNodeID ID; 7470 ID.AddInteger(3U); 7471 ID.AddInteger(VT1.getRawBits()); 7472 ID.AddInteger(VT2.getRawBits()); 7473 ID.AddInteger(VT3.getRawBits()); 7474 7475 void *IP = nullptr; 7476 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7477 if (!Result) { 7478 EVT *Array = Allocator.Allocate<EVT>(3); 7479 Array[0] = VT1; 7480 Array[1] = VT2; 7481 Array[2] = VT3; 7482 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7483 VTListMap.InsertNode(Result, IP); 7484 } 7485 return Result->getSDVTList(); 7486 } 7487 7488 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7489 FoldingSetNodeID ID; 7490 ID.AddInteger(4U); 7491 ID.AddInteger(VT1.getRawBits()); 7492 ID.AddInteger(VT2.getRawBits()); 7493 ID.AddInteger(VT3.getRawBits()); 7494 ID.AddInteger(VT4.getRawBits()); 7495 7496 void *IP = nullptr; 7497 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7498 if (!Result) { 7499 EVT *Array = Allocator.Allocate<EVT>(4); 7500 Array[0] = VT1; 7501 Array[1] = VT2; 7502 Array[2] = VT3; 7503 Array[3] = VT4; 7504 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7505 VTListMap.InsertNode(Result, IP); 7506 } 7507 return Result->getSDVTList(); 7508 } 7509 7510 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7511 unsigned NumVTs = VTs.size(); 7512 FoldingSetNodeID ID; 7513 ID.AddInteger(NumVTs); 7514 for (unsigned index = 0; index < NumVTs; index++) { 7515 ID.AddInteger(VTs[index].getRawBits()); 7516 } 7517 7518 void *IP = nullptr; 7519 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7520 if (!Result) { 7521 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7522 llvm::copy(VTs, Array); 7523 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7524 VTListMap.InsertNode(Result, IP); 7525 } 7526 return Result->getSDVTList(); 7527 } 7528 7529 7530 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7531 /// specified operands. If the resultant node already exists in the DAG, 7532 /// this does not modify the specified node, instead it returns the node that 7533 /// already exists. If the resultant node does not exist in the DAG, the 7534 /// input node is returned. As a degenerate case, if you specify the same 7535 /// input operands as the node already has, the input node is returned. 7536 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7537 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7538 7539 // Check to see if there is no change. 7540 if (Op == N->getOperand(0)) return N; 7541 7542 // See if the modified node already exists. 7543 void *InsertPos = nullptr; 7544 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7545 return Existing; 7546 7547 // Nope it doesn't. Remove the node from its current place in the maps. 7548 if (InsertPos) 7549 if (!RemoveNodeFromCSEMaps(N)) 7550 InsertPos = nullptr; 7551 7552 // Now we update the operands. 7553 N->OperandList[0].set(Op); 7554 7555 updateDivergence(N); 7556 // If this gets put into a CSE map, add it. 7557 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7558 return N; 7559 } 7560 7561 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7562 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7563 7564 // Check to see if there is no change. 7565 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7566 return N; // No operands changed, just return the input node. 7567 7568 // See if the modified node already exists. 7569 void *InsertPos = nullptr; 7570 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7571 return Existing; 7572 7573 // Nope it doesn't. Remove the node from its current place in the maps. 7574 if (InsertPos) 7575 if (!RemoveNodeFromCSEMaps(N)) 7576 InsertPos = nullptr; 7577 7578 // Now we update the operands. 7579 if (N->OperandList[0] != Op1) 7580 N->OperandList[0].set(Op1); 7581 if (N->OperandList[1] != Op2) 7582 N->OperandList[1].set(Op2); 7583 7584 updateDivergence(N); 7585 // If this gets put into a CSE map, add it. 7586 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7587 return N; 7588 } 7589 7590 SDNode *SelectionDAG:: 7591 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7592 SDValue Ops[] = { Op1, Op2, Op3 }; 7593 return UpdateNodeOperands(N, Ops); 7594 } 7595 7596 SDNode *SelectionDAG:: 7597 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7598 SDValue Op3, SDValue Op4) { 7599 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7600 return UpdateNodeOperands(N, Ops); 7601 } 7602 7603 SDNode *SelectionDAG:: 7604 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7605 SDValue Op3, SDValue Op4, SDValue Op5) { 7606 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7607 return UpdateNodeOperands(N, Ops); 7608 } 7609 7610 SDNode *SelectionDAG:: 7611 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7612 unsigned NumOps = Ops.size(); 7613 assert(N->getNumOperands() == NumOps && 7614 "Update with wrong number of operands"); 7615 7616 // If no operands changed just return the input node. 7617 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7618 return N; 7619 7620 // See if the modified node already exists. 7621 void *InsertPos = nullptr; 7622 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7623 return Existing; 7624 7625 // Nope it doesn't. Remove the node from its current place in the maps. 7626 if (InsertPos) 7627 if (!RemoveNodeFromCSEMaps(N)) 7628 InsertPos = nullptr; 7629 7630 // Now we update the operands. 7631 for (unsigned i = 0; i != NumOps; ++i) 7632 if (N->OperandList[i] != Ops[i]) 7633 N->OperandList[i].set(Ops[i]); 7634 7635 updateDivergence(N); 7636 // If this gets put into a CSE map, add it. 7637 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7638 return N; 7639 } 7640 7641 /// DropOperands - Release the operands and set this node to have 7642 /// zero operands. 7643 void SDNode::DropOperands() { 7644 // Unlike the code in MorphNodeTo that does this, we don't need to 7645 // watch for dead nodes here. 7646 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7647 SDUse &Use = *I++; 7648 Use.set(SDValue()); 7649 } 7650 } 7651 7652 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7653 ArrayRef<MachineMemOperand *> NewMemRefs) { 7654 if (NewMemRefs.empty()) { 7655 N->clearMemRefs(); 7656 return; 7657 } 7658 7659 // Check if we can avoid allocating by storing a single reference directly. 7660 if (NewMemRefs.size() == 1) { 7661 N->MemRefs = NewMemRefs[0]; 7662 N->NumMemRefs = 1; 7663 return; 7664 } 7665 7666 MachineMemOperand **MemRefsBuffer = 7667 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7668 llvm::copy(NewMemRefs, MemRefsBuffer); 7669 N->MemRefs = MemRefsBuffer; 7670 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7671 } 7672 7673 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7674 /// machine opcode. 7675 /// 7676 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7677 EVT VT) { 7678 SDVTList VTs = getVTList(VT); 7679 return SelectNodeTo(N, MachineOpc, VTs, None); 7680 } 7681 7682 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7683 EVT VT, SDValue Op1) { 7684 SDVTList VTs = getVTList(VT); 7685 SDValue Ops[] = { Op1 }; 7686 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7687 } 7688 7689 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7690 EVT VT, SDValue Op1, 7691 SDValue Op2) { 7692 SDVTList VTs = getVTList(VT); 7693 SDValue Ops[] = { Op1, Op2 }; 7694 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7695 } 7696 7697 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7698 EVT VT, SDValue Op1, 7699 SDValue Op2, SDValue Op3) { 7700 SDVTList VTs = getVTList(VT); 7701 SDValue Ops[] = { Op1, Op2, Op3 }; 7702 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7703 } 7704 7705 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7706 EVT VT, ArrayRef<SDValue> Ops) { 7707 SDVTList VTs = getVTList(VT); 7708 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7709 } 7710 7711 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7712 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7713 SDVTList VTs = getVTList(VT1, VT2); 7714 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7715 } 7716 7717 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7718 EVT VT1, EVT VT2) { 7719 SDVTList VTs = getVTList(VT1, VT2); 7720 return SelectNodeTo(N, MachineOpc, VTs, None); 7721 } 7722 7723 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7724 EVT VT1, EVT VT2, EVT VT3, 7725 ArrayRef<SDValue> Ops) { 7726 SDVTList VTs = getVTList(VT1, VT2, VT3); 7727 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7728 } 7729 7730 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7731 EVT VT1, EVT VT2, 7732 SDValue Op1, SDValue Op2) { 7733 SDVTList VTs = getVTList(VT1, VT2); 7734 SDValue Ops[] = { Op1, Op2 }; 7735 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7736 } 7737 7738 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7739 SDVTList VTs,ArrayRef<SDValue> Ops) { 7740 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7741 // Reset the NodeID to -1. 7742 New->setNodeId(-1); 7743 if (New != N) { 7744 ReplaceAllUsesWith(N, New); 7745 RemoveDeadNode(N); 7746 } 7747 return New; 7748 } 7749 7750 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7751 /// the line number information on the merged node since it is not possible to 7752 /// preserve the information that operation is associated with multiple lines. 7753 /// This will make the debugger working better at -O0, were there is a higher 7754 /// probability having other instructions associated with that line. 7755 /// 7756 /// For IROrder, we keep the smaller of the two 7757 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7758 DebugLoc NLoc = N->getDebugLoc(); 7759 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7760 N->setDebugLoc(DebugLoc()); 7761 } 7762 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7763 N->setIROrder(Order); 7764 return N; 7765 } 7766 7767 /// MorphNodeTo - This *mutates* the specified node to have the specified 7768 /// return type, opcode, and operands. 7769 /// 7770 /// Note that MorphNodeTo returns the resultant node. If there is already a 7771 /// node of the specified opcode and operands, it returns that node instead of 7772 /// the current one. Note that the SDLoc need not be the same. 7773 /// 7774 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7775 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7776 /// node, and because it doesn't require CSE recalculation for any of 7777 /// the node's users. 7778 /// 7779 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7780 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7781 /// the legalizer which maintain worklists that would need to be updated when 7782 /// deleting things. 7783 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7784 SDVTList VTs, ArrayRef<SDValue> Ops) { 7785 // If an identical node already exists, use it. 7786 void *IP = nullptr; 7787 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7788 FoldingSetNodeID ID; 7789 AddNodeIDNode(ID, Opc, VTs, Ops); 7790 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7791 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7792 } 7793 7794 if (!RemoveNodeFromCSEMaps(N)) 7795 IP = nullptr; 7796 7797 // Start the morphing. 7798 N->NodeType = Opc; 7799 N->ValueList = VTs.VTs; 7800 N->NumValues = VTs.NumVTs; 7801 7802 // Clear the operands list, updating used nodes to remove this from their 7803 // use list. Keep track of any operands that become dead as a result. 7804 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7805 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7806 SDUse &Use = *I++; 7807 SDNode *Used = Use.getNode(); 7808 Use.set(SDValue()); 7809 if (Used->use_empty()) 7810 DeadNodeSet.insert(Used); 7811 } 7812 7813 // For MachineNode, initialize the memory references information. 7814 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7815 MN->clearMemRefs(); 7816 7817 // Swap for an appropriately sized array from the recycler. 7818 removeOperands(N); 7819 createOperands(N, Ops); 7820 7821 // Delete any nodes that are still dead after adding the uses for the 7822 // new operands. 7823 if (!DeadNodeSet.empty()) { 7824 SmallVector<SDNode *, 16> DeadNodes; 7825 for (SDNode *N : DeadNodeSet) 7826 if (N->use_empty()) 7827 DeadNodes.push_back(N); 7828 RemoveDeadNodes(DeadNodes); 7829 } 7830 7831 if (IP) 7832 CSEMap.InsertNode(N, IP); // Memoize the new node. 7833 return N; 7834 } 7835 7836 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 7837 unsigned OrigOpc = Node->getOpcode(); 7838 unsigned NewOpc; 7839 switch (OrigOpc) { 7840 default: 7841 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 7842 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7843 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 7844 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7845 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 7846 #include "llvm/IR/ConstrainedOps.def" 7847 } 7848 7849 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 7850 7851 // We're taking this node out of the chain, so we need to re-link things. 7852 SDValue InputChain = Node->getOperand(0); 7853 SDValue OutputChain = SDValue(Node, 1); 7854 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 7855 7856 SmallVector<SDValue, 3> Ops; 7857 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 7858 Ops.push_back(Node->getOperand(i)); 7859 7860 SDVTList VTs = getVTList(Node->getValueType(0)); 7861 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 7862 7863 // MorphNodeTo can operate in two ways: if an existing node with the 7864 // specified operands exists, it can just return it. Otherwise, it 7865 // updates the node in place to have the requested operands. 7866 if (Res == Node) { 7867 // If we updated the node in place, reset the node ID. To the isel, 7868 // this should be just like a newly allocated machine node. 7869 Res->setNodeId(-1); 7870 } else { 7871 ReplaceAllUsesWith(Node, Res); 7872 RemoveDeadNode(Node); 7873 } 7874 7875 return Res; 7876 } 7877 7878 /// getMachineNode - These are used for target selectors to create a new node 7879 /// with specified return type(s), MachineInstr opcode, and operands. 7880 /// 7881 /// Note that getMachineNode returns the resultant node. If there is already a 7882 /// node of the specified opcode and operands, it returns that node instead of 7883 /// the current one. 7884 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7885 EVT VT) { 7886 SDVTList VTs = getVTList(VT); 7887 return getMachineNode(Opcode, dl, VTs, None); 7888 } 7889 7890 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7891 EVT VT, SDValue Op1) { 7892 SDVTList VTs = getVTList(VT); 7893 SDValue Ops[] = { Op1 }; 7894 return getMachineNode(Opcode, dl, VTs, Ops); 7895 } 7896 7897 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7898 EVT VT, SDValue Op1, SDValue Op2) { 7899 SDVTList VTs = getVTList(VT); 7900 SDValue Ops[] = { Op1, Op2 }; 7901 return getMachineNode(Opcode, dl, VTs, Ops); 7902 } 7903 7904 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7905 EVT VT, SDValue Op1, SDValue Op2, 7906 SDValue Op3) { 7907 SDVTList VTs = getVTList(VT); 7908 SDValue Ops[] = { Op1, Op2, Op3 }; 7909 return getMachineNode(Opcode, dl, VTs, Ops); 7910 } 7911 7912 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7913 EVT VT, ArrayRef<SDValue> Ops) { 7914 SDVTList VTs = getVTList(VT); 7915 return getMachineNode(Opcode, dl, VTs, Ops); 7916 } 7917 7918 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7919 EVT VT1, EVT VT2, SDValue Op1, 7920 SDValue Op2) { 7921 SDVTList VTs = getVTList(VT1, VT2); 7922 SDValue Ops[] = { Op1, Op2 }; 7923 return getMachineNode(Opcode, dl, VTs, Ops); 7924 } 7925 7926 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7927 EVT VT1, EVT VT2, SDValue Op1, 7928 SDValue Op2, SDValue Op3) { 7929 SDVTList VTs = getVTList(VT1, VT2); 7930 SDValue Ops[] = { Op1, Op2, Op3 }; 7931 return getMachineNode(Opcode, dl, VTs, Ops); 7932 } 7933 7934 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7935 EVT VT1, EVT VT2, 7936 ArrayRef<SDValue> Ops) { 7937 SDVTList VTs = getVTList(VT1, VT2); 7938 return getMachineNode(Opcode, dl, VTs, Ops); 7939 } 7940 7941 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7942 EVT VT1, EVT VT2, EVT VT3, 7943 SDValue Op1, SDValue Op2) { 7944 SDVTList VTs = getVTList(VT1, VT2, VT3); 7945 SDValue Ops[] = { Op1, Op2 }; 7946 return getMachineNode(Opcode, dl, VTs, Ops); 7947 } 7948 7949 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7950 EVT VT1, EVT VT2, EVT VT3, 7951 SDValue Op1, SDValue Op2, 7952 SDValue Op3) { 7953 SDVTList VTs = getVTList(VT1, VT2, VT3); 7954 SDValue Ops[] = { Op1, Op2, Op3 }; 7955 return getMachineNode(Opcode, dl, VTs, Ops); 7956 } 7957 7958 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7959 EVT VT1, EVT VT2, EVT VT3, 7960 ArrayRef<SDValue> Ops) { 7961 SDVTList VTs = getVTList(VT1, VT2, VT3); 7962 return getMachineNode(Opcode, dl, VTs, Ops); 7963 } 7964 7965 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7966 ArrayRef<EVT> ResultTys, 7967 ArrayRef<SDValue> Ops) { 7968 SDVTList VTs = getVTList(ResultTys); 7969 return getMachineNode(Opcode, dl, VTs, Ops); 7970 } 7971 7972 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 7973 SDVTList VTs, 7974 ArrayRef<SDValue> Ops) { 7975 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 7976 MachineSDNode *N; 7977 void *IP = nullptr; 7978 7979 if (DoCSE) { 7980 FoldingSetNodeID ID; 7981 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 7982 IP = nullptr; 7983 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 7984 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 7985 } 7986 } 7987 7988 // Allocate a new MachineSDNode. 7989 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7990 createOperands(N, Ops); 7991 7992 if (DoCSE) 7993 CSEMap.InsertNode(N, IP); 7994 7995 InsertNode(N); 7996 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 7997 return N; 7998 } 7999 8000 /// getTargetExtractSubreg - A convenience function for creating 8001 /// TargetOpcode::EXTRACT_SUBREG nodes. 8002 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8003 SDValue Operand) { 8004 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8005 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8006 VT, Operand, SRIdxVal); 8007 return SDValue(Subreg, 0); 8008 } 8009 8010 /// getTargetInsertSubreg - A convenience function for creating 8011 /// TargetOpcode::INSERT_SUBREG nodes. 8012 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8013 SDValue Operand, SDValue Subreg) { 8014 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8015 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8016 VT, Operand, Subreg, SRIdxVal); 8017 return SDValue(Result, 0); 8018 } 8019 8020 /// getNodeIfExists - Get the specified node if it's already available, or 8021 /// else return NULL. 8022 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8023 ArrayRef<SDValue> Ops, 8024 const SDNodeFlags Flags) { 8025 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8026 FoldingSetNodeID ID; 8027 AddNodeIDNode(ID, Opcode, VTList, Ops); 8028 void *IP = nullptr; 8029 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8030 E->intersectFlagsWith(Flags); 8031 return E; 8032 } 8033 } 8034 return nullptr; 8035 } 8036 8037 /// getDbgValue - Creates a SDDbgValue node. 8038 /// 8039 /// SDNode 8040 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8041 SDNode *N, unsigned R, bool IsIndirect, 8042 const DebugLoc &DL, unsigned O) { 8043 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8044 "Expected inlined-at fields to agree"); 8045 return new (DbgInfo->getAlloc()) 8046 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8047 } 8048 8049 /// Constant 8050 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8051 DIExpression *Expr, 8052 const Value *C, 8053 const DebugLoc &DL, unsigned O) { 8054 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8055 "Expected inlined-at fields to agree"); 8056 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8057 } 8058 8059 /// FrameIndex 8060 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8061 DIExpression *Expr, unsigned FI, 8062 bool IsIndirect, 8063 const DebugLoc &DL, 8064 unsigned O) { 8065 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8066 "Expected inlined-at fields to agree"); 8067 return new (DbgInfo->getAlloc()) 8068 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8069 } 8070 8071 /// VReg 8072 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8073 DIExpression *Expr, 8074 unsigned VReg, bool IsIndirect, 8075 const DebugLoc &DL, unsigned O) { 8076 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8077 "Expected inlined-at fields to agree"); 8078 return new (DbgInfo->getAlloc()) 8079 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8080 } 8081 8082 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8083 unsigned OffsetInBits, unsigned SizeInBits, 8084 bool InvalidateDbg) { 8085 SDNode *FromNode = From.getNode(); 8086 SDNode *ToNode = To.getNode(); 8087 assert(FromNode && ToNode && "Can't modify dbg values"); 8088 8089 // PR35338 8090 // TODO: assert(From != To && "Redundant dbg value transfer"); 8091 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8092 if (From == To || FromNode == ToNode) 8093 return; 8094 8095 if (!FromNode->getHasDebugValue()) 8096 return; 8097 8098 SmallVector<SDDbgValue *, 2> ClonedDVs; 8099 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8100 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8101 continue; 8102 8103 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8104 8105 // Just transfer the dbg value attached to From. 8106 if (Dbg->getResNo() != From.getResNo()) 8107 continue; 8108 8109 DIVariable *Var = Dbg->getVariable(); 8110 auto *Expr = Dbg->getExpression(); 8111 // If a fragment is requested, update the expression. 8112 if (SizeInBits) { 8113 // When splitting a larger (e.g., sign-extended) value whose 8114 // lower bits are described with an SDDbgValue, do not attempt 8115 // to transfer the SDDbgValue to the upper bits. 8116 if (auto FI = Expr->getFragmentInfo()) 8117 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8118 continue; 8119 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8120 SizeInBits); 8121 if (!Fragment) 8122 continue; 8123 Expr = *Fragment; 8124 } 8125 // Clone the SDDbgValue and move it to To. 8126 SDDbgValue *Clone = 8127 getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), 8128 Dbg->getDebugLoc(), Dbg->getOrder()); 8129 ClonedDVs.push_back(Clone); 8130 8131 if (InvalidateDbg) { 8132 // Invalidate value and indicate the SDDbgValue should not be emitted. 8133 Dbg->setIsInvalidated(); 8134 Dbg->setIsEmitted(); 8135 } 8136 } 8137 8138 for (SDDbgValue *Dbg : ClonedDVs) 8139 AddDbgValue(Dbg, ToNode, false); 8140 } 8141 8142 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8143 if (!N.getHasDebugValue()) 8144 return; 8145 8146 SmallVector<SDDbgValue *, 2> ClonedDVs; 8147 for (auto DV : GetDbgValues(&N)) { 8148 if (DV->isInvalidated()) 8149 continue; 8150 switch (N.getOpcode()) { 8151 default: 8152 break; 8153 case ISD::ADD: 8154 SDValue N0 = N.getOperand(0); 8155 SDValue N1 = N.getOperand(1); 8156 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8157 isConstantIntBuildVectorOrConstantInt(N1)) { 8158 uint64_t Offset = N.getConstantOperandVal(1); 8159 // Rewrite an ADD constant node into a DIExpression. Since we are 8160 // performing arithmetic to compute the variable's *value* in the 8161 // DIExpression, we need to mark the expression with a 8162 // DW_OP_stack_value. 8163 auto *DIExpr = DV->getExpression(); 8164 DIExpr = 8165 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8166 SDDbgValue *Clone = 8167 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8168 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8169 ClonedDVs.push_back(Clone); 8170 DV->setIsInvalidated(); 8171 DV->setIsEmitted(); 8172 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8173 N0.getNode()->dumprFull(this); 8174 dbgs() << " into " << *DIExpr << '\n'); 8175 } 8176 } 8177 } 8178 8179 for (SDDbgValue *Dbg : ClonedDVs) 8180 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8181 } 8182 8183 /// Creates a SDDbgLabel node. 8184 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8185 const DebugLoc &DL, unsigned O) { 8186 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8187 "Expected inlined-at fields to agree"); 8188 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8189 } 8190 8191 namespace { 8192 8193 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8194 /// pointed to by a use iterator is deleted, increment the use iterator 8195 /// so that it doesn't dangle. 8196 /// 8197 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8198 SDNode::use_iterator &UI; 8199 SDNode::use_iterator &UE; 8200 8201 void NodeDeleted(SDNode *N, SDNode *E) override { 8202 // Increment the iterator as needed. 8203 while (UI != UE && N == *UI) 8204 ++UI; 8205 } 8206 8207 public: 8208 RAUWUpdateListener(SelectionDAG &d, 8209 SDNode::use_iterator &ui, 8210 SDNode::use_iterator &ue) 8211 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8212 }; 8213 8214 } // end anonymous namespace 8215 8216 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8217 /// This can cause recursive merging of nodes in the DAG. 8218 /// 8219 /// This version assumes From has a single result value. 8220 /// 8221 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8222 SDNode *From = FromN.getNode(); 8223 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8224 "Cannot replace with this method!"); 8225 assert(From != To.getNode() && "Cannot replace uses of with self"); 8226 8227 // Preserve Debug Values 8228 transferDbgValues(FromN, To); 8229 8230 // Iterate over all the existing uses of From. New uses will be added 8231 // to the beginning of the use list, which we avoid visiting. 8232 // This specifically avoids visiting uses of From that arise while the 8233 // replacement is happening, because any such uses would be the result 8234 // of CSE: If an existing node looks like From after one of its operands 8235 // is replaced by To, we don't want to replace of all its users with To 8236 // too. See PR3018 for more info. 8237 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8238 RAUWUpdateListener Listener(*this, UI, UE); 8239 while (UI != UE) { 8240 SDNode *User = *UI; 8241 8242 // This node is about to morph, remove its old self from the CSE maps. 8243 RemoveNodeFromCSEMaps(User); 8244 8245 // A user can appear in a use list multiple times, and when this 8246 // happens the uses are usually next to each other in the list. 8247 // To help reduce the number of CSE recomputations, process all 8248 // the uses of this user that we can find this way. 8249 do { 8250 SDUse &Use = UI.getUse(); 8251 ++UI; 8252 Use.set(To); 8253 if (To->isDivergent() != From->isDivergent()) 8254 updateDivergence(User); 8255 } while (UI != UE && *UI == User); 8256 // Now that we have modified User, add it back to the CSE maps. If it 8257 // already exists there, recursively merge the results together. 8258 AddModifiedNodeToCSEMaps(User); 8259 } 8260 8261 // If we just RAUW'd the root, take note. 8262 if (FromN == getRoot()) 8263 setRoot(To); 8264 } 8265 8266 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8267 /// This can cause recursive merging of nodes in the DAG. 8268 /// 8269 /// This version assumes that for each value of From, there is a 8270 /// corresponding value in To in the same position with the same type. 8271 /// 8272 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8273 #ifndef NDEBUG 8274 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8275 assert((!From->hasAnyUseOfValue(i) || 8276 From->getValueType(i) == To->getValueType(i)) && 8277 "Cannot use this version of ReplaceAllUsesWith!"); 8278 #endif 8279 8280 // Handle the trivial case. 8281 if (From == To) 8282 return; 8283 8284 // Preserve Debug Info. Only do this if there's a use. 8285 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8286 if (From->hasAnyUseOfValue(i)) { 8287 assert((i < To->getNumValues()) && "Invalid To location"); 8288 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8289 } 8290 8291 // Iterate over just the existing users of From. See the comments in 8292 // the ReplaceAllUsesWith above. 8293 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8294 RAUWUpdateListener Listener(*this, UI, UE); 8295 while (UI != UE) { 8296 SDNode *User = *UI; 8297 8298 // This node is about to morph, remove its old self from the CSE maps. 8299 RemoveNodeFromCSEMaps(User); 8300 8301 // A user can appear in a use list multiple times, and when this 8302 // happens the uses are usually next to each other in the list. 8303 // To help reduce the number of CSE recomputations, process all 8304 // the uses of this user that we can find this way. 8305 do { 8306 SDUse &Use = UI.getUse(); 8307 ++UI; 8308 Use.setNode(To); 8309 if (To->isDivergent() != From->isDivergent()) 8310 updateDivergence(User); 8311 } while (UI != UE && *UI == User); 8312 8313 // Now that we have modified User, add it back to the CSE maps. If it 8314 // already exists there, recursively merge the results together. 8315 AddModifiedNodeToCSEMaps(User); 8316 } 8317 8318 // If we just RAUW'd the root, take note. 8319 if (From == getRoot().getNode()) 8320 setRoot(SDValue(To, getRoot().getResNo())); 8321 } 8322 8323 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8324 /// This can cause recursive merging of nodes in the DAG. 8325 /// 8326 /// This version can replace From with any result values. To must match the 8327 /// number and types of values returned by From. 8328 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8329 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8330 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8331 8332 // Preserve Debug Info. 8333 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8334 transferDbgValues(SDValue(From, i), To[i]); 8335 8336 // Iterate over just the existing users of From. See the comments in 8337 // the ReplaceAllUsesWith above. 8338 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8339 RAUWUpdateListener Listener(*this, UI, UE); 8340 while (UI != UE) { 8341 SDNode *User = *UI; 8342 8343 // This node is about to morph, remove its old self from the CSE maps. 8344 RemoveNodeFromCSEMaps(User); 8345 8346 // A user can appear in a use list multiple times, and when this happens the 8347 // uses are usually next to each other in the list. To help reduce the 8348 // number of CSE and divergence recomputations, process all the uses of this 8349 // user that we can find this way. 8350 bool To_IsDivergent = false; 8351 do { 8352 SDUse &Use = UI.getUse(); 8353 const SDValue &ToOp = To[Use.getResNo()]; 8354 ++UI; 8355 Use.set(ToOp); 8356 To_IsDivergent |= ToOp->isDivergent(); 8357 } while (UI != UE && *UI == User); 8358 8359 if (To_IsDivergent != From->isDivergent()) 8360 updateDivergence(User); 8361 8362 // Now that we have modified User, add it back to the CSE maps. If it 8363 // already exists there, recursively merge the results together. 8364 AddModifiedNodeToCSEMaps(User); 8365 } 8366 8367 // If we just RAUW'd the root, take note. 8368 if (From == getRoot().getNode()) 8369 setRoot(SDValue(To[getRoot().getResNo()])); 8370 } 8371 8372 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8373 /// uses of other values produced by From.getNode() alone. The Deleted 8374 /// vector is handled the same way as for ReplaceAllUsesWith. 8375 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8376 // Handle the really simple, really trivial case efficiently. 8377 if (From == To) return; 8378 8379 // Handle the simple, trivial, case efficiently. 8380 if (From.getNode()->getNumValues() == 1) { 8381 ReplaceAllUsesWith(From, To); 8382 return; 8383 } 8384 8385 // Preserve Debug Info. 8386 transferDbgValues(From, To); 8387 8388 // Iterate over just the existing users of From. See the comments in 8389 // the ReplaceAllUsesWith above. 8390 SDNode::use_iterator UI = From.getNode()->use_begin(), 8391 UE = From.getNode()->use_end(); 8392 RAUWUpdateListener Listener(*this, UI, UE); 8393 while (UI != UE) { 8394 SDNode *User = *UI; 8395 bool UserRemovedFromCSEMaps = false; 8396 8397 // A user can appear in a use list multiple times, and when this 8398 // happens the uses are usually next to each other in the list. 8399 // To help reduce the number of CSE recomputations, process all 8400 // the uses of this user that we can find this way. 8401 do { 8402 SDUse &Use = UI.getUse(); 8403 8404 // Skip uses of different values from the same node. 8405 if (Use.getResNo() != From.getResNo()) { 8406 ++UI; 8407 continue; 8408 } 8409 8410 // If this node hasn't been modified yet, it's still in the CSE maps, 8411 // so remove its old self from the CSE maps. 8412 if (!UserRemovedFromCSEMaps) { 8413 RemoveNodeFromCSEMaps(User); 8414 UserRemovedFromCSEMaps = true; 8415 } 8416 8417 ++UI; 8418 Use.set(To); 8419 if (To->isDivergent() != From->isDivergent()) 8420 updateDivergence(User); 8421 } while (UI != UE && *UI == User); 8422 // We are iterating over all uses of the From node, so if a use 8423 // doesn't use the specific value, no changes are made. 8424 if (!UserRemovedFromCSEMaps) 8425 continue; 8426 8427 // Now that we have modified User, add it back to the CSE maps. If it 8428 // already exists there, recursively merge the results together. 8429 AddModifiedNodeToCSEMaps(User); 8430 } 8431 8432 // If we just RAUW'd the root, take note. 8433 if (From == getRoot()) 8434 setRoot(To); 8435 } 8436 8437 namespace { 8438 8439 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8440 /// to record information about a use. 8441 struct UseMemo { 8442 SDNode *User; 8443 unsigned Index; 8444 SDUse *Use; 8445 }; 8446 8447 /// operator< - Sort Memos by User. 8448 bool operator<(const UseMemo &L, const UseMemo &R) { 8449 return (intptr_t)L.User < (intptr_t)R.User; 8450 } 8451 8452 } // end anonymous namespace 8453 8454 void SelectionDAG::updateDivergence(SDNode * N) 8455 { 8456 if (TLI->isSDNodeAlwaysUniform(N)) 8457 return; 8458 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8459 for (auto &Op : N->ops()) { 8460 if (Op.Val.getValueType() != MVT::Other) 8461 IsDivergent |= Op.getNode()->isDivergent(); 8462 } 8463 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8464 N->SDNodeBits.IsDivergent = IsDivergent; 8465 for (auto U : N->uses()) { 8466 updateDivergence(U); 8467 } 8468 } 8469 } 8470 8471 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8472 DenseMap<SDNode *, unsigned> Degree; 8473 Order.reserve(AllNodes.size()); 8474 for (auto &N : allnodes()) { 8475 unsigned NOps = N.getNumOperands(); 8476 Degree[&N] = NOps; 8477 if (0 == NOps) 8478 Order.push_back(&N); 8479 } 8480 for (size_t I = 0; I != Order.size(); ++I) { 8481 SDNode *N = Order[I]; 8482 for (auto U : N->uses()) { 8483 unsigned &UnsortedOps = Degree[U]; 8484 if (0 == --UnsortedOps) 8485 Order.push_back(U); 8486 } 8487 } 8488 } 8489 8490 #ifndef NDEBUG 8491 void SelectionDAG::VerifyDAGDiverence() { 8492 std::vector<SDNode *> TopoOrder; 8493 CreateTopologicalOrder(TopoOrder); 8494 const TargetLowering &TLI = getTargetLoweringInfo(); 8495 DenseMap<const SDNode *, bool> DivergenceMap; 8496 for (auto &N : allnodes()) { 8497 DivergenceMap[&N] = false; 8498 } 8499 for (auto N : TopoOrder) { 8500 bool IsDivergent = DivergenceMap[N]; 8501 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8502 for (auto &Op : N->ops()) { 8503 if (Op.Val.getValueType() != MVT::Other) 8504 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8505 } 8506 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8507 DivergenceMap[N] = true; 8508 } 8509 } 8510 for (auto &N : allnodes()) { 8511 (void)N; 8512 assert(DivergenceMap[&N] == N.isDivergent() && 8513 "Divergence bit inconsistency detected\n"); 8514 } 8515 } 8516 #endif 8517 8518 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8519 /// uses of other values produced by From.getNode() alone. The same value 8520 /// may appear in both the From and To list. The Deleted vector is 8521 /// handled the same way as for ReplaceAllUsesWith. 8522 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8523 const SDValue *To, 8524 unsigned Num){ 8525 // Handle the simple, trivial case efficiently. 8526 if (Num == 1) 8527 return ReplaceAllUsesOfValueWith(*From, *To); 8528 8529 transferDbgValues(*From, *To); 8530 8531 // Read up all the uses and make records of them. This helps 8532 // processing new uses that are introduced during the 8533 // replacement process. 8534 SmallVector<UseMemo, 4> Uses; 8535 for (unsigned i = 0; i != Num; ++i) { 8536 unsigned FromResNo = From[i].getResNo(); 8537 SDNode *FromNode = From[i].getNode(); 8538 for (SDNode::use_iterator UI = FromNode->use_begin(), 8539 E = FromNode->use_end(); UI != E; ++UI) { 8540 SDUse &Use = UI.getUse(); 8541 if (Use.getResNo() == FromResNo) { 8542 UseMemo Memo = { *UI, i, &Use }; 8543 Uses.push_back(Memo); 8544 } 8545 } 8546 } 8547 8548 // Sort the uses, so that all the uses from a given User are together. 8549 llvm::sort(Uses); 8550 8551 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8552 UseIndex != UseIndexEnd; ) { 8553 // We know that this user uses some value of From. If it is the right 8554 // value, update it. 8555 SDNode *User = Uses[UseIndex].User; 8556 8557 // This node is about to morph, remove its old self from the CSE maps. 8558 RemoveNodeFromCSEMaps(User); 8559 8560 // The Uses array is sorted, so all the uses for a given User 8561 // are next to each other in the list. 8562 // To help reduce the number of CSE recomputations, process all 8563 // the uses of this user that we can find this way. 8564 do { 8565 unsigned i = Uses[UseIndex].Index; 8566 SDUse &Use = *Uses[UseIndex].Use; 8567 ++UseIndex; 8568 8569 Use.set(To[i]); 8570 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8571 8572 // Now that we have modified User, add it back to the CSE maps. If it 8573 // already exists there, recursively merge the results together. 8574 AddModifiedNodeToCSEMaps(User); 8575 } 8576 } 8577 8578 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8579 /// based on their topological order. It returns the maximum id and a vector 8580 /// of the SDNodes* in assigned order by reference. 8581 unsigned SelectionDAG::AssignTopologicalOrder() { 8582 unsigned DAGSize = 0; 8583 8584 // SortedPos tracks the progress of the algorithm. Nodes before it are 8585 // sorted, nodes after it are unsorted. When the algorithm completes 8586 // it is at the end of the list. 8587 allnodes_iterator SortedPos = allnodes_begin(); 8588 8589 // Visit all the nodes. Move nodes with no operands to the front of 8590 // the list immediately. Annotate nodes that do have operands with their 8591 // operand count. Before we do this, the Node Id fields of the nodes 8592 // may contain arbitrary values. After, the Node Id fields for nodes 8593 // before SortedPos will contain the topological sort index, and the 8594 // Node Id fields for nodes At SortedPos and after will contain the 8595 // count of outstanding operands. 8596 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8597 SDNode *N = &*I++; 8598 checkForCycles(N, this); 8599 unsigned Degree = N->getNumOperands(); 8600 if (Degree == 0) { 8601 // A node with no uses, add it to the result array immediately. 8602 N->setNodeId(DAGSize++); 8603 allnodes_iterator Q(N); 8604 if (Q != SortedPos) 8605 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8606 assert(SortedPos != AllNodes.end() && "Overran node list"); 8607 ++SortedPos; 8608 } else { 8609 // Temporarily use the Node Id as scratch space for the degree count. 8610 N->setNodeId(Degree); 8611 } 8612 } 8613 8614 // Visit all the nodes. As we iterate, move nodes into sorted order, 8615 // such that by the time the end is reached all nodes will be sorted. 8616 for (SDNode &Node : allnodes()) { 8617 SDNode *N = &Node; 8618 checkForCycles(N, this); 8619 // N is in sorted position, so all its uses have one less operand 8620 // that needs to be sorted. 8621 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8622 UI != UE; ++UI) { 8623 SDNode *P = *UI; 8624 unsigned Degree = P->getNodeId(); 8625 assert(Degree != 0 && "Invalid node degree"); 8626 --Degree; 8627 if (Degree == 0) { 8628 // All of P's operands are sorted, so P may sorted now. 8629 P->setNodeId(DAGSize++); 8630 if (P->getIterator() != SortedPos) 8631 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8632 assert(SortedPos != AllNodes.end() && "Overran node list"); 8633 ++SortedPos; 8634 } else { 8635 // Update P's outstanding operand count. 8636 P->setNodeId(Degree); 8637 } 8638 } 8639 if (Node.getIterator() == SortedPos) { 8640 #ifndef NDEBUG 8641 allnodes_iterator I(N); 8642 SDNode *S = &*++I; 8643 dbgs() << "Overran sorted position:\n"; 8644 S->dumprFull(this); dbgs() << "\n"; 8645 dbgs() << "Checking if this is due to cycles\n"; 8646 checkForCycles(this, true); 8647 #endif 8648 llvm_unreachable(nullptr); 8649 } 8650 } 8651 8652 assert(SortedPos == AllNodes.end() && 8653 "Topological sort incomplete!"); 8654 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8655 "First node in topological sort is not the entry token!"); 8656 assert(AllNodes.front().getNodeId() == 0 && 8657 "First node in topological sort has non-zero id!"); 8658 assert(AllNodes.front().getNumOperands() == 0 && 8659 "First node in topological sort has operands!"); 8660 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8661 "Last node in topologic sort has unexpected id!"); 8662 assert(AllNodes.back().use_empty() && 8663 "Last node in topologic sort has users!"); 8664 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8665 return DAGSize; 8666 } 8667 8668 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8669 /// value is produced by SD. 8670 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8671 if (SD) { 8672 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8673 SD->setHasDebugValue(true); 8674 } 8675 DbgInfo->add(DB, SD, isParameter); 8676 } 8677 8678 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8679 DbgInfo->add(DB); 8680 } 8681 8682 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8683 SDValue NewMemOp) { 8684 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8685 // The new memory operation must have the same position as the old load in 8686 // terms of memory dependency. Create a TokenFactor for the old load and new 8687 // memory operation and update uses of the old load's output chain to use that 8688 // TokenFactor. 8689 SDValue OldChain = SDValue(OldLoad, 1); 8690 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8691 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8692 return NewChain; 8693 8694 SDValue TokenFactor = 8695 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8696 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8697 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8698 return TokenFactor; 8699 } 8700 8701 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8702 Function **OutFunction) { 8703 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8704 8705 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8706 auto *Module = MF->getFunction().getParent(); 8707 auto *Function = Module->getFunction(Symbol); 8708 8709 if (OutFunction != nullptr) 8710 *OutFunction = Function; 8711 8712 if (Function != nullptr) { 8713 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8714 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8715 } 8716 8717 std::string ErrorStr; 8718 raw_string_ostream ErrorFormatter(ErrorStr); 8719 8720 ErrorFormatter << "Undefined external symbol "; 8721 ErrorFormatter << '"' << Symbol << '"'; 8722 ErrorFormatter.flush(); 8723 8724 report_fatal_error(ErrorStr); 8725 } 8726 8727 //===----------------------------------------------------------------------===// 8728 // SDNode Class 8729 //===----------------------------------------------------------------------===// 8730 8731 bool llvm::isNullConstant(SDValue V) { 8732 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8733 return Const != nullptr && Const->isNullValue(); 8734 } 8735 8736 bool llvm::isNullFPConstant(SDValue V) { 8737 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8738 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8739 } 8740 8741 bool llvm::isAllOnesConstant(SDValue V) { 8742 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8743 return Const != nullptr && Const->isAllOnesValue(); 8744 } 8745 8746 bool llvm::isOneConstant(SDValue V) { 8747 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8748 return Const != nullptr && Const->isOne(); 8749 } 8750 8751 SDValue llvm::peekThroughBitcasts(SDValue V) { 8752 while (V.getOpcode() == ISD::BITCAST) 8753 V = V.getOperand(0); 8754 return V; 8755 } 8756 8757 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8758 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8759 V = V.getOperand(0); 8760 return V; 8761 } 8762 8763 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8764 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8765 V = V.getOperand(0); 8766 return V; 8767 } 8768 8769 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 8770 if (V.getOpcode() != ISD::XOR) 8771 return false; 8772 V = peekThroughBitcasts(V.getOperand(1)); 8773 unsigned NumBits = V.getScalarValueSizeInBits(); 8774 ConstantSDNode *C = 8775 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 8776 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 8777 } 8778 8779 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 8780 bool AllowTruncation) { 8781 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8782 return CN; 8783 8784 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8785 BitVector UndefElements; 8786 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8787 8788 // BuildVectors can truncate their operands. Ignore that case here unless 8789 // AllowTruncation is set. 8790 if (CN && (UndefElements.none() || AllowUndefs)) { 8791 EVT CVT = CN->getValueType(0); 8792 EVT NSVT = N.getValueType().getScalarType(); 8793 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8794 if (AllowTruncation || (CVT == NSVT)) 8795 return CN; 8796 } 8797 } 8798 8799 return nullptr; 8800 } 8801 8802 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 8803 bool AllowUndefs, 8804 bool AllowTruncation) { 8805 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8806 return CN; 8807 8808 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8809 BitVector UndefElements; 8810 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 8811 8812 // BuildVectors can truncate their operands. Ignore that case here unless 8813 // AllowTruncation is set. 8814 if (CN && (UndefElements.none() || AllowUndefs)) { 8815 EVT CVT = CN->getValueType(0); 8816 EVT NSVT = N.getValueType().getScalarType(); 8817 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8818 if (AllowTruncation || (CVT == NSVT)) 8819 return CN; 8820 } 8821 } 8822 8823 return nullptr; 8824 } 8825 8826 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 8827 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8828 return CN; 8829 8830 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8831 BitVector UndefElements; 8832 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 8833 if (CN && (UndefElements.none() || AllowUndefs)) 8834 return CN; 8835 } 8836 8837 return nullptr; 8838 } 8839 8840 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 8841 const APInt &DemandedElts, 8842 bool AllowUndefs) { 8843 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8844 return CN; 8845 8846 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8847 BitVector UndefElements; 8848 ConstantFPSDNode *CN = 8849 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 8850 if (CN && (UndefElements.none() || AllowUndefs)) 8851 return CN; 8852 } 8853 8854 return nullptr; 8855 } 8856 8857 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 8858 // TODO: may want to use peekThroughBitcast() here. 8859 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 8860 return C && C->isNullValue(); 8861 } 8862 8863 bool llvm::isOneOrOneSplat(SDValue N) { 8864 // TODO: may want to use peekThroughBitcast() here. 8865 unsigned BitWidth = N.getScalarValueSizeInBits(); 8866 ConstantSDNode *C = isConstOrConstSplat(N); 8867 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 8868 } 8869 8870 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 8871 N = peekThroughBitcasts(N); 8872 unsigned BitWidth = N.getScalarValueSizeInBits(); 8873 ConstantSDNode *C = isConstOrConstSplat(N); 8874 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 8875 } 8876 8877 HandleSDNode::~HandleSDNode() { 8878 DropOperands(); 8879 } 8880 8881 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 8882 const DebugLoc &DL, 8883 const GlobalValue *GA, EVT VT, 8884 int64_t o, unsigned TF) 8885 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 8886 TheGlobal = GA; 8887 } 8888 8889 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 8890 EVT VT, unsigned SrcAS, 8891 unsigned DestAS) 8892 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 8893 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 8894 8895 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 8896 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 8897 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 8898 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 8899 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 8900 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 8901 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 8902 8903 // We check here that the size of the memory operand fits within the size of 8904 // the MMO. This is because the MMO might indicate only a possible address 8905 // range instead of specifying the affected memory addresses precisely. 8906 // TODO: Make MachineMemOperands aware of scalable vectors. 8907 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 8908 "Size mismatch!"); 8909 } 8910 8911 /// Profile - Gather unique data for the node. 8912 /// 8913 void SDNode::Profile(FoldingSetNodeID &ID) const { 8914 AddNodeIDNode(ID, this); 8915 } 8916 8917 namespace { 8918 8919 struct EVTArray { 8920 std::vector<EVT> VTs; 8921 8922 EVTArray() { 8923 VTs.reserve(MVT::LAST_VALUETYPE); 8924 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 8925 VTs.push_back(MVT((MVT::SimpleValueType)i)); 8926 } 8927 }; 8928 8929 } // end anonymous namespace 8930 8931 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 8932 static ManagedStatic<EVTArray> SimpleVTArray; 8933 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 8934 8935 /// getValueTypeList - Return a pointer to the specified value type. 8936 /// 8937 const EVT *SDNode::getValueTypeList(EVT VT) { 8938 if (VT.isExtended()) { 8939 sys::SmartScopedLock<true> Lock(*VTMutex); 8940 return &(*EVTs->insert(VT).first); 8941 } else { 8942 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 8943 "Value type out of range!"); 8944 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 8945 } 8946 } 8947 8948 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 8949 /// indicated value. This method ignores uses of other values defined by this 8950 /// operation. 8951 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 8952 assert(Value < getNumValues() && "Bad value!"); 8953 8954 // TODO: Only iterate over uses of a given value of the node 8955 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 8956 if (UI.getUse().getResNo() == Value) { 8957 if (NUses == 0) 8958 return false; 8959 --NUses; 8960 } 8961 } 8962 8963 // Found exactly the right number of uses? 8964 return NUses == 0; 8965 } 8966 8967 /// hasAnyUseOfValue - Return true if there are any use of the indicated 8968 /// value. This method ignores uses of other values defined by this operation. 8969 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 8970 assert(Value < getNumValues() && "Bad value!"); 8971 8972 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 8973 if (UI.getUse().getResNo() == Value) 8974 return true; 8975 8976 return false; 8977 } 8978 8979 /// isOnlyUserOf - Return true if this node is the only use of N. 8980 bool SDNode::isOnlyUserOf(const SDNode *N) const { 8981 bool Seen = false; 8982 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8983 SDNode *User = *I; 8984 if (User == this) 8985 Seen = true; 8986 else 8987 return false; 8988 } 8989 8990 return Seen; 8991 } 8992 8993 /// Return true if the only users of N are contained in Nodes. 8994 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 8995 bool Seen = false; 8996 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8997 SDNode *User = *I; 8998 if (llvm::any_of(Nodes, 8999 [&User](const SDNode *Node) { return User == Node; })) 9000 Seen = true; 9001 else 9002 return false; 9003 } 9004 9005 return Seen; 9006 } 9007 9008 /// isOperand - Return true if this node is an operand of N. 9009 bool SDValue::isOperandOf(const SDNode *N) const { 9010 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9011 } 9012 9013 bool SDNode::isOperandOf(const SDNode *N) const { 9014 return any_of(N->op_values(), 9015 [this](SDValue Op) { return this == Op.getNode(); }); 9016 } 9017 9018 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9019 /// be a chain) reaches the specified operand without crossing any 9020 /// side-effecting instructions on any chain path. In practice, this looks 9021 /// through token factors and non-volatile loads. In order to remain efficient, 9022 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9023 /// 9024 /// Note that we only need to examine chains when we're searching for 9025 /// side-effects; SelectionDAG requires that all side-effects are represented 9026 /// by chains, even if another operand would force a specific ordering. This 9027 /// constraint is necessary to allow transformations like splitting loads. 9028 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9029 unsigned Depth) const { 9030 if (*this == Dest) return true; 9031 9032 // Don't search too deeply, we just want to be able to see through 9033 // TokenFactor's etc. 9034 if (Depth == 0) return false; 9035 9036 // If this is a token factor, all inputs to the TF happen in parallel. 9037 if (getOpcode() == ISD::TokenFactor) { 9038 // First, try a shallow search. 9039 if (is_contained((*this)->ops(), Dest)) { 9040 // We found the chain we want as an operand of this TokenFactor. 9041 // Essentially, we reach the chain without side-effects if we could 9042 // serialize the TokenFactor into a simple chain of operations with 9043 // Dest as the last operation. This is automatically true if the 9044 // chain has one use: there are no other ordering constraints. 9045 // If the chain has more than one use, we give up: some other 9046 // use of Dest might force a side-effect between Dest and the current 9047 // node. 9048 if (Dest.hasOneUse()) 9049 return true; 9050 } 9051 // Next, try a deep search: check whether every operand of the TokenFactor 9052 // reaches Dest. 9053 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9054 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9055 }); 9056 } 9057 9058 // Loads don't have side effects, look through them. 9059 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9060 if (Ld->isUnordered()) 9061 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9062 } 9063 return false; 9064 } 9065 9066 bool SDNode::hasPredecessor(const SDNode *N) const { 9067 SmallPtrSet<const SDNode *, 32> Visited; 9068 SmallVector<const SDNode *, 16> Worklist; 9069 Worklist.push_back(this); 9070 return hasPredecessorHelper(N, Visited, Worklist); 9071 } 9072 9073 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9074 this->Flags.intersectWith(Flags); 9075 } 9076 9077 SDValue 9078 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9079 ArrayRef<ISD::NodeType> CandidateBinOps, 9080 bool AllowPartials) { 9081 // The pattern must end in an extract from index 0. 9082 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9083 !isNullConstant(Extract->getOperand(1))) 9084 return SDValue(); 9085 9086 // Match against one of the candidate binary ops. 9087 SDValue Op = Extract->getOperand(0); 9088 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9089 return Op.getOpcode() == unsigned(BinOp); 9090 })) 9091 return SDValue(); 9092 9093 // Floating-point reductions may require relaxed constraints on the final step 9094 // of the reduction because they may reorder intermediate operations. 9095 unsigned CandidateBinOp = Op.getOpcode(); 9096 if (Op.getValueType().isFloatingPoint()) { 9097 SDNodeFlags Flags = Op->getFlags(); 9098 switch (CandidateBinOp) { 9099 case ISD::FADD: 9100 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9101 return SDValue(); 9102 break; 9103 default: 9104 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9105 } 9106 } 9107 9108 // Matching failed - attempt to see if we did enough stages that a partial 9109 // reduction from a subvector is possible. 9110 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9111 if (!AllowPartials || !Op) 9112 return SDValue(); 9113 EVT OpVT = Op.getValueType(); 9114 EVT OpSVT = OpVT.getScalarType(); 9115 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9116 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9117 return SDValue(); 9118 BinOp = (ISD::NodeType)CandidateBinOp; 9119 return getNode( 9120 ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9121 getConstant(0, SDLoc(Op), TLI->getVectorIdxTy(getDataLayout()))); 9122 }; 9123 9124 // At each stage, we're looking for something that looks like: 9125 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9126 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9127 // i32 undef, i32 undef, i32 undef, i32 undef> 9128 // %a = binop <8 x i32> %op, %s 9129 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9130 // we expect something like: 9131 // <4,5,6,7,u,u,u,u> 9132 // <2,3,u,u,u,u,u,u> 9133 // <1,u,u,u,u,u,u,u> 9134 // While a partial reduction match would be: 9135 // <2,3,u,u,u,u,u,u> 9136 // <1,u,u,u,u,u,u,u> 9137 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9138 SDValue PrevOp; 9139 for (unsigned i = 0; i < Stages; ++i) { 9140 unsigned MaskEnd = (1 << i); 9141 9142 if (Op.getOpcode() != CandidateBinOp) 9143 return PartialReduction(PrevOp, MaskEnd); 9144 9145 SDValue Op0 = Op.getOperand(0); 9146 SDValue Op1 = Op.getOperand(1); 9147 9148 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9149 if (Shuffle) { 9150 Op = Op1; 9151 } else { 9152 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9153 Op = Op0; 9154 } 9155 9156 // The first operand of the shuffle should be the same as the other operand 9157 // of the binop. 9158 if (!Shuffle || Shuffle->getOperand(0) != Op) 9159 return PartialReduction(PrevOp, MaskEnd); 9160 9161 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9162 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9163 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9164 return PartialReduction(PrevOp, MaskEnd); 9165 9166 PrevOp = Op; 9167 } 9168 9169 BinOp = (ISD::NodeType)CandidateBinOp; 9170 return Op; 9171 } 9172 9173 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9174 assert(N->getNumValues() == 1 && 9175 "Can't unroll a vector with multiple results!"); 9176 9177 EVT VT = N->getValueType(0); 9178 unsigned NE = VT.getVectorNumElements(); 9179 EVT EltVT = VT.getVectorElementType(); 9180 SDLoc dl(N); 9181 9182 SmallVector<SDValue, 8> Scalars; 9183 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9184 9185 // If ResNE is 0, fully unroll the vector op. 9186 if (ResNE == 0) 9187 ResNE = NE; 9188 else if (NE > ResNE) 9189 NE = ResNE; 9190 9191 unsigned i; 9192 for (i= 0; i != NE; ++i) { 9193 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9194 SDValue Operand = N->getOperand(j); 9195 EVT OperandVT = Operand.getValueType(); 9196 if (OperandVT.isVector()) { 9197 // A vector operand; extract a single element. 9198 EVT OperandEltVT = OperandVT.getVectorElementType(); 9199 Operands[j] = 9200 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 9201 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 9202 } else { 9203 // A scalar operand; just use it as is. 9204 Operands[j] = Operand; 9205 } 9206 } 9207 9208 switch (N->getOpcode()) { 9209 default: { 9210 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9211 N->getFlags())); 9212 break; 9213 } 9214 case ISD::VSELECT: 9215 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9216 break; 9217 case ISD::SHL: 9218 case ISD::SRA: 9219 case ISD::SRL: 9220 case ISD::ROTL: 9221 case ISD::ROTR: 9222 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9223 getShiftAmountOperand(Operands[0].getValueType(), 9224 Operands[1]))); 9225 break; 9226 case ISD::SIGN_EXTEND_INREG: { 9227 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9228 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9229 Operands[0], 9230 getValueType(ExtVT))); 9231 } 9232 } 9233 } 9234 9235 for (; i < ResNE; ++i) 9236 Scalars.push_back(getUNDEF(EltVT)); 9237 9238 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9239 return getBuildVector(VecVT, dl, Scalars); 9240 } 9241 9242 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9243 SDNode *N, unsigned ResNE) { 9244 unsigned Opcode = N->getOpcode(); 9245 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9246 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9247 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9248 "Expected an overflow opcode"); 9249 9250 EVT ResVT = N->getValueType(0); 9251 EVT OvVT = N->getValueType(1); 9252 EVT ResEltVT = ResVT.getVectorElementType(); 9253 EVT OvEltVT = OvVT.getVectorElementType(); 9254 SDLoc dl(N); 9255 9256 // If ResNE is 0, fully unroll the vector op. 9257 unsigned NE = ResVT.getVectorNumElements(); 9258 if (ResNE == 0) 9259 ResNE = NE; 9260 else if (NE > ResNE) 9261 NE = ResNE; 9262 9263 SmallVector<SDValue, 8> LHSScalars; 9264 SmallVector<SDValue, 8> RHSScalars; 9265 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9266 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9267 9268 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9269 SDVTList VTs = getVTList(ResEltVT, SVT); 9270 SmallVector<SDValue, 8> ResScalars; 9271 SmallVector<SDValue, 8> OvScalars; 9272 for (unsigned i = 0; i < NE; ++i) { 9273 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9274 SDValue Ov = 9275 getSelect(dl, OvEltVT, Res.getValue(1), 9276 getBoolConstant(true, dl, OvEltVT, ResVT), 9277 getConstant(0, dl, OvEltVT)); 9278 9279 ResScalars.push_back(Res); 9280 OvScalars.push_back(Ov); 9281 } 9282 9283 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9284 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9285 9286 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9287 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9288 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9289 getBuildVector(NewOvVT, dl, OvScalars)); 9290 } 9291 9292 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9293 LoadSDNode *Base, 9294 unsigned Bytes, 9295 int Dist) const { 9296 if (LD->isVolatile() || Base->isVolatile()) 9297 return false; 9298 // TODO: probably too restrictive for atomics, revisit 9299 if (!LD->isSimple()) 9300 return false; 9301 if (LD->isIndexed() || Base->isIndexed()) 9302 return false; 9303 if (LD->getChain() != Base->getChain()) 9304 return false; 9305 EVT VT = LD->getValueType(0); 9306 if (VT.getSizeInBits() / 8 != Bytes) 9307 return false; 9308 9309 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9310 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9311 9312 int64_t Offset = 0; 9313 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9314 return (Dist * Bytes == Offset); 9315 return false; 9316 } 9317 9318 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 9319 /// it cannot be inferred. 9320 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 9321 // If this is a GlobalAddress + cst, return the alignment. 9322 const GlobalValue *GV = nullptr; 9323 int64_t GVOffset = 0; 9324 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9325 unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType()); 9326 KnownBits Known(IdxWidth); 9327 llvm::computeKnownBits(GV, Known, getDataLayout()); 9328 unsigned AlignBits = Known.countMinTrailingZeros(); 9329 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 9330 if (Align) 9331 return MinAlign(Align, GVOffset); 9332 } 9333 9334 // If this is a direct reference to a stack slot, use information about the 9335 // stack slot's alignment. 9336 int FrameIdx = INT_MIN; 9337 int64_t FrameOffset = 0; 9338 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9339 FrameIdx = FI->getIndex(); 9340 } else if (isBaseWithConstantOffset(Ptr) && 9341 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9342 // Handle FI+Cst 9343 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9344 FrameOffset = Ptr.getConstantOperandVal(1); 9345 } 9346 9347 if (FrameIdx != INT_MIN) { 9348 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9349 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 9350 FrameOffset); 9351 return FIInfoAlign; 9352 } 9353 9354 return 0; 9355 } 9356 9357 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9358 /// which is split (or expanded) into two not necessarily identical pieces. 9359 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9360 // Currently all types are split in half. 9361 EVT LoVT, HiVT; 9362 if (!VT.isVector()) 9363 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9364 else 9365 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9366 9367 return std::make_pair(LoVT, HiVT); 9368 } 9369 9370 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9371 /// low/high part. 9372 std::pair<SDValue, SDValue> 9373 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9374 const EVT &HiVT) { 9375 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9376 N.getValueType().getVectorNumElements() && 9377 "More vector elements requested than available!"); 9378 SDValue Lo, Hi; 9379 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 9380 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9381 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9382 getConstant(LoVT.getVectorNumElements(), DL, 9383 TLI->getVectorIdxTy(getDataLayout()))); 9384 return std::make_pair(Lo, Hi); 9385 } 9386 9387 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9388 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9389 EVT VT = N.getValueType(); 9390 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9391 NextPowerOf2(VT.getVectorNumElements())); 9392 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9393 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9394 } 9395 9396 void SelectionDAG::ExtractVectorElements(SDValue Op, 9397 SmallVectorImpl<SDValue> &Args, 9398 unsigned Start, unsigned Count) { 9399 EVT VT = Op.getValueType(); 9400 if (Count == 0) 9401 Count = VT.getVectorNumElements(); 9402 9403 EVT EltVT = VT.getVectorElementType(); 9404 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 9405 SDLoc SL(Op); 9406 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9407 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9408 Op, getConstant(i, SL, IdxTy))); 9409 } 9410 } 9411 9412 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9413 unsigned GlobalAddressSDNode::getAddressSpace() const { 9414 return getGlobal()->getType()->getAddressSpace(); 9415 } 9416 9417 Type *ConstantPoolSDNode::getType() const { 9418 if (isMachineConstantPoolEntry()) 9419 return Val.MachineCPVal->getType(); 9420 return Val.ConstVal->getType(); 9421 } 9422 9423 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9424 unsigned &SplatBitSize, 9425 bool &HasAnyUndefs, 9426 unsigned MinSplatBits, 9427 bool IsBigEndian) const { 9428 EVT VT = getValueType(0); 9429 assert(VT.isVector() && "Expected a vector type"); 9430 unsigned VecWidth = VT.getSizeInBits(); 9431 if (MinSplatBits > VecWidth) 9432 return false; 9433 9434 // FIXME: The widths are based on this node's type, but build vectors can 9435 // truncate their operands. 9436 SplatValue = APInt(VecWidth, 0); 9437 SplatUndef = APInt(VecWidth, 0); 9438 9439 // Get the bits. Bits with undefined values (when the corresponding element 9440 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9441 // in SplatValue. If any of the values are not constant, give up and return 9442 // false. 9443 unsigned int NumOps = getNumOperands(); 9444 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9445 unsigned EltWidth = VT.getScalarSizeInBits(); 9446 9447 for (unsigned j = 0; j < NumOps; ++j) { 9448 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9449 SDValue OpVal = getOperand(i); 9450 unsigned BitPos = j * EltWidth; 9451 9452 if (OpVal.isUndef()) 9453 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9454 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9455 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9456 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9457 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9458 else 9459 return false; 9460 } 9461 9462 // The build_vector is all constants or undefs. Find the smallest element 9463 // size that splats the vector. 9464 HasAnyUndefs = (SplatUndef != 0); 9465 9466 // FIXME: This does not work for vectors with elements less than 8 bits. 9467 while (VecWidth > 8) { 9468 unsigned HalfSize = VecWidth / 2; 9469 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9470 APInt LowValue = SplatValue.trunc(HalfSize); 9471 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9472 APInt LowUndef = SplatUndef.trunc(HalfSize); 9473 9474 // If the two halves do not match (ignoring undef bits), stop here. 9475 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9476 MinSplatBits > HalfSize) 9477 break; 9478 9479 SplatValue = HighValue | LowValue; 9480 SplatUndef = HighUndef & LowUndef; 9481 9482 VecWidth = HalfSize; 9483 } 9484 9485 SplatBitSize = VecWidth; 9486 return true; 9487 } 9488 9489 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9490 BitVector *UndefElements) const { 9491 if (UndefElements) { 9492 UndefElements->clear(); 9493 UndefElements->resize(getNumOperands()); 9494 } 9495 assert(getNumOperands() == DemandedElts.getBitWidth() && 9496 "Unexpected vector size"); 9497 if (!DemandedElts) 9498 return SDValue(); 9499 SDValue Splatted; 9500 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9501 if (!DemandedElts[i]) 9502 continue; 9503 SDValue Op = getOperand(i); 9504 if (Op.isUndef()) { 9505 if (UndefElements) 9506 (*UndefElements)[i] = true; 9507 } else if (!Splatted) { 9508 Splatted = Op; 9509 } else if (Splatted != Op) { 9510 return SDValue(); 9511 } 9512 } 9513 9514 if (!Splatted) { 9515 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9516 assert(getOperand(FirstDemandedIdx).isUndef() && 9517 "Can only have a splat without a constant for all undefs."); 9518 return getOperand(FirstDemandedIdx); 9519 } 9520 9521 return Splatted; 9522 } 9523 9524 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9525 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9526 return getSplatValue(DemandedElts, UndefElements); 9527 } 9528 9529 ConstantSDNode * 9530 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9531 BitVector *UndefElements) const { 9532 return dyn_cast_or_null<ConstantSDNode>( 9533 getSplatValue(DemandedElts, UndefElements)); 9534 } 9535 9536 ConstantSDNode * 9537 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9538 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9539 } 9540 9541 ConstantFPSDNode * 9542 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9543 BitVector *UndefElements) const { 9544 return dyn_cast_or_null<ConstantFPSDNode>( 9545 getSplatValue(DemandedElts, UndefElements)); 9546 } 9547 9548 ConstantFPSDNode * 9549 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9550 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9551 } 9552 9553 int32_t 9554 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9555 uint32_t BitWidth) const { 9556 if (ConstantFPSDNode *CN = 9557 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9558 bool IsExact; 9559 APSInt IntVal(BitWidth); 9560 const APFloat &APF = CN->getValueAPF(); 9561 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9562 APFloat::opOK || 9563 !IsExact) 9564 return -1; 9565 9566 return IntVal.exactLogBase2(); 9567 } 9568 return -1; 9569 } 9570 9571 bool BuildVectorSDNode::isConstant() const { 9572 for (const SDValue &Op : op_values()) { 9573 unsigned Opc = Op.getOpcode(); 9574 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9575 return false; 9576 } 9577 return true; 9578 } 9579 9580 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9581 // Find the first non-undef value in the shuffle mask. 9582 unsigned i, e; 9583 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9584 /* search */; 9585 9586 // If all elements are undefined, this shuffle can be considered a splat 9587 // (although it should eventually get simplified away completely). 9588 if (i == e) 9589 return true; 9590 9591 // Make sure all remaining elements are either undef or the same as the first 9592 // non-undef value. 9593 for (int Idx = Mask[i]; i != e; ++i) 9594 if (Mask[i] >= 0 && Mask[i] != Idx) 9595 return false; 9596 return true; 9597 } 9598 9599 // Returns the SDNode if it is a constant integer BuildVector 9600 // or constant integer. 9601 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9602 if (isa<ConstantSDNode>(N)) 9603 return N.getNode(); 9604 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9605 return N.getNode(); 9606 // Treat a GlobalAddress supporting constant offset folding as a 9607 // constant integer. 9608 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9609 if (GA->getOpcode() == ISD::GlobalAddress && 9610 TLI->isOffsetFoldingLegal(GA)) 9611 return GA; 9612 return nullptr; 9613 } 9614 9615 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9616 if (isa<ConstantFPSDNode>(N)) 9617 return N.getNode(); 9618 9619 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9620 return N.getNode(); 9621 9622 return nullptr; 9623 } 9624 9625 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9626 assert(!Node->OperandList && "Node already has operands"); 9627 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9628 "too many operands to fit into SDNode"); 9629 SDUse *Ops = OperandRecycler.allocate( 9630 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9631 9632 bool IsDivergent = false; 9633 for (unsigned I = 0; I != Vals.size(); ++I) { 9634 Ops[I].setUser(Node); 9635 Ops[I].setInitial(Vals[I]); 9636 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9637 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9638 } 9639 Node->NumOperands = Vals.size(); 9640 Node->OperandList = Ops; 9641 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9642 if (!TLI->isSDNodeAlwaysUniform(Node)) 9643 Node->SDNodeBits.IsDivergent = IsDivergent; 9644 checkForCycles(Node); 9645 } 9646 9647 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9648 SmallVectorImpl<SDValue> &Vals) { 9649 size_t Limit = SDNode::getMaxNumOperands(); 9650 while (Vals.size() > Limit) { 9651 unsigned SliceIdx = Vals.size() - Limit; 9652 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9653 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9654 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9655 Vals.emplace_back(NewTF); 9656 } 9657 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9658 } 9659 9660 #ifndef NDEBUG 9661 static void checkForCyclesHelper(const SDNode *N, 9662 SmallPtrSetImpl<const SDNode*> &Visited, 9663 SmallPtrSetImpl<const SDNode*> &Checked, 9664 const llvm::SelectionDAG *DAG) { 9665 // If this node has already been checked, don't check it again. 9666 if (Checked.count(N)) 9667 return; 9668 9669 // If a node has already been visited on this depth-first walk, reject it as 9670 // a cycle. 9671 if (!Visited.insert(N).second) { 9672 errs() << "Detected cycle in SelectionDAG\n"; 9673 dbgs() << "Offending node:\n"; 9674 N->dumprFull(DAG); dbgs() << "\n"; 9675 abort(); 9676 } 9677 9678 for (const SDValue &Op : N->op_values()) 9679 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9680 9681 Checked.insert(N); 9682 Visited.erase(N); 9683 } 9684 #endif 9685 9686 void llvm::checkForCycles(const llvm::SDNode *N, 9687 const llvm::SelectionDAG *DAG, 9688 bool force) { 9689 #ifndef NDEBUG 9690 bool check = force; 9691 #ifdef EXPENSIVE_CHECKS 9692 check = true; 9693 #endif // EXPENSIVE_CHECKS 9694 if (check) { 9695 assert(N && "Checking nonexistent SDNode"); 9696 SmallPtrSet<const SDNode*, 32> visited; 9697 SmallPtrSet<const SDNode*, 32> checked; 9698 checkForCyclesHelper(N, visited, checked, DAG); 9699 } 9700 #endif // !NDEBUG 9701 } 9702 9703 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9704 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9705 } 9706