1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     }
149     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
150       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
151       return true;
152     }
153   }
154 
155   auto *BV = dyn_cast<BuildVectorSDNode>(N);
156   if (!BV)
157     return false;
158 
159   APInt SplatUndef;
160   unsigned SplatBitSize;
161   bool HasUndefs;
162   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
163   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
164                              EltSize) &&
165          EltSize == SplatBitSize;
166 }
167 
168 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
169 // specializations of the more general isConstantSplatVector()?
170 
171 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
172   // Look through a bit convert.
173   while (N->getOpcode() == ISD::BITCAST)
174     N = N->getOperand(0).getNode();
175 
176   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
177     APInt SplatVal;
178     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue();
179   }
180 
181   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
182 
183   unsigned i = 0, e = N->getNumOperands();
184 
185   // Skip over all of the undef values.
186   while (i != e && N->getOperand(i).isUndef())
187     ++i;
188 
189   // Do not accept an all-undef vector.
190   if (i == e) return false;
191 
192   // Do not accept build_vectors that aren't all constants or which have non-~0
193   // elements. We have to be a bit careful here, as the type of the constant
194   // may not be the same as the type of the vector elements due to type
195   // legalization (the elements are promoted to a legal type for the target and
196   // a vector of a type may be legal when the base element type is not).
197   // We only want to check enough bits to cover the vector elements, because
198   // we care if the resultant vector is all ones, not whether the individual
199   // constants are.
200   SDValue NotZero = N->getOperand(i);
201   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
202   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
203     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
204       return false;
205   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
206     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
207       return false;
208   } else
209     return false;
210 
211   // Okay, we have at least one ~0 value, check to see if the rest match or are
212   // undefs. Even with the above element type twiddling, this should be OK, as
213   // the same type legalization should have applied to all the elements.
214   for (++i; i != e; ++i)
215     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
216       return false;
217   return true;
218 }
219 
220 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
221   // Look through a bit convert.
222   while (N->getOpcode() == ISD::BITCAST)
223     N = N->getOperand(0).getNode();
224 
225   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
226     APInt SplatVal;
227     return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue();
228   }
229 
230   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
231 
232   bool IsAllUndef = true;
233   for (const SDValue &Op : N->op_values()) {
234     if (Op.isUndef())
235       continue;
236     IsAllUndef = false;
237     // Do not accept build_vectors that aren't all constants or which have non-0
238     // elements. We have to be a bit careful here, as the type of the constant
239     // may not be the same as the type of the vector elements due to type
240     // legalization (the elements are promoted to a legal type for the target
241     // and a vector of a type may be legal when the base element type is not).
242     // We only want to check enough bits to cover the vector elements, because
243     // we care if the resultant vector is all zeros, not whether the individual
244     // constants are.
245     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
246     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
247       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
248         return false;
249     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
250       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
251         return false;
252     } else
253       return false;
254   }
255 
256   // Do not accept an all-undef vector.
257   if (IsAllUndef)
258     return false;
259   return true;
260 }
261 
262 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
263   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
264 }
265 
266 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
267   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
268 }
269 
270 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
271   if (N->getOpcode() != ISD::BUILD_VECTOR)
272     return false;
273 
274   for (const SDValue &Op : N->op_values()) {
275     if (Op.isUndef())
276       continue;
277     if (!isa<ConstantSDNode>(Op))
278       return false;
279   }
280   return true;
281 }
282 
283 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
284   if (N->getOpcode() != ISD::BUILD_VECTOR)
285     return false;
286 
287   for (const SDValue &Op : N->op_values()) {
288     if (Op.isUndef())
289       continue;
290     if (!isa<ConstantFPSDNode>(Op))
291       return false;
292   }
293   return true;
294 }
295 
296 bool ISD::allOperandsUndef(const SDNode *N) {
297   // Return false if the node has no operands.
298   // This is "logically inconsistent" with the definition of "all" but
299   // is probably the desired behavior.
300   if (N->getNumOperands() == 0)
301     return false;
302   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
303 }
304 
305 bool ISD::matchUnaryPredicate(SDValue Op,
306                               std::function<bool(ConstantSDNode *)> Match,
307                               bool AllowUndefs) {
308   // FIXME: Add support for scalar UNDEF cases?
309   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
310     return Match(Cst);
311 
312   // FIXME: Add support for vector UNDEF cases?
313   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
314       ISD::SPLAT_VECTOR != Op.getOpcode())
315     return false;
316 
317   EVT SVT = Op.getValueType().getScalarType();
318   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
319     if (AllowUndefs && Op.getOperand(i).isUndef()) {
320       if (!Match(nullptr))
321         return false;
322       continue;
323     }
324 
325     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
326     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
327       return false;
328   }
329   return true;
330 }
331 
332 bool ISD::matchBinaryPredicate(
333     SDValue LHS, SDValue RHS,
334     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
335     bool AllowUndefs, bool AllowTypeMismatch) {
336   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
337     return false;
338 
339   // TODO: Add support for scalar UNDEF cases?
340   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
341     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
342       return Match(LHSCst, RHSCst);
343 
344   // TODO: Add support for vector UNDEF cases?
345   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
346       ISD::BUILD_VECTOR != RHS.getOpcode())
347     return false;
348 
349   EVT SVT = LHS.getValueType().getScalarType();
350   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
351     SDValue LHSOp = LHS.getOperand(i);
352     SDValue RHSOp = RHS.getOperand(i);
353     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
354     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
355     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
356     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
357     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
358       return false;
359     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
360                                LHSOp.getValueType() != RHSOp.getValueType()))
361       return false;
362     if (!Match(LHSCst, RHSCst))
363       return false;
364   }
365   return true;
366 }
367 
368 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
369   switch (VecReduceOpcode) {
370   default:
371     llvm_unreachable("Expected VECREDUCE opcode");
372   case ISD::VECREDUCE_FADD:
373   case ISD::VECREDUCE_SEQ_FADD:
374     return ISD::FADD;
375   case ISD::VECREDUCE_FMUL:
376   case ISD::VECREDUCE_SEQ_FMUL:
377     return ISD::FMUL;
378   case ISD::VECREDUCE_ADD:
379     return ISD::ADD;
380   case ISD::VECREDUCE_MUL:
381     return ISD::MUL;
382   case ISD::VECREDUCE_AND:
383     return ISD::AND;
384   case ISD::VECREDUCE_OR:
385     return ISD::OR;
386   case ISD::VECREDUCE_XOR:
387     return ISD::XOR;
388   case ISD::VECREDUCE_SMAX:
389     return ISD::SMAX;
390   case ISD::VECREDUCE_SMIN:
391     return ISD::SMIN;
392   case ISD::VECREDUCE_UMAX:
393     return ISD::UMAX;
394   case ISD::VECREDUCE_UMIN:
395     return ISD::UMIN;
396   case ISD::VECREDUCE_FMAX:
397     return ISD::FMAXNUM;
398   case ISD::VECREDUCE_FMIN:
399     return ISD::FMINNUM;
400   }
401 }
402 
403 bool ISD::isVPOpcode(unsigned Opcode) {
404   switch (Opcode) {
405   default:
406     return false;
407 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
408   case ISD::SDOPC:                                                             \
409     return true;
410 #include "llvm/IR/VPIntrinsics.def"
411   }
412 }
413 
414 /// The operand position of the vector mask.
415 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
416   switch (Opcode) {
417   default:
418     return None;
419 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...)        \
420   case ISD::SDOPC:                                                             \
421     return MASKPOS;
422 #include "llvm/IR/VPIntrinsics.def"
423   }
424 }
425 
426 /// The operand position of the explicit vector length parameter.
427 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
428   switch (Opcode) {
429   default:
430     return None;
431 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS)     \
432   case ISD::SDOPC:                                                             \
433     return EVLPOS;
434 #include "llvm/IR/VPIntrinsics.def"
435   }
436 }
437 
438 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
439   switch (ExtType) {
440   case ISD::EXTLOAD:
441     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
442   case ISD::SEXTLOAD:
443     return ISD::SIGN_EXTEND;
444   case ISD::ZEXTLOAD:
445     return ISD::ZERO_EXTEND;
446   default:
447     break;
448   }
449 
450   llvm_unreachable("Invalid LoadExtType");
451 }
452 
453 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
454   // To perform this operation, we just need to swap the L and G bits of the
455   // operation.
456   unsigned OldL = (Operation >> 2) & 1;
457   unsigned OldG = (Operation >> 1) & 1;
458   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
459                        (OldL << 1) |       // New G bit
460                        (OldG << 2));       // New L bit.
461 }
462 
463 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
464   unsigned Operation = Op;
465   if (isIntegerLike)
466     Operation ^= 7;   // Flip L, G, E bits, but not U.
467   else
468     Operation ^= 15;  // Flip all of the condition bits.
469 
470   if (Operation > ISD::SETTRUE2)
471     Operation &= ~8;  // Don't let N and U bits get set.
472 
473   return ISD::CondCode(Operation);
474 }
475 
476 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
477   return getSetCCInverseImpl(Op, Type.isInteger());
478 }
479 
480 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
481                                                bool isIntegerLike) {
482   return getSetCCInverseImpl(Op, isIntegerLike);
483 }
484 
485 /// For an integer comparison, return 1 if the comparison is a signed operation
486 /// and 2 if the result is an unsigned comparison. Return zero if the operation
487 /// does not depend on the sign of the input (setne and seteq).
488 static int isSignedOp(ISD::CondCode Opcode) {
489   switch (Opcode) {
490   default: llvm_unreachable("Illegal integer setcc operation!");
491   case ISD::SETEQ:
492   case ISD::SETNE: return 0;
493   case ISD::SETLT:
494   case ISD::SETLE:
495   case ISD::SETGT:
496   case ISD::SETGE: return 1;
497   case ISD::SETULT:
498   case ISD::SETULE:
499   case ISD::SETUGT:
500   case ISD::SETUGE: return 2;
501   }
502 }
503 
504 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
505                                        EVT Type) {
506   bool IsInteger = Type.isInteger();
507   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
508     // Cannot fold a signed integer setcc with an unsigned integer setcc.
509     return ISD::SETCC_INVALID;
510 
511   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
512 
513   // If the N and U bits get set, then the resultant comparison DOES suddenly
514   // care about orderedness, and it is true when ordered.
515   if (Op > ISD::SETTRUE2)
516     Op &= ~16;     // Clear the U bit if the N bit is set.
517 
518   // Canonicalize illegal integer setcc's.
519   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
520     Op = ISD::SETNE;
521 
522   return ISD::CondCode(Op);
523 }
524 
525 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
526                                         EVT Type) {
527   bool IsInteger = Type.isInteger();
528   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
529     // Cannot fold a signed setcc with an unsigned setcc.
530     return ISD::SETCC_INVALID;
531 
532   // Combine all of the condition bits.
533   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
534 
535   // Canonicalize illegal integer setcc's.
536   if (IsInteger) {
537     switch (Result) {
538     default: break;
539     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
540     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
541     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
542     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
543     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
544     }
545   }
546 
547   return Result;
548 }
549 
550 //===----------------------------------------------------------------------===//
551 //                           SDNode Profile Support
552 //===----------------------------------------------------------------------===//
553 
554 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
555 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
556   ID.AddInteger(OpC);
557 }
558 
559 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
560 /// solely with their pointer.
561 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
562   ID.AddPointer(VTList.VTs);
563 }
564 
565 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
566 static void AddNodeIDOperands(FoldingSetNodeID &ID,
567                               ArrayRef<SDValue> Ops) {
568   for (auto& Op : Ops) {
569     ID.AddPointer(Op.getNode());
570     ID.AddInteger(Op.getResNo());
571   }
572 }
573 
574 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
575 static void AddNodeIDOperands(FoldingSetNodeID &ID,
576                               ArrayRef<SDUse> Ops) {
577   for (auto& Op : Ops) {
578     ID.AddPointer(Op.getNode());
579     ID.AddInteger(Op.getResNo());
580   }
581 }
582 
583 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
584                           SDVTList VTList, ArrayRef<SDValue> OpList) {
585   AddNodeIDOpcode(ID, OpC);
586   AddNodeIDValueTypes(ID, VTList);
587   AddNodeIDOperands(ID, OpList);
588 }
589 
590 /// If this is an SDNode with special info, add this info to the NodeID data.
591 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
592   switch (N->getOpcode()) {
593   case ISD::TargetExternalSymbol:
594   case ISD::ExternalSymbol:
595   case ISD::MCSymbol:
596     llvm_unreachable("Should only be used on nodes with operands");
597   default: break;  // Normal nodes don't need extra info.
598   case ISD::TargetConstant:
599   case ISD::Constant: {
600     const ConstantSDNode *C = cast<ConstantSDNode>(N);
601     ID.AddPointer(C->getConstantIntValue());
602     ID.AddBoolean(C->isOpaque());
603     break;
604   }
605   case ISD::TargetConstantFP:
606   case ISD::ConstantFP:
607     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
608     break;
609   case ISD::TargetGlobalAddress:
610   case ISD::GlobalAddress:
611   case ISD::TargetGlobalTLSAddress:
612   case ISD::GlobalTLSAddress: {
613     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
614     ID.AddPointer(GA->getGlobal());
615     ID.AddInteger(GA->getOffset());
616     ID.AddInteger(GA->getTargetFlags());
617     break;
618   }
619   case ISD::BasicBlock:
620     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
621     break;
622   case ISD::Register:
623     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
624     break;
625   case ISD::RegisterMask:
626     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
627     break;
628   case ISD::SRCVALUE:
629     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
630     break;
631   case ISD::FrameIndex:
632   case ISD::TargetFrameIndex:
633     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
634     break;
635   case ISD::LIFETIME_START:
636   case ISD::LIFETIME_END:
637     if (cast<LifetimeSDNode>(N)->hasOffset()) {
638       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
639       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
640     }
641     break;
642   case ISD::PSEUDO_PROBE:
643     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
644     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
645     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
646     break;
647   case ISD::JumpTable:
648   case ISD::TargetJumpTable:
649     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
650     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
651     break;
652   case ISD::ConstantPool:
653   case ISD::TargetConstantPool: {
654     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
655     ID.AddInteger(CP->getAlign().value());
656     ID.AddInteger(CP->getOffset());
657     if (CP->isMachineConstantPoolEntry())
658       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
659     else
660       ID.AddPointer(CP->getConstVal());
661     ID.AddInteger(CP->getTargetFlags());
662     break;
663   }
664   case ISD::TargetIndex: {
665     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
666     ID.AddInteger(TI->getIndex());
667     ID.AddInteger(TI->getOffset());
668     ID.AddInteger(TI->getTargetFlags());
669     break;
670   }
671   case ISD::LOAD: {
672     const LoadSDNode *LD = cast<LoadSDNode>(N);
673     ID.AddInteger(LD->getMemoryVT().getRawBits());
674     ID.AddInteger(LD->getRawSubclassData());
675     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
676     break;
677   }
678   case ISD::STORE: {
679     const StoreSDNode *ST = cast<StoreSDNode>(N);
680     ID.AddInteger(ST->getMemoryVT().getRawBits());
681     ID.AddInteger(ST->getRawSubclassData());
682     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
683     break;
684   }
685   case ISD::MLOAD: {
686     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
687     ID.AddInteger(MLD->getMemoryVT().getRawBits());
688     ID.AddInteger(MLD->getRawSubclassData());
689     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
690     break;
691   }
692   case ISD::MSTORE: {
693     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
694     ID.AddInteger(MST->getMemoryVT().getRawBits());
695     ID.AddInteger(MST->getRawSubclassData());
696     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
697     break;
698   }
699   case ISD::MGATHER: {
700     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
701     ID.AddInteger(MG->getMemoryVT().getRawBits());
702     ID.AddInteger(MG->getRawSubclassData());
703     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
704     break;
705   }
706   case ISD::MSCATTER: {
707     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
708     ID.AddInteger(MS->getMemoryVT().getRawBits());
709     ID.AddInteger(MS->getRawSubclassData());
710     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
711     break;
712   }
713   case ISD::ATOMIC_CMP_SWAP:
714   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
715   case ISD::ATOMIC_SWAP:
716   case ISD::ATOMIC_LOAD_ADD:
717   case ISD::ATOMIC_LOAD_SUB:
718   case ISD::ATOMIC_LOAD_AND:
719   case ISD::ATOMIC_LOAD_CLR:
720   case ISD::ATOMIC_LOAD_OR:
721   case ISD::ATOMIC_LOAD_XOR:
722   case ISD::ATOMIC_LOAD_NAND:
723   case ISD::ATOMIC_LOAD_MIN:
724   case ISD::ATOMIC_LOAD_MAX:
725   case ISD::ATOMIC_LOAD_UMIN:
726   case ISD::ATOMIC_LOAD_UMAX:
727   case ISD::ATOMIC_LOAD:
728   case ISD::ATOMIC_STORE: {
729     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
730     ID.AddInteger(AT->getMemoryVT().getRawBits());
731     ID.AddInteger(AT->getRawSubclassData());
732     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
733     break;
734   }
735   case ISD::PREFETCH: {
736     const MemSDNode *PF = cast<MemSDNode>(N);
737     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
738     break;
739   }
740   case ISD::VECTOR_SHUFFLE: {
741     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
742     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
743          i != e; ++i)
744       ID.AddInteger(SVN->getMaskElt(i));
745     break;
746   }
747   case ISD::TargetBlockAddress:
748   case ISD::BlockAddress: {
749     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
750     ID.AddPointer(BA->getBlockAddress());
751     ID.AddInteger(BA->getOffset());
752     ID.AddInteger(BA->getTargetFlags());
753     break;
754   }
755   } // end switch (N->getOpcode())
756 
757   // Target specific memory nodes could also have address spaces to check.
758   if (N->isTargetMemoryOpcode())
759     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
760 }
761 
762 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
763 /// data.
764 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
765   AddNodeIDOpcode(ID, N->getOpcode());
766   // Add the return value info.
767   AddNodeIDValueTypes(ID, N->getVTList());
768   // Add the operand info.
769   AddNodeIDOperands(ID, N->ops());
770 
771   // Handle SDNode leafs with special info.
772   AddNodeIDCustom(ID, N);
773 }
774 
775 //===----------------------------------------------------------------------===//
776 //                              SelectionDAG Class
777 //===----------------------------------------------------------------------===//
778 
779 /// doNotCSE - Return true if CSE should not be performed for this node.
780 static bool doNotCSE(SDNode *N) {
781   if (N->getValueType(0) == MVT::Glue)
782     return true; // Never CSE anything that produces a flag.
783 
784   switch (N->getOpcode()) {
785   default: break;
786   case ISD::HANDLENODE:
787   case ISD::EH_LABEL:
788     return true;   // Never CSE these nodes.
789   }
790 
791   // Check that remaining values produced are not flags.
792   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
793     if (N->getValueType(i) == MVT::Glue)
794       return true; // Never CSE anything that produces a flag.
795 
796   return false;
797 }
798 
799 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
800 /// SelectionDAG.
801 void SelectionDAG::RemoveDeadNodes() {
802   // Create a dummy node (which is not added to allnodes), that adds a reference
803   // to the root node, preventing it from being deleted.
804   HandleSDNode Dummy(getRoot());
805 
806   SmallVector<SDNode*, 128> DeadNodes;
807 
808   // Add all obviously-dead nodes to the DeadNodes worklist.
809   for (SDNode &Node : allnodes())
810     if (Node.use_empty())
811       DeadNodes.push_back(&Node);
812 
813   RemoveDeadNodes(DeadNodes);
814 
815   // If the root changed (e.g. it was a dead load, update the root).
816   setRoot(Dummy.getValue());
817 }
818 
819 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
820 /// given list, and any nodes that become unreachable as a result.
821 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
822 
823   // Process the worklist, deleting the nodes and adding their uses to the
824   // worklist.
825   while (!DeadNodes.empty()) {
826     SDNode *N = DeadNodes.pop_back_val();
827     // Skip to next node if we've already managed to delete the node. This could
828     // happen if replacing a node causes a node previously added to the node to
829     // be deleted.
830     if (N->getOpcode() == ISD::DELETED_NODE)
831       continue;
832 
833     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
834       DUL->NodeDeleted(N, nullptr);
835 
836     // Take the node out of the appropriate CSE map.
837     RemoveNodeFromCSEMaps(N);
838 
839     // Next, brutally remove the operand list.  This is safe to do, as there are
840     // no cycles in the graph.
841     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
842       SDUse &Use = *I++;
843       SDNode *Operand = Use.getNode();
844       Use.set(SDValue());
845 
846       // Now that we removed this operand, see if there are no uses of it left.
847       if (Operand->use_empty())
848         DeadNodes.push_back(Operand);
849     }
850 
851     DeallocateNode(N);
852   }
853 }
854 
855 void SelectionDAG::RemoveDeadNode(SDNode *N){
856   SmallVector<SDNode*, 16> DeadNodes(1, N);
857 
858   // Create a dummy node that adds a reference to the root node, preventing
859   // it from being deleted.  (This matters if the root is an operand of the
860   // dead node.)
861   HandleSDNode Dummy(getRoot());
862 
863   RemoveDeadNodes(DeadNodes);
864 }
865 
866 void SelectionDAG::DeleteNode(SDNode *N) {
867   // First take this out of the appropriate CSE map.
868   RemoveNodeFromCSEMaps(N);
869 
870   // Finally, remove uses due to operands of this node, remove from the
871   // AllNodes list, and delete the node.
872   DeleteNodeNotInCSEMaps(N);
873 }
874 
875 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
876   assert(N->getIterator() != AllNodes.begin() &&
877          "Cannot delete the entry node!");
878   assert(N->use_empty() && "Cannot delete a node that is not dead!");
879 
880   // Drop all of the operands and decrement used node's use counts.
881   N->DropOperands();
882 
883   DeallocateNode(N);
884 }
885 
886 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
887   assert(!(V->isVariadic() && isParameter));
888   if (isParameter)
889     ByvalParmDbgValues.push_back(V);
890   else
891     DbgValues.push_back(V);
892   for (const SDNode *Node : V->getSDNodes())
893     if (Node)
894       DbgValMap[Node].push_back(V);
895 }
896 
897 void SDDbgInfo::erase(const SDNode *Node) {
898   DbgValMapType::iterator I = DbgValMap.find(Node);
899   if (I == DbgValMap.end())
900     return;
901   for (auto &Val: I->second)
902     Val->setIsInvalidated();
903   DbgValMap.erase(I);
904 }
905 
906 void SelectionDAG::DeallocateNode(SDNode *N) {
907   // If we have operands, deallocate them.
908   removeOperands(N);
909 
910   NodeAllocator.Deallocate(AllNodes.remove(N));
911 
912   // Set the opcode to DELETED_NODE to help catch bugs when node
913   // memory is reallocated.
914   // FIXME: There are places in SDag that have grown a dependency on the opcode
915   // value in the released node.
916   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
917   N->NodeType = ISD::DELETED_NODE;
918 
919   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
920   // them and forget about that node.
921   DbgInfo->erase(N);
922 }
923 
924 #ifndef NDEBUG
925 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
926 static void VerifySDNode(SDNode *N) {
927   switch (N->getOpcode()) {
928   default:
929     break;
930   case ISD::BUILD_PAIR: {
931     EVT VT = N->getValueType(0);
932     assert(N->getNumValues() == 1 && "Too many results!");
933     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
934            "Wrong return type!");
935     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
936     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
937            "Mismatched operand types!");
938     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
939            "Wrong operand type!");
940     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
941            "Wrong return type size");
942     break;
943   }
944   case ISD::BUILD_VECTOR: {
945     assert(N->getNumValues() == 1 && "Too many results!");
946     assert(N->getValueType(0).isVector() && "Wrong return type!");
947     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
948            "Wrong number of operands!");
949     EVT EltVT = N->getValueType(0).getVectorElementType();
950     for (const SDUse &Op : N->ops()) {
951       assert((Op.getValueType() == EltVT ||
952               (EltVT.isInteger() && Op.getValueType().isInteger() &&
953                EltVT.bitsLE(Op.getValueType()))) &&
954              "Wrong operand type!");
955       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
956              "Operands must all have the same type");
957     }
958     break;
959   }
960   }
961 }
962 #endif // NDEBUG
963 
964 /// Insert a newly allocated node into the DAG.
965 ///
966 /// Handles insertion into the all nodes list and CSE map, as well as
967 /// verification and other common operations when a new node is allocated.
968 void SelectionDAG::InsertNode(SDNode *N) {
969   AllNodes.push_back(N);
970 #ifndef NDEBUG
971   N->PersistentId = NextPersistentId++;
972   VerifySDNode(N);
973 #endif
974   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
975     DUL->NodeInserted(N);
976 }
977 
978 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
979 /// correspond to it.  This is useful when we're about to delete or repurpose
980 /// the node.  We don't want future request for structurally identical nodes
981 /// to return N anymore.
982 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
983   bool Erased = false;
984   switch (N->getOpcode()) {
985   case ISD::HANDLENODE: return false;  // noop.
986   case ISD::CONDCODE:
987     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
988            "Cond code doesn't exist!");
989     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
990     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
991     break;
992   case ISD::ExternalSymbol:
993     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
994     break;
995   case ISD::TargetExternalSymbol: {
996     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
997     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
998         ESN->getSymbol(), ESN->getTargetFlags()));
999     break;
1000   }
1001   case ISD::MCSymbol: {
1002     auto *MCSN = cast<MCSymbolSDNode>(N);
1003     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1004     break;
1005   }
1006   case ISD::VALUETYPE: {
1007     EVT VT = cast<VTSDNode>(N)->getVT();
1008     if (VT.isExtended()) {
1009       Erased = ExtendedValueTypeNodes.erase(VT);
1010     } else {
1011       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1012       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1013     }
1014     break;
1015   }
1016   default:
1017     // Remove it from the CSE Map.
1018     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1019     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1020     Erased = CSEMap.RemoveNode(N);
1021     break;
1022   }
1023 #ifndef NDEBUG
1024   // Verify that the node was actually in one of the CSE maps, unless it has a
1025   // flag result (which cannot be CSE'd) or is one of the special cases that are
1026   // not subject to CSE.
1027   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1028       !N->isMachineOpcode() && !doNotCSE(N)) {
1029     N->dump(this);
1030     dbgs() << "\n";
1031     llvm_unreachable("Node is not in map!");
1032   }
1033 #endif
1034   return Erased;
1035 }
1036 
1037 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1038 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1039 /// node already exists, in which case transfer all its users to the existing
1040 /// node. This transfer can potentially trigger recursive merging.
1041 void
1042 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1043   // For node types that aren't CSE'd, just act as if no identical node
1044   // already exists.
1045   if (!doNotCSE(N)) {
1046     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1047     if (Existing != N) {
1048       // If there was already an existing matching node, use ReplaceAllUsesWith
1049       // to replace the dead one with the existing one.  This can cause
1050       // recursive merging of other unrelated nodes down the line.
1051       ReplaceAllUsesWith(N, Existing);
1052 
1053       // N is now dead. Inform the listeners and delete it.
1054       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1055         DUL->NodeDeleted(N, Existing);
1056       DeleteNodeNotInCSEMaps(N);
1057       return;
1058     }
1059   }
1060 
1061   // If the node doesn't already exist, we updated it.  Inform listeners.
1062   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1063     DUL->NodeUpdated(N);
1064 }
1065 
1066 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1067 /// were replaced with those specified.  If this node is never memoized,
1068 /// return null, otherwise return a pointer to the slot it would take.  If a
1069 /// node already exists with these operands, the slot will be non-null.
1070 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1071                                            void *&InsertPos) {
1072   if (doNotCSE(N))
1073     return nullptr;
1074 
1075   SDValue Ops[] = { Op };
1076   FoldingSetNodeID ID;
1077   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1078   AddNodeIDCustom(ID, N);
1079   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1080   if (Node)
1081     Node->intersectFlagsWith(N->getFlags());
1082   return Node;
1083 }
1084 
1085 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1086 /// were replaced with those specified.  If this node is never memoized,
1087 /// return null, otherwise return a pointer to the slot it would take.  If a
1088 /// node already exists with these operands, the slot will be non-null.
1089 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1090                                            SDValue Op1, SDValue Op2,
1091                                            void *&InsertPos) {
1092   if (doNotCSE(N))
1093     return nullptr;
1094 
1095   SDValue Ops[] = { Op1, Op2 };
1096   FoldingSetNodeID ID;
1097   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1098   AddNodeIDCustom(ID, N);
1099   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1100   if (Node)
1101     Node->intersectFlagsWith(N->getFlags());
1102   return Node;
1103 }
1104 
1105 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1106 /// were replaced with those specified.  If this node is never memoized,
1107 /// return null, otherwise return a pointer to the slot it would take.  If a
1108 /// node already exists with these operands, the slot will be non-null.
1109 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1110                                            void *&InsertPos) {
1111   if (doNotCSE(N))
1112     return nullptr;
1113 
1114   FoldingSetNodeID ID;
1115   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1116   AddNodeIDCustom(ID, N);
1117   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1118   if (Node)
1119     Node->intersectFlagsWith(N->getFlags());
1120   return Node;
1121 }
1122 
1123 Align SelectionDAG::getEVTAlign(EVT VT) const {
1124   Type *Ty = VT == MVT::iPTR ?
1125                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1126                    VT.getTypeForEVT(*getContext());
1127 
1128   return getDataLayout().getABITypeAlign(Ty);
1129 }
1130 
1131 // EntryNode could meaningfully have debug info if we can find it...
1132 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1133     : TM(tm), OptLevel(OL),
1134       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1135       Root(getEntryNode()) {
1136   InsertNode(&EntryNode);
1137   DbgInfo = new SDDbgInfo();
1138 }
1139 
1140 void SelectionDAG::init(MachineFunction &NewMF,
1141                         OptimizationRemarkEmitter &NewORE,
1142                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1143                         LegacyDivergenceAnalysis * Divergence,
1144                         ProfileSummaryInfo *PSIin,
1145                         BlockFrequencyInfo *BFIin) {
1146   MF = &NewMF;
1147   SDAGISelPass = PassPtr;
1148   ORE = &NewORE;
1149   TLI = getSubtarget().getTargetLowering();
1150   TSI = getSubtarget().getSelectionDAGInfo();
1151   LibInfo = LibraryInfo;
1152   Context = &MF->getFunction().getContext();
1153   DA = Divergence;
1154   PSI = PSIin;
1155   BFI = BFIin;
1156 }
1157 
1158 SelectionDAG::~SelectionDAG() {
1159   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1160   allnodes_clear();
1161   OperandRecycler.clear(OperandAllocator);
1162   delete DbgInfo;
1163 }
1164 
1165 bool SelectionDAG::shouldOptForSize() const {
1166   return MF->getFunction().hasOptSize() ||
1167       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1168 }
1169 
1170 void SelectionDAG::allnodes_clear() {
1171   assert(&*AllNodes.begin() == &EntryNode);
1172   AllNodes.remove(AllNodes.begin());
1173   while (!AllNodes.empty())
1174     DeallocateNode(&AllNodes.front());
1175 #ifndef NDEBUG
1176   NextPersistentId = 0;
1177 #endif
1178 }
1179 
1180 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1181                                           void *&InsertPos) {
1182   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1183   if (N) {
1184     switch (N->getOpcode()) {
1185     default: break;
1186     case ISD::Constant:
1187     case ISD::ConstantFP:
1188       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1189                        "debug location.  Use another overload.");
1190     }
1191   }
1192   return N;
1193 }
1194 
1195 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1196                                           const SDLoc &DL, void *&InsertPos) {
1197   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1198   if (N) {
1199     switch (N->getOpcode()) {
1200     case ISD::Constant:
1201     case ISD::ConstantFP:
1202       // Erase debug location from the node if the node is used at several
1203       // different places. Do not propagate one location to all uses as it
1204       // will cause a worse single stepping debugging experience.
1205       if (N->getDebugLoc() != DL.getDebugLoc())
1206         N->setDebugLoc(DebugLoc());
1207       break;
1208     default:
1209       // When the node's point of use is located earlier in the instruction
1210       // sequence than its prior point of use, update its debug info to the
1211       // earlier location.
1212       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1213         N->setDebugLoc(DL.getDebugLoc());
1214       break;
1215     }
1216   }
1217   return N;
1218 }
1219 
1220 void SelectionDAG::clear() {
1221   allnodes_clear();
1222   OperandRecycler.clear(OperandAllocator);
1223   OperandAllocator.Reset();
1224   CSEMap.clear();
1225 
1226   ExtendedValueTypeNodes.clear();
1227   ExternalSymbols.clear();
1228   TargetExternalSymbols.clear();
1229   MCSymbols.clear();
1230   SDCallSiteDbgInfo.clear();
1231   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1232             static_cast<CondCodeSDNode*>(nullptr));
1233   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1234             static_cast<SDNode*>(nullptr));
1235 
1236   EntryNode.UseList = nullptr;
1237   InsertNode(&EntryNode);
1238   Root = getEntryNode();
1239   DbgInfo->clear();
1240 }
1241 
1242 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1243   return VT.bitsGT(Op.getValueType())
1244              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1245              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1246 }
1247 
1248 std::pair<SDValue, SDValue>
1249 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1250                                        const SDLoc &DL, EVT VT) {
1251   assert(!VT.bitsEq(Op.getValueType()) &&
1252          "Strict no-op FP extend/round not allowed.");
1253   SDValue Res =
1254       VT.bitsGT(Op.getValueType())
1255           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1256           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1257                     {Chain, Op, getIntPtrConstant(0, DL)});
1258 
1259   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1260 }
1261 
1262 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1263   return VT.bitsGT(Op.getValueType()) ?
1264     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1265     getNode(ISD::TRUNCATE, DL, VT, Op);
1266 }
1267 
1268 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1269   return VT.bitsGT(Op.getValueType()) ?
1270     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1271     getNode(ISD::TRUNCATE, DL, VT, Op);
1272 }
1273 
1274 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1275   return VT.bitsGT(Op.getValueType()) ?
1276     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1277     getNode(ISD::TRUNCATE, DL, VT, Op);
1278 }
1279 
1280 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1281                                         EVT OpVT) {
1282   if (VT.bitsLE(Op.getValueType()))
1283     return getNode(ISD::TRUNCATE, SL, VT, Op);
1284 
1285   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1286   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1287 }
1288 
1289 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1290   EVT OpVT = Op.getValueType();
1291   assert(VT.isInteger() && OpVT.isInteger() &&
1292          "Cannot getZeroExtendInReg FP types");
1293   assert(VT.isVector() == OpVT.isVector() &&
1294          "getZeroExtendInReg type should be vector iff the operand "
1295          "type is vector!");
1296   assert((!VT.isVector() ||
1297           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1298          "Vector element counts must match in getZeroExtendInReg");
1299   assert(VT.bitsLE(OpVT) && "Not extending!");
1300   if (OpVT == VT)
1301     return Op;
1302   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1303                                    VT.getScalarSizeInBits());
1304   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1305 }
1306 
1307 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1308   // Only unsigned pointer semantics are supported right now. In the future this
1309   // might delegate to TLI to check pointer signedness.
1310   return getZExtOrTrunc(Op, DL, VT);
1311 }
1312 
1313 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1314   // Only unsigned pointer semantics are supported right now. In the future this
1315   // might delegate to TLI to check pointer signedness.
1316   return getZeroExtendInReg(Op, DL, VT);
1317 }
1318 
1319 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1320 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1321   EVT EltVT = VT.getScalarType();
1322   SDValue NegOne =
1323     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1324   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1325 }
1326 
1327 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1328   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1329   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1330 }
1331 
1332 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1333                                       EVT OpVT) {
1334   if (!V)
1335     return getConstant(0, DL, VT);
1336 
1337   switch (TLI->getBooleanContents(OpVT)) {
1338   case TargetLowering::ZeroOrOneBooleanContent:
1339   case TargetLowering::UndefinedBooleanContent:
1340     return getConstant(1, DL, VT);
1341   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1342     return getAllOnesConstant(DL, VT);
1343   }
1344   llvm_unreachable("Unexpected boolean content enum!");
1345 }
1346 
1347 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1348                                   bool isT, bool isO) {
1349   EVT EltVT = VT.getScalarType();
1350   assert((EltVT.getSizeInBits() >= 64 ||
1351           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1352          "getConstant with a uint64_t value that doesn't fit in the type!");
1353   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1354 }
1355 
1356 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1357                                   bool isT, bool isO) {
1358   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1359 }
1360 
1361 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1362                                   EVT VT, bool isT, bool isO) {
1363   assert(VT.isInteger() && "Cannot create FP integer constant!");
1364 
1365   EVT EltVT = VT.getScalarType();
1366   const ConstantInt *Elt = &Val;
1367 
1368   // In some cases the vector type is legal but the element type is illegal and
1369   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1370   // inserted value (the type does not need to match the vector element type).
1371   // Any extra bits introduced will be truncated away.
1372   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1373                            TargetLowering::TypePromoteInteger) {
1374     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1375     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1376     Elt = ConstantInt::get(*getContext(), NewVal);
1377   }
1378   // In other cases the element type is illegal and needs to be expanded, for
1379   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1380   // the value into n parts and use a vector type with n-times the elements.
1381   // Then bitcast to the type requested.
1382   // Legalizing constants too early makes the DAGCombiner's job harder so we
1383   // only legalize if the DAG tells us we must produce legal types.
1384   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1385            TLI->getTypeAction(*getContext(), EltVT) ==
1386                TargetLowering::TypeExpandInteger) {
1387     const APInt &NewVal = Elt->getValue();
1388     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1389     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1390 
1391     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1392     if (VT.isScalableVector()) {
1393       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1394              "Can only handle an even split!");
1395       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1396 
1397       SmallVector<SDValue, 2> ScalarParts;
1398       for (unsigned i = 0; i != Parts; ++i)
1399         ScalarParts.push_back(getConstant(
1400             NewVal.lshr(i * ViaEltSizeInBits).trunc(ViaEltSizeInBits), DL,
1401             ViaEltVT, isT, isO));
1402 
1403       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1404     }
1405 
1406     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1407     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1408 
1409     // Check the temporary vector is the correct size. If this fails then
1410     // getTypeToTransformTo() probably returned a type whose size (in bits)
1411     // isn't a power-of-2 factor of the requested type size.
1412     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1413 
1414     SmallVector<SDValue, 2> EltParts;
1415     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1416       EltParts.push_back(getConstant(
1417           NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL,
1418           ViaEltVT, isT, isO));
1419     }
1420 
1421     // EltParts is currently in little endian order. If we actually want
1422     // big-endian order then reverse it now.
1423     if (getDataLayout().isBigEndian())
1424       std::reverse(EltParts.begin(), EltParts.end());
1425 
1426     // The elements must be reversed when the element order is different
1427     // to the endianness of the elements (because the BITCAST is itself a
1428     // vector shuffle in this situation). However, we do not need any code to
1429     // perform this reversal because getConstant() is producing a vector
1430     // splat.
1431     // This situation occurs in MIPS MSA.
1432 
1433     SmallVector<SDValue, 8> Ops;
1434     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1435       llvm::append_range(Ops, EltParts);
1436 
1437     SDValue V =
1438         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1439     return V;
1440   }
1441 
1442   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1443          "APInt size does not match type size!");
1444   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1445   FoldingSetNodeID ID;
1446   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1447   ID.AddPointer(Elt);
1448   ID.AddBoolean(isO);
1449   void *IP = nullptr;
1450   SDNode *N = nullptr;
1451   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1452     if (!VT.isVector())
1453       return SDValue(N, 0);
1454 
1455   if (!N) {
1456     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1457     CSEMap.InsertNode(N, IP);
1458     InsertNode(N);
1459     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1460   }
1461 
1462   SDValue Result(N, 0);
1463   if (VT.isScalableVector())
1464     Result = getSplatVector(VT, DL, Result);
1465   else if (VT.isVector())
1466     Result = getSplatBuildVector(VT, DL, Result);
1467 
1468   return Result;
1469 }
1470 
1471 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1472                                         bool isTarget) {
1473   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1474 }
1475 
1476 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1477                                              const SDLoc &DL, bool LegalTypes) {
1478   assert(VT.isInteger() && "Shift amount is not an integer type!");
1479   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1480   return getConstant(Val, DL, ShiftVT);
1481 }
1482 
1483 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1484                                            bool isTarget) {
1485   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1486 }
1487 
1488 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1489                                     bool isTarget) {
1490   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1491 }
1492 
1493 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1494                                     EVT VT, bool isTarget) {
1495   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1496 
1497   EVT EltVT = VT.getScalarType();
1498 
1499   // Do the map lookup using the actual bit pattern for the floating point
1500   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1501   // we don't have issues with SNANs.
1502   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1503   FoldingSetNodeID ID;
1504   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1505   ID.AddPointer(&V);
1506   void *IP = nullptr;
1507   SDNode *N = nullptr;
1508   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1509     if (!VT.isVector())
1510       return SDValue(N, 0);
1511 
1512   if (!N) {
1513     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1514     CSEMap.InsertNode(N, IP);
1515     InsertNode(N);
1516   }
1517 
1518   SDValue Result(N, 0);
1519   if (VT.isScalableVector())
1520     Result = getSplatVector(VT, DL, Result);
1521   else if (VT.isVector())
1522     Result = getSplatBuildVector(VT, DL, Result);
1523   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1524   return Result;
1525 }
1526 
1527 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1528                                     bool isTarget) {
1529   EVT EltVT = VT.getScalarType();
1530   if (EltVT == MVT::f32)
1531     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1532   if (EltVT == MVT::f64)
1533     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1534   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1535       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1536     bool Ignored;
1537     APFloat APF = APFloat(Val);
1538     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1539                 &Ignored);
1540     return getConstantFP(APF, DL, VT, isTarget);
1541   }
1542   llvm_unreachable("Unsupported type in getConstantFP");
1543 }
1544 
1545 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1546                                        EVT VT, int64_t Offset, bool isTargetGA,
1547                                        unsigned TargetFlags) {
1548   assert((TargetFlags == 0 || isTargetGA) &&
1549          "Cannot set target flags on target-independent globals");
1550 
1551   // Truncate (with sign-extension) the offset value to the pointer size.
1552   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1553   if (BitWidth < 64)
1554     Offset = SignExtend64(Offset, BitWidth);
1555 
1556   unsigned Opc;
1557   if (GV->isThreadLocal())
1558     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1559   else
1560     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1561 
1562   FoldingSetNodeID ID;
1563   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1564   ID.AddPointer(GV);
1565   ID.AddInteger(Offset);
1566   ID.AddInteger(TargetFlags);
1567   void *IP = nullptr;
1568   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1569     return SDValue(E, 0);
1570 
1571   auto *N = newSDNode<GlobalAddressSDNode>(
1572       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1573   CSEMap.InsertNode(N, IP);
1574     InsertNode(N);
1575   return SDValue(N, 0);
1576 }
1577 
1578 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1579   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1580   FoldingSetNodeID ID;
1581   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1582   ID.AddInteger(FI);
1583   void *IP = nullptr;
1584   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1585     return SDValue(E, 0);
1586 
1587   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1588   CSEMap.InsertNode(N, IP);
1589   InsertNode(N);
1590   return SDValue(N, 0);
1591 }
1592 
1593 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1594                                    unsigned TargetFlags) {
1595   assert((TargetFlags == 0 || isTarget) &&
1596          "Cannot set target flags on target-independent jump tables");
1597   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1598   FoldingSetNodeID ID;
1599   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1600   ID.AddInteger(JTI);
1601   ID.AddInteger(TargetFlags);
1602   void *IP = nullptr;
1603   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1604     return SDValue(E, 0);
1605 
1606   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1607   CSEMap.InsertNode(N, IP);
1608   InsertNode(N);
1609   return SDValue(N, 0);
1610 }
1611 
1612 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1613                                       MaybeAlign Alignment, int Offset,
1614                                       bool isTarget, unsigned TargetFlags) {
1615   assert((TargetFlags == 0 || isTarget) &&
1616          "Cannot set target flags on target-independent globals");
1617   if (!Alignment)
1618     Alignment = shouldOptForSize()
1619                     ? getDataLayout().getABITypeAlign(C->getType())
1620                     : getDataLayout().getPrefTypeAlign(C->getType());
1621   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1622   FoldingSetNodeID ID;
1623   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1624   ID.AddInteger(Alignment->value());
1625   ID.AddInteger(Offset);
1626   ID.AddPointer(C);
1627   ID.AddInteger(TargetFlags);
1628   void *IP = nullptr;
1629   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1630     return SDValue(E, 0);
1631 
1632   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1633                                           TargetFlags);
1634   CSEMap.InsertNode(N, IP);
1635   InsertNode(N);
1636   SDValue V = SDValue(N, 0);
1637   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1638   return V;
1639 }
1640 
1641 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1642                                       MaybeAlign Alignment, int Offset,
1643                                       bool isTarget, unsigned TargetFlags) {
1644   assert((TargetFlags == 0 || isTarget) &&
1645          "Cannot set target flags on target-independent globals");
1646   if (!Alignment)
1647     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1648   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1649   FoldingSetNodeID ID;
1650   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1651   ID.AddInteger(Alignment->value());
1652   ID.AddInteger(Offset);
1653   C->addSelectionDAGCSEId(ID);
1654   ID.AddInteger(TargetFlags);
1655   void *IP = nullptr;
1656   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1657     return SDValue(E, 0);
1658 
1659   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1660                                           TargetFlags);
1661   CSEMap.InsertNode(N, IP);
1662   InsertNode(N);
1663   return SDValue(N, 0);
1664 }
1665 
1666 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1667                                      unsigned TargetFlags) {
1668   FoldingSetNodeID ID;
1669   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1670   ID.AddInteger(Index);
1671   ID.AddInteger(Offset);
1672   ID.AddInteger(TargetFlags);
1673   void *IP = nullptr;
1674   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1675     return SDValue(E, 0);
1676 
1677   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1678   CSEMap.InsertNode(N, IP);
1679   InsertNode(N);
1680   return SDValue(N, 0);
1681 }
1682 
1683 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1684   FoldingSetNodeID ID;
1685   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1686   ID.AddPointer(MBB);
1687   void *IP = nullptr;
1688   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1689     return SDValue(E, 0);
1690 
1691   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1692   CSEMap.InsertNode(N, IP);
1693   InsertNode(N);
1694   return SDValue(N, 0);
1695 }
1696 
1697 SDValue SelectionDAG::getValueType(EVT VT) {
1698   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1699       ValueTypeNodes.size())
1700     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1701 
1702   SDNode *&N = VT.isExtended() ?
1703     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1704 
1705   if (N) return SDValue(N, 0);
1706   N = newSDNode<VTSDNode>(VT);
1707   InsertNode(N);
1708   return SDValue(N, 0);
1709 }
1710 
1711 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1712   SDNode *&N = ExternalSymbols[Sym];
1713   if (N) return SDValue(N, 0);
1714   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1715   InsertNode(N);
1716   return SDValue(N, 0);
1717 }
1718 
1719 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1720   SDNode *&N = MCSymbols[Sym];
1721   if (N)
1722     return SDValue(N, 0);
1723   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1724   InsertNode(N);
1725   return SDValue(N, 0);
1726 }
1727 
1728 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1729                                               unsigned TargetFlags) {
1730   SDNode *&N =
1731       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1732   if (N) return SDValue(N, 0);
1733   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1734   InsertNode(N);
1735   return SDValue(N, 0);
1736 }
1737 
1738 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1739   if ((unsigned)Cond >= CondCodeNodes.size())
1740     CondCodeNodes.resize(Cond+1);
1741 
1742   if (!CondCodeNodes[Cond]) {
1743     auto *N = newSDNode<CondCodeSDNode>(Cond);
1744     CondCodeNodes[Cond] = N;
1745     InsertNode(N);
1746   }
1747 
1748   return SDValue(CondCodeNodes[Cond], 0);
1749 }
1750 
1751 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, SDValue Step) {
1752   if (ResVT.isScalableVector())
1753     return getNode(ISD::STEP_VECTOR, DL, ResVT, Step);
1754 
1755   EVT OpVT = Step.getValueType();
1756   APInt StepVal = cast<ConstantSDNode>(Step)->getAPIntValue();
1757   SmallVector<SDValue, 16> OpsStepConstants;
1758   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1759     OpsStepConstants.push_back(getConstant(StepVal * i, DL, OpVT));
1760   return getBuildVector(ResVT, DL, OpsStepConstants);
1761 }
1762 
1763 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1764 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1765 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1766   std::swap(N1, N2);
1767   ShuffleVectorSDNode::commuteMask(M);
1768 }
1769 
1770 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1771                                        SDValue N2, ArrayRef<int> Mask) {
1772   assert(VT.getVectorNumElements() == Mask.size() &&
1773            "Must have the same number of vector elements as mask elements!");
1774   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1775          "Invalid VECTOR_SHUFFLE");
1776 
1777   // Canonicalize shuffle undef, undef -> undef
1778   if (N1.isUndef() && N2.isUndef())
1779     return getUNDEF(VT);
1780 
1781   // Validate that all indices in Mask are within the range of the elements
1782   // input to the shuffle.
1783   int NElts = Mask.size();
1784   assert(llvm::all_of(Mask,
1785                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1786          "Index out of range");
1787 
1788   // Copy the mask so we can do any needed cleanup.
1789   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1790 
1791   // Canonicalize shuffle v, v -> v, undef
1792   if (N1 == N2) {
1793     N2 = getUNDEF(VT);
1794     for (int i = 0; i != NElts; ++i)
1795       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1796   }
1797 
1798   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1799   if (N1.isUndef())
1800     commuteShuffle(N1, N2, MaskVec);
1801 
1802   if (TLI->hasVectorBlend()) {
1803     // If shuffling a splat, try to blend the splat instead. We do this here so
1804     // that even when this arises during lowering we don't have to re-handle it.
1805     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1806       BitVector UndefElements;
1807       SDValue Splat = BV->getSplatValue(&UndefElements);
1808       if (!Splat)
1809         return;
1810 
1811       for (int i = 0; i < NElts; ++i) {
1812         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1813           continue;
1814 
1815         // If this input comes from undef, mark it as such.
1816         if (UndefElements[MaskVec[i] - Offset]) {
1817           MaskVec[i] = -1;
1818           continue;
1819         }
1820 
1821         // If we can blend a non-undef lane, use that instead.
1822         if (!UndefElements[i])
1823           MaskVec[i] = i + Offset;
1824       }
1825     };
1826     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1827       BlendSplat(N1BV, 0);
1828     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1829       BlendSplat(N2BV, NElts);
1830   }
1831 
1832   // Canonicalize all index into lhs, -> shuffle lhs, undef
1833   // Canonicalize all index into rhs, -> shuffle rhs, undef
1834   bool AllLHS = true, AllRHS = true;
1835   bool N2Undef = N2.isUndef();
1836   for (int i = 0; i != NElts; ++i) {
1837     if (MaskVec[i] >= NElts) {
1838       if (N2Undef)
1839         MaskVec[i] = -1;
1840       else
1841         AllLHS = false;
1842     } else if (MaskVec[i] >= 0) {
1843       AllRHS = false;
1844     }
1845   }
1846   if (AllLHS && AllRHS)
1847     return getUNDEF(VT);
1848   if (AllLHS && !N2Undef)
1849     N2 = getUNDEF(VT);
1850   if (AllRHS) {
1851     N1 = getUNDEF(VT);
1852     commuteShuffle(N1, N2, MaskVec);
1853   }
1854   // Reset our undef status after accounting for the mask.
1855   N2Undef = N2.isUndef();
1856   // Re-check whether both sides ended up undef.
1857   if (N1.isUndef() && N2Undef)
1858     return getUNDEF(VT);
1859 
1860   // If Identity shuffle return that node.
1861   bool Identity = true, AllSame = true;
1862   for (int i = 0; i != NElts; ++i) {
1863     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1864     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1865   }
1866   if (Identity && NElts)
1867     return N1;
1868 
1869   // Shuffling a constant splat doesn't change the result.
1870   if (N2Undef) {
1871     SDValue V = N1;
1872 
1873     // Look through any bitcasts. We check that these don't change the number
1874     // (and size) of elements and just changes their types.
1875     while (V.getOpcode() == ISD::BITCAST)
1876       V = V->getOperand(0);
1877 
1878     // A splat should always show up as a build vector node.
1879     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1880       BitVector UndefElements;
1881       SDValue Splat = BV->getSplatValue(&UndefElements);
1882       // If this is a splat of an undef, shuffling it is also undef.
1883       if (Splat && Splat.isUndef())
1884         return getUNDEF(VT);
1885 
1886       bool SameNumElts =
1887           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1888 
1889       // We only have a splat which can skip shuffles if there is a splatted
1890       // value and no undef lanes rearranged by the shuffle.
1891       if (Splat && UndefElements.none()) {
1892         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1893         // number of elements match or the value splatted is a zero constant.
1894         if (SameNumElts)
1895           return N1;
1896         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1897           if (C->isNullValue())
1898             return N1;
1899       }
1900 
1901       // If the shuffle itself creates a splat, build the vector directly.
1902       if (AllSame && SameNumElts) {
1903         EVT BuildVT = BV->getValueType(0);
1904         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1905         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1906 
1907         // We may have jumped through bitcasts, so the type of the
1908         // BUILD_VECTOR may not match the type of the shuffle.
1909         if (BuildVT != VT)
1910           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1911         return NewBV;
1912       }
1913     }
1914   }
1915 
1916   FoldingSetNodeID ID;
1917   SDValue Ops[2] = { N1, N2 };
1918   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1919   for (int i = 0; i != NElts; ++i)
1920     ID.AddInteger(MaskVec[i]);
1921 
1922   void* IP = nullptr;
1923   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1924     return SDValue(E, 0);
1925 
1926   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1927   // SDNode doesn't have access to it.  This memory will be "leaked" when
1928   // the node is deallocated, but recovered when the NodeAllocator is released.
1929   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1930   llvm::copy(MaskVec, MaskAlloc);
1931 
1932   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1933                                            dl.getDebugLoc(), MaskAlloc);
1934   createOperands(N, Ops);
1935 
1936   CSEMap.InsertNode(N, IP);
1937   InsertNode(N);
1938   SDValue V = SDValue(N, 0);
1939   NewSDValueDbgMsg(V, "Creating new node: ", this);
1940   return V;
1941 }
1942 
1943 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1944   EVT VT = SV.getValueType(0);
1945   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1946   ShuffleVectorSDNode::commuteMask(MaskVec);
1947 
1948   SDValue Op0 = SV.getOperand(0);
1949   SDValue Op1 = SV.getOperand(1);
1950   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1951 }
1952 
1953 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1954   FoldingSetNodeID ID;
1955   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1956   ID.AddInteger(RegNo);
1957   void *IP = nullptr;
1958   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1959     return SDValue(E, 0);
1960 
1961   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1962   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1963   CSEMap.InsertNode(N, IP);
1964   InsertNode(N);
1965   return SDValue(N, 0);
1966 }
1967 
1968 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1969   FoldingSetNodeID ID;
1970   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1971   ID.AddPointer(RegMask);
1972   void *IP = nullptr;
1973   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1974     return SDValue(E, 0);
1975 
1976   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1977   CSEMap.InsertNode(N, IP);
1978   InsertNode(N);
1979   return SDValue(N, 0);
1980 }
1981 
1982 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1983                                  MCSymbol *Label) {
1984   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1985 }
1986 
1987 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1988                                    SDValue Root, MCSymbol *Label) {
1989   FoldingSetNodeID ID;
1990   SDValue Ops[] = { Root };
1991   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1992   ID.AddPointer(Label);
1993   void *IP = nullptr;
1994   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1995     return SDValue(E, 0);
1996 
1997   auto *N =
1998       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1999   createOperands(N, Ops);
2000 
2001   CSEMap.InsertNode(N, IP);
2002   InsertNode(N);
2003   return SDValue(N, 0);
2004 }
2005 
2006 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2007                                       int64_t Offset, bool isTarget,
2008                                       unsigned TargetFlags) {
2009   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2010 
2011   FoldingSetNodeID ID;
2012   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2013   ID.AddPointer(BA);
2014   ID.AddInteger(Offset);
2015   ID.AddInteger(TargetFlags);
2016   void *IP = nullptr;
2017   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2018     return SDValue(E, 0);
2019 
2020   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2021   CSEMap.InsertNode(N, IP);
2022   InsertNode(N);
2023   return SDValue(N, 0);
2024 }
2025 
2026 SDValue SelectionDAG::getSrcValue(const Value *V) {
2027   FoldingSetNodeID ID;
2028   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2029   ID.AddPointer(V);
2030 
2031   void *IP = nullptr;
2032   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2033     return SDValue(E, 0);
2034 
2035   auto *N = newSDNode<SrcValueSDNode>(V);
2036   CSEMap.InsertNode(N, IP);
2037   InsertNode(N);
2038   return SDValue(N, 0);
2039 }
2040 
2041 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2042   FoldingSetNodeID ID;
2043   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2044   ID.AddPointer(MD);
2045 
2046   void *IP = nullptr;
2047   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2048     return SDValue(E, 0);
2049 
2050   auto *N = newSDNode<MDNodeSDNode>(MD);
2051   CSEMap.InsertNode(N, IP);
2052   InsertNode(N);
2053   return SDValue(N, 0);
2054 }
2055 
2056 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2057   if (VT == V.getValueType())
2058     return V;
2059 
2060   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2061 }
2062 
2063 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2064                                        unsigned SrcAS, unsigned DestAS) {
2065   SDValue Ops[] = {Ptr};
2066   FoldingSetNodeID ID;
2067   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2068   ID.AddInteger(SrcAS);
2069   ID.AddInteger(DestAS);
2070 
2071   void *IP = nullptr;
2072   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2073     return SDValue(E, 0);
2074 
2075   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2076                                            VT, SrcAS, DestAS);
2077   createOperands(N, Ops);
2078 
2079   CSEMap.InsertNode(N, IP);
2080   InsertNode(N);
2081   return SDValue(N, 0);
2082 }
2083 
2084 SDValue SelectionDAG::getFreeze(SDValue V) {
2085   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2086 }
2087 
2088 /// getShiftAmountOperand - Return the specified value casted to
2089 /// the target's desired shift amount type.
2090 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2091   EVT OpTy = Op.getValueType();
2092   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2093   if (OpTy == ShTy || OpTy.isVector()) return Op;
2094 
2095   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2096 }
2097 
2098 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2099   SDLoc dl(Node);
2100   const TargetLowering &TLI = getTargetLoweringInfo();
2101   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2102   EVT VT = Node->getValueType(0);
2103   SDValue Tmp1 = Node->getOperand(0);
2104   SDValue Tmp2 = Node->getOperand(1);
2105   const MaybeAlign MA(Node->getConstantOperandVal(3));
2106 
2107   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2108                                Tmp2, MachinePointerInfo(V));
2109   SDValue VAList = VAListLoad;
2110 
2111   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2112     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2113                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2114 
2115     VAList =
2116         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2117                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2118   }
2119 
2120   // Increment the pointer, VAList, to the next vaarg
2121   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2122                  getConstant(getDataLayout().getTypeAllocSize(
2123                                                VT.getTypeForEVT(*getContext())),
2124                              dl, VAList.getValueType()));
2125   // Store the incremented VAList to the legalized pointer
2126   Tmp1 =
2127       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2128   // Load the actual argument out of the pointer VAList
2129   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2130 }
2131 
2132 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2133   SDLoc dl(Node);
2134   const TargetLowering &TLI = getTargetLoweringInfo();
2135   // This defaults to loading a pointer from the input and storing it to the
2136   // output, returning the chain.
2137   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2138   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2139   SDValue Tmp1 =
2140       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2141               Node->getOperand(2), MachinePointerInfo(VS));
2142   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2143                   MachinePointerInfo(VD));
2144 }
2145 
2146 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2147   const DataLayout &DL = getDataLayout();
2148   Type *Ty = VT.getTypeForEVT(*getContext());
2149   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2150 
2151   if (TLI->isTypeLegal(VT) || !VT.isVector())
2152     return RedAlign;
2153 
2154   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2155   const Align StackAlign = TFI->getStackAlign();
2156 
2157   // See if we can choose a smaller ABI alignment in cases where it's an
2158   // illegal vector type that will get broken down.
2159   if (RedAlign > StackAlign) {
2160     EVT IntermediateVT;
2161     MVT RegisterVT;
2162     unsigned NumIntermediates;
2163     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2164                                 NumIntermediates, RegisterVT);
2165     Ty = IntermediateVT.getTypeForEVT(*getContext());
2166     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2167     if (RedAlign2 < RedAlign)
2168       RedAlign = RedAlign2;
2169   }
2170 
2171   return RedAlign;
2172 }
2173 
2174 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2175   MachineFrameInfo &MFI = MF->getFrameInfo();
2176   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2177   int StackID = 0;
2178   if (Bytes.isScalable())
2179     StackID = TFI->getStackIDForScalableVectors();
2180   // The stack id gives an indication of whether the object is scalable or
2181   // not, so it's safe to pass in the minimum size here.
2182   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2183                                        false, nullptr, StackID);
2184   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2185 }
2186 
2187 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2188   Type *Ty = VT.getTypeForEVT(*getContext());
2189   Align StackAlign =
2190       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2191   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2192 }
2193 
2194 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2195   TypeSize VT1Size = VT1.getStoreSize();
2196   TypeSize VT2Size = VT2.getStoreSize();
2197   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2198          "Don't know how to choose the maximum size when creating a stack "
2199          "temporary");
2200   TypeSize Bytes =
2201       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2202 
2203   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2204   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2205   const DataLayout &DL = getDataLayout();
2206   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2207   return CreateStackTemporary(Bytes, Align);
2208 }
2209 
2210 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2211                                 ISD::CondCode Cond, const SDLoc &dl) {
2212   EVT OpVT = N1.getValueType();
2213 
2214   // These setcc operations always fold.
2215   switch (Cond) {
2216   default: break;
2217   case ISD::SETFALSE:
2218   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2219   case ISD::SETTRUE:
2220   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2221 
2222   case ISD::SETOEQ:
2223   case ISD::SETOGT:
2224   case ISD::SETOGE:
2225   case ISD::SETOLT:
2226   case ISD::SETOLE:
2227   case ISD::SETONE:
2228   case ISD::SETO:
2229   case ISD::SETUO:
2230   case ISD::SETUEQ:
2231   case ISD::SETUNE:
2232     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2233     break;
2234   }
2235 
2236   if (OpVT.isInteger()) {
2237     // For EQ and NE, we can always pick a value for the undef to make the
2238     // predicate pass or fail, so we can return undef.
2239     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2240     // icmp eq/ne X, undef -> undef.
2241     if ((N1.isUndef() || N2.isUndef()) &&
2242         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2243       return getUNDEF(VT);
2244 
2245     // If both operands are undef, we can return undef for int comparison.
2246     // icmp undef, undef -> undef.
2247     if (N1.isUndef() && N2.isUndef())
2248       return getUNDEF(VT);
2249 
2250     // icmp X, X -> true/false
2251     // icmp X, undef -> true/false because undef could be X.
2252     if (N1 == N2)
2253       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2254   }
2255 
2256   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2257     const APInt &C2 = N2C->getAPIntValue();
2258     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2259       const APInt &C1 = N1C->getAPIntValue();
2260 
2261       switch (Cond) {
2262       default: llvm_unreachable("Unknown integer setcc!");
2263       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2264       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2265       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2266       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2267       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2268       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2269       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2270       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2271       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2272       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2273       }
2274     }
2275   }
2276 
2277   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2278   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2279 
2280   if (N1CFP && N2CFP) {
2281     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2282     switch (Cond) {
2283     default: break;
2284     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2285                         return getUNDEF(VT);
2286                       LLVM_FALLTHROUGH;
2287     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2288                                              OpVT);
2289     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2290                         return getUNDEF(VT);
2291                       LLVM_FALLTHROUGH;
2292     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2293                                              R==APFloat::cmpLessThan, dl, VT,
2294                                              OpVT);
2295     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2296                         return getUNDEF(VT);
2297                       LLVM_FALLTHROUGH;
2298     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2299                                              OpVT);
2300     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2301                         return getUNDEF(VT);
2302                       LLVM_FALLTHROUGH;
2303     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2304                                              VT, OpVT);
2305     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2306                         return getUNDEF(VT);
2307                       LLVM_FALLTHROUGH;
2308     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2309                                              R==APFloat::cmpEqual, dl, VT,
2310                                              OpVT);
2311     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2312                         return getUNDEF(VT);
2313                       LLVM_FALLTHROUGH;
2314     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2315                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2316     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2317                                              OpVT);
2318     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2319                                              OpVT);
2320     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2321                                              R==APFloat::cmpEqual, dl, VT,
2322                                              OpVT);
2323     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2324                                              OpVT);
2325     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2326                                              R==APFloat::cmpLessThan, dl, VT,
2327                                              OpVT);
2328     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2329                                              R==APFloat::cmpUnordered, dl, VT,
2330                                              OpVT);
2331     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2332                                              VT, OpVT);
2333     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2334                                              OpVT);
2335     }
2336   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2337     // Ensure that the constant occurs on the RHS.
2338     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2339     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2340       return SDValue();
2341     return getSetCC(dl, VT, N2, N1, SwappedCond);
2342   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2343              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2344     // If an operand is known to be a nan (or undef that could be a nan), we can
2345     // fold it.
2346     // Choosing NaN for the undef will always make unordered comparison succeed
2347     // and ordered comparison fails.
2348     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2349     switch (ISD::getUnorderedFlavor(Cond)) {
2350     default:
2351       llvm_unreachable("Unknown flavor!");
2352     case 0: // Known false.
2353       return getBoolConstant(false, dl, VT, OpVT);
2354     case 1: // Known true.
2355       return getBoolConstant(true, dl, VT, OpVT);
2356     case 2: // Undefined.
2357       return getUNDEF(VT);
2358     }
2359   }
2360 
2361   // Could not fold it.
2362   return SDValue();
2363 }
2364 
2365 /// See if the specified operand can be simplified with the knowledge that only
2366 /// the bits specified by DemandedBits are used.
2367 /// TODO: really we should be making this into the DAG equivalent of
2368 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2369 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2370   EVT VT = V.getValueType();
2371 
2372   if (VT.isScalableVector())
2373     return SDValue();
2374 
2375   APInt DemandedElts = VT.isVector()
2376                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2377                            : APInt(1, 1);
2378   return GetDemandedBits(V, DemandedBits, DemandedElts);
2379 }
2380 
2381 /// See if the specified operand can be simplified with the knowledge that only
2382 /// the bits specified by DemandedBits are used in the elements specified by
2383 /// DemandedElts.
2384 /// TODO: really we should be making this into the DAG equivalent of
2385 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2386 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2387                                       const APInt &DemandedElts) {
2388   switch (V.getOpcode()) {
2389   default:
2390     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2391                                                 *this, 0);
2392   case ISD::Constant: {
2393     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2394     APInt NewVal = CVal & DemandedBits;
2395     if (NewVal != CVal)
2396       return getConstant(NewVal, SDLoc(V), V.getValueType());
2397     break;
2398   }
2399   case ISD::SRL:
2400     // Only look at single-use SRLs.
2401     if (!V.getNode()->hasOneUse())
2402       break;
2403     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2404       // See if we can recursively simplify the LHS.
2405       unsigned Amt = RHSC->getZExtValue();
2406 
2407       // Watch out for shift count overflow though.
2408       if (Amt >= DemandedBits.getBitWidth())
2409         break;
2410       APInt SrcDemandedBits = DemandedBits << Amt;
2411       if (SDValue SimplifyLHS =
2412               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2413         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2414                        V.getOperand(1));
2415     }
2416     break;
2417   }
2418   return SDValue();
2419 }
2420 
2421 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2422 /// use this predicate to simplify operations downstream.
2423 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2424   unsigned BitWidth = Op.getScalarValueSizeInBits();
2425   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2426 }
2427 
2428 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2429 /// this predicate to simplify operations downstream.  Mask is known to be zero
2430 /// for bits that V cannot have.
2431 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2432                                      unsigned Depth) const {
2433   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2434 }
2435 
2436 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2437 /// DemandedElts.  We use this predicate to simplify operations downstream.
2438 /// Mask is known to be zero for bits that V cannot have.
2439 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2440                                      const APInt &DemandedElts,
2441                                      unsigned Depth) const {
2442   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2443 }
2444 
2445 /// Return true if the DemandedElts of the vector Op are all zero.  We
2446 /// use this predicate to simplify operations downstream.
2447 bool SelectionDAG::MaskedElementsAreZero(SDValue Op, const APInt &DemandedElts,
2448                                          unsigned Depth) const {
2449   unsigned BitWidth = Op.getScalarValueSizeInBits();
2450   APInt DemandedBits = APInt::getAllOnesValue(BitWidth);
2451   return MaskedValueIsZero(Op, DemandedBits, DemandedElts, Depth);
2452 }
2453 
2454 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2455 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2456                                         unsigned Depth) const {
2457   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2458 }
2459 
2460 /// isSplatValue - Return true if the vector V has the same value
2461 /// across all DemandedElts. For scalable vectors it does not make
2462 /// sense to specify which elements are demanded or undefined, therefore
2463 /// they are simply ignored.
2464 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2465                                 APInt &UndefElts, unsigned Depth) {
2466   EVT VT = V.getValueType();
2467   assert(VT.isVector() && "Vector type expected");
2468 
2469   if (!VT.isScalableVector() && !DemandedElts)
2470     return false; // No demanded elts, better to assume we don't know anything.
2471 
2472   if (Depth >= MaxRecursionDepth)
2473     return false; // Limit search depth.
2474 
2475   // Deal with some common cases here that work for both fixed and scalable
2476   // vector types.
2477   switch (V.getOpcode()) {
2478   case ISD::SPLAT_VECTOR:
2479     UndefElts = V.getOperand(0).isUndef()
2480                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2481                     : APInt(DemandedElts.getBitWidth(), 0);
2482     return true;
2483   case ISD::ADD:
2484   case ISD::SUB:
2485   case ISD::AND:
2486   case ISD::XOR:
2487   case ISD::OR: {
2488     APInt UndefLHS, UndefRHS;
2489     SDValue LHS = V.getOperand(0);
2490     SDValue RHS = V.getOperand(1);
2491     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2492         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2493       UndefElts = UndefLHS | UndefRHS;
2494       return true;
2495     }
2496     return false;
2497   }
2498   case ISD::ABS:
2499   case ISD::TRUNCATE:
2500   case ISD::SIGN_EXTEND:
2501   case ISD::ZERO_EXTEND:
2502     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2503   }
2504 
2505   // We don't support other cases than those above for scalable vectors at
2506   // the moment.
2507   if (VT.isScalableVector())
2508     return false;
2509 
2510   unsigned NumElts = VT.getVectorNumElements();
2511   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2512   UndefElts = APInt::getNullValue(NumElts);
2513 
2514   switch (V.getOpcode()) {
2515   case ISD::BUILD_VECTOR: {
2516     SDValue Scl;
2517     for (unsigned i = 0; i != NumElts; ++i) {
2518       SDValue Op = V.getOperand(i);
2519       if (Op.isUndef()) {
2520         UndefElts.setBit(i);
2521         continue;
2522       }
2523       if (!DemandedElts[i])
2524         continue;
2525       if (Scl && Scl != Op)
2526         return false;
2527       Scl = Op;
2528     }
2529     return true;
2530   }
2531   case ISD::VECTOR_SHUFFLE: {
2532     // Check if this is a shuffle node doing a splat.
2533     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2534     int SplatIndex = -1;
2535     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2536     for (int i = 0; i != (int)NumElts; ++i) {
2537       int M = Mask[i];
2538       if (M < 0) {
2539         UndefElts.setBit(i);
2540         continue;
2541       }
2542       if (!DemandedElts[i])
2543         continue;
2544       if (0 <= SplatIndex && SplatIndex != M)
2545         return false;
2546       SplatIndex = M;
2547     }
2548     return true;
2549   }
2550   case ISD::EXTRACT_SUBVECTOR: {
2551     // Offset the demanded elts by the subvector index.
2552     SDValue Src = V.getOperand(0);
2553     // We don't support scalable vectors at the moment.
2554     if (Src.getValueType().isScalableVector())
2555       return false;
2556     uint64_t Idx = V.getConstantOperandVal(1);
2557     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2558     APInt UndefSrcElts;
2559     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2560     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2561       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2562       return true;
2563     }
2564     break;
2565   }
2566   }
2567 
2568   return false;
2569 }
2570 
2571 /// Helper wrapper to main isSplatValue function.
2572 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2573   EVT VT = V.getValueType();
2574   assert(VT.isVector() && "Vector type expected");
2575 
2576   APInt UndefElts;
2577   APInt DemandedElts;
2578 
2579   // For now we don't support this with scalable vectors.
2580   if (!VT.isScalableVector())
2581     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2582   return isSplatValue(V, DemandedElts, UndefElts) &&
2583          (AllowUndefs || !UndefElts);
2584 }
2585 
2586 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2587   V = peekThroughExtractSubvectors(V);
2588 
2589   EVT VT = V.getValueType();
2590   unsigned Opcode = V.getOpcode();
2591   switch (Opcode) {
2592   default: {
2593     APInt UndefElts;
2594     APInt DemandedElts;
2595 
2596     if (!VT.isScalableVector())
2597       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2598 
2599     if (isSplatValue(V, DemandedElts, UndefElts)) {
2600       if (VT.isScalableVector()) {
2601         // DemandedElts and UndefElts are ignored for scalable vectors, since
2602         // the only supported cases are SPLAT_VECTOR nodes.
2603         SplatIdx = 0;
2604       } else {
2605         // Handle case where all demanded elements are UNDEF.
2606         if (DemandedElts.isSubsetOf(UndefElts)) {
2607           SplatIdx = 0;
2608           return getUNDEF(VT);
2609         }
2610         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2611       }
2612       return V;
2613     }
2614     break;
2615   }
2616   case ISD::SPLAT_VECTOR:
2617     SplatIdx = 0;
2618     return V;
2619   case ISD::VECTOR_SHUFFLE: {
2620     if (VT.isScalableVector())
2621       return SDValue();
2622 
2623     // Check if this is a shuffle node doing a splat.
2624     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2625     // getTargetVShiftNode currently struggles without the splat source.
2626     auto *SVN = cast<ShuffleVectorSDNode>(V);
2627     if (!SVN->isSplat())
2628       break;
2629     int Idx = SVN->getSplatIndex();
2630     int NumElts = V.getValueType().getVectorNumElements();
2631     SplatIdx = Idx % NumElts;
2632     return V.getOperand(Idx / NumElts);
2633   }
2634   }
2635 
2636   return SDValue();
2637 }
2638 
2639 SDValue SelectionDAG::getSplatValue(SDValue V) {
2640   int SplatIdx;
2641   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2642     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2643                    SrcVector.getValueType().getScalarType(), SrcVector,
2644                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2645   return SDValue();
2646 }
2647 
2648 const APInt *
2649 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2650                                           const APInt &DemandedElts) const {
2651   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2652           V.getOpcode() == ISD::SRA) &&
2653          "Unknown shift node");
2654   unsigned BitWidth = V.getScalarValueSizeInBits();
2655   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2656     // Shifting more than the bitwidth is not valid.
2657     const APInt &ShAmt = SA->getAPIntValue();
2658     if (ShAmt.ult(BitWidth))
2659       return &ShAmt;
2660   }
2661   return nullptr;
2662 }
2663 
2664 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2665     SDValue V, const APInt &DemandedElts) const {
2666   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2667           V.getOpcode() == ISD::SRA) &&
2668          "Unknown shift node");
2669   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2670     return ValidAmt;
2671   unsigned BitWidth = V.getScalarValueSizeInBits();
2672   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2673   if (!BV)
2674     return nullptr;
2675   const APInt *MinShAmt = nullptr;
2676   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2677     if (!DemandedElts[i])
2678       continue;
2679     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2680     if (!SA)
2681       return nullptr;
2682     // Shifting more than the bitwidth is not valid.
2683     const APInt &ShAmt = SA->getAPIntValue();
2684     if (ShAmt.uge(BitWidth))
2685       return nullptr;
2686     if (MinShAmt && MinShAmt->ule(ShAmt))
2687       continue;
2688     MinShAmt = &ShAmt;
2689   }
2690   return MinShAmt;
2691 }
2692 
2693 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2694     SDValue V, const APInt &DemandedElts) const {
2695   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2696           V.getOpcode() == ISD::SRA) &&
2697          "Unknown shift node");
2698   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2699     return ValidAmt;
2700   unsigned BitWidth = V.getScalarValueSizeInBits();
2701   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2702   if (!BV)
2703     return nullptr;
2704   const APInt *MaxShAmt = nullptr;
2705   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2706     if (!DemandedElts[i])
2707       continue;
2708     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2709     if (!SA)
2710       return nullptr;
2711     // Shifting more than the bitwidth is not valid.
2712     const APInt &ShAmt = SA->getAPIntValue();
2713     if (ShAmt.uge(BitWidth))
2714       return nullptr;
2715     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2716       continue;
2717     MaxShAmt = &ShAmt;
2718   }
2719   return MaxShAmt;
2720 }
2721 
2722 /// Determine which bits of Op are known to be either zero or one and return
2723 /// them in Known. For vectors, the known bits are those that are shared by
2724 /// every vector element.
2725 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2726   EVT VT = Op.getValueType();
2727 
2728   // TOOD: Until we have a plan for how to represent demanded elements for
2729   // scalable vectors, we can just bail out for now.
2730   if (Op.getValueType().isScalableVector()) {
2731     unsigned BitWidth = Op.getScalarValueSizeInBits();
2732     return KnownBits(BitWidth);
2733   }
2734 
2735   APInt DemandedElts = VT.isVector()
2736                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2737                            : APInt(1, 1);
2738   return computeKnownBits(Op, DemandedElts, Depth);
2739 }
2740 
2741 /// Determine which bits of Op are known to be either zero or one and return
2742 /// them in Known. The DemandedElts argument allows us to only collect the known
2743 /// bits that are shared by the requested vector elements.
2744 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2745                                          unsigned Depth) const {
2746   unsigned BitWidth = Op.getScalarValueSizeInBits();
2747 
2748   KnownBits Known(BitWidth);   // Don't know anything.
2749 
2750   // TOOD: Until we have a plan for how to represent demanded elements for
2751   // scalable vectors, we can just bail out for now.
2752   if (Op.getValueType().isScalableVector())
2753     return Known;
2754 
2755   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2756     // We know all of the bits for a constant!
2757     return KnownBits::makeConstant(C->getAPIntValue());
2758   }
2759   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2760     // We know all of the bits for a constant fp!
2761     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2762   }
2763 
2764   if (Depth >= MaxRecursionDepth)
2765     return Known;  // Limit search depth.
2766 
2767   KnownBits Known2;
2768   unsigned NumElts = DemandedElts.getBitWidth();
2769   assert((!Op.getValueType().isVector() ||
2770           NumElts == Op.getValueType().getVectorNumElements()) &&
2771          "Unexpected vector size");
2772 
2773   if (!DemandedElts)
2774     return Known;  // No demanded elts, better to assume we don't know anything.
2775 
2776   unsigned Opcode = Op.getOpcode();
2777   switch (Opcode) {
2778   case ISD::BUILD_VECTOR:
2779     // Collect the known bits that are shared by every demanded vector element.
2780     Known.Zero.setAllBits(); Known.One.setAllBits();
2781     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2782       if (!DemandedElts[i])
2783         continue;
2784 
2785       SDValue SrcOp = Op.getOperand(i);
2786       Known2 = computeKnownBits(SrcOp, Depth + 1);
2787 
2788       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2789       if (SrcOp.getValueSizeInBits() != BitWidth) {
2790         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2791                "Expected BUILD_VECTOR implicit truncation");
2792         Known2 = Known2.trunc(BitWidth);
2793       }
2794 
2795       // Known bits are the values that are shared by every demanded element.
2796       Known = KnownBits::commonBits(Known, Known2);
2797 
2798       // If we don't know any bits, early out.
2799       if (Known.isUnknown())
2800         break;
2801     }
2802     break;
2803   case ISD::VECTOR_SHUFFLE: {
2804     // Collect the known bits that are shared by every vector element referenced
2805     // by the shuffle.
2806     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2807     Known.Zero.setAllBits(); Known.One.setAllBits();
2808     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2809     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2810     for (unsigned i = 0; i != NumElts; ++i) {
2811       if (!DemandedElts[i])
2812         continue;
2813 
2814       int M = SVN->getMaskElt(i);
2815       if (M < 0) {
2816         // For UNDEF elements, we don't know anything about the common state of
2817         // the shuffle result.
2818         Known.resetAll();
2819         DemandedLHS.clearAllBits();
2820         DemandedRHS.clearAllBits();
2821         break;
2822       }
2823 
2824       if ((unsigned)M < NumElts)
2825         DemandedLHS.setBit((unsigned)M % NumElts);
2826       else
2827         DemandedRHS.setBit((unsigned)M % NumElts);
2828     }
2829     // Known bits are the values that are shared by every demanded element.
2830     if (!!DemandedLHS) {
2831       SDValue LHS = Op.getOperand(0);
2832       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2833       Known = KnownBits::commonBits(Known, Known2);
2834     }
2835     // If we don't know any bits, early out.
2836     if (Known.isUnknown())
2837       break;
2838     if (!!DemandedRHS) {
2839       SDValue RHS = Op.getOperand(1);
2840       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2841       Known = KnownBits::commonBits(Known, Known2);
2842     }
2843     break;
2844   }
2845   case ISD::CONCAT_VECTORS: {
2846     // Split DemandedElts and test each of the demanded subvectors.
2847     Known.Zero.setAllBits(); Known.One.setAllBits();
2848     EVT SubVectorVT = Op.getOperand(0).getValueType();
2849     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2850     unsigned NumSubVectors = Op.getNumOperands();
2851     for (unsigned i = 0; i != NumSubVectors; ++i) {
2852       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2853       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2854       if (!!DemandedSub) {
2855         SDValue Sub = Op.getOperand(i);
2856         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2857         Known = KnownBits::commonBits(Known, Known2);
2858       }
2859       // If we don't know any bits, early out.
2860       if (Known.isUnknown())
2861         break;
2862     }
2863     break;
2864   }
2865   case ISD::INSERT_SUBVECTOR: {
2866     // Demand any elements from the subvector and the remainder from the src its
2867     // inserted into.
2868     SDValue Src = Op.getOperand(0);
2869     SDValue Sub = Op.getOperand(1);
2870     uint64_t Idx = Op.getConstantOperandVal(2);
2871     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2872     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2873     APInt DemandedSrcElts = DemandedElts;
2874     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2875 
2876     Known.One.setAllBits();
2877     Known.Zero.setAllBits();
2878     if (!!DemandedSubElts) {
2879       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2880       if (Known.isUnknown())
2881         break; // early-out.
2882     }
2883     if (!!DemandedSrcElts) {
2884       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2885       Known = KnownBits::commonBits(Known, Known2);
2886     }
2887     break;
2888   }
2889   case ISD::EXTRACT_SUBVECTOR: {
2890     // Offset the demanded elts by the subvector index.
2891     SDValue Src = Op.getOperand(0);
2892     // Bail until we can represent demanded elements for scalable vectors.
2893     if (Src.getValueType().isScalableVector())
2894       break;
2895     uint64_t Idx = Op.getConstantOperandVal(1);
2896     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2897     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2898     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2899     break;
2900   }
2901   case ISD::SCALAR_TO_VECTOR: {
2902     // We know about scalar_to_vector as much as we know about it source,
2903     // which becomes the first element of otherwise unknown vector.
2904     if (DemandedElts != 1)
2905       break;
2906 
2907     SDValue N0 = Op.getOperand(0);
2908     Known = computeKnownBits(N0, Depth + 1);
2909     if (N0.getValueSizeInBits() != BitWidth)
2910       Known = Known.trunc(BitWidth);
2911 
2912     break;
2913   }
2914   case ISD::BITCAST: {
2915     SDValue N0 = Op.getOperand(0);
2916     EVT SubVT = N0.getValueType();
2917     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2918 
2919     // Ignore bitcasts from unsupported types.
2920     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2921       break;
2922 
2923     // Fast handling of 'identity' bitcasts.
2924     if (BitWidth == SubBitWidth) {
2925       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2926       break;
2927     }
2928 
2929     bool IsLE = getDataLayout().isLittleEndian();
2930 
2931     // Bitcast 'small element' vector to 'large element' scalar/vector.
2932     if ((BitWidth % SubBitWidth) == 0) {
2933       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2934 
2935       // Collect known bits for the (larger) output by collecting the known
2936       // bits from each set of sub elements and shift these into place.
2937       // We need to separately call computeKnownBits for each set of
2938       // sub elements as the knownbits for each is likely to be different.
2939       unsigned SubScale = BitWidth / SubBitWidth;
2940       APInt SubDemandedElts(NumElts * SubScale, 0);
2941       for (unsigned i = 0; i != NumElts; ++i)
2942         if (DemandedElts[i])
2943           SubDemandedElts.setBit(i * SubScale);
2944 
2945       for (unsigned i = 0; i != SubScale; ++i) {
2946         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2947                          Depth + 1);
2948         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2949         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2950         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2951       }
2952     }
2953 
2954     // Bitcast 'large element' scalar/vector to 'small element' vector.
2955     if ((SubBitWidth % BitWidth) == 0) {
2956       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2957 
2958       // Collect known bits for the (smaller) output by collecting the known
2959       // bits from the overlapping larger input elements and extracting the
2960       // sub sections we actually care about.
2961       unsigned SubScale = SubBitWidth / BitWidth;
2962       APInt SubDemandedElts(NumElts / SubScale, 0);
2963       for (unsigned i = 0; i != NumElts; ++i)
2964         if (DemandedElts[i])
2965           SubDemandedElts.setBit(i / SubScale);
2966 
2967       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2968 
2969       Known.Zero.setAllBits(); Known.One.setAllBits();
2970       for (unsigned i = 0; i != NumElts; ++i)
2971         if (DemandedElts[i]) {
2972           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2973           unsigned Offset = (Shifts % SubScale) * BitWidth;
2974           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2975           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2976           // If we don't know any bits, early out.
2977           if (Known.isUnknown())
2978             break;
2979         }
2980     }
2981     break;
2982   }
2983   case ISD::AND:
2984     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2985     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2986 
2987     Known &= Known2;
2988     break;
2989   case ISD::OR:
2990     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2991     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2992 
2993     Known |= Known2;
2994     break;
2995   case ISD::XOR:
2996     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2997     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2998 
2999     Known ^= Known2;
3000     break;
3001   case ISD::MUL: {
3002     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3003     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3004     Known = KnownBits::mul(Known, Known2);
3005     break;
3006   }
3007   case ISD::MULHU: {
3008     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3009     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3010     Known = KnownBits::mulhu(Known, Known2);
3011     break;
3012   }
3013   case ISD::MULHS: {
3014     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3015     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3016     Known = KnownBits::mulhs(Known, Known2);
3017     break;
3018   }
3019   case ISD::UMUL_LOHI: {
3020     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3021     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3022     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3023     if (Op.getResNo() == 0)
3024       Known = KnownBits::mul(Known, Known2);
3025     else
3026       Known = KnownBits::mulhu(Known, Known2);
3027     break;
3028   }
3029   case ISD::SMUL_LOHI: {
3030     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3031     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3032     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3033     if (Op.getResNo() == 0)
3034       Known = KnownBits::mul(Known, Known2);
3035     else
3036       Known = KnownBits::mulhs(Known, Known2);
3037     break;
3038   }
3039   case ISD::UDIV: {
3040     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3041     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3042     Known = KnownBits::udiv(Known, Known2);
3043     break;
3044   }
3045   case ISD::SELECT:
3046   case ISD::VSELECT:
3047     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3048     // If we don't know any bits, early out.
3049     if (Known.isUnknown())
3050       break;
3051     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3052 
3053     // Only known if known in both the LHS and RHS.
3054     Known = KnownBits::commonBits(Known, Known2);
3055     break;
3056   case ISD::SELECT_CC:
3057     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3058     // If we don't know any bits, early out.
3059     if (Known.isUnknown())
3060       break;
3061     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3062 
3063     // Only known if known in both the LHS and RHS.
3064     Known = KnownBits::commonBits(Known, Known2);
3065     break;
3066   case ISD::SMULO:
3067   case ISD::UMULO:
3068     if (Op.getResNo() != 1)
3069       break;
3070     // The boolean result conforms to getBooleanContents.
3071     // If we know the result of a setcc has the top bits zero, use this info.
3072     // We know that we have an integer-based boolean since these operations
3073     // are only available for integer.
3074     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3075             TargetLowering::ZeroOrOneBooleanContent &&
3076         BitWidth > 1)
3077       Known.Zero.setBitsFrom(1);
3078     break;
3079   case ISD::SETCC:
3080   case ISD::STRICT_FSETCC:
3081   case ISD::STRICT_FSETCCS: {
3082     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3083     // If we know the result of a setcc has the top bits zero, use this info.
3084     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3085             TargetLowering::ZeroOrOneBooleanContent &&
3086         BitWidth > 1)
3087       Known.Zero.setBitsFrom(1);
3088     break;
3089   }
3090   case ISD::SHL:
3091     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3092     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3093     Known = KnownBits::shl(Known, Known2);
3094 
3095     // Minimum shift low bits are known zero.
3096     if (const APInt *ShMinAmt =
3097             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3098       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3099     break;
3100   case ISD::SRL:
3101     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3102     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3103     Known = KnownBits::lshr(Known, Known2);
3104 
3105     // Minimum shift high bits are known zero.
3106     if (const APInt *ShMinAmt =
3107             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3108       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3109     break;
3110   case ISD::SRA:
3111     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3112     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3113     Known = KnownBits::ashr(Known, Known2);
3114     // TODO: Add minimum shift high known sign bits.
3115     break;
3116   case ISD::FSHL:
3117   case ISD::FSHR:
3118     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3119       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3120 
3121       // For fshl, 0-shift returns the 1st arg.
3122       // For fshr, 0-shift returns the 2nd arg.
3123       if (Amt == 0) {
3124         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3125                                  DemandedElts, Depth + 1);
3126         break;
3127       }
3128 
3129       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3130       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3131       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3132       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3133       if (Opcode == ISD::FSHL) {
3134         Known.One <<= Amt;
3135         Known.Zero <<= Amt;
3136         Known2.One.lshrInPlace(BitWidth - Amt);
3137         Known2.Zero.lshrInPlace(BitWidth - Amt);
3138       } else {
3139         Known.One <<= BitWidth - Amt;
3140         Known.Zero <<= BitWidth - Amt;
3141         Known2.One.lshrInPlace(Amt);
3142         Known2.Zero.lshrInPlace(Amt);
3143       }
3144       Known.One |= Known2.One;
3145       Known.Zero |= Known2.Zero;
3146     }
3147     break;
3148   case ISD::SIGN_EXTEND_INREG: {
3149     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3150     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3151     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3152     break;
3153   }
3154   case ISD::CTTZ:
3155   case ISD::CTTZ_ZERO_UNDEF: {
3156     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3157     // If we have a known 1, its position is our upper bound.
3158     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3159     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3160     Known.Zero.setBitsFrom(LowBits);
3161     break;
3162   }
3163   case ISD::CTLZ:
3164   case ISD::CTLZ_ZERO_UNDEF: {
3165     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3166     // If we have a known 1, its position is our upper bound.
3167     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3168     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3169     Known.Zero.setBitsFrom(LowBits);
3170     break;
3171   }
3172   case ISD::CTPOP: {
3173     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3174     // If we know some of the bits are zero, they can't be one.
3175     unsigned PossibleOnes = Known2.countMaxPopulation();
3176     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3177     break;
3178   }
3179   case ISD::PARITY: {
3180     // Parity returns 0 everywhere but the LSB.
3181     Known.Zero.setBitsFrom(1);
3182     break;
3183   }
3184   case ISD::LOAD: {
3185     LoadSDNode *LD = cast<LoadSDNode>(Op);
3186     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3187     if (ISD::isNON_EXTLoad(LD) && Cst) {
3188       // Determine any common known bits from the loaded constant pool value.
3189       Type *CstTy = Cst->getType();
3190       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3191         // If its a vector splat, then we can (quickly) reuse the scalar path.
3192         // NOTE: We assume all elements match and none are UNDEF.
3193         if (CstTy->isVectorTy()) {
3194           if (const Constant *Splat = Cst->getSplatValue()) {
3195             Cst = Splat;
3196             CstTy = Cst->getType();
3197           }
3198         }
3199         // TODO - do we need to handle different bitwidths?
3200         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3201           // Iterate across all vector elements finding common known bits.
3202           Known.One.setAllBits();
3203           Known.Zero.setAllBits();
3204           for (unsigned i = 0; i != NumElts; ++i) {
3205             if (!DemandedElts[i])
3206               continue;
3207             if (Constant *Elt = Cst->getAggregateElement(i)) {
3208               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3209                 const APInt &Value = CInt->getValue();
3210                 Known.One &= Value;
3211                 Known.Zero &= ~Value;
3212                 continue;
3213               }
3214               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3215                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3216                 Known.One &= Value;
3217                 Known.Zero &= ~Value;
3218                 continue;
3219               }
3220             }
3221             Known.One.clearAllBits();
3222             Known.Zero.clearAllBits();
3223             break;
3224           }
3225         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3226           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3227             Known = KnownBits::makeConstant(CInt->getValue());
3228           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3229             Known =
3230                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3231           }
3232         }
3233       }
3234     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3235       // If this is a ZEXTLoad and we are looking at the loaded value.
3236       EVT VT = LD->getMemoryVT();
3237       unsigned MemBits = VT.getScalarSizeInBits();
3238       Known.Zero.setBitsFrom(MemBits);
3239     } else if (const MDNode *Ranges = LD->getRanges()) {
3240       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3241         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3242     }
3243     break;
3244   }
3245   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3246     EVT InVT = Op.getOperand(0).getValueType();
3247     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3248     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3249     Known = Known.zext(BitWidth);
3250     break;
3251   }
3252   case ISD::ZERO_EXTEND: {
3253     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3254     Known = Known.zext(BitWidth);
3255     break;
3256   }
3257   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3258     EVT InVT = Op.getOperand(0).getValueType();
3259     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3260     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3261     // If the sign bit is known to be zero or one, then sext will extend
3262     // it to the top bits, else it will just zext.
3263     Known = Known.sext(BitWidth);
3264     break;
3265   }
3266   case ISD::SIGN_EXTEND: {
3267     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3268     // If the sign bit is known to be zero or one, then sext will extend
3269     // it to the top bits, else it will just zext.
3270     Known = Known.sext(BitWidth);
3271     break;
3272   }
3273   case ISD::ANY_EXTEND_VECTOR_INREG: {
3274     EVT InVT = Op.getOperand(0).getValueType();
3275     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3276     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3277     Known = Known.anyext(BitWidth);
3278     break;
3279   }
3280   case ISD::ANY_EXTEND: {
3281     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3282     Known = Known.anyext(BitWidth);
3283     break;
3284   }
3285   case ISD::TRUNCATE: {
3286     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3287     Known = Known.trunc(BitWidth);
3288     break;
3289   }
3290   case ISD::AssertZext: {
3291     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3292     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3293     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3294     Known.Zero |= (~InMask);
3295     Known.One  &= (~Known.Zero);
3296     break;
3297   }
3298   case ISD::AssertAlign: {
3299     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3300     assert(LogOfAlign != 0);
3301     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3302     // well as clearing one bits.
3303     Known.Zero.setLowBits(LogOfAlign);
3304     Known.One.clearLowBits(LogOfAlign);
3305     break;
3306   }
3307   case ISD::FGETSIGN:
3308     // All bits are zero except the low bit.
3309     Known.Zero.setBitsFrom(1);
3310     break;
3311   case ISD::USUBO:
3312   case ISD::SSUBO:
3313     if (Op.getResNo() == 1) {
3314       // If we know the result of a setcc has the top bits zero, use this info.
3315       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3316               TargetLowering::ZeroOrOneBooleanContent &&
3317           BitWidth > 1)
3318         Known.Zero.setBitsFrom(1);
3319       break;
3320     }
3321     LLVM_FALLTHROUGH;
3322   case ISD::SUB:
3323   case ISD::SUBC: {
3324     assert(Op.getResNo() == 0 &&
3325            "We only compute knownbits for the difference here.");
3326 
3327     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3328     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3329     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3330                                         Known, Known2);
3331     break;
3332   }
3333   case ISD::UADDO:
3334   case ISD::SADDO:
3335   case ISD::ADDCARRY:
3336     if (Op.getResNo() == 1) {
3337       // If we know the result of a setcc has the top bits zero, use this info.
3338       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3339               TargetLowering::ZeroOrOneBooleanContent &&
3340           BitWidth > 1)
3341         Known.Zero.setBitsFrom(1);
3342       break;
3343     }
3344     LLVM_FALLTHROUGH;
3345   case ISD::ADD:
3346   case ISD::ADDC:
3347   case ISD::ADDE: {
3348     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3349 
3350     // With ADDE and ADDCARRY, a carry bit may be added in.
3351     KnownBits Carry(1);
3352     if (Opcode == ISD::ADDE)
3353       // Can't track carry from glue, set carry to unknown.
3354       Carry.resetAll();
3355     else if (Opcode == ISD::ADDCARRY)
3356       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3357       // the trouble (how often will we find a known carry bit). And I haven't
3358       // tested this very much yet, but something like this might work:
3359       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3360       //   Carry = Carry.zextOrTrunc(1, false);
3361       Carry.resetAll();
3362     else
3363       Carry.setAllZero();
3364 
3365     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3366     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3367     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3368     break;
3369   }
3370   case ISD::SREM: {
3371     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3372     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3373     Known = KnownBits::srem(Known, Known2);
3374     break;
3375   }
3376   case ISD::UREM: {
3377     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3378     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3379     Known = KnownBits::urem(Known, Known2);
3380     break;
3381   }
3382   case ISD::EXTRACT_ELEMENT: {
3383     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3384     const unsigned Index = Op.getConstantOperandVal(1);
3385     const unsigned EltBitWidth = Op.getValueSizeInBits();
3386 
3387     // Remove low part of known bits mask
3388     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3389     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3390 
3391     // Remove high part of known bit mask
3392     Known = Known.trunc(EltBitWidth);
3393     break;
3394   }
3395   case ISD::EXTRACT_VECTOR_ELT: {
3396     SDValue InVec = Op.getOperand(0);
3397     SDValue EltNo = Op.getOperand(1);
3398     EVT VecVT = InVec.getValueType();
3399     // computeKnownBits not yet implemented for scalable vectors.
3400     if (VecVT.isScalableVector())
3401       break;
3402     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3403     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3404 
3405     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3406     // anything about the extended bits.
3407     if (BitWidth > EltBitWidth)
3408       Known = Known.trunc(EltBitWidth);
3409 
3410     // If we know the element index, just demand that vector element, else for
3411     // an unknown element index, ignore DemandedElts and demand them all.
3412     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3413     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3414     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3415       DemandedSrcElts =
3416           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3417 
3418     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3419     if (BitWidth > EltBitWidth)
3420       Known = Known.anyext(BitWidth);
3421     break;
3422   }
3423   case ISD::INSERT_VECTOR_ELT: {
3424     // If we know the element index, split the demand between the
3425     // source vector and the inserted element, otherwise assume we need
3426     // the original demanded vector elements and the value.
3427     SDValue InVec = Op.getOperand(0);
3428     SDValue InVal = Op.getOperand(1);
3429     SDValue EltNo = Op.getOperand(2);
3430     bool DemandedVal = true;
3431     APInt DemandedVecElts = DemandedElts;
3432     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3433     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3434       unsigned EltIdx = CEltNo->getZExtValue();
3435       DemandedVal = !!DemandedElts[EltIdx];
3436       DemandedVecElts.clearBit(EltIdx);
3437     }
3438     Known.One.setAllBits();
3439     Known.Zero.setAllBits();
3440     if (DemandedVal) {
3441       Known2 = computeKnownBits(InVal, Depth + 1);
3442       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3443     }
3444     if (!!DemandedVecElts) {
3445       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3446       Known = KnownBits::commonBits(Known, Known2);
3447     }
3448     break;
3449   }
3450   case ISD::BITREVERSE: {
3451     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3452     Known = Known2.reverseBits();
3453     break;
3454   }
3455   case ISD::BSWAP: {
3456     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3457     Known = Known2.byteSwap();
3458     break;
3459   }
3460   case ISD::ABS: {
3461     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3462     Known = Known2.abs();
3463     break;
3464   }
3465   case ISD::USUBSAT: {
3466     // The result of usubsat will never be larger than the LHS.
3467     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3468     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3469     break;
3470   }
3471   case ISD::UMIN: {
3472     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3473     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3474     Known = KnownBits::umin(Known, Known2);
3475     break;
3476   }
3477   case ISD::UMAX: {
3478     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3479     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3480     Known = KnownBits::umax(Known, Known2);
3481     break;
3482   }
3483   case ISD::SMIN:
3484   case ISD::SMAX: {
3485     // If we have a clamp pattern, we know that the number of sign bits will be
3486     // the minimum of the clamp min/max range.
3487     bool IsMax = (Opcode == ISD::SMAX);
3488     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3489     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3490       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3491         CstHigh =
3492             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3493     if (CstLow && CstHigh) {
3494       if (!IsMax)
3495         std::swap(CstLow, CstHigh);
3496 
3497       const APInt &ValueLow = CstLow->getAPIntValue();
3498       const APInt &ValueHigh = CstHigh->getAPIntValue();
3499       if (ValueLow.sle(ValueHigh)) {
3500         unsigned LowSignBits = ValueLow.getNumSignBits();
3501         unsigned HighSignBits = ValueHigh.getNumSignBits();
3502         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3503         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3504           Known.One.setHighBits(MinSignBits);
3505           break;
3506         }
3507         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3508           Known.Zero.setHighBits(MinSignBits);
3509           break;
3510         }
3511       }
3512     }
3513 
3514     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3515     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3516     if (IsMax)
3517       Known = KnownBits::smax(Known, Known2);
3518     else
3519       Known = KnownBits::smin(Known, Known2);
3520     break;
3521   }
3522   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3523     if (Op.getResNo() == 1) {
3524       // The boolean result conforms to getBooleanContents.
3525       // If we know the result of a setcc has the top bits zero, use this info.
3526       // We know that we have an integer-based boolean since these operations
3527       // are only available for integer.
3528       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3529               TargetLowering::ZeroOrOneBooleanContent &&
3530           BitWidth > 1)
3531         Known.Zero.setBitsFrom(1);
3532       break;
3533     }
3534     LLVM_FALLTHROUGH;
3535   case ISD::ATOMIC_CMP_SWAP:
3536   case ISD::ATOMIC_SWAP:
3537   case ISD::ATOMIC_LOAD_ADD:
3538   case ISD::ATOMIC_LOAD_SUB:
3539   case ISD::ATOMIC_LOAD_AND:
3540   case ISD::ATOMIC_LOAD_CLR:
3541   case ISD::ATOMIC_LOAD_OR:
3542   case ISD::ATOMIC_LOAD_XOR:
3543   case ISD::ATOMIC_LOAD_NAND:
3544   case ISD::ATOMIC_LOAD_MIN:
3545   case ISD::ATOMIC_LOAD_MAX:
3546   case ISD::ATOMIC_LOAD_UMIN:
3547   case ISD::ATOMIC_LOAD_UMAX:
3548   case ISD::ATOMIC_LOAD: {
3549     unsigned MemBits =
3550         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3551     // If we are looking at the loaded value.
3552     if (Op.getResNo() == 0) {
3553       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3554         Known.Zero.setBitsFrom(MemBits);
3555     }
3556     break;
3557   }
3558   case ISD::FrameIndex:
3559   case ISD::TargetFrameIndex:
3560     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3561                                        Known, getMachineFunction());
3562     break;
3563 
3564   default:
3565     if (Opcode < ISD::BUILTIN_OP_END)
3566       break;
3567     LLVM_FALLTHROUGH;
3568   case ISD::INTRINSIC_WO_CHAIN:
3569   case ISD::INTRINSIC_W_CHAIN:
3570   case ISD::INTRINSIC_VOID:
3571     // Allow the target to implement this method for its nodes.
3572     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3573     break;
3574   }
3575 
3576   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3577   return Known;
3578 }
3579 
3580 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3581                                                              SDValue N1) const {
3582   // X + 0 never overflow
3583   if (isNullConstant(N1))
3584     return OFK_Never;
3585 
3586   KnownBits N1Known = computeKnownBits(N1);
3587   if (N1Known.Zero.getBoolValue()) {
3588     KnownBits N0Known = computeKnownBits(N0);
3589 
3590     bool overflow;
3591     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3592     if (!overflow)
3593       return OFK_Never;
3594   }
3595 
3596   // mulhi + 1 never overflow
3597   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3598       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3599     return OFK_Never;
3600 
3601   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3602     KnownBits N0Known = computeKnownBits(N0);
3603 
3604     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3605       return OFK_Never;
3606   }
3607 
3608   return OFK_Sometime;
3609 }
3610 
3611 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3612   EVT OpVT = Val.getValueType();
3613   unsigned BitWidth = OpVT.getScalarSizeInBits();
3614 
3615   // Is the constant a known power of 2?
3616   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3617     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3618 
3619   // A left-shift of a constant one will have exactly one bit set because
3620   // shifting the bit off the end is undefined.
3621   if (Val.getOpcode() == ISD::SHL) {
3622     auto *C = isConstOrConstSplat(Val.getOperand(0));
3623     if (C && C->getAPIntValue() == 1)
3624       return true;
3625   }
3626 
3627   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3628   // one bit set.
3629   if (Val.getOpcode() == ISD::SRL) {
3630     auto *C = isConstOrConstSplat(Val.getOperand(0));
3631     if (C && C->getAPIntValue().isSignMask())
3632       return true;
3633   }
3634 
3635   // Are all operands of a build vector constant powers of two?
3636   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3637     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3638           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3639             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3640           return false;
3641         }))
3642       return true;
3643 
3644   // More could be done here, though the above checks are enough
3645   // to handle some common cases.
3646 
3647   // Fall back to computeKnownBits to catch other known cases.
3648   KnownBits Known = computeKnownBits(Val);
3649   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3650 }
3651 
3652 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3653   EVT VT = Op.getValueType();
3654 
3655   // TODO: Assume we don't know anything for now.
3656   if (VT.isScalableVector())
3657     return 1;
3658 
3659   APInt DemandedElts = VT.isVector()
3660                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3661                            : APInt(1, 1);
3662   return ComputeNumSignBits(Op, DemandedElts, Depth);
3663 }
3664 
3665 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3666                                           unsigned Depth) const {
3667   EVT VT = Op.getValueType();
3668   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3669   unsigned VTBits = VT.getScalarSizeInBits();
3670   unsigned NumElts = DemandedElts.getBitWidth();
3671   unsigned Tmp, Tmp2;
3672   unsigned FirstAnswer = 1;
3673 
3674   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3675     const APInt &Val = C->getAPIntValue();
3676     return Val.getNumSignBits();
3677   }
3678 
3679   if (Depth >= MaxRecursionDepth)
3680     return 1;  // Limit search depth.
3681 
3682   if (!DemandedElts || VT.isScalableVector())
3683     return 1;  // No demanded elts, better to assume we don't know anything.
3684 
3685   unsigned Opcode = Op.getOpcode();
3686   switch (Opcode) {
3687   default: break;
3688   case ISD::AssertSext:
3689     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3690     return VTBits-Tmp+1;
3691   case ISD::AssertZext:
3692     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3693     return VTBits-Tmp;
3694 
3695   case ISD::BUILD_VECTOR:
3696     Tmp = VTBits;
3697     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3698       if (!DemandedElts[i])
3699         continue;
3700 
3701       SDValue SrcOp = Op.getOperand(i);
3702       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3703 
3704       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3705       if (SrcOp.getValueSizeInBits() != VTBits) {
3706         assert(SrcOp.getValueSizeInBits() > VTBits &&
3707                "Expected BUILD_VECTOR implicit truncation");
3708         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3709         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3710       }
3711       Tmp = std::min(Tmp, Tmp2);
3712     }
3713     return Tmp;
3714 
3715   case ISD::VECTOR_SHUFFLE: {
3716     // Collect the minimum number of sign bits that are shared by every vector
3717     // element referenced by the shuffle.
3718     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3719     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3720     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3721     for (unsigned i = 0; i != NumElts; ++i) {
3722       int M = SVN->getMaskElt(i);
3723       if (!DemandedElts[i])
3724         continue;
3725       // For UNDEF elements, we don't know anything about the common state of
3726       // the shuffle result.
3727       if (M < 0)
3728         return 1;
3729       if ((unsigned)M < NumElts)
3730         DemandedLHS.setBit((unsigned)M % NumElts);
3731       else
3732         DemandedRHS.setBit((unsigned)M % NumElts);
3733     }
3734     Tmp = std::numeric_limits<unsigned>::max();
3735     if (!!DemandedLHS)
3736       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3737     if (!!DemandedRHS) {
3738       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3739       Tmp = std::min(Tmp, Tmp2);
3740     }
3741     // If we don't know anything, early out and try computeKnownBits fall-back.
3742     if (Tmp == 1)
3743       break;
3744     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3745     return Tmp;
3746   }
3747 
3748   case ISD::BITCAST: {
3749     SDValue N0 = Op.getOperand(0);
3750     EVT SrcVT = N0.getValueType();
3751     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3752 
3753     // Ignore bitcasts from unsupported types..
3754     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3755       break;
3756 
3757     // Fast handling of 'identity' bitcasts.
3758     if (VTBits == SrcBits)
3759       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3760 
3761     bool IsLE = getDataLayout().isLittleEndian();
3762 
3763     // Bitcast 'large element' scalar/vector to 'small element' vector.
3764     if ((SrcBits % VTBits) == 0) {
3765       assert(VT.isVector() && "Expected bitcast to vector");
3766 
3767       unsigned Scale = SrcBits / VTBits;
3768       APInt SrcDemandedElts(NumElts / Scale, 0);
3769       for (unsigned i = 0; i != NumElts; ++i)
3770         if (DemandedElts[i])
3771           SrcDemandedElts.setBit(i / Scale);
3772 
3773       // Fast case - sign splat can be simply split across the small elements.
3774       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3775       if (Tmp == SrcBits)
3776         return VTBits;
3777 
3778       // Slow case - determine how far the sign extends into each sub-element.
3779       Tmp2 = VTBits;
3780       for (unsigned i = 0; i != NumElts; ++i)
3781         if (DemandedElts[i]) {
3782           unsigned SubOffset = i % Scale;
3783           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3784           SubOffset = SubOffset * VTBits;
3785           if (Tmp <= SubOffset)
3786             return 1;
3787           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3788         }
3789       return Tmp2;
3790     }
3791     break;
3792   }
3793 
3794   case ISD::SIGN_EXTEND:
3795     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3796     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3797   case ISD::SIGN_EXTEND_INREG:
3798     // Max of the input and what this extends.
3799     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3800     Tmp = VTBits-Tmp+1;
3801     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3802     return std::max(Tmp, Tmp2);
3803   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3804     SDValue Src = Op.getOperand(0);
3805     EVT SrcVT = Src.getValueType();
3806     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3807     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3808     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3809   }
3810   case ISD::SRA:
3811     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3812     // SRA X, C -> adds C sign bits.
3813     if (const APInt *ShAmt =
3814             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3815       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3816     return Tmp;
3817   case ISD::SHL:
3818     if (const APInt *ShAmt =
3819             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3820       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3821       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3822       if (ShAmt->ult(Tmp))
3823         return Tmp - ShAmt->getZExtValue();
3824     }
3825     break;
3826   case ISD::AND:
3827   case ISD::OR:
3828   case ISD::XOR:    // NOT is handled here.
3829     // Logical binary ops preserve the number of sign bits at the worst.
3830     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3831     if (Tmp != 1) {
3832       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3833       FirstAnswer = std::min(Tmp, Tmp2);
3834       // We computed what we know about the sign bits as our first
3835       // answer. Now proceed to the generic code that uses
3836       // computeKnownBits, and pick whichever answer is better.
3837     }
3838     break;
3839 
3840   case ISD::SELECT:
3841   case ISD::VSELECT:
3842     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3843     if (Tmp == 1) return 1;  // Early out.
3844     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3845     return std::min(Tmp, Tmp2);
3846   case ISD::SELECT_CC:
3847     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3848     if (Tmp == 1) return 1;  // Early out.
3849     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3850     return std::min(Tmp, Tmp2);
3851 
3852   case ISD::SMIN:
3853   case ISD::SMAX: {
3854     // If we have a clamp pattern, we know that the number of sign bits will be
3855     // the minimum of the clamp min/max range.
3856     bool IsMax = (Opcode == ISD::SMAX);
3857     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3858     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3859       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3860         CstHigh =
3861             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3862     if (CstLow && CstHigh) {
3863       if (!IsMax)
3864         std::swap(CstLow, CstHigh);
3865       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3866         Tmp = CstLow->getAPIntValue().getNumSignBits();
3867         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3868         return std::min(Tmp, Tmp2);
3869       }
3870     }
3871 
3872     // Fallback - just get the minimum number of sign bits of the operands.
3873     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3874     if (Tmp == 1)
3875       return 1;  // Early out.
3876     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3877     return std::min(Tmp, Tmp2);
3878   }
3879   case ISD::UMIN:
3880   case ISD::UMAX:
3881     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3882     if (Tmp == 1)
3883       return 1;  // Early out.
3884     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3885     return std::min(Tmp, Tmp2);
3886   case ISD::SADDO:
3887   case ISD::UADDO:
3888   case ISD::SSUBO:
3889   case ISD::USUBO:
3890   case ISD::SMULO:
3891   case ISD::UMULO:
3892     if (Op.getResNo() != 1)
3893       break;
3894     // The boolean result conforms to getBooleanContents.  Fall through.
3895     // If setcc returns 0/-1, all bits are sign bits.
3896     // We know that we have an integer-based boolean since these operations
3897     // are only available for integer.
3898     if (TLI->getBooleanContents(VT.isVector(), false) ==
3899         TargetLowering::ZeroOrNegativeOneBooleanContent)
3900       return VTBits;
3901     break;
3902   case ISD::SETCC:
3903   case ISD::STRICT_FSETCC:
3904   case ISD::STRICT_FSETCCS: {
3905     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3906     // If setcc returns 0/-1, all bits are sign bits.
3907     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3908         TargetLowering::ZeroOrNegativeOneBooleanContent)
3909       return VTBits;
3910     break;
3911   }
3912   case ISD::ROTL:
3913   case ISD::ROTR:
3914     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3915 
3916     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3917     if (Tmp == VTBits)
3918       return VTBits;
3919 
3920     if (ConstantSDNode *C =
3921             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3922       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3923 
3924       // Handle rotate right by N like a rotate left by 32-N.
3925       if (Opcode == ISD::ROTR)
3926         RotAmt = (VTBits - RotAmt) % VTBits;
3927 
3928       // If we aren't rotating out all of the known-in sign bits, return the
3929       // number that are left.  This handles rotl(sext(x), 1) for example.
3930       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3931     }
3932     break;
3933   case ISD::ADD:
3934   case ISD::ADDC:
3935     // Add can have at most one carry bit.  Thus we know that the output
3936     // is, at worst, one more bit than the inputs.
3937     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3938     if (Tmp == 1) return 1; // Early out.
3939 
3940     // Special case decrementing a value (ADD X, -1):
3941     if (ConstantSDNode *CRHS =
3942             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3943       if (CRHS->isAllOnesValue()) {
3944         KnownBits Known =
3945             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3946 
3947         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3948         // sign bits set.
3949         if ((Known.Zero | 1).isAllOnesValue())
3950           return VTBits;
3951 
3952         // If we are subtracting one from a positive number, there is no carry
3953         // out of the result.
3954         if (Known.isNonNegative())
3955           return Tmp;
3956       }
3957 
3958     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3959     if (Tmp2 == 1) return 1; // Early out.
3960     return std::min(Tmp, Tmp2) - 1;
3961   case ISD::SUB:
3962     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3963     if (Tmp2 == 1) return 1; // Early out.
3964 
3965     // Handle NEG.
3966     if (ConstantSDNode *CLHS =
3967             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3968       if (CLHS->isNullValue()) {
3969         KnownBits Known =
3970             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3971         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3972         // sign bits set.
3973         if ((Known.Zero | 1).isAllOnesValue())
3974           return VTBits;
3975 
3976         // If the input is known to be positive (the sign bit is known clear),
3977         // the output of the NEG has the same number of sign bits as the input.
3978         if (Known.isNonNegative())
3979           return Tmp2;
3980 
3981         // Otherwise, we treat this like a SUB.
3982       }
3983 
3984     // Sub can have at most one carry bit.  Thus we know that the output
3985     // is, at worst, one more bit than the inputs.
3986     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3987     if (Tmp == 1) return 1; // Early out.
3988     return std::min(Tmp, Tmp2) - 1;
3989   case ISD::MUL: {
3990     // The output of the Mul can be at most twice the valid bits in the inputs.
3991     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3992     if (SignBitsOp0 == 1)
3993       break;
3994     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3995     if (SignBitsOp1 == 1)
3996       break;
3997     unsigned OutValidBits =
3998         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3999     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4000   }
4001   case ISD::SREM:
4002     // The sign bit is the LHS's sign bit, except when the result of the
4003     // remainder is zero. The magnitude of the result should be less than or
4004     // equal to the magnitude of the LHS. Therefore, the result should have
4005     // at least as many sign bits as the left hand side.
4006     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4007   case ISD::TRUNCATE: {
4008     // Check if the sign bits of source go down as far as the truncated value.
4009     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4010     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4011     if (NumSrcSignBits > (NumSrcBits - VTBits))
4012       return NumSrcSignBits - (NumSrcBits - VTBits);
4013     break;
4014   }
4015   case ISD::EXTRACT_ELEMENT: {
4016     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4017     const int BitWidth = Op.getValueSizeInBits();
4018     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4019 
4020     // Get reverse index (starting from 1), Op1 value indexes elements from
4021     // little end. Sign starts at big end.
4022     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4023 
4024     // If the sign portion ends in our element the subtraction gives correct
4025     // result. Otherwise it gives either negative or > bitwidth result
4026     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4027   }
4028   case ISD::INSERT_VECTOR_ELT: {
4029     // If we know the element index, split the demand between the
4030     // source vector and the inserted element, otherwise assume we need
4031     // the original demanded vector elements and the value.
4032     SDValue InVec = Op.getOperand(0);
4033     SDValue InVal = Op.getOperand(1);
4034     SDValue EltNo = Op.getOperand(2);
4035     bool DemandedVal = true;
4036     APInt DemandedVecElts = DemandedElts;
4037     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4038     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4039       unsigned EltIdx = CEltNo->getZExtValue();
4040       DemandedVal = !!DemandedElts[EltIdx];
4041       DemandedVecElts.clearBit(EltIdx);
4042     }
4043     Tmp = std::numeric_limits<unsigned>::max();
4044     if (DemandedVal) {
4045       // TODO - handle implicit truncation of inserted elements.
4046       if (InVal.getScalarValueSizeInBits() != VTBits)
4047         break;
4048       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4049       Tmp = std::min(Tmp, Tmp2);
4050     }
4051     if (!!DemandedVecElts) {
4052       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4053       Tmp = std::min(Tmp, Tmp2);
4054     }
4055     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4056     return Tmp;
4057   }
4058   case ISD::EXTRACT_VECTOR_ELT: {
4059     SDValue InVec = Op.getOperand(0);
4060     SDValue EltNo = Op.getOperand(1);
4061     EVT VecVT = InVec.getValueType();
4062     // ComputeNumSignBits not yet implemented for scalable vectors.
4063     if (VecVT.isScalableVector())
4064       break;
4065     const unsigned BitWidth = Op.getValueSizeInBits();
4066     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4067     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4068 
4069     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4070     // anything about sign bits. But if the sizes match we can derive knowledge
4071     // about sign bits from the vector operand.
4072     if (BitWidth != EltBitWidth)
4073       break;
4074 
4075     // If we know the element index, just demand that vector element, else for
4076     // an unknown element index, ignore DemandedElts and demand them all.
4077     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
4078     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4079     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4080       DemandedSrcElts =
4081           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4082 
4083     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4084   }
4085   case ISD::EXTRACT_SUBVECTOR: {
4086     // Offset the demanded elts by the subvector index.
4087     SDValue Src = Op.getOperand(0);
4088     // Bail until we can represent demanded elements for scalable vectors.
4089     if (Src.getValueType().isScalableVector())
4090       break;
4091     uint64_t Idx = Op.getConstantOperandVal(1);
4092     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4093     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4094     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4095   }
4096   case ISD::CONCAT_VECTORS: {
4097     // Determine the minimum number of sign bits across all demanded
4098     // elts of the input vectors. Early out if the result is already 1.
4099     Tmp = std::numeric_limits<unsigned>::max();
4100     EVT SubVectorVT = Op.getOperand(0).getValueType();
4101     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4102     unsigned NumSubVectors = Op.getNumOperands();
4103     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4104       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
4105       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
4106       if (!DemandedSub)
4107         continue;
4108       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4109       Tmp = std::min(Tmp, Tmp2);
4110     }
4111     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4112     return Tmp;
4113   }
4114   case ISD::INSERT_SUBVECTOR: {
4115     // Demand any elements from the subvector and the remainder from the src its
4116     // inserted into.
4117     SDValue Src = Op.getOperand(0);
4118     SDValue Sub = Op.getOperand(1);
4119     uint64_t Idx = Op.getConstantOperandVal(2);
4120     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4121     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4122     APInt DemandedSrcElts = DemandedElts;
4123     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4124 
4125     Tmp = std::numeric_limits<unsigned>::max();
4126     if (!!DemandedSubElts) {
4127       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4128       if (Tmp == 1)
4129         return 1; // early-out
4130     }
4131     if (!!DemandedSrcElts) {
4132       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4133       Tmp = std::min(Tmp, Tmp2);
4134     }
4135     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4136     return Tmp;
4137   }
4138   case ISD::ATOMIC_CMP_SWAP:
4139   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4140   case ISD::ATOMIC_SWAP:
4141   case ISD::ATOMIC_LOAD_ADD:
4142   case ISD::ATOMIC_LOAD_SUB:
4143   case ISD::ATOMIC_LOAD_AND:
4144   case ISD::ATOMIC_LOAD_CLR:
4145   case ISD::ATOMIC_LOAD_OR:
4146   case ISD::ATOMIC_LOAD_XOR:
4147   case ISD::ATOMIC_LOAD_NAND:
4148   case ISD::ATOMIC_LOAD_MIN:
4149   case ISD::ATOMIC_LOAD_MAX:
4150   case ISD::ATOMIC_LOAD_UMIN:
4151   case ISD::ATOMIC_LOAD_UMAX:
4152   case ISD::ATOMIC_LOAD: {
4153     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4154     // If we are looking at the loaded value.
4155     if (Op.getResNo() == 0) {
4156       if (Tmp == VTBits)
4157         return 1; // early-out
4158       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4159         return VTBits - Tmp + 1;
4160       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4161         return VTBits - Tmp;
4162     }
4163     break;
4164   }
4165   }
4166 
4167   // If we are looking at the loaded value of the SDNode.
4168   if (Op.getResNo() == 0) {
4169     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4170     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4171       unsigned ExtType = LD->getExtensionType();
4172       switch (ExtType) {
4173       default: break;
4174       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4175         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4176         return VTBits - Tmp + 1;
4177       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4178         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4179         return VTBits - Tmp;
4180       case ISD::NON_EXTLOAD:
4181         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4182           // We only need to handle vectors - computeKnownBits should handle
4183           // scalar cases.
4184           Type *CstTy = Cst->getType();
4185           if (CstTy->isVectorTy() &&
4186               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4187             Tmp = VTBits;
4188             for (unsigned i = 0; i != NumElts; ++i) {
4189               if (!DemandedElts[i])
4190                 continue;
4191               if (Constant *Elt = Cst->getAggregateElement(i)) {
4192                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4193                   const APInt &Value = CInt->getValue();
4194                   Tmp = std::min(Tmp, Value.getNumSignBits());
4195                   continue;
4196                 }
4197                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4198                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4199                   Tmp = std::min(Tmp, Value.getNumSignBits());
4200                   continue;
4201                 }
4202               }
4203               // Unknown type. Conservatively assume no bits match sign bit.
4204               return 1;
4205             }
4206             return Tmp;
4207           }
4208         }
4209         break;
4210       }
4211     }
4212   }
4213 
4214   // Allow the target to implement this method for its nodes.
4215   if (Opcode >= ISD::BUILTIN_OP_END ||
4216       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4217       Opcode == ISD::INTRINSIC_W_CHAIN ||
4218       Opcode == ISD::INTRINSIC_VOID) {
4219     unsigned NumBits =
4220         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4221     if (NumBits > 1)
4222       FirstAnswer = std::max(FirstAnswer, NumBits);
4223   }
4224 
4225   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4226   // use this information.
4227   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4228 
4229   APInt Mask;
4230   if (Known.isNonNegative()) {        // sign bit is 0
4231     Mask = Known.Zero;
4232   } else if (Known.isNegative()) {  // sign bit is 1;
4233     Mask = Known.One;
4234   } else {
4235     // Nothing known.
4236     return FirstAnswer;
4237   }
4238 
4239   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4240   // the number of identical bits in the top of the input value.
4241   Mask <<= Mask.getBitWidth()-VTBits;
4242   return std::max(FirstAnswer, Mask.countLeadingOnes());
4243 }
4244 
4245 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4246   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4247       !isa<ConstantSDNode>(Op.getOperand(1)))
4248     return false;
4249 
4250   if (Op.getOpcode() == ISD::OR &&
4251       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4252     return false;
4253 
4254   return true;
4255 }
4256 
4257 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4258   // If we're told that NaNs won't happen, assume they won't.
4259   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4260     return true;
4261 
4262   if (Depth >= MaxRecursionDepth)
4263     return false; // Limit search depth.
4264 
4265   // TODO: Handle vectors.
4266   // If the value is a constant, we can obviously see if it is a NaN or not.
4267   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4268     return !C->getValueAPF().isNaN() ||
4269            (SNaN && !C->getValueAPF().isSignaling());
4270   }
4271 
4272   unsigned Opcode = Op.getOpcode();
4273   switch (Opcode) {
4274   case ISD::FADD:
4275   case ISD::FSUB:
4276   case ISD::FMUL:
4277   case ISD::FDIV:
4278   case ISD::FREM:
4279   case ISD::FSIN:
4280   case ISD::FCOS: {
4281     if (SNaN)
4282       return true;
4283     // TODO: Need isKnownNeverInfinity
4284     return false;
4285   }
4286   case ISD::FCANONICALIZE:
4287   case ISD::FEXP:
4288   case ISD::FEXP2:
4289   case ISD::FTRUNC:
4290   case ISD::FFLOOR:
4291   case ISD::FCEIL:
4292   case ISD::FROUND:
4293   case ISD::FROUNDEVEN:
4294   case ISD::FRINT:
4295   case ISD::FNEARBYINT: {
4296     if (SNaN)
4297       return true;
4298     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4299   }
4300   case ISD::FABS:
4301   case ISD::FNEG:
4302   case ISD::FCOPYSIGN: {
4303     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4304   }
4305   case ISD::SELECT:
4306     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4307            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4308   case ISD::FP_EXTEND:
4309   case ISD::FP_ROUND: {
4310     if (SNaN)
4311       return true;
4312     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4313   }
4314   case ISD::SINT_TO_FP:
4315   case ISD::UINT_TO_FP:
4316     return true;
4317   case ISD::FMA:
4318   case ISD::FMAD: {
4319     if (SNaN)
4320       return true;
4321     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4322            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4323            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4324   }
4325   case ISD::FSQRT: // Need is known positive
4326   case ISD::FLOG:
4327   case ISD::FLOG2:
4328   case ISD::FLOG10:
4329   case ISD::FPOWI:
4330   case ISD::FPOW: {
4331     if (SNaN)
4332       return true;
4333     // TODO: Refine on operand
4334     return false;
4335   }
4336   case ISD::FMINNUM:
4337   case ISD::FMAXNUM: {
4338     // Only one needs to be known not-nan, since it will be returned if the
4339     // other ends up being one.
4340     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4341            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4342   }
4343   case ISD::FMINNUM_IEEE:
4344   case ISD::FMAXNUM_IEEE: {
4345     if (SNaN)
4346       return true;
4347     // This can return a NaN if either operand is an sNaN, or if both operands
4348     // are NaN.
4349     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4350             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4351            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4352             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4353   }
4354   case ISD::FMINIMUM:
4355   case ISD::FMAXIMUM: {
4356     // TODO: Does this quiet or return the origina NaN as-is?
4357     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4358            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4359   }
4360   case ISD::EXTRACT_VECTOR_ELT: {
4361     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4362   }
4363   default:
4364     if (Opcode >= ISD::BUILTIN_OP_END ||
4365         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4366         Opcode == ISD::INTRINSIC_W_CHAIN ||
4367         Opcode == ISD::INTRINSIC_VOID) {
4368       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4369     }
4370 
4371     return false;
4372   }
4373 }
4374 
4375 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4376   assert(Op.getValueType().isFloatingPoint() &&
4377          "Floating point type expected");
4378 
4379   // If the value is a constant, we can obviously see if it is a zero or not.
4380   // TODO: Add BuildVector support.
4381   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4382     return !C->isZero();
4383   return false;
4384 }
4385 
4386 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4387   assert(!Op.getValueType().isFloatingPoint() &&
4388          "Floating point types unsupported - use isKnownNeverZeroFloat");
4389 
4390   // If the value is a constant, we can obviously see if it is a zero or not.
4391   if (ISD::matchUnaryPredicate(
4392           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4393     return true;
4394 
4395   // TODO: Recognize more cases here.
4396   switch (Op.getOpcode()) {
4397   default: break;
4398   case ISD::OR:
4399     if (isKnownNeverZero(Op.getOperand(1)) ||
4400         isKnownNeverZero(Op.getOperand(0)))
4401       return true;
4402     break;
4403   }
4404 
4405   return false;
4406 }
4407 
4408 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4409   // Check the obvious case.
4410   if (A == B) return true;
4411 
4412   // For for negative and positive zero.
4413   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4414     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4415       if (CA->isZero() && CB->isZero()) return true;
4416 
4417   // Otherwise they may not be equal.
4418   return false;
4419 }
4420 
4421 // FIXME: unify with llvm::haveNoCommonBitsSet.
4422 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4423 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4424   assert(A.getValueType() == B.getValueType() &&
4425          "Values must have the same type");
4426   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4427                                         computeKnownBits(B));
4428 }
4429 
4430 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4431                                SelectionDAG &DAG) {
4432   if (cast<ConstantSDNode>(Step)->isNullValue())
4433     return DAG.getConstant(0, DL, VT);
4434 
4435   return SDValue();
4436 }
4437 
4438 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4439                                 ArrayRef<SDValue> Ops,
4440                                 SelectionDAG &DAG) {
4441   int NumOps = Ops.size();
4442   assert(NumOps != 0 && "Can't build an empty vector!");
4443   assert(!VT.isScalableVector() &&
4444          "BUILD_VECTOR cannot be used with scalable types");
4445   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4446          "Incorrect element count in BUILD_VECTOR!");
4447 
4448   // BUILD_VECTOR of UNDEFs is UNDEF.
4449   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4450     return DAG.getUNDEF(VT);
4451 
4452   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4453   SDValue IdentitySrc;
4454   bool IsIdentity = true;
4455   for (int i = 0; i != NumOps; ++i) {
4456     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4457         Ops[i].getOperand(0).getValueType() != VT ||
4458         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4459         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4460         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4461       IsIdentity = false;
4462       break;
4463     }
4464     IdentitySrc = Ops[i].getOperand(0);
4465   }
4466   if (IsIdentity)
4467     return IdentitySrc;
4468 
4469   return SDValue();
4470 }
4471 
4472 /// Try to simplify vector concatenation to an input value, undef, or build
4473 /// vector.
4474 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4475                                   ArrayRef<SDValue> Ops,
4476                                   SelectionDAG &DAG) {
4477   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4478   assert(llvm::all_of(Ops,
4479                       [Ops](SDValue Op) {
4480                         return Ops[0].getValueType() == Op.getValueType();
4481                       }) &&
4482          "Concatenation of vectors with inconsistent value types!");
4483   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4484              VT.getVectorElementCount() &&
4485          "Incorrect element count in vector concatenation!");
4486 
4487   if (Ops.size() == 1)
4488     return Ops[0];
4489 
4490   // Concat of UNDEFs is UNDEF.
4491   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4492     return DAG.getUNDEF(VT);
4493 
4494   // Scan the operands and look for extract operations from a single source
4495   // that correspond to insertion at the same location via this concatenation:
4496   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4497   SDValue IdentitySrc;
4498   bool IsIdentity = true;
4499   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4500     SDValue Op = Ops[i];
4501     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4502     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4503         Op.getOperand(0).getValueType() != VT ||
4504         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4505         Op.getConstantOperandVal(1) != IdentityIndex) {
4506       IsIdentity = false;
4507       break;
4508     }
4509     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4510            "Unexpected identity source vector for concat of extracts");
4511     IdentitySrc = Op.getOperand(0);
4512   }
4513   if (IsIdentity) {
4514     assert(IdentitySrc && "Failed to set source vector of extracts");
4515     return IdentitySrc;
4516   }
4517 
4518   // The code below this point is only designed to work for fixed width
4519   // vectors, so we bail out for now.
4520   if (VT.isScalableVector())
4521     return SDValue();
4522 
4523   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4524   // simplified to one big BUILD_VECTOR.
4525   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4526   EVT SVT = VT.getScalarType();
4527   SmallVector<SDValue, 16> Elts;
4528   for (SDValue Op : Ops) {
4529     EVT OpVT = Op.getValueType();
4530     if (Op.isUndef())
4531       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4532     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4533       Elts.append(Op->op_begin(), Op->op_end());
4534     else
4535       return SDValue();
4536   }
4537 
4538   // BUILD_VECTOR requires all inputs to be of the same type, find the
4539   // maximum type and extend them all.
4540   for (SDValue Op : Elts)
4541     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4542 
4543   if (SVT.bitsGT(VT.getScalarType())) {
4544     for (SDValue &Op : Elts) {
4545       if (Op.isUndef())
4546         Op = DAG.getUNDEF(SVT);
4547       else
4548         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4549                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4550                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4551     }
4552   }
4553 
4554   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4555   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4556   return V;
4557 }
4558 
4559 /// Gets or creates the specified node.
4560 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4561   FoldingSetNodeID ID;
4562   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4563   void *IP = nullptr;
4564   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4565     return SDValue(E, 0);
4566 
4567   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4568                               getVTList(VT));
4569   CSEMap.InsertNode(N, IP);
4570 
4571   InsertNode(N);
4572   SDValue V = SDValue(N, 0);
4573   NewSDValueDbgMsg(V, "Creating new node: ", this);
4574   return V;
4575 }
4576 
4577 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4578                               SDValue Operand) {
4579   SDNodeFlags Flags;
4580   if (Inserter)
4581     Flags = Inserter->getFlags();
4582   return getNode(Opcode, DL, VT, Operand, Flags);
4583 }
4584 
4585 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4586                               SDValue Operand, const SDNodeFlags Flags) {
4587   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4588          "Operand is DELETED_NODE!");
4589   // Constant fold unary operations with an integer constant operand. Even
4590   // opaque constant will be folded, because the folding of unary operations
4591   // doesn't create new constants with different values. Nevertheless, the
4592   // opaque flag is preserved during folding to prevent future folding with
4593   // other constants.
4594   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4595     const APInt &Val = C->getAPIntValue();
4596     switch (Opcode) {
4597     default: break;
4598     case ISD::SIGN_EXTEND:
4599       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4600                          C->isTargetOpcode(), C->isOpaque());
4601     case ISD::TRUNCATE:
4602       if (C->isOpaque())
4603         break;
4604       LLVM_FALLTHROUGH;
4605     case ISD::ANY_EXTEND:
4606     case ISD::ZERO_EXTEND:
4607       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4608                          C->isTargetOpcode(), C->isOpaque());
4609     case ISD::UINT_TO_FP:
4610     case ISD::SINT_TO_FP: {
4611       APFloat apf(EVTToAPFloatSemantics(VT),
4612                   APInt::getNullValue(VT.getSizeInBits()));
4613       (void)apf.convertFromAPInt(Val,
4614                                  Opcode==ISD::SINT_TO_FP,
4615                                  APFloat::rmNearestTiesToEven);
4616       return getConstantFP(apf, DL, VT);
4617     }
4618     case ISD::BITCAST:
4619       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4620         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4621       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4622         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4623       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4624         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4625       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4626         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4627       break;
4628     case ISD::ABS:
4629       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4630                          C->isOpaque());
4631     case ISD::BITREVERSE:
4632       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4633                          C->isOpaque());
4634     case ISD::BSWAP:
4635       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4636                          C->isOpaque());
4637     case ISD::CTPOP:
4638       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4639                          C->isOpaque());
4640     case ISD::CTLZ:
4641     case ISD::CTLZ_ZERO_UNDEF:
4642       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4643                          C->isOpaque());
4644     case ISD::CTTZ:
4645     case ISD::CTTZ_ZERO_UNDEF:
4646       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4647                          C->isOpaque());
4648     case ISD::FP16_TO_FP: {
4649       bool Ignored;
4650       APFloat FPV(APFloat::IEEEhalf(),
4651                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4652 
4653       // This can return overflow, underflow, or inexact; we don't care.
4654       // FIXME need to be more flexible about rounding mode.
4655       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4656                         APFloat::rmNearestTiesToEven, &Ignored);
4657       return getConstantFP(FPV, DL, VT);
4658     }
4659     case ISD::STEP_VECTOR: {
4660       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4661         return V;
4662       break;
4663     }
4664     }
4665   }
4666 
4667   // Constant fold unary operations with a floating point constant operand.
4668   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4669     APFloat V = C->getValueAPF();    // make copy
4670     switch (Opcode) {
4671     case ISD::FNEG:
4672       V.changeSign();
4673       return getConstantFP(V, DL, VT);
4674     case ISD::FABS:
4675       V.clearSign();
4676       return getConstantFP(V, DL, VT);
4677     case ISD::FCEIL: {
4678       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4679       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4680         return getConstantFP(V, DL, VT);
4681       break;
4682     }
4683     case ISD::FTRUNC: {
4684       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4685       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4686         return getConstantFP(V, DL, VT);
4687       break;
4688     }
4689     case ISD::FFLOOR: {
4690       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4691       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4692         return getConstantFP(V, DL, VT);
4693       break;
4694     }
4695     case ISD::FP_EXTEND: {
4696       bool ignored;
4697       // This can return overflow, underflow, or inexact; we don't care.
4698       // FIXME need to be more flexible about rounding mode.
4699       (void)V.convert(EVTToAPFloatSemantics(VT),
4700                       APFloat::rmNearestTiesToEven, &ignored);
4701       return getConstantFP(V, DL, VT);
4702     }
4703     case ISD::FP_TO_SINT:
4704     case ISD::FP_TO_UINT: {
4705       bool ignored;
4706       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4707       // FIXME need to be more flexible about rounding mode.
4708       APFloat::opStatus s =
4709           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4710       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4711         break;
4712       return getConstant(IntVal, DL, VT);
4713     }
4714     case ISD::BITCAST:
4715       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4716         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4717       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4718         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4719       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4720         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4721       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4722         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4723       break;
4724     case ISD::FP_TO_FP16: {
4725       bool Ignored;
4726       // This can return overflow, underflow, or inexact; we don't care.
4727       // FIXME need to be more flexible about rounding mode.
4728       (void)V.convert(APFloat::IEEEhalf(),
4729                       APFloat::rmNearestTiesToEven, &Ignored);
4730       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4731     }
4732     }
4733   }
4734 
4735   // Constant fold unary operations with a vector integer or float operand.
4736   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4737     if (BV->isConstant()) {
4738       switch (Opcode) {
4739       default:
4740         // FIXME: Entirely reasonable to perform folding of other unary
4741         // operations here as the need arises.
4742         break;
4743       case ISD::FNEG:
4744       case ISD::FABS:
4745       case ISD::FCEIL:
4746       case ISD::FTRUNC:
4747       case ISD::FFLOOR:
4748       case ISD::FP_EXTEND:
4749       case ISD::FP_TO_SINT:
4750       case ISD::FP_TO_UINT:
4751       case ISD::TRUNCATE:
4752       case ISD::ANY_EXTEND:
4753       case ISD::ZERO_EXTEND:
4754       case ISD::SIGN_EXTEND:
4755       case ISD::UINT_TO_FP:
4756       case ISD::SINT_TO_FP:
4757       case ISD::ABS:
4758       case ISD::BITREVERSE:
4759       case ISD::BSWAP:
4760       case ISD::CTLZ:
4761       case ISD::CTLZ_ZERO_UNDEF:
4762       case ISD::CTTZ:
4763       case ISD::CTTZ_ZERO_UNDEF:
4764       case ISD::CTPOP: {
4765         SDValue Ops = { Operand };
4766         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4767           return Fold;
4768       }
4769       }
4770     }
4771   }
4772 
4773   unsigned OpOpcode = Operand.getNode()->getOpcode();
4774   switch (Opcode) {
4775   case ISD::STEP_VECTOR:
4776     assert(VT.isScalableVector() &&
4777            "STEP_VECTOR can only be used with scalable types");
4778     assert(VT.getScalarSizeInBits() >= 8 &&
4779            "STEP_VECTOR can only be used with vectors of integers that are at "
4780            "least 8 bits wide");
4781     assert(isa<ConstantSDNode>(Operand) &&
4782            cast<ConstantSDNode>(Operand)->getAPIntValue().isSignedIntN(
4783                VT.getScalarSizeInBits()) &&
4784            "Expected STEP_VECTOR integer constant to fit in "
4785            "the vector element type");
4786     break;
4787   case ISD::FREEZE:
4788     assert(VT == Operand.getValueType() && "Unexpected VT!");
4789     break;
4790   case ISD::TokenFactor:
4791   case ISD::MERGE_VALUES:
4792   case ISD::CONCAT_VECTORS:
4793     return Operand;         // Factor, merge or concat of one node?  No need.
4794   case ISD::BUILD_VECTOR: {
4795     // Attempt to simplify BUILD_VECTOR.
4796     SDValue Ops[] = {Operand};
4797     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4798       return V;
4799     break;
4800   }
4801   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4802   case ISD::FP_EXTEND:
4803     assert(VT.isFloatingPoint() &&
4804            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4805     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4806     assert((!VT.isVector() ||
4807             VT.getVectorElementCount() ==
4808             Operand.getValueType().getVectorElementCount()) &&
4809            "Vector element count mismatch!");
4810     assert(Operand.getValueType().bitsLT(VT) &&
4811            "Invalid fpext node, dst < src!");
4812     if (Operand.isUndef())
4813       return getUNDEF(VT);
4814     break;
4815   case ISD::FP_TO_SINT:
4816   case ISD::FP_TO_UINT:
4817     if (Operand.isUndef())
4818       return getUNDEF(VT);
4819     break;
4820   case ISD::SINT_TO_FP:
4821   case ISD::UINT_TO_FP:
4822     // [us]itofp(undef) = 0, because the result value is bounded.
4823     if (Operand.isUndef())
4824       return getConstantFP(0.0, DL, VT);
4825     break;
4826   case ISD::SIGN_EXTEND:
4827     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4828            "Invalid SIGN_EXTEND!");
4829     assert(VT.isVector() == Operand.getValueType().isVector() &&
4830            "SIGN_EXTEND result type type should be vector iff the operand "
4831            "type is vector!");
4832     if (Operand.getValueType() == VT) return Operand;   // noop extension
4833     assert((!VT.isVector() ||
4834             VT.getVectorElementCount() ==
4835                 Operand.getValueType().getVectorElementCount()) &&
4836            "Vector element count mismatch!");
4837     assert(Operand.getValueType().bitsLT(VT) &&
4838            "Invalid sext node, dst < src!");
4839     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4840       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4841     if (OpOpcode == ISD::UNDEF)
4842       // sext(undef) = 0, because the top bits will all be the same.
4843       return getConstant(0, DL, VT);
4844     break;
4845   case ISD::ZERO_EXTEND:
4846     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4847            "Invalid ZERO_EXTEND!");
4848     assert(VT.isVector() == Operand.getValueType().isVector() &&
4849            "ZERO_EXTEND result type type should be vector iff the operand "
4850            "type is vector!");
4851     if (Operand.getValueType() == VT) return Operand;   // noop extension
4852     assert((!VT.isVector() ||
4853             VT.getVectorElementCount() ==
4854                 Operand.getValueType().getVectorElementCount()) &&
4855            "Vector element count mismatch!");
4856     assert(Operand.getValueType().bitsLT(VT) &&
4857            "Invalid zext node, dst < src!");
4858     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4859       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4860     if (OpOpcode == ISD::UNDEF)
4861       // zext(undef) = 0, because the top bits will be zero.
4862       return getConstant(0, DL, VT);
4863     break;
4864   case ISD::ANY_EXTEND:
4865     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4866            "Invalid ANY_EXTEND!");
4867     assert(VT.isVector() == Operand.getValueType().isVector() &&
4868            "ANY_EXTEND result type type should be vector iff the operand "
4869            "type is vector!");
4870     if (Operand.getValueType() == VT) return Operand;   // noop extension
4871     assert((!VT.isVector() ||
4872             VT.getVectorElementCount() ==
4873                 Operand.getValueType().getVectorElementCount()) &&
4874            "Vector element count mismatch!");
4875     assert(Operand.getValueType().bitsLT(VT) &&
4876            "Invalid anyext node, dst < src!");
4877 
4878     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4879         OpOpcode == ISD::ANY_EXTEND)
4880       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4881       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4882     if (OpOpcode == ISD::UNDEF)
4883       return getUNDEF(VT);
4884 
4885     // (ext (trunc x)) -> x
4886     if (OpOpcode == ISD::TRUNCATE) {
4887       SDValue OpOp = Operand.getOperand(0);
4888       if (OpOp.getValueType() == VT) {
4889         transferDbgValues(Operand, OpOp);
4890         return OpOp;
4891       }
4892     }
4893     break;
4894   case ISD::TRUNCATE:
4895     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4896            "Invalid TRUNCATE!");
4897     assert(VT.isVector() == Operand.getValueType().isVector() &&
4898            "TRUNCATE result type type should be vector iff the operand "
4899            "type is vector!");
4900     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4901     assert((!VT.isVector() ||
4902             VT.getVectorElementCount() ==
4903                 Operand.getValueType().getVectorElementCount()) &&
4904            "Vector element count mismatch!");
4905     assert(Operand.getValueType().bitsGT(VT) &&
4906            "Invalid truncate node, src < dst!");
4907     if (OpOpcode == ISD::TRUNCATE)
4908       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4909     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4910         OpOpcode == ISD::ANY_EXTEND) {
4911       // If the source is smaller than the dest, we still need an extend.
4912       if (Operand.getOperand(0).getValueType().getScalarType()
4913             .bitsLT(VT.getScalarType()))
4914         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4915       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4916         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4917       return Operand.getOperand(0);
4918     }
4919     if (OpOpcode == ISD::UNDEF)
4920       return getUNDEF(VT);
4921     break;
4922   case ISD::ANY_EXTEND_VECTOR_INREG:
4923   case ISD::ZERO_EXTEND_VECTOR_INREG:
4924   case ISD::SIGN_EXTEND_VECTOR_INREG:
4925     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4926     assert(Operand.getValueType().bitsLE(VT) &&
4927            "The input must be the same size or smaller than the result.");
4928     assert(VT.getVectorMinNumElements() <
4929                Operand.getValueType().getVectorMinNumElements() &&
4930            "The destination vector type must have fewer lanes than the input.");
4931     break;
4932   case ISD::ABS:
4933     assert(VT.isInteger() && VT == Operand.getValueType() &&
4934            "Invalid ABS!");
4935     if (OpOpcode == ISD::UNDEF)
4936       return getUNDEF(VT);
4937     break;
4938   case ISD::BSWAP:
4939     assert(VT.isInteger() && VT == Operand.getValueType() &&
4940            "Invalid BSWAP!");
4941     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4942            "BSWAP types must be a multiple of 16 bits!");
4943     if (OpOpcode == ISD::UNDEF)
4944       return getUNDEF(VT);
4945     break;
4946   case ISD::BITREVERSE:
4947     assert(VT.isInteger() && VT == Operand.getValueType() &&
4948            "Invalid BITREVERSE!");
4949     if (OpOpcode == ISD::UNDEF)
4950       return getUNDEF(VT);
4951     break;
4952   case ISD::BITCAST:
4953     // Basic sanity checking.
4954     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4955            "Cannot BITCAST between types of different sizes!");
4956     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4957     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4958       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4959     if (OpOpcode == ISD::UNDEF)
4960       return getUNDEF(VT);
4961     break;
4962   case ISD::SCALAR_TO_VECTOR:
4963     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4964            (VT.getVectorElementType() == Operand.getValueType() ||
4965             (VT.getVectorElementType().isInteger() &&
4966              Operand.getValueType().isInteger() &&
4967              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4968            "Illegal SCALAR_TO_VECTOR node!");
4969     if (OpOpcode == ISD::UNDEF)
4970       return getUNDEF(VT);
4971     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4972     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4973         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4974         Operand.getConstantOperandVal(1) == 0 &&
4975         Operand.getOperand(0).getValueType() == VT)
4976       return Operand.getOperand(0);
4977     break;
4978   case ISD::FNEG:
4979     // Negation of an unknown bag of bits is still completely undefined.
4980     if (OpOpcode == ISD::UNDEF)
4981       return getUNDEF(VT);
4982 
4983     if (OpOpcode == ISD::FNEG)  // --X -> X
4984       return Operand.getOperand(0);
4985     break;
4986   case ISD::FABS:
4987     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4988       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4989     break;
4990   case ISD::VSCALE:
4991     assert(VT == Operand.getValueType() && "Unexpected VT!");
4992     break;
4993   case ISD::CTPOP:
4994     if (Operand.getValueType().getScalarType() == MVT::i1)
4995       return Operand;
4996     break;
4997   case ISD::CTLZ:
4998   case ISD::CTTZ:
4999     if (Operand.getValueType().getScalarType() == MVT::i1)
5000       return getNOT(DL, Operand, Operand.getValueType());
5001     break;
5002   case ISD::VECREDUCE_SMIN:
5003   case ISD::VECREDUCE_UMAX:
5004     if (Operand.getValueType().getScalarType() == MVT::i1)
5005       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5006     break;
5007   case ISD::VECREDUCE_SMAX:
5008   case ISD::VECREDUCE_UMIN:
5009     if (Operand.getValueType().getScalarType() == MVT::i1)
5010       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5011     break;
5012   }
5013 
5014   SDNode *N;
5015   SDVTList VTs = getVTList(VT);
5016   SDValue Ops[] = {Operand};
5017   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5018     FoldingSetNodeID ID;
5019     AddNodeIDNode(ID, Opcode, VTs, Ops);
5020     void *IP = nullptr;
5021     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5022       E->intersectFlagsWith(Flags);
5023       return SDValue(E, 0);
5024     }
5025 
5026     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5027     N->setFlags(Flags);
5028     createOperands(N, Ops);
5029     CSEMap.InsertNode(N, IP);
5030   } else {
5031     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5032     createOperands(N, Ops);
5033   }
5034 
5035   InsertNode(N);
5036   SDValue V = SDValue(N, 0);
5037   NewSDValueDbgMsg(V, "Creating new node: ", this);
5038   return V;
5039 }
5040 
5041 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5042                                        const APInt &C2) {
5043   switch (Opcode) {
5044   case ISD::ADD:  return C1 + C2;
5045   case ISD::SUB:  return C1 - C2;
5046   case ISD::MUL:  return C1 * C2;
5047   case ISD::AND:  return C1 & C2;
5048   case ISD::OR:   return C1 | C2;
5049   case ISD::XOR:  return C1 ^ C2;
5050   case ISD::SHL:  return C1 << C2;
5051   case ISD::SRL:  return C1.lshr(C2);
5052   case ISD::SRA:  return C1.ashr(C2);
5053   case ISD::ROTL: return C1.rotl(C2);
5054   case ISD::ROTR: return C1.rotr(C2);
5055   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5056   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5057   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5058   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5059   case ISD::SADDSAT: return C1.sadd_sat(C2);
5060   case ISD::UADDSAT: return C1.uadd_sat(C2);
5061   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5062   case ISD::USUBSAT: return C1.usub_sat(C2);
5063   case ISD::UDIV:
5064     if (!C2.getBoolValue())
5065       break;
5066     return C1.udiv(C2);
5067   case ISD::UREM:
5068     if (!C2.getBoolValue())
5069       break;
5070     return C1.urem(C2);
5071   case ISD::SDIV:
5072     if (!C2.getBoolValue())
5073       break;
5074     return C1.sdiv(C2);
5075   case ISD::SREM:
5076     if (!C2.getBoolValue())
5077       break;
5078     return C1.srem(C2);
5079   }
5080   return llvm::None;
5081 }
5082 
5083 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5084                                        const GlobalAddressSDNode *GA,
5085                                        const SDNode *N2) {
5086   if (GA->getOpcode() != ISD::GlobalAddress)
5087     return SDValue();
5088   if (!TLI->isOffsetFoldingLegal(GA))
5089     return SDValue();
5090   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5091   if (!C2)
5092     return SDValue();
5093   int64_t Offset = C2->getSExtValue();
5094   switch (Opcode) {
5095   case ISD::ADD: break;
5096   case ISD::SUB: Offset = -uint64_t(Offset); break;
5097   default: return SDValue();
5098   }
5099   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5100                           GA->getOffset() + uint64_t(Offset));
5101 }
5102 
5103 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5104   switch (Opcode) {
5105   case ISD::SDIV:
5106   case ISD::UDIV:
5107   case ISD::SREM:
5108   case ISD::UREM: {
5109     // If a divisor is zero/undef or any element of a divisor vector is
5110     // zero/undef, the whole op is undef.
5111     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5112     SDValue Divisor = Ops[1];
5113     if (Divisor.isUndef() || isNullConstant(Divisor))
5114       return true;
5115 
5116     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5117            llvm::any_of(Divisor->op_values(),
5118                         [](SDValue V) { return V.isUndef() ||
5119                                         isNullConstant(V); });
5120     // TODO: Handle signed overflow.
5121   }
5122   // TODO: Handle oversized shifts.
5123   default:
5124     return false;
5125   }
5126 }
5127 
5128 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5129                                              EVT VT, ArrayRef<SDValue> Ops) {
5130   // If the opcode is a target-specific ISD node, there's nothing we can
5131   // do here and the operand rules may not line up with the below, so
5132   // bail early.
5133   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5134   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5135   // foldCONCAT_VECTORS in getNode before this is called.
5136   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5137     return SDValue();
5138 
5139   // For now, the array Ops should only contain two values.
5140   // This enforcement will be removed once this function is merged with
5141   // FoldConstantVectorArithmetic
5142   if (Ops.size() != 2)
5143     return SDValue();
5144 
5145   if (isUndef(Opcode, Ops))
5146     return getUNDEF(VT);
5147 
5148   SDNode *N1 = Ops[0].getNode();
5149   SDNode *N2 = Ops[1].getNode();
5150 
5151   // Handle the case of two scalars.
5152   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
5153     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
5154       if (C1->isOpaque() || C2->isOpaque())
5155         return SDValue();
5156 
5157       Optional<APInt> FoldAttempt =
5158           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5159       if (!FoldAttempt)
5160         return SDValue();
5161 
5162       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5163       assert((!Folded || !VT.isVector()) &&
5164              "Can't fold vectors ops with scalar operands");
5165       return Folded;
5166     }
5167   }
5168 
5169   // fold (add Sym, c) -> Sym+c
5170   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
5171     return FoldSymbolOffset(Opcode, VT, GA, N2);
5172   if (TLI->isCommutativeBinOp(Opcode))
5173     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
5174       return FoldSymbolOffset(Opcode, VT, GA, N1);
5175 
5176   // For fixed width vectors, extract each constant element and fold them
5177   // individually. Either input may be an undef value.
5178   bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR ||
5179                    N1->getOpcode() == ISD::SPLAT_VECTOR;
5180   if (!IsBVOrSV1 && !N1->isUndef())
5181     return SDValue();
5182   bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR ||
5183                    N2->getOpcode() == ISD::SPLAT_VECTOR;
5184   if (!IsBVOrSV2 && !N2->isUndef())
5185     return SDValue();
5186   // If both operands are undef, that's handled the same way as scalars.
5187   if (!IsBVOrSV1 && !IsBVOrSV2)
5188     return SDValue();
5189 
5190   EVT SVT = VT.getScalarType();
5191   EVT LegalSVT = SVT;
5192   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5193     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5194     if (LegalSVT.bitsLT(SVT))
5195       return SDValue();
5196   }
5197 
5198   SmallVector<SDValue, 4> Outputs;
5199   unsigned NumOps = 0;
5200   if (IsBVOrSV1)
5201     NumOps = std::max(NumOps, N1->getNumOperands());
5202   if (IsBVOrSV2)
5203     NumOps = std::max(NumOps, N2->getNumOperands());
5204   assert(NumOps != 0 && "Expected non-zero operands");
5205   // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need
5206   // one iteration for that.
5207   assert((!VT.isScalableVector() || NumOps == 1) &&
5208          "Scalar vector should only have one scalar");
5209 
5210   for (unsigned I = 0; I != NumOps; ++I) {
5211     // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need
5212     // to use operand 0 of the SPLAT_VECTOR for each fixed element.
5213     SDValue V1;
5214     if (N1->getOpcode() == ISD::BUILD_VECTOR)
5215       V1 = N1->getOperand(I);
5216     else if (N1->getOpcode() == ISD::SPLAT_VECTOR)
5217       V1 = N1->getOperand(0);
5218     else
5219       V1 = getUNDEF(SVT);
5220 
5221     SDValue V2;
5222     if (N2->getOpcode() == ISD::BUILD_VECTOR)
5223       V2 = N2->getOperand(I);
5224     else if (N2->getOpcode() == ISD::SPLAT_VECTOR)
5225       V2 = N2->getOperand(0);
5226     else
5227       V2 = getUNDEF(SVT);
5228 
5229     if (SVT.isInteger()) {
5230       if (V1.getValueType().bitsGT(SVT))
5231         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5232       if (V2.getValueType().bitsGT(SVT))
5233         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5234     }
5235 
5236     if (V1.getValueType() != SVT || V2.getValueType() != SVT)
5237       return SDValue();
5238 
5239     // Fold one vector element.
5240     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5241     if (LegalSVT != SVT)
5242       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5243 
5244     // Scalar folding only succeeded if the result is a constant or UNDEF.
5245     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5246         ScalarResult.getOpcode() != ISD::ConstantFP)
5247       return SDValue();
5248     Outputs.push_back(ScalarResult);
5249   }
5250 
5251   if (N1->getOpcode() == ISD::BUILD_VECTOR ||
5252       N2->getOpcode() == ISD::BUILD_VECTOR) {
5253     assert(VT.getVectorNumElements() == Outputs.size() &&
5254            "Vector size mismatch!");
5255 
5256     // Build a big vector out of the scalar elements we generated.
5257     return getBuildVector(VT, SDLoc(), Outputs);
5258   }
5259 
5260   assert((N1->getOpcode() == ISD::SPLAT_VECTOR ||
5261           N2->getOpcode() == ISD::SPLAT_VECTOR) &&
5262          "One operand should be a splat vector");
5263 
5264   assert(Outputs.size() == 1 && "Vector size mismatch!");
5265   return getSplatVector(VT, SDLoc(), Outputs[0]);
5266 }
5267 
5268 // TODO: Merge with FoldConstantArithmetic
5269 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5270                                                    const SDLoc &DL, EVT VT,
5271                                                    ArrayRef<SDValue> Ops,
5272                                                    const SDNodeFlags Flags) {
5273   // If the opcode is a target-specific ISD node, there's nothing we can
5274   // do here and the operand rules may not line up with the below, so
5275   // bail early.
5276   if (Opcode >= ISD::BUILTIN_OP_END)
5277     return SDValue();
5278 
5279   if (isUndef(Opcode, Ops))
5280     return getUNDEF(VT);
5281 
5282   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5283   if (!VT.isVector())
5284     return SDValue();
5285 
5286   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5287   // vector width, however we should be able to do constant folds involving
5288   // splat vector nodes too.
5289   if (VT.isScalableVector())
5290     return SDValue();
5291 
5292   // From this point onwards all vectors are assumed to be fixed width.
5293   unsigned NumElts = VT.getVectorNumElements();
5294 
5295   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5296     return !Op.getValueType().isVector() ||
5297            Op.getValueType().getVectorNumElements() == NumElts;
5298   };
5299 
5300   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5301     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5302     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5303            (BV && BV->isConstant());
5304   };
5305 
5306   // All operands must be vector types with the same number of elements as
5307   // the result type and must be either UNDEF or a build vector of constant
5308   // or UNDEF scalars.
5309   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5310       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5311     return SDValue();
5312 
5313   // If we are comparing vectors, then the result needs to be a i1 boolean
5314   // that is then sign-extended back to the legal result type.
5315   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5316 
5317   // Find legal integer scalar type for constant promotion and
5318   // ensure that its scalar size is at least as large as source.
5319   EVT LegalSVT = VT.getScalarType();
5320   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5321     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5322     if (LegalSVT.bitsLT(VT.getScalarType()))
5323       return SDValue();
5324   }
5325 
5326   // Constant fold each scalar lane separately.
5327   SmallVector<SDValue, 4> ScalarResults;
5328   for (unsigned i = 0; i != NumElts; i++) {
5329     SmallVector<SDValue, 4> ScalarOps;
5330     for (SDValue Op : Ops) {
5331       EVT InSVT = Op.getValueType().getScalarType();
5332       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5333       if (!InBV) {
5334         // We've checked that this is UNDEF or a constant of some kind.
5335         if (Op.isUndef())
5336           ScalarOps.push_back(getUNDEF(InSVT));
5337         else
5338           ScalarOps.push_back(Op);
5339         continue;
5340       }
5341 
5342       SDValue ScalarOp = InBV->getOperand(i);
5343       EVT ScalarVT = ScalarOp.getValueType();
5344 
5345       // Build vector (integer) scalar operands may need implicit
5346       // truncation - do this before constant folding.
5347       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5348         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5349 
5350       ScalarOps.push_back(ScalarOp);
5351     }
5352 
5353     // Constant fold the scalar operands.
5354     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5355 
5356     // Legalize the (integer) scalar constant if necessary.
5357     if (LegalSVT != SVT)
5358       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5359 
5360     // Scalar folding only succeeded if the result is a constant or UNDEF.
5361     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5362         ScalarResult.getOpcode() != ISD::ConstantFP)
5363       return SDValue();
5364     ScalarResults.push_back(ScalarResult);
5365   }
5366 
5367   SDValue V = getBuildVector(VT, DL, ScalarResults);
5368   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5369   return V;
5370 }
5371 
5372 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5373                                          EVT VT, SDValue N1, SDValue N2) {
5374   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5375   //       should. That will require dealing with a potentially non-default
5376   //       rounding mode, checking the "opStatus" return value from the APFloat
5377   //       math calculations, and possibly other variations.
5378   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5379   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5380   if (N1CFP && N2CFP) {
5381     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5382     switch (Opcode) {
5383     case ISD::FADD:
5384       C1.add(C2, APFloat::rmNearestTiesToEven);
5385       return getConstantFP(C1, DL, VT);
5386     case ISD::FSUB:
5387       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5388       return getConstantFP(C1, DL, VT);
5389     case ISD::FMUL:
5390       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5391       return getConstantFP(C1, DL, VT);
5392     case ISD::FDIV:
5393       C1.divide(C2, APFloat::rmNearestTiesToEven);
5394       return getConstantFP(C1, DL, VT);
5395     case ISD::FREM:
5396       C1.mod(C2);
5397       return getConstantFP(C1, DL, VT);
5398     case ISD::FCOPYSIGN:
5399       C1.copySign(C2);
5400       return getConstantFP(C1, DL, VT);
5401     default: break;
5402     }
5403   }
5404   if (N1CFP && Opcode == ISD::FP_ROUND) {
5405     APFloat C1 = N1CFP->getValueAPF();    // make copy
5406     bool Unused;
5407     // This can return overflow, underflow, or inexact; we don't care.
5408     // FIXME need to be more flexible about rounding mode.
5409     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5410                       &Unused);
5411     return getConstantFP(C1, DL, VT);
5412   }
5413 
5414   switch (Opcode) {
5415   case ISD::FSUB:
5416     // -0.0 - undef --> undef (consistent with "fneg undef")
5417     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5418       return getUNDEF(VT);
5419     LLVM_FALLTHROUGH;
5420 
5421   case ISD::FADD:
5422   case ISD::FMUL:
5423   case ISD::FDIV:
5424   case ISD::FREM:
5425     // If both operands are undef, the result is undef. If 1 operand is undef,
5426     // the result is NaN. This should match the behavior of the IR optimizer.
5427     if (N1.isUndef() && N2.isUndef())
5428       return getUNDEF(VT);
5429     if (N1.isUndef() || N2.isUndef())
5430       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5431   }
5432   return SDValue();
5433 }
5434 
5435 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5436   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5437 
5438   // There's no need to assert on a byte-aligned pointer. All pointers are at
5439   // least byte aligned.
5440   if (A == Align(1))
5441     return Val;
5442 
5443   FoldingSetNodeID ID;
5444   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5445   ID.AddInteger(A.value());
5446 
5447   void *IP = nullptr;
5448   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5449     return SDValue(E, 0);
5450 
5451   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5452                                          Val.getValueType(), A);
5453   createOperands(N, {Val});
5454 
5455   CSEMap.InsertNode(N, IP);
5456   InsertNode(N);
5457 
5458   SDValue V(N, 0);
5459   NewSDValueDbgMsg(V, "Creating new node: ", this);
5460   return V;
5461 }
5462 
5463 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5464                               SDValue N1, SDValue N2) {
5465   SDNodeFlags Flags;
5466   if (Inserter)
5467     Flags = Inserter->getFlags();
5468   return getNode(Opcode, DL, VT, N1, N2, Flags);
5469 }
5470 
5471 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5472                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5473   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5474          N2.getOpcode() != ISD::DELETED_NODE &&
5475          "Operand is DELETED_NODE!");
5476   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5477   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5478   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5479   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5480 
5481   // Canonicalize constant to RHS if commutative.
5482   if (TLI->isCommutativeBinOp(Opcode)) {
5483     if (N1C && !N2C) {
5484       std::swap(N1C, N2C);
5485       std::swap(N1, N2);
5486     } else if (N1CFP && !N2CFP) {
5487       std::swap(N1CFP, N2CFP);
5488       std::swap(N1, N2);
5489     }
5490   }
5491 
5492   switch (Opcode) {
5493   default: break;
5494   case ISD::TokenFactor:
5495     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5496            N2.getValueType() == MVT::Other && "Invalid token factor!");
5497     // Fold trivial token factors.
5498     if (N1.getOpcode() == ISD::EntryToken) return N2;
5499     if (N2.getOpcode() == ISD::EntryToken) return N1;
5500     if (N1 == N2) return N1;
5501     break;
5502   case ISD::BUILD_VECTOR: {
5503     // Attempt to simplify BUILD_VECTOR.
5504     SDValue Ops[] = {N1, N2};
5505     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5506       return V;
5507     break;
5508   }
5509   case ISD::CONCAT_VECTORS: {
5510     SDValue Ops[] = {N1, N2};
5511     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5512       return V;
5513     break;
5514   }
5515   case ISD::AND:
5516     assert(VT.isInteger() && "This operator does not apply to FP types!");
5517     assert(N1.getValueType() == N2.getValueType() &&
5518            N1.getValueType() == VT && "Binary operator types must match!");
5519     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5520     // worth handling here.
5521     if (N2C && N2C->isNullValue())
5522       return N2;
5523     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5524       return N1;
5525     break;
5526   case ISD::OR:
5527   case ISD::XOR:
5528   case ISD::ADD:
5529   case ISD::SUB:
5530     assert(VT.isInteger() && "This operator does not apply to FP types!");
5531     assert(N1.getValueType() == N2.getValueType() &&
5532            N1.getValueType() == VT && "Binary operator types must match!");
5533     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5534     // it's worth handling here.
5535     if (N2C && N2C->isNullValue())
5536       return N1;
5537     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5538         VT.getVectorElementType() == MVT::i1)
5539       return getNode(ISD::XOR, DL, VT, N1, N2);
5540     break;
5541   case ISD::MUL:
5542     assert(VT.isInteger() && "This operator does not apply to FP types!");
5543     assert(N1.getValueType() == N2.getValueType() &&
5544            N1.getValueType() == VT && "Binary operator types must match!");
5545     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5546       return getNode(ISD::AND, DL, VT, N1, N2);
5547     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5548       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5549       const APInt &N2CImm = N2C->getAPIntValue();
5550       return getVScale(DL, VT, MulImm * N2CImm);
5551     }
5552     break;
5553   case ISD::UDIV:
5554   case ISD::UREM:
5555   case ISD::MULHU:
5556   case ISD::MULHS:
5557   case ISD::SDIV:
5558   case ISD::SREM:
5559   case ISD::SADDSAT:
5560   case ISD::SSUBSAT:
5561   case ISD::UADDSAT:
5562   case ISD::USUBSAT:
5563     assert(VT.isInteger() && "This operator does not apply to FP types!");
5564     assert(N1.getValueType() == N2.getValueType() &&
5565            N1.getValueType() == VT && "Binary operator types must match!");
5566     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5567       // fold (add_sat x, y) -> (or x, y) for bool types.
5568       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5569         return getNode(ISD::OR, DL, VT, N1, N2);
5570       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5571       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5572         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5573     }
5574     break;
5575   case ISD::SMIN:
5576   case ISD::UMAX:
5577     assert(VT.isInteger() && "This operator does not apply to FP types!");
5578     assert(N1.getValueType() == N2.getValueType() &&
5579            N1.getValueType() == VT && "Binary operator types must match!");
5580     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5581       return getNode(ISD::OR, DL, VT, N1, N2);
5582     break;
5583   case ISD::SMAX:
5584   case ISD::UMIN:
5585     assert(VT.isInteger() && "This operator does not apply to FP types!");
5586     assert(N1.getValueType() == N2.getValueType() &&
5587            N1.getValueType() == VT && "Binary operator types must match!");
5588     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5589       return getNode(ISD::AND, DL, VT, N1, N2);
5590     break;
5591   case ISD::FADD:
5592   case ISD::FSUB:
5593   case ISD::FMUL:
5594   case ISD::FDIV:
5595   case ISD::FREM:
5596     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5597     assert(N1.getValueType() == N2.getValueType() &&
5598            N1.getValueType() == VT && "Binary operator types must match!");
5599     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5600       return V;
5601     break;
5602   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5603     assert(N1.getValueType() == VT &&
5604            N1.getValueType().isFloatingPoint() &&
5605            N2.getValueType().isFloatingPoint() &&
5606            "Invalid FCOPYSIGN!");
5607     break;
5608   case ISD::SHL:
5609     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5610       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5611       const APInt &ShiftImm = N2C->getAPIntValue();
5612       return getVScale(DL, VT, MulImm << ShiftImm);
5613     }
5614     LLVM_FALLTHROUGH;
5615   case ISD::SRA:
5616   case ISD::SRL:
5617     if (SDValue V = simplifyShift(N1, N2))
5618       return V;
5619     LLVM_FALLTHROUGH;
5620   case ISD::ROTL:
5621   case ISD::ROTR:
5622     assert(VT == N1.getValueType() &&
5623            "Shift operators return type must be the same as their first arg");
5624     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5625            "Shifts only work on integers");
5626     assert((!VT.isVector() || VT == N2.getValueType()) &&
5627            "Vector shift amounts must be in the same as their first arg");
5628     // Verify that the shift amount VT is big enough to hold valid shift
5629     // amounts.  This catches things like trying to shift an i1024 value by an
5630     // i8, which is easy to fall into in generic code that uses
5631     // TLI.getShiftAmount().
5632     assert(N2.getValueType().getScalarSizeInBits() >=
5633                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5634            "Invalid use of small shift amount with oversized value!");
5635 
5636     // Always fold shifts of i1 values so the code generator doesn't need to
5637     // handle them.  Since we know the size of the shift has to be less than the
5638     // size of the value, the shift/rotate count is guaranteed to be zero.
5639     if (VT == MVT::i1)
5640       return N1;
5641     if (N2C && N2C->isNullValue())
5642       return N1;
5643     break;
5644   case ISD::FP_ROUND:
5645     assert(VT.isFloatingPoint() &&
5646            N1.getValueType().isFloatingPoint() &&
5647            VT.bitsLE(N1.getValueType()) &&
5648            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5649            "Invalid FP_ROUND!");
5650     if (N1.getValueType() == VT) return N1;  // noop conversion.
5651     break;
5652   case ISD::AssertSext:
5653   case ISD::AssertZext: {
5654     EVT EVT = cast<VTSDNode>(N2)->getVT();
5655     assert(VT == N1.getValueType() && "Not an inreg extend!");
5656     assert(VT.isInteger() && EVT.isInteger() &&
5657            "Cannot *_EXTEND_INREG FP types");
5658     assert(!EVT.isVector() &&
5659            "AssertSExt/AssertZExt type should be the vector element type "
5660            "rather than the vector type!");
5661     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5662     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5663     break;
5664   }
5665   case ISD::SIGN_EXTEND_INREG: {
5666     EVT EVT = cast<VTSDNode>(N2)->getVT();
5667     assert(VT == N1.getValueType() && "Not an inreg extend!");
5668     assert(VT.isInteger() && EVT.isInteger() &&
5669            "Cannot *_EXTEND_INREG FP types");
5670     assert(EVT.isVector() == VT.isVector() &&
5671            "SIGN_EXTEND_INREG type should be vector iff the operand "
5672            "type is vector!");
5673     assert((!EVT.isVector() ||
5674             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5675            "Vector element counts must match in SIGN_EXTEND_INREG");
5676     assert(EVT.bitsLE(VT) && "Not extending!");
5677     if (EVT == VT) return N1;  // Not actually extending
5678 
5679     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5680       unsigned FromBits = EVT.getScalarSizeInBits();
5681       Val <<= Val.getBitWidth() - FromBits;
5682       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5683       return getConstant(Val, DL, ConstantVT);
5684     };
5685 
5686     if (N1C) {
5687       const APInt &Val = N1C->getAPIntValue();
5688       return SignExtendInReg(Val, VT);
5689     }
5690     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5691       SmallVector<SDValue, 8> Ops;
5692       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5693       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5694         SDValue Op = N1.getOperand(i);
5695         if (Op.isUndef()) {
5696           Ops.push_back(getUNDEF(OpVT));
5697           continue;
5698         }
5699         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5700         APInt Val = C->getAPIntValue();
5701         Ops.push_back(SignExtendInReg(Val, OpVT));
5702       }
5703       return getBuildVector(VT, DL, Ops);
5704     }
5705     break;
5706   }
5707   case ISD::FP_TO_SINT_SAT:
5708   case ISD::FP_TO_UINT_SAT: {
5709     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
5710            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
5711     assert(N1.getValueType().isVector() == VT.isVector() &&
5712            "FP_TO_*INT_SAT type should be vector iff the operand type is "
5713            "vector!");
5714     assert((!VT.isVector() || VT.getVectorNumElements() ==
5715                                   N1.getValueType().getVectorNumElements()) &&
5716            "Vector element counts must match in FP_TO_*INT_SAT");
5717     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
5718            "Type to saturate to must be a scalar.");
5719     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
5720            "Not extending!");
5721     break;
5722   }
5723   case ISD::EXTRACT_VECTOR_ELT:
5724     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5725            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5726              element type of the vector.");
5727 
5728     // Extract from an undefined value or using an undefined index is undefined.
5729     if (N1.isUndef() || N2.isUndef())
5730       return getUNDEF(VT);
5731 
5732     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5733     // vectors. For scalable vectors we will provide appropriate support for
5734     // dealing with arbitrary indices.
5735     if (N2C && N1.getValueType().isFixedLengthVector() &&
5736         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5737       return getUNDEF(VT);
5738 
5739     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5740     // expanding copies of large vectors from registers. This only works for
5741     // fixed length vectors, since we need to know the exact number of
5742     // elements.
5743     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5744         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5745       unsigned Factor =
5746         N1.getOperand(0).getValueType().getVectorNumElements();
5747       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5748                      N1.getOperand(N2C->getZExtValue() / Factor),
5749                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5750     }
5751 
5752     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5753     // lowering is expanding large vector constants.
5754     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5755                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5756       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5757               N1.getValueType().isFixedLengthVector()) &&
5758              "BUILD_VECTOR used for scalable vectors");
5759       unsigned Index =
5760           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5761       SDValue Elt = N1.getOperand(Index);
5762 
5763       if (VT != Elt.getValueType())
5764         // If the vector element type is not legal, the BUILD_VECTOR operands
5765         // are promoted and implicitly truncated, and the result implicitly
5766         // extended. Make that explicit here.
5767         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5768 
5769       return Elt;
5770     }
5771 
5772     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5773     // operations are lowered to scalars.
5774     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5775       // If the indices are the same, return the inserted element else
5776       // if the indices are known different, extract the element from
5777       // the original vector.
5778       SDValue N1Op2 = N1.getOperand(2);
5779       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5780 
5781       if (N1Op2C && N2C) {
5782         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5783           if (VT == N1.getOperand(1).getValueType())
5784             return N1.getOperand(1);
5785           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5786         }
5787         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5788       }
5789     }
5790 
5791     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5792     // when vector types are scalarized and v1iX is legal.
5793     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5794     // Here we are completely ignoring the extract element index (N2),
5795     // which is fine for fixed width vectors, since any index other than 0
5796     // is undefined anyway. However, this cannot be ignored for scalable
5797     // vectors - in theory we could support this, but we don't want to do this
5798     // without a profitability check.
5799     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5800         N1.getValueType().isFixedLengthVector() &&
5801         N1.getValueType().getVectorNumElements() == 1) {
5802       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5803                      N1.getOperand(1));
5804     }
5805     break;
5806   case ISD::EXTRACT_ELEMENT:
5807     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5808     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5809            (N1.getValueType().isInteger() == VT.isInteger()) &&
5810            N1.getValueType() != VT &&
5811            "Wrong types for EXTRACT_ELEMENT!");
5812 
5813     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5814     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5815     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5816     if (N1.getOpcode() == ISD::BUILD_PAIR)
5817       return N1.getOperand(N2C->getZExtValue());
5818 
5819     // EXTRACT_ELEMENT of a constant int is also very common.
5820     if (N1C) {
5821       unsigned ElementSize = VT.getSizeInBits();
5822       unsigned Shift = ElementSize * N2C->getZExtValue();
5823       const APInt &Val = N1C->getAPIntValue();
5824       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5825     }
5826     break;
5827   case ISD::EXTRACT_SUBVECTOR:
5828     EVT N1VT = N1.getValueType();
5829     assert(VT.isVector() && N1VT.isVector() &&
5830            "Extract subvector VTs must be vectors!");
5831     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5832            "Extract subvector VTs must have the same element type!");
5833     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5834            "Cannot extract a scalable vector from a fixed length vector!");
5835     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5836             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5837            "Extract subvector must be from larger vector to smaller vector!");
5838     assert(N2C && "Extract subvector index must be a constant");
5839     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5840             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5841                 N1VT.getVectorMinNumElements()) &&
5842            "Extract subvector overflow!");
5843     assert(N2C->getAPIntValue().getBitWidth() ==
5844                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5845            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5846 
5847     // Trivial extraction.
5848     if (VT == N1VT)
5849       return N1;
5850 
5851     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5852     if (N1.isUndef())
5853       return getUNDEF(VT);
5854 
5855     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5856     // the concat have the same type as the extract.
5857     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5858         VT == N1.getOperand(0).getValueType()) {
5859       unsigned Factor = VT.getVectorMinNumElements();
5860       return N1.getOperand(N2C->getZExtValue() / Factor);
5861     }
5862 
5863     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5864     // during shuffle legalization.
5865     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5866         VT == N1.getOperand(1).getValueType())
5867       return N1.getOperand(1);
5868     break;
5869   }
5870 
5871   // Perform trivial constant folding.
5872   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5873     return SV;
5874 
5875   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5876     return V;
5877 
5878   // Canonicalize an UNDEF to the RHS, even over a constant.
5879   if (N1.isUndef()) {
5880     if (TLI->isCommutativeBinOp(Opcode)) {
5881       std::swap(N1, N2);
5882     } else {
5883       switch (Opcode) {
5884       case ISD::SIGN_EXTEND_INREG:
5885       case ISD::SUB:
5886         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5887       case ISD::UDIV:
5888       case ISD::SDIV:
5889       case ISD::UREM:
5890       case ISD::SREM:
5891       case ISD::SSUBSAT:
5892       case ISD::USUBSAT:
5893         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5894       }
5895     }
5896   }
5897 
5898   // Fold a bunch of operators when the RHS is undef.
5899   if (N2.isUndef()) {
5900     switch (Opcode) {
5901     case ISD::XOR:
5902       if (N1.isUndef())
5903         // Handle undef ^ undef -> 0 special case. This is a common
5904         // idiom (misuse).
5905         return getConstant(0, DL, VT);
5906       LLVM_FALLTHROUGH;
5907     case ISD::ADD:
5908     case ISD::SUB:
5909     case ISD::UDIV:
5910     case ISD::SDIV:
5911     case ISD::UREM:
5912     case ISD::SREM:
5913       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5914     case ISD::MUL:
5915     case ISD::AND:
5916     case ISD::SSUBSAT:
5917     case ISD::USUBSAT:
5918       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5919     case ISD::OR:
5920     case ISD::SADDSAT:
5921     case ISD::UADDSAT:
5922       return getAllOnesConstant(DL, VT);
5923     }
5924   }
5925 
5926   // Memoize this node if possible.
5927   SDNode *N;
5928   SDVTList VTs = getVTList(VT);
5929   SDValue Ops[] = {N1, N2};
5930   if (VT != MVT::Glue) {
5931     FoldingSetNodeID ID;
5932     AddNodeIDNode(ID, Opcode, VTs, Ops);
5933     void *IP = nullptr;
5934     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5935       E->intersectFlagsWith(Flags);
5936       return SDValue(E, 0);
5937     }
5938 
5939     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5940     N->setFlags(Flags);
5941     createOperands(N, Ops);
5942     CSEMap.InsertNode(N, IP);
5943   } else {
5944     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5945     createOperands(N, Ops);
5946   }
5947 
5948   InsertNode(N);
5949   SDValue V = SDValue(N, 0);
5950   NewSDValueDbgMsg(V, "Creating new node: ", this);
5951   return V;
5952 }
5953 
5954 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5955                               SDValue N1, SDValue N2, SDValue N3) {
5956   SDNodeFlags Flags;
5957   if (Inserter)
5958     Flags = Inserter->getFlags();
5959   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
5960 }
5961 
5962 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5963                               SDValue N1, SDValue N2, SDValue N3,
5964                               const SDNodeFlags Flags) {
5965   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5966          N2.getOpcode() != ISD::DELETED_NODE &&
5967          N3.getOpcode() != ISD::DELETED_NODE &&
5968          "Operand is DELETED_NODE!");
5969   // Perform various simplifications.
5970   switch (Opcode) {
5971   case ISD::FMA: {
5972     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5973     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5974            N3.getValueType() == VT && "FMA types must match!");
5975     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5976     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5977     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5978     if (N1CFP && N2CFP && N3CFP) {
5979       APFloat  V1 = N1CFP->getValueAPF();
5980       const APFloat &V2 = N2CFP->getValueAPF();
5981       const APFloat &V3 = N3CFP->getValueAPF();
5982       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5983       return getConstantFP(V1, DL, VT);
5984     }
5985     break;
5986   }
5987   case ISD::BUILD_VECTOR: {
5988     // Attempt to simplify BUILD_VECTOR.
5989     SDValue Ops[] = {N1, N2, N3};
5990     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5991       return V;
5992     break;
5993   }
5994   case ISD::CONCAT_VECTORS: {
5995     SDValue Ops[] = {N1, N2, N3};
5996     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5997       return V;
5998     break;
5999   }
6000   case ISD::SETCC: {
6001     assert(VT.isInteger() && "SETCC result type must be an integer!");
6002     assert(N1.getValueType() == N2.getValueType() &&
6003            "SETCC operands must have the same type!");
6004     assert(VT.isVector() == N1.getValueType().isVector() &&
6005            "SETCC type should be vector iff the operand type is vector!");
6006     assert((!VT.isVector() || VT.getVectorElementCount() ==
6007                                   N1.getValueType().getVectorElementCount()) &&
6008            "SETCC vector element counts must match!");
6009     // Use FoldSetCC to simplify SETCC's.
6010     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6011       return V;
6012     // Vector constant folding.
6013     SDValue Ops[] = {N1, N2, N3};
6014     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
6015       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6016       return V;
6017     }
6018     break;
6019   }
6020   case ISD::SELECT:
6021   case ISD::VSELECT:
6022     if (SDValue V = simplifySelect(N1, N2, N3))
6023       return V;
6024     break;
6025   case ISD::VECTOR_SHUFFLE:
6026     llvm_unreachable("should use getVectorShuffle constructor!");
6027   case ISD::INSERT_VECTOR_ELT: {
6028     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6029     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6030     // for scalable vectors where we will generate appropriate code to
6031     // deal with out-of-bounds cases correctly.
6032     if (N3C && N1.getValueType().isFixedLengthVector() &&
6033         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6034       return getUNDEF(VT);
6035 
6036     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6037     if (N3.isUndef())
6038       return getUNDEF(VT);
6039 
6040     // If the inserted element is an UNDEF, just use the input vector.
6041     if (N2.isUndef())
6042       return N1;
6043 
6044     break;
6045   }
6046   case ISD::INSERT_SUBVECTOR: {
6047     // Inserting undef into undef is still undef.
6048     if (N1.isUndef() && N2.isUndef())
6049       return getUNDEF(VT);
6050 
6051     EVT N2VT = N2.getValueType();
6052     assert(VT == N1.getValueType() &&
6053            "Dest and insert subvector source types must match!");
6054     assert(VT.isVector() && N2VT.isVector() &&
6055            "Insert subvector VTs must be vectors!");
6056     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6057            "Cannot insert a scalable vector into a fixed length vector!");
6058     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6059             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6060            "Insert subvector must be from smaller vector to larger vector!");
6061     assert(isa<ConstantSDNode>(N3) &&
6062            "Insert subvector index must be constant");
6063     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6064             (N2VT.getVectorMinNumElements() +
6065              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6066                 VT.getVectorMinNumElements()) &&
6067            "Insert subvector overflow!");
6068     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6069                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6070            "Constant index for INSERT_SUBVECTOR has an invalid size");
6071 
6072     // Trivial insertion.
6073     if (VT == N2VT)
6074       return N2;
6075 
6076     // If this is an insert of an extracted vector into an undef vector, we
6077     // can just use the input to the extract.
6078     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6079         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6080       return N2.getOperand(0);
6081     break;
6082   }
6083   case ISD::BITCAST:
6084     // Fold bit_convert nodes from a type to themselves.
6085     if (N1.getValueType() == VT)
6086       return N1;
6087     break;
6088   }
6089 
6090   // Memoize node if it doesn't produce a flag.
6091   SDNode *N;
6092   SDVTList VTs = getVTList(VT);
6093   SDValue Ops[] = {N1, N2, N3};
6094   if (VT != MVT::Glue) {
6095     FoldingSetNodeID ID;
6096     AddNodeIDNode(ID, Opcode, VTs, Ops);
6097     void *IP = nullptr;
6098     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6099       E->intersectFlagsWith(Flags);
6100       return SDValue(E, 0);
6101     }
6102 
6103     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6104     N->setFlags(Flags);
6105     createOperands(N, Ops);
6106     CSEMap.InsertNode(N, IP);
6107   } else {
6108     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6109     createOperands(N, Ops);
6110   }
6111 
6112   InsertNode(N);
6113   SDValue V = SDValue(N, 0);
6114   NewSDValueDbgMsg(V, "Creating new node: ", this);
6115   return V;
6116 }
6117 
6118 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6119                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6120   SDValue Ops[] = { N1, N2, N3, N4 };
6121   return getNode(Opcode, DL, VT, Ops);
6122 }
6123 
6124 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6125                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6126                               SDValue N5) {
6127   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6128   return getNode(Opcode, DL, VT, Ops);
6129 }
6130 
6131 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6132 /// the incoming stack arguments to be loaded from the stack.
6133 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6134   SmallVector<SDValue, 8> ArgChains;
6135 
6136   // Include the original chain at the beginning of the list. When this is
6137   // used by target LowerCall hooks, this helps legalize find the
6138   // CALLSEQ_BEGIN node.
6139   ArgChains.push_back(Chain);
6140 
6141   // Add a chain value for each stack argument.
6142   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
6143        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
6144     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
6145       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6146         if (FI->getIndex() < 0)
6147           ArgChains.push_back(SDValue(L, 1));
6148 
6149   // Build a tokenfactor for all the chains.
6150   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6151 }
6152 
6153 /// getMemsetValue - Vectorized representation of the memset value
6154 /// operand.
6155 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6156                               const SDLoc &dl) {
6157   assert(!Value.isUndef());
6158 
6159   unsigned NumBits = VT.getScalarSizeInBits();
6160   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6161     assert(C->getAPIntValue().getBitWidth() == 8);
6162     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6163     if (VT.isInteger()) {
6164       bool IsOpaque = VT.getSizeInBits() > 64 ||
6165           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6166       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6167     }
6168     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6169                              VT);
6170   }
6171 
6172   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6173   EVT IntVT = VT.getScalarType();
6174   if (!IntVT.isInteger())
6175     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6176 
6177   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6178   if (NumBits > 8) {
6179     // Use a multiplication with 0x010101... to extend the input to the
6180     // required length.
6181     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6182     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6183                         DAG.getConstant(Magic, dl, IntVT));
6184   }
6185 
6186   if (VT != Value.getValueType() && !VT.isInteger())
6187     Value = DAG.getBitcast(VT.getScalarType(), Value);
6188   if (VT != Value.getValueType())
6189     Value = DAG.getSplatBuildVector(VT, dl, Value);
6190 
6191   return Value;
6192 }
6193 
6194 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6195 /// used when a memcpy is turned into a memset when the source is a constant
6196 /// string ptr.
6197 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6198                                   const TargetLowering &TLI,
6199                                   const ConstantDataArraySlice &Slice) {
6200   // Handle vector with all elements zero.
6201   if (Slice.Array == nullptr) {
6202     if (VT.isInteger())
6203       return DAG.getConstant(0, dl, VT);
6204     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6205       return DAG.getConstantFP(0.0, dl, VT);
6206     if (VT.isVector()) {
6207       unsigned NumElts = VT.getVectorNumElements();
6208       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6209       return DAG.getNode(ISD::BITCAST, dl, VT,
6210                          DAG.getConstant(0, dl,
6211                                          EVT::getVectorVT(*DAG.getContext(),
6212                                                           EltVT, NumElts)));
6213     }
6214     llvm_unreachable("Expected type!");
6215   }
6216 
6217   assert(!VT.isVector() && "Can't handle vector type here!");
6218   unsigned NumVTBits = VT.getSizeInBits();
6219   unsigned NumVTBytes = NumVTBits / 8;
6220   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6221 
6222   APInt Val(NumVTBits, 0);
6223   if (DAG.getDataLayout().isLittleEndian()) {
6224     for (unsigned i = 0; i != NumBytes; ++i)
6225       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6226   } else {
6227     for (unsigned i = 0; i != NumBytes; ++i)
6228       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6229   }
6230 
6231   // If the "cost" of materializing the integer immediate is less than the cost
6232   // of a load, then it is cost effective to turn the load into the immediate.
6233   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6234   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6235     return DAG.getConstant(Val, dl, VT);
6236   return SDValue(nullptr, 0);
6237 }
6238 
6239 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6240                                            const SDLoc &DL,
6241                                            const SDNodeFlags Flags) {
6242   EVT VT = Base.getValueType();
6243   SDValue Index;
6244 
6245   if (Offset.isScalable())
6246     Index = getVScale(DL, Base.getValueType(),
6247                       APInt(Base.getValueSizeInBits().getFixedSize(),
6248                             Offset.getKnownMinSize()));
6249   else
6250     Index = getConstant(Offset.getFixedSize(), DL, VT);
6251 
6252   return getMemBasePlusOffset(Base, Index, DL, Flags);
6253 }
6254 
6255 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6256                                            const SDLoc &DL,
6257                                            const SDNodeFlags Flags) {
6258   assert(Offset.getValueType().isInteger());
6259   EVT BasePtrVT = Ptr.getValueType();
6260   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6261 }
6262 
6263 /// Returns true if memcpy source is constant data.
6264 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6265   uint64_t SrcDelta = 0;
6266   GlobalAddressSDNode *G = nullptr;
6267   if (Src.getOpcode() == ISD::GlobalAddress)
6268     G = cast<GlobalAddressSDNode>(Src);
6269   else if (Src.getOpcode() == ISD::ADD &&
6270            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6271            Src.getOperand(1).getOpcode() == ISD::Constant) {
6272     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6273     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6274   }
6275   if (!G)
6276     return false;
6277 
6278   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6279                                   SrcDelta + G->getOffset());
6280 }
6281 
6282 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6283                                       SelectionDAG &DAG) {
6284   // On Darwin, -Os means optimize for size without hurting performance, so
6285   // only really optimize for size when -Oz (MinSize) is used.
6286   if (MF.getTarget().getTargetTriple().isOSDarwin())
6287     return MF.getFunction().hasMinSize();
6288   return DAG.shouldOptForSize();
6289 }
6290 
6291 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6292                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6293                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6294                           SmallVector<SDValue, 16> &OutStoreChains) {
6295   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6296   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6297   SmallVector<SDValue, 16> GluedLoadChains;
6298   for (unsigned i = From; i < To; ++i) {
6299     OutChains.push_back(OutLoadChains[i]);
6300     GluedLoadChains.push_back(OutLoadChains[i]);
6301   }
6302 
6303   // Chain for all loads.
6304   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6305                                   GluedLoadChains);
6306 
6307   for (unsigned i = From; i < To; ++i) {
6308     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6309     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6310                                   ST->getBasePtr(), ST->getMemoryVT(),
6311                                   ST->getMemOperand());
6312     OutChains.push_back(NewStore);
6313   }
6314 }
6315 
6316 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6317                                        SDValue Chain, SDValue Dst, SDValue Src,
6318                                        uint64_t Size, Align Alignment,
6319                                        bool isVol, bool AlwaysInline,
6320                                        MachinePointerInfo DstPtrInfo,
6321                                        MachinePointerInfo SrcPtrInfo) {
6322   // Turn a memcpy of undef to nop.
6323   // FIXME: We need to honor volatile even is Src is undef.
6324   if (Src.isUndef())
6325     return Chain;
6326 
6327   // Expand memcpy to a series of load and store ops if the size operand falls
6328   // below a certain threshold.
6329   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6330   // rather than maybe a humongous number of loads and stores.
6331   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6332   const DataLayout &DL = DAG.getDataLayout();
6333   LLVMContext &C = *DAG.getContext();
6334   std::vector<EVT> MemOps;
6335   bool DstAlignCanChange = false;
6336   MachineFunction &MF = DAG.getMachineFunction();
6337   MachineFrameInfo &MFI = MF.getFrameInfo();
6338   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6339   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6340   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6341     DstAlignCanChange = true;
6342   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6343   if (!SrcAlign || Alignment > *SrcAlign)
6344     SrcAlign = Alignment;
6345   assert(SrcAlign && "SrcAlign must be set");
6346   ConstantDataArraySlice Slice;
6347   // If marked as volatile, perform a copy even when marked as constant.
6348   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6349   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6350   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6351   const MemOp Op = isZeroConstant
6352                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6353                                     /*IsZeroMemset*/ true, isVol)
6354                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6355                                      *SrcAlign, isVol, CopyFromConstant);
6356   if (!TLI.findOptimalMemOpLowering(
6357           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6358           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6359     return SDValue();
6360 
6361   if (DstAlignCanChange) {
6362     Type *Ty = MemOps[0].getTypeForEVT(C);
6363     Align NewAlign = DL.getABITypeAlign(Ty);
6364 
6365     // Don't promote to an alignment that would require dynamic stack
6366     // realignment.
6367     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6368     if (!TRI->hasStackRealignment(MF))
6369       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6370         NewAlign = NewAlign / 2;
6371 
6372     if (NewAlign > Alignment) {
6373       // Give the stack frame object a larger alignment if needed.
6374       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6375         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6376       Alignment = NewAlign;
6377     }
6378   }
6379 
6380   MachineMemOperand::Flags MMOFlags =
6381       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6382   SmallVector<SDValue, 16> OutLoadChains;
6383   SmallVector<SDValue, 16> OutStoreChains;
6384   SmallVector<SDValue, 32> OutChains;
6385   unsigned NumMemOps = MemOps.size();
6386   uint64_t SrcOff = 0, DstOff = 0;
6387   for (unsigned i = 0; i != NumMemOps; ++i) {
6388     EVT VT = MemOps[i];
6389     unsigned VTSize = VT.getSizeInBits() / 8;
6390     SDValue Value, Store;
6391 
6392     if (VTSize > Size) {
6393       // Issuing an unaligned load / store pair  that overlaps with the previous
6394       // pair. Adjust the offset accordingly.
6395       assert(i == NumMemOps-1 && i != 0);
6396       SrcOff -= VTSize - Size;
6397       DstOff -= VTSize - Size;
6398     }
6399 
6400     if (CopyFromConstant &&
6401         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6402       // It's unlikely a store of a vector immediate can be done in a single
6403       // instruction. It would require a load from a constantpool first.
6404       // We only handle zero vectors here.
6405       // FIXME: Handle other cases where store of vector immediate is done in
6406       // a single instruction.
6407       ConstantDataArraySlice SubSlice;
6408       if (SrcOff < Slice.Length) {
6409         SubSlice = Slice;
6410         SubSlice.move(SrcOff);
6411       } else {
6412         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6413         SubSlice.Array = nullptr;
6414         SubSlice.Offset = 0;
6415         SubSlice.Length = VTSize;
6416       }
6417       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6418       if (Value.getNode()) {
6419         Store = DAG.getStore(
6420             Chain, dl, Value,
6421             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6422             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6423         OutChains.push_back(Store);
6424       }
6425     }
6426 
6427     if (!Store.getNode()) {
6428       // The type might not be legal for the target.  This should only happen
6429       // if the type is smaller than a legal type, as on PPC, so the right
6430       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6431       // to Load/Store if NVT==VT.
6432       // FIXME does the case above also need this?
6433       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6434       assert(NVT.bitsGE(VT));
6435 
6436       bool isDereferenceable =
6437         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6438       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6439       if (isDereferenceable)
6440         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6441 
6442       Value = DAG.getExtLoad(
6443           ISD::EXTLOAD, dl, NVT, Chain,
6444           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6445           SrcPtrInfo.getWithOffset(SrcOff), VT,
6446           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags);
6447       OutLoadChains.push_back(Value.getValue(1));
6448 
6449       Store = DAG.getTruncStore(
6450           Chain, dl, Value,
6451           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6452           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6453       OutStoreChains.push_back(Store);
6454     }
6455     SrcOff += VTSize;
6456     DstOff += VTSize;
6457     Size -= VTSize;
6458   }
6459 
6460   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6461                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6462   unsigned NumLdStInMemcpy = OutStoreChains.size();
6463 
6464   if (NumLdStInMemcpy) {
6465     // It may be that memcpy might be converted to memset if it's memcpy
6466     // of constants. In such a case, we won't have loads and stores, but
6467     // just stores. In the absence of loads, there is nothing to gang up.
6468     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6469       // If target does not care, just leave as it.
6470       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6471         OutChains.push_back(OutLoadChains[i]);
6472         OutChains.push_back(OutStoreChains[i]);
6473       }
6474     } else {
6475       // Ld/St less than/equal limit set by target.
6476       if (NumLdStInMemcpy <= GluedLdStLimit) {
6477           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6478                                         NumLdStInMemcpy, OutLoadChains,
6479                                         OutStoreChains);
6480       } else {
6481         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6482         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6483         unsigned GlueIter = 0;
6484 
6485         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6486           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6487           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6488 
6489           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6490                                        OutLoadChains, OutStoreChains);
6491           GlueIter += GluedLdStLimit;
6492         }
6493 
6494         // Residual ld/st.
6495         if (RemainingLdStInMemcpy) {
6496           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6497                                         RemainingLdStInMemcpy, OutLoadChains,
6498                                         OutStoreChains);
6499         }
6500       }
6501     }
6502   }
6503   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6504 }
6505 
6506 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6507                                         SDValue Chain, SDValue Dst, SDValue Src,
6508                                         uint64_t Size, Align Alignment,
6509                                         bool isVol, bool AlwaysInline,
6510                                         MachinePointerInfo DstPtrInfo,
6511                                         MachinePointerInfo SrcPtrInfo) {
6512   // Turn a memmove of undef to nop.
6513   // FIXME: We need to honor volatile even is Src is undef.
6514   if (Src.isUndef())
6515     return Chain;
6516 
6517   // Expand memmove to a series of load and store ops if the size operand falls
6518   // below a certain threshold.
6519   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6520   const DataLayout &DL = DAG.getDataLayout();
6521   LLVMContext &C = *DAG.getContext();
6522   std::vector<EVT> MemOps;
6523   bool DstAlignCanChange = false;
6524   MachineFunction &MF = DAG.getMachineFunction();
6525   MachineFrameInfo &MFI = MF.getFrameInfo();
6526   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6527   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6528   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6529     DstAlignCanChange = true;
6530   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6531   if (!SrcAlign || Alignment > *SrcAlign)
6532     SrcAlign = Alignment;
6533   assert(SrcAlign && "SrcAlign must be set");
6534   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6535   if (!TLI.findOptimalMemOpLowering(
6536           MemOps, Limit,
6537           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6538                       /*IsVolatile*/ true),
6539           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6540           MF.getFunction().getAttributes()))
6541     return SDValue();
6542 
6543   if (DstAlignCanChange) {
6544     Type *Ty = MemOps[0].getTypeForEVT(C);
6545     Align NewAlign = DL.getABITypeAlign(Ty);
6546     if (NewAlign > Alignment) {
6547       // Give the stack frame object a larger alignment if needed.
6548       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6549         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6550       Alignment = NewAlign;
6551     }
6552   }
6553 
6554   MachineMemOperand::Flags MMOFlags =
6555       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6556   uint64_t SrcOff = 0, DstOff = 0;
6557   SmallVector<SDValue, 8> LoadValues;
6558   SmallVector<SDValue, 8> LoadChains;
6559   SmallVector<SDValue, 8> OutChains;
6560   unsigned NumMemOps = MemOps.size();
6561   for (unsigned i = 0; i < NumMemOps; i++) {
6562     EVT VT = MemOps[i];
6563     unsigned VTSize = VT.getSizeInBits() / 8;
6564     SDValue Value;
6565 
6566     bool isDereferenceable =
6567       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6568     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6569     if (isDereferenceable)
6570       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6571 
6572     Value =
6573         DAG.getLoad(VT, dl, Chain,
6574                     DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6575                     SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags);
6576     LoadValues.push_back(Value);
6577     LoadChains.push_back(Value.getValue(1));
6578     SrcOff += VTSize;
6579   }
6580   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6581   OutChains.clear();
6582   for (unsigned i = 0; i < NumMemOps; i++) {
6583     EVT VT = MemOps[i];
6584     unsigned VTSize = VT.getSizeInBits() / 8;
6585     SDValue Store;
6586 
6587     Store =
6588         DAG.getStore(Chain, dl, LoadValues[i],
6589                      DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6590                      DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6591     OutChains.push_back(Store);
6592     DstOff += VTSize;
6593   }
6594 
6595   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6596 }
6597 
6598 /// Lower the call to 'memset' intrinsic function into a series of store
6599 /// operations.
6600 ///
6601 /// \param DAG Selection DAG where lowered code is placed.
6602 /// \param dl Link to corresponding IR location.
6603 /// \param Chain Control flow dependency.
6604 /// \param Dst Pointer to destination memory location.
6605 /// \param Src Value of byte to write into the memory.
6606 /// \param Size Number of bytes to write.
6607 /// \param Alignment Alignment of the destination in bytes.
6608 /// \param isVol True if destination is volatile.
6609 /// \param DstPtrInfo IR information on the memory pointer.
6610 /// \returns New head in the control flow, if lowering was successful, empty
6611 /// SDValue otherwise.
6612 ///
6613 /// The function tries to replace 'llvm.memset' intrinsic with several store
6614 /// operations and value calculation code. This is usually profitable for small
6615 /// memory size.
6616 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6617                                SDValue Chain, SDValue Dst, SDValue Src,
6618                                uint64_t Size, Align Alignment, bool isVol,
6619                                MachinePointerInfo DstPtrInfo) {
6620   // Turn a memset of undef to nop.
6621   // FIXME: We need to honor volatile even is Src is undef.
6622   if (Src.isUndef())
6623     return Chain;
6624 
6625   // Expand memset to a series of load/store ops if the size operand
6626   // falls below a certain threshold.
6627   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6628   std::vector<EVT> MemOps;
6629   bool DstAlignCanChange = false;
6630   MachineFunction &MF = DAG.getMachineFunction();
6631   MachineFrameInfo &MFI = MF.getFrameInfo();
6632   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6633   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6634   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6635     DstAlignCanChange = true;
6636   bool IsZeroVal =
6637     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6638   if (!TLI.findOptimalMemOpLowering(
6639           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6640           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6641           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6642     return SDValue();
6643 
6644   if (DstAlignCanChange) {
6645     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6646     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6647     if (NewAlign > Alignment) {
6648       // Give the stack frame object a larger alignment if needed.
6649       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6650         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6651       Alignment = NewAlign;
6652     }
6653   }
6654 
6655   SmallVector<SDValue, 8> OutChains;
6656   uint64_t DstOff = 0;
6657   unsigned NumMemOps = MemOps.size();
6658 
6659   // Find the largest store and generate the bit pattern for it.
6660   EVT LargestVT = MemOps[0];
6661   for (unsigned i = 1; i < NumMemOps; i++)
6662     if (MemOps[i].bitsGT(LargestVT))
6663       LargestVT = MemOps[i];
6664   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6665 
6666   for (unsigned i = 0; i < NumMemOps; i++) {
6667     EVT VT = MemOps[i];
6668     unsigned VTSize = VT.getSizeInBits() / 8;
6669     if (VTSize > Size) {
6670       // Issuing an unaligned load / store pair  that overlaps with the previous
6671       // pair. Adjust the offset accordingly.
6672       assert(i == NumMemOps-1 && i != 0);
6673       DstOff -= VTSize - Size;
6674     }
6675 
6676     // If this store is smaller than the largest store see whether we can get
6677     // the smaller value for free with a truncate.
6678     SDValue Value = MemSetValue;
6679     if (VT.bitsLT(LargestVT)) {
6680       if (!LargestVT.isVector() && !VT.isVector() &&
6681           TLI.isTruncateFree(LargestVT, VT))
6682         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6683       else
6684         Value = getMemsetValue(Src, VT, DAG, dl);
6685     }
6686     assert(Value.getValueType() == VT && "Value with wrong type.");
6687     SDValue Store = DAG.getStore(
6688         Chain, dl, Value,
6689         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6690         DstPtrInfo.getWithOffset(DstOff), Alignment,
6691         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6692     OutChains.push_back(Store);
6693     DstOff += VT.getSizeInBits() / 8;
6694     Size -= VTSize;
6695   }
6696 
6697   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6698 }
6699 
6700 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6701                                             unsigned AS) {
6702   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6703   // pointer operands can be losslessly bitcasted to pointers of address space 0
6704   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6705     report_fatal_error("cannot lower memory intrinsic in address space " +
6706                        Twine(AS));
6707   }
6708 }
6709 
6710 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6711                                 SDValue Src, SDValue Size, Align Alignment,
6712                                 bool isVol, bool AlwaysInline, bool isTailCall,
6713                                 MachinePointerInfo DstPtrInfo,
6714                                 MachinePointerInfo SrcPtrInfo) {
6715   // Check to see if we should lower the memcpy to loads and stores first.
6716   // For cases within the target-specified limits, this is the best choice.
6717   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6718   if (ConstantSize) {
6719     // Memcpy with size zero? Just return the original chain.
6720     if (ConstantSize->isNullValue())
6721       return Chain;
6722 
6723     SDValue Result = getMemcpyLoadsAndStores(
6724         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6725         isVol, false, DstPtrInfo, SrcPtrInfo);
6726     if (Result.getNode())
6727       return Result;
6728   }
6729 
6730   // Then check to see if we should lower the memcpy with target-specific
6731   // code. If the target chooses to do this, this is the next best.
6732   if (TSI) {
6733     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6734         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6735         DstPtrInfo, SrcPtrInfo);
6736     if (Result.getNode())
6737       return Result;
6738   }
6739 
6740   // If we really need inline code and the target declined to provide it,
6741   // use a (potentially long) sequence of loads and stores.
6742   if (AlwaysInline) {
6743     assert(ConstantSize && "AlwaysInline requires a constant size!");
6744     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6745                                    ConstantSize->getZExtValue(), Alignment,
6746                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6747   }
6748 
6749   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6750   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6751 
6752   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6753   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6754   // respect volatile, so they may do things like read or write memory
6755   // beyond the given memory regions. But fixing this isn't easy, and most
6756   // people don't care.
6757 
6758   // Emit a library call.
6759   TargetLowering::ArgListTy Args;
6760   TargetLowering::ArgListEntry Entry;
6761   Entry.Ty = Type::getInt8PtrTy(*getContext());
6762   Entry.Node = Dst; Args.push_back(Entry);
6763   Entry.Node = Src; Args.push_back(Entry);
6764 
6765   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6766   Entry.Node = Size; Args.push_back(Entry);
6767   // FIXME: pass in SDLoc
6768   TargetLowering::CallLoweringInfo CLI(*this);
6769   CLI.setDebugLoc(dl)
6770       .setChain(Chain)
6771       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6772                     Dst.getValueType().getTypeForEVT(*getContext()),
6773                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6774                                       TLI->getPointerTy(getDataLayout())),
6775                     std::move(Args))
6776       .setDiscardResult()
6777       .setTailCall(isTailCall);
6778 
6779   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6780   return CallResult.second;
6781 }
6782 
6783 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6784                                       SDValue Dst, unsigned DstAlign,
6785                                       SDValue Src, unsigned SrcAlign,
6786                                       SDValue Size, Type *SizeTy,
6787                                       unsigned ElemSz, bool isTailCall,
6788                                       MachinePointerInfo DstPtrInfo,
6789                                       MachinePointerInfo SrcPtrInfo) {
6790   // Emit a library call.
6791   TargetLowering::ArgListTy Args;
6792   TargetLowering::ArgListEntry Entry;
6793   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6794   Entry.Node = Dst;
6795   Args.push_back(Entry);
6796 
6797   Entry.Node = Src;
6798   Args.push_back(Entry);
6799 
6800   Entry.Ty = SizeTy;
6801   Entry.Node = Size;
6802   Args.push_back(Entry);
6803 
6804   RTLIB::Libcall LibraryCall =
6805       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6806   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6807     report_fatal_error("Unsupported element size");
6808 
6809   TargetLowering::CallLoweringInfo CLI(*this);
6810   CLI.setDebugLoc(dl)
6811       .setChain(Chain)
6812       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6813                     Type::getVoidTy(*getContext()),
6814                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6815                                       TLI->getPointerTy(getDataLayout())),
6816                     std::move(Args))
6817       .setDiscardResult()
6818       .setTailCall(isTailCall);
6819 
6820   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6821   return CallResult.second;
6822 }
6823 
6824 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6825                                  SDValue Src, SDValue Size, Align Alignment,
6826                                  bool isVol, bool isTailCall,
6827                                  MachinePointerInfo DstPtrInfo,
6828                                  MachinePointerInfo SrcPtrInfo) {
6829   // Check to see if we should lower the memmove to loads and stores first.
6830   // For cases within the target-specified limits, this is the best choice.
6831   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6832   if (ConstantSize) {
6833     // Memmove with size zero? Just return the original chain.
6834     if (ConstantSize->isNullValue())
6835       return Chain;
6836 
6837     SDValue Result = getMemmoveLoadsAndStores(
6838         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6839         isVol, false, DstPtrInfo, SrcPtrInfo);
6840     if (Result.getNode())
6841       return Result;
6842   }
6843 
6844   // Then check to see if we should lower the memmove with target-specific
6845   // code. If the target chooses to do this, this is the next best.
6846   if (TSI) {
6847     SDValue Result =
6848         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6849                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6850     if (Result.getNode())
6851       return Result;
6852   }
6853 
6854   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6855   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6856 
6857   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6858   // not be safe.  See memcpy above for more details.
6859 
6860   // Emit a library call.
6861   TargetLowering::ArgListTy Args;
6862   TargetLowering::ArgListEntry Entry;
6863   Entry.Ty = Type::getInt8PtrTy(*getContext());
6864   Entry.Node = Dst; Args.push_back(Entry);
6865   Entry.Node = Src; Args.push_back(Entry);
6866 
6867   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6868   Entry.Node = Size; Args.push_back(Entry);
6869   // FIXME:  pass in SDLoc
6870   TargetLowering::CallLoweringInfo CLI(*this);
6871   CLI.setDebugLoc(dl)
6872       .setChain(Chain)
6873       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6874                     Dst.getValueType().getTypeForEVT(*getContext()),
6875                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6876                                       TLI->getPointerTy(getDataLayout())),
6877                     std::move(Args))
6878       .setDiscardResult()
6879       .setTailCall(isTailCall);
6880 
6881   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6882   return CallResult.second;
6883 }
6884 
6885 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6886                                        SDValue Dst, unsigned DstAlign,
6887                                        SDValue Src, unsigned SrcAlign,
6888                                        SDValue Size, Type *SizeTy,
6889                                        unsigned ElemSz, bool isTailCall,
6890                                        MachinePointerInfo DstPtrInfo,
6891                                        MachinePointerInfo SrcPtrInfo) {
6892   // Emit a library call.
6893   TargetLowering::ArgListTy Args;
6894   TargetLowering::ArgListEntry Entry;
6895   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6896   Entry.Node = Dst;
6897   Args.push_back(Entry);
6898 
6899   Entry.Node = Src;
6900   Args.push_back(Entry);
6901 
6902   Entry.Ty = SizeTy;
6903   Entry.Node = Size;
6904   Args.push_back(Entry);
6905 
6906   RTLIB::Libcall LibraryCall =
6907       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6908   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6909     report_fatal_error("Unsupported element size");
6910 
6911   TargetLowering::CallLoweringInfo CLI(*this);
6912   CLI.setDebugLoc(dl)
6913       .setChain(Chain)
6914       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6915                     Type::getVoidTy(*getContext()),
6916                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6917                                       TLI->getPointerTy(getDataLayout())),
6918                     std::move(Args))
6919       .setDiscardResult()
6920       .setTailCall(isTailCall);
6921 
6922   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6923   return CallResult.second;
6924 }
6925 
6926 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6927                                 SDValue Src, SDValue Size, Align Alignment,
6928                                 bool isVol, bool isTailCall,
6929                                 MachinePointerInfo DstPtrInfo) {
6930   // Check to see if we should lower the memset to stores first.
6931   // For cases within the target-specified limits, this is the best choice.
6932   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6933   if (ConstantSize) {
6934     // Memset with size zero? Just return the original chain.
6935     if (ConstantSize->isNullValue())
6936       return Chain;
6937 
6938     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6939                                      ConstantSize->getZExtValue(), Alignment,
6940                                      isVol, DstPtrInfo);
6941 
6942     if (Result.getNode())
6943       return Result;
6944   }
6945 
6946   // Then check to see if we should lower the memset with target-specific
6947   // code. If the target chooses to do this, this is the next best.
6948   if (TSI) {
6949     SDValue Result = TSI->EmitTargetCodeForMemset(
6950         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6951     if (Result.getNode())
6952       return Result;
6953   }
6954 
6955   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6956 
6957   // Emit a library call.
6958   TargetLowering::ArgListTy Args;
6959   TargetLowering::ArgListEntry Entry;
6960   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6961   Args.push_back(Entry);
6962   Entry.Node = Src;
6963   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6964   Args.push_back(Entry);
6965   Entry.Node = Size;
6966   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6967   Args.push_back(Entry);
6968 
6969   // FIXME: pass in SDLoc
6970   TargetLowering::CallLoweringInfo CLI(*this);
6971   CLI.setDebugLoc(dl)
6972       .setChain(Chain)
6973       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6974                     Dst.getValueType().getTypeForEVT(*getContext()),
6975                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6976                                       TLI->getPointerTy(getDataLayout())),
6977                     std::move(Args))
6978       .setDiscardResult()
6979       .setTailCall(isTailCall);
6980 
6981   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6982   return CallResult.second;
6983 }
6984 
6985 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6986                                       SDValue Dst, unsigned DstAlign,
6987                                       SDValue Value, SDValue Size, Type *SizeTy,
6988                                       unsigned ElemSz, bool isTailCall,
6989                                       MachinePointerInfo DstPtrInfo) {
6990   // Emit a library call.
6991   TargetLowering::ArgListTy Args;
6992   TargetLowering::ArgListEntry Entry;
6993   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6994   Entry.Node = Dst;
6995   Args.push_back(Entry);
6996 
6997   Entry.Ty = Type::getInt8Ty(*getContext());
6998   Entry.Node = Value;
6999   Args.push_back(Entry);
7000 
7001   Entry.Ty = SizeTy;
7002   Entry.Node = Size;
7003   Args.push_back(Entry);
7004 
7005   RTLIB::Libcall LibraryCall =
7006       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7007   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7008     report_fatal_error("Unsupported element size");
7009 
7010   TargetLowering::CallLoweringInfo CLI(*this);
7011   CLI.setDebugLoc(dl)
7012       .setChain(Chain)
7013       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7014                     Type::getVoidTy(*getContext()),
7015                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7016                                       TLI->getPointerTy(getDataLayout())),
7017                     std::move(Args))
7018       .setDiscardResult()
7019       .setTailCall(isTailCall);
7020 
7021   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7022   return CallResult.second;
7023 }
7024 
7025 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7026                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7027                                 MachineMemOperand *MMO) {
7028   FoldingSetNodeID ID;
7029   ID.AddInteger(MemVT.getRawBits());
7030   AddNodeIDNode(ID, Opcode, VTList, Ops);
7031   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7032   void* IP = nullptr;
7033   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7034     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7035     return SDValue(E, 0);
7036   }
7037 
7038   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7039                                     VTList, MemVT, MMO);
7040   createOperands(N, Ops);
7041 
7042   CSEMap.InsertNode(N, IP);
7043   InsertNode(N);
7044   return SDValue(N, 0);
7045 }
7046 
7047 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7048                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7049                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7050                                        MachineMemOperand *MMO) {
7051   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7052          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7053   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7054 
7055   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7056   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7057 }
7058 
7059 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7060                                 SDValue Chain, SDValue Ptr, SDValue Val,
7061                                 MachineMemOperand *MMO) {
7062   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7063           Opcode == ISD::ATOMIC_LOAD_SUB ||
7064           Opcode == ISD::ATOMIC_LOAD_AND ||
7065           Opcode == ISD::ATOMIC_LOAD_CLR ||
7066           Opcode == ISD::ATOMIC_LOAD_OR ||
7067           Opcode == ISD::ATOMIC_LOAD_XOR ||
7068           Opcode == ISD::ATOMIC_LOAD_NAND ||
7069           Opcode == ISD::ATOMIC_LOAD_MIN ||
7070           Opcode == ISD::ATOMIC_LOAD_MAX ||
7071           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7072           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7073           Opcode == ISD::ATOMIC_LOAD_FADD ||
7074           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7075           Opcode == ISD::ATOMIC_SWAP ||
7076           Opcode == ISD::ATOMIC_STORE) &&
7077          "Invalid Atomic Op");
7078 
7079   EVT VT = Val.getValueType();
7080 
7081   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7082                                                getVTList(VT, MVT::Other);
7083   SDValue Ops[] = {Chain, Ptr, Val};
7084   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7085 }
7086 
7087 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7088                                 EVT VT, SDValue Chain, SDValue Ptr,
7089                                 MachineMemOperand *MMO) {
7090   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7091 
7092   SDVTList VTs = getVTList(VT, MVT::Other);
7093   SDValue Ops[] = {Chain, Ptr};
7094   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7095 }
7096 
7097 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7098 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7099   if (Ops.size() == 1)
7100     return Ops[0];
7101 
7102   SmallVector<EVT, 4> VTs;
7103   VTs.reserve(Ops.size());
7104   for (const SDValue &Op : Ops)
7105     VTs.push_back(Op.getValueType());
7106   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7107 }
7108 
7109 SDValue SelectionDAG::getMemIntrinsicNode(
7110     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7111     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7112     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7113   if (!Size && MemVT.isScalableVector())
7114     Size = MemoryLocation::UnknownSize;
7115   else if (!Size)
7116     Size = MemVT.getStoreSize();
7117 
7118   MachineFunction &MF = getMachineFunction();
7119   MachineMemOperand *MMO =
7120       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7121 
7122   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7123 }
7124 
7125 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7126                                           SDVTList VTList,
7127                                           ArrayRef<SDValue> Ops, EVT MemVT,
7128                                           MachineMemOperand *MMO) {
7129   assert((Opcode == ISD::INTRINSIC_VOID ||
7130           Opcode == ISD::INTRINSIC_W_CHAIN ||
7131           Opcode == ISD::PREFETCH ||
7132           ((int)Opcode <= std::numeric_limits<int>::max() &&
7133            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7134          "Opcode is not a memory-accessing opcode!");
7135 
7136   // Memoize the node unless it returns a flag.
7137   MemIntrinsicSDNode *N;
7138   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7139     FoldingSetNodeID ID;
7140     AddNodeIDNode(ID, Opcode, VTList, Ops);
7141     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7142         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7143     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7144     void *IP = nullptr;
7145     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7146       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7147       return SDValue(E, 0);
7148     }
7149 
7150     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7151                                       VTList, MemVT, MMO);
7152     createOperands(N, Ops);
7153 
7154   CSEMap.InsertNode(N, IP);
7155   } else {
7156     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7157                                       VTList, MemVT, MMO);
7158     createOperands(N, Ops);
7159   }
7160   InsertNode(N);
7161   SDValue V(N, 0);
7162   NewSDValueDbgMsg(V, "Creating new node: ", this);
7163   return V;
7164 }
7165 
7166 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7167                                       SDValue Chain, int FrameIndex,
7168                                       int64_t Size, int64_t Offset) {
7169   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7170   const auto VTs = getVTList(MVT::Other);
7171   SDValue Ops[2] = {
7172       Chain,
7173       getFrameIndex(FrameIndex,
7174                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7175                     true)};
7176 
7177   FoldingSetNodeID ID;
7178   AddNodeIDNode(ID, Opcode, VTs, Ops);
7179   ID.AddInteger(FrameIndex);
7180   ID.AddInteger(Size);
7181   ID.AddInteger(Offset);
7182   void *IP = nullptr;
7183   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7184     return SDValue(E, 0);
7185 
7186   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7187       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7188   createOperands(N, Ops);
7189   CSEMap.InsertNode(N, IP);
7190   InsertNode(N);
7191   SDValue V(N, 0);
7192   NewSDValueDbgMsg(V, "Creating new node: ", this);
7193   return V;
7194 }
7195 
7196 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7197                                          uint64_t Guid, uint64_t Index,
7198                                          uint32_t Attr) {
7199   const unsigned Opcode = ISD::PSEUDO_PROBE;
7200   const auto VTs = getVTList(MVT::Other);
7201   SDValue Ops[] = {Chain};
7202   FoldingSetNodeID ID;
7203   AddNodeIDNode(ID, Opcode, VTs, Ops);
7204   ID.AddInteger(Guid);
7205   ID.AddInteger(Index);
7206   void *IP = nullptr;
7207   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7208     return SDValue(E, 0);
7209 
7210   auto *N = newSDNode<PseudoProbeSDNode>(
7211       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7212   createOperands(N, Ops);
7213   CSEMap.InsertNode(N, IP);
7214   InsertNode(N);
7215   SDValue V(N, 0);
7216   NewSDValueDbgMsg(V, "Creating new node: ", this);
7217   return V;
7218 }
7219 
7220 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7221 /// MachinePointerInfo record from it.  This is particularly useful because the
7222 /// code generator has many cases where it doesn't bother passing in a
7223 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7224 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7225                                            SelectionDAG &DAG, SDValue Ptr,
7226                                            int64_t Offset = 0) {
7227   // If this is FI+Offset, we can model it.
7228   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7229     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7230                                              FI->getIndex(), Offset);
7231 
7232   // If this is (FI+Offset1)+Offset2, we can model it.
7233   if (Ptr.getOpcode() != ISD::ADD ||
7234       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7235       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7236     return Info;
7237 
7238   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7239   return MachinePointerInfo::getFixedStack(
7240       DAG.getMachineFunction(), FI,
7241       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7242 }
7243 
7244 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7245 /// MachinePointerInfo record from it.  This is particularly useful because the
7246 /// code generator has many cases where it doesn't bother passing in a
7247 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7248 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7249                                            SelectionDAG &DAG, SDValue Ptr,
7250                                            SDValue OffsetOp) {
7251   // If the 'Offset' value isn't a constant, we can't handle this.
7252   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7253     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7254   if (OffsetOp.isUndef())
7255     return InferPointerInfo(Info, DAG, Ptr);
7256   return Info;
7257 }
7258 
7259 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7260                               EVT VT, const SDLoc &dl, SDValue Chain,
7261                               SDValue Ptr, SDValue Offset,
7262                               MachinePointerInfo PtrInfo, EVT MemVT,
7263                               Align Alignment,
7264                               MachineMemOperand::Flags MMOFlags,
7265                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7266   assert(Chain.getValueType() == MVT::Other &&
7267         "Invalid chain type");
7268 
7269   MMOFlags |= MachineMemOperand::MOLoad;
7270   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7271   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7272   // clients.
7273   if (PtrInfo.V.isNull())
7274     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7275 
7276   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7277   MachineFunction &MF = getMachineFunction();
7278   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7279                                                    Alignment, AAInfo, Ranges);
7280   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7281 }
7282 
7283 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7284                               EVT VT, const SDLoc &dl, SDValue Chain,
7285                               SDValue Ptr, SDValue Offset, EVT MemVT,
7286                               MachineMemOperand *MMO) {
7287   if (VT == MemVT) {
7288     ExtType = ISD::NON_EXTLOAD;
7289   } else if (ExtType == ISD::NON_EXTLOAD) {
7290     assert(VT == MemVT && "Non-extending load from different memory type!");
7291   } else {
7292     // Extending load.
7293     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7294            "Should only be an extending load, not truncating!");
7295     assert(VT.isInteger() == MemVT.isInteger() &&
7296            "Cannot convert from FP to Int or Int -> FP!");
7297     assert(VT.isVector() == MemVT.isVector() &&
7298            "Cannot use an ext load to convert to or from a vector!");
7299     assert((!VT.isVector() ||
7300             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7301            "Cannot use an ext load to change the number of vector elements!");
7302   }
7303 
7304   bool Indexed = AM != ISD::UNINDEXED;
7305   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7306 
7307   SDVTList VTs = Indexed ?
7308     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7309   SDValue Ops[] = { Chain, Ptr, Offset };
7310   FoldingSetNodeID ID;
7311   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7312   ID.AddInteger(MemVT.getRawBits());
7313   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7314       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7315   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7316   void *IP = nullptr;
7317   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7318     cast<LoadSDNode>(E)->refineAlignment(MMO);
7319     return SDValue(E, 0);
7320   }
7321   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7322                                   ExtType, MemVT, MMO);
7323   createOperands(N, Ops);
7324 
7325   CSEMap.InsertNode(N, IP);
7326   InsertNode(N);
7327   SDValue V(N, 0);
7328   NewSDValueDbgMsg(V, "Creating new node: ", this);
7329   return V;
7330 }
7331 
7332 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7333                               SDValue Ptr, MachinePointerInfo PtrInfo,
7334                               MaybeAlign Alignment,
7335                               MachineMemOperand::Flags MMOFlags,
7336                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7337   SDValue Undef = getUNDEF(Ptr.getValueType());
7338   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7339                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7340 }
7341 
7342 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7343                               SDValue Ptr, MachineMemOperand *MMO) {
7344   SDValue Undef = getUNDEF(Ptr.getValueType());
7345   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7346                  VT, MMO);
7347 }
7348 
7349 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7350                                  EVT VT, SDValue Chain, SDValue Ptr,
7351                                  MachinePointerInfo PtrInfo, EVT MemVT,
7352                                  MaybeAlign Alignment,
7353                                  MachineMemOperand::Flags MMOFlags,
7354                                  const AAMDNodes &AAInfo) {
7355   SDValue Undef = getUNDEF(Ptr.getValueType());
7356   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7357                  MemVT, Alignment, MMOFlags, AAInfo);
7358 }
7359 
7360 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7361                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7362                                  MachineMemOperand *MMO) {
7363   SDValue Undef = getUNDEF(Ptr.getValueType());
7364   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7365                  MemVT, MMO);
7366 }
7367 
7368 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7369                                      SDValue Base, SDValue Offset,
7370                                      ISD::MemIndexedMode AM) {
7371   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7372   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7373   // Don't propagate the invariant or dereferenceable flags.
7374   auto MMOFlags =
7375       LD->getMemOperand()->getFlags() &
7376       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7377   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7378                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7379                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7380 }
7381 
7382 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7383                                SDValue Ptr, MachinePointerInfo PtrInfo,
7384                                Align Alignment,
7385                                MachineMemOperand::Flags MMOFlags,
7386                                const AAMDNodes &AAInfo) {
7387   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7388 
7389   MMOFlags |= MachineMemOperand::MOStore;
7390   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7391 
7392   if (PtrInfo.V.isNull())
7393     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7394 
7395   MachineFunction &MF = getMachineFunction();
7396   uint64_t Size =
7397       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7398   MachineMemOperand *MMO =
7399       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7400   return getStore(Chain, dl, Val, Ptr, MMO);
7401 }
7402 
7403 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7404                                SDValue Ptr, MachineMemOperand *MMO) {
7405   assert(Chain.getValueType() == MVT::Other &&
7406         "Invalid chain type");
7407   EVT VT = Val.getValueType();
7408   SDVTList VTs = getVTList(MVT::Other);
7409   SDValue Undef = getUNDEF(Ptr.getValueType());
7410   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7411   FoldingSetNodeID ID;
7412   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7413   ID.AddInteger(VT.getRawBits());
7414   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7415       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7416   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7417   void *IP = nullptr;
7418   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7419     cast<StoreSDNode>(E)->refineAlignment(MMO);
7420     return SDValue(E, 0);
7421   }
7422   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7423                                    ISD::UNINDEXED, false, VT, MMO);
7424   createOperands(N, Ops);
7425 
7426   CSEMap.InsertNode(N, IP);
7427   InsertNode(N);
7428   SDValue V(N, 0);
7429   NewSDValueDbgMsg(V, "Creating new node: ", this);
7430   return V;
7431 }
7432 
7433 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7434                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7435                                     EVT SVT, Align Alignment,
7436                                     MachineMemOperand::Flags MMOFlags,
7437                                     const AAMDNodes &AAInfo) {
7438   assert(Chain.getValueType() == MVT::Other &&
7439         "Invalid chain type");
7440 
7441   MMOFlags |= MachineMemOperand::MOStore;
7442   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7443 
7444   if (PtrInfo.V.isNull())
7445     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7446 
7447   MachineFunction &MF = getMachineFunction();
7448   MachineMemOperand *MMO = MF.getMachineMemOperand(
7449       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7450       Alignment, AAInfo);
7451   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7452 }
7453 
7454 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7455                                     SDValue Ptr, EVT SVT,
7456                                     MachineMemOperand *MMO) {
7457   EVT VT = Val.getValueType();
7458 
7459   assert(Chain.getValueType() == MVT::Other &&
7460         "Invalid chain type");
7461   if (VT == SVT)
7462     return getStore(Chain, dl, Val, Ptr, MMO);
7463 
7464   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7465          "Should only be a truncating store, not extending!");
7466   assert(VT.isInteger() == SVT.isInteger() &&
7467          "Can't do FP-INT conversion!");
7468   assert(VT.isVector() == SVT.isVector() &&
7469          "Cannot use trunc store to convert to or from a vector!");
7470   assert((!VT.isVector() ||
7471           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7472          "Cannot use trunc store to change the number of vector elements!");
7473 
7474   SDVTList VTs = getVTList(MVT::Other);
7475   SDValue Undef = getUNDEF(Ptr.getValueType());
7476   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7477   FoldingSetNodeID ID;
7478   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7479   ID.AddInteger(SVT.getRawBits());
7480   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7481       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7482   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7483   void *IP = nullptr;
7484   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7485     cast<StoreSDNode>(E)->refineAlignment(MMO);
7486     return SDValue(E, 0);
7487   }
7488   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7489                                    ISD::UNINDEXED, true, SVT, MMO);
7490   createOperands(N, Ops);
7491 
7492   CSEMap.InsertNode(N, IP);
7493   InsertNode(N);
7494   SDValue V(N, 0);
7495   NewSDValueDbgMsg(V, "Creating new node: ", this);
7496   return V;
7497 }
7498 
7499 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7500                                       SDValue Base, SDValue Offset,
7501                                       ISD::MemIndexedMode AM) {
7502   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7503   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7504   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7505   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7506   FoldingSetNodeID ID;
7507   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7508   ID.AddInteger(ST->getMemoryVT().getRawBits());
7509   ID.AddInteger(ST->getRawSubclassData());
7510   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7511   void *IP = nullptr;
7512   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7513     return SDValue(E, 0);
7514 
7515   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7516                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7517                                    ST->getMemOperand());
7518   createOperands(N, Ops);
7519 
7520   CSEMap.InsertNode(N, IP);
7521   InsertNode(N);
7522   SDValue V(N, 0);
7523   NewSDValueDbgMsg(V, "Creating new node: ", this);
7524   return V;
7525 }
7526 
7527 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7528                                     SDValue Base, SDValue Offset, SDValue Mask,
7529                                     SDValue PassThru, EVT MemVT,
7530                                     MachineMemOperand *MMO,
7531                                     ISD::MemIndexedMode AM,
7532                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7533   bool Indexed = AM != ISD::UNINDEXED;
7534   assert((Indexed || Offset.isUndef()) &&
7535          "Unindexed masked load with an offset!");
7536   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7537                          : getVTList(VT, MVT::Other);
7538   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7539   FoldingSetNodeID ID;
7540   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7541   ID.AddInteger(MemVT.getRawBits());
7542   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7543       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7544   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7545   void *IP = nullptr;
7546   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7547     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7548     return SDValue(E, 0);
7549   }
7550   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7551                                         AM, ExtTy, isExpanding, MemVT, MMO);
7552   createOperands(N, Ops);
7553 
7554   CSEMap.InsertNode(N, IP);
7555   InsertNode(N);
7556   SDValue V(N, 0);
7557   NewSDValueDbgMsg(V, "Creating new node: ", this);
7558   return V;
7559 }
7560 
7561 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7562                                            SDValue Base, SDValue Offset,
7563                                            ISD::MemIndexedMode AM) {
7564   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7565   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7566   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7567                        Offset, LD->getMask(), LD->getPassThru(),
7568                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7569                        LD->getExtensionType(), LD->isExpandingLoad());
7570 }
7571 
7572 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7573                                      SDValue Val, SDValue Base, SDValue Offset,
7574                                      SDValue Mask, EVT MemVT,
7575                                      MachineMemOperand *MMO,
7576                                      ISD::MemIndexedMode AM, bool IsTruncating,
7577                                      bool IsCompressing) {
7578   assert(Chain.getValueType() == MVT::Other &&
7579         "Invalid chain type");
7580   bool Indexed = AM != ISD::UNINDEXED;
7581   assert((Indexed || Offset.isUndef()) &&
7582          "Unindexed masked store with an offset!");
7583   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7584                          : getVTList(MVT::Other);
7585   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7586   FoldingSetNodeID ID;
7587   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7588   ID.AddInteger(MemVT.getRawBits());
7589   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7590       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7591   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7592   void *IP = nullptr;
7593   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7594     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7595     return SDValue(E, 0);
7596   }
7597   auto *N =
7598       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7599                                    IsTruncating, IsCompressing, MemVT, MMO);
7600   createOperands(N, Ops);
7601 
7602   CSEMap.InsertNode(N, IP);
7603   InsertNode(N);
7604   SDValue V(N, 0);
7605   NewSDValueDbgMsg(V, "Creating new node: ", this);
7606   return V;
7607 }
7608 
7609 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7610                                             SDValue Base, SDValue Offset,
7611                                             ISD::MemIndexedMode AM) {
7612   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7613   assert(ST->getOffset().isUndef() &&
7614          "Masked store is already a indexed store!");
7615   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7616                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7617                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7618 }
7619 
7620 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7621                                       ArrayRef<SDValue> Ops,
7622                                       MachineMemOperand *MMO,
7623                                       ISD::MemIndexType IndexType,
7624                                       ISD::LoadExtType ExtTy) {
7625   assert(Ops.size() == 6 && "Incompatible number of operands");
7626 
7627   FoldingSetNodeID ID;
7628   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7629   ID.AddInteger(VT.getRawBits());
7630   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7631       dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy));
7632   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7633   void *IP = nullptr;
7634   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7635     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7636     return SDValue(E, 0);
7637   }
7638 
7639   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7640   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7641                                           VTs, VT, MMO, IndexType, ExtTy);
7642   createOperands(N, Ops);
7643 
7644   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7645          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7646   assert(N->getMask().getValueType().getVectorElementCount() ==
7647              N->getValueType(0).getVectorElementCount() &&
7648          "Vector width mismatch between mask and data");
7649   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7650              N->getValueType(0).getVectorElementCount().isScalable() &&
7651          "Scalable flags of index and data do not match");
7652   assert(ElementCount::isKnownGE(
7653              N->getIndex().getValueType().getVectorElementCount(),
7654              N->getValueType(0).getVectorElementCount()) &&
7655          "Vector width mismatch between index and data");
7656   assert(isa<ConstantSDNode>(N->getScale()) &&
7657          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7658          "Scale should be a constant power of 2");
7659 
7660   CSEMap.InsertNode(N, IP);
7661   InsertNode(N);
7662   SDValue V(N, 0);
7663   NewSDValueDbgMsg(V, "Creating new node: ", this);
7664   return V;
7665 }
7666 
7667 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7668                                        ArrayRef<SDValue> Ops,
7669                                        MachineMemOperand *MMO,
7670                                        ISD::MemIndexType IndexType,
7671                                        bool IsTrunc) {
7672   assert(Ops.size() == 6 && "Incompatible number of operands");
7673 
7674   FoldingSetNodeID ID;
7675   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7676   ID.AddInteger(VT.getRawBits());
7677   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7678       dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc));
7679   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7680   void *IP = nullptr;
7681   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7682     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7683     return SDValue(E, 0);
7684   }
7685 
7686   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7687   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7688                                            VTs, VT, MMO, IndexType, IsTrunc);
7689   createOperands(N, Ops);
7690 
7691   assert(N->getMask().getValueType().getVectorElementCount() ==
7692              N->getValue().getValueType().getVectorElementCount() &&
7693          "Vector width mismatch between mask and data");
7694   assert(
7695       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7696           N->getValue().getValueType().getVectorElementCount().isScalable() &&
7697       "Scalable flags of index and data do not match");
7698   assert(ElementCount::isKnownGE(
7699              N->getIndex().getValueType().getVectorElementCount(),
7700              N->getValue().getValueType().getVectorElementCount()) &&
7701          "Vector width mismatch between index and data");
7702   assert(isa<ConstantSDNode>(N->getScale()) &&
7703          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7704          "Scale should be a constant power of 2");
7705 
7706   CSEMap.InsertNode(N, IP);
7707   InsertNode(N);
7708   SDValue V(N, 0);
7709   NewSDValueDbgMsg(V, "Creating new node: ", this);
7710   return V;
7711 }
7712 
7713 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7714   // select undef, T, F --> T (if T is a constant), otherwise F
7715   // select, ?, undef, F --> F
7716   // select, ?, T, undef --> T
7717   if (Cond.isUndef())
7718     return isConstantValueOfAnyType(T) ? T : F;
7719   if (T.isUndef())
7720     return F;
7721   if (F.isUndef())
7722     return T;
7723 
7724   // select true, T, F --> T
7725   // select false, T, F --> F
7726   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7727     return CondC->isNullValue() ? F : T;
7728 
7729   // TODO: This should simplify VSELECT with constant condition using something
7730   // like this (but check boolean contents to be complete?):
7731   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7732   //    return T;
7733   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7734   //    return F;
7735 
7736   // select ?, T, T --> T
7737   if (T == F)
7738     return T;
7739 
7740   return SDValue();
7741 }
7742 
7743 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7744   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7745   if (X.isUndef())
7746     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7747   // shift X, undef --> undef (because it may shift by the bitwidth)
7748   if (Y.isUndef())
7749     return getUNDEF(X.getValueType());
7750 
7751   // shift 0, Y --> 0
7752   // shift X, 0 --> X
7753   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7754     return X;
7755 
7756   // shift X, C >= bitwidth(X) --> undef
7757   // All vector elements must be too big (or undef) to avoid partial undefs.
7758   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7759     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7760   };
7761   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7762     return getUNDEF(X.getValueType());
7763 
7764   return SDValue();
7765 }
7766 
7767 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7768                                       SDNodeFlags Flags) {
7769   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7770   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7771   // operation is poison. That result can be relaxed to undef.
7772   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7773   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7774   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7775                 (YC && YC->getValueAPF().isNaN());
7776   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7777                 (YC && YC->getValueAPF().isInfinity());
7778 
7779   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7780     return getUNDEF(X.getValueType());
7781 
7782   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7783     return getUNDEF(X.getValueType());
7784 
7785   if (!YC)
7786     return SDValue();
7787 
7788   // X + -0.0 --> X
7789   if (Opcode == ISD::FADD)
7790     if (YC->getValueAPF().isNegZero())
7791       return X;
7792 
7793   // X - +0.0 --> X
7794   if (Opcode == ISD::FSUB)
7795     if (YC->getValueAPF().isPosZero())
7796       return X;
7797 
7798   // X * 1.0 --> X
7799   // X / 1.0 --> X
7800   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7801     if (YC->getValueAPF().isExactlyValue(1.0))
7802       return X;
7803 
7804   // X * 0.0 --> 0.0
7805   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7806     if (YC->getValueAPF().isZero())
7807       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7808 
7809   return SDValue();
7810 }
7811 
7812 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7813                                SDValue Ptr, SDValue SV, unsigned Align) {
7814   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7815   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7816 }
7817 
7818 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7819                               ArrayRef<SDUse> Ops) {
7820   switch (Ops.size()) {
7821   case 0: return getNode(Opcode, DL, VT);
7822   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7823   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7824   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7825   default: break;
7826   }
7827 
7828   // Copy from an SDUse array into an SDValue array for use with
7829   // the regular getNode logic.
7830   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7831   return getNode(Opcode, DL, VT, NewOps);
7832 }
7833 
7834 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7835                               ArrayRef<SDValue> Ops) {
7836   SDNodeFlags Flags;
7837   if (Inserter)
7838     Flags = Inserter->getFlags();
7839   return getNode(Opcode, DL, VT, Ops, Flags);
7840 }
7841 
7842 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7843                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7844   unsigned NumOps = Ops.size();
7845   switch (NumOps) {
7846   case 0: return getNode(Opcode, DL, VT);
7847   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7848   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7849   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7850   default: break;
7851   }
7852 
7853 #ifndef NDEBUG
7854   for (auto &Op : Ops)
7855     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7856            "Operand is DELETED_NODE!");
7857 #endif
7858 
7859   switch (Opcode) {
7860   default: break;
7861   case ISD::BUILD_VECTOR:
7862     // Attempt to simplify BUILD_VECTOR.
7863     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7864       return V;
7865     break;
7866   case ISD::CONCAT_VECTORS:
7867     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7868       return V;
7869     break;
7870   case ISD::SELECT_CC:
7871     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7872     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7873            "LHS and RHS of condition must have same type!");
7874     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7875            "True and False arms of SelectCC must have same type!");
7876     assert(Ops[2].getValueType() == VT &&
7877            "select_cc node must be of same type as true and false value!");
7878     break;
7879   case ISD::BR_CC:
7880     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7881     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7882            "LHS/RHS of comparison should match types!");
7883     break;
7884   }
7885 
7886   // Memoize nodes.
7887   SDNode *N;
7888   SDVTList VTs = getVTList(VT);
7889 
7890   if (VT != MVT::Glue) {
7891     FoldingSetNodeID ID;
7892     AddNodeIDNode(ID, Opcode, VTs, Ops);
7893     void *IP = nullptr;
7894 
7895     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7896       return SDValue(E, 0);
7897 
7898     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7899     createOperands(N, Ops);
7900 
7901     CSEMap.InsertNode(N, IP);
7902   } else {
7903     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7904     createOperands(N, Ops);
7905   }
7906 
7907   N->setFlags(Flags);
7908   InsertNode(N);
7909   SDValue V(N, 0);
7910   NewSDValueDbgMsg(V, "Creating new node: ", this);
7911   return V;
7912 }
7913 
7914 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7915                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7916   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7917 }
7918 
7919 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7920                               ArrayRef<SDValue> Ops) {
7921   SDNodeFlags Flags;
7922   if (Inserter)
7923     Flags = Inserter->getFlags();
7924   return getNode(Opcode, DL, VTList, Ops, Flags);
7925 }
7926 
7927 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7928                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7929   if (VTList.NumVTs == 1)
7930     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7931 
7932 #ifndef NDEBUG
7933   for (auto &Op : Ops)
7934     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7935            "Operand is DELETED_NODE!");
7936 #endif
7937 
7938   switch (Opcode) {
7939   case ISD::STRICT_FP_EXTEND:
7940     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7941            "Invalid STRICT_FP_EXTEND!");
7942     assert(VTList.VTs[0].isFloatingPoint() &&
7943            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7944     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7945            "STRICT_FP_EXTEND result type should be vector iff the operand "
7946            "type is vector!");
7947     assert((!VTList.VTs[0].isVector() ||
7948             VTList.VTs[0].getVectorNumElements() ==
7949             Ops[1].getValueType().getVectorNumElements()) &&
7950            "Vector element count mismatch!");
7951     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7952            "Invalid fpext node, dst <= src!");
7953     break;
7954   case ISD::STRICT_FP_ROUND:
7955     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7956     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7957            "STRICT_FP_ROUND result type should be vector iff the operand "
7958            "type is vector!");
7959     assert((!VTList.VTs[0].isVector() ||
7960             VTList.VTs[0].getVectorNumElements() ==
7961             Ops[1].getValueType().getVectorNumElements()) &&
7962            "Vector element count mismatch!");
7963     assert(VTList.VTs[0].isFloatingPoint() &&
7964            Ops[1].getValueType().isFloatingPoint() &&
7965            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7966            isa<ConstantSDNode>(Ops[2]) &&
7967            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7968             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7969            "Invalid STRICT_FP_ROUND!");
7970     break;
7971 #if 0
7972   // FIXME: figure out how to safely handle things like
7973   // int foo(int x) { return 1 << (x & 255); }
7974   // int bar() { return foo(256); }
7975   case ISD::SRA_PARTS:
7976   case ISD::SRL_PARTS:
7977   case ISD::SHL_PARTS:
7978     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7979         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7980       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7981     else if (N3.getOpcode() == ISD::AND)
7982       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7983         // If the and is only masking out bits that cannot effect the shift,
7984         // eliminate the and.
7985         unsigned NumBits = VT.getScalarSizeInBits()*2;
7986         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7987           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7988       }
7989     break;
7990 #endif
7991   }
7992 
7993   // Memoize the node unless it returns a flag.
7994   SDNode *N;
7995   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7996     FoldingSetNodeID ID;
7997     AddNodeIDNode(ID, Opcode, VTList, Ops);
7998     void *IP = nullptr;
7999     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8000       return SDValue(E, 0);
8001 
8002     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8003     createOperands(N, Ops);
8004     CSEMap.InsertNode(N, IP);
8005   } else {
8006     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8007     createOperands(N, Ops);
8008   }
8009 
8010   N->setFlags(Flags);
8011   InsertNode(N);
8012   SDValue V(N, 0);
8013   NewSDValueDbgMsg(V, "Creating new node: ", this);
8014   return V;
8015 }
8016 
8017 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8018                               SDVTList VTList) {
8019   return getNode(Opcode, DL, VTList, None);
8020 }
8021 
8022 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8023                               SDValue N1) {
8024   SDValue Ops[] = { N1 };
8025   return getNode(Opcode, DL, VTList, Ops);
8026 }
8027 
8028 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8029                               SDValue N1, SDValue N2) {
8030   SDValue Ops[] = { N1, N2 };
8031   return getNode(Opcode, DL, VTList, Ops);
8032 }
8033 
8034 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8035                               SDValue N1, SDValue N2, SDValue N3) {
8036   SDValue Ops[] = { N1, N2, N3 };
8037   return getNode(Opcode, DL, VTList, Ops);
8038 }
8039 
8040 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8041                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8042   SDValue Ops[] = { N1, N2, N3, N4 };
8043   return getNode(Opcode, DL, VTList, Ops);
8044 }
8045 
8046 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8047                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8048                               SDValue N5) {
8049   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8050   return getNode(Opcode, DL, VTList, Ops);
8051 }
8052 
8053 SDVTList SelectionDAG::getVTList(EVT VT) {
8054   return makeVTList(SDNode::getValueTypeList(VT), 1);
8055 }
8056 
8057 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8058   FoldingSetNodeID ID;
8059   ID.AddInteger(2U);
8060   ID.AddInteger(VT1.getRawBits());
8061   ID.AddInteger(VT2.getRawBits());
8062 
8063   void *IP = nullptr;
8064   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8065   if (!Result) {
8066     EVT *Array = Allocator.Allocate<EVT>(2);
8067     Array[0] = VT1;
8068     Array[1] = VT2;
8069     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8070     VTListMap.InsertNode(Result, IP);
8071   }
8072   return Result->getSDVTList();
8073 }
8074 
8075 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8076   FoldingSetNodeID ID;
8077   ID.AddInteger(3U);
8078   ID.AddInteger(VT1.getRawBits());
8079   ID.AddInteger(VT2.getRawBits());
8080   ID.AddInteger(VT3.getRawBits());
8081 
8082   void *IP = nullptr;
8083   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8084   if (!Result) {
8085     EVT *Array = Allocator.Allocate<EVT>(3);
8086     Array[0] = VT1;
8087     Array[1] = VT2;
8088     Array[2] = VT3;
8089     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8090     VTListMap.InsertNode(Result, IP);
8091   }
8092   return Result->getSDVTList();
8093 }
8094 
8095 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8096   FoldingSetNodeID ID;
8097   ID.AddInteger(4U);
8098   ID.AddInteger(VT1.getRawBits());
8099   ID.AddInteger(VT2.getRawBits());
8100   ID.AddInteger(VT3.getRawBits());
8101   ID.AddInteger(VT4.getRawBits());
8102 
8103   void *IP = nullptr;
8104   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8105   if (!Result) {
8106     EVT *Array = Allocator.Allocate<EVT>(4);
8107     Array[0] = VT1;
8108     Array[1] = VT2;
8109     Array[2] = VT3;
8110     Array[3] = VT4;
8111     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8112     VTListMap.InsertNode(Result, IP);
8113   }
8114   return Result->getSDVTList();
8115 }
8116 
8117 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8118   unsigned NumVTs = VTs.size();
8119   FoldingSetNodeID ID;
8120   ID.AddInteger(NumVTs);
8121   for (unsigned index = 0; index < NumVTs; index++) {
8122     ID.AddInteger(VTs[index].getRawBits());
8123   }
8124 
8125   void *IP = nullptr;
8126   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8127   if (!Result) {
8128     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8129     llvm::copy(VTs, Array);
8130     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8131     VTListMap.InsertNode(Result, IP);
8132   }
8133   return Result->getSDVTList();
8134 }
8135 
8136 
8137 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8138 /// specified operands.  If the resultant node already exists in the DAG,
8139 /// this does not modify the specified node, instead it returns the node that
8140 /// already exists.  If the resultant node does not exist in the DAG, the
8141 /// input node is returned.  As a degenerate case, if you specify the same
8142 /// input operands as the node already has, the input node is returned.
8143 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8144   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8145 
8146   // Check to see if there is no change.
8147   if (Op == N->getOperand(0)) return N;
8148 
8149   // See if the modified node already exists.
8150   void *InsertPos = nullptr;
8151   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8152     return Existing;
8153 
8154   // Nope it doesn't.  Remove the node from its current place in the maps.
8155   if (InsertPos)
8156     if (!RemoveNodeFromCSEMaps(N))
8157       InsertPos = nullptr;
8158 
8159   // Now we update the operands.
8160   N->OperandList[0].set(Op);
8161 
8162   updateDivergence(N);
8163   // If this gets put into a CSE map, add it.
8164   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8165   return N;
8166 }
8167 
8168 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8169   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8170 
8171   // Check to see if there is no change.
8172   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8173     return N;   // No operands changed, just return the input node.
8174 
8175   // See if the modified node already exists.
8176   void *InsertPos = nullptr;
8177   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8178     return Existing;
8179 
8180   // Nope it doesn't.  Remove the node from its current place in the maps.
8181   if (InsertPos)
8182     if (!RemoveNodeFromCSEMaps(N))
8183       InsertPos = nullptr;
8184 
8185   // Now we update the operands.
8186   if (N->OperandList[0] != Op1)
8187     N->OperandList[0].set(Op1);
8188   if (N->OperandList[1] != Op2)
8189     N->OperandList[1].set(Op2);
8190 
8191   updateDivergence(N);
8192   // If this gets put into a CSE map, add it.
8193   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8194   return N;
8195 }
8196 
8197 SDNode *SelectionDAG::
8198 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8199   SDValue Ops[] = { Op1, Op2, Op3 };
8200   return UpdateNodeOperands(N, Ops);
8201 }
8202 
8203 SDNode *SelectionDAG::
8204 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8205                    SDValue Op3, SDValue Op4) {
8206   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8207   return UpdateNodeOperands(N, Ops);
8208 }
8209 
8210 SDNode *SelectionDAG::
8211 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8212                    SDValue Op3, SDValue Op4, SDValue Op5) {
8213   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8214   return UpdateNodeOperands(N, Ops);
8215 }
8216 
8217 SDNode *SelectionDAG::
8218 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8219   unsigned NumOps = Ops.size();
8220   assert(N->getNumOperands() == NumOps &&
8221          "Update with wrong number of operands");
8222 
8223   // If no operands changed just return the input node.
8224   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8225     return N;
8226 
8227   // See if the modified node already exists.
8228   void *InsertPos = nullptr;
8229   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8230     return Existing;
8231 
8232   // Nope it doesn't.  Remove the node from its current place in the maps.
8233   if (InsertPos)
8234     if (!RemoveNodeFromCSEMaps(N))
8235       InsertPos = nullptr;
8236 
8237   // Now we update the operands.
8238   for (unsigned i = 0; i != NumOps; ++i)
8239     if (N->OperandList[i] != Ops[i])
8240       N->OperandList[i].set(Ops[i]);
8241 
8242   updateDivergence(N);
8243   // If this gets put into a CSE map, add it.
8244   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8245   return N;
8246 }
8247 
8248 /// DropOperands - Release the operands and set this node to have
8249 /// zero operands.
8250 void SDNode::DropOperands() {
8251   // Unlike the code in MorphNodeTo that does this, we don't need to
8252   // watch for dead nodes here.
8253   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8254     SDUse &Use = *I++;
8255     Use.set(SDValue());
8256   }
8257 }
8258 
8259 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8260                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8261   if (NewMemRefs.empty()) {
8262     N->clearMemRefs();
8263     return;
8264   }
8265 
8266   // Check if we can avoid allocating by storing a single reference directly.
8267   if (NewMemRefs.size() == 1) {
8268     N->MemRefs = NewMemRefs[0];
8269     N->NumMemRefs = 1;
8270     return;
8271   }
8272 
8273   MachineMemOperand **MemRefsBuffer =
8274       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8275   llvm::copy(NewMemRefs, MemRefsBuffer);
8276   N->MemRefs = MemRefsBuffer;
8277   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8278 }
8279 
8280 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8281 /// machine opcode.
8282 ///
8283 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8284                                    EVT VT) {
8285   SDVTList VTs = getVTList(VT);
8286   return SelectNodeTo(N, MachineOpc, VTs, None);
8287 }
8288 
8289 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8290                                    EVT VT, SDValue Op1) {
8291   SDVTList VTs = getVTList(VT);
8292   SDValue Ops[] = { Op1 };
8293   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8294 }
8295 
8296 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8297                                    EVT VT, SDValue Op1,
8298                                    SDValue Op2) {
8299   SDVTList VTs = getVTList(VT);
8300   SDValue Ops[] = { Op1, Op2 };
8301   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8302 }
8303 
8304 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8305                                    EVT VT, SDValue Op1,
8306                                    SDValue Op2, SDValue Op3) {
8307   SDVTList VTs = getVTList(VT);
8308   SDValue Ops[] = { Op1, Op2, Op3 };
8309   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8310 }
8311 
8312 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8313                                    EVT VT, ArrayRef<SDValue> Ops) {
8314   SDVTList VTs = getVTList(VT);
8315   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8316 }
8317 
8318 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8319                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8320   SDVTList VTs = getVTList(VT1, VT2);
8321   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8322 }
8323 
8324 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8325                                    EVT VT1, EVT VT2) {
8326   SDVTList VTs = getVTList(VT1, VT2);
8327   return SelectNodeTo(N, MachineOpc, VTs, None);
8328 }
8329 
8330 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8331                                    EVT VT1, EVT VT2, EVT VT3,
8332                                    ArrayRef<SDValue> Ops) {
8333   SDVTList VTs = getVTList(VT1, VT2, VT3);
8334   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8335 }
8336 
8337 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8338                                    EVT VT1, EVT VT2,
8339                                    SDValue Op1, SDValue Op2) {
8340   SDVTList VTs = getVTList(VT1, VT2);
8341   SDValue Ops[] = { Op1, Op2 };
8342   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8343 }
8344 
8345 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8346                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8347   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8348   // Reset the NodeID to -1.
8349   New->setNodeId(-1);
8350   if (New != N) {
8351     ReplaceAllUsesWith(N, New);
8352     RemoveDeadNode(N);
8353   }
8354   return New;
8355 }
8356 
8357 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8358 /// the line number information on the merged node since it is not possible to
8359 /// preserve the information that operation is associated with multiple lines.
8360 /// This will make the debugger working better at -O0, were there is a higher
8361 /// probability having other instructions associated with that line.
8362 ///
8363 /// For IROrder, we keep the smaller of the two
8364 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8365   DebugLoc NLoc = N->getDebugLoc();
8366   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8367     N->setDebugLoc(DebugLoc());
8368   }
8369   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8370   N->setIROrder(Order);
8371   return N;
8372 }
8373 
8374 /// MorphNodeTo - This *mutates* the specified node to have the specified
8375 /// return type, opcode, and operands.
8376 ///
8377 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8378 /// node of the specified opcode and operands, it returns that node instead of
8379 /// the current one.  Note that the SDLoc need not be the same.
8380 ///
8381 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8382 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8383 /// node, and because it doesn't require CSE recalculation for any of
8384 /// the node's users.
8385 ///
8386 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8387 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8388 /// the legalizer which maintain worklists that would need to be updated when
8389 /// deleting things.
8390 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8391                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8392   // If an identical node already exists, use it.
8393   void *IP = nullptr;
8394   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8395     FoldingSetNodeID ID;
8396     AddNodeIDNode(ID, Opc, VTs, Ops);
8397     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8398       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8399   }
8400 
8401   if (!RemoveNodeFromCSEMaps(N))
8402     IP = nullptr;
8403 
8404   // Start the morphing.
8405   N->NodeType = Opc;
8406   N->ValueList = VTs.VTs;
8407   N->NumValues = VTs.NumVTs;
8408 
8409   // Clear the operands list, updating used nodes to remove this from their
8410   // use list.  Keep track of any operands that become dead as a result.
8411   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8412   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8413     SDUse &Use = *I++;
8414     SDNode *Used = Use.getNode();
8415     Use.set(SDValue());
8416     if (Used->use_empty())
8417       DeadNodeSet.insert(Used);
8418   }
8419 
8420   // For MachineNode, initialize the memory references information.
8421   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8422     MN->clearMemRefs();
8423 
8424   // Swap for an appropriately sized array from the recycler.
8425   removeOperands(N);
8426   createOperands(N, Ops);
8427 
8428   // Delete any nodes that are still dead after adding the uses for the
8429   // new operands.
8430   if (!DeadNodeSet.empty()) {
8431     SmallVector<SDNode *, 16> DeadNodes;
8432     for (SDNode *N : DeadNodeSet)
8433       if (N->use_empty())
8434         DeadNodes.push_back(N);
8435     RemoveDeadNodes(DeadNodes);
8436   }
8437 
8438   if (IP)
8439     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8440   return N;
8441 }
8442 
8443 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8444   unsigned OrigOpc = Node->getOpcode();
8445   unsigned NewOpc;
8446   switch (OrigOpc) {
8447   default:
8448     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8449 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8450   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8451 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8452   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8453 #include "llvm/IR/ConstrainedOps.def"
8454   }
8455 
8456   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8457 
8458   // We're taking this node out of the chain, so we need to re-link things.
8459   SDValue InputChain = Node->getOperand(0);
8460   SDValue OutputChain = SDValue(Node, 1);
8461   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8462 
8463   SmallVector<SDValue, 3> Ops;
8464   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8465     Ops.push_back(Node->getOperand(i));
8466 
8467   SDVTList VTs = getVTList(Node->getValueType(0));
8468   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8469 
8470   // MorphNodeTo can operate in two ways: if an existing node with the
8471   // specified operands exists, it can just return it.  Otherwise, it
8472   // updates the node in place to have the requested operands.
8473   if (Res == Node) {
8474     // If we updated the node in place, reset the node ID.  To the isel,
8475     // this should be just like a newly allocated machine node.
8476     Res->setNodeId(-1);
8477   } else {
8478     ReplaceAllUsesWith(Node, Res);
8479     RemoveDeadNode(Node);
8480   }
8481 
8482   return Res;
8483 }
8484 
8485 /// getMachineNode - These are used for target selectors to create a new node
8486 /// with specified return type(s), MachineInstr opcode, and operands.
8487 ///
8488 /// Note that getMachineNode returns the resultant node.  If there is already a
8489 /// node of the specified opcode and operands, it returns that node instead of
8490 /// the current one.
8491 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8492                                             EVT VT) {
8493   SDVTList VTs = getVTList(VT);
8494   return getMachineNode(Opcode, dl, VTs, None);
8495 }
8496 
8497 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8498                                             EVT VT, SDValue Op1) {
8499   SDVTList VTs = getVTList(VT);
8500   SDValue Ops[] = { Op1 };
8501   return getMachineNode(Opcode, dl, VTs, Ops);
8502 }
8503 
8504 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8505                                             EVT VT, SDValue Op1, SDValue Op2) {
8506   SDVTList VTs = getVTList(VT);
8507   SDValue Ops[] = { Op1, Op2 };
8508   return getMachineNode(Opcode, dl, VTs, Ops);
8509 }
8510 
8511 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8512                                             EVT VT, SDValue Op1, SDValue Op2,
8513                                             SDValue Op3) {
8514   SDVTList VTs = getVTList(VT);
8515   SDValue Ops[] = { Op1, Op2, Op3 };
8516   return getMachineNode(Opcode, dl, VTs, Ops);
8517 }
8518 
8519 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8520                                             EVT VT, ArrayRef<SDValue> Ops) {
8521   SDVTList VTs = getVTList(VT);
8522   return getMachineNode(Opcode, dl, VTs, Ops);
8523 }
8524 
8525 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8526                                             EVT VT1, EVT VT2, SDValue Op1,
8527                                             SDValue Op2) {
8528   SDVTList VTs = getVTList(VT1, VT2);
8529   SDValue Ops[] = { Op1, Op2 };
8530   return getMachineNode(Opcode, dl, VTs, Ops);
8531 }
8532 
8533 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8534                                             EVT VT1, EVT VT2, SDValue Op1,
8535                                             SDValue Op2, SDValue Op3) {
8536   SDVTList VTs = getVTList(VT1, VT2);
8537   SDValue Ops[] = { Op1, Op2, Op3 };
8538   return getMachineNode(Opcode, dl, VTs, Ops);
8539 }
8540 
8541 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8542                                             EVT VT1, EVT VT2,
8543                                             ArrayRef<SDValue> Ops) {
8544   SDVTList VTs = getVTList(VT1, VT2);
8545   return getMachineNode(Opcode, dl, VTs, Ops);
8546 }
8547 
8548 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8549                                             EVT VT1, EVT VT2, EVT VT3,
8550                                             SDValue Op1, SDValue Op2) {
8551   SDVTList VTs = getVTList(VT1, VT2, VT3);
8552   SDValue Ops[] = { Op1, Op2 };
8553   return getMachineNode(Opcode, dl, VTs, Ops);
8554 }
8555 
8556 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8557                                             EVT VT1, EVT VT2, EVT VT3,
8558                                             SDValue Op1, SDValue Op2,
8559                                             SDValue Op3) {
8560   SDVTList VTs = getVTList(VT1, VT2, VT3);
8561   SDValue Ops[] = { Op1, Op2, Op3 };
8562   return getMachineNode(Opcode, dl, VTs, Ops);
8563 }
8564 
8565 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8566                                             EVT VT1, EVT VT2, EVT VT3,
8567                                             ArrayRef<SDValue> Ops) {
8568   SDVTList VTs = getVTList(VT1, VT2, VT3);
8569   return getMachineNode(Opcode, dl, VTs, Ops);
8570 }
8571 
8572 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8573                                             ArrayRef<EVT> ResultTys,
8574                                             ArrayRef<SDValue> Ops) {
8575   SDVTList VTs = getVTList(ResultTys);
8576   return getMachineNode(Opcode, dl, VTs, Ops);
8577 }
8578 
8579 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8580                                             SDVTList VTs,
8581                                             ArrayRef<SDValue> Ops) {
8582   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8583   MachineSDNode *N;
8584   void *IP = nullptr;
8585 
8586   if (DoCSE) {
8587     FoldingSetNodeID ID;
8588     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8589     IP = nullptr;
8590     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8591       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8592     }
8593   }
8594 
8595   // Allocate a new MachineSDNode.
8596   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8597   createOperands(N, Ops);
8598 
8599   if (DoCSE)
8600     CSEMap.InsertNode(N, IP);
8601 
8602   InsertNode(N);
8603   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8604   return N;
8605 }
8606 
8607 /// getTargetExtractSubreg - A convenience function for creating
8608 /// TargetOpcode::EXTRACT_SUBREG nodes.
8609 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8610                                              SDValue Operand) {
8611   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8612   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8613                                   VT, Operand, SRIdxVal);
8614   return SDValue(Subreg, 0);
8615 }
8616 
8617 /// getTargetInsertSubreg - A convenience function for creating
8618 /// TargetOpcode::INSERT_SUBREG nodes.
8619 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8620                                             SDValue Operand, SDValue Subreg) {
8621   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8622   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8623                                   VT, Operand, Subreg, SRIdxVal);
8624   return SDValue(Result, 0);
8625 }
8626 
8627 /// getNodeIfExists - Get the specified node if it's already available, or
8628 /// else return NULL.
8629 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8630                                       ArrayRef<SDValue> Ops) {
8631   SDNodeFlags Flags;
8632   if (Inserter)
8633     Flags = Inserter->getFlags();
8634   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8635 }
8636 
8637 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8638                                       ArrayRef<SDValue> Ops,
8639                                       const SDNodeFlags Flags) {
8640   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8641     FoldingSetNodeID ID;
8642     AddNodeIDNode(ID, Opcode, VTList, Ops);
8643     void *IP = nullptr;
8644     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8645       E->intersectFlagsWith(Flags);
8646       return E;
8647     }
8648   }
8649   return nullptr;
8650 }
8651 
8652 /// doesNodeExist - Check if a node exists without modifying its flags.
8653 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
8654                                  ArrayRef<SDValue> Ops) {
8655   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8656     FoldingSetNodeID ID;
8657     AddNodeIDNode(ID, Opcode, VTList, Ops);
8658     void *IP = nullptr;
8659     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
8660       return true;
8661   }
8662   return false;
8663 }
8664 
8665 /// getDbgValue - Creates a SDDbgValue node.
8666 ///
8667 /// SDNode
8668 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8669                                       SDNode *N, unsigned R, bool IsIndirect,
8670                                       const DebugLoc &DL, unsigned O) {
8671   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8672          "Expected inlined-at fields to agree");
8673   return new (DbgInfo->getAlloc())
8674       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
8675                  {}, IsIndirect, DL, O,
8676                  /*IsVariadic=*/false);
8677 }
8678 
8679 /// Constant
8680 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8681                                               DIExpression *Expr,
8682                                               const Value *C,
8683                                               const DebugLoc &DL, unsigned O) {
8684   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8685          "Expected inlined-at fields to agree");
8686   return new (DbgInfo->getAlloc())
8687       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
8688                  /*IsIndirect=*/false, DL, O,
8689                  /*IsVariadic=*/false);
8690 }
8691 
8692 /// FrameIndex
8693 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8694                                                 DIExpression *Expr, unsigned FI,
8695                                                 bool IsIndirect,
8696                                                 const DebugLoc &DL,
8697                                                 unsigned O) {
8698   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8699          "Expected inlined-at fields to agree");
8700   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
8701 }
8702 
8703 /// FrameIndex with dependencies
8704 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8705                                                 DIExpression *Expr, unsigned FI,
8706                                                 ArrayRef<SDNode *> Dependencies,
8707                                                 bool IsIndirect,
8708                                                 const DebugLoc &DL,
8709                                                 unsigned O) {
8710   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8711          "Expected inlined-at fields to agree");
8712   return new (DbgInfo->getAlloc())
8713       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
8714                  Dependencies, IsIndirect, DL, O,
8715                  /*IsVariadic=*/false);
8716 }
8717 
8718 /// VReg
8719 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
8720                                           unsigned VReg, bool IsIndirect,
8721                                           const DebugLoc &DL, unsigned O) {
8722   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8723          "Expected inlined-at fields to agree");
8724   return new (DbgInfo->getAlloc())
8725       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
8726                  {}, IsIndirect, DL, O,
8727                  /*IsVariadic=*/false);
8728 }
8729 
8730 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
8731                                           ArrayRef<SDDbgOperand> Locs,
8732                                           ArrayRef<SDNode *> Dependencies,
8733                                           bool IsIndirect, const DebugLoc &DL,
8734                                           unsigned O, bool IsVariadic) {
8735   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8736          "Expected inlined-at fields to agree");
8737   return new (DbgInfo->getAlloc())
8738       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
8739                  DL, O, IsVariadic);
8740 }
8741 
8742 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8743                                      unsigned OffsetInBits, unsigned SizeInBits,
8744                                      bool InvalidateDbg) {
8745   SDNode *FromNode = From.getNode();
8746   SDNode *ToNode = To.getNode();
8747   assert(FromNode && ToNode && "Can't modify dbg values");
8748 
8749   // PR35338
8750   // TODO: assert(From != To && "Redundant dbg value transfer");
8751   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8752   if (From == To || FromNode == ToNode)
8753     return;
8754 
8755   if (!FromNode->getHasDebugValue())
8756     return;
8757 
8758   SDDbgOperand FromLocOp =
8759       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
8760   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
8761 
8762   SmallVector<SDDbgValue *, 2> ClonedDVs;
8763   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8764     if (Dbg->isInvalidated())
8765       continue;
8766 
8767     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8768 
8769     // Create a new location ops vector that is equal to the old vector, but
8770     // with each instance of FromLocOp replaced with ToLocOp.
8771     bool Changed = false;
8772     auto NewLocOps = Dbg->copyLocationOps();
8773     std::replace_if(
8774         NewLocOps.begin(), NewLocOps.end(),
8775         [&Changed, FromLocOp](const SDDbgOperand &Op) {
8776           bool Match = Op == FromLocOp;
8777           Changed |= Match;
8778           return Match;
8779         },
8780         ToLocOp);
8781     // Ignore this SDDbgValue if we didn't find a matching location.
8782     if (!Changed)
8783       continue;
8784 
8785     DIVariable *Var = Dbg->getVariable();
8786     auto *Expr = Dbg->getExpression();
8787     // If a fragment is requested, update the expression.
8788     if (SizeInBits) {
8789       // When splitting a larger (e.g., sign-extended) value whose
8790       // lower bits are described with an SDDbgValue, do not attempt
8791       // to transfer the SDDbgValue to the upper bits.
8792       if (auto FI = Expr->getFragmentInfo())
8793         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8794           continue;
8795       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8796                                                              SizeInBits);
8797       if (!Fragment)
8798         continue;
8799       Expr = *Fragment;
8800     }
8801 
8802     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
8803     // Clone the SDDbgValue and move it to To.
8804     SDDbgValue *Clone = getDbgValueList(
8805         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
8806         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
8807         Dbg->isVariadic());
8808     ClonedDVs.push_back(Clone);
8809 
8810     if (InvalidateDbg) {
8811       // Invalidate value and indicate the SDDbgValue should not be emitted.
8812       Dbg->setIsInvalidated();
8813       Dbg->setIsEmitted();
8814     }
8815   }
8816 
8817   for (SDDbgValue *Dbg : ClonedDVs) {
8818     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
8819            "Transferred DbgValues should depend on the new SDNode");
8820     AddDbgValue(Dbg, false);
8821   }
8822 }
8823 
8824 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8825   if (!N.getHasDebugValue())
8826     return;
8827 
8828   SmallVector<SDDbgValue *, 2> ClonedDVs;
8829   for (auto DV : GetDbgValues(&N)) {
8830     if (DV->isInvalidated())
8831       continue;
8832     switch (N.getOpcode()) {
8833     default:
8834       break;
8835     case ISD::ADD:
8836       SDValue N0 = N.getOperand(0);
8837       SDValue N1 = N.getOperand(1);
8838       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8839           isConstantIntBuildVectorOrConstantInt(N1)) {
8840         uint64_t Offset = N.getConstantOperandVal(1);
8841 
8842         // Rewrite an ADD constant node into a DIExpression. Since we are
8843         // performing arithmetic to compute the variable's *value* in the
8844         // DIExpression, we need to mark the expression with a
8845         // DW_OP_stack_value.
8846         auto *DIExpr = DV->getExpression();
8847         auto NewLocOps = DV->copyLocationOps();
8848         bool Changed = false;
8849         for (size_t i = 0; i < NewLocOps.size(); ++i) {
8850           // We're not given a ResNo to compare against because the whole
8851           // node is going away. We know that any ISD::ADD only has one
8852           // result, so we can assume any node match is using the result.
8853           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
8854               NewLocOps[i].getSDNode() != &N)
8855             continue;
8856           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
8857           SmallVector<uint64_t, 3> ExprOps;
8858           DIExpression::appendOffset(ExprOps, Offset);
8859           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
8860           Changed = true;
8861         }
8862         (void)Changed;
8863         assert(Changed && "Salvage target doesn't use N");
8864 
8865         auto AdditionalDependencies = DV->getAdditionalDependencies();
8866         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
8867                                             NewLocOps, AdditionalDependencies,
8868                                             DV->isIndirect(), DV->getDebugLoc(),
8869                                             DV->getOrder(), DV->isVariadic());
8870         ClonedDVs.push_back(Clone);
8871         DV->setIsInvalidated();
8872         DV->setIsEmitted();
8873         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8874                    N0.getNode()->dumprFull(this);
8875                    dbgs() << " into " << *DIExpr << '\n');
8876       }
8877     }
8878   }
8879 
8880   for (SDDbgValue *Dbg : ClonedDVs) {
8881     assert(!Dbg->getSDNodes().empty() &&
8882            "Salvaged DbgValue should depend on a new SDNode");
8883     AddDbgValue(Dbg, false);
8884   }
8885 }
8886 
8887 /// Creates a SDDbgLabel node.
8888 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8889                                       const DebugLoc &DL, unsigned O) {
8890   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8891          "Expected inlined-at fields to agree");
8892   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8893 }
8894 
8895 namespace {
8896 
8897 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8898 /// pointed to by a use iterator is deleted, increment the use iterator
8899 /// so that it doesn't dangle.
8900 ///
8901 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8902   SDNode::use_iterator &UI;
8903   SDNode::use_iterator &UE;
8904 
8905   void NodeDeleted(SDNode *N, SDNode *E) override {
8906     // Increment the iterator as needed.
8907     while (UI != UE && N == *UI)
8908       ++UI;
8909   }
8910 
8911 public:
8912   RAUWUpdateListener(SelectionDAG &d,
8913                      SDNode::use_iterator &ui,
8914                      SDNode::use_iterator &ue)
8915     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8916 };
8917 
8918 } // end anonymous namespace
8919 
8920 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8921 /// This can cause recursive merging of nodes in the DAG.
8922 ///
8923 /// This version assumes From has a single result value.
8924 ///
8925 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8926   SDNode *From = FromN.getNode();
8927   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8928          "Cannot replace with this method!");
8929   assert(From != To.getNode() && "Cannot replace uses of with self");
8930 
8931   // Preserve Debug Values
8932   transferDbgValues(FromN, To);
8933 
8934   // Iterate over all the existing uses of From. New uses will be added
8935   // to the beginning of the use list, which we avoid visiting.
8936   // This specifically avoids visiting uses of From that arise while the
8937   // replacement is happening, because any such uses would be the result
8938   // of CSE: If an existing node looks like From after one of its operands
8939   // is replaced by To, we don't want to replace of all its users with To
8940   // too. See PR3018 for more info.
8941   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8942   RAUWUpdateListener Listener(*this, UI, UE);
8943   while (UI != UE) {
8944     SDNode *User = *UI;
8945 
8946     // This node is about to morph, remove its old self from the CSE maps.
8947     RemoveNodeFromCSEMaps(User);
8948 
8949     // A user can appear in a use list multiple times, and when this
8950     // happens the uses are usually next to each other in the list.
8951     // To help reduce the number of CSE recomputations, process all
8952     // the uses of this user that we can find this way.
8953     do {
8954       SDUse &Use = UI.getUse();
8955       ++UI;
8956       Use.set(To);
8957       if (To->isDivergent() != From->isDivergent())
8958         updateDivergence(User);
8959     } while (UI != UE && *UI == User);
8960     // Now that we have modified User, add it back to the CSE maps.  If it
8961     // already exists there, recursively merge the results together.
8962     AddModifiedNodeToCSEMaps(User);
8963   }
8964 
8965   // If we just RAUW'd the root, take note.
8966   if (FromN == getRoot())
8967     setRoot(To);
8968 }
8969 
8970 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8971 /// This can cause recursive merging of nodes in the DAG.
8972 ///
8973 /// This version assumes that for each value of From, there is a
8974 /// corresponding value in To in the same position with the same type.
8975 ///
8976 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8977 #ifndef NDEBUG
8978   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8979     assert((!From->hasAnyUseOfValue(i) ||
8980             From->getValueType(i) == To->getValueType(i)) &&
8981            "Cannot use this version of ReplaceAllUsesWith!");
8982 #endif
8983 
8984   // Handle the trivial case.
8985   if (From == To)
8986     return;
8987 
8988   // Preserve Debug Info. Only do this if there's a use.
8989   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8990     if (From->hasAnyUseOfValue(i)) {
8991       assert((i < To->getNumValues()) && "Invalid To location");
8992       transferDbgValues(SDValue(From, i), SDValue(To, i));
8993     }
8994 
8995   // Iterate over just the existing users of From. See the comments in
8996   // the ReplaceAllUsesWith above.
8997   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8998   RAUWUpdateListener Listener(*this, UI, UE);
8999   while (UI != UE) {
9000     SDNode *User = *UI;
9001 
9002     // This node is about to morph, remove its old self from the CSE maps.
9003     RemoveNodeFromCSEMaps(User);
9004 
9005     // A user can appear in a use list multiple times, and when this
9006     // happens the uses are usually next to each other in the list.
9007     // To help reduce the number of CSE recomputations, process all
9008     // the uses of this user that we can find this way.
9009     do {
9010       SDUse &Use = UI.getUse();
9011       ++UI;
9012       Use.setNode(To);
9013       if (To->isDivergent() != From->isDivergent())
9014         updateDivergence(User);
9015     } while (UI != UE && *UI == User);
9016 
9017     // Now that we have modified User, add it back to the CSE maps.  If it
9018     // already exists there, recursively merge the results together.
9019     AddModifiedNodeToCSEMaps(User);
9020   }
9021 
9022   // If we just RAUW'd the root, take note.
9023   if (From == getRoot().getNode())
9024     setRoot(SDValue(To, getRoot().getResNo()));
9025 }
9026 
9027 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9028 /// This can cause recursive merging of nodes in the DAG.
9029 ///
9030 /// This version can replace From with any result values.  To must match the
9031 /// number and types of values returned by From.
9032 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9033   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9034     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9035 
9036   // Preserve Debug Info.
9037   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9038     transferDbgValues(SDValue(From, i), To[i]);
9039 
9040   // Iterate over just the existing users of From. See the comments in
9041   // the ReplaceAllUsesWith above.
9042   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9043   RAUWUpdateListener Listener(*this, UI, UE);
9044   while (UI != UE) {
9045     SDNode *User = *UI;
9046 
9047     // This node is about to morph, remove its old self from the CSE maps.
9048     RemoveNodeFromCSEMaps(User);
9049 
9050     // A user can appear in a use list multiple times, and when this happens the
9051     // uses are usually next to each other in the list.  To help reduce the
9052     // number of CSE and divergence recomputations, process all the uses of this
9053     // user that we can find this way.
9054     bool To_IsDivergent = false;
9055     do {
9056       SDUse &Use = UI.getUse();
9057       const SDValue &ToOp = To[Use.getResNo()];
9058       ++UI;
9059       Use.set(ToOp);
9060       To_IsDivergent |= ToOp->isDivergent();
9061     } while (UI != UE && *UI == User);
9062 
9063     if (To_IsDivergent != From->isDivergent())
9064       updateDivergence(User);
9065 
9066     // Now that we have modified User, add it back to the CSE maps.  If it
9067     // already exists there, recursively merge the results together.
9068     AddModifiedNodeToCSEMaps(User);
9069   }
9070 
9071   // If we just RAUW'd the root, take note.
9072   if (From == getRoot().getNode())
9073     setRoot(SDValue(To[getRoot().getResNo()]));
9074 }
9075 
9076 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9077 /// uses of other values produced by From.getNode() alone.  The Deleted
9078 /// vector is handled the same way as for ReplaceAllUsesWith.
9079 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9080   // Handle the really simple, really trivial case efficiently.
9081   if (From == To) return;
9082 
9083   // Handle the simple, trivial, case efficiently.
9084   if (From.getNode()->getNumValues() == 1) {
9085     ReplaceAllUsesWith(From, To);
9086     return;
9087   }
9088 
9089   // Preserve Debug Info.
9090   transferDbgValues(From, To);
9091 
9092   // Iterate over just the existing users of From. See the comments in
9093   // the ReplaceAllUsesWith above.
9094   SDNode::use_iterator UI = From.getNode()->use_begin(),
9095                        UE = From.getNode()->use_end();
9096   RAUWUpdateListener Listener(*this, UI, UE);
9097   while (UI != UE) {
9098     SDNode *User = *UI;
9099     bool UserRemovedFromCSEMaps = false;
9100 
9101     // A user can appear in a use list multiple times, and when this
9102     // happens the uses are usually next to each other in the list.
9103     // To help reduce the number of CSE recomputations, process all
9104     // the uses of this user that we can find this way.
9105     do {
9106       SDUse &Use = UI.getUse();
9107 
9108       // Skip uses of different values from the same node.
9109       if (Use.getResNo() != From.getResNo()) {
9110         ++UI;
9111         continue;
9112       }
9113 
9114       // If this node hasn't been modified yet, it's still in the CSE maps,
9115       // so remove its old self from the CSE maps.
9116       if (!UserRemovedFromCSEMaps) {
9117         RemoveNodeFromCSEMaps(User);
9118         UserRemovedFromCSEMaps = true;
9119       }
9120 
9121       ++UI;
9122       Use.set(To);
9123       if (To->isDivergent() != From->isDivergent())
9124         updateDivergence(User);
9125     } while (UI != UE && *UI == User);
9126     // We are iterating over all uses of the From node, so if a use
9127     // doesn't use the specific value, no changes are made.
9128     if (!UserRemovedFromCSEMaps)
9129       continue;
9130 
9131     // Now that we have modified User, add it back to the CSE maps.  If it
9132     // already exists there, recursively merge the results together.
9133     AddModifiedNodeToCSEMaps(User);
9134   }
9135 
9136   // If we just RAUW'd the root, take note.
9137   if (From == getRoot())
9138     setRoot(To);
9139 }
9140 
9141 namespace {
9142 
9143   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9144   /// to record information about a use.
9145   struct UseMemo {
9146     SDNode *User;
9147     unsigned Index;
9148     SDUse *Use;
9149   };
9150 
9151   /// operator< - Sort Memos by User.
9152   bool operator<(const UseMemo &L, const UseMemo &R) {
9153     return (intptr_t)L.User < (intptr_t)R.User;
9154   }
9155 
9156 } // end anonymous namespace
9157 
9158 bool SelectionDAG::calculateDivergence(SDNode *N) {
9159   if (TLI->isSDNodeAlwaysUniform(N)) {
9160     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9161            "Conflicting divergence information!");
9162     return false;
9163   }
9164   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9165     return true;
9166   for (auto &Op : N->ops()) {
9167     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9168       return true;
9169   }
9170   return false;
9171 }
9172 
9173 void SelectionDAG::updateDivergence(SDNode *N) {
9174   SmallVector<SDNode *, 16> Worklist(1, N);
9175   do {
9176     N = Worklist.pop_back_val();
9177     bool IsDivergent = calculateDivergence(N);
9178     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9179       N->SDNodeBits.IsDivergent = IsDivergent;
9180       llvm::append_range(Worklist, N->uses());
9181     }
9182   } while (!Worklist.empty());
9183 }
9184 
9185 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9186   DenseMap<SDNode *, unsigned> Degree;
9187   Order.reserve(AllNodes.size());
9188   for (auto &N : allnodes()) {
9189     unsigned NOps = N.getNumOperands();
9190     Degree[&N] = NOps;
9191     if (0 == NOps)
9192       Order.push_back(&N);
9193   }
9194   for (size_t I = 0; I != Order.size(); ++I) {
9195     SDNode *N = Order[I];
9196     for (auto U : N->uses()) {
9197       unsigned &UnsortedOps = Degree[U];
9198       if (0 == --UnsortedOps)
9199         Order.push_back(U);
9200     }
9201   }
9202 }
9203 
9204 #ifndef NDEBUG
9205 void SelectionDAG::VerifyDAGDiverence() {
9206   std::vector<SDNode *> TopoOrder;
9207   CreateTopologicalOrder(TopoOrder);
9208   for (auto *N : TopoOrder) {
9209     assert(calculateDivergence(N) == N->isDivergent() &&
9210            "Divergence bit inconsistency detected");
9211   }
9212 }
9213 #endif
9214 
9215 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9216 /// uses of other values produced by From.getNode() alone.  The same value
9217 /// may appear in both the From and To list.  The Deleted vector is
9218 /// handled the same way as for ReplaceAllUsesWith.
9219 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9220                                               const SDValue *To,
9221                                               unsigned Num){
9222   // Handle the simple, trivial case efficiently.
9223   if (Num == 1)
9224     return ReplaceAllUsesOfValueWith(*From, *To);
9225 
9226   transferDbgValues(*From, *To);
9227 
9228   // Read up all the uses and make records of them. This helps
9229   // processing new uses that are introduced during the
9230   // replacement process.
9231   SmallVector<UseMemo, 4> Uses;
9232   for (unsigned i = 0; i != Num; ++i) {
9233     unsigned FromResNo = From[i].getResNo();
9234     SDNode *FromNode = From[i].getNode();
9235     for (SDNode::use_iterator UI = FromNode->use_begin(),
9236          E = FromNode->use_end(); UI != E; ++UI) {
9237       SDUse &Use = UI.getUse();
9238       if (Use.getResNo() == FromResNo) {
9239         UseMemo Memo = { *UI, i, &Use };
9240         Uses.push_back(Memo);
9241       }
9242     }
9243   }
9244 
9245   // Sort the uses, so that all the uses from a given User are together.
9246   llvm::sort(Uses);
9247 
9248   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9249        UseIndex != UseIndexEnd; ) {
9250     // We know that this user uses some value of From.  If it is the right
9251     // value, update it.
9252     SDNode *User = Uses[UseIndex].User;
9253 
9254     // This node is about to morph, remove its old self from the CSE maps.
9255     RemoveNodeFromCSEMaps(User);
9256 
9257     // The Uses array is sorted, so all the uses for a given User
9258     // are next to each other in the list.
9259     // To help reduce the number of CSE recomputations, process all
9260     // the uses of this user that we can find this way.
9261     do {
9262       unsigned i = Uses[UseIndex].Index;
9263       SDUse &Use = *Uses[UseIndex].Use;
9264       ++UseIndex;
9265 
9266       Use.set(To[i]);
9267     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9268 
9269     // Now that we have modified User, add it back to the CSE maps.  If it
9270     // already exists there, recursively merge the results together.
9271     AddModifiedNodeToCSEMaps(User);
9272   }
9273 }
9274 
9275 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9276 /// based on their topological order. It returns the maximum id and a vector
9277 /// of the SDNodes* in assigned order by reference.
9278 unsigned SelectionDAG::AssignTopologicalOrder() {
9279   unsigned DAGSize = 0;
9280 
9281   // SortedPos tracks the progress of the algorithm. Nodes before it are
9282   // sorted, nodes after it are unsorted. When the algorithm completes
9283   // it is at the end of the list.
9284   allnodes_iterator SortedPos = allnodes_begin();
9285 
9286   // Visit all the nodes. Move nodes with no operands to the front of
9287   // the list immediately. Annotate nodes that do have operands with their
9288   // operand count. Before we do this, the Node Id fields of the nodes
9289   // may contain arbitrary values. After, the Node Id fields for nodes
9290   // before SortedPos will contain the topological sort index, and the
9291   // Node Id fields for nodes At SortedPos and after will contain the
9292   // count of outstanding operands.
9293   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
9294     SDNode *N = &*I++;
9295     checkForCycles(N, this);
9296     unsigned Degree = N->getNumOperands();
9297     if (Degree == 0) {
9298       // A node with no uses, add it to the result array immediately.
9299       N->setNodeId(DAGSize++);
9300       allnodes_iterator Q(N);
9301       if (Q != SortedPos)
9302         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9303       assert(SortedPos != AllNodes.end() && "Overran node list");
9304       ++SortedPos;
9305     } else {
9306       // Temporarily use the Node Id as scratch space for the degree count.
9307       N->setNodeId(Degree);
9308     }
9309   }
9310 
9311   // Visit all the nodes. As we iterate, move nodes into sorted order,
9312   // such that by the time the end is reached all nodes will be sorted.
9313   for (SDNode &Node : allnodes()) {
9314     SDNode *N = &Node;
9315     checkForCycles(N, this);
9316     // N is in sorted position, so all its uses have one less operand
9317     // that needs to be sorted.
9318     for (SDNode *P : N->uses()) {
9319       unsigned Degree = P->getNodeId();
9320       assert(Degree != 0 && "Invalid node degree");
9321       --Degree;
9322       if (Degree == 0) {
9323         // All of P's operands are sorted, so P may sorted now.
9324         P->setNodeId(DAGSize++);
9325         if (P->getIterator() != SortedPos)
9326           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9327         assert(SortedPos != AllNodes.end() && "Overran node list");
9328         ++SortedPos;
9329       } else {
9330         // Update P's outstanding operand count.
9331         P->setNodeId(Degree);
9332       }
9333     }
9334     if (Node.getIterator() == SortedPos) {
9335 #ifndef NDEBUG
9336       allnodes_iterator I(N);
9337       SDNode *S = &*++I;
9338       dbgs() << "Overran sorted position:\n";
9339       S->dumprFull(this); dbgs() << "\n";
9340       dbgs() << "Checking if this is due to cycles\n";
9341       checkForCycles(this, true);
9342 #endif
9343       llvm_unreachable(nullptr);
9344     }
9345   }
9346 
9347   assert(SortedPos == AllNodes.end() &&
9348          "Topological sort incomplete!");
9349   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9350          "First node in topological sort is not the entry token!");
9351   assert(AllNodes.front().getNodeId() == 0 &&
9352          "First node in topological sort has non-zero id!");
9353   assert(AllNodes.front().getNumOperands() == 0 &&
9354          "First node in topological sort has operands!");
9355   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9356          "Last node in topologic sort has unexpected id!");
9357   assert(AllNodes.back().use_empty() &&
9358          "Last node in topologic sort has users!");
9359   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9360   return DAGSize;
9361 }
9362 
9363 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9364 /// value is produced by SD.
9365 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9366   for (SDNode *SD : DB->getSDNodes()) {
9367     if (!SD)
9368       continue;
9369     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9370     SD->setHasDebugValue(true);
9371   }
9372   DbgInfo->add(DB, isParameter);
9373 }
9374 
9375 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9376 
9377 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9378                                                    SDValue NewMemOpChain) {
9379   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9380   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9381   // The new memory operation must have the same position as the old load in
9382   // terms of memory dependency. Create a TokenFactor for the old load and new
9383   // memory operation and update uses of the old load's output chain to use that
9384   // TokenFactor.
9385   if (OldChain == NewMemOpChain || OldChain.use_empty())
9386     return NewMemOpChain;
9387 
9388   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9389                                 OldChain, NewMemOpChain);
9390   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9391   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9392   return TokenFactor;
9393 }
9394 
9395 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9396                                                    SDValue NewMemOp) {
9397   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9398   SDValue OldChain = SDValue(OldLoad, 1);
9399   SDValue NewMemOpChain = NewMemOp.getValue(1);
9400   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9401 }
9402 
9403 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9404                                                      Function **OutFunction) {
9405   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9406 
9407   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9408   auto *Module = MF->getFunction().getParent();
9409   auto *Function = Module->getFunction(Symbol);
9410 
9411   if (OutFunction != nullptr)
9412       *OutFunction = Function;
9413 
9414   if (Function != nullptr) {
9415     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9416     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9417   }
9418 
9419   std::string ErrorStr;
9420   raw_string_ostream ErrorFormatter(ErrorStr);
9421 
9422   ErrorFormatter << "Undefined external symbol ";
9423   ErrorFormatter << '"' << Symbol << '"';
9424   ErrorFormatter.flush();
9425 
9426   report_fatal_error(ErrorStr);
9427 }
9428 
9429 //===----------------------------------------------------------------------===//
9430 //                              SDNode Class
9431 //===----------------------------------------------------------------------===//
9432 
9433 bool llvm::isNullConstant(SDValue V) {
9434   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9435   return Const != nullptr && Const->isNullValue();
9436 }
9437 
9438 bool llvm::isNullFPConstant(SDValue V) {
9439   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9440   return Const != nullptr && Const->isZero() && !Const->isNegative();
9441 }
9442 
9443 bool llvm::isAllOnesConstant(SDValue V) {
9444   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9445   return Const != nullptr && Const->isAllOnesValue();
9446 }
9447 
9448 bool llvm::isOneConstant(SDValue V) {
9449   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9450   return Const != nullptr && Const->isOne();
9451 }
9452 
9453 SDValue llvm::peekThroughBitcasts(SDValue V) {
9454   while (V.getOpcode() == ISD::BITCAST)
9455     V = V.getOperand(0);
9456   return V;
9457 }
9458 
9459 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9460   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9461     V = V.getOperand(0);
9462   return V;
9463 }
9464 
9465 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9466   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9467     V = V.getOperand(0);
9468   return V;
9469 }
9470 
9471 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9472   if (V.getOpcode() != ISD::XOR)
9473     return false;
9474   V = peekThroughBitcasts(V.getOperand(1));
9475   unsigned NumBits = V.getScalarValueSizeInBits();
9476   ConstantSDNode *C =
9477       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9478   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9479 }
9480 
9481 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9482                                           bool AllowTruncation) {
9483   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9484     return CN;
9485 
9486   // SplatVectors can truncate their operands. Ignore that case here unless
9487   // AllowTruncation is set.
9488   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9489     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9490     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9491       EVT CVT = CN->getValueType(0);
9492       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
9493       if (AllowTruncation || CVT == VecEltVT)
9494         return CN;
9495     }
9496   }
9497 
9498   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9499     BitVector UndefElements;
9500     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9501 
9502     // BuildVectors can truncate their operands. Ignore that case here unless
9503     // AllowTruncation is set.
9504     if (CN && (UndefElements.none() || AllowUndefs)) {
9505       EVT CVT = CN->getValueType(0);
9506       EVT NSVT = N.getValueType().getScalarType();
9507       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9508       if (AllowTruncation || (CVT == NSVT))
9509         return CN;
9510     }
9511   }
9512 
9513   return nullptr;
9514 }
9515 
9516 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9517                                           bool AllowUndefs,
9518                                           bool AllowTruncation) {
9519   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9520     return CN;
9521 
9522   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9523     BitVector UndefElements;
9524     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9525 
9526     // BuildVectors can truncate their operands. Ignore that case here unless
9527     // AllowTruncation is set.
9528     if (CN && (UndefElements.none() || AllowUndefs)) {
9529       EVT CVT = CN->getValueType(0);
9530       EVT NSVT = N.getValueType().getScalarType();
9531       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9532       if (AllowTruncation || (CVT == NSVT))
9533         return CN;
9534     }
9535   }
9536 
9537   return nullptr;
9538 }
9539 
9540 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9541   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9542     return CN;
9543 
9544   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9545     BitVector UndefElements;
9546     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9547     if (CN && (UndefElements.none() || AllowUndefs))
9548       return CN;
9549   }
9550 
9551   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9552     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9553       return CN;
9554 
9555   return nullptr;
9556 }
9557 
9558 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9559                                               const APInt &DemandedElts,
9560                                               bool AllowUndefs) {
9561   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9562     return CN;
9563 
9564   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9565     BitVector UndefElements;
9566     ConstantFPSDNode *CN =
9567         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9568     if (CN && (UndefElements.none() || AllowUndefs))
9569       return CN;
9570   }
9571 
9572   return nullptr;
9573 }
9574 
9575 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9576   // TODO: may want to use peekThroughBitcast() here.
9577   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9578   return C && C->isNullValue();
9579 }
9580 
9581 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
9582   // TODO: may want to use peekThroughBitcast() here.
9583   unsigned BitWidth = N.getScalarValueSizeInBits();
9584   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9585   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9586 }
9587 
9588 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
9589   N = peekThroughBitcasts(N);
9590   unsigned BitWidth = N.getScalarValueSizeInBits();
9591   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9592   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9593 }
9594 
9595 HandleSDNode::~HandleSDNode() {
9596   DropOperands();
9597 }
9598 
9599 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9600                                          const DebugLoc &DL,
9601                                          const GlobalValue *GA, EVT VT,
9602                                          int64_t o, unsigned TF)
9603     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9604   TheGlobal = GA;
9605 }
9606 
9607 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9608                                          EVT VT, unsigned SrcAS,
9609                                          unsigned DestAS)
9610     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9611       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9612 
9613 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9614                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9615     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9616   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9617   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9618   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9619   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9620 
9621   // We check here that the size of the memory operand fits within the size of
9622   // the MMO. This is because the MMO might indicate only a possible address
9623   // range instead of specifying the affected memory addresses precisely.
9624   // TODO: Make MachineMemOperands aware of scalable vectors.
9625   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9626          "Size mismatch!");
9627 }
9628 
9629 /// Profile - Gather unique data for the node.
9630 ///
9631 void SDNode::Profile(FoldingSetNodeID &ID) const {
9632   AddNodeIDNode(ID, this);
9633 }
9634 
9635 namespace {
9636 
9637   struct EVTArray {
9638     std::vector<EVT> VTs;
9639 
9640     EVTArray() {
9641       VTs.reserve(MVT::LAST_VALUETYPE);
9642       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9643         VTs.push_back(MVT((MVT::SimpleValueType)i));
9644     }
9645   };
9646 
9647 } // end anonymous namespace
9648 
9649 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9650 static ManagedStatic<EVTArray> SimpleVTArray;
9651 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9652 
9653 /// getValueTypeList - Return a pointer to the specified value type.
9654 ///
9655 const EVT *SDNode::getValueTypeList(EVT VT) {
9656   if (VT.isExtended()) {
9657     sys::SmartScopedLock<true> Lock(*VTMutex);
9658     return &(*EVTs->insert(VT).first);
9659   }
9660   assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && "Value type out of range!");
9661   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9662 }
9663 
9664 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9665 /// indicated value.  This method ignores uses of other values defined by this
9666 /// operation.
9667 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9668   assert(Value < getNumValues() && "Bad value!");
9669 
9670   // TODO: Only iterate over uses of a given value of the node
9671   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9672     if (UI.getUse().getResNo() == Value) {
9673       if (NUses == 0)
9674         return false;
9675       --NUses;
9676     }
9677   }
9678 
9679   // Found exactly the right number of uses?
9680   return NUses == 0;
9681 }
9682 
9683 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9684 /// value. This method ignores uses of other values defined by this operation.
9685 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9686   assert(Value < getNumValues() && "Bad value!");
9687 
9688   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9689     if (UI.getUse().getResNo() == Value)
9690       return true;
9691 
9692   return false;
9693 }
9694 
9695 /// isOnlyUserOf - Return true if this node is the only use of N.
9696 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9697   bool Seen = false;
9698   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9699     SDNode *User = *I;
9700     if (User == this)
9701       Seen = true;
9702     else
9703       return false;
9704   }
9705 
9706   return Seen;
9707 }
9708 
9709 /// Return true if the only users of N are contained in Nodes.
9710 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9711   bool Seen = false;
9712   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9713     SDNode *User = *I;
9714     if (llvm::is_contained(Nodes, User))
9715       Seen = true;
9716     else
9717       return false;
9718   }
9719 
9720   return Seen;
9721 }
9722 
9723 /// isOperand - Return true if this node is an operand of N.
9724 bool SDValue::isOperandOf(const SDNode *N) const {
9725   return is_contained(N->op_values(), *this);
9726 }
9727 
9728 bool SDNode::isOperandOf(const SDNode *N) const {
9729   return any_of(N->op_values(),
9730                 [this](SDValue Op) { return this == Op.getNode(); });
9731 }
9732 
9733 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9734 /// be a chain) reaches the specified operand without crossing any
9735 /// side-effecting instructions on any chain path.  In practice, this looks
9736 /// through token factors and non-volatile loads.  In order to remain efficient,
9737 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9738 ///
9739 /// Note that we only need to examine chains when we're searching for
9740 /// side-effects; SelectionDAG requires that all side-effects are represented
9741 /// by chains, even if another operand would force a specific ordering. This
9742 /// constraint is necessary to allow transformations like splitting loads.
9743 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9744                                              unsigned Depth) const {
9745   if (*this == Dest) return true;
9746 
9747   // Don't search too deeply, we just want to be able to see through
9748   // TokenFactor's etc.
9749   if (Depth == 0) return false;
9750 
9751   // If this is a token factor, all inputs to the TF happen in parallel.
9752   if (getOpcode() == ISD::TokenFactor) {
9753     // First, try a shallow search.
9754     if (is_contained((*this)->ops(), Dest)) {
9755       // We found the chain we want as an operand of this TokenFactor.
9756       // Essentially, we reach the chain without side-effects if we could
9757       // serialize the TokenFactor into a simple chain of operations with
9758       // Dest as the last operation. This is automatically true if the
9759       // chain has one use: there are no other ordering constraints.
9760       // If the chain has more than one use, we give up: some other
9761       // use of Dest might force a side-effect between Dest and the current
9762       // node.
9763       if (Dest.hasOneUse())
9764         return true;
9765     }
9766     // Next, try a deep search: check whether every operand of the TokenFactor
9767     // reaches Dest.
9768     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9769       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9770     });
9771   }
9772 
9773   // Loads don't have side effects, look through them.
9774   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9775     if (Ld->isUnordered())
9776       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9777   }
9778   return false;
9779 }
9780 
9781 bool SDNode::hasPredecessor(const SDNode *N) const {
9782   SmallPtrSet<const SDNode *, 32> Visited;
9783   SmallVector<const SDNode *, 16> Worklist;
9784   Worklist.push_back(this);
9785   return hasPredecessorHelper(N, Visited, Worklist);
9786 }
9787 
9788 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9789   this->Flags.intersectWith(Flags);
9790 }
9791 
9792 SDValue
9793 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9794                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9795                                   bool AllowPartials) {
9796   // The pattern must end in an extract from index 0.
9797   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9798       !isNullConstant(Extract->getOperand(1)))
9799     return SDValue();
9800 
9801   // Match against one of the candidate binary ops.
9802   SDValue Op = Extract->getOperand(0);
9803   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9804         return Op.getOpcode() == unsigned(BinOp);
9805       }))
9806     return SDValue();
9807 
9808   // Floating-point reductions may require relaxed constraints on the final step
9809   // of the reduction because they may reorder intermediate operations.
9810   unsigned CandidateBinOp = Op.getOpcode();
9811   if (Op.getValueType().isFloatingPoint()) {
9812     SDNodeFlags Flags = Op->getFlags();
9813     switch (CandidateBinOp) {
9814     case ISD::FADD:
9815       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9816         return SDValue();
9817       break;
9818     default:
9819       llvm_unreachable("Unhandled FP opcode for binop reduction");
9820     }
9821   }
9822 
9823   // Matching failed - attempt to see if we did enough stages that a partial
9824   // reduction from a subvector is possible.
9825   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9826     if (!AllowPartials || !Op)
9827       return SDValue();
9828     EVT OpVT = Op.getValueType();
9829     EVT OpSVT = OpVT.getScalarType();
9830     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9831     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9832       return SDValue();
9833     BinOp = (ISD::NodeType)CandidateBinOp;
9834     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9835                    getVectorIdxConstant(0, SDLoc(Op)));
9836   };
9837 
9838   // At each stage, we're looking for something that looks like:
9839   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9840   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9841   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9842   // %a = binop <8 x i32> %op, %s
9843   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9844   // we expect something like:
9845   // <4,5,6,7,u,u,u,u>
9846   // <2,3,u,u,u,u,u,u>
9847   // <1,u,u,u,u,u,u,u>
9848   // While a partial reduction match would be:
9849   // <2,3,u,u,u,u,u,u>
9850   // <1,u,u,u,u,u,u,u>
9851   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9852   SDValue PrevOp;
9853   for (unsigned i = 0; i < Stages; ++i) {
9854     unsigned MaskEnd = (1 << i);
9855 
9856     if (Op.getOpcode() != CandidateBinOp)
9857       return PartialReduction(PrevOp, MaskEnd);
9858 
9859     SDValue Op0 = Op.getOperand(0);
9860     SDValue Op1 = Op.getOperand(1);
9861 
9862     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9863     if (Shuffle) {
9864       Op = Op1;
9865     } else {
9866       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9867       Op = Op0;
9868     }
9869 
9870     // The first operand of the shuffle should be the same as the other operand
9871     // of the binop.
9872     if (!Shuffle || Shuffle->getOperand(0) != Op)
9873       return PartialReduction(PrevOp, MaskEnd);
9874 
9875     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9876     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9877       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9878         return PartialReduction(PrevOp, MaskEnd);
9879 
9880     PrevOp = Op;
9881   }
9882 
9883   // Handle subvector reductions, which tend to appear after the shuffle
9884   // reduction stages.
9885   while (Op.getOpcode() == CandidateBinOp) {
9886     unsigned NumElts = Op.getValueType().getVectorNumElements();
9887     SDValue Op0 = Op.getOperand(0);
9888     SDValue Op1 = Op.getOperand(1);
9889     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9890         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9891         Op0.getOperand(0) != Op1.getOperand(0))
9892       break;
9893     SDValue Src = Op0.getOperand(0);
9894     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9895     if (NumSrcElts != (2 * NumElts))
9896       break;
9897     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9898           Op1.getConstantOperandAPInt(1) == NumElts) &&
9899         !(Op1.getConstantOperandAPInt(1) == 0 &&
9900           Op0.getConstantOperandAPInt(1) == NumElts))
9901       break;
9902     Op = Src;
9903   }
9904 
9905   BinOp = (ISD::NodeType)CandidateBinOp;
9906   return Op;
9907 }
9908 
9909 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9910   assert(N->getNumValues() == 1 &&
9911          "Can't unroll a vector with multiple results!");
9912 
9913   EVT VT = N->getValueType(0);
9914   unsigned NE = VT.getVectorNumElements();
9915   EVT EltVT = VT.getVectorElementType();
9916   SDLoc dl(N);
9917 
9918   SmallVector<SDValue, 8> Scalars;
9919   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9920 
9921   // If ResNE is 0, fully unroll the vector op.
9922   if (ResNE == 0)
9923     ResNE = NE;
9924   else if (NE > ResNE)
9925     NE = ResNE;
9926 
9927   unsigned i;
9928   for (i= 0; i != NE; ++i) {
9929     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9930       SDValue Operand = N->getOperand(j);
9931       EVT OperandVT = Operand.getValueType();
9932       if (OperandVT.isVector()) {
9933         // A vector operand; extract a single element.
9934         EVT OperandEltVT = OperandVT.getVectorElementType();
9935         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9936                               Operand, getVectorIdxConstant(i, dl));
9937       } else {
9938         // A scalar operand; just use it as is.
9939         Operands[j] = Operand;
9940       }
9941     }
9942 
9943     switch (N->getOpcode()) {
9944     default: {
9945       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9946                                 N->getFlags()));
9947       break;
9948     }
9949     case ISD::VSELECT:
9950       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9951       break;
9952     case ISD::SHL:
9953     case ISD::SRA:
9954     case ISD::SRL:
9955     case ISD::ROTL:
9956     case ISD::ROTR:
9957       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9958                                getShiftAmountOperand(Operands[0].getValueType(),
9959                                                      Operands[1])));
9960       break;
9961     case ISD::SIGN_EXTEND_INREG: {
9962       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9963       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9964                                 Operands[0],
9965                                 getValueType(ExtVT)));
9966     }
9967     }
9968   }
9969 
9970   for (; i < ResNE; ++i)
9971     Scalars.push_back(getUNDEF(EltVT));
9972 
9973   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9974   return getBuildVector(VecVT, dl, Scalars);
9975 }
9976 
9977 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9978     SDNode *N, unsigned ResNE) {
9979   unsigned Opcode = N->getOpcode();
9980   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9981           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9982           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9983          "Expected an overflow opcode");
9984 
9985   EVT ResVT = N->getValueType(0);
9986   EVT OvVT = N->getValueType(1);
9987   EVT ResEltVT = ResVT.getVectorElementType();
9988   EVT OvEltVT = OvVT.getVectorElementType();
9989   SDLoc dl(N);
9990 
9991   // If ResNE is 0, fully unroll the vector op.
9992   unsigned NE = ResVT.getVectorNumElements();
9993   if (ResNE == 0)
9994     ResNE = NE;
9995   else if (NE > ResNE)
9996     NE = ResNE;
9997 
9998   SmallVector<SDValue, 8> LHSScalars;
9999   SmallVector<SDValue, 8> RHSScalars;
10000   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10001   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10002 
10003   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10004   SDVTList VTs = getVTList(ResEltVT, SVT);
10005   SmallVector<SDValue, 8> ResScalars;
10006   SmallVector<SDValue, 8> OvScalars;
10007   for (unsigned i = 0; i < NE; ++i) {
10008     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10009     SDValue Ov =
10010         getSelect(dl, OvEltVT, Res.getValue(1),
10011                   getBoolConstant(true, dl, OvEltVT, ResVT),
10012                   getConstant(0, dl, OvEltVT));
10013 
10014     ResScalars.push_back(Res);
10015     OvScalars.push_back(Ov);
10016   }
10017 
10018   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10019   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10020 
10021   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10022   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10023   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10024                         getBuildVector(NewOvVT, dl, OvScalars));
10025 }
10026 
10027 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10028                                                   LoadSDNode *Base,
10029                                                   unsigned Bytes,
10030                                                   int Dist) const {
10031   if (LD->isVolatile() || Base->isVolatile())
10032     return false;
10033   // TODO: probably too restrictive for atomics, revisit
10034   if (!LD->isSimple())
10035     return false;
10036   if (LD->isIndexed() || Base->isIndexed())
10037     return false;
10038   if (LD->getChain() != Base->getChain())
10039     return false;
10040   EVT VT = LD->getValueType(0);
10041   if (VT.getSizeInBits() / 8 != Bytes)
10042     return false;
10043 
10044   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
10045   auto LocDecomp = BaseIndexOffset::match(LD, *this);
10046 
10047   int64_t Offset = 0;
10048   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
10049     return (Dist * Bytes == Offset);
10050   return false;
10051 }
10052 
10053 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10054 /// if it cannot be inferred.
10055 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
10056   // If this is a GlobalAddress + cst, return the alignment.
10057   const GlobalValue *GV = nullptr;
10058   int64_t GVOffset = 0;
10059   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
10060     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
10061     KnownBits Known(PtrWidth);
10062     llvm::computeKnownBits(GV, Known, getDataLayout());
10063     unsigned AlignBits = Known.countMinTrailingZeros();
10064     if (AlignBits)
10065       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
10066   }
10067 
10068   // If this is a direct reference to a stack slot, use information about the
10069   // stack slot's alignment.
10070   int FrameIdx = INT_MIN;
10071   int64_t FrameOffset = 0;
10072   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
10073     FrameIdx = FI->getIndex();
10074   } else if (isBaseWithConstantOffset(Ptr) &&
10075              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
10076     // Handle FI+Cst
10077     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
10078     FrameOffset = Ptr.getConstantOperandVal(1);
10079   }
10080 
10081   if (FrameIdx != INT_MIN) {
10082     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
10083     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10084   }
10085 
10086   return None;
10087 }
10088 
10089 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10090 /// which is split (or expanded) into two not necessarily identical pieces.
10091 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10092   // Currently all types are split in half.
10093   EVT LoVT, HiVT;
10094   if (!VT.isVector())
10095     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10096   else
10097     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10098 
10099   return std::make_pair(LoVT, HiVT);
10100 }
10101 
10102 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10103 /// type, dependent on an enveloping VT that has been split into two identical
10104 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10105 std::pair<EVT, EVT>
10106 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10107                                        bool *HiIsEmpty) const {
10108   EVT EltTp = VT.getVectorElementType();
10109   // Examples:
10110   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10111   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10112   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10113   //   etc.
10114   ElementCount VTNumElts = VT.getVectorElementCount();
10115   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10116   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10117          "Mixing fixed width and scalable vectors when enveloping a type");
10118   EVT LoVT, HiVT;
10119   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10120     LoVT = EnvVT;
10121     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10122     *HiIsEmpty = false;
10123   } else {
10124     // Flag that hi type has zero storage size, but return split envelop type
10125     // (this would be easier if vector types with zero elements were allowed).
10126     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10127     HiVT = EnvVT;
10128     *HiIsEmpty = true;
10129   }
10130   return std::make_pair(LoVT, HiVT);
10131 }
10132 
10133 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10134 /// low/high part.
10135 std::pair<SDValue, SDValue>
10136 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10137                           const EVT &HiVT) {
10138   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10139          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10140          "Splitting vector with an invalid mixture of fixed and scalable "
10141          "vector types");
10142   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10143              N.getValueType().getVectorMinNumElements() &&
10144          "More vector elements requested than available!");
10145   SDValue Lo, Hi;
10146   Lo =
10147       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10148   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10149   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10150   // IDX with the runtime scaling factor of the result vector type. For
10151   // fixed-width result vectors, that runtime scaling factor is 1.
10152   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10153                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10154   return std::make_pair(Lo, Hi);
10155 }
10156 
10157 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10158 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10159   EVT VT = N.getValueType();
10160   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10161                                 NextPowerOf2(VT.getVectorNumElements()));
10162   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10163                  getVectorIdxConstant(0, DL));
10164 }
10165 
10166 void SelectionDAG::ExtractVectorElements(SDValue Op,
10167                                          SmallVectorImpl<SDValue> &Args,
10168                                          unsigned Start, unsigned Count,
10169                                          EVT EltVT) {
10170   EVT VT = Op.getValueType();
10171   if (Count == 0)
10172     Count = VT.getVectorNumElements();
10173   if (EltVT == EVT())
10174     EltVT = VT.getVectorElementType();
10175   SDLoc SL(Op);
10176   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10177     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10178                            getVectorIdxConstant(i, SL)));
10179   }
10180 }
10181 
10182 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10183 unsigned GlobalAddressSDNode::getAddressSpace() const {
10184   return getGlobal()->getType()->getAddressSpace();
10185 }
10186 
10187 Type *ConstantPoolSDNode::getType() const {
10188   if (isMachineConstantPoolEntry())
10189     return Val.MachineCPVal->getType();
10190   return Val.ConstVal->getType();
10191 }
10192 
10193 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10194                                         unsigned &SplatBitSize,
10195                                         bool &HasAnyUndefs,
10196                                         unsigned MinSplatBits,
10197                                         bool IsBigEndian) const {
10198   EVT VT = getValueType(0);
10199   assert(VT.isVector() && "Expected a vector type");
10200   unsigned VecWidth = VT.getSizeInBits();
10201   if (MinSplatBits > VecWidth)
10202     return false;
10203 
10204   // FIXME: The widths are based on this node's type, but build vectors can
10205   // truncate their operands.
10206   SplatValue = APInt(VecWidth, 0);
10207   SplatUndef = APInt(VecWidth, 0);
10208 
10209   // Get the bits. Bits with undefined values (when the corresponding element
10210   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10211   // in SplatValue. If any of the values are not constant, give up and return
10212   // false.
10213   unsigned int NumOps = getNumOperands();
10214   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10215   unsigned EltWidth = VT.getScalarSizeInBits();
10216 
10217   for (unsigned j = 0; j < NumOps; ++j) {
10218     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10219     SDValue OpVal = getOperand(i);
10220     unsigned BitPos = j * EltWidth;
10221 
10222     if (OpVal.isUndef())
10223       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10224     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10225       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10226     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10227       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10228     else
10229       return false;
10230   }
10231 
10232   // The build_vector is all constants or undefs. Find the smallest element
10233   // size that splats the vector.
10234   HasAnyUndefs = (SplatUndef != 0);
10235 
10236   // FIXME: This does not work for vectors with elements less than 8 bits.
10237   while (VecWidth > 8) {
10238     unsigned HalfSize = VecWidth / 2;
10239     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
10240     APInt LowValue = SplatValue.trunc(HalfSize);
10241     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
10242     APInt LowUndef = SplatUndef.trunc(HalfSize);
10243 
10244     // If the two halves do not match (ignoring undef bits), stop here.
10245     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10246         MinSplatBits > HalfSize)
10247       break;
10248 
10249     SplatValue = HighValue | LowValue;
10250     SplatUndef = HighUndef & LowUndef;
10251 
10252     VecWidth = HalfSize;
10253   }
10254 
10255   SplatBitSize = VecWidth;
10256   return true;
10257 }
10258 
10259 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10260                                          BitVector *UndefElements) const {
10261   unsigned NumOps = getNumOperands();
10262   if (UndefElements) {
10263     UndefElements->clear();
10264     UndefElements->resize(NumOps);
10265   }
10266   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10267   if (!DemandedElts)
10268     return SDValue();
10269   SDValue Splatted;
10270   for (unsigned i = 0; i != NumOps; ++i) {
10271     if (!DemandedElts[i])
10272       continue;
10273     SDValue Op = getOperand(i);
10274     if (Op.isUndef()) {
10275       if (UndefElements)
10276         (*UndefElements)[i] = true;
10277     } else if (!Splatted) {
10278       Splatted = Op;
10279     } else if (Splatted != Op) {
10280       return SDValue();
10281     }
10282   }
10283 
10284   if (!Splatted) {
10285     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10286     assert(getOperand(FirstDemandedIdx).isUndef() &&
10287            "Can only have a splat without a constant for all undefs.");
10288     return getOperand(FirstDemandedIdx);
10289   }
10290 
10291   return Splatted;
10292 }
10293 
10294 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10295   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10296   return getSplatValue(DemandedElts, UndefElements);
10297 }
10298 
10299 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10300                                             SmallVectorImpl<SDValue> &Sequence,
10301                                             BitVector *UndefElements) const {
10302   unsigned NumOps = getNumOperands();
10303   Sequence.clear();
10304   if (UndefElements) {
10305     UndefElements->clear();
10306     UndefElements->resize(NumOps);
10307   }
10308   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10309   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10310     return false;
10311 
10312   // Set the undefs even if we don't find a sequence (like getSplatValue).
10313   if (UndefElements)
10314     for (unsigned I = 0; I != NumOps; ++I)
10315       if (DemandedElts[I] && getOperand(I).isUndef())
10316         (*UndefElements)[I] = true;
10317 
10318   // Iteratively widen the sequence length looking for repetitions.
10319   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10320     Sequence.append(SeqLen, SDValue());
10321     for (unsigned I = 0; I != NumOps; ++I) {
10322       if (!DemandedElts[I])
10323         continue;
10324       SDValue &SeqOp = Sequence[I % SeqLen];
10325       SDValue Op = getOperand(I);
10326       if (Op.isUndef()) {
10327         if (!SeqOp)
10328           SeqOp = Op;
10329         continue;
10330       }
10331       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10332         Sequence.clear();
10333         break;
10334       }
10335       SeqOp = Op;
10336     }
10337     if (!Sequence.empty())
10338       return true;
10339   }
10340 
10341   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10342   return false;
10343 }
10344 
10345 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10346                                             BitVector *UndefElements) const {
10347   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10348   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10349 }
10350 
10351 ConstantSDNode *
10352 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10353                                         BitVector *UndefElements) const {
10354   return dyn_cast_or_null<ConstantSDNode>(
10355       getSplatValue(DemandedElts, UndefElements));
10356 }
10357 
10358 ConstantSDNode *
10359 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10360   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10361 }
10362 
10363 ConstantFPSDNode *
10364 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10365                                           BitVector *UndefElements) const {
10366   return dyn_cast_or_null<ConstantFPSDNode>(
10367       getSplatValue(DemandedElts, UndefElements));
10368 }
10369 
10370 ConstantFPSDNode *
10371 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10372   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10373 }
10374 
10375 int32_t
10376 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10377                                                    uint32_t BitWidth) const {
10378   if (ConstantFPSDNode *CN =
10379           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10380     bool IsExact;
10381     APSInt IntVal(BitWidth);
10382     const APFloat &APF = CN->getValueAPF();
10383     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10384             APFloat::opOK ||
10385         !IsExact)
10386       return -1;
10387 
10388     return IntVal.exactLogBase2();
10389   }
10390   return -1;
10391 }
10392 
10393 bool BuildVectorSDNode::isConstant() const {
10394   for (const SDValue &Op : op_values()) {
10395     unsigned Opc = Op.getOpcode();
10396     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10397       return false;
10398   }
10399   return true;
10400 }
10401 
10402 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10403   // Find the first non-undef value in the shuffle mask.
10404   unsigned i, e;
10405   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10406     /* search */;
10407 
10408   // If all elements are undefined, this shuffle can be considered a splat
10409   // (although it should eventually get simplified away completely).
10410   if (i == e)
10411     return true;
10412 
10413   // Make sure all remaining elements are either undef or the same as the first
10414   // non-undef value.
10415   for (int Idx = Mask[i]; i != e; ++i)
10416     if (Mask[i] >= 0 && Mask[i] != Idx)
10417       return false;
10418   return true;
10419 }
10420 
10421 // Returns the SDNode if it is a constant integer BuildVector
10422 // or constant integer.
10423 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
10424   if (isa<ConstantSDNode>(N))
10425     return N.getNode();
10426   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10427     return N.getNode();
10428   // Treat a GlobalAddress supporting constant offset folding as a
10429   // constant integer.
10430   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10431     if (GA->getOpcode() == ISD::GlobalAddress &&
10432         TLI->isOffsetFoldingLegal(GA))
10433       return GA;
10434   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10435       isa<ConstantSDNode>(N.getOperand(0)))
10436     return N.getNode();
10437   return nullptr;
10438 }
10439 
10440 // Returns the SDNode if it is a constant float BuildVector
10441 // or constant float.
10442 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
10443   if (isa<ConstantFPSDNode>(N))
10444     return N.getNode();
10445 
10446   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10447     return N.getNode();
10448 
10449   return nullptr;
10450 }
10451 
10452 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10453   assert(!Node->OperandList && "Node already has operands");
10454   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10455          "too many operands to fit into SDNode");
10456   SDUse *Ops = OperandRecycler.allocate(
10457       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10458 
10459   bool IsDivergent = false;
10460   for (unsigned I = 0; I != Vals.size(); ++I) {
10461     Ops[I].setUser(Node);
10462     Ops[I].setInitial(Vals[I]);
10463     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10464       IsDivergent |= Ops[I].getNode()->isDivergent();
10465   }
10466   Node->NumOperands = Vals.size();
10467   Node->OperandList = Ops;
10468   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10469     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10470     Node->SDNodeBits.IsDivergent = IsDivergent;
10471   }
10472   checkForCycles(Node);
10473 }
10474 
10475 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10476                                      SmallVectorImpl<SDValue> &Vals) {
10477   size_t Limit = SDNode::getMaxNumOperands();
10478   while (Vals.size() > Limit) {
10479     unsigned SliceIdx = Vals.size() - Limit;
10480     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10481     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10482     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10483     Vals.emplace_back(NewTF);
10484   }
10485   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10486 }
10487 
10488 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10489                                         EVT VT, SDNodeFlags Flags) {
10490   switch (Opcode) {
10491   default:
10492     return SDValue();
10493   case ISD::ADD:
10494   case ISD::OR:
10495   case ISD::XOR:
10496   case ISD::UMAX:
10497     return getConstant(0, DL, VT);
10498   case ISD::MUL:
10499     return getConstant(1, DL, VT);
10500   case ISD::AND:
10501   case ISD::UMIN:
10502     return getAllOnesConstant(DL, VT);
10503   case ISD::SMAX:
10504     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
10505   case ISD::SMIN:
10506     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
10507   case ISD::FADD:
10508     return getConstantFP(-0.0, DL, VT);
10509   case ISD::FMUL:
10510     return getConstantFP(1.0, DL, VT);
10511   case ISD::FMINNUM:
10512   case ISD::FMAXNUM: {
10513     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
10514     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
10515     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
10516                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
10517                         APFloat::getLargest(Semantics);
10518     if (Opcode == ISD::FMAXNUM)
10519       NeutralAF.changeSign();
10520 
10521     return getConstantFP(NeutralAF, DL, VT);
10522   }
10523   }
10524 }
10525 
10526 #ifndef NDEBUG
10527 static void checkForCyclesHelper(const SDNode *N,
10528                                  SmallPtrSetImpl<const SDNode*> &Visited,
10529                                  SmallPtrSetImpl<const SDNode*> &Checked,
10530                                  const llvm::SelectionDAG *DAG) {
10531   // If this node has already been checked, don't check it again.
10532   if (Checked.count(N))
10533     return;
10534 
10535   // If a node has already been visited on this depth-first walk, reject it as
10536   // a cycle.
10537   if (!Visited.insert(N).second) {
10538     errs() << "Detected cycle in SelectionDAG\n";
10539     dbgs() << "Offending node:\n";
10540     N->dumprFull(DAG); dbgs() << "\n";
10541     abort();
10542   }
10543 
10544   for (const SDValue &Op : N->op_values())
10545     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10546 
10547   Checked.insert(N);
10548   Visited.erase(N);
10549 }
10550 #endif
10551 
10552 void llvm::checkForCycles(const llvm::SDNode *N,
10553                           const llvm::SelectionDAG *DAG,
10554                           bool force) {
10555 #ifndef NDEBUG
10556   bool check = force;
10557 #ifdef EXPENSIVE_CHECKS
10558   check = true;
10559 #endif  // EXPENSIVE_CHECKS
10560   if (check) {
10561     assert(N && "Checking nonexistent SDNode");
10562     SmallPtrSet<const SDNode*, 32> visited;
10563     SmallPtrSet<const SDNode*, 32> checked;
10564     checkForCyclesHelper(N, visited, checked, DAG);
10565   }
10566 #endif  // !NDEBUG
10567 }
10568 
10569 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10570   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10571 }
10572