1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAG class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/APSInt.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/FoldingSet.h" 22 #include "llvm/ADT/None.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/ISDOpcodes.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/MachineValueType.h" 36 #include "llvm/CodeGen/RuntimeLibcalls.h" 37 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/IR/Constant.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/DerivedTypes.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/CodeGen.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/KnownBits.h" 58 #include "llvm/Support/ManagedStatic.h" 59 #include "llvm/Support/MathExtras.h" 60 #include "llvm/Support/Mutex.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetMachine.h" 64 #include "llvm/Target/TargetOptions.h" 65 #include "llvm/Target/TargetRegisterInfo.h" 66 #include "llvm/Target/TargetSubtargetInfo.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <cstdlib> 71 #include <limits> 72 #include <set> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 79 /// makeVTList - Return an instance of the SDVTList struct initialized with the 80 /// specified members. 81 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 82 SDVTList Res = {VTs, NumVTs}; 83 return Res; 84 } 85 86 // Default null implementations of the callbacks. 87 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 88 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 89 90 //===----------------------------------------------------------------------===// 91 // ConstantFPSDNode Class 92 //===----------------------------------------------------------------------===// 93 94 /// isExactlyValue - We don't rely on operator== working on double values, as 95 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 96 /// As such, this method can be used to do an exact bit-for-bit comparison of 97 /// two floating point values. 98 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 99 return getValueAPF().bitwiseIsEqual(V); 100 } 101 102 bool ConstantFPSDNode::isValueValidForType(EVT VT, 103 const APFloat& Val) { 104 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 105 106 // convert modifies in place, so make a copy. 107 APFloat Val2 = APFloat(Val); 108 bool losesInfo; 109 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 110 APFloat::rmNearestTiesToEven, 111 &losesInfo); 112 return !losesInfo; 113 } 114 115 //===----------------------------------------------------------------------===// 116 // ISD Namespace 117 //===----------------------------------------------------------------------===// 118 119 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 120 auto *BV = dyn_cast<BuildVectorSDNode>(N); 121 if (!BV) 122 return false; 123 124 APInt SplatUndef; 125 unsigned SplatBitSize; 126 bool HasUndefs; 127 EVT EltVT = N->getValueType(0).getVectorElementType(); 128 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs) && 129 EltVT.getSizeInBits() >= SplatBitSize; 130 } 131 132 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 133 // specializations of the more general isConstantSplatVector()? 134 135 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 136 // Look through a bit convert. 137 while (N->getOpcode() == ISD::BITCAST) 138 N = N->getOperand(0).getNode(); 139 140 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 141 142 unsigned i = 0, e = N->getNumOperands(); 143 144 // Skip over all of the undef values. 145 while (i != e && N->getOperand(i).isUndef()) 146 ++i; 147 148 // Do not accept an all-undef vector. 149 if (i == e) return false; 150 151 // Do not accept build_vectors that aren't all constants or which have non-~0 152 // elements. We have to be a bit careful here, as the type of the constant 153 // may not be the same as the type of the vector elements due to type 154 // legalization (the elements are promoted to a legal type for the target and 155 // a vector of a type may be legal when the base element type is not). 156 // We only want to check enough bits to cover the vector elements, because 157 // we care if the resultant vector is all ones, not whether the individual 158 // constants are. 159 SDValue NotZero = N->getOperand(i); 160 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 161 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 162 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 163 return false; 164 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 165 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 166 return false; 167 } else 168 return false; 169 170 // Okay, we have at least one ~0 value, check to see if the rest match or are 171 // undefs. Even with the above element type twiddling, this should be OK, as 172 // the same type legalization should have applied to all the elements. 173 for (++i; i != e; ++i) 174 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 175 return false; 176 return true; 177 } 178 179 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 180 // Look through a bit convert. 181 while (N->getOpcode() == ISD::BITCAST) 182 N = N->getOperand(0).getNode(); 183 184 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 185 186 bool IsAllUndef = true; 187 for (const SDValue &Op : N->op_values()) { 188 if (Op.isUndef()) 189 continue; 190 IsAllUndef = false; 191 // Do not accept build_vectors that aren't all constants or which have non-0 192 // elements. We have to be a bit careful here, as the type of the constant 193 // may not be the same as the type of the vector elements due to type 194 // legalization (the elements are promoted to a legal type for the target 195 // and a vector of a type may be legal when the base element type is not). 196 // We only want to check enough bits to cover the vector elements, because 197 // we care if the resultant vector is all zeros, not whether the individual 198 // constants are. 199 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 200 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 201 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 202 return false; 203 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 204 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 205 return false; 206 } else 207 return false; 208 } 209 210 // Do not accept an all-undef vector. 211 if (IsAllUndef) 212 return false; 213 return true; 214 } 215 216 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 217 if (N->getOpcode() != ISD::BUILD_VECTOR) 218 return false; 219 220 for (const SDValue &Op : N->op_values()) { 221 if (Op.isUndef()) 222 continue; 223 if (!isa<ConstantSDNode>(Op)) 224 return false; 225 } 226 return true; 227 } 228 229 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 230 if (N->getOpcode() != ISD::BUILD_VECTOR) 231 return false; 232 233 for (const SDValue &Op : N->op_values()) { 234 if (Op.isUndef()) 235 continue; 236 if (!isa<ConstantFPSDNode>(Op)) 237 return false; 238 } 239 return true; 240 } 241 242 bool ISD::allOperandsUndef(const SDNode *N) { 243 // Return false if the node has no operands. 244 // This is "logically inconsistent" with the definition of "all" but 245 // is probably the desired behavior. 246 if (N->getNumOperands() == 0) 247 return false; 248 249 for (const SDValue &Op : N->op_values()) 250 if (!Op.isUndef()) 251 return false; 252 253 return true; 254 } 255 256 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 257 switch (ExtType) { 258 case ISD::EXTLOAD: 259 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 260 case ISD::SEXTLOAD: 261 return ISD::SIGN_EXTEND; 262 case ISD::ZEXTLOAD: 263 return ISD::ZERO_EXTEND; 264 default: 265 break; 266 } 267 268 llvm_unreachable("Invalid LoadExtType"); 269 } 270 271 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 272 // To perform this operation, we just need to swap the L and G bits of the 273 // operation. 274 unsigned OldL = (Operation >> 2) & 1; 275 unsigned OldG = (Operation >> 1) & 1; 276 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 277 (OldL << 1) | // New G bit 278 (OldG << 2)); // New L bit. 279 } 280 281 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 282 unsigned Operation = Op; 283 if (isInteger) 284 Operation ^= 7; // Flip L, G, E bits, but not U. 285 else 286 Operation ^= 15; // Flip all of the condition bits. 287 288 if (Operation > ISD::SETTRUE2) 289 Operation &= ~8; // Don't let N and U bits get set. 290 291 return ISD::CondCode(Operation); 292 } 293 294 /// For an integer comparison, return 1 if the comparison is a signed operation 295 /// and 2 if the result is an unsigned comparison. Return zero if the operation 296 /// does not depend on the sign of the input (setne and seteq). 297 static int isSignedOp(ISD::CondCode Opcode) { 298 switch (Opcode) { 299 default: llvm_unreachable("Illegal integer setcc operation!"); 300 case ISD::SETEQ: 301 case ISD::SETNE: return 0; 302 case ISD::SETLT: 303 case ISD::SETLE: 304 case ISD::SETGT: 305 case ISD::SETGE: return 1; 306 case ISD::SETULT: 307 case ISD::SETULE: 308 case ISD::SETUGT: 309 case ISD::SETUGE: return 2; 310 } 311 } 312 313 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 314 bool IsInteger) { 315 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 316 // Cannot fold a signed integer setcc with an unsigned integer setcc. 317 return ISD::SETCC_INVALID; 318 319 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 320 321 // If the N and U bits get set, then the resultant comparison DOES suddenly 322 // care about orderedness, and it is true when ordered. 323 if (Op > ISD::SETTRUE2) 324 Op &= ~16; // Clear the U bit if the N bit is set. 325 326 // Canonicalize illegal integer setcc's. 327 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 328 Op = ISD::SETNE; 329 330 return ISD::CondCode(Op); 331 } 332 333 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 334 bool IsInteger) { 335 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 336 // Cannot fold a signed setcc with an unsigned setcc. 337 return ISD::SETCC_INVALID; 338 339 // Combine all of the condition bits. 340 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 341 342 // Canonicalize illegal integer setcc's. 343 if (IsInteger) { 344 switch (Result) { 345 default: break; 346 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 347 case ISD::SETOEQ: // SETEQ & SETU[LG]E 348 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 349 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 350 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 351 } 352 } 353 354 return Result; 355 } 356 357 //===----------------------------------------------------------------------===// 358 // SDNode Profile Support 359 //===----------------------------------------------------------------------===// 360 361 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 362 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 363 ID.AddInteger(OpC); 364 } 365 366 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 367 /// solely with their pointer. 368 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 369 ID.AddPointer(VTList.VTs); 370 } 371 372 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 373 static void AddNodeIDOperands(FoldingSetNodeID &ID, 374 ArrayRef<SDValue> Ops) { 375 for (auto& Op : Ops) { 376 ID.AddPointer(Op.getNode()); 377 ID.AddInteger(Op.getResNo()); 378 } 379 } 380 381 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 382 static void AddNodeIDOperands(FoldingSetNodeID &ID, 383 ArrayRef<SDUse> Ops) { 384 for (auto& Op : Ops) { 385 ID.AddPointer(Op.getNode()); 386 ID.AddInteger(Op.getResNo()); 387 } 388 } 389 390 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 391 SDVTList VTList, ArrayRef<SDValue> OpList) { 392 AddNodeIDOpcode(ID, OpC); 393 AddNodeIDValueTypes(ID, VTList); 394 AddNodeIDOperands(ID, OpList); 395 } 396 397 /// If this is an SDNode with special info, add this info to the NodeID data. 398 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 399 switch (N->getOpcode()) { 400 case ISD::TargetExternalSymbol: 401 case ISD::ExternalSymbol: 402 case ISD::MCSymbol: 403 llvm_unreachable("Should only be used on nodes with operands"); 404 default: break; // Normal nodes don't need extra info. 405 case ISD::TargetConstant: 406 case ISD::Constant: { 407 const ConstantSDNode *C = cast<ConstantSDNode>(N); 408 ID.AddPointer(C->getConstantIntValue()); 409 ID.AddBoolean(C->isOpaque()); 410 break; 411 } 412 case ISD::TargetConstantFP: 413 case ISD::ConstantFP: 414 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 415 break; 416 case ISD::TargetGlobalAddress: 417 case ISD::GlobalAddress: 418 case ISD::TargetGlobalTLSAddress: 419 case ISD::GlobalTLSAddress: { 420 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 421 ID.AddPointer(GA->getGlobal()); 422 ID.AddInteger(GA->getOffset()); 423 ID.AddInteger(GA->getTargetFlags()); 424 break; 425 } 426 case ISD::BasicBlock: 427 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 428 break; 429 case ISD::Register: 430 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 431 break; 432 case ISD::RegisterMask: 433 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 434 break; 435 case ISD::SRCVALUE: 436 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 437 break; 438 case ISD::FrameIndex: 439 case ISD::TargetFrameIndex: 440 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 441 break; 442 case ISD::JumpTable: 443 case ISD::TargetJumpTable: 444 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 445 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 446 break; 447 case ISD::ConstantPool: 448 case ISD::TargetConstantPool: { 449 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 450 ID.AddInteger(CP->getAlignment()); 451 ID.AddInteger(CP->getOffset()); 452 if (CP->isMachineConstantPoolEntry()) 453 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 454 else 455 ID.AddPointer(CP->getConstVal()); 456 ID.AddInteger(CP->getTargetFlags()); 457 break; 458 } 459 case ISD::TargetIndex: { 460 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 461 ID.AddInteger(TI->getIndex()); 462 ID.AddInteger(TI->getOffset()); 463 ID.AddInteger(TI->getTargetFlags()); 464 break; 465 } 466 case ISD::LOAD: { 467 const LoadSDNode *LD = cast<LoadSDNode>(N); 468 ID.AddInteger(LD->getMemoryVT().getRawBits()); 469 ID.AddInteger(LD->getRawSubclassData()); 470 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 471 break; 472 } 473 case ISD::STORE: { 474 const StoreSDNode *ST = cast<StoreSDNode>(N); 475 ID.AddInteger(ST->getMemoryVT().getRawBits()); 476 ID.AddInteger(ST->getRawSubclassData()); 477 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 478 break; 479 } 480 case ISD::ATOMIC_CMP_SWAP: 481 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 482 case ISD::ATOMIC_SWAP: 483 case ISD::ATOMIC_LOAD_ADD: 484 case ISD::ATOMIC_LOAD_SUB: 485 case ISD::ATOMIC_LOAD_AND: 486 case ISD::ATOMIC_LOAD_OR: 487 case ISD::ATOMIC_LOAD_XOR: 488 case ISD::ATOMIC_LOAD_NAND: 489 case ISD::ATOMIC_LOAD_MIN: 490 case ISD::ATOMIC_LOAD_MAX: 491 case ISD::ATOMIC_LOAD_UMIN: 492 case ISD::ATOMIC_LOAD_UMAX: 493 case ISD::ATOMIC_LOAD: 494 case ISD::ATOMIC_STORE: { 495 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 496 ID.AddInteger(AT->getMemoryVT().getRawBits()); 497 ID.AddInteger(AT->getRawSubclassData()); 498 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 499 break; 500 } 501 case ISD::PREFETCH: { 502 const MemSDNode *PF = cast<MemSDNode>(N); 503 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 504 break; 505 } 506 case ISD::VECTOR_SHUFFLE: { 507 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 508 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 509 i != e; ++i) 510 ID.AddInteger(SVN->getMaskElt(i)); 511 break; 512 } 513 case ISD::TargetBlockAddress: 514 case ISD::BlockAddress: { 515 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 516 ID.AddPointer(BA->getBlockAddress()); 517 ID.AddInteger(BA->getOffset()); 518 ID.AddInteger(BA->getTargetFlags()); 519 break; 520 } 521 } // end switch (N->getOpcode()) 522 523 // Target specific memory nodes could also have address spaces to check. 524 if (N->isTargetMemoryOpcode()) 525 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 526 } 527 528 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 529 /// data. 530 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 531 AddNodeIDOpcode(ID, N->getOpcode()); 532 // Add the return value info. 533 AddNodeIDValueTypes(ID, N->getVTList()); 534 // Add the operand info. 535 AddNodeIDOperands(ID, N->ops()); 536 537 // Handle SDNode leafs with special info. 538 AddNodeIDCustom(ID, N); 539 } 540 541 //===----------------------------------------------------------------------===// 542 // SelectionDAG Class 543 //===----------------------------------------------------------------------===// 544 545 /// doNotCSE - Return true if CSE should not be performed for this node. 546 static bool doNotCSE(SDNode *N) { 547 if (N->getValueType(0) == MVT::Glue) 548 return true; // Never CSE anything that produces a flag. 549 550 switch (N->getOpcode()) { 551 default: break; 552 case ISD::HANDLENODE: 553 case ISD::EH_LABEL: 554 return true; // Never CSE these nodes. 555 } 556 557 // Check that remaining values produced are not flags. 558 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 559 if (N->getValueType(i) == MVT::Glue) 560 return true; // Never CSE anything that produces a flag. 561 562 return false; 563 } 564 565 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 566 /// SelectionDAG. 567 void SelectionDAG::RemoveDeadNodes() { 568 // Create a dummy node (which is not added to allnodes), that adds a reference 569 // to the root node, preventing it from being deleted. 570 HandleSDNode Dummy(getRoot()); 571 572 SmallVector<SDNode*, 128> DeadNodes; 573 574 // Add all obviously-dead nodes to the DeadNodes worklist. 575 for (SDNode &Node : allnodes()) 576 if (Node.use_empty()) 577 DeadNodes.push_back(&Node); 578 579 RemoveDeadNodes(DeadNodes); 580 581 // If the root changed (e.g. it was a dead load, update the root). 582 setRoot(Dummy.getValue()); 583 } 584 585 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 586 /// given list, and any nodes that become unreachable as a result. 587 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 588 589 // Process the worklist, deleting the nodes and adding their uses to the 590 // worklist. 591 while (!DeadNodes.empty()) { 592 SDNode *N = DeadNodes.pop_back_val(); 593 // Skip to next node if we've already managed to delete the node. This could 594 // happen if replacing a node causes a node previously added to the node to 595 // be deleted. 596 if (N->getOpcode() == ISD::DELETED_NODE) 597 continue; 598 599 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 600 DUL->NodeDeleted(N, nullptr); 601 602 // Take the node out of the appropriate CSE map. 603 RemoveNodeFromCSEMaps(N); 604 605 // Next, brutally remove the operand list. This is safe to do, as there are 606 // no cycles in the graph. 607 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 608 SDUse &Use = *I++; 609 SDNode *Operand = Use.getNode(); 610 Use.set(SDValue()); 611 612 // Now that we removed this operand, see if there are no uses of it left. 613 if (Operand->use_empty()) 614 DeadNodes.push_back(Operand); 615 } 616 617 DeallocateNode(N); 618 } 619 } 620 621 void SelectionDAG::RemoveDeadNode(SDNode *N){ 622 SmallVector<SDNode*, 16> DeadNodes(1, N); 623 624 // Create a dummy node that adds a reference to the root node, preventing 625 // it from being deleted. (This matters if the root is an operand of the 626 // dead node.) 627 HandleSDNode Dummy(getRoot()); 628 629 RemoveDeadNodes(DeadNodes); 630 } 631 632 void SelectionDAG::DeleteNode(SDNode *N) { 633 // First take this out of the appropriate CSE map. 634 RemoveNodeFromCSEMaps(N); 635 636 // Finally, remove uses due to operands of this node, remove from the 637 // AllNodes list, and delete the node. 638 DeleteNodeNotInCSEMaps(N); 639 } 640 641 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 642 assert(N->getIterator() != AllNodes.begin() && 643 "Cannot delete the entry node!"); 644 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 645 646 // Drop all of the operands and decrement used node's use counts. 647 N->DropOperands(); 648 649 DeallocateNode(N); 650 } 651 652 void SDDbgInfo::erase(const SDNode *Node) { 653 DbgValMapType::iterator I = DbgValMap.find(Node); 654 if (I == DbgValMap.end()) 655 return; 656 for (auto &Val: I->second) 657 Val->setIsInvalidated(); 658 DbgValMap.erase(I); 659 } 660 661 void SelectionDAG::DeallocateNode(SDNode *N) { 662 // If we have operands, deallocate them. 663 removeOperands(N); 664 665 NodeAllocator.Deallocate(AllNodes.remove(N)); 666 667 // Set the opcode to DELETED_NODE to help catch bugs when node 668 // memory is reallocated. 669 // FIXME: There are places in SDag that have grown a dependency on the opcode 670 // value in the released node. 671 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 672 N->NodeType = ISD::DELETED_NODE; 673 674 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 675 // them and forget about that node. 676 DbgInfo->erase(N); 677 } 678 679 #ifndef NDEBUG 680 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 681 static void VerifySDNode(SDNode *N) { 682 switch (N->getOpcode()) { 683 default: 684 break; 685 case ISD::BUILD_PAIR: { 686 EVT VT = N->getValueType(0); 687 assert(N->getNumValues() == 1 && "Too many results!"); 688 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 689 "Wrong return type!"); 690 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 691 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 692 "Mismatched operand types!"); 693 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 694 "Wrong operand type!"); 695 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 696 "Wrong return type size"); 697 break; 698 } 699 case ISD::BUILD_VECTOR: { 700 assert(N->getNumValues() == 1 && "Too many results!"); 701 assert(N->getValueType(0).isVector() && "Wrong return type!"); 702 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 703 "Wrong number of operands!"); 704 EVT EltVT = N->getValueType(0).getVectorElementType(); 705 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 706 assert((I->getValueType() == EltVT || 707 (EltVT.isInteger() && I->getValueType().isInteger() && 708 EltVT.bitsLE(I->getValueType()))) && 709 "Wrong operand type!"); 710 assert(I->getValueType() == N->getOperand(0).getValueType() && 711 "Operands must all have the same type"); 712 } 713 break; 714 } 715 } 716 } 717 #endif // NDEBUG 718 719 /// \brief Insert a newly allocated node into the DAG. 720 /// 721 /// Handles insertion into the all nodes list and CSE map, as well as 722 /// verification and other common operations when a new node is allocated. 723 void SelectionDAG::InsertNode(SDNode *N) { 724 AllNodes.push_back(N); 725 #ifndef NDEBUG 726 N->PersistentId = NextPersistentId++; 727 VerifySDNode(N); 728 #endif 729 } 730 731 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 732 /// correspond to it. This is useful when we're about to delete or repurpose 733 /// the node. We don't want future request for structurally identical nodes 734 /// to return N anymore. 735 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 736 bool Erased = false; 737 switch (N->getOpcode()) { 738 case ISD::HANDLENODE: return false; // noop. 739 case ISD::CONDCODE: 740 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 741 "Cond code doesn't exist!"); 742 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 743 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 744 break; 745 case ISD::ExternalSymbol: 746 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 747 break; 748 case ISD::TargetExternalSymbol: { 749 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 750 Erased = TargetExternalSymbols.erase( 751 std::pair<std::string,unsigned char>(ESN->getSymbol(), 752 ESN->getTargetFlags())); 753 break; 754 } 755 case ISD::MCSymbol: { 756 auto *MCSN = cast<MCSymbolSDNode>(N); 757 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 758 break; 759 } 760 case ISD::VALUETYPE: { 761 EVT VT = cast<VTSDNode>(N)->getVT(); 762 if (VT.isExtended()) { 763 Erased = ExtendedValueTypeNodes.erase(VT); 764 } else { 765 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 766 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 767 } 768 break; 769 } 770 default: 771 // Remove it from the CSE Map. 772 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 773 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 774 Erased = CSEMap.RemoveNode(N); 775 break; 776 } 777 #ifndef NDEBUG 778 // Verify that the node was actually in one of the CSE maps, unless it has a 779 // flag result (which cannot be CSE'd) or is one of the special cases that are 780 // not subject to CSE. 781 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 782 !N->isMachineOpcode() && !doNotCSE(N)) { 783 N->dump(this); 784 dbgs() << "\n"; 785 llvm_unreachable("Node is not in map!"); 786 } 787 #endif 788 return Erased; 789 } 790 791 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 792 /// maps and modified in place. Add it back to the CSE maps, unless an identical 793 /// node already exists, in which case transfer all its users to the existing 794 /// node. This transfer can potentially trigger recursive merging. 795 void 796 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 797 // For node types that aren't CSE'd, just act as if no identical node 798 // already exists. 799 if (!doNotCSE(N)) { 800 SDNode *Existing = CSEMap.GetOrInsertNode(N); 801 if (Existing != N) { 802 // If there was already an existing matching node, use ReplaceAllUsesWith 803 // to replace the dead one with the existing one. This can cause 804 // recursive merging of other unrelated nodes down the line. 805 ReplaceAllUsesWith(N, Existing); 806 807 // N is now dead. Inform the listeners and delete it. 808 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 809 DUL->NodeDeleted(N, Existing); 810 DeleteNodeNotInCSEMaps(N); 811 return; 812 } 813 } 814 815 // If the node doesn't already exist, we updated it. Inform listeners. 816 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 817 DUL->NodeUpdated(N); 818 } 819 820 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 821 /// were replaced with those specified. If this node is never memoized, 822 /// return null, otherwise return a pointer to the slot it would take. If a 823 /// node already exists with these operands, the slot will be non-null. 824 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 825 void *&InsertPos) { 826 if (doNotCSE(N)) 827 return nullptr; 828 829 SDValue Ops[] = { Op }; 830 FoldingSetNodeID ID; 831 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 832 AddNodeIDCustom(ID, N); 833 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 834 if (Node) 835 Node->intersectFlagsWith(N->getFlags()); 836 return Node; 837 } 838 839 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 840 /// were replaced with those specified. If this node is never memoized, 841 /// return null, otherwise return a pointer to the slot it would take. If a 842 /// node already exists with these operands, the slot will be non-null. 843 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 844 SDValue Op1, SDValue Op2, 845 void *&InsertPos) { 846 if (doNotCSE(N)) 847 return nullptr; 848 849 SDValue Ops[] = { Op1, Op2 }; 850 FoldingSetNodeID ID; 851 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 852 AddNodeIDCustom(ID, N); 853 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 854 if (Node) 855 Node->intersectFlagsWith(N->getFlags()); 856 return Node; 857 } 858 859 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 860 /// were replaced with those specified. If this node is never memoized, 861 /// return null, otherwise return a pointer to the slot it would take. If a 862 /// node already exists with these operands, the slot will be non-null. 863 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 864 void *&InsertPos) { 865 if (doNotCSE(N)) 866 return nullptr; 867 868 FoldingSetNodeID ID; 869 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 870 AddNodeIDCustom(ID, N); 871 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 872 if (Node) 873 Node->intersectFlagsWith(N->getFlags()); 874 return Node; 875 } 876 877 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 878 Type *Ty = VT == MVT::iPTR ? 879 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 880 VT.getTypeForEVT(*getContext()); 881 882 return getDataLayout().getABITypeAlignment(Ty); 883 } 884 885 // EntryNode could meaningfully have debug info if we can find it... 886 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 887 : TM(tm), OptLevel(OL), 888 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 889 Root(getEntryNode()) { 890 InsertNode(&EntryNode); 891 DbgInfo = new SDDbgInfo(); 892 } 893 894 void SelectionDAG::init(MachineFunction &NewMF, 895 OptimizationRemarkEmitter &NewORE) { 896 MF = &NewMF; 897 ORE = &NewORE; 898 TLI = getSubtarget().getTargetLowering(); 899 TSI = getSubtarget().getSelectionDAGInfo(); 900 Context = &MF->getFunction()->getContext(); 901 } 902 903 SelectionDAG::~SelectionDAG() { 904 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 905 allnodes_clear(); 906 OperandRecycler.clear(OperandAllocator); 907 delete DbgInfo; 908 } 909 910 void SelectionDAG::allnodes_clear() { 911 assert(&*AllNodes.begin() == &EntryNode); 912 AllNodes.remove(AllNodes.begin()); 913 while (!AllNodes.empty()) 914 DeallocateNode(&AllNodes.front()); 915 #ifndef NDEBUG 916 NextPersistentId = 0; 917 #endif 918 } 919 920 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 921 void *&InsertPos) { 922 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 923 if (N) { 924 switch (N->getOpcode()) { 925 default: break; 926 case ISD::Constant: 927 case ISD::ConstantFP: 928 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 929 "debug location. Use another overload."); 930 } 931 } 932 return N; 933 } 934 935 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 936 const SDLoc &DL, void *&InsertPos) { 937 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 938 if (N) { 939 switch (N->getOpcode()) { 940 case ISD::Constant: 941 case ISD::ConstantFP: 942 // Erase debug location from the node if the node is used at several 943 // different places. Do not propagate one location to all uses as it 944 // will cause a worse single stepping debugging experience. 945 if (N->getDebugLoc() != DL.getDebugLoc()) 946 N->setDebugLoc(DebugLoc()); 947 break; 948 default: 949 // When the node's point of use is located earlier in the instruction 950 // sequence than its prior point of use, update its debug info to the 951 // earlier location. 952 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 953 N->setDebugLoc(DL.getDebugLoc()); 954 break; 955 } 956 } 957 return N; 958 } 959 960 void SelectionDAG::clear() { 961 allnodes_clear(); 962 OperandRecycler.clear(OperandAllocator); 963 OperandAllocator.Reset(); 964 CSEMap.clear(); 965 966 ExtendedValueTypeNodes.clear(); 967 ExternalSymbols.clear(); 968 TargetExternalSymbols.clear(); 969 MCSymbols.clear(); 970 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 971 static_cast<CondCodeSDNode*>(nullptr)); 972 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 973 static_cast<SDNode*>(nullptr)); 974 975 EntryNode.UseList = nullptr; 976 InsertNode(&EntryNode); 977 Root = getEntryNode(); 978 DbgInfo->clear(); 979 } 980 981 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 982 return VT.bitsGT(Op.getValueType()) 983 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 984 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 985 } 986 987 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 988 return VT.bitsGT(Op.getValueType()) ? 989 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 990 getNode(ISD::TRUNCATE, DL, VT, Op); 991 } 992 993 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 994 return VT.bitsGT(Op.getValueType()) ? 995 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 996 getNode(ISD::TRUNCATE, DL, VT, Op); 997 } 998 999 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1000 return VT.bitsGT(Op.getValueType()) ? 1001 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1002 getNode(ISD::TRUNCATE, DL, VT, Op); 1003 } 1004 1005 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1006 EVT OpVT) { 1007 if (VT.bitsLE(Op.getValueType())) 1008 return getNode(ISD::TRUNCATE, SL, VT, Op); 1009 1010 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1011 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1012 } 1013 1014 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1015 assert(!VT.isVector() && 1016 "getZeroExtendInReg should use the vector element type instead of " 1017 "the vector type!"); 1018 if (Op.getValueType() == VT) return Op; 1019 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1020 APInt Imm = APInt::getLowBitsSet(BitWidth, 1021 VT.getSizeInBits()); 1022 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1023 getConstant(Imm, DL, Op.getValueType())); 1024 } 1025 1026 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, 1027 EVT VT) { 1028 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1029 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1030 "The sizes of the input and result must match in order to perform the " 1031 "extend in-register."); 1032 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1033 "The destination vector type must have fewer lanes than the input."); 1034 return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op); 1035 } 1036 1037 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, 1038 EVT VT) { 1039 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1040 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1041 "The sizes of the input and result must match in order to perform the " 1042 "extend in-register."); 1043 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1044 "The destination vector type must have fewer lanes than the input."); 1045 return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op); 1046 } 1047 1048 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, 1049 EVT VT) { 1050 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1051 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1052 "The sizes of the input and result must match in order to perform the " 1053 "extend in-register."); 1054 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1055 "The destination vector type must have fewer lanes than the input."); 1056 return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op); 1057 } 1058 1059 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1060 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1061 EVT EltVT = VT.getScalarType(); 1062 SDValue NegOne = 1063 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1064 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1065 } 1066 1067 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1068 EVT EltVT = VT.getScalarType(); 1069 SDValue TrueValue; 1070 switch (TLI->getBooleanContents(VT)) { 1071 case TargetLowering::ZeroOrOneBooleanContent: 1072 case TargetLowering::UndefinedBooleanContent: 1073 TrueValue = getConstant(1, DL, VT); 1074 break; 1075 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1076 TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, 1077 VT); 1078 break; 1079 } 1080 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1081 } 1082 1083 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1084 bool isT, bool isO) { 1085 EVT EltVT = VT.getScalarType(); 1086 assert((EltVT.getSizeInBits() >= 64 || 1087 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1088 "getConstant with a uint64_t value that doesn't fit in the type!"); 1089 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1090 } 1091 1092 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1093 bool isT, bool isO) { 1094 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1095 } 1096 1097 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1098 EVT VT, bool isT, bool isO) { 1099 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1100 1101 EVT EltVT = VT.getScalarType(); 1102 const ConstantInt *Elt = &Val; 1103 1104 // In some cases the vector type is legal but the element type is illegal and 1105 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1106 // inserted value (the type does not need to match the vector element type). 1107 // Any extra bits introduced will be truncated away. 1108 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1109 TargetLowering::TypePromoteInteger) { 1110 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1111 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1112 Elt = ConstantInt::get(*getContext(), NewVal); 1113 } 1114 // In other cases the element type is illegal and needs to be expanded, for 1115 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1116 // the value into n parts and use a vector type with n-times the elements. 1117 // Then bitcast to the type requested. 1118 // Legalizing constants too early makes the DAGCombiner's job harder so we 1119 // only legalize if the DAG tells us we must produce legal types. 1120 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1121 TLI->getTypeAction(*getContext(), EltVT) == 1122 TargetLowering::TypeExpandInteger) { 1123 const APInt &NewVal = Elt->getValue(); 1124 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1125 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1126 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1127 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1128 1129 // Check the temporary vector is the correct size. If this fails then 1130 // getTypeToTransformTo() probably returned a type whose size (in bits) 1131 // isn't a power-of-2 factor of the requested type size. 1132 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1133 1134 SmallVector<SDValue, 2> EltParts; 1135 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1136 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1137 .zextOrTrunc(ViaEltSizeInBits), DL, 1138 ViaEltVT, isT, isO)); 1139 } 1140 1141 // EltParts is currently in little endian order. If we actually want 1142 // big-endian order then reverse it now. 1143 if (getDataLayout().isBigEndian()) 1144 std::reverse(EltParts.begin(), EltParts.end()); 1145 1146 // The elements must be reversed when the element order is different 1147 // to the endianness of the elements (because the BITCAST is itself a 1148 // vector shuffle in this situation). However, we do not need any code to 1149 // perform this reversal because getConstant() is producing a vector 1150 // splat. 1151 // This situation occurs in MIPS MSA. 1152 1153 SmallVector<SDValue, 8> Ops; 1154 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1155 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1156 return getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1157 } 1158 1159 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1160 "APInt size does not match type size!"); 1161 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1162 FoldingSetNodeID ID; 1163 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1164 ID.AddPointer(Elt); 1165 ID.AddBoolean(isO); 1166 void *IP = nullptr; 1167 SDNode *N = nullptr; 1168 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1169 if (!VT.isVector()) 1170 return SDValue(N, 0); 1171 1172 if (!N) { 1173 N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT); 1174 CSEMap.InsertNode(N, IP); 1175 InsertNode(N); 1176 } 1177 1178 SDValue Result(N, 0); 1179 if (VT.isVector()) 1180 Result = getSplatBuildVector(VT, DL, Result); 1181 return Result; 1182 } 1183 1184 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1185 bool isTarget) { 1186 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1187 } 1188 1189 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1190 bool isTarget) { 1191 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1192 } 1193 1194 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1195 EVT VT, bool isTarget) { 1196 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1197 1198 EVT EltVT = VT.getScalarType(); 1199 1200 // Do the map lookup using the actual bit pattern for the floating point 1201 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1202 // we don't have issues with SNANs. 1203 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1204 FoldingSetNodeID ID; 1205 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1206 ID.AddPointer(&V); 1207 void *IP = nullptr; 1208 SDNode *N = nullptr; 1209 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1210 if (!VT.isVector()) 1211 return SDValue(N, 0); 1212 1213 if (!N) { 1214 N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT); 1215 CSEMap.InsertNode(N, IP); 1216 InsertNode(N); 1217 } 1218 1219 SDValue Result(N, 0); 1220 if (VT.isVector()) 1221 Result = getSplatBuildVector(VT, DL, Result); 1222 return Result; 1223 } 1224 1225 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1226 bool isTarget) { 1227 EVT EltVT = VT.getScalarType(); 1228 if (EltVT == MVT::f32) 1229 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1230 else if (EltVT == MVT::f64) 1231 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1232 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1233 EltVT == MVT::f16) { 1234 bool Ignored; 1235 APFloat APF = APFloat(Val); 1236 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1237 &Ignored); 1238 return getConstantFP(APF, DL, VT, isTarget); 1239 } else 1240 llvm_unreachable("Unsupported type in getConstantFP"); 1241 } 1242 1243 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1244 EVT VT, int64_t Offset, bool isTargetGA, 1245 unsigned char TargetFlags) { 1246 assert((TargetFlags == 0 || isTargetGA) && 1247 "Cannot set target flags on target-independent globals"); 1248 1249 // Truncate (with sign-extension) the offset value to the pointer size. 1250 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1251 if (BitWidth < 64) 1252 Offset = SignExtend64(Offset, BitWidth); 1253 1254 unsigned Opc; 1255 if (GV->isThreadLocal()) 1256 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1257 else 1258 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1259 1260 FoldingSetNodeID ID; 1261 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1262 ID.AddPointer(GV); 1263 ID.AddInteger(Offset); 1264 ID.AddInteger(TargetFlags); 1265 void *IP = nullptr; 1266 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1267 return SDValue(E, 0); 1268 1269 auto *N = newSDNode<GlobalAddressSDNode>( 1270 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1271 CSEMap.InsertNode(N, IP); 1272 InsertNode(N); 1273 return SDValue(N, 0); 1274 } 1275 1276 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1277 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1278 FoldingSetNodeID ID; 1279 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1280 ID.AddInteger(FI); 1281 void *IP = nullptr; 1282 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1283 return SDValue(E, 0); 1284 1285 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1286 CSEMap.InsertNode(N, IP); 1287 InsertNode(N); 1288 return SDValue(N, 0); 1289 } 1290 1291 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1292 unsigned char TargetFlags) { 1293 assert((TargetFlags == 0 || isTarget) && 1294 "Cannot set target flags on target-independent jump tables"); 1295 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1296 FoldingSetNodeID ID; 1297 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1298 ID.AddInteger(JTI); 1299 ID.AddInteger(TargetFlags); 1300 void *IP = nullptr; 1301 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1302 return SDValue(E, 0); 1303 1304 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1305 CSEMap.InsertNode(N, IP); 1306 InsertNode(N); 1307 return SDValue(N, 0); 1308 } 1309 1310 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1311 unsigned Alignment, int Offset, 1312 bool isTarget, 1313 unsigned char TargetFlags) { 1314 assert((TargetFlags == 0 || isTarget) && 1315 "Cannot set target flags on target-independent globals"); 1316 if (Alignment == 0) 1317 Alignment = MF->getFunction()->optForSize() 1318 ? getDataLayout().getABITypeAlignment(C->getType()) 1319 : getDataLayout().getPrefTypeAlignment(C->getType()); 1320 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1321 FoldingSetNodeID ID; 1322 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1323 ID.AddInteger(Alignment); 1324 ID.AddInteger(Offset); 1325 ID.AddPointer(C); 1326 ID.AddInteger(TargetFlags); 1327 void *IP = nullptr; 1328 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1329 return SDValue(E, 0); 1330 1331 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1332 TargetFlags); 1333 CSEMap.InsertNode(N, IP); 1334 InsertNode(N); 1335 return SDValue(N, 0); 1336 } 1337 1338 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1339 unsigned Alignment, int Offset, 1340 bool isTarget, 1341 unsigned char TargetFlags) { 1342 assert((TargetFlags == 0 || isTarget) && 1343 "Cannot set target flags on target-independent globals"); 1344 if (Alignment == 0) 1345 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1346 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1347 FoldingSetNodeID ID; 1348 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1349 ID.AddInteger(Alignment); 1350 ID.AddInteger(Offset); 1351 C->addSelectionDAGCSEId(ID); 1352 ID.AddInteger(TargetFlags); 1353 void *IP = nullptr; 1354 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1355 return SDValue(E, 0); 1356 1357 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1358 TargetFlags); 1359 CSEMap.InsertNode(N, IP); 1360 InsertNode(N); 1361 return SDValue(N, 0); 1362 } 1363 1364 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1365 unsigned char TargetFlags) { 1366 FoldingSetNodeID ID; 1367 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1368 ID.AddInteger(Index); 1369 ID.AddInteger(Offset); 1370 ID.AddInteger(TargetFlags); 1371 void *IP = nullptr; 1372 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1373 return SDValue(E, 0); 1374 1375 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1376 CSEMap.InsertNode(N, IP); 1377 InsertNode(N); 1378 return SDValue(N, 0); 1379 } 1380 1381 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1382 FoldingSetNodeID ID; 1383 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1384 ID.AddPointer(MBB); 1385 void *IP = nullptr; 1386 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1387 return SDValue(E, 0); 1388 1389 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1390 CSEMap.InsertNode(N, IP); 1391 InsertNode(N); 1392 return SDValue(N, 0); 1393 } 1394 1395 SDValue SelectionDAG::getValueType(EVT VT) { 1396 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1397 ValueTypeNodes.size()) 1398 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1399 1400 SDNode *&N = VT.isExtended() ? 1401 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1402 1403 if (N) return SDValue(N, 0); 1404 N = newSDNode<VTSDNode>(VT); 1405 InsertNode(N); 1406 return SDValue(N, 0); 1407 } 1408 1409 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1410 SDNode *&N = ExternalSymbols[Sym]; 1411 if (N) return SDValue(N, 0); 1412 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1413 InsertNode(N); 1414 return SDValue(N, 0); 1415 } 1416 1417 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1418 SDNode *&N = MCSymbols[Sym]; 1419 if (N) 1420 return SDValue(N, 0); 1421 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1422 InsertNode(N); 1423 return SDValue(N, 0); 1424 } 1425 1426 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1427 unsigned char TargetFlags) { 1428 SDNode *&N = 1429 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1430 TargetFlags)]; 1431 if (N) return SDValue(N, 0); 1432 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1433 InsertNode(N); 1434 return SDValue(N, 0); 1435 } 1436 1437 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1438 if ((unsigned)Cond >= CondCodeNodes.size()) 1439 CondCodeNodes.resize(Cond+1); 1440 1441 if (!CondCodeNodes[Cond]) { 1442 auto *N = newSDNode<CondCodeSDNode>(Cond); 1443 CondCodeNodes[Cond] = N; 1444 InsertNode(N); 1445 } 1446 1447 return SDValue(CondCodeNodes[Cond], 0); 1448 } 1449 1450 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1451 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1452 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1453 std::swap(N1, N2); 1454 ShuffleVectorSDNode::commuteMask(M); 1455 } 1456 1457 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1458 SDValue N2, ArrayRef<int> Mask) { 1459 assert(VT.getVectorNumElements() == Mask.size() && 1460 "Must have the same number of vector elements as mask elements!"); 1461 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1462 "Invalid VECTOR_SHUFFLE"); 1463 1464 // Canonicalize shuffle undef, undef -> undef 1465 if (N1.isUndef() && N2.isUndef()) 1466 return getUNDEF(VT); 1467 1468 // Validate that all indices in Mask are within the range of the elements 1469 // input to the shuffle. 1470 int NElts = Mask.size(); 1471 assert(llvm::all_of(Mask, [&](int M) { return M < (NElts * 2); }) && 1472 "Index out of range"); 1473 1474 // Copy the mask so we can do any needed cleanup. 1475 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1476 1477 // Canonicalize shuffle v, v -> v, undef 1478 if (N1 == N2) { 1479 N2 = getUNDEF(VT); 1480 for (int i = 0; i != NElts; ++i) 1481 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1482 } 1483 1484 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1485 if (N1.isUndef()) 1486 commuteShuffle(N1, N2, MaskVec); 1487 1488 // If shuffling a splat, try to blend the splat instead. We do this here so 1489 // that even when this arises during lowering we don't have to re-handle it. 1490 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1491 BitVector UndefElements; 1492 SDValue Splat = BV->getSplatValue(&UndefElements); 1493 if (!Splat) 1494 return; 1495 1496 for (int i = 0; i < NElts; ++i) { 1497 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1498 continue; 1499 1500 // If this input comes from undef, mark it as such. 1501 if (UndefElements[MaskVec[i] - Offset]) { 1502 MaskVec[i] = -1; 1503 continue; 1504 } 1505 1506 // If we can blend a non-undef lane, use that instead. 1507 if (!UndefElements[i]) 1508 MaskVec[i] = i + Offset; 1509 } 1510 }; 1511 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1512 BlendSplat(N1BV, 0); 1513 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1514 BlendSplat(N2BV, NElts); 1515 1516 // Canonicalize all index into lhs, -> shuffle lhs, undef 1517 // Canonicalize all index into rhs, -> shuffle rhs, undef 1518 bool AllLHS = true, AllRHS = true; 1519 bool N2Undef = N2.isUndef(); 1520 for (int i = 0; i != NElts; ++i) { 1521 if (MaskVec[i] >= NElts) { 1522 if (N2Undef) 1523 MaskVec[i] = -1; 1524 else 1525 AllLHS = false; 1526 } else if (MaskVec[i] >= 0) { 1527 AllRHS = false; 1528 } 1529 } 1530 if (AllLHS && AllRHS) 1531 return getUNDEF(VT); 1532 if (AllLHS && !N2Undef) 1533 N2 = getUNDEF(VT); 1534 if (AllRHS) { 1535 N1 = getUNDEF(VT); 1536 commuteShuffle(N1, N2, MaskVec); 1537 } 1538 // Reset our undef status after accounting for the mask. 1539 N2Undef = N2.isUndef(); 1540 // Re-check whether both sides ended up undef. 1541 if (N1.isUndef() && N2Undef) 1542 return getUNDEF(VT); 1543 1544 // If Identity shuffle return that node. 1545 bool Identity = true, AllSame = true; 1546 for (int i = 0; i != NElts; ++i) { 1547 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1548 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1549 } 1550 if (Identity && NElts) 1551 return N1; 1552 1553 // Shuffling a constant splat doesn't change the result. 1554 if (N2Undef) { 1555 SDValue V = N1; 1556 1557 // Look through any bitcasts. We check that these don't change the number 1558 // (and size) of elements and just changes their types. 1559 while (V.getOpcode() == ISD::BITCAST) 1560 V = V->getOperand(0); 1561 1562 // A splat should always show up as a build vector node. 1563 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1564 BitVector UndefElements; 1565 SDValue Splat = BV->getSplatValue(&UndefElements); 1566 // If this is a splat of an undef, shuffling it is also undef. 1567 if (Splat && Splat.isUndef()) 1568 return getUNDEF(VT); 1569 1570 bool SameNumElts = 1571 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1572 1573 // We only have a splat which can skip shuffles if there is a splatted 1574 // value and no undef lanes rearranged by the shuffle. 1575 if (Splat && UndefElements.none()) { 1576 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1577 // number of elements match or the value splatted is a zero constant. 1578 if (SameNumElts) 1579 return N1; 1580 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1581 if (C->isNullValue()) 1582 return N1; 1583 } 1584 1585 // If the shuffle itself creates a splat, build the vector directly. 1586 if (AllSame && SameNumElts) { 1587 EVT BuildVT = BV->getValueType(0); 1588 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1589 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1590 1591 // We may have jumped through bitcasts, so the type of the 1592 // BUILD_VECTOR may not match the type of the shuffle. 1593 if (BuildVT != VT) 1594 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1595 return NewBV; 1596 } 1597 } 1598 } 1599 1600 FoldingSetNodeID ID; 1601 SDValue Ops[2] = { N1, N2 }; 1602 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1603 for (int i = 0; i != NElts; ++i) 1604 ID.AddInteger(MaskVec[i]); 1605 1606 void* IP = nullptr; 1607 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1608 return SDValue(E, 0); 1609 1610 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1611 // SDNode doesn't have access to it. This memory will be "leaked" when 1612 // the node is deallocated, but recovered when the NodeAllocator is released. 1613 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1614 std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc); 1615 1616 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1617 dl.getDebugLoc(), MaskAlloc); 1618 createOperands(N, Ops); 1619 1620 CSEMap.InsertNode(N, IP); 1621 InsertNode(N); 1622 return SDValue(N, 0); 1623 } 1624 1625 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1626 MVT VT = SV.getSimpleValueType(0); 1627 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1628 ShuffleVectorSDNode::commuteMask(MaskVec); 1629 1630 SDValue Op0 = SV.getOperand(0); 1631 SDValue Op1 = SV.getOperand(1); 1632 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1633 } 1634 1635 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1636 FoldingSetNodeID ID; 1637 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1638 ID.AddInteger(RegNo); 1639 void *IP = nullptr; 1640 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1641 return SDValue(E, 0); 1642 1643 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1644 CSEMap.InsertNode(N, IP); 1645 InsertNode(N); 1646 return SDValue(N, 0); 1647 } 1648 1649 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1650 FoldingSetNodeID ID; 1651 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1652 ID.AddPointer(RegMask); 1653 void *IP = nullptr; 1654 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1655 return SDValue(E, 0); 1656 1657 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1658 CSEMap.InsertNode(N, IP); 1659 InsertNode(N); 1660 return SDValue(N, 0); 1661 } 1662 1663 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1664 MCSymbol *Label) { 1665 FoldingSetNodeID ID; 1666 SDValue Ops[] = { Root }; 1667 AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops); 1668 ID.AddPointer(Label); 1669 void *IP = nullptr; 1670 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1671 return SDValue(E, 0); 1672 1673 auto *N = newSDNode<EHLabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1674 createOperands(N, Ops); 1675 1676 CSEMap.InsertNode(N, IP); 1677 InsertNode(N); 1678 return SDValue(N, 0); 1679 } 1680 1681 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1682 int64_t Offset, 1683 bool isTarget, 1684 unsigned char TargetFlags) { 1685 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1686 1687 FoldingSetNodeID ID; 1688 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1689 ID.AddPointer(BA); 1690 ID.AddInteger(Offset); 1691 ID.AddInteger(TargetFlags); 1692 void *IP = nullptr; 1693 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1694 return SDValue(E, 0); 1695 1696 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1697 CSEMap.InsertNode(N, IP); 1698 InsertNode(N); 1699 return SDValue(N, 0); 1700 } 1701 1702 SDValue SelectionDAG::getSrcValue(const Value *V) { 1703 assert((!V || V->getType()->isPointerTy()) && 1704 "SrcValue is not a pointer?"); 1705 1706 FoldingSetNodeID ID; 1707 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1708 ID.AddPointer(V); 1709 1710 void *IP = nullptr; 1711 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1712 return SDValue(E, 0); 1713 1714 auto *N = newSDNode<SrcValueSDNode>(V); 1715 CSEMap.InsertNode(N, IP); 1716 InsertNode(N); 1717 return SDValue(N, 0); 1718 } 1719 1720 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1721 FoldingSetNodeID ID; 1722 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1723 ID.AddPointer(MD); 1724 1725 void *IP = nullptr; 1726 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1727 return SDValue(E, 0); 1728 1729 auto *N = newSDNode<MDNodeSDNode>(MD); 1730 CSEMap.InsertNode(N, IP); 1731 InsertNode(N); 1732 return SDValue(N, 0); 1733 } 1734 1735 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1736 if (VT == V.getValueType()) 1737 return V; 1738 1739 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1740 } 1741 1742 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1743 unsigned SrcAS, unsigned DestAS) { 1744 SDValue Ops[] = {Ptr}; 1745 FoldingSetNodeID ID; 1746 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1747 ID.AddInteger(SrcAS); 1748 ID.AddInteger(DestAS); 1749 1750 void *IP = nullptr; 1751 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1752 return SDValue(E, 0); 1753 1754 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1755 VT, SrcAS, DestAS); 1756 createOperands(N, Ops); 1757 1758 CSEMap.InsertNode(N, IP); 1759 InsertNode(N); 1760 return SDValue(N, 0); 1761 } 1762 1763 /// getShiftAmountOperand - Return the specified value casted to 1764 /// the target's desired shift amount type. 1765 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1766 EVT OpTy = Op.getValueType(); 1767 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1768 if (OpTy == ShTy || OpTy.isVector()) return Op; 1769 1770 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1771 } 1772 1773 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1774 SDLoc dl(Node); 1775 const TargetLowering &TLI = getTargetLoweringInfo(); 1776 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1777 EVT VT = Node->getValueType(0); 1778 SDValue Tmp1 = Node->getOperand(0); 1779 SDValue Tmp2 = Node->getOperand(1); 1780 unsigned Align = Node->getConstantOperandVal(3); 1781 1782 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1783 Tmp2, MachinePointerInfo(V)); 1784 SDValue VAList = VAListLoad; 1785 1786 if (Align > TLI.getMinStackArgumentAlignment()) { 1787 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1788 1789 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1790 getConstant(Align - 1, dl, VAList.getValueType())); 1791 1792 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1793 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1794 } 1795 1796 // Increment the pointer, VAList, to the next vaarg 1797 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1798 getConstant(getDataLayout().getTypeAllocSize( 1799 VT.getTypeForEVT(*getContext())), 1800 dl, VAList.getValueType())); 1801 // Store the incremented VAList to the legalized pointer 1802 Tmp1 = 1803 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1804 // Load the actual argument out of the pointer VAList 1805 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1806 } 1807 1808 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1809 SDLoc dl(Node); 1810 const TargetLowering &TLI = getTargetLoweringInfo(); 1811 // This defaults to loading a pointer from the input and storing it to the 1812 // output, returning the chain. 1813 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1814 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1815 SDValue Tmp1 = 1816 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1817 Node->getOperand(2), MachinePointerInfo(VS)); 1818 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1819 MachinePointerInfo(VD)); 1820 } 1821 1822 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1823 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1824 unsigned ByteSize = VT.getStoreSize(); 1825 Type *Ty = VT.getTypeForEVT(*getContext()); 1826 unsigned StackAlign = 1827 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1828 1829 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1830 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1831 } 1832 1833 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1834 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1835 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1836 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1837 const DataLayout &DL = getDataLayout(); 1838 unsigned Align = 1839 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1840 1841 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1842 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1843 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1844 } 1845 1846 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1847 ISD::CondCode Cond, const SDLoc &dl) { 1848 // These setcc operations always fold. 1849 switch (Cond) { 1850 default: break; 1851 case ISD::SETFALSE: 1852 case ISD::SETFALSE2: return getConstant(0, dl, VT); 1853 case ISD::SETTRUE: 1854 case ISD::SETTRUE2: { 1855 TargetLowering::BooleanContent Cnt = 1856 TLI->getBooleanContents(N1->getValueType(0)); 1857 return getConstant( 1858 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1859 VT); 1860 } 1861 1862 case ISD::SETOEQ: 1863 case ISD::SETOGT: 1864 case ISD::SETOGE: 1865 case ISD::SETOLT: 1866 case ISD::SETOLE: 1867 case ISD::SETONE: 1868 case ISD::SETO: 1869 case ISD::SETUO: 1870 case ISD::SETUEQ: 1871 case ISD::SETUNE: 1872 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); 1873 break; 1874 } 1875 1876 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 1877 const APInt &C2 = N2C->getAPIntValue(); 1878 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 1879 const APInt &C1 = N1C->getAPIntValue(); 1880 1881 switch (Cond) { 1882 default: llvm_unreachable("Unknown integer setcc!"); 1883 case ISD::SETEQ: return getConstant(C1 == C2, dl, VT); 1884 case ISD::SETNE: return getConstant(C1 != C2, dl, VT); 1885 case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT); 1886 case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT); 1887 case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT); 1888 case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT); 1889 case ISD::SETLT: return getConstant(C1.slt(C2), dl, VT); 1890 case ISD::SETGT: return getConstant(C1.sgt(C2), dl, VT); 1891 case ISD::SETLE: return getConstant(C1.sle(C2), dl, VT); 1892 case ISD::SETGE: return getConstant(C1.sge(C2), dl, VT); 1893 } 1894 } 1895 } 1896 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) { 1897 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) { 1898 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); 1899 switch (Cond) { 1900 default: break; 1901 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 1902 return getUNDEF(VT); 1903 LLVM_FALLTHROUGH; 1904 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT); 1905 case ISD::SETNE: if (R==APFloat::cmpUnordered) 1906 return getUNDEF(VT); 1907 LLVM_FALLTHROUGH; 1908 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || 1909 R==APFloat::cmpLessThan, dl, VT); 1910 case ISD::SETLT: if (R==APFloat::cmpUnordered) 1911 return getUNDEF(VT); 1912 LLVM_FALLTHROUGH; 1913 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT); 1914 case ISD::SETGT: if (R==APFloat::cmpUnordered) 1915 return getUNDEF(VT); 1916 LLVM_FALLTHROUGH; 1917 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT); 1918 case ISD::SETLE: if (R==APFloat::cmpUnordered) 1919 return getUNDEF(VT); 1920 LLVM_FALLTHROUGH; 1921 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || 1922 R==APFloat::cmpEqual, dl, VT); 1923 case ISD::SETGE: if (R==APFloat::cmpUnordered) 1924 return getUNDEF(VT); 1925 LLVM_FALLTHROUGH; 1926 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || 1927 R==APFloat::cmpEqual, dl, VT); 1928 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, dl, VT); 1929 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, dl, VT); 1930 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || 1931 R==APFloat::cmpEqual, dl, VT); 1932 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT); 1933 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || 1934 R==APFloat::cmpLessThan, dl, VT); 1935 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || 1936 R==APFloat::cmpUnordered, dl, VT); 1937 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT); 1938 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT); 1939 } 1940 } else { 1941 // Ensure that the constant occurs on the RHS. 1942 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 1943 MVT CompVT = N1.getValueType().getSimpleVT(); 1944 if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) 1945 return SDValue(); 1946 1947 return getSetCC(dl, VT, N2, N1, SwappedCond); 1948 } 1949 } 1950 1951 // Could not fold it. 1952 return SDValue(); 1953 } 1954 1955 /// See if the specified operand can be simplified with the knowledge that only 1956 /// the bits specified by Mask are used. 1957 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) { 1958 switch (V.getOpcode()) { 1959 default: 1960 break; 1961 case ISD::Constant: { 1962 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 1963 assert(CV && "Const value should be ConstSDNode."); 1964 const APInt &CVal = CV->getAPIntValue(); 1965 APInt NewVal = CVal & Mask; 1966 if (NewVal != CVal) 1967 return getConstant(NewVal, SDLoc(V), V.getValueType()); 1968 break; 1969 } 1970 case ISD::OR: 1971 case ISD::XOR: 1972 // If the LHS or RHS don't contribute bits to the or, drop them. 1973 if (MaskedValueIsZero(V.getOperand(0), Mask)) 1974 return V.getOperand(1); 1975 if (MaskedValueIsZero(V.getOperand(1), Mask)) 1976 return V.getOperand(0); 1977 break; 1978 case ISD::SRL: 1979 // Only look at single-use SRLs. 1980 if (!V.getNode()->hasOneUse()) 1981 break; 1982 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 1983 // See if we can recursively simplify the LHS. 1984 unsigned Amt = RHSC->getZExtValue(); 1985 1986 // Watch out for shift count overflow though. 1987 if (Amt >= Mask.getBitWidth()) 1988 break; 1989 APInt NewMask = Mask << Amt; 1990 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) 1991 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 1992 V.getOperand(1)); 1993 } 1994 break; 1995 case ISD::AND: { 1996 // X & -1 -> X (ignoring bits which aren't demanded). 1997 ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1)); 1998 if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue())) 1999 return V.getOperand(0); 2000 break; 2001 } 2002 } 2003 return SDValue(); 2004 } 2005 2006 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2007 /// use this predicate to simplify operations downstream. 2008 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2009 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2010 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2011 } 2012 2013 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2014 /// this predicate to simplify operations downstream. Mask is known to be zero 2015 /// for bits that V cannot have. 2016 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 2017 unsigned Depth) const { 2018 KnownBits Known; 2019 computeKnownBits(Op, Known, Depth); 2020 return Mask.isSubsetOf(Known.Zero); 2021 } 2022 2023 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 2024 /// is less than the element bit-width of the shift node, return it. 2025 static const APInt *getValidShiftAmountConstant(SDValue V) { 2026 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 2027 // Shifting more than the bitwidth is not valid. 2028 const APInt &ShAmt = SA->getAPIntValue(); 2029 if (ShAmt.ult(V.getScalarValueSizeInBits())) 2030 return &ShAmt; 2031 } 2032 return nullptr; 2033 } 2034 2035 /// Determine which bits of Op are known to be either zero or one and return 2036 /// them in Known. For vectors, the known bits are those that are shared by 2037 /// every vector element. 2038 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, 2039 unsigned Depth) const { 2040 EVT VT = Op.getValueType(); 2041 APInt DemandedElts = VT.isVector() 2042 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2043 : APInt(1, 1); 2044 computeKnownBits(Op, Known, DemandedElts, Depth); 2045 } 2046 2047 /// Determine which bits of Op are known to be either zero or one and return 2048 /// them in Known. The DemandedElts argument allows us to only collect the known 2049 /// bits that are shared by the requested vector elements. 2050 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, 2051 const APInt &DemandedElts, 2052 unsigned Depth) const { 2053 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2054 2055 Known = KnownBits(BitWidth); // Don't know anything. 2056 if (Depth == 6) 2057 return; // Limit search depth. 2058 2059 KnownBits Known2; 2060 unsigned NumElts = DemandedElts.getBitWidth(); 2061 2062 if (!DemandedElts) 2063 return; // No demanded elts, better to assume we don't know anything. 2064 2065 unsigned Opcode = Op.getOpcode(); 2066 switch (Opcode) { 2067 case ISD::Constant: 2068 // We know all of the bits for a constant! 2069 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 2070 Known.Zero = ~Known.One; 2071 break; 2072 case ISD::BUILD_VECTOR: 2073 // Collect the known bits that are shared by every demanded vector element. 2074 assert(NumElts == Op.getValueType().getVectorNumElements() && 2075 "Unexpected vector size"); 2076 Known.Zero.setAllBits(); Known.One.setAllBits(); 2077 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2078 if (!DemandedElts[i]) 2079 continue; 2080 2081 SDValue SrcOp = Op.getOperand(i); 2082 computeKnownBits(SrcOp, Known2, Depth + 1); 2083 2084 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2085 if (SrcOp.getValueSizeInBits() != BitWidth) { 2086 assert(SrcOp.getValueSizeInBits() > BitWidth && 2087 "Expected BUILD_VECTOR implicit truncation"); 2088 Known2 = Known2.trunc(BitWidth); 2089 } 2090 2091 // Known bits are the values that are shared by every demanded element. 2092 Known.One &= Known2.One; 2093 Known.Zero &= Known2.Zero; 2094 2095 // If we don't know any bits, early out. 2096 if (!Known.One && !Known.Zero) 2097 break; 2098 } 2099 break; 2100 case ISD::VECTOR_SHUFFLE: { 2101 // Collect the known bits that are shared by every vector element referenced 2102 // by the shuffle. 2103 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2104 Known.Zero.setAllBits(); Known.One.setAllBits(); 2105 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2106 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2107 for (unsigned i = 0; i != NumElts; ++i) { 2108 if (!DemandedElts[i]) 2109 continue; 2110 2111 int M = SVN->getMaskElt(i); 2112 if (M < 0) { 2113 // For UNDEF elements, we don't know anything about the common state of 2114 // the shuffle result. 2115 Known.resetAll(); 2116 DemandedLHS.clearAllBits(); 2117 DemandedRHS.clearAllBits(); 2118 break; 2119 } 2120 2121 if ((unsigned)M < NumElts) 2122 DemandedLHS.setBit((unsigned)M % NumElts); 2123 else 2124 DemandedRHS.setBit((unsigned)M % NumElts); 2125 } 2126 // Known bits are the values that are shared by every demanded element. 2127 if (!!DemandedLHS) { 2128 SDValue LHS = Op.getOperand(0); 2129 computeKnownBits(LHS, Known2, DemandedLHS, Depth + 1); 2130 Known.One &= Known2.One; 2131 Known.Zero &= Known2.Zero; 2132 } 2133 // If we don't know any bits, early out. 2134 if (!Known.One && !Known.Zero) 2135 break; 2136 if (!!DemandedRHS) { 2137 SDValue RHS = Op.getOperand(1); 2138 computeKnownBits(RHS, Known2, DemandedRHS, Depth + 1); 2139 Known.One &= Known2.One; 2140 Known.Zero &= Known2.Zero; 2141 } 2142 break; 2143 } 2144 case ISD::CONCAT_VECTORS: { 2145 // Split DemandedElts and test each of the demanded subvectors. 2146 Known.Zero.setAllBits(); Known.One.setAllBits(); 2147 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2148 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2149 unsigned NumSubVectors = Op.getNumOperands(); 2150 for (unsigned i = 0; i != NumSubVectors; ++i) { 2151 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2152 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2153 if (!!DemandedSub) { 2154 SDValue Sub = Op.getOperand(i); 2155 computeKnownBits(Sub, Known2, DemandedSub, Depth + 1); 2156 Known.One &= Known2.One; 2157 Known.Zero &= Known2.Zero; 2158 } 2159 // If we don't know any bits, early out. 2160 if (!Known.One && !Known.Zero) 2161 break; 2162 } 2163 break; 2164 } 2165 case ISD::EXTRACT_SUBVECTOR: { 2166 // If we know the element index, just demand that subvector elements, 2167 // otherwise demand them all. 2168 SDValue Src = Op.getOperand(0); 2169 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2170 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2171 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2172 // Offset the demanded elts by the subvector index. 2173 uint64_t Idx = SubIdx->getZExtValue(); 2174 APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); 2175 computeKnownBits(Src, Known, DemandedSrc, Depth + 1); 2176 } else { 2177 computeKnownBits(Src, Known, Depth + 1); 2178 } 2179 break; 2180 } 2181 case ISD::BITCAST: { 2182 SDValue N0 = Op.getOperand(0); 2183 unsigned SubBitWidth = N0.getScalarValueSizeInBits(); 2184 2185 // Ignore bitcasts from floating point. 2186 if (!N0.getValueType().isInteger()) 2187 break; 2188 2189 // Fast handling of 'identity' bitcasts. 2190 if (BitWidth == SubBitWidth) { 2191 computeKnownBits(N0, Known, DemandedElts, Depth + 1); 2192 break; 2193 } 2194 2195 // Support big-endian targets when it becomes useful. 2196 bool IsLE = getDataLayout().isLittleEndian(); 2197 if (!IsLE) 2198 break; 2199 2200 // Bitcast 'small element' vector to 'large element' scalar/vector. 2201 if ((BitWidth % SubBitWidth) == 0) { 2202 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2203 2204 // Collect known bits for the (larger) output by collecting the known 2205 // bits from each set of sub elements and shift these into place. 2206 // We need to separately call computeKnownBits for each set of 2207 // sub elements as the knownbits for each is likely to be different. 2208 unsigned SubScale = BitWidth / SubBitWidth; 2209 APInt SubDemandedElts(NumElts * SubScale, 0); 2210 for (unsigned i = 0; i != NumElts; ++i) 2211 if (DemandedElts[i]) 2212 SubDemandedElts.setBit(i * SubScale); 2213 2214 for (unsigned i = 0; i != SubScale; ++i) { 2215 computeKnownBits(N0, Known2, SubDemandedElts.shl(i), 2216 Depth + 1); 2217 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * i); 2218 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * i); 2219 } 2220 } 2221 2222 // Bitcast 'large element' scalar/vector to 'small element' vector. 2223 if ((SubBitWidth % BitWidth) == 0) { 2224 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2225 2226 // Collect known bits for the (smaller) output by collecting the known 2227 // bits from the overlapping larger input elements and extracting the 2228 // sub sections we actually care about. 2229 unsigned SubScale = SubBitWidth / BitWidth; 2230 APInt SubDemandedElts(NumElts / SubScale, 0); 2231 for (unsigned i = 0; i != NumElts; ++i) 2232 if (DemandedElts[i]) 2233 SubDemandedElts.setBit(i / SubScale); 2234 2235 computeKnownBits(N0, Known2, SubDemandedElts, Depth + 1); 2236 2237 Known.Zero.setAllBits(); Known.One.setAllBits(); 2238 for (unsigned i = 0; i != NumElts; ++i) 2239 if (DemandedElts[i]) { 2240 unsigned Offset = (i % SubScale) * BitWidth; 2241 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2242 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2243 // If we don't know any bits, early out. 2244 if (!Known.One && !Known.Zero) 2245 break; 2246 } 2247 } 2248 break; 2249 } 2250 case ISD::AND: 2251 // If either the LHS or the RHS are Zero, the result is zero. 2252 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2253 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2254 2255 // Output known-1 bits are only known if set in both the LHS & RHS. 2256 Known.One &= Known2.One; 2257 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2258 Known.Zero |= Known2.Zero; 2259 break; 2260 case ISD::OR: 2261 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2262 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2263 2264 // Output known-0 bits are only known if clear in both the LHS & RHS. 2265 Known.Zero &= Known2.Zero; 2266 // Output known-1 are known to be set if set in either the LHS | RHS. 2267 Known.One |= Known2.One; 2268 break; 2269 case ISD::XOR: { 2270 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2271 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2272 2273 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2274 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2275 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2276 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2277 Known.Zero = KnownZeroOut; 2278 break; 2279 } 2280 case ISD::MUL: { 2281 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2282 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2283 2284 // If low bits are zero in either operand, output low known-0 bits. 2285 // Also compute a conservative estimate for high known-0 bits. 2286 // More trickiness is possible, but this is sufficient for the 2287 // interesting case of alignment computation. 2288 unsigned TrailZ = Known.countMinTrailingZeros() + 2289 Known2.countMinTrailingZeros(); 2290 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2291 Known2.countMinLeadingZeros(), 2292 BitWidth) - BitWidth; 2293 2294 Known.resetAll(); 2295 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2296 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2297 break; 2298 } 2299 case ISD::UDIV: { 2300 // For the purposes of computing leading zeros we can conservatively 2301 // treat a udiv as a logical right shift by the power of 2 known to 2302 // be less than the denominator. 2303 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2304 unsigned LeadZ = Known2.countMinLeadingZeros(); 2305 2306 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2307 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2308 if (RHSMaxLeadingZeros != BitWidth) 2309 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2310 2311 Known.Zero.setHighBits(LeadZ); 2312 break; 2313 } 2314 case ISD::SELECT: 2315 computeKnownBits(Op.getOperand(2), Known, Depth+1); 2316 // If we don't know any bits, early out. 2317 if (!Known.One && !Known.Zero) 2318 break; 2319 computeKnownBits(Op.getOperand(1), Known2, Depth+1); 2320 2321 // Only known if known in both the LHS and RHS. 2322 Known.One &= Known2.One; 2323 Known.Zero &= Known2.Zero; 2324 break; 2325 case ISD::SELECT_CC: 2326 computeKnownBits(Op.getOperand(3), Known, Depth+1); 2327 // If we don't know any bits, early out. 2328 if (!Known.One && !Known.Zero) 2329 break; 2330 computeKnownBits(Op.getOperand(2), Known2, Depth+1); 2331 2332 // Only known if known in both the LHS and RHS. 2333 Known.One &= Known2.One; 2334 Known.Zero &= Known2.Zero; 2335 break; 2336 case ISD::SMULO: 2337 case ISD::UMULO: 2338 if (Op.getResNo() != 1) 2339 break; 2340 // The boolean result conforms to getBooleanContents. 2341 // If we know the result of a setcc has the top bits zero, use this info. 2342 // We know that we have an integer-based boolean since these operations 2343 // are only available for integer. 2344 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2345 TargetLowering::ZeroOrOneBooleanContent && 2346 BitWidth > 1) 2347 Known.Zero.setBitsFrom(1); 2348 break; 2349 case ISD::SETCC: 2350 // If we know the result of a setcc has the top bits zero, use this info. 2351 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2352 TargetLowering::ZeroOrOneBooleanContent && 2353 BitWidth > 1) 2354 Known.Zero.setBitsFrom(1); 2355 break; 2356 case ISD::SHL: 2357 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2358 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2359 Known.Zero <<= *ShAmt; 2360 Known.One <<= *ShAmt; 2361 // Low bits are known zero. 2362 Known.Zero.setLowBits(ShAmt->getZExtValue()); 2363 } 2364 break; 2365 case ISD::SRL: 2366 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2367 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2368 Known.Zero.lshrInPlace(*ShAmt); 2369 Known.One.lshrInPlace(*ShAmt); 2370 // High bits are known zero. 2371 Known.Zero.setHighBits(ShAmt->getZExtValue()); 2372 } 2373 break; 2374 case ISD::SRA: 2375 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2376 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2377 Known.Zero.lshrInPlace(*ShAmt); 2378 Known.One.lshrInPlace(*ShAmt); 2379 // If we know the value of the sign bit, then we know it is copied across 2380 // the high bits by the shift amount. 2381 APInt SignMask = APInt::getSignMask(BitWidth); 2382 SignMask.lshrInPlace(*ShAmt); // Adjust to where it is now in the mask. 2383 if (Known.Zero.intersects(SignMask)) { 2384 Known.Zero.setHighBits(ShAmt->getZExtValue());// New bits are known zero. 2385 } else if (Known.One.intersects(SignMask)) { 2386 Known.One.setHighBits(ShAmt->getZExtValue()); // New bits are known one. 2387 } 2388 } 2389 break; 2390 case ISD::SIGN_EXTEND_INREG: { 2391 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2392 unsigned EBits = EVT.getScalarSizeInBits(); 2393 2394 // Sign extension. Compute the demanded bits in the result that are not 2395 // present in the input. 2396 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2397 2398 APInt InSignMask = APInt::getSignMask(EBits); 2399 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2400 2401 // If the sign extended bits are demanded, we know that the sign 2402 // bit is demanded. 2403 InSignMask = InSignMask.zext(BitWidth); 2404 if (NewBits.getBoolValue()) 2405 InputDemandedBits |= InSignMask; 2406 2407 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2408 Known.One &= InputDemandedBits; 2409 Known.Zero &= InputDemandedBits; 2410 2411 // If the sign bit of the input is known set or clear, then we know the 2412 // top bits of the result. 2413 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2414 Known.Zero |= NewBits; 2415 Known.One &= ~NewBits; 2416 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2417 Known.One |= NewBits; 2418 Known.Zero &= ~NewBits; 2419 } else { // Input sign bit unknown 2420 Known.Zero &= ~NewBits; 2421 Known.One &= ~NewBits; 2422 } 2423 break; 2424 } 2425 case ISD::CTTZ: 2426 case ISD::CTTZ_ZERO_UNDEF: { 2427 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2428 // If we have a known 1, its position is our upper bound. 2429 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2430 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2431 Known.Zero.setBitsFrom(LowBits); 2432 break; 2433 } 2434 case ISD::CTLZ: 2435 case ISD::CTLZ_ZERO_UNDEF: { 2436 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2437 // If we have a known 1, its position is our upper bound. 2438 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2439 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2440 Known.Zero.setBitsFrom(LowBits); 2441 break; 2442 } 2443 case ISD::CTPOP: { 2444 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2445 // If we know some of the bits are zero, they can't be one. 2446 unsigned PossibleOnes = Known2.countMaxPopulation(); 2447 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 2448 break; 2449 } 2450 case ISD::LOAD: { 2451 LoadSDNode *LD = cast<LoadSDNode>(Op); 2452 // If this is a ZEXTLoad and we are looking at the loaded value. 2453 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2454 EVT VT = LD->getMemoryVT(); 2455 unsigned MemBits = VT.getScalarSizeInBits(); 2456 Known.Zero.setBitsFrom(MemBits); 2457 } else if (const MDNode *Ranges = LD->getRanges()) { 2458 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2459 computeKnownBitsFromRangeMetadata(*Ranges, Known); 2460 } 2461 break; 2462 } 2463 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2464 EVT InVT = Op.getOperand(0).getValueType(); 2465 unsigned InBits = InVT.getScalarSizeInBits(); 2466 Known = Known.trunc(InBits); 2467 computeKnownBits(Op.getOperand(0), Known, 2468 DemandedElts.zext(InVT.getVectorNumElements()), 2469 Depth + 1); 2470 Known = Known.zext(BitWidth); 2471 Known.Zero.setBitsFrom(InBits); 2472 break; 2473 } 2474 case ISD::ZERO_EXTEND: { 2475 EVT InVT = Op.getOperand(0).getValueType(); 2476 unsigned InBits = InVT.getScalarSizeInBits(); 2477 Known = Known.trunc(InBits); 2478 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2479 Known = Known.zext(BitWidth); 2480 Known.Zero.setBitsFrom(InBits); 2481 break; 2482 } 2483 // TODO ISD::SIGN_EXTEND_VECTOR_INREG 2484 case ISD::SIGN_EXTEND: { 2485 EVT InVT = Op.getOperand(0).getValueType(); 2486 unsigned InBits = InVT.getScalarSizeInBits(); 2487 2488 Known = Known.trunc(InBits); 2489 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2490 2491 // If the sign bit is known to be zero or one, then sext will extend 2492 // it to the top bits, else it will just zext. 2493 Known = Known.sext(BitWidth); 2494 break; 2495 } 2496 case ISD::ANY_EXTEND: { 2497 EVT InVT = Op.getOperand(0).getValueType(); 2498 unsigned InBits = InVT.getScalarSizeInBits(); 2499 Known = Known.trunc(InBits); 2500 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2501 Known = Known.zext(BitWidth); 2502 break; 2503 } 2504 case ISD::TRUNCATE: { 2505 EVT InVT = Op.getOperand(0).getValueType(); 2506 unsigned InBits = InVT.getScalarSizeInBits(); 2507 Known = Known.zext(InBits); 2508 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2509 Known = Known.trunc(BitWidth); 2510 break; 2511 } 2512 case ISD::AssertZext: { 2513 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2514 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2515 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2516 Known.Zero |= (~InMask); 2517 Known.One &= (~Known.Zero); 2518 break; 2519 } 2520 case ISD::FGETSIGN: 2521 // All bits are zero except the low bit. 2522 Known.Zero.setBitsFrom(1); 2523 break; 2524 case ISD::USUBO: 2525 case ISD::SSUBO: 2526 if (Op.getResNo() == 1) { 2527 // If we know the result of a setcc has the top bits zero, use this info. 2528 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2529 TargetLowering::ZeroOrOneBooleanContent && 2530 BitWidth > 1) 2531 Known.Zero.setBitsFrom(1); 2532 break; 2533 } 2534 LLVM_FALLTHROUGH; 2535 case ISD::SUB: 2536 case ISD::SUBC: { 2537 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) { 2538 // We know that the top bits of C-X are clear if X contains less bits 2539 // than C (i.e. no wrap-around can happen). For example, 20-X is 2540 // positive if we can prove that X is >= 0 and < 16. 2541 if (CLHS->getAPIntValue().isNonNegative()) { 2542 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); 2543 // NLZ can't be BitWidth with no sign bit 2544 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 2545 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, 2546 Depth + 1); 2547 2548 // If all of the MaskV bits are known to be zero, then we know the 2549 // output top bits are zero, because we now know that the output is 2550 // from [0-C]. 2551 if ((Known2.Zero & MaskV) == MaskV) { 2552 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); 2553 // Top bits known zero. 2554 Known.Zero.setHighBits(NLZ2); 2555 } 2556 } 2557 } 2558 2559 // If low bits are know to be zero in both operands, then we know they are 2560 // going to be 0 in the result. Both addition and complement operations 2561 // preserve the low zero bits. 2562 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2563 unsigned KnownZeroLow = Known2.countMinTrailingZeros(); 2564 if (KnownZeroLow == 0) 2565 break; 2566 2567 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2568 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); 2569 Known.Zero.setLowBits(KnownZeroLow); 2570 break; 2571 } 2572 case ISD::UADDO: 2573 case ISD::SADDO: 2574 case ISD::ADDCARRY: 2575 if (Op.getResNo() == 1) { 2576 // If we know the result of a setcc has the top bits zero, use this info. 2577 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2578 TargetLowering::ZeroOrOneBooleanContent && 2579 BitWidth > 1) 2580 Known.Zero.setBitsFrom(1); 2581 break; 2582 } 2583 LLVM_FALLTHROUGH; 2584 case ISD::ADD: 2585 case ISD::ADDC: 2586 case ISD::ADDE: { 2587 // Output known-0 bits are known if clear or set in both the low clear bits 2588 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the 2589 // low 3 bits clear. 2590 // Output known-0 bits are also known if the top bits of each input are 2591 // known to be clear. For example, if one input has the top 10 bits clear 2592 // and the other has the top 8 bits clear, we know the top 7 bits of the 2593 // output must be clear. 2594 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2595 unsigned KnownZeroHigh = Known2.countMinLeadingZeros(); 2596 unsigned KnownZeroLow = Known2.countMinTrailingZeros(); 2597 2598 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, 2599 Depth + 1); 2600 KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros()); 2601 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); 2602 2603 if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) { 2604 // With ADDE and ADDCARRY, a carry bit may be added in, so we can only 2605 // use this information if we know (at least) that the low two bits are 2606 // clear. We then return to the caller that the low bit is unknown but 2607 // that other bits are known zero. 2608 if (KnownZeroLow >= 2) 2609 Known.Zero.setBits(1, KnownZeroLow); 2610 break; 2611 } 2612 2613 Known.Zero.setLowBits(KnownZeroLow); 2614 if (KnownZeroHigh > 1) 2615 Known.Zero.setHighBits(KnownZeroHigh - 1); 2616 break; 2617 } 2618 case ISD::SREM: 2619 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2620 const APInt &RA = Rem->getAPIntValue().abs(); 2621 if (RA.isPowerOf2()) { 2622 APInt LowBits = RA - 1; 2623 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2624 2625 // The low bits of the first operand are unchanged by the srem. 2626 Known.Zero = Known2.Zero & LowBits; 2627 Known.One = Known2.One & LowBits; 2628 2629 // If the first operand is non-negative or has all low bits zero, then 2630 // the upper bits are all zero. 2631 if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits)) 2632 Known.Zero |= ~LowBits; 2633 2634 // If the first operand is negative and not all low bits are zero, then 2635 // the upper bits are all one. 2636 if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0)) 2637 Known.One |= ~LowBits; 2638 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 2639 } 2640 } 2641 break; 2642 case ISD::UREM: { 2643 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2644 const APInt &RA = Rem->getAPIntValue(); 2645 if (RA.isPowerOf2()) { 2646 APInt LowBits = (RA - 1); 2647 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2648 2649 // The upper bits are all zero, the lower ones are unchanged. 2650 Known.Zero = Known2.Zero | ~LowBits; 2651 Known.One = Known2.One & LowBits; 2652 break; 2653 } 2654 } 2655 2656 // Since the result is less than or equal to either operand, any leading 2657 // zero bits in either operand must also exist in the result. 2658 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2659 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2660 2661 uint32_t Leaders = 2662 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 2663 Known.resetAll(); 2664 Known.Zero.setHighBits(Leaders); 2665 break; 2666 } 2667 case ISD::EXTRACT_ELEMENT: { 2668 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2669 const unsigned Index = Op.getConstantOperandVal(1); 2670 const unsigned BitWidth = Op.getValueSizeInBits(); 2671 2672 // Remove low part of known bits mask 2673 Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth); 2674 Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth); 2675 2676 // Remove high part of known bit mask 2677 Known = Known.trunc(BitWidth); 2678 break; 2679 } 2680 case ISD::EXTRACT_VECTOR_ELT: { 2681 SDValue InVec = Op.getOperand(0); 2682 SDValue EltNo = Op.getOperand(1); 2683 EVT VecVT = InVec.getValueType(); 2684 const unsigned BitWidth = Op.getValueSizeInBits(); 2685 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 2686 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 2687 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2688 // anything about the extended bits. 2689 if (BitWidth > EltBitWidth) 2690 Known = Known.trunc(EltBitWidth); 2691 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 2692 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 2693 // If we know the element index, just demand that vector element. 2694 unsigned Idx = ConstEltNo->getZExtValue(); 2695 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 2696 computeKnownBits(InVec, Known, DemandedElt, Depth + 1); 2697 } else { 2698 // Unknown element index, so ignore DemandedElts and demand them all. 2699 computeKnownBits(InVec, Known, Depth + 1); 2700 } 2701 if (BitWidth > EltBitWidth) 2702 Known = Known.zext(BitWidth); 2703 break; 2704 } 2705 case ISD::INSERT_VECTOR_ELT: { 2706 SDValue InVec = Op.getOperand(0); 2707 SDValue InVal = Op.getOperand(1); 2708 SDValue EltNo = Op.getOperand(2); 2709 2710 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 2711 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 2712 // If we know the element index, split the demand between the 2713 // source vector and the inserted element. 2714 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); 2715 unsigned EltIdx = CEltNo->getZExtValue(); 2716 2717 // If we demand the inserted element then add its common known bits. 2718 if (DemandedElts[EltIdx]) { 2719 computeKnownBits(InVal, Known2, Depth + 1); 2720 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 2721 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 2722 } 2723 2724 // If we demand the source vector then add its common known bits, ensuring 2725 // that we don't demand the inserted element. 2726 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 2727 if (!!VectorElts) { 2728 computeKnownBits(InVec, Known2, VectorElts, Depth + 1); 2729 Known.One &= Known2.One; 2730 Known.Zero &= Known2.Zero; 2731 } 2732 } else { 2733 // Unknown element index, so ignore DemandedElts and demand them all. 2734 computeKnownBits(InVec, Known, Depth + 1); 2735 computeKnownBits(InVal, Known2, Depth + 1); 2736 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 2737 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 2738 } 2739 break; 2740 } 2741 case ISD::BITREVERSE: { 2742 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2743 Known.Zero = Known2.Zero.reverseBits(); 2744 Known.One = Known2.One.reverseBits(); 2745 break; 2746 } 2747 case ISD::BSWAP: { 2748 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2749 Known.Zero = Known2.Zero.byteSwap(); 2750 Known.One = Known2.One.byteSwap(); 2751 break; 2752 } 2753 case ISD::ABS: { 2754 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2755 2756 // If the source's MSB is zero then we know the rest of the bits already. 2757 if (Known2.isNonNegative()) { 2758 Known.Zero = Known2.Zero; 2759 Known.One = Known2.One; 2760 break; 2761 } 2762 2763 // We only know that the absolute values's MSB will be zero iff there is 2764 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 2765 Known2.One.clearSignBit(); 2766 if (Known2.One.getBoolValue()) { 2767 Known.Zero = APInt::getSignMask(BitWidth); 2768 break; 2769 } 2770 break; 2771 } 2772 case ISD::UMIN: { 2773 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2774 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2775 2776 // UMIN - we know that the result will have the maximum of the 2777 // known zero leading bits of the inputs. 2778 unsigned LeadZero = Known.countMinLeadingZeros(); 2779 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 2780 2781 Known.Zero &= Known2.Zero; 2782 Known.One &= Known2.One; 2783 Known.Zero.setHighBits(LeadZero); 2784 break; 2785 } 2786 case ISD::UMAX: { 2787 computeKnownBits(Op.getOperand(0), Known, DemandedElts, 2788 Depth + 1); 2789 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2790 2791 // UMAX - we know that the result will have the maximum of the 2792 // known one leading bits of the inputs. 2793 unsigned LeadOne = Known.countMinLeadingOnes(); 2794 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 2795 2796 Known.Zero &= Known2.Zero; 2797 Known.One &= Known2.One; 2798 Known.One.setHighBits(LeadOne); 2799 break; 2800 } 2801 case ISD::SMIN: 2802 case ISD::SMAX: { 2803 computeKnownBits(Op.getOperand(0), Known, DemandedElts, 2804 Depth + 1); 2805 // If we don't know any bits, early out. 2806 if (!Known.One && !Known.Zero) 2807 break; 2808 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2809 Known.Zero &= Known2.Zero; 2810 Known.One &= Known2.One; 2811 break; 2812 } 2813 case ISD::FrameIndex: 2814 case ISD::TargetFrameIndex: 2815 if (unsigned Align = InferPtrAlignment(Op)) { 2816 // The low bits are known zero if the pointer is aligned. 2817 Known.Zero.setLowBits(Log2_32(Align)); 2818 break; 2819 } 2820 break; 2821 2822 default: 2823 if (Opcode < ISD::BUILTIN_OP_END) 2824 break; 2825 LLVM_FALLTHROUGH; 2826 case ISD::INTRINSIC_WO_CHAIN: 2827 case ISD::INTRINSIC_W_CHAIN: 2828 case ISD::INTRINSIC_VOID: 2829 // Allow the target to implement this method for its nodes. 2830 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 2831 break; 2832 } 2833 2834 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2835 } 2836 2837 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 2838 SDValue N1) const { 2839 // X + 0 never overflow 2840 if (isNullConstant(N1)) 2841 return OFK_Never; 2842 2843 KnownBits N1Known; 2844 computeKnownBits(N1, N1Known); 2845 if (N1Known.Zero.getBoolValue()) { 2846 KnownBits N0Known; 2847 computeKnownBits(N0, N0Known); 2848 2849 bool overflow; 2850 (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); 2851 if (!overflow) 2852 return OFK_Never; 2853 } 2854 2855 // mulhi + 1 never overflow 2856 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 2857 (~N1Known.Zero & 0x01) == ~N1Known.Zero) 2858 return OFK_Never; 2859 2860 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 2861 KnownBits N0Known; 2862 computeKnownBits(N0, N0Known); 2863 2864 if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) 2865 return OFK_Never; 2866 } 2867 2868 return OFK_Sometime; 2869 } 2870 2871 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 2872 EVT OpVT = Val.getValueType(); 2873 unsigned BitWidth = OpVT.getScalarSizeInBits(); 2874 2875 // Is the constant a known power of 2? 2876 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 2877 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 2878 2879 // A left-shift of a constant one will have exactly one bit set because 2880 // shifting the bit off the end is undefined. 2881 if (Val.getOpcode() == ISD::SHL) { 2882 auto *C = isConstOrConstSplat(Val.getOperand(0)); 2883 if (C && C->getAPIntValue() == 1) 2884 return true; 2885 } 2886 2887 // Similarly, a logical right-shift of a constant sign-bit will have exactly 2888 // one bit set. 2889 if (Val.getOpcode() == ISD::SRL) { 2890 auto *C = isConstOrConstSplat(Val.getOperand(0)); 2891 if (C && C->getAPIntValue().isSignMask()) 2892 return true; 2893 } 2894 2895 // Are all operands of a build vector constant powers of two? 2896 if (Val.getOpcode() == ISD::BUILD_VECTOR) 2897 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 2898 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 2899 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 2900 return false; 2901 })) 2902 return true; 2903 2904 // More could be done here, though the above checks are enough 2905 // to handle some common cases. 2906 2907 // Fall back to computeKnownBits to catch other known cases. 2908 KnownBits Known; 2909 computeKnownBits(Val, Known); 2910 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 2911 } 2912 2913 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 2914 EVT VT = Op.getValueType(); 2915 APInt DemandedElts = VT.isVector() 2916 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2917 : APInt(1, 1); 2918 return ComputeNumSignBits(Op, DemandedElts, Depth); 2919 } 2920 2921 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 2922 unsigned Depth) const { 2923 EVT VT = Op.getValueType(); 2924 assert(VT.isInteger() && "Invalid VT!"); 2925 unsigned VTBits = VT.getScalarSizeInBits(); 2926 unsigned NumElts = DemandedElts.getBitWidth(); 2927 unsigned Tmp, Tmp2; 2928 unsigned FirstAnswer = 1; 2929 2930 if (Depth == 6) 2931 return 1; // Limit search depth. 2932 2933 if (!DemandedElts) 2934 return 1; // No demanded elts, better to assume we don't know anything. 2935 2936 switch (Op.getOpcode()) { 2937 default: break; 2938 case ISD::AssertSext: 2939 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2940 return VTBits-Tmp+1; 2941 case ISD::AssertZext: 2942 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2943 return VTBits-Tmp; 2944 2945 case ISD::Constant: { 2946 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue(); 2947 return Val.getNumSignBits(); 2948 } 2949 2950 case ISD::BUILD_VECTOR: 2951 Tmp = VTBits; 2952 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 2953 if (!DemandedElts[i]) 2954 continue; 2955 2956 SDValue SrcOp = Op.getOperand(i); 2957 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 2958 2959 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2960 if (SrcOp.getValueSizeInBits() != VTBits) { 2961 assert(SrcOp.getValueSizeInBits() > VTBits && 2962 "Expected BUILD_VECTOR implicit truncation"); 2963 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 2964 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 2965 } 2966 Tmp = std::min(Tmp, Tmp2); 2967 } 2968 return Tmp; 2969 2970 case ISD::VECTOR_SHUFFLE: { 2971 // Collect the minimum number of sign bits that are shared by every vector 2972 // element referenced by the shuffle. 2973 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2974 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2975 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2976 for (unsigned i = 0; i != NumElts; ++i) { 2977 int M = SVN->getMaskElt(i); 2978 if (!DemandedElts[i]) 2979 continue; 2980 // For UNDEF elements, we don't know anything about the common state of 2981 // the shuffle result. 2982 if (M < 0) 2983 return 1; 2984 if ((unsigned)M < NumElts) 2985 DemandedLHS.setBit((unsigned)M % NumElts); 2986 else 2987 DemandedRHS.setBit((unsigned)M % NumElts); 2988 } 2989 Tmp = std::numeric_limits<unsigned>::max(); 2990 if (!!DemandedLHS) 2991 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 2992 if (!!DemandedRHS) { 2993 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 2994 Tmp = std::min(Tmp, Tmp2); 2995 } 2996 // If we don't know anything, early out and try computeKnownBits fall-back. 2997 if (Tmp == 1) 2998 break; 2999 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3000 return Tmp; 3001 } 3002 3003 case ISD::SIGN_EXTEND: 3004 case ISD::SIGN_EXTEND_VECTOR_INREG: 3005 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3006 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; 3007 3008 case ISD::SIGN_EXTEND_INREG: 3009 // Max of the input and what this extends. 3010 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3011 Tmp = VTBits-Tmp+1; 3012 3013 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3014 return std::max(Tmp, Tmp2); 3015 3016 case ISD::SRA: 3017 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3018 // SRA X, C -> adds C sign bits. 3019 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) { 3020 APInt ShiftVal = C->getAPIntValue(); 3021 ShiftVal += Tmp; 3022 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 3023 } 3024 return Tmp; 3025 case ISD::SHL: 3026 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) { 3027 // shl destroys sign bits. 3028 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3029 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 3030 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 3031 return Tmp - C->getZExtValue(); 3032 } 3033 break; 3034 case ISD::AND: 3035 case ISD::OR: 3036 case ISD::XOR: // NOT is handled here. 3037 // Logical binary ops preserve the number of sign bits at the worst. 3038 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3039 if (Tmp != 1) { 3040 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3041 FirstAnswer = std::min(Tmp, Tmp2); 3042 // We computed what we know about the sign bits as our first 3043 // answer. Now proceed to the generic code that uses 3044 // computeKnownBits, and pick whichever answer is better. 3045 } 3046 break; 3047 3048 case ISD::SELECT: 3049 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3050 if (Tmp == 1) return 1; // Early out. 3051 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1); 3052 return std::min(Tmp, Tmp2); 3053 case ISD::SELECT_CC: 3054 Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1); 3055 if (Tmp == 1) return 1; // Early out. 3056 Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1); 3057 return std::min(Tmp, Tmp2); 3058 case ISD::SMIN: 3059 case ISD::SMAX: 3060 case ISD::UMIN: 3061 case ISD::UMAX: 3062 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3063 if (Tmp == 1) 3064 return 1; // Early out. 3065 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3066 return std::min(Tmp, Tmp2); 3067 case ISD::SADDO: 3068 case ISD::UADDO: 3069 case ISD::SSUBO: 3070 case ISD::USUBO: 3071 case ISD::SMULO: 3072 case ISD::UMULO: 3073 if (Op.getResNo() != 1) 3074 break; 3075 // The boolean result conforms to getBooleanContents. Fall through. 3076 // If setcc returns 0/-1, all bits are sign bits. 3077 // We know that we have an integer-based boolean since these operations 3078 // are only available for integer. 3079 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3080 TargetLowering::ZeroOrNegativeOneBooleanContent) 3081 return VTBits; 3082 break; 3083 case ISD::SETCC: 3084 // If setcc returns 0/-1, all bits are sign bits. 3085 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3086 TargetLowering::ZeroOrNegativeOneBooleanContent) 3087 return VTBits; 3088 break; 3089 case ISD::ROTL: 3090 case ISD::ROTR: 3091 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3092 unsigned RotAmt = C->getZExtValue() & (VTBits-1); 3093 3094 // Handle rotate right by N like a rotate left by 32-N. 3095 if (Op.getOpcode() == ISD::ROTR) 3096 RotAmt = (VTBits-RotAmt) & (VTBits-1); 3097 3098 // If we aren't rotating out all of the known-in sign bits, return the 3099 // number that are left. This handles rotl(sext(x), 1) for example. 3100 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3101 if (Tmp > RotAmt+1) return Tmp-RotAmt; 3102 } 3103 break; 3104 case ISD::ADD: 3105 case ISD::ADDC: 3106 // Add can have at most one carry bit. Thus we know that the output 3107 // is, at worst, one more bit than the inputs. 3108 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3109 if (Tmp == 1) return 1; // Early out. 3110 3111 // Special case decrementing a value (ADD X, -1): 3112 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3113 if (CRHS->isAllOnesValue()) { 3114 KnownBits Known; 3115 computeKnownBits(Op.getOperand(0), Known, Depth+1); 3116 3117 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3118 // sign bits set. 3119 if ((Known.Zero | 1).isAllOnesValue()) 3120 return VTBits; 3121 3122 // If we are subtracting one from a positive number, there is no carry 3123 // out of the result. 3124 if (Known.isNonNegative()) 3125 return Tmp; 3126 } 3127 3128 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3129 if (Tmp2 == 1) return 1; 3130 return std::min(Tmp, Tmp2)-1; 3131 3132 case ISD::SUB: 3133 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3134 if (Tmp2 == 1) return 1; 3135 3136 // Handle NEG. 3137 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3138 if (CLHS->isNullValue()) { 3139 KnownBits Known; 3140 computeKnownBits(Op.getOperand(1), Known, Depth+1); 3141 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3142 // sign bits set. 3143 if ((Known.Zero | 1).isAllOnesValue()) 3144 return VTBits; 3145 3146 // If the input is known to be positive (the sign bit is known clear), 3147 // the output of the NEG has the same number of sign bits as the input. 3148 if (Known.isNonNegative()) 3149 return Tmp2; 3150 3151 // Otherwise, we treat this like a SUB. 3152 } 3153 3154 // Sub can have at most one carry bit. Thus we know that the output 3155 // is, at worst, one more bit than the inputs. 3156 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3157 if (Tmp == 1) return 1; // Early out. 3158 return std::min(Tmp, Tmp2)-1; 3159 case ISD::TRUNCATE: { 3160 // Check if the sign bits of source go down as far as the truncated value. 3161 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3162 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3163 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3164 return NumSrcSignBits - (NumSrcBits - VTBits); 3165 break; 3166 } 3167 case ISD::EXTRACT_ELEMENT: { 3168 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3169 const int BitWidth = Op.getValueSizeInBits(); 3170 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3171 3172 // Get reverse index (starting from 1), Op1 value indexes elements from 3173 // little end. Sign starts at big end. 3174 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3175 3176 // If the sign portion ends in our element the subtraction gives correct 3177 // result. Otherwise it gives either negative or > bitwidth result 3178 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3179 } 3180 case ISD::INSERT_VECTOR_ELT: { 3181 SDValue InVec = Op.getOperand(0); 3182 SDValue InVal = Op.getOperand(1); 3183 SDValue EltNo = Op.getOperand(2); 3184 unsigned NumElts = InVec.getValueType().getVectorNumElements(); 3185 3186 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3187 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3188 // If we know the element index, split the demand between the 3189 // source vector and the inserted element. 3190 unsigned EltIdx = CEltNo->getZExtValue(); 3191 3192 // If we demand the inserted element then get its sign bits. 3193 Tmp = std::numeric_limits<unsigned>::max(); 3194 if (DemandedElts[EltIdx]) { 3195 // TODO - handle implicit truncation of inserted elements. 3196 if (InVal.getScalarValueSizeInBits() != VTBits) 3197 break; 3198 Tmp = ComputeNumSignBits(InVal, Depth + 1); 3199 } 3200 3201 // If we demand the source vector then get its sign bits, and determine 3202 // the minimum. 3203 APInt VectorElts = DemandedElts; 3204 VectorElts.clearBit(EltIdx); 3205 if (!!VectorElts) { 3206 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); 3207 Tmp = std::min(Tmp, Tmp2); 3208 } 3209 } else { 3210 // Unknown element index, so ignore DemandedElts and demand them all. 3211 Tmp = ComputeNumSignBits(InVec, Depth + 1); 3212 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3213 Tmp = std::min(Tmp, Tmp2); 3214 } 3215 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3216 return Tmp; 3217 } 3218 case ISD::EXTRACT_VECTOR_ELT: { 3219 SDValue InVec = Op.getOperand(0); 3220 SDValue EltNo = Op.getOperand(1); 3221 EVT VecVT = InVec.getValueType(); 3222 const unsigned BitWidth = Op.getValueSizeInBits(); 3223 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3224 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3225 3226 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3227 // anything about sign bits. But if the sizes match we can derive knowledge 3228 // about sign bits from the vector operand. 3229 if (BitWidth != EltBitWidth) 3230 break; 3231 3232 // If we know the element index, just demand that vector element, else for 3233 // an unknown element index, ignore DemandedElts and demand them all. 3234 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3235 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3236 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3237 DemandedSrcElts = 3238 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3239 3240 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3241 } 3242 case ISD::EXTRACT_SUBVECTOR: { 3243 // If we know the element index, just demand that subvector elements, 3244 // otherwise demand them all. 3245 SDValue Src = Op.getOperand(0); 3246 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3247 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3248 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3249 // Offset the demanded elts by the subvector index. 3250 uint64_t Idx = SubIdx->getZExtValue(); 3251 APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); 3252 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3253 } 3254 return ComputeNumSignBits(Src, Depth + 1); 3255 } 3256 case ISD::CONCAT_VECTORS: 3257 // Determine the minimum number of sign bits across all demanded 3258 // elts of the input vectors. Early out if the result is already 1. 3259 Tmp = std::numeric_limits<unsigned>::max(); 3260 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3261 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3262 unsigned NumSubVectors = Op.getNumOperands(); 3263 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3264 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3265 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3266 if (!DemandedSub) 3267 continue; 3268 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3269 Tmp = std::min(Tmp, Tmp2); 3270 } 3271 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3272 return Tmp; 3273 } 3274 3275 // If we are looking at the loaded value of the SDNode. 3276 if (Op.getResNo() == 0) { 3277 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3278 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3279 unsigned ExtType = LD->getExtensionType(); 3280 switch (ExtType) { 3281 default: break; 3282 case ISD::SEXTLOAD: // '17' bits known 3283 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3284 return VTBits-Tmp+1; 3285 case ISD::ZEXTLOAD: // '16' bits known 3286 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3287 return VTBits-Tmp; 3288 } 3289 } 3290 } 3291 3292 // Allow the target to implement this method for its nodes. 3293 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3294 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3295 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3296 Op.getOpcode() == ISD::INTRINSIC_VOID) { 3297 unsigned NumBits = 3298 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 3299 if (NumBits > 1) 3300 FirstAnswer = std::max(FirstAnswer, NumBits); 3301 } 3302 3303 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3304 // use this information. 3305 KnownBits Known; 3306 computeKnownBits(Op, Known, DemandedElts, Depth); 3307 3308 APInt Mask; 3309 if (Known.isNonNegative()) { // sign bit is 0 3310 Mask = Known.Zero; 3311 } else if (Known.isNegative()) { // sign bit is 1; 3312 Mask = Known.One; 3313 } else { 3314 // Nothing known. 3315 return FirstAnswer; 3316 } 3317 3318 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3319 // the number of identical bits in the top of the input value. 3320 Mask = ~Mask; 3321 Mask <<= Mask.getBitWidth()-VTBits; 3322 // Return # leading zeros. We use 'min' here in case Val was zero before 3323 // shifting. We don't want to return '64' as for an i32 "0". 3324 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3325 } 3326 3327 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3328 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3329 !isa<ConstantSDNode>(Op.getOperand(1))) 3330 return false; 3331 3332 if (Op.getOpcode() == ISD::OR && 3333 !MaskedValueIsZero(Op.getOperand(0), 3334 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) 3335 return false; 3336 3337 return true; 3338 } 3339 3340 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const { 3341 // If we're told that NaNs won't happen, assume they won't. 3342 if (getTarget().Options.NoNaNsFPMath) 3343 return true; 3344 3345 if (Op->getFlags().hasNoNaNs()) 3346 return true; 3347 3348 // If the value is a constant, we can obviously see if it is a NaN or not. 3349 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3350 return !C->getValueAPF().isNaN(); 3351 3352 // TODO: Recognize more cases here. 3353 3354 return false; 3355 } 3356 3357 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 3358 // If the value is a constant, we can obviously see if it is a zero or not. 3359 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3360 return !C->isZero(); 3361 3362 // TODO: Recognize more cases here. 3363 switch (Op.getOpcode()) { 3364 default: break; 3365 case ISD::OR: 3366 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3367 return !C->isNullValue(); 3368 break; 3369 } 3370 3371 return false; 3372 } 3373 3374 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 3375 // Check the obvious case. 3376 if (A == B) return true; 3377 3378 // For for negative and positive zero. 3379 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 3380 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 3381 if (CA->isZero() && CB->isZero()) return true; 3382 3383 // Otherwise they may not be equal. 3384 return false; 3385 } 3386 3387 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 3388 assert(A.getValueType() == B.getValueType() && 3389 "Values must have the same type"); 3390 KnownBits AKnown, BKnown; 3391 computeKnownBits(A, AKnown); 3392 computeKnownBits(B, BKnown); 3393 return (AKnown.Zero | BKnown.Zero).isAllOnesValue(); 3394 } 3395 3396 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 3397 ArrayRef<SDValue> Ops, 3398 SelectionDAG &DAG) { 3399 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 3400 assert(llvm::all_of(Ops, 3401 [Ops](SDValue Op) { 3402 return Ops[0].getValueType() == Op.getValueType(); 3403 }) && 3404 "Concatenation of vectors with inconsistent value types!"); 3405 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 3406 VT.getVectorNumElements() && 3407 "Incorrect element count in vector concatenation!"); 3408 3409 if (Ops.size() == 1) 3410 return Ops[0]; 3411 3412 // Concat of UNDEFs is UNDEF. 3413 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 3414 return DAG.getUNDEF(VT); 3415 3416 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 3417 // simplified to one big BUILD_VECTOR. 3418 // FIXME: Add support for SCALAR_TO_VECTOR as well. 3419 EVT SVT = VT.getScalarType(); 3420 SmallVector<SDValue, 16> Elts; 3421 for (SDValue Op : Ops) { 3422 EVT OpVT = Op.getValueType(); 3423 if (Op.isUndef()) 3424 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 3425 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 3426 Elts.append(Op->op_begin(), Op->op_end()); 3427 else 3428 return SDValue(); 3429 } 3430 3431 // BUILD_VECTOR requires all inputs to be of the same type, find the 3432 // maximum type and extend them all. 3433 for (SDValue Op : Elts) 3434 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 3435 3436 if (SVT.bitsGT(VT.getScalarType())) 3437 for (SDValue &Op : Elts) 3438 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 3439 ? DAG.getZExtOrTrunc(Op, DL, SVT) 3440 : DAG.getSExtOrTrunc(Op, DL, SVT); 3441 3442 return DAG.getBuildVector(VT, DL, Elts); 3443 } 3444 3445 /// Gets or creates the specified node. 3446 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 3447 FoldingSetNodeID ID; 3448 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 3449 void *IP = nullptr; 3450 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3451 return SDValue(E, 0); 3452 3453 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 3454 getVTList(VT)); 3455 CSEMap.InsertNode(N, IP); 3456 3457 InsertNode(N); 3458 return SDValue(N, 0); 3459 } 3460 3461 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3462 SDValue Operand, const SDNodeFlags Flags) { 3463 // Constant fold unary operations with an integer constant operand. Even 3464 // opaque constant will be folded, because the folding of unary operations 3465 // doesn't create new constants with different values. Nevertheless, the 3466 // opaque flag is preserved during folding to prevent future folding with 3467 // other constants. 3468 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 3469 const APInt &Val = C->getAPIntValue(); 3470 switch (Opcode) { 3471 default: break; 3472 case ISD::SIGN_EXTEND: 3473 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 3474 C->isTargetOpcode(), C->isOpaque()); 3475 case ISD::ANY_EXTEND: 3476 case ISD::ZERO_EXTEND: 3477 case ISD::TRUNCATE: 3478 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 3479 C->isTargetOpcode(), C->isOpaque()); 3480 case ISD::UINT_TO_FP: 3481 case ISD::SINT_TO_FP: { 3482 APFloat apf(EVTToAPFloatSemantics(VT), 3483 APInt::getNullValue(VT.getSizeInBits())); 3484 (void)apf.convertFromAPInt(Val, 3485 Opcode==ISD::SINT_TO_FP, 3486 APFloat::rmNearestTiesToEven); 3487 return getConstantFP(apf, DL, VT); 3488 } 3489 case ISD::BITCAST: 3490 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 3491 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 3492 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 3493 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 3494 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 3495 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 3496 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 3497 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 3498 break; 3499 case ISD::ABS: 3500 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 3501 C->isOpaque()); 3502 case ISD::BITREVERSE: 3503 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 3504 C->isOpaque()); 3505 case ISD::BSWAP: 3506 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 3507 C->isOpaque()); 3508 case ISD::CTPOP: 3509 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 3510 C->isOpaque()); 3511 case ISD::CTLZ: 3512 case ISD::CTLZ_ZERO_UNDEF: 3513 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 3514 C->isOpaque()); 3515 case ISD::CTTZ: 3516 case ISD::CTTZ_ZERO_UNDEF: 3517 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 3518 C->isOpaque()); 3519 case ISD::FP16_TO_FP: { 3520 bool Ignored; 3521 APFloat FPV(APFloat::IEEEhalf(), 3522 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 3523 3524 // This can return overflow, underflow, or inexact; we don't care. 3525 // FIXME need to be more flexible about rounding mode. 3526 (void)FPV.convert(EVTToAPFloatSemantics(VT), 3527 APFloat::rmNearestTiesToEven, &Ignored); 3528 return getConstantFP(FPV, DL, VT); 3529 } 3530 } 3531 } 3532 3533 // Constant fold unary operations with a floating point constant operand. 3534 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 3535 APFloat V = C->getValueAPF(); // make copy 3536 switch (Opcode) { 3537 case ISD::FNEG: 3538 V.changeSign(); 3539 return getConstantFP(V, DL, VT); 3540 case ISD::FABS: 3541 V.clearSign(); 3542 return getConstantFP(V, DL, VT); 3543 case ISD::FCEIL: { 3544 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 3545 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3546 return getConstantFP(V, DL, VT); 3547 break; 3548 } 3549 case ISD::FTRUNC: { 3550 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 3551 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3552 return getConstantFP(V, DL, VT); 3553 break; 3554 } 3555 case ISD::FFLOOR: { 3556 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 3557 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3558 return getConstantFP(V, DL, VT); 3559 break; 3560 } 3561 case ISD::FP_EXTEND: { 3562 bool ignored; 3563 // This can return overflow, underflow, or inexact; we don't care. 3564 // FIXME need to be more flexible about rounding mode. 3565 (void)V.convert(EVTToAPFloatSemantics(VT), 3566 APFloat::rmNearestTiesToEven, &ignored); 3567 return getConstantFP(V, DL, VT); 3568 } 3569 case ISD::FP_TO_SINT: 3570 case ISD::FP_TO_UINT: { 3571 bool ignored; 3572 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 3573 // FIXME need to be more flexible about rounding mode. 3574 APFloat::opStatus s = 3575 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 3576 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 3577 break; 3578 return getConstant(IntVal, DL, VT); 3579 } 3580 case ISD::BITCAST: 3581 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 3582 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3583 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 3584 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3585 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 3586 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 3587 break; 3588 case ISD::FP_TO_FP16: { 3589 bool Ignored; 3590 // This can return overflow, underflow, or inexact; we don't care. 3591 // FIXME need to be more flexible about rounding mode. 3592 (void)V.convert(APFloat::IEEEhalf(), 3593 APFloat::rmNearestTiesToEven, &Ignored); 3594 return getConstant(V.bitcastToAPInt(), DL, VT); 3595 } 3596 } 3597 } 3598 3599 // Constant fold unary operations with a vector integer or float operand. 3600 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 3601 if (BV->isConstant()) { 3602 switch (Opcode) { 3603 default: 3604 // FIXME: Entirely reasonable to perform folding of other unary 3605 // operations here as the need arises. 3606 break; 3607 case ISD::FNEG: 3608 case ISD::FABS: 3609 case ISD::FCEIL: 3610 case ISD::FTRUNC: 3611 case ISD::FFLOOR: 3612 case ISD::FP_EXTEND: 3613 case ISD::FP_TO_SINT: 3614 case ISD::FP_TO_UINT: 3615 case ISD::TRUNCATE: 3616 case ISD::UINT_TO_FP: 3617 case ISD::SINT_TO_FP: 3618 case ISD::ABS: 3619 case ISD::BITREVERSE: 3620 case ISD::BSWAP: 3621 case ISD::CTLZ: 3622 case ISD::CTLZ_ZERO_UNDEF: 3623 case ISD::CTTZ: 3624 case ISD::CTTZ_ZERO_UNDEF: 3625 case ISD::CTPOP: { 3626 SDValue Ops = { Operand }; 3627 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 3628 return Fold; 3629 } 3630 } 3631 } 3632 } 3633 3634 unsigned OpOpcode = Operand.getNode()->getOpcode(); 3635 switch (Opcode) { 3636 case ISD::TokenFactor: 3637 case ISD::MERGE_VALUES: 3638 case ISD::CONCAT_VECTORS: 3639 return Operand; // Factor, merge or concat of one node? No need. 3640 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 3641 case ISD::FP_EXTEND: 3642 assert(VT.isFloatingPoint() && 3643 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 3644 if (Operand.getValueType() == VT) return Operand; // noop conversion. 3645 assert((!VT.isVector() || 3646 VT.getVectorNumElements() == 3647 Operand.getValueType().getVectorNumElements()) && 3648 "Vector element count mismatch!"); 3649 assert(Operand.getValueType().bitsLT(VT) && 3650 "Invalid fpext node, dst < src!"); 3651 if (Operand.isUndef()) 3652 return getUNDEF(VT); 3653 break; 3654 case ISD::SIGN_EXTEND: 3655 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3656 "Invalid SIGN_EXTEND!"); 3657 if (Operand.getValueType() == VT) return Operand; // noop extension 3658 assert((!VT.isVector() || 3659 VT.getVectorNumElements() == 3660 Operand.getValueType().getVectorNumElements()) && 3661 "Vector element count mismatch!"); 3662 assert(Operand.getValueType().bitsLT(VT) && 3663 "Invalid sext node, dst < src!"); 3664 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 3665 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3666 else if (OpOpcode == ISD::UNDEF) 3667 // sext(undef) = 0, because the top bits will all be the same. 3668 return getConstant(0, DL, VT); 3669 break; 3670 case ISD::ZERO_EXTEND: 3671 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3672 "Invalid ZERO_EXTEND!"); 3673 if (Operand.getValueType() == VT) return Operand; // noop extension 3674 assert((!VT.isVector() || 3675 VT.getVectorNumElements() == 3676 Operand.getValueType().getVectorNumElements()) && 3677 "Vector element count mismatch!"); 3678 assert(Operand.getValueType().bitsLT(VT) && 3679 "Invalid zext node, dst < src!"); 3680 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 3681 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 3682 else if (OpOpcode == ISD::UNDEF) 3683 // zext(undef) = 0, because the top bits will be zero. 3684 return getConstant(0, DL, VT); 3685 break; 3686 case ISD::ANY_EXTEND: 3687 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3688 "Invalid ANY_EXTEND!"); 3689 if (Operand.getValueType() == VT) return Operand; // noop extension 3690 assert((!VT.isVector() || 3691 VT.getVectorNumElements() == 3692 Operand.getValueType().getVectorNumElements()) && 3693 "Vector element count mismatch!"); 3694 assert(Operand.getValueType().bitsLT(VT) && 3695 "Invalid anyext node, dst < src!"); 3696 3697 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3698 OpOpcode == ISD::ANY_EXTEND) 3699 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 3700 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3701 else if (OpOpcode == ISD::UNDEF) 3702 return getUNDEF(VT); 3703 3704 // (ext (trunx x)) -> x 3705 if (OpOpcode == ISD::TRUNCATE) { 3706 SDValue OpOp = Operand.getOperand(0); 3707 if (OpOp.getValueType() == VT) 3708 return OpOp; 3709 } 3710 break; 3711 case ISD::TRUNCATE: 3712 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3713 "Invalid TRUNCATE!"); 3714 if (Operand.getValueType() == VT) return Operand; // noop truncate 3715 assert((!VT.isVector() || 3716 VT.getVectorNumElements() == 3717 Operand.getValueType().getVectorNumElements()) && 3718 "Vector element count mismatch!"); 3719 assert(Operand.getValueType().bitsGT(VT) && 3720 "Invalid truncate node, src < dst!"); 3721 if (OpOpcode == ISD::TRUNCATE) 3722 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 3723 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3724 OpOpcode == ISD::ANY_EXTEND) { 3725 // If the source is smaller than the dest, we still need an extend. 3726 if (Operand.getOperand(0).getValueType().getScalarType() 3727 .bitsLT(VT.getScalarType())) 3728 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3729 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 3730 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 3731 return Operand.getOperand(0); 3732 } 3733 if (OpOpcode == ISD::UNDEF) 3734 return getUNDEF(VT); 3735 break; 3736 case ISD::ABS: 3737 assert(VT.isInteger() && VT == Operand.getValueType() && 3738 "Invalid ABS!"); 3739 if (OpOpcode == ISD::UNDEF) 3740 return getUNDEF(VT); 3741 break; 3742 case ISD::BSWAP: 3743 assert(VT.isInteger() && VT == Operand.getValueType() && 3744 "Invalid BSWAP!"); 3745 assert((VT.getScalarSizeInBits() % 16 == 0) && 3746 "BSWAP types must be a multiple of 16 bits!"); 3747 if (OpOpcode == ISD::UNDEF) 3748 return getUNDEF(VT); 3749 break; 3750 case ISD::BITREVERSE: 3751 assert(VT.isInteger() && VT == Operand.getValueType() && 3752 "Invalid BITREVERSE!"); 3753 if (OpOpcode == ISD::UNDEF) 3754 return getUNDEF(VT); 3755 break; 3756 case ISD::BITCAST: 3757 // Basic sanity checking. 3758 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 3759 "Cannot BITCAST between types of different sizes!"); 3760 if (VT == Operand.getValueType()) return Operand; // noop conversion. 3761 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 3762 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 3763 if (OpOpcode == ISD::UNDEF) 3764 return getUNDEF(VT); 3765 break; 3766 case ISD::SCALAR_TO_VECTOR: 3767 assert(VT.isVector() && !Operand.getValueType().isVector() && 3768 (VT.getVectorElementType() == Operand.getValueType() || 3769 (VT.getVectorElementType().isInteger() && 3770 Operand.getValueType().isInteger() && 3771 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 3772 "Illegal SCALAR_TO_VECTOR node!"); 3773 if (OpOpcode == ISD::UNDEF) 3774 return getUNDEF(VT); 3775 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 3776 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 3777 isa<ConstantSDNode>(Operand.getOperand(1)) && 3778 Operand.getConstantOperandVal(1) == 0 && 3779 Operand.getOperand(0).getValueType() == VT) 3780 return Operand.getOperand(0); 3781 break; 3782 case ISD::FNEG: 3783 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 3784 if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB) 3785 // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags? 3786 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), 3787 Operand.getOperand(0), Operand.getNode()->getFlags()); 3788 if (OpOpcode == ISD::FNEG) // --X -> X 3789 return Operand.getOperand(0); 3790 break; 3791 case ISD::FABS: 3792 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 3793 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 3794 break; 3795 } 3796 3797 SDNode *N; 3798 SDVTList VTs = getVTList(VT); 3799 SDValue Ops[] = {Operand}; 3800 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 3801 FoldingSetNodeID ID; 3802 AddNodeIDNode(ID, Opcode, VTs, Ops); 3803 void *IP = nullptr; 3804 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 3805 E->intersectFlagsWith(Flags); 3806 return SDValue(E, 0); 3807 } 3808 3809 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3810 N->setFlags(Flags); 3811 createOperands(N, Ops); 3812 CSEMap.InsertNode(N, IP); 3813 } else { 3814 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3815 createOperands(N, Ops); 3816 } 3817 3818 InsertNode(N); 3819 return SDValue(N, 0); 3820 } 3821 3822 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 3823 const APInt &C2) { 3824 switch (Opcode) { 3825 case ISD::ADD: return std::make_pair(C1 + C2, true); 3826 case ISD::SUB: return std::make_pair(C1 - C2, true); 3827 case ISD::MUL: return std::make_pair(C1 * C2, true); 3828 case ISD::AND: return std::make_pair(C1 & C2, true); 3829 case ISD::OR: return std::make_pair(C1 | C2, true); 3830 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 3831 case ISD::SHL: return std::make_pair(C1 << C2, true); 3832 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 3833 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 3834 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 3835 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 3836 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 3837 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 3838 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 3839 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 3840 case ISD::UDIV: 3841 if (!C2.getBoolValue()) 3842 break; 3843 return std::make_pair(C1.udiv(C2), true); 3844 case ISD::UREM: 3845 if (!C2.getBoolValue()) 3846 break; 3847 return std::make_pair(C1.urem(C2), true); 3848 case ISD::SDIV: 3849 if (!C2.getBoolValue()) 3850 break; 3851 return std::make_pair(C1.sdiv(C2), true); 3852 case ISD::SREM: 3853 if (!C2.getBoolValue()) 3854 break; 3855 return std::make_pair(C1.srem(C2), true); 3856 } 3857 return std::make_pair(APInt(1, 0), false); 3858 } 3859 3860 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3861 EVT VT, const ConstantSDNode *Cst1, 3862 const ConstantSDNode *Cst2) { 3863 if (Cst1->isOpaque() || Cst2->isOpaque()) 3864 return SDValue(); 3865 3866 std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), 3867 Cst2->getAPIntValue()); 3868 if (!Folded.second) 3869 return SDValue(); 3870 return getConstant(Folded.first, DL, VT); 3871 } 3872 3873 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 3874 const GlobalAddressSDNode *GA, 3875 const SDNode *N2) { 3876 if (GA->getOpcode() != ISD::GlobalAddress) 3877 return SDValue(); 3878 if (!TLI->isOffsetFoldingLegal(GA)) 3879 return SDValue(); 3880 const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2); 3881 if (!Cst2) 3882 return SDValue(); 3883 int64_t Offset = Cst2->getSExtValue(); 3884 switch (Opcode) { 3885 case ISD::ADD: break; 3886 case ISD::SUB: Offset = -uint64_t(Offset); break; 3887 default: return SDValue(); 3888 } 3889 return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT, 3890 GA->getOffset() + uint64_t(Offset)); 3891 } 3892 3893 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 3894 switch (Opcode) { 3895 case ISD::SDIV: 3896 case ISD::UDIV: 3897 case ISD::SREM: 3898 case ISD::UREM: { 3899 // If a divisor is zero/undef or any element of a divisor vector is 3900 // zero/undef, the whole op is undef. 3901 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 3902 SDValue Divisor = Ops[1]; 3903 if (Divisor.isUndef() || isNullConstant(Divisor)) 3904 return true; 3905 3906 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 3907 llvm::any_of(Divisor->op_values(), 3908 [](SDValue V) { return V.isUndef() || 3909 isNullConstant(V); }); 3910 // TODO: Handle signed overflow. 3911 } 3912 // TODO: Handle oversized shifts. 3913 default: 3914 return false; 3915 } 3916 } 3917 3918 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3919 EVT VT, SDNode *Cst1, 3920 SDNode *Cst2) { 3921 // If the opcode is a target-specific ISD node, there's nothing we can 3922 // do here and the operand rules may not line up with the below, so 3923 // bail early. 3924 if (Opcode >= ISD::BUILTIN_OP_END) 3925 return SDValue(); 3926 3927 if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)})) 3928 return getUNDEF(VT); 3929 3930 // Handle the case of two scalars. 3931 if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { 3932 if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { 3933 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2); 3934 assert((!Folded || !VT.isVector()) && 3935 "Can't fold vectors ops with scalar operands"); 3936 return Folded; 3937 } 3938 } 3939 3940 // fold (add Sym, c) -> Sym+c 3941 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1)) 3942 return FoldSymbolOffset(Opcode, VT, GA, Cst2); 3943 if (TLI->isCommutativeBinOp(Opcode)) 3944 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2)) 3945 return FoldSymbolOffset(Opcode, VT, GA, Cst1); 3946 3947 // For vectors extract each constant element into Inputs so we can constant 3948 // fold them individually. 3949 BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); 3950 BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); 3951 if (!BV1 || !BV2) 3952 return SDValue(); 3953 3954 assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); 3955 3956 EVT SVT = VT.getScalarType(); 3957 SmallVector<SDValue, 4> Outputs; 3958 for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { 3959 SDValue V1 = BV1->getOperand(I); 3960 SDValue V2 = BV2->getOperand(I); 3961 3962 // Avoid BUILD_VECTOR nodes that perform implicit truncation. 3963 // FIXME: This is valid and could be handled by truncation. 3964 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 3965 return SDValue(); 3966 3967 // Fold one vector element. 3968 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 3969 3970 // Scalar folding only succeeded if the result is a constant or UNDEF. 3971 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 3972 ScalarResult.getOpcode() != ISD::ConstantFP) 3973 return SDValue(); 3974 Outputs.push_back(ScalarResult); 3975 } 3976 3977 assert(VT.getVectorNumElements() == Outputs.size() && 3978 "Vector size mismatch!"); 3979 3980 // We may have a vector type but a scalar result. Create a splat. 3981 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 3982 3983 // Build a big vector out of the scalar elements we generated. 3984 return getBuildVector(VT, SDLoc(), Outputs); 3985 } 3986 3987 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 3988 const SDLoc &DL, EVT VT, 3989 ArrayRef<SDValue> Ops, 3990 const SDNodeFlags Flags) { 3991 // If the opcode is a target-specific ISD node, there's nothing we can 3992 // do here and the operand rules may not line up with the below, so 3993 // bail early. 3994 if (Opcode >= ISD::BUILTIN_OP_END) 3995 return SDValue(); 3996 3997 if (isUndef(Opcode, Ops)) 3998 return getUNDEF(VT); 3999 4000 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4001 if (!VT.isVector()) 4002 return SDValue(); 4003 4004 unsigned NumElts = VT.getVectorNumElements(); 4005 4006 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4007 return !Op.getValueType().isVector() || 4008 Op.getValueType().getVectorNumElements() == NumElts; 4009 }; 4010 4011 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4012 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4013 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 4014 (BV && BV->isConstant()); 4015 }; 4016 4017 // All operands must be vector types with the same number of elements as 4018 // the result type and must be either UNDEF or a build vector of constant 4019 // or UNDEF scalars. 4020 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 4021 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 4022 return SDValue(); 4023 4024 // If we are comparing vectors, then the result needs to be a i1 boolean 4025 // that is then sign-extended back to the legal result type. 4026 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 4027 4028 // Find legal integer scalar type for constant promotion and 4029 // ensure that its scalar size is at least as large as source. 4030 EVT LegalSVT = VT.getScalarType(); 4031 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4032 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4033 if (LegalSVT.bitsLT(VT.getScalarType())) 4034 return SDValue(); 4035 } 4036 4037 // Constant fold each scalar lane separately. 4038 SmallVector<SDValue, 4> ScalarResults; 4039 for (unsigned i = 0; i != NumElts; i++) { 4040 SmallVector<SDValue, 4> ScalarOps; 4041 for (SDValue Op : Ops) { 4042 EVT InSVT = Op.getValueType().getScalarType(); 4043 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 4044 if (!InBV) { 4045 // We've checked that this is UNDEF or a constant of some kind. 4046 if (Op.isUndef()) 4047 ScalarOps.push_back(getUNDEF(InSVT)); 4048 else 4049 ScalarOps.push_back(Op); 4050 continue; 4051 } 4052 4053 SDValue ScalarOp = InBV->getOperand(i); 4054 EVT ScalarVT = ScalarOp.getValueType(); 4055 4056 // Build vector (integer) scalar operands may need implicit 4057 // truncation - do this before constant folding. 4058 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 4059 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 4060 4061 ScalarOps.push_back(ScalarOp); 4062 } 4063 4064 // Constant fold the scalar operands. 4065 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 4066 4067 // Legalize the (integer) scalar constant if necessary. 4068 if (LegalSVT != SVT) 4069 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4070 4071 // Scalar folding only succeeded if the result is a constant or UNDEF. 4072 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4073 ScalarResult.getOpcode() != ISD::ConstantFP) 4074 return SDValue(); 4075 ScalarResults.push_back(ScalarResult); 4076 } 4077 4078 return getBuildVector(VT, DL, ScalarResults); 4079 } 4080 4081 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4082 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 4083 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4084 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 4085 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4086 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4087 4088 // Canonicalize constant to RHS if commutative. 4089 if (TLI->isCommutativeBinOp(Opcode)) { 4090 if (N1C && !N2C) { 4091 std::swap(N1C, N2C); 4092 std::swap(N1, N2); 4093 } else if (N1CFP && !N2CFP) { 4094 std::swap(N1CFP, N2CFP); 4095 std::swap(N1, N2); 4096 } 4097 } 4098 4099 switch (Opcode) { 4100 default: break; 4101 case ISD::TokenFactor: 4102 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 4103 N2.getValueType() == MVT::Other && "Invalid token factor!"); 4104 // Fold trivial token factors. 4105 if (N1.getOpcode() == ISD::EntryToken) return N2; 4106 if (N2.getOpcode() == ISD::EntryToken) return N1; 4107 if (N1 == N2) return N1; 4108 break; 4109 case ISD::CONCAT_VECTORS: { 4110 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4111 SDValue Ops[] = {N1, N2}; 4112 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4113 return V; 4114 break; 4115 } 4116 case ISD::AND: 4117 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4118 assert(N1.getValueType() == N2.getValueType() && 4119 N1.getValueType() == VT && "Binary operator types must match!"); 4120 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 4121 // worth handling here. 4122 if (N2C && N2C->isNullValue()) 4123 return N2; 4124 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 4125 return N1; 4126 break; 4127 case ISD::OR: 4128 case ISD::XOR: 4129 case ISD::ADD: 4130 case ISD::SUB: 4131 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4132 assert(N1.getValueType() == N2.getValueType() && 4133 N1.getValueType() == VT && "Binary operator types must match!"); 4134 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 4135 // it's worth handling here. 4136 if (N2C && N2C->isNullValue()) 4137 return N1; 4138 break; 4139 case ISD::UDIV: 4140 case ISD::UREM: 4141 case ISD::MULHU: 4142 case ISD::MULHS: 4143 case ISD::MUL: 4144 case ISD::SDIV: 4145 case ISD::SREM: 4146 case ISD::SMIN: 4147 case ISD::SMAX: 4148 case ISD::UMIN: 4149 case ISD::UMAX: 4150 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4151 assert(N1.getValueType() == N2.getValueType() && 4152 N1.getValueType() == VT && "Binary operator types must match!"); 4153 break; 4154 case ISD::FADD: 4155 case ISD::FSUB: 4156 case ISD::FMUL: 4157 case ISD::FDIV: 4158 case ISD::FREM: 4159 if (getTarget().Options.UnsafeFPMath) { 4160 if (Opcode == ISD::FADD) { 4161 // x+0 --> x 4162 if (N2CFP && N2CFP->getValueAPF().isZero()) 4163 return N1; 4164 } else if (Opcode == ISD::FSUB) { 4165 // x-0 --> x 4166 if (N2CFP && N2CFP->getValueAPF().isZero()) 4167 return N1; 4168 } else if (Opcode == ISD::FMUL) { 4169 // x*0 --> 0 4170 if (N2CFP && N2CFP->isZero()) 4171 return N2; 4172 // x*1 --> x 4173 if (N2CFP && N2CFP->isExactlyValue(1.0)) 4174 return N1; 4175 } 4176 } 4177 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 4178 assert(N1.getValueType() == N2.getValueType() && 4179 N1.getValueType() == VT && "Binary operator types must match!"); 4180 break; 4181 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 4182 assert(N1.getValueType() == VT && 4183 N1.getValueType().isFloatingPoint() && 4184 N2.getValueType().isFloatingPoint() && 4185 "Invalid FCOPYSIGN!"); 4186 break; 4187 case ISD::SHL: 4188 case ISD::SRA: 4189 case ISD::SRL: 4190 case ISD::ROTL: 4191 case ISD::ROTR: 4192 assert(VT == N1.getValueType() && 4193 "Shift operators return type must be the same as their first arg"); 4194 assert(VT.isInteger() && N2.getValueType().isInteger() && 4195 "Shifts only work on integers"); 4196 assert((!VT.isVector() || VT == N2.getValueType()) && 4197 "Vector shift amounts must be in the same as their first arg"); 4198 // Verify that the shift amount VT is bit enough to hold valid shift 4199 // amounts. This catches things like trying to shift an i1024 value by an 4200 // i8, which is easy to fall into in generic code that uses 4201 // TLI.getShiftAmount(). 4202 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 4203 "Invalid use of small shift amount with oversized value!"); 4204 4205 // Always fold shifts of i1 values so the code generator doesn't need to 4206 // handle them. Since we know the size of the shift has to be less than the 4207 // size of the value, the shift/rotate count is guaranteed to be zero. 4208 if (VT == MVT::i1) 4209 return N1; 4210 if (N2C && N2C->isNullValue()) 4211 return N1; 4212 break; 4213 case ISD::FP_ROUND_INREG: { 4214 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4215 assert(VT == N1.getValueType() && "Not an inreg round!"); 4216 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 4217 "Cannot FP_ROUND_INREG integer types"); 4218 assert(EVT.isVector() == VT.isVector() && 4219 "FP_ROUND_INREG type should be vector iff the operand " 4220 "type is vector!"); 4221 assert((!EVT.isVector() || 4222 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4223 "Vector element counts must match in FP_ROUND_INREG"); 4224 assert(EVT.bitsLE(VT) && "Not rounding down!"); 4225 (void)EVT; 4226 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 4227 break; 4228 } 4229 case ISD::FP_ROUND: 4230 assert(VT.isFloatingPoint() && 4231 N1.getValueType().isFloatingPoint() && 4232 VT.bitsLE(N1.getValueType()) && 4233 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 4234 "Invalid FP_ROUND!"); 4235 if (N1.getValueType() == VT) return N1; // noop conversion. 4236 break; 4237 case ISD::AssertSext: 4238 case ISD::AssertZext: { 4239 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4240 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4241 assert(VT.isInteger() && EVT.isInteger() && 4242 "Cannot *_EXTEND_INREG FP types"); 4243 assert(!EVT.isVector() && 4244 "AssertSExt/AssertZExt type should be the vector element type " 4245 "rather than the vector type!"); 4246 assert(EVT.bitsLE(VT) && "Not extending!"); 4247 if (VT == EVT) return N1; // noop assertion. 4248 break; 4249 } 4250 case ISD::SIGN_EXTEND_INREG: { 4251 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4252 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4253 assert(VT.isInteger() && EVT.isInteger() && 4254 "Cannot *_EXTEND_INREG FP types"); 4255 assert(EVT.isVector() == VT.isVector() && 4256 "SIGN_EXTEND_INREG type should be vector iff the operand " 4257 "type is vector!"); 4258 assert((!EVT.isVector() || 4259 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4260 "Vector element counts must match in SIGN_EXTEND_INREG"); 4261 assert(EVT.bitsLE(VT) && "Not extending!"); 4262 if (EVT == VT) return N1; // Not actually extending 4263 4264 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 4265 unsigned FromBits = EVT.getScalarSizeInBits(); 4266 Val <<= Val.getBitWidth() - FromBits; 4267 Val.ashrInPlace(Val.getBitWidth() - FromBits); 4268 return getConstant(Val, DL, ConstantVT); 4269 }; 4270 4271 if (N1C) { 4272 const APInt &Val = N1C->getAPIntValue(); 4273 return SignExtendInReg(Val, VT); 4274 } 4275 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 4276 SmallVector<SDValue, 8> Ops; 4277 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 4278 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4279 SDValue Op = N1.getOperand(i); 4280 if (Op.isUndef()) { 4281 Ops.push_back(getUNDEF(OpVT)); 4282 continue; 4283 } 4284 ConstantSDNode *C = cast<ConstantSDNode>(Op); 4285 APInt Val = C->getAPIntValue(); 4286 Ops.push_back(SignExtendInReg(Val, OpVT)); 4287 } 4288 return getBuildVector(VT, DL, Ops); 4289 } 4290 break; 4291 } 4292 case ISD::EXTRACT_VECTOR_ELT: 4293 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 4294 if (N1.isUndef()) 4295 return getUNDEF(VT); 4296 4297 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 4298 if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 4299 return getUNDEF(VT); 4300 4301 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 4302 // expanding copies of large vectors from registers. 4303 if (N2C && 4304 N1.getOpcode() == ISD::CONCAT_VECTORS && 4305 N1.getNumOperands() > 0) { 4306 unsigned Factor = 4307 N1.getOperand(0).getValueType().getVectorNumElements(); 4308 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 4309 N1.getOperand(N2C->getZExtValue() / Factor), 4310 getConstant(N2C->getZExtValue() % Factor, DL, 4311 N2.getValueType())); 4312 } 4313 4314 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 4315 // expanding large vector constants. 4316 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 4317 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 4318 4319 if (VT != Elt.getValueType()) 4320 // If the vector element type is not legal, the BUILD_VECTOR operands 4321 // are promoted and implicitly truncated, and the result implicitly 4322 // extended. Make that explicit here. 4323 Elt = getAnyExtOrTrunc(Elt, DL, VT); 4324 4325 return Elt; 4326 } 4327 4328 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 4329 // operations are lowered to scalars. 4330 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 4331 // If the indices are the same, return the inserted element else 4332 // if the indices are known different, extract the element from 4333 // the original vector. 4334 SDValue N1Op2 = N1.getOperand(2); 4335 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 4336 4337 if (N1Op2C && N2C) { 4338 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 4339 if (VT == N1.getOperand(1).getValueType()) 4340 return N1.getOperand(1); 4341 else 4342 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 4343 } 4344 4345 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 4346 } 4347 } 4348 break; 4349 case ISD::EXTRACT_ELEMENT: 4350 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 4351 assert(!N1.getValueType().isVector() && !VT.isVector() && 4352 (N1.getValueType().isInteger() == VT.isInteger()) && 4353 N1.getValueType() != VT && 4354 "Wrong types for EXTRACT_ELEMENT!"); 4355 4356 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 4357 // 64-bit integers into 32-bit parts. Instead of building the extract of 4358 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 4359 if (N1.getOpcode() == ISD::BUILD_PAIR) 4360 return N1.getOperand(N2C->getZExtValue()); 4361 4362 // EXTRACT_ELEMENT of a constant int is also very common. 4363 if (N1C) { 4364 unsigned ElementSize = VT.getSizeInBits(); 4365 unsigned Shift = ElementSize * N2C->getZExtValue(); 4366 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 4367 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 4368 } 4369 break; 4370 case ISD::EXTRACT_SUBVECTOR: 4371 if (VT.isSimple() && N1.getValueType().isSimple()) { 4372 assert(VT.isVector() && N1.getValueType().isVector() && 4373 "Extract subvector VTs must be a vectors!"); 4374 assert(VT.getVectorElementType() == 4375 N1.getValueType().getVectorElementType() && 4376 "Extract subvector VTs must have the same element type!"); 4377 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 4378 "Extract subvector must be from larger vector to smaller vector!"); 4379 4380 if (N2C) { 4381 assert((VT.getVectorNumElements() + N2C->getZExtValue() 4382 <= N1.getValueType().getVectorNumElements()) 4383 && "Extract subvector overflow!"); 4384 } 4385 4386 // Trivial extraction. 4387 if (VT.getSimpleVT() == N1.getSimpleValueType()) 4388 return N1; 4389 4390 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 4391 if (N1.isUndef()) 4392 return getUNDEF(VT); 4393 4394 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 4395 // the concat have the same type as the extract. 4396 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 4397 N1.getNumOperands() > 0 && 4398 VT == N1.getOperand(0).getValueType()) { 4399 unsigned Factor = VT.getVectorNumElements(); 4400 return N1.getOperand(N2C->getZExtValue() / Factor); 4401 } 4402 4403 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 4404 // during shuffle legalization. 4405 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 4406 VT == N1.getOperand(1).getValueType()) 4407 return N1.getOperand(1); 4408 } 4409 break; 4410 } 4411 4412 // Perform trivial constant folding. 4413 if (SDValue SV = 4414 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 4415 return SV; 4416 4417 // Constant fold FP operations. 4418 bool HasFPExceptions = TLI->hasFloatingPointExceptions(); 4419 if (N1CFP) { 4420 if (N2CFP) { 4421 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); 4422 APFloat::opStatus s; 4423 switch (Opcode) { 4424 case ISD::FADD: 4425 s = V1.add(V2, APFloat::rmNearestTiesToEven); 4426 if (!HasFPExceptions || s != APFloat::opInvalidOp) 4427 return getConstantFP(V1, DL, VT); 4428 break; 4429 case ISD::FSUB: 4430 s = V1.subtract(V2, APFloat::rmNearestTiesToEven); 4431 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4432 return getConstantFP(V1, DL, VT); 4433 break; 4434 case ISD::FMUL: 4435 s = V1.multiply(V2, APFloat::rmNearestTiesToEven); 4436 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4437 return getConstantFP(V1, DL, VT); 4438 break; 4439 case ISD::FDIV: 4440 s = V1.divide(V2, APFloat::rmNearestTiesToEven); 4441 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4442 s!=APFloat::opDivByZero)) { 4443 return getConstantFP(V1, DL, VT); 4444 } 4445 break; 4446 case ISD::FREM : 4447 s = V1.mod(V2); 4448 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4449 s!=APFloat::opDivByZero)) { 4450 return getConstantFP(V1, DL, VT); 4451 } 4452 break; 4453 case ISD::FCOPYSIGN: 4454 V1.copySign(V2); 4455 return getConstantFP(V1, DL, VT); 4456 default: break; 4457 } 4458 } 4459 4460 if (Opcode == ISD::FP_ROUND) { 4461 APFloat V = N1CFP->getValueAPF(); // make copy 4462 bool ignored; 4463 // This can return overflow, underflow, or inexact; we don't care. 4464 // FIXME need to be more flexible about rounding mode. 4465 (void)V.convert(EVTToAPFloatSemantics(VT), 4466 APFloat::rmNearestTiesToEven, &ignored); 4467 return getConstantFP(V, DL, VT); 4468 } 4469 } 4470 4471 // Canonicalize an UNDEF to the RHS, even over a constant. 4472 if (N1.isUndef()) { 4473 if (TLI->isCommutativeBinOp(Opcode)) { 4474 std::swap(N1, N2); 4475 } else { 4476 switch (Opcode) { 4477 case ISD::FP_ROUND_INREG: 4478 case ISD::SIGN_EXTEND_INREG: 4479 case ISD::SUB: 4480 case ISD::FSUB: 4481 case ISD::FDIV: 4482 case ISD::FREM: 4483 case ISD::SRA: 4484 return N1; // fold op(undef, arg2) -> undef 4485 case ISD::UDIV: 4486 case ISD::SDIV: 4487 case ISD::UREM: 4488 case ISD::SREM: 4489 case ISD::SRL: 4490 case ISD::SHL: 4491 if (!VT.isVector()) 4492 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 4493 // For vectors, we can't easily build an all zero vector, just return 4494 // the LHS. 4495 return N2; 4496 } 4497 } 4498 } 4499 4500 // Fold a bunch of operators when the RHS is undef. 4501 if (N2.isUndef()) { 4502 switch (Opcode) { 4503 case ISD::XOR: 4504 if (N1.isUndef()) 4505 // Handle undef ^ undef -> 0 special case. This is a common 4506 // idiom (misuse). 4507 return getConstant(0, DL, VT); 4508 LLVM_FALLTHROUGH; 4509 case ISD::ADD: 4510 case ISD::ADDC: 4511 case ISD::ADDE: 4512 case ISD::SUB: 4513 case ISD::UDIV: 4514 case ISD::SDIV: 4515 case ISD::UREM: 4516 case ISD::SREM: 4517 return N2; // fold op(arg1, undef) -> undef 4518 case ISD::FADD: 4519 case ISD::FSUB: 4520 case ISD::FMUL: 4521 case ISD::FDIV: 4522 case ISD::FREM: 4523 if (getTarget().Options.UnsafeFPMath) 4524 return N2; 4525 break; 4526 case ISD::MUL: 4527 case ISD::AND: 4528 case ISD::SRL: 4529 case ISD::SHL: 4530 if (!VT.isVector()) 4531 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 4532 // For vectors, we can't easily build an all zero vector, just return 4533 // the LHS. 4534 return N1; 4535 case ISD::OR: 4536 if (!VT.isVector()) 4537 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT); 4538 // For vectors, we can't easily build an all one vector, just return 4539 // the LHS. 4540 return N1; 4541 case ISD::SRA: 4542 return N1; 4543 } 4544 } 4545 4546 // Memoize this node if possible. 4547 SDNode *N; 4548 SDVTList VTs = getVTList(VT); 4549 SDValue Ops[] = {N1, N2}; 4550 if (VT != MVT::Glue) { 4551 FoldingSetNodeID ID; 4552 AddNodeIDNode(ID, Opcode, VTs, Ops); 4553 void *IP = nullptr; 4554 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4555 E->intersectFlagsWith(Flags); 4556 return SDValue(E, 0); 4557 } 4558 4559 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4560 N->setFlags(Flags); 4561 createOperands(N, Ops); 4562 CSEMap.InsertNode(N, IP); 4563 } else { 4564 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4565 createOperands(N, Ops); 4566 } 4567 4568 InsertNode(N); 4569 return SDValue(N, 0); 4570 } 4571 4572 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4573 SDValue N1, SDValue N2, SDValue N3) { 4574 // Perform various simplifications. 4575 switch (Opcode) { 4576 case ISD::FMA: { 4577 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4578 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4579 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 4580 if (N1CFP && N2CFP && N3CFP) { 4581 APFloat V1 = N1CFP->getValueAPF(); 4582 const APFloat &V2 = N2CFP->getValueAPF(); 4583 const APFloat &V3 = N3CFP->getValueAPF(); 4584 APFloat::opStatus s = 4585 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 4586 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) 4587 return getConstantFP(V1, DL, VT); 4588 } 4589 break; 4590 } 4591 case ISD::CONCAT_VECTORS: { 4592 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4593 SDValue Ops[] = {N1, N2, N3}; 4594 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4595 return V; 4596 break; 4597 } 4598 case ISD::SETCC: { 4599 // Use FoldSetCC to simplify SETCC's. 4600 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 4601 return V; 4602 // Vector constant folding. 4603 SDValue Ops[] = {N1, N2, N3}; 4604 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4605 return V; 4606 break; 4607 } 4608 case ISD::SELECT: 4609 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 4610 if (N1C->getZExtValue()) 4611 return N2; // select true, X, Y -> X 4612 return N3; // select false, X, Y -> Y 4613 } 4614 4615 if (N2 == N3) return N2; // select C, X, X -> X 4616 break; 4617 case ISD::VECTOR_SHUFFLE: 4618 llvm_unreachable("should use getVectorShuffle constructor!"); 4619 case ISD::INSERT_VECTOR_ELT: { 4620 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 4621 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 4622 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 4623 return getUNDEF(VT); 4624 break; 4625 } 4626 case ISD::INSERT_SUBVECTOR: { 4627 SDValue Index = N3; 4628 if (VT.isSimple() && N1.getValueType().isSimple() 4629 && N2.getValueType().isSimple()) { 4630 assert(VT.isVector() && N1.getValueType().isVector() && 4631 N2.getValueType().isVector() && 4632 "Insert subvector VTs must be a vectors"); 4633 assert(VT == N1.getValueType() && 4634 "Dest and insert subvector source types must match!"); 4635 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 4636 "Insert subvector must be from smaller vector to larger vector!"); 4637 if (isa<ConstantSDNode>(Index)) { 4638 assert((N2.getValueType().getVectorNumElements() + 4639 cast<ConstantSDNode>(Index)->getZExtValue() 4640 <= VT.getVectorNumElements()) 4641 && "Insert subvector overflow!"); 4642 } 4643 4644 // Trivial insertion. 4645 if (VT.getSimpleVT() == N2.getSimpleValueType()) 4646 return N2; 4647 } 4648 break; 4649 } 4650 case ISD::BITCAST: 4651 // Fold bit_convert nodes from a type to themselves. 4652 if (N1.getValueType() == VT) 4653 return N1; 4654 break; 4655 } 4656 4657 // Memoize node if it doesn't produce a flag. 4658 SDNode *N; 4659 SDVTList VTs = getVTList(VT); 4660 SDValue Ops[] = {N1, N2, N3}; 4661 if (VT != MVT::Glue) { 4662 FoldingSetNodeID ID; 4663 AddNodeIDNode(ID, Opcode, VTs, Ops); 4664 void *IP = nullptr; 4665 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4666 return SDValue(E, 0); 4667 4668 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4669 createOperands(N, Ops); 4670 CSEMap.InsertNode(N, IP); 4671 } else { 4672 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4673 createOperands(N, Ops); 4674 } 4675 4676 InsertNode(N); 4677 return SDValue(N, 0); 4678 } 4679 4680 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4681 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 4682 SDValue Ops[] = { N1, N2, N3, N4 }; 4683 return getNode(Opcode, DL, VT, Ops); 4684 } 4685 4686 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4687 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 4688 SDValue N5) { 4689 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 4690 return getNode(Opcode, DL, VT, Ops); 4691 } 4692 4693 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 4694 /// the incoming stack arguments to be loaded from the stack. 4695 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 4696 SmallVector<SDValue, 8> ArgChains; 4697 4698 // Include the original chain at the beginning of the list. When this is 4699 // used by target LowerCall hooks, this helps legalize find the 4700 // CALLSEQ_BEGIN node. 4701 ArgChains.push_back(Chain); 4702 4703 // Add a chain value for each stack argument. 4704 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 4705 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 4706 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 4707 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 4708 if (FI->getIndex() < 0) 4709 ArgChains.push_back(SDValue(L, 1)); 4710 4711 // Build a tokenfactor for all the chains. 4712 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 4713 } 4714 4715 /// getMemsetValue - Vectorized representation of the memset value 4716 /// operand. 4717 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 4718 const SDLoc &dl) { 4719 assert(!Value.isUndef()); 4720 4721 unsigned NumBits = VT.getScalarSizeInBits(); 4722 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 4723 assert(C->getAPIntValue().getBitWidth() == 8); 4724 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 4725 if (VT.isInteger()) 4726 return DAG.getConstant(Val, dl, VT); 4727 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 4728 VT); 4729 } 4730 4731 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 4732 EVT IntVT = VT.getScalarType(); 4733 if (!IntVT.isInteger()) 4734 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 4735 4736 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 4737 if (NumBits > 8) { 4738 // Use a multiplication with 0x010101... to extend the input to the 4739 // required length. 4740 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 4741 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 4742 DAG.getConstant(Magic, dl, IntVT)); 4743 } 4744 4745 if (VT != Value.getValueType() && !VT.isInteger()) 4746 Value = DAG.getBitcast(VT.getScalarType(), Value); 4747 if (VT != Value.getValueType()) 4748 Value = DAG.getSplatBuildVector(VT, dl, Value); 4749 4750 return Value; 4751 } 4752 4753 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 4754 /// used when a memcpy is turned into a memset when the source is a constant 4755 /// string ptr. 4756 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 4757 const TargetLowering &TLI, 4758 const ConstantDataArraySlice &Slice) { 4759 // Handle vector with all elements zero. 4760 if (Slice.Array == nullptr) { 4761 if (VT.isInteger()) 4762 return DAG.getConstant(0, dl, VT); 4763 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 4764 return DAG.getConstantFP(0.0, dl, VT); 4765 else if (VT.isVector()) { 4766 unsigned NumElts = VT.getVectorNumElements(); 4767 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 4768 return DAG.getNode(ISD::BITCAST, dl, VT, 4769 DAG.getConstant(0, dl, 4770 EVT::getVectorVT(*DAG.getContext(), 4771 EltVT, NumElts))); 4772 } else 4773 llvm_unreachable("Expected type!"); 4774 } 4775 4776 assert(!VT.isVector() && "Can't handle vector type here!"); 4777 unsigned NumVTBits = VT.getSizeInBits(); 4778 unsigned NumVTBytes = NumVTBits / 8; 4779 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 4780 4781 APInt Val(NumVTBits, 0); 4782 if (DAG.getDataLayout().isLittleEndian()) { 4783 for (unsigned i = 0; i != NumBytes; ++i) 4784 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 4785 } else { 4786 for (unsigned i = 0; i != NumBytes; ++i) 4787 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 4788 } 4789 4790 // If the "cost" of materializing the integer immediate is less than the cost 4791 // of a load, then it is cost effective to turn the load into the immediate. 4792 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 4793 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 4794 return DAG.getConstant(Val, dl, VT); 4795 return SDValue(nullptr, 0); 4796 } 4797 4798 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 4799 const SDLoc &DL) { 4800 EVT VT = Base.getValueType(); 4801 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 4802 } 4803 4804 /// Returns true if memcpy source is constant data. 4805 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 4806 uint64_t SrcDelta = 0; 4807 GlobalAddressSDNode *G = nullptr; 4808 if (Src.getOpcode() == ISD::GlobalAddress) 4809 G = cast<GlobalAddressSDNode>(Src); 4810 else if (Src.getOpcode() == ISD::ADD && 4811 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 4812 Src.getOperand(1).getOpcode() == ISD::Constant) { 4813 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 4814 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 4815 } 4816 if (!G) 4817 return false; 4818 4819 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 4820 SrcDelta + G->getOffset()); 4821 } 4822 4823 /// Determines the optimal series of memory ops to replace the memset / memcpy. 4824 /// Return true if the number of memory ops is below the threshold (Limit). 4825 /// It returns the types of the sequence of memory ops to perform 4826 /// memset / memcpy by reference. 4827 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, 4828 unsigned Limit, uint64_t Size, 4829 unsigned DstAlign, unsigned SrcAlign, 4830 bool IsMemset, 4831 bool ZeroMemset, 4832 bool MemcpyStrSrc, 4833 bool AllowOverlap, 4834 unsigned DstAS, unsigned SrcAS, 4835 SelectionDAG &DAG, 4836 const TargetLowering &TLI) { 4837 assert((SrcAlign == 0 || SrcAlign >= DstAlign) && 4838 "Expecting memcpy / memset source to meet alignment requirement!"); 4839 // If 'SrcAlign' is zero, that means the memory operation does not need to 4840 // load the value, i.e. memset or memcpy from constant string. Otherwise, 4841 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 4842 // is the specified alignment of the memory operation. If it is zero, that 4843 // means it's possible to change the alignment of the destination. 4844 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 4845 // not need to be loaded. 4846 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, 4847 IsMemset, ZeroMemset, MemcpyStrSrc, 4848 DAG.getMachineFunction()); 4849 4850 if (VT == MVT::Other) { 4851 // Use the largest integer type whose alignment constraints are satisfied. 4852 // We only need to check DstAlign here as SrcAlign is always greater or 4853 // equal to DstAlign (or zero). 4854 VT = MVT::i64; 4855 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 4856 !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 4857 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 4858 assert(VT.isInteger()); 4859 4860 // Find the largest legal integer type. 4861 MVT LVT = MVT::i64; 4862 while (!TLI.isTypeLegal(LVT)) 4863 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 4864 assert(LVT.isInteger()); 4865 4866 // If the type we've chosen is larger than the largest legal integer type 4867 // then use that instead. 4868 if (VT.bitsGT(LVT)) 4869 VT = LVT; 4870 } 4871 4872 unsigned NumMemOps = 0; 4873 while (Size != 0) { 4874 unsigned VTSize = VT.getSizeInBits() / 8; 4875 while (VTSize > Size) { 4876 // For now, only use non-vector load / store's for the left-over pieces. 4877 EVT NewVT = VT; 4878 unsigned NewVTSize; 4879 4880 bool Found = false; 4881 if (VT.isVector() || VT.isFloatingPoint()) { 4882 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 4883 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && 4884 TLI.isSafeMemOpType(NewVT.getSimpleVT())) 4885 Found = true; 4886 else if (NewVT == MVT::i64 && 4887 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 4888 TLI.isSafeMemOpType(MVT::f64)) { 4889 // i64 is usually not legal on 32-bit targets, but f64 may be. 4890 NewVT = MVT::f64; 4891 Found = true; 4892 } 4893 } 4894 4895 if (!Found) { 4896 do { 4897 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 4898 if (NewVT == MVT::i8) 4899 break; 4900 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); 4901 } 4902 NewVTSize = NewVT.getSizeInBits() / 8; 4903 4904 // If the new VT cannot cover all of the remaining bits, then consider 4905 // issuing a (or a pair of) unaligned and overlapping load / store. 4906 // FIXME: Only does this for 64-bit or more since we don't have proper 4907 // cost model for unaligned load / store. 4908 bool Fast; 4909 if (NumMemOps && AllowOverlap && 4910 VTSize >= 8 && NewVTSize < Size && 4911 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast) 4912 VTSize = Size; 4913 else { 4914 VT = NewVT; 4915 VTSize = NewVTSize; 4916 } 4917 } 4918 4919 if (++NumMemOps > Limit) 4920 return false; 4921 4922 MemOps.push_back(VT); 4923 Size -= VTSize; 4924 } 4925 4926 return true; 4927 } 4928 4929 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 4930 // On Darwin, -Os means optimize for size without hurting performance, so 4931 // only really optimize for size when -Oz (MinSize) is used. 4932 if (MF.getTarget().getTargetTriple().isOSDarwin()) 4933 return MF.getFunction()->optForMinSize(); 4934 return MF.getFunction()->optForSize(); 4935 } 4936 4937 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 4938 SDValue Chain, SDValue Dst, SDValue Src, 4939 uint64_t Size, unsigned Align, 4940 bool isVol, bool AlwaysInline, 4941 MachinePointerInfo DstPtrInfo, 4942 MachinePointerInfo SrcPtrInfo) { 4943 // Turn a memcpy of undef to nop. 4944 if (Src.isUndef()) 4945 return Chain; 4946 4947 // Expand memcpy to a series of load and store ops if the size operand falls 4948 // below a certain threshold. 4949 // TODO: In the AlwaysInline case, if the size is big then generate a loop 4950 // rather than maybe a humongous number of loads and stores. 4951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4952 const DataLayout &DL = DAG.getDataLayout(); 4953 LLVMContext &C = *DAG.getContext(); 4954 std::vector<EVT> MemOps; 4955 bool DstAlignCanChange = false; 4956 MachineFunction &MF = DAG.getMachineFunction(); 4957 MachineFrameInfo &MFI = MF.getFrameInfo(); 4958 bool OptSize = shouldLowerMemFuncForSize(MF); 4959 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4960 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4961 DstAlignCanChange = true; 4962 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 4963 if (Align > SrcAlign) 4964 SrcAlign = Align; 4965 ConstantDataArraySlice Slice; 4966 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 4967 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 4968 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 4969 4970 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 4971 (DstAlignCanChange ? 0 : Align), 4972 (isZeroConstant ? 0 : SrcAlign), 4973 false, false, CopyFromConstant, true, 4974 DstPtrInfo.getAddrSpace(), 4975 SrcPtrInfo.getAddrSpace(), 4976 DAG, TLI)) 4977 return SDValue(); 4978 4979 if (DstAlignCanChange) { 4980 Type *Ty = MemOps[0].getTypeForEVT(C); 4981 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 4982 4983 // Don't promote to an alignment that would require dynamic stack 4984 // realignment. 4985 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 4986 if (!TRI->needsStackRealignment(MF)) 4987 while (NewAlign > Align && 4988 DL.exceedsNaturalStackAlignment(NewAlign)) 4989 NewAlign /= 2; 4990 4991 if (NewAlign > Align) { 4992 // Give the stack frame object a larger alignment if needed. 4993 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4994 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4995 Align = NewAlign; 4996 } 4997 } 4998 4999 MachineMemOperand::Flags MMOFlags = 5000 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5001 SmallVector<SDValue, 8> OutChains; 5002 unsigned NumMemOps = MemOps.size(); 5003 uint64_t SrcOff = 0, DstOff = 0; 5004 for (unsigned i = 0; i != NumMemOps; ++i) { 5005 EVT VT = MemOps[i]; 5006 unsigned VTSize = VT.getSizeInBits() / 8; 5007 SDValue Value, Store; 5008 5009 if (VTSize > Size) { 5010 // Issuing an unaligned load / store pair that overlaps with the previous 5011 // pair. Adjust the offset accordingly. 5012 assert(i == NumMemOps-1 && i != 0); 5013 SrcOff -= VTSize - Size; 5014 DstOff -= VTSize - Size; 5015 } 5016 5017 if (CopyFromConstant && 5018 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5019 // It's unlikely a store of a vector immediate can be done in a single 5020 // instruction. It would require a load from a constantpool first. 5021 // We only handle zero vectors here. 5022 // FIXME: Handle other cases where store of vector immediate is done in 5023 // a single instruction. 5024 ConstantDataArraySlice SubSlice; 5025 if (SrcOff < Slice.Length) { 5026 SubSlice = Slice; 5027 SubSlice.move(SrcOff); 5028 } else { 5029 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5030 SubSlice.Array = nullptr; 5031 SubSlice.Offset = 0; 5032 SubSlice.Length = VTSize; 5033 } 5034 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5035 if (Value.getNode()) 5036 Store = DAG.getStore(Chain, dl, Value, 5037 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5038 DstPtrInfo.getWithOffset(DstOff), Align, 5039 MMOFlags); 5040 } 5041 5042 if (!Store.getNode()) { 5043 // The type might not be legal for the target. This should only happen 5044 // if the type is smaller than a legal type, as on PPC, so the right 5045 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 5046 // to Load/Store if NVT==VT. 5047 // FIXME does the case above also need this? 5048 EVT NVT = TLI.getTypeToTransformTo(C, VT); 5049 assert(NVT.bitsGE(VT)); 5050 5051 bool isDereferenceable = 5052 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5053 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5054 if (isDereferenceable) 5055 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5056 5057 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 5058 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5059 SrcPtrInfo.getWithOffset(SrcOff), VT, 5060 MinAlign(SrcAlign, SrcOff), SrcMMOFlags); 5061 OutChains.push_back(Value.getValue(1)); 5062 Store = DAG.getTruncStore( 5063 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5064 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 5065 } 5066 OutChains.push_back(Store); 5067 SrcOff += VTSize; 5068 DstOff += VTSize; 5069 Size -= VTSize; 5070 } 5071 5072 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5073 } 5074 5075 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5076 SDValue Chain, SDValue Dst, SDValue Src, 5077 uint64_t Size, unsigned Align, 5078 bool isVol, bool AlwaysInline, 5079 MachinePointerInfo DstPtrInfo, 5080 MachinePointerInfo SrcPtrInfo) { 5081 // Turn a memmove of undef to nop. 5082 if (Src.isUndef()) 5083 return Chain; 5084 5085 // Expand memmove to a series of load and store ops if the size operand falls 5086 // below a certain threshold. 5087 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5088 const DataLayout &DL = DAG.getDataLayout(); 5089 LLVMContext &C = *DAG.getContext(); 5090 std::vector<EVT> MemOps; 5091 bool DstAlignCanChange = false; 5092 MachineFunction &MF = DAG.getMachineFunction(); 5093 MachineFrameInfo &MFI = MF.getFrameInfo(); 5094 bool OptSize = shouldLowerMemFuncForSize(MF); 5095 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5096 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5097 DstAlignCanChange = true; 5098 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5099 if (Align > SrcAlign) 5100 SrcAlign = Align; 5101 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 5102 5103 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 5104 (DstAlignCanChange ? 0 : Align), SrcAlign, 5105 false, false, false, false, 5106 DstPtrInfo.getAddrSpace(), 5107 SrcPtrInfo.getAddrSpace(), 5108 DAG, TLI)) 5109 return SDValue(); 5110 5111 if (DstAlignCanChange) { 5112 Type *Ty = MemOps[0].getTypeForEVT(C); 5113 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5114 if (NewAlign > Align) { 5115 // Give the stack frame object a larger alignment if needed. 5116 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5117 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5118 Align = NewAlign; 5119 } 5120 } 5121 5122 MachineMemOperand::Flags MMOFlags = 5123 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5124 uint64_t SrcOff = 0, DstOff = 0; 5125 SmallVector<SDValue, 8> LoadValues; 5126 SmallVector<SDValue, 8> LoadChains; 5127 SmallVector<SDValue, 8> OutChains; 5128 unsigned NumMemOps = MemOps.size(); 5129 for (unsigned i = 0; i < NumMemOps; i++) { 5130 EVT VT = MemOps[i]; 5131 unsigned VTSize = VT.getSizeInBits() / 8; 5132 SDValue Value; 5133 5134 bool isDereferenceable = 5135 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5136 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5137 if (isDereferenceable) 5138 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5139 5140 Value = 5141 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5142 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); 5143 LoadValues.push_back(Value); 5144 LoadChains.push_back(Value.getValue(1)); 5145 SrcOff += VTSize; 5146 } 5147 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 5148 OutChains.clear(); 5149 for (unsigned i = 0; i < NumMemOps; i++) { 5150 EVT VT = MemOps[i]; 5151 unsigned VTSize = VT.getSizeInBits() / 8; 5152 SDValue Store; 5153 5154 Store = DAG.getStore(Chain, dl, LoadValues[i], 5155 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5156 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 5157 OutChains.push_back(Store); 5158 DstOff += VTSize; 5159 } 5160 5161 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5162 } 5163 5164 /// \brief Lower the call to 'memset' intrinsic function into a series of store 5165 /// operations. 5166 /// 5167 /// \param DAG Selection DAG where lowered code is placed. 5168 /// \param dl Link to corresponding IR location. 5169 /// \param Chain Control flow dependency. 5170 /// \param Dst Pointer to destination memory location. 5171 /// \param Src Value of byte to write into the memory. 5172 /// \param Size Number of bytes to write. 5173 /// \param Align Alignment of the destination in bytes. 5174 /// \param isVol True if destination is volatile. 5175 /// \param DstPtrInfo IR information on the memory pointer. 5176 /// \returns New head in the control flow, if lowering was successful, empty 5177 /// SDValue otherwise. 5178 /// 5179 /// The function tries to replace 'llvm.memset' intrinsic with several store 5180 /// operations and value calculation code. This is usually profitable for small 5181 /// memory size. 5182 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 5183 SDValue Chain, SDValue Dst, SDValue Src, 5184 uint64_t Size, unsigned Align, bool isVol, 5185 MachinePointerInfo DstPtrInfo) { 5186 // Turn a memset of undef to nop. 5187 if (Src.isUndef()) 5188 return Chain; 5189 5190 // Expand memset to a series of load/store ops if the size operand 5191 // falls below a certain threshold. 5192 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5193 std::vector<EVT> MemOps; 5194 bool DstAlignCanChange = false; 5195 MachineFunction &MF = DAG.getMachineFunction(); 5196 MachineFrameInfo &MFI = MF.getFrameInfo(); 5197 bool OptSize = shouldLowerMemFuncForSize(MF); 5198 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5199 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5200 DstAlignCanChange = true; 5201 bool IsZeroVal = 5202 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 5203 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 5204 Size, (DstAlignCanChange ? 0 : Align), 0, 5205 true, IsZeroVal, false, true, 5206 DstPtrInfo.getAddrSpace(), ~0u, 5207 DAG, TLI)) 5208 return SDValue(); 5209 5210 if (DstAlignCanChange) { 5211 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 5212 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 5213 if (NewAlign > Align) { 5214 // Give the stack frame object a larger alignment if needed. 5215 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5216 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5217 Align = NewAlign; 5218 } 5219 } 5220 5221 SmallVector<SDValue, 8> OutChains; 5222 uint64_t DstOff = 0; 5223 unsigned NumMemOps = MemOps.size(); 5224 5225 // Find the largest store and generate the bit pattern for it. 5226 EVT LargestVT = MemOps[0]; 5227 for (unsigned i = 1; i < NumMemOps; i++) 5228 if (MemOps[i].bitsGT(LargestVT)) 5229 LargestVT = MemOps[i]; 5230 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 5231 5232 for (unsigned i = 0; i < NumMemOps; i++) { 5233 EVT VT = MemOps[i]; 5234 unsigned VTSize = VT.getSizeInBits() / 8; 5235 if (VTSize > Size) { 5236 // Issuing an unaligned load / store pair that overlaps with the previous 5237 // pair. Adjust the offset accordingly. 5238 assert(i == NumMemOps-1 && i != 0); 5239 DstOff -= VTSize - Size; 5240 } 5241 5242 // If this store is smaller than the largest store see whether we can get 5243 // the smaller value for free with a truncate. 5244 SDValue Value = MemSetValue; 5245 if (VT.bitsLT(LargestVT)) { 5246 if (!LargestVT.isVector() && !VT.isVector() && 5247 TLI.isTruncateFree(LargestVT, VT)) 5248 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 5249 else 5250 Value = getMemsetValue(Src, VT, DAG, dl); 5251 } 5252 assert(Value.getValueType() == VT && "Value with wrong type."); 5253 SDValue Store = DAG.getStore( 5254 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5255 DstPtrInfo.getWithOffset(DstOff), Align, 5256 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 5257 OutChains.push_back(Store); 5258 DstOff += VT.getSizeInBits() / 8; 5259 Size -= VTSize; 5260 } 5261 5262 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5263 } 5264 5265 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 5266 unsigned AS) { 5267 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 5268 // pointer operands can be losslessly bitcasted to pointers of address space 0 5269 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 5270 report_fatal_error("cannot lower memory intrinsic in address space " + 5271 Twine(AS)); 5272 } 5273 } 5274 5275 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 5276 SDValue Src, SDValue Size, unsigned Align, 5277 bool isVol, bool AlwaysInline, bool isTailCall, 5278 MachinePointerInfo DstPtrInfo, 5279 MachinePointerInfo SrcPtrInfo) { 5280 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5281 5282 // Check to see if we should lower the memcpy to loads and stores first. 5283 // For cases within the target-specified limits, this is the best choice. 5284 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5285 if (ConstantSize) { 5286 // Memcpy with size zero? Just return the original chain. 5287 if (ConstantSize->isNullValue()) 5288 return Chain; 5289 5290 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5291 ConstantSize->getZExtValue(),Align, 5292 isVol, false, DstPtrInfo, SrcPtrInfo); 5293 if (Result.getNode()) 5294 return Result; 5295 } 5296 5297 // Then check to see if we should lower the memcpy with target-specific 5298 // code. If the target chooses to do this, this is the next best. 5299 if (TSI) { 5300 SDValue Result = TSI->EmitTargetCodeForMemcpy( 5301 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 5302 DstPtrInfo, SrcPtrInfo); 5303 if (Result.getNode()) 5304 return Result; 5305 } 5306 5307 // If we really need inline code and the target declined to provide it, 5308 // use a (potentially long) sequence of loads and stores. 5309 if (AlwaysInline) { 5310 assert(ConstantSize && "AlwaysInline requires a constant size!"); 5311 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5312 ConstantSize->getZExtValue(), Align, isVol, 5313 true, DstPtrInfo, SrcPtrInfo); 5314 } 5315 5316 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5317 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5318 5319 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 5320 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 5321 // respect volatile, so they may do things like read or write memory 5322 // beyond the given memory regions. But fixing this isn't easy, and most 5323 // people don't care. 5324 5325 // Emit a library call. 5326 TargetLowering::ArgListTy Args; 5327 TargetLowering::ArgListEntry Entry; 5328 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5329 Entry.Node = Dst; Args.push_back(Entry); 5330 Entry.Node = Src; Args.push_back(Entry); 5331 Entry.Node = Size; Args.push_back(Entry); 5332 // FIXME: pass in SDLoc 5333 TargetLowering::CallLoweringInfo CLI(*this); 5334 CLI.setDebugLoc(dl) 5335 .setChain(Chain) 5336 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 5337 Dst.getValueType().getTypeForEVT(*getContext()), 5338 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 5339 TLI->getPointerTy(getDataLayout())), 5340 std::move(Args)) 5341 .setDiscardResult() 5342 .setTailCall(isTailCall); 5343 5344 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5345 return CallResult.second; 5346 } 5347 5348 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 5349 SDValue Src, SDValue Size, unsigned Align, 5350 bool isVol, bool isTailCall, 5351 MachinePointerInfo DstPtrInfo, 5352 MachinePointerInfo SrcPtrInfo) { 5353 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5354 5355 // Check to see if we should lower the memmove to loads and stores first. 5356 // For cases within the target-specified limits, this is the best choice. 5357 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5358 if (ConstantSize) { 5359 // Memmove with size zero? Just return the original chain. 5360 if (ConstantSize->isNullValue()) 5361 return Chain; 5362 5363 SDValue Result = 5364 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 5365 ConstantSize->getZExtValue(), Align, isVol, 5366 false, DstPtrInfo, SrcPtrInfo); 5367 if (Result.getNode()) 5368 return Result; 5369 } 5370 5371 // Then check to see if we should lower the memmove with target-specific 5372 // code. If the target chooses to do this, this is the next best. 5373 if (TSI) { 5374 SDValue Result = TSI->EmitTargetCodeForMemmove( 5375 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 5376 if (Result.getNode()) 5377 return Result; 5378 } 5379 5380 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5381 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5382 5383 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 5384 // not be safe. See memcpy above for more details. 5385 5386 // Emit a library call. 5387 TargetLowering::ArgListTy Args; 5388 TargetLowering::ArgListEntry Entry; 5389 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5390 Entry.Node = Dst; Args.push_back(Entry); 5391 Entry.Node = Src; Args.push_back(Entry); 5392 Entry.Node = Size; Args.push_back(Entry); 5393 // FIXME: pass in SDLoc 5394 TargetLowering::CallLoweringInfo CLI(*this); 5395 CLI.setDebugLoc(dl) 5396 .setChain(Chain) 5397 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 5398 Dst.getValueType().getTypeForEVT(*getContext()), 5399 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 5400 TLI->getPointerTy(getDataLayout())), 5401 std::move(Args)) 5402 .setDiscardResult() 5403 .setTailCall(isTailCall); 5404 5405 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5406 return CallResult.second; 5407 } 5408 5409 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 5410 SDValue Src, SDValue Size, unsigned Align, 5411 bool isVol, bool isTailCall, 5412 MachinePointerInfo DstPtrInfo) { 5413 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5414 5415 // Check to see if we should lower the memset to stores first. 5416 // For cases within the target-specified limits, this is the best choice. 5417 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5418 if (ConstantSize) { 5419 // Memset with size zero? Just return the original chain. 5420 if (ConstantSize->isNullValue()) 5421 return Chain; 5422 5423 SDValue Result = 5424 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 5425 Align, isVol, DstPtrInfo); 5426 5427 if (Result.getNode()) 5428 return Result; 5429 } 5430 5431 // Then check to see if we should lower the memset with target-specific 5432 // code. If the target chooses to do this, this is the next best. 5433 if (TSI) { 5434 SDValue Result = TSI->EmitTargetCodeForMemset( 5435 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 5436 if (Result.getNode()) 5437 return Result; 5438 } 5439 5440 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5441 5442 // Emit a library call. 5443 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext()); 5444 TargetLowering::ArgListTy Args; 5445 TargetLowering::ArgListEntry Entry; 5446 Entry.Node = Dst; Entry.Ty = IntPtrTy; 5447 Args.push_back(Entry); 5448 Entry.Node = Src; 5449 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 5450 Args.push_back(Entry); 5451 Entry.Node = Size; 5452 Entry.Ty = IntPtrTy; 5453 Args.push_back(Entry); 5454 5455 // FIXME: pass in SDLoc 5456 TargetLowering::CallLoweringInfo CLI(*this); 5457 CLI.setDebugLoc(dl) 5458 .setChain(Chain) 5459 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 5460 Dst.getValueType().getTypeForEVT(*getContext()), 5461 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 5462 TLI->getPointerTy(getDataLayout())), 5463 std::move(Args)) 5464 .setDiscardResult() 5465 .setTailCall(isTailCall); 5466 5467 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5468 return CallResult.second; 5469 } 5470 5471 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5472 SDVTList VTList, ArrayRef<SDValue> Ops, 5473 MachineMemOperand *MMO) { 5474 FoldingSetNodeID ID; 5475 ID.AddInteger(MemVT.getRawBits()); 5476 AddNodeIDNode(ID, Opcode, VTList, Ops); 5477 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5478 void* IP = nullptr; 5479 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5480 cast<AtomicSDNode>(E)->refineAlignment(MMO); 5481 return SDValue(E, 0); 5482 } 5483 5484 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5485 VTList, MemVT, MMO); 5486 createOperands(N, Ops); 5487 5488 CSEMap.InsertNode(N, IP); 5489 InsertNode(N); 5490 return SDValue(N, 0); 5491 } 5492 5493 SDValue SelectionDAG::getAtomicCmpSwap( 5494 unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, 5495 SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, 5496 unsigned Alignment, AtomicOrdering SuccessOrdering, 5497 AtomicOrdering FailureOrdering, SyncScope::ID SSID) { 5498 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5499 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5500 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5501 5502 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5503 Alignment = getEVTAlignment(MemVT); 5504 5505 MachineFunction &MF = getMachineFunction(); 5506 5507 // FIXME: Volatile isn't really correct; we should keep track of atomic 5508 // orderings in the memoperand. 5509 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad | 5510 MachineMemOperand::MOStore; 5511 MachineMemOperand *MMO = 5512 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, 5513 AAMDNodes(), nullptr, SSID, SuccessOrdering, 5514 FailureOrdering); 5515 5516 return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO); 5517 } 5518 5519 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 5520 EVT MemVT, SDVTList VTs, SDValue Chain, 5521 SDValue Ptr, SDValue Cmp, SDValue Swp, 5522 MachineMemOperand *MMO) { 5523 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5524 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5525 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5526 5527 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 5528 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5529 } 5530 5531 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5532 SDValue Chain, SDValue Ptr, SDValue Val, 5533 const Value *PtrVal, unsigned Alignment, 5534 AtomicOrdering Ordering, 5535 SyncScope::ID SSID) { 5536 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5537 Alignment = getEVTAlignment(MemVT); 5538 5539 MachineFunction &MF = getMachineFunction(); 5540 // An atomic store does not load. An atomic load does not store. 5541 // (An atomicrmw obviously both loads and stores.) 5542 // For now, atomics are considered to be volatile always, and they are 5543 // chained as such. 5544 // FIXME: Volatile isn't really correct; we should keep track of atomic 5545 // orderings in the memoperand. 5546 auto Flags = MachineMemOperand::MOVolatile; 5547 if (Opcode != ISD::ATOMIC_STORE) 5548 Flags |= MachineMemOperand::MOLoad; 5549 if (Opcode != ISD::ATOMIC_LOAD) 5550 Flags |= MachineMemOperand::MOStore; 5551 5552 MachineMemOperand *MMO = 5553 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, 5554 MemVT.getStoreSize(), Alignment, AAMDNodes(), 5555 nullptr, SSID, Ordering); 5556 5557 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO); 5558 } 5559 5560 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5561 SDValue Chain, SDValue Ptr, SDValue Val, 5562 MachineMemOperand *MMO) { 5563 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 5564 Opcode == ISD::ATOMIC_LOAD_SUB || 5565 Opcode == ISD::ATOMIC_LOAD_AND || 5566 Opcode == ISD::ATOMIC_LOAD_OR || 5567 Opcode == ISD::ATOMIC_LOAD_XOR || 5568 Opcode == ISD::ATOMIC_LOAD_NAND || 5569 Opcode == ISD::ATOMIC_LOAD_MIN || 5570 Opcode == ISD::ATOMIC_LOAD_MAX || 5571 Opcode == ISD::ATOMIC_LOAD_UMIN || 5572 Opcode == ISD::ATOMIC_LOAD_UMAX || 5573 Opcode == ISD::ATOMIC_SWAP || 5574 Opcode == ISD::ATOMIC_STORE) && 5575 "Invalid Atomic Op"); 5576 5577 EVT VT = Val.getValueType(); 5578 5579 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 5580 getVTList(VT, MVT::Other); 5581 SDValue Ops[] = {Chain, Ptr, Val}; 5582 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5583 } 5584 5585 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5586 EVT VT, SDValue Chain, SDValue Ptr, 5587 MachineMemOperand *MMO) { 5588 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 5589 5590 SDVTList VTs = getVTList(VT, MVT::Other); 5591 SDValue Ops[] = {Chain, Ptr}; 5592 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5593 } 5594 5595 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 5596 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 5597 if (Ops.size() == 1) 5598 return Ops[0]; 5599 5600 SmallVector<EVT, 4> VTs; 5601 VTs.reserve(Ops.size()); 5602 for (unsigned i = 0; i < Ops.size(); ++i) 5603 VTs.push_back(Ops[i].getValueType()); 5604 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 5605 } 5606 5607 SDValue SelectionDAG::getMemIntrinsicNode( 5608 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 5609 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol, 5610 bool ReadMem, bool WriteMem, unsigned Size) { 5611 if (Align == 0) // Ensure that codegen never sees alignment 0 5612 Align = getEVTAlignment(MemVT); 5613 5614 MachineFunction &MF = getMachineFunction(); 5615 auto Flags = MachineMemOperand::MONone; 5616 if (WriteMem) 5617 Flags |= MachineMemOperand::MOStore; 5618 if (ReadMem) 5619 Flags |= MachineMemOperand::MOLoad; 5620 if (Vol) 5621 Flags |= MachineMemOperand::MOVolatile; 5622 if (!Size) 5623 Size = MemVT.getStoreSize(); 5624 MachineMemOperand *MMO = 5625 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 5626 5627 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 5628 } 5629 5630 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 5631 SDVTList VTList, 5632 ArrayRef<SDValue> Ops, EVT MemVT, 5633 MachineMemOperand *MMO) { 5634 assert((Opcode == ISD::INTRINSIC_VOID || 5635 Opcode == ISD::INTRINSIC_W_CHAIN || 5636 Opcode == ISD::PREFETCH || 5637 Opcode == ISD::LIFETIME_START || 5638 Opcode == ISD::LIFETIME_END || 5639 ((int)Opcode <= std::numeric_limits<int>::max() && 5640 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 5641 "Opcode is not a memory-accessing opcode!"); 5642 5643 // Memoize the node unless it returns a flag. 5644 MemIntrinsicSDNode *N; 5645 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5646 FoldingSetNodeID ID; 5647 AddNodeIDNode(ID, Opcode, VTList, Ops); 5648 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5649 void *IP = nullptr; 5650 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5651 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 5652 return SDValue(E, 0); 5653 } 5654 5655 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5656 VTList, MemVT, MMO); 5657 createOperands(N, Ops); 5658 5659 CSEMap.InsertNode(N, IP); 5660 } else { 5661 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5662 VTList, MemVT, MMO); 5663 createOperands(N, Ops); 5664 } 5665 InsertNode(N); 5666 return SDValue(N, 0); 5667 } 5668 5669 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5670 /// MachinePointerInfo record from it. This is particularly useful because the 5671 /// code generator has many cases where it doesn't bother passing in a 5672 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5673 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5674 int64_t Offset = 0) { 5675 // If this is FI+Offset, we can model it. 5676 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 5677 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 5678 FI->getIndex(), Offset); 5679 5680 // If this is (FI+Offset1)+Offset2, we can model it. 5681 if (Ptr.getOpcode() != ISD::ADD || 5682 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 5683 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 5684 return MachinePointerInfo(); 5685 5686 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 5687 return MachinePointerInfo::getFixedStack( 5688 DAG.getMachineFunction(), FI, 5689 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 5690 } 5691 5692 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5693 /// MachinePointerInfo record from it. This is particularly useful because the 5694 /// code generator has many cases where it doesn't bother passing in a 5695 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5696 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5697 SDValue OffsetOp) { 5698 // If the 'Offset' value isn't a constant, we can't handle this. 5699 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 5700 return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue()); 5701 if (OffsetOp.isUndef()) 5702 return InferPointerInfo(DAG, Ptr); 5703 return MachinePointerInfo(); 5704 } 5705 5706 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5707 EVT VT, const SDLoc &dl, SDValue Chain, 5708 SDValue Ptr, SDValue Offset, 5709 MachinePointerInfo PtrInfo, EVT MemVT, 5710 unsigned Alignment, 5711 MachineMemOperand::Flags MMOFlags, 5712 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5713 assert(Chain.getValueType() == MVT::Other && 5714 "Invalid chain type"); 5715 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5716 Alignment = getEVTAlignment(MemVT); 5717 5718 MMOFlags |= MachineMemOperand::MOLoad; 5719 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 5720 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 5721 // clients. 5722 if (PtrInfo.V.isNull()) 5723 PtrInfo = InferPointerInfo(*this, Ptr, Offset); 5724 5725 MachineFunction &MF = getMachineFunction(); 5726 MachineMemOperand *MMO = MF.getMachineMemOperand( 5727 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 5728 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 5729 } 5730 5731 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5732 EVT VT, const SDLoc &dl, SDValue Chain, 5733 SDValue Ptr, SDValue Offset, EVT MemVT, 5734 MachineMemOperand *MMO) { 5735 if (VT == MemVT) { 5736 ExtType = ISD::NON_EXTLOAD; 5737 } else if (ExtType == ISD::NON_EXTLOAD) { 5738 assert(VT == MemVT && "Non-extending load from different memory type!"); 5739 } else { 5740 // Extending load. 5741 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 5742 "Should only be an extending load, not truncating!"); 5743 assert(VT.isInteger() == MemVT.isInteger() && 5744 "Cannot convert from FP to Int or Int -> FP!"); 5745 assert(VT.isVector() == MemVT.isVector() && 5746 "Cannot use an ext load to convert to or from a vector!"); 5747 assert((!VT.isVector() || 5748 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 5749 "Cannot use an ext load to change the number of vector elements!"); 5750 } 5751 5752 bool Indexed = AM != ISD::UNINDEXED; 5753 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 5754 5755 SDVTList VTs = Indexed ? 5756 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 5757 SDValue Ops[] = { Chain, Ptr, Offset }; 5758 FoldingSetNodeID ID; 5759 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 5760 ID.AddInteger(MemVT.getRawBits()); 5761 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 5762 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 5763 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5764 void *IP = nullptr; 5765 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5766 cast<LoadSDNode>(E)->refineAlignment(MMO); 5767 return SDValue(E, 0); 5768 } 5769 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5770 ExtType, MemVT, MMO); 5771 createOperands(N, Ops); 5772 5773 CSEMap.InsertNode(N, IP); 5774 InsertNode(N); 5775 return SDValue(N, 0); 5776 } 5777 5778 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5779 SDValue Ptr, MachinePointerInfo PtrInfo, 5780 unsigned Alignment, 5781 MachineMemOperand::Flags MMOFlags, 5782 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5783 SDValue Undef = getUNDEF(Ptr.getValueType()); 5784 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5785 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 5786 } 5787 5788 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5789 SDValue Ptr, MachineMemOperand *MMO) { 5790 SDValue Undef = getUNDEF(Ptr.getValueType()); 5791 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5792 VT, MMO); 5793 } 5794 5795 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5796 EVT VT, SDValue Chain, SDValue Ptr, 5797 MachinePointerInfo PtrInfo, EVT MemVT, 5798 unsigned Alignment, 5799 MachineMemOperand::Flags MMOFlags, 5800 const AAMDNodes &AAInfo) { 5801 SDValue Undef = getUNDEF(Ptr.getValueType()); 5802 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 5803 MemVT, Alignment, MMOFlags, AAInfo); 5804 } 5805 5806 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5807 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 5808 MachineMemOperand *MMO) { 5809 SDValue Undef = getUNDEF(Ptr.getValueType()); 5810 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 5811 MemVT, MMO); 5812 } 5813 5814 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 5815 SDValue Base, SDValue Offset, 5816 ISD::MemIndexedMode AM) { 5817 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 5818 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 5819 // Don't propagate the invariant or dereferenceable flags. 5820 auto MMOFlags = 5821 LD->getMemOperand()->getFlags() & 5822 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 5823 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 5824 LD->getChain(), Base, Offset, LD->getPointerInfo(), 5825 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 5826 LD->getAAInfo()); 5827 } 5828 5829 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5830 SDValue Ptr, MachinePointerInfo PtrInfo, 5831 unsigned Alignment, 5832 MachineMemOperand::Flags MMOFlags, 5833 const AAMDNodes &AAInfo) { 5834 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 5835 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5836 Alignment = getEVTAlignment(Val.getValueType()); 5837 5838 MMOFlags |= MachineMemOperand::MOStore; 5839 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 5840 5841 if (PtrInfo.V.isNull()) 5842 PtrInfo = InferPointerInfo(*this, Ptr); 5843 5844 MachineFunction &MF = getMachineFunction(); 5845 MachineMemOperand *MMO = MF.getMachineMemOperand( 5846 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 5847 return getStore(Chain, dl, Val, Ptr, MMO); 5848 } 5849 5850 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5851 SDValue Ptr, MachineMemOperand *MMO) { 5852 assert(Chain.getValueType() == MVT::Other && 5853 "Invalid chain type"); 5854 EVT VT = Val.getValueType(); 5855 SDVTList VTs = getVTList(MVT::Other); 5856 SDValue Undef = getUNDEF(Ptr.getValueType()); 5857 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5858 FoldingSetNodeID ID; 5859 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5860 ID.AddInteger(VT.getRawBits()); 5861 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 5862 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 5863 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5864 void *IP = nullptr; 5865 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5866 cast<StoreSDNode>(E)->refineAlignment(MMO); 5867 return SDValue(E, 0); 5868 } 5869 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5870 ISD::UNINDEXED, false, VT, MMO); 5871 createOperands(N, Ops); 5872 5873 CSEMap.InsertNode(N, IP); 5874 InsertNode(N); 5875 return SDValue(N, 0); 5876 } 5877 5878 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5879 SDValue Ptr, MachinePointerInfo PtrInfo, 5880 EVT SVT, unsigned Alignment, 5881 MachineMemOperand::Flags MMOFlags, 5882 const AAMDNodes &AAInfo) { 5883 assert(Chain.getValueType() == MVT::Other && 5884 "Invalid chain type"); 5885 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5886 Alignment = getEVTAlignment(SVT); 5887 5888 MMOFlags |= MachineMemOperand::MOStore; 5889 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 5890 5891 if (PtrInfo.V.isNull()) 5892 PtrInfo = InferPointerInfo(*this, Ptr); 5893 5894 MachineFunction &MF = getMachineFunction(); 5895 MachineMemOperand *MMO = MF.getMachineMemOperand( 5896 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 5897 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 5898 } 5899 5900 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5901 SDValue Ptr, EVT SVT, 5902 MachineMemOperand *MMO) { 5903 EVT VT = Val.getValueType(); 5904 5905 assert(Chain.getValueType() == MVT::Other && 5906 "Invalid chain type"); 5907 if (VT == SVT) 5908 return getStore(Chain, dl, Val, Ptr, MMO); 5909 5910 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 5911 "Should only be a truncating store, not extending!"); 5912 assert(VT.isInteger() == SVT.isInteger() && 5913 "Can't do FP-INT conversion!"); 5914 assert(VT.isVector() == SVT.isVector() && 5915 "Cannot use trunc store to convert to or from a vector!"); 5916 assert((!VT.isVector() || 5917 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 5918 "Cannot use trunc store to change the number of vector elements!"); 5919 5920 SDVTList VTs = getVTList(MVT::Other); 5921 SDValue Undef = getUNDEF(Ptr.getValueType()); 5922 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5923 FoldingSetNodeID ID; 5924 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5925 ID.AddInteger(SVT.getRawBits()); 5926 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 5927 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 5928 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5929 void *IP = nullptr; 5930 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5931 cast<StoreSDNode>(E)->refineAlignment(MMO); 5932 return SDValue(E, 0); 5933 } 5934 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5935 ISD::UNINDEXED, true, SVT, MMO); 5936 createOperands(N, Ops); 5937 5938 CSEMap.InsertNode(N, IP); 5939 InsertNode(N); 5940 return SDValue(N, 0); 5941 } 5942 5943 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 5944 SDValue Base, SDValue Offset, 5945 ISD::MemIndexedMode AM) { 5946 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 5947 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 5948 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 5949 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 5950 FoldingSetNodeID ID; 5951 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5952 ID.AddInteger(ST->getMemoryVT().getRawBits()); 5953 ID.AddInteger(ST->getRawSubclassData()); 5954 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 5955 void *IP = nullptr; 5956 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 5957 return SDValue(E, 0); 5958 5959 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5960 ST->isTruncatingStore(), ST->getMemoryVT(), 5961 ST->getMemOperand()); 5962 createOperands(N, Ops); 5963 5964 CSEMap.InsertNode(N, IP); 5965 InsertNode(N); 5966 return SDValue(N, 0); 5967 } 5968 5969 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5970 SDValue Ptr, SDValue Mask, SDValue Src0, 5971 EVT MemVT, MachineMemOperand *MMO, 5972 ISD::LoadExtType ExtTy, bool isExpanding) { 5973 SDVTList VTs = getVTList(VT, MVT::Other); 5974 SDValue Ops[] = { Chain, Ptr, Mask, Src0 }; 5975 FoldingSetNodeID ID; 5976 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 5977 ID.AddInteger(VT.getRawBits()); 5978 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 5979 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 5980 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5981 void *IP = nullptr; 5982 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5983 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 5984 return SDValue(E, 0); 5985 } 5986 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5987 ExtTy, isExpanding, MemVT, MMO); 5988 createOperands(N, Ops); 5989 5990 CSEMap.InsertNode(N, IP); 5991 InsertNode(N); 5992 return SDValue(N, 0); 5993 } 5994 5995 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 5996 SDValue Val, SDValue Ptr, SDValue Mask, 5997 EVT MemVT, MachineMemOperand *MMO, 5998 bool IsTruncating, bool IsCompressing) { 5999 assert(Chain.getValueType() == MVT::Other && 6000 "Invalid chain type"); 6001 EVT VT = Val.getValueType(); 6002 SDVTList VTs = getVTList(MVT::Other); 6003 SDValue Ops[] = { Chain, Ptr, Mask, Val }; 6004 FoldingSetNodeID ID; 6005 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 6006 ID.AddInteger(VT.getRawBits()); 6007 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 6008 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 6009 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6010 void *IP = nullptr; 6011 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6012 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 6013 return SDValue(E, 0); 6014 } 6015 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6016 IsTruncating, IsCompressing, MemVT, MMO); 6017 createOperands(N, Ops); 6018 6019 CSEMap.InsertNode(N, IP); 6020 InsertNode(N); 6021 return SDValue(N, 0); 6022 } 6023 6024 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 6025 ArrayRef<SDValue> Ops, 6026 MachineMemOperand *MMO) { 6027 assert(Ops.size() == 5 && "Incompatible number of operands"); 6028 6029 FoldingSetNodeID ID; 6030 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 6031 ID.AddInteger(VT.getRawBits()); 6032 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 6033 dl.getIROrder(), VTs, VT, MMO)); 6034 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6035 void *IP = nullptr; 6036 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6037 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 6038 return SDValue(E, 0); 6039 } 6040 6041 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6042 VTs, VT, MMO); 6043 createOperands(N, Ops); 6044 6045 assert(N->getValue().getValueType() == N->getValueType(0) && 6046 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 6047 assert(N->getMask().getValueType().getVectorNumElements() == 6048 N->getValueType(0).getVectorNumElements() && 6049 "Vector width mismatch between mask and data"); 6050 assert(N->getIndex().getValueType().getVectorNumElements() == 6051 N->getValueType(0).getVectorNumElements() && 6052 "Vector width mismatch between index and data"); 6053 6054 CSEMap.InsertNode(N, IP); 6055 InsertNode(N); 6056 return SDValue(N, 0); 6057 } 6058 6059 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 6060 ArrayRef<SDValue> Ops, 6061 MachineMemOperand *MMO) { 6062 assert(Ops.size() == 5 && "Incompatible number of operands"); 6063 6064 FoldingSetNodeID ID; 6065 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 6066 ID.AddInteger(VT.getRawBits()); 6067 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 6068 dl.getIROrder(), VTs, VT, MMO)); 6069 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6070 void *IP = nullptr; 6071 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6072 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 6073 return SDValue(E, 0); 6074 } 6075 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6076 VTs, VT, MMO); 6077 createOperands(N, Ops); 6078 6079 assert(N->getMask().getValueType().getVectorNumElements() == 6080 N->getValue().getValueType().getVectorNumElements() && 6081 "Vector width mismatch between mask and data"); 6082 assert(N->getIndex().getValueType().getVectorNumElements() == 6083 N->getValue().getValueType().getVectorNumElements() && 6084 "Vector width mismatch between index and data"); 6085 6086 CSEMap.InsertNode(N, IP); 6087 InsertNode(N); 6088 return SDValue(N, 0); 6089 } 6090 6091 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 6092 SDValue Ptr, SDValue SV, unsigned Align) { 6093 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 6094 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 6095 } 6096 6097 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6098 ArrayRef<SDUse> Ops) { 6099 switch (Ops.size()) { 6100 case 0: return getNode(Opcode, DL, VT); 6101 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 6102 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 6103 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 6104 default: break; 6105 } 6106 6107 // Copy from an SDUse array into an SDValue array for use with 6108 // the regular getNode logic. 6109 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 6110 return getNode(Opcode, DL, VT, NewOps); 6111 } 6112 6113 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6114 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 6115 unsigned NumOps = Ops.size(); 6116 switch (NumOps) { 6117 case 0: return getNode(Opcode, DL, VT); 6118 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 6119 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 6120 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 6121 default: break; 6122 } 6123 6124 switch (Opcode) { 6125 default: break; 6126 case ISD::CONCAT_VECTORS: 6127 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 6128 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 6129 return V; 6130 break; 6131 case ISD::SELECT_CC: 6132 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 6133 assert(Ops[0].getValueType() == Ops[1].getValueType() && 6134 "LHS and RHS of condition must have same type!"); 6135 assert(Ops[2].getValueType() == Ops[3].getValueType() && 6136 "True and False arms of SelectCC must have same type!"); 6137 assert(Ops[2].getValueType() == VT && 6138 "select_cc node must be of same type as true and false value!"); 6139 break; 6140 case ISD::BR_CC: 6141 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 6142 assert(Ops[2].getValueType() == Ops[3].getValueType() && 6143 "LHS/RHS of comparison should match types!"); 6144 break; 6145 } 6146 6147 // Memoize nodes. 6148 SDNode *N; 6149 SDVTList VTs = getVTList(VT); 6150 6151 if (VT != MVT::Glue) { 6152 FoldingSetNodeID ID; 6153 AddNodeIDNode(ID, Opcode, VTs, Ops); 6154 void *IP = nullptr; 6155 6156 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6157 return SDValue(E, 0); 6158 6159 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6160 createOperands(N, Ops); 6161 6162 CSEMap.InsertNode(N, IP); 6163 } else { 6164 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6165 createOperands(N, Ops); 6166 } 6167 6168 InsertNode(N); 6169 return SDValue(N, 0); 6170 } 6171 6172 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 6173 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 6174 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 6175 } 6176 6177 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6178 ArrayRef<SDValue> Ops) { 6179 if (VTList.NumVTs == 1) 6180 return getNode(Opcode, DL, VTList.VTs[0], Ops); 6181 6182 #if 0 6183 switch (Opcode) { 6184 // FIXME: figure out how to safely handle things like 6185 // int foo(int x) { return 1 << (x & 255); } 6186 // int bar() { return foo(256); } 6187 case ISD::SRA_PARTS: 6188 case ISD::SRL_PARTS: 6189 case ISD::SHL_PARTS: 6190 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 6191 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 6192 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6193 else if (N3.getOpcode() == ISD::AND) 6194 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 6195 // If the and is only masking out bits that cannot effect the shift, 6196 // eliminate the and. 6197 unsigned NumBits = VT.getScalarSizeInBits()*2; 6198 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 6199 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6200 } 6201 break; 6202 } 6203 #endif 6204 6205 // Memoize the node unless it returns a flag. 6206 SDNode *N; 6207 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6208 FoldingSetNodeID ID; 6209 AddNodeIDNode(ID, Opcode, VTList, Ops); 6210 void *IP = nullptr; 6211 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6212 return SDValue(E, 0); 6213 6214 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6215 createOperands(N, Ops); 6216 CSEMap.InsertNode(N, IP); 6217 } else { 6218 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6219 createOperands(N, Ops); 6220 } 6221 InsertNode(N); 6222 return SDValue(N, 0); 6223 } 6224 6225 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 6226 SDVTList VTList) { 6227 return getNode(Opcode, DL, VTList, None); 6228 } 6229 6230 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6231 SDValue N1) { 6232 SDValue Ops[] = { N1 }; 6233 return getNode(Opcode, DL, VTList, Ops); 6234 } 6235 6236 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6237 SDValue N1, SDValue N2) { 6238 SDValue Ops[] = { N1, N2 }; 6239 return getNode(Opcode, DL, VTList, Ops); 6240 } 6241 6242 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6243 SDValue N1, SDValue N2, SDValue N3) { 6244 SDValue Ops[] = { N1, N2, N3 }; 6245 return getNode(Opcode, DL, VTList, Ops); 6246 } 6247 6248 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6249 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6250 SDValue Ops[] = { N1, N2, N3, N4 }; 6251 return getNode(Opcode, DL, VTList, Ops); 6252 } 6253 6254 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6255 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6256 SDValue N5) { 6257 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6258 return getNode(Opcode, DL, VTList, Ops); 6259 } 6260 6261 SDVTList SelectionDAG::getVTList(EVT VT) { 6262 return makeVTList(SDNode::getValueTypeList(VT), 1); 6263 } 6264 6265 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 6266 FoldingSetNodeID ID; 6267 ID.AddInteger(2U); 6268 ID.AddInteger(VT1.getRawBits()); 6269 ID.AddInteger(VT2.getRawBits()); 6270 6271 void *IP = nullptr; 6272 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6273 if (!Result) { 6274 EVT *Array = Allocator.Allocate<EVT>(2); 6275 Array[0] = VT1; 6276 Array[1] = VT2; 6277 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 6278 VTListMap.InsertNode(Result, IP); 6279 } 6280 return Result->getSDVTList(); 6281 } 6282 6283 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 6284 FoldingSetNodeID ID; 6285 ID.AddInteger(3U); 6286 ID.AddInteger(VT1.getRawBits()); 6287 ID.AddInteger(VT2.getRawBits()); 6288 ID.AddInteger(VT3.getRawBits()); 6289 6290 void *IP = nullptr; 6291 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6292 if (!Result) { 6293 EVT *Array = Allocator.Allocate<EVT>(3); 6294 Array[0] = VT1; 6295 Array[1] = VT2; 6296 Array[2] = VT3; 6297 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 6298 VTListMap.InsertNode(Result, IP); 6299 } 6300 return Result->getSDVTList(); 6301 } 6302 6303 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 6304 FoldingSetNodeID ID; 6305 ID.AddInteger(4U); 6306 ID.AddInteger(VT1.getRawBits()); 6307 ID.AddInteger(VT2.getRawBits()); 6308 ID.AddInteger(VT3.getRawBits()); 6309 ID.AddInteger(VT4.getRawBits()); 6310 6311 void *IP = nullptr; 6312 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6313 if (!Result) { 6314 EVT *Array = Allocator.Allocate<EVT>(4); 6315 Array[0] = VT1; 6316 Array[1] = VT2; 6317 Array[2] = VT3; 6318 Array[3] = VT4; 6319 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 6320 VTListMap.InsertNode(Result, IP); 6321 } 6322 return Result->getSDVTList(); 6323 } 6324 6325 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 6326 unsigned NumVTs = VTs.size(); 6327 FoldingSetNodeID ID; 6328 ID.AddInteger(NumVTs); 6329 for (unsigned index = 0; index < NumVTs; index++) { 6330 ID.AddInteger(VTs[index].getRawBits()); 6331 } 6332 6333 void *IP = nullptr; 6334 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6335 if (!Result) { 6336 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 6337 std::copy(VTs.begin(), VTs.end(), Array); 6338 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 6339 VTListMap.InsertNode(Result, IP); 6340 } 6341 return Result->getSDVTList(); 6342 } 6343 6344 6345 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 6346 /// specified operands. If the resultant node already exists in the DAG, 6347 /// this does not modify the specified node, instead it returns the node that 6348 /// already exists. If the resultant node does not exist in the DAG, the 6349 /// input node is returned. As a degenerate case, if you specify the same 6350 /// input operands as the node already has, the input node is returned. 6351 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 6352 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 6353 6354 // Check to see if there is no change. 6355 if (Op == N->getOperand(0)) return N; 6356 6357 // See if the modified node already exists. 6358 void *InsertPos = nullptr; 6359 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 6360 return Existing; 6361 6362 // Nope it doesn't. Remove the node from its current place in the maps. 6363 if (InsertPos) 6364 if (!RemoveNodeFromCSEMaps(N)) 6365 InsertPos = nullptr; 6366 6367 // Now we update the operands. 6368 N->OperandList[0].set(Op); 6369 6370 // If this gets put into a CSE map, add it. 6371 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6372 return N; 6373 } 6374 6375 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 6376 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 6377 6378 // Check to see if there is no change. 6379 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 6380 return N; // No operands changed, just return the input node. 6381 6382 // See if the modified node already exists. 6383 void *InsertPos = nullptr; 6384 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 6385 return Existing; 6386 6387 // Nope it doesn't. Remove the node from its current place in the maps. 6388 if (InsertPos) 6389 if (!RemoveNodeFromCSEMaps(N)) 6390 InsertPos = nullptr; 6391 6392 // Now we update the operands. 6393 if (N->OperandList[0] != Op1) 6394 N->OperandList[0].set(Op1); 6395 if (N->OperandList[1] != Op2) 6396 N->OperandList[1].set(Op2); 6397 6398 // If this gets put into a CSE map, add it. 6399 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6400 return N; 6401 } 6402 6403 SDNode *SelectionDAG:: 6404 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 6405 SDValue Ops[] = { Op1, Op2, Op3 }; 6406 return UpdateNodeOperands(N, Ops); 6407 } 6408 6409 SDNode *SelectionDAG:: 6410 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6411 SDValue Op3, SDValue Op4) { 6412 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 6413 return UpdateNodeOperands(N, Ops); 6414 } 6415 6416 SDNode *SelectionDAG:: 6417 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6418 SDValue Op3, SDValue Op4, SDValue Op5) { 6419 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 6420 return UpdateNodeOperands(N, Ops); 6421 } 6422 6423 SDNode *SelectionDAG:: 6424 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 6425 unsigned NumOps = Ops.size(); 6426 assert(N->getNumOperands() == NumOps && 6427 "Update with wrong number of operands"); 6428 6429 // If no operands changed just return the input node. 6430 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 6431 return N; 6432 6433 // See if the modified node already exists. 6434 void *InsertPos = nullptr; 6435 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 6436 return Existing; 6437 6438 // Nope it doesn't. Remove the node from its current place in the maps. 6439 if (InsertPos) 6440 if (!RemoveNodeFromCSEMaps(N)) 6441 InsertPos = nullptr; 6442 6443 // Now we update the operands. 6444 for (unsigned i = 0; i != NumOps; ++i) 6445 if (N->OperandList[i] != Ops[i]) 6446 N->OperandList[i].set(Ops[i]); 6447 6448 // If this gets put into a CSE map, add it. 6449 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6450 return N; 6451 } 6452 6453 /// DropOperands - Release the operands and set this node to have 6454 /// zero operands. 6455 void SDNode::DropOperands() { 6456 // Unlike the code in MorphNodeTo that does this, we don't need to 6457 // watch for dead nodes here. 6458 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 6459 SDUse &Use = *I++; 6460 Use.set(SDValue()); 6461 } 6462 } 6463 6464 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 6465 /// machine opcode. 6466 /// 6467 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6468 EVT VT) { 6469 SDVTList VTs = getVTList(VT); 6470 return SelectNodeTo(N, MachineOpc, VTs, None); 6471 } 6472 6473 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6474 EVT VT, SDValue Op1) { 6475 SDVTList VTs = getVTList(VT); 6476 SDValue Ops[] = { Op1 }; 6477 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6478 } 6479 6480 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6481 EVT VT, SDValue Op1, 6482 SDValue Op2) { 6483 SDVTList VTs = getVTList(VT); 6484 SDValue Ops[] = { Op1, Op2 }; 6485 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6486 } 6487 6488 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6489 EVT VT, SDValue Op1, 6490 SDValue Op2, SDValue Op3) { 6491 SDVTList VTs = getVTList(VT); 6492 SDValue Ops[] = { Op1, Op2, Op3 }; 6493 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6494 } 6495 6496 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6497 EVT VT, ArrayRef<SDValue> Ops) { 6498 SDVTList VTs = getVTList(VT); 6499 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6500 } 6501 6502 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6503 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 6504 SDVTList VTs = getVTList(VT1, VT2); 6505 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6506 } 6507 6508 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6509 EVT VT1, EVT VT2) { 6510 SDVTList VTs = getVTList(VT1, VT2); 6511 return SelectNodeTo(N, MachineOpc, VTs, None); 6512 } 6513 6514 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6515 EVT VT1, EVT VT2, EVT VT3, 6516 ArrayRef<SDValue> Ops) { 6517 SDVTList VTs = getVTList(VT1, VT2, VT3); 6518 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6519 } 6520 6521 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6522 EVT VT1, EVT VT2, 6523 SDValue Op1, SDValue Op2) { 6524 SDVTList VTs = getVTList(VT1, VT2); 6525 SDValue Ops[] = { Op1, Op2 }; 6526 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6527 } 6528 6529 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6530 SDVTList VTs,ArrayRef<SDValue> Ops) { 6531 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 6532 // Reset the NodeID to -1. 6533 New->setNodeId(-1); 6534 if (New != N) { 6535 ReplaceAllUsesWith(N, New); 6536 RemoveDeadNode(N); 6537 } 6538 return New; 6539 } 6540 6541 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 6542 /// the line number information on the merged node since it is not possible to 6543 /// preserve the information that operation is associated with multiple lines. 6544 /// This will make the debugger working better at -O0, were there is a higher 6545 /// probability having other instructions associated with that line. 6546 /// 6547 /// For IROrder, we keep the smaller of the two 6548 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 6549 DebugLoc NLoc = N->getDebugLoc(); 6550 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 6551 N->setDebugLoc(DebugLoc()); 6552 } 6553 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 6554 N->setIROrder(Order); 6555 return N; 6556 } 6557 6558 /// MorphNodeTo - This *mutates* the specified node to have the specified 6559 /// return type, opcode, and operands. 6560 /// 6561 /// Note that MorphNodeTo returns the resultant node. If there is already a 6562 /// node of the specified opcode and operands, it returns that node instead of 6563 /// the current one. Note that the SDLoc need not be the same. 6564 /// 6565 /// Using MorphNodeTo is faster than creating a new node and swapping it in 6566 /// with ReplaceAllUsesWith both because it often avoids allocating a new 6567 /// node, and because it doesn't require CSE recalculation for any of 6568 /// the node's users. 6569 /// 6570 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 6571 /// As a consequence it isn't appropriate to use from within the DAG combiner or 6572 /// the legalizer which maintain worklists that would need to be updated when 6573 /// deleting things. 6574 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 6575 SDVTList VTs, ArrayRef<SDValue> Ops) { 6576 // If an identical node already exists, use it. 6577 void *IP = nullptr; 6578 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 6579 FoldingSetNodeID ID; 6580 AddNodeIDNode(ID, Opc, VTs, Ops); 6581 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 6582 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 6583 } 6584 6585 if (!RemoveNodeFromCSEMaps(N)) 6586 IP = nullptr; 6587 6588 // Start the morphing. 6589 N->NodeType = Opc; 6590 N->ValueList = VTs.VTs; 6591 N->NumValues = VTs.NumVTs; 6592 6593 // Clear the operands list, updating used nodes to remove this from their 6594 // use list. Keep track of any operands that become dead as a result. 6595 SmallPtrSet<SDNode*, 16> DeadNodeSet; 6596 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 6597 SDUse &Use = *I++; 6598 SDNode *Used = Use.getNode(); 6599 Use.set(SDValue()); 6600 if (Used->use_empty()) 6601 DeadNodeSet.insert(Used); 6602 } 6603 6604 // For MachineNode, initialize the memory references information. 6605 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 6606 MN->setMemRefs(nullptr, nullptr); 6607 6608 // Swap for an appropriately sized array from the recycler. 6609 removeOperands(N); 6610 createOperands(N, Ops); 6611 6612 // Delete any nodes that are still dead after adding the uses for the 6613 // new operands. 6614 if (!DeadNodeSet.empty()) { 6615 SmallVector<SDNode *, 16> DeadNodes; 6616 for (SDNode *N : DeadNodeSet) 6617 if (N->use_empty()) 6618 DeadNodes.push_back(N); 6619 RemoveDeadNodes(DeadNodes); 6620 } 6621 6622 if (IP) 6623 CSEMap.InsertNode(N, IP); // Memoize the new node. 6624 return N; 6625 } 6626 6627 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 6628 unsigned OrigOpc = Node->getOpcode(); 6629 unsigned NewOpc; 6630 bool IsUnary = false; 6631 switch (OrigOpc) { 6632 default: 6633 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 6634 case ISD::STRICT_FADD: NewOpc = ISD::FADD; break; 6635 case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break; 6636 case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break; 6637 case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break; 6638 case ISD::STRICT_FREM: NewOpc = ISD::FREM; break; 6639 case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break; 6640 case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break; 6641 case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break; 6642 case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break; 6643 case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break; 6644 case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break; 6645 case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break; 6646 case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break; 6647 case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break; 6648 case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break; 6649 case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break; 6650 case ISD::STRICT_FNEARBYINT: 6651 NewOpc = ISD::FNEARBYINT; 6652 IsUnary = true; 6653 break; 6654 } 6655 6656 // We're taking this node out of the chain, so we need to re-link things. 6657 SDValue InputChain = Node->getOperand(0); 6658 SDValue OutputChain = SDValue(Node, 1); 6659 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 6660 6661 SDVTList VTs = getVTList(Node->getOperand(1).getValueType()); 6662 SDNode *Res = nullptr; 6663 if (IsUnary) 6664 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) }); 6665 else 6666 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 6667 Node->getOperand(2) }); 6668 6669 // MorphNodeTo can operate in two ways: if an existing node with the 6670 // specified operands exists, it can just return it. Otherwise, it 6671 // updates the node in place to have the requested operands. 6672 if (Res == Node) { 6673 // If we updated the node in place, reset the node ID. To the isel, 6674 // this should be just like a newly allocated machine node. 6675 Res->setNodeId(-1); 6676 } else { 6677 ReplaceAllUsesWith(Node, Res); 6678 RemoveDeadNode(Node); 6679 } 6680 6681 return Res; 6682 } 6683 6684 /// getMachineNode - These are used for target selectors to create a new node 6685 /// with specified return type(s), MachineInstr opcode, and operands. 6686 /// 6687 /// Note that getMachineNode returns the resultant node. If there is already a 6688 /// node of the specified opcode and operands, it returns that node instead of 6689 /// the current one. 6690 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6691 EVT VT) { 6692 SDVTList VTs = getVTList(VT); 6693 return getMachineNode(Opcode, dl, VTs, None); 6694 } 6695 6696 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6697 EVT VT, SDValue Op1) { 6698 SDVTList VTs = getVTList(VT); 6699 SDValue Ops[] = { Op1 }; 6700 return getMachineNode(Opcode, dl, VTs, Ops); 6701 } 6702 6703 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6704 EVT VT, SDValue Op1, SDValue Op2) { 6705 SDVTList VTs = getVTList(VT); 6706 SDValue Ops[] = { Op1, Op2 }; 6707 return getMachineNode(Opcode, dl, VTs, Ops); 6708 } 6709 6710 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6711 EVT VT, SDValue Op1, SDValue Op2, 6712 SDValue Op3) { 6713 SDVTList VTs = getVTList(VT); 6714 SDValue Ops[] = { Op1, Op2, Op3 }; 6715 return getMachineNode(Opcode, dl, VTs, Ops); 6716 } 6717 6718 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6719 EVT VT, ArrayRef<SDValue> Ops) { 6720 SDVTList VTs = getVTList(VT); 6721 return getMachineNode(Opcode, dl, VTs, Ops); 6722 } 6723 6724 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6725 EVT VT1, EVT VT2, SDValue Op1, 6726 SDValue Op2) { 6727 SDVTList VTs = getVTList(VT1, VT2); 6728 SDValue Ops[] = { Op1, Op2 }; 6729 return getMachineNode(Opcode, dl, VTs, Ops); 6730 } 6731 6732 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6733 EVT VT1, EVT VT2, SDValue Op1, 6734 SDValue Op2, SDValue Op3) { 6735 SDVTList VTs = getVTList(VT1, VT2); 6736 SDValue Ops[] = { Op1, Op2, Op3 }; 6737 return getMachineNode(Opcode, dl, VTs, Ops); 6738 } 6739 6740 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6741 EVT VT1, EVT VT2, 6742 ArrayRef<SDValue> Ops) { 6743 SDVTList VTs = getVTList(VT1, VT2); 6744 return getMachineNode(Opcode, dl, VTs, Ops); 6745 } 6746 6747 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6748 EVT VT1, EVT VT2, EVT VT3, 6749 SDValue Op1, SDValue Op2) { 6750 SDVTList VTs = getVTList(VT1, VT2, VT3); 6751 SDValue Ops[] = { Op1, Op2 }; 6752 return getMachineNode(Opcode, dl, VTs, Ops); 6753 } 6754 6755 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6756 EVT VT1, EVT VT2, EVT VT3, 6757 SDValue Op1, SDValue Op2, 6758 SDValue Op3) { 6759 SDVTList VTs = getVTList(VT1, VT2, VT3); 6760 SDValue Ops[] = { Op1, Op2, Op3 }; 6761 return getMachineNode(Opcode, dl, VTs, Ops); 6762 } 6763 6764 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6765 EVT VT1, EVT VT2, EVT VT3, 6766 ArrayRef<SDValue> Ops) { 6767 SDVTList VTs = getVTList(VT1, VT2, VT3); 6768 return getMachineNode(Opcode, dl, VTs, Ops); 6769 } 6770 6771 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6772 ArrayRef<EVT> ResultTys, 6773 ArrayRef<SDValue> Ops) { 6774 SDVTList VTs = getVTList(ResultTys); 6775 return getMachineNode(Opcode, dl, VTs, Ops); 6776 } 6777 6778 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 6779 SDVTList VTs, 6780 ArrayRef<SDValue> Ops) { 6781 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 6782 MachineSDNode *N; 6783 void *IP = nullptr; 6784 6785 if (DoCSE) { 6786 FoldingSetNodeID ID; 6787 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 6788 IP = nullptr; 6789 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6790 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 6791 } 6792 } 6793 6794 // Allocate a new MachineSDNode. 6795 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6796 createOperands(N, Ops); 6797 6798 if (DoCSE) 6799 CSEMap.InsertNode(N, IP); 6800 6801 InsertNode(N); 6802 return N; 6803 } 6804 6805 /// getTargetExtractSubreg - A convenience function for creating 6806 /// TargetOpcode::EXTRACT_SUBREG nodes. 6807 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6808 SDValue Operand) { 6809 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6810 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 6811 VT, Operand, SRIdxVal); 6812 return SDValue(Subreg, 0); 6813 } 6814 6815 /// getTargetInsertSubreg - A convenience function for creating 6816 /// TargetOpcode::INSERT_SUBREG nodes. 6817 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6818 SDValue Operand, SDValue Subreg) { 6819 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6820 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 6821 VT, Operand, Subreg, SRIdxVal); 6822 return SDValue(Result, 0); 6823 } 6824 6825 /// getNodeIfExists - Get the specified node if it's already available, or 6826 /// else return NULL. 6827 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 6828 ArrayRef<SDValue> Ops, 6829 const SDNodeFlags Flags) { 6830 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 6831 FoldingSetNodeID ID; 6832 AddNodeIDNode(ID, Opcode, VTList, Ops); 6833 void *IP = nullptr; 6834 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 6835 E->intersectFlagsWith(Flags); 6836 return E; 6837 } 6838 } 6839 return nullptr; 6840 } 6841 6842 /// getDbgValue - Creates a SDDbgValue node. 6843 /// 6844 /// SDNode 6845 SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N, 6846 unsigned R, bool IsIndirect, 6847 const DebugLoc &DL, unsigned O) { 6848 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6849 "Expected inlined-at fields to agree"); 6850 return new (DbgInfo->getAlloc()) 6851 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 6852 } 6853 6854 /// Constant 6855 SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr, 6856 const Value *C, 6857 const DebugLoc &DL, unsigned O) { 6858 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6859 "Expected inlined-at fields to agree"); 6860 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 6861 } 6862 6863 /// FrameIndex 6864 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr, 6865 unsigned FI, const DebugLoc &DL, 6866 unsigned O) { 6867 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6868 "Expected inlined-at fields to agree"); 6869 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, DL, O); 6870 } 6871 6872 namespace { 6873 6874 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 6875 /// pointed to by a use iterator is deleted, increment the use iterator 6876 /// so that it doesn't dangle. 6877 /// 6878 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 6879 SDNode::use_iterator &UI; 6880 SDNode::use_iterator &UE; 6881 6882 void NodeDeleted(SDNode *N, SDNode *E) override { 6883 // Increment the iterator as needed. 6884 while (UI != UE && N == *UI) 6885 ++UI; 6886 } 6887 6888 public: 6889 RAUWUpdateListener(SelectionDAG &d, 6890 SDNode::use_iterator &ui, 6891 SDNode::use_iterator &ue) 6892 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 6893 }; 6894 6895 } // end anonymous namespace 6896 6897 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6898 /// This can cause recursive merging of nodes in the DAG. 6899 /// 6900 /// This version assumes From has a single result value. 6901 /// 6902 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 6903 SDNode *From = FromN.getNode(); 6904 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 6905 "Cannot replace with this method!"); 6906 assert(From != To.getNode() && "Cannot replace uses of with self"); 6907 6908 // Preserve Debug Values 6909 TransferDbgValues(FromN, To); 6910 6911 // Iterate over all the existing uses of From. New uses will be added 6912 // to the beginning of the use list, which we avoid visiting. 6913 // This specifically avoids visiting uses of From that arise while the 6914 // replacement is happening, because any such uses would be the result 6915 // of CSE: If an existing node looks like From after one of its operands 6916 // is replaced by To, we don't want to replace of all its users with To 6917 // too. See PR3018 for more info. 6918 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6919 RAUWUpdateListener Listener(*this, UI, UE); 6920 while (UI != UE) { 6921 SDNode *User = *UI; 6922 6923 // This node is about to morph, remove its old self from the CSE maps. 6924 RemoveNodeFromCSEMaps(User); 6925 6926 // A user can appear in a use list multiple times, and when this 6927 // happens the uses are usually next to each other in the list. 6928 // To help reduce the number of CSE recomputations, process all 6929 // the uses of this user that we can find this way. 6930 do { 6931 SDUse &Use = UI.getUse(); 6932 ++UI; 6933 Use.set(To); 6934 } while (UI != UE && *UI == User); 6935 6936 // Now that we have modified User, add it back to the CSE maps. If it 6937 // already exists there, recursively merge the results together. 6938 AddModifiedNodeToCSEMaps(User); 6939 } 6940 6941 // If we just RAUW'd the root, take note. 6942 if (FromN == getRoot()) 6943 setRoot(To); 6944 } 6945 6946 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6947 /// This can cause recursive merging of nodes in the DAG. 6948 /// 6949 /// This version assumes that for each value of From, there is a 6950 /// corresponding value in To in the same position with the same type. 6951 /// 6952 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 6953 #ifndef NDEBUG 6954 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6955 assert((!From->hasAnyUseOfValue(i) || 6956 From->getValueType(i) == To->getValueType(i)) && 6957 "Cannot use this version of ReplaceAllUsesWith!"); 6958 #endif 6959 6960 // Handle the trivial case. 6961 if (From == To) 6962 return; 6963 6964 // Preserve Debug Info. Only do this if there's a use. 6965 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6966 if (From->hasAnyUseOfValue(i)) { 6967 assert((i < To->getNumValues()) && "Invalid To location"); 6968 TransferDbgValues(SDValue(From, i), SDValue(To, i)); 6969 } 6970 6971 // Iterate over just the existing users of From. See the comments in 6972 // the ReplaceAllUsesWith above. 6973 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6974 RAUWUpdateListener Listener(*this, UI, UE); 6975 while (UI != UE) { 6976 SDNode *User = *UI; 6977 6978 // This node is about to morph, remove its old self from the CSE maps. 6979 RemoveNodeFromCSEMaps(User); 6980 6981 // A user can appear in a use list multiple times, and when this 6982 // happens the uses are usually next to each other in the list. 6983 // To help reduce the number of CSE recomputations, process all 6984 // the uses of this user that we can find this way. 6985 do { 6986 SDUse &Use = UI.getUse(); 6987 ++UI; 6988 Use.setNode(To); 6989 } while (UI != UE && *UI == User); 6990 6991 // Now that we have modified User, add it back to the CSE maps. If it 6992 // already exists there, recursively merge the results together. 6993 AddModifiedNodeToCSEMaps(User); 6994 } 6995 6996 // If we just RAUW'd the root, take note. 6997 if (From == getRoot().getNode()) 6998 setRoot(SDValue(To, getRoot().getResNo())); 6999 } 7000 7001 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7002 /// This can cause recursive merging of nodes in the DAG. 7003 /// 7004 /// This version can replace From with any result values. To must match the 7005 /// number and types of values returned by From. 7006 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 7007 if (From->getNumValues() == 1) // Handle the simple case efficiently. 7008 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 7009 7010 // Preserve Debug Info. 7011 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7012 TransferDbgValues(SDValue(From, i), *To); 7013 7014 // Iterate over just the existing users of From. See the comments in 7015 // the ReplaceAllUsesWith above. 7016 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7017 RAUWUpdateListener Listener(*this, UI, UE); 7018 while (UI != UE) { 7019 SDNode *User = *UI; 7020 7021 // This node is about to morph, remove its old self from the CSE maps. 7022 RemoveNodeFromCSEMaps(User); 7023 7024 // A user can appear in a use list multiple times, and when this 7025 // happens the uses are usually next to each other in the list. 7026 // To help reduce the number of CSE recomputations, process all 7027 // the uses of this user that we can find this way. 7028 do { 7029 SDUse &Use = UI.getUse(); 7030 const SDValue &ToOp = To[Use.getResNo()]; 7031 ++UI; 7032 Use.set(ToOp); 7033 } while (UI != UE && *UI == User); 7034 7035 // Now that we have modified User, add it back to the CSE maps. If it 7036 // already exists there, recursively merge the results together. 7037 AddModifiedNodeToCSEMaps(User); 7038 } 7039 7040 // If we just RAUW'd the root, take note. 7041 if (From == getRoot().getNode()) 7042 setRoot(SDValue(To[getRoot().getResNo()])); 7043 } 7044 7045 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 7046 /// uses of other values produced by From.getNode() alone. The Deleted 7047 /// vector is handled the same way as for ReplaceAllUsesWith. 7048 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 7049 // Handle the really simple, really trivial case efficiently. 7050 if (From == To) return; 7051 7052 // Handle the simple, trivial, case efficiently. 7053 if (From.getNode()->getNumValues() == 1) { 7054 ReplaceAllUsesWith(From, To); 7055 return; 7056 } 7057 7058 // Preserve Debug Info. 7059 TransferDbgValues(From, To); 7060 7061 // Iterate over just the existing users of From. See the comments in 7062 // the ReplaceAllUsesWith above. 7063 SDNode::use_iterator UI = From.getNode()->use_begin(), 7064 UE = From.getNode()->use_end(); 7065 RAUWUpdateListener Listener(*this, UI, UE); 7066 while (UI != UE) { 7067 SDNode *User = *UI; 7068 bool UserRemovedFromCSEMaps = false; 7069 7070 // A user can appear in a use list multiple times, and when this 7071 // happens the uses are usually next to each other in the list. 7072 // To help reduce the number of CSE recomputations, process all 7073 // the uses of this user that we can find this way. 7074 do { 7075 SDUse &Use = UI.getUse(); 7076 7077 // Skip uses of different values from the same node. 7078 if (Use.getResNo() != From.getResNo()) { 7079 ++UI; 7080 continue; 7081 } 7082 7083 // If this node hasn't been modified yet, it's still in the CSE maps, 7084 // so remove its old self from the CSE maps. 7085 if (!UserRemovedFromCSEMaps) { 7086 RemoveNodeFromCSEMaps(User); 7087 UserRemovedFromCSEMaps = true; 7088 } 7089 7090 ++UI; 7091 Use.set(To); 7092 } while (UI != UE && *UI == User); 7093 7094 // We are iterating over all uses of the From node, so if a use 7095 // doesn't use the specific value, no changes are made. 7096 if (!UserRemovedFromCSEMaps) 7097 continue; 7098 7099 // Now that we have modified User, add it back to the CSE maps. If it 7100 // already exists there, recursively merge the results together. 7101 AddModifiedNodeToCSEMaps(User); 7102 } 7103 7104 // If we just RAUW'd the root, take note. 7105 if (From == getRoot()) 7106 setRoot(To); 7107 } 7108 7109 namespace { 7110 7111 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 7112 /// to record information about a use. 7113 struct UseMemo { 7114 SDNode *User; 7115 unsigned Index; 7116 SDUse *Use; 7117 }; 7118 7119 /// operator< - Sort Memos by User. 7120 bool operator<(const UseMemo &L, const UseMemo &R) { 7121 return (intptr_t)L.User < (intptr_t)R.User; 7122 } 7123 7124 } // end anonymous namespace 7125 7126 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 7127 /// uses of other values produced by From.getNode() alone. The same value 7128 /// may appear in both the From and To list. The Deleted vector is 7129 /// handled the same way as for ReplaceAllUsesWith. 7130 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 7131 const SDValue *To, 7132 unsigned Num){ 7133 // Handle the simple, trivial case efficiently. 7134 if (Num == 1) 7135 return ReplaceAllUsesOfValueWith(*From, *To); 7136 7137 TransferDbgValues(*From, *To); 7138 7139 // Read up all the uses and make records of them. This helps 7140 // processing new uses that are introduced during the 7141 // replacement process. 7142 SmallVector<UseMemo, 4> Uses; 7143 for (unsigned i = 0; i != Num; ++i) { 7144 unsigned FromResNo = From[i].getResNo(); 7145 SDNode *FromNode = From[i].getNode(); 7146 for (SDNode::use_iterator UI = FromNode->use_begin(), 7147 E = FromNode->use_end(); UI != E; ++UI) { 7148 SDUse &Use = UI.getUse(); 7149 if (Use.getResNo() == FromResNo) { 7150 UseMemo Memo = { *UI, i, &Use }; 7151 Uses.push_back(Memo); 7152 } 7153 } 7154 } 7155 7156 // Sort the uses, so that all the uses from a given User are together. 7157 std::sort(Uses.begin(), Uses.end()); 7158 7159 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 7160 UseIndex != UseIndexEnd; ) { 7161 // We know that this user uses some value of From. If it is the right 7162 // value, update it. 7163 SDNode *User = Uses[UseIndex].User; 7164 7165 // This node is about to morph, remove its old self from the CSE maps. 7166 RemoveNodeFromCSEMaps(User); 7167 7168 // The Uses array is sorted, so all the uses for a given User 7169 // are next to each other in the list. 7170 // To help reduce the number of CSE recomputations, process all 7171 // the uses of this user that we can find this way. 7172 do { 7173 unsigned i = Uses[UseIndex].Index; 7174 SDUse &Use = *Uses[UseIndex].Use; 7175 ++UseIndex; 7176 7177 Use.set(To[i]); 7178 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 7179 7180 // Now that we have modified User, add it back to the CSE maps. If it 7181 // already exists there, recursively merge the results together. 7182 AddModifiedNodeToCSEMaps(User); 7183 } 7184 } 7185 7186 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 7187 /// based on their topological order. It returns the maximum id and a vector 7188 /// of the SDNodes* in assigned order by reference. 7189 unsigned SelectionDAG::AssignTopologicalOrder() { 7190 unsigned DAGSize = 0; 7191 7192 // SortedPos tracks the progress of the algorithm. Nodes before it are 7193 // sorted, nodes after it are unsorted. When the algorithm completes 7194 // it is at the end of the list. 7195 allnodes_iterator SortedPos = allnodes_begin(); 7196 7197 // Visit all the nodes. Move nodes with no operands to the front of 7198 // the list immediately. Annotate nodes that do have operands with their 7199 // operand count. Before we do this, the Node Id fields of the nodes 7200 // may contain arbitrary values. After, the Node Id fields for nodes 7201 // before SortedPos will contain the topological sort index, and the 7202 // Node Id fields for nodes At SortedPos and after will contain the 7203 // count of outstanding operands. 7204 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 7205 SDNode *N = &*I++; 7206 checkForCycles(N, this); 7207 unsigned Degree = N->getNumOperands(); 7208 if (Degree == 0) { 7209 // A node with no uses, add it to the result array immediately. 7210 N->setNodeId(DAGSize++); 7211 allnodes_iterator Q(N); 7212 if (Q != SortedPos) 7213 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 7214 assert(SortedPos != AllNodes.end() && "Overran node list"); 7215 ++SortedPos; 7216 } else { 7217 // Temporarily use the Node Id as scratch space for the degree count. 7218 N->setNodeId(Degree); 7219 } 7220 } 7221 7222 // Visit all the nodes. As we iterate, move nodes into sorted order, 7223 // such that by the time the end is reached all nodes will be sorted. 7224 for (SDNode &Node : allnodes()) { 7225 SDNode *N = &Node; 7226 checkForCycles(N, this); 7227 // N is in sorted position, so all its uses have one less operand 7228 // that needs to be sorted. 7229 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 7230 UI != UE; ++UI) { 7231 SDNode *P = *UI; 7232 unsigned Degree = P->getNodeId(); 7233 assert(Degree != 0 && "Invalid node degree"); 7234 --Degree; 7235 if (Degree == 0) { 7236 // All of P's operands are sorted, so P may sorted now. 7237 P->setNodeId(DAGSize++); 7238 if (P->getIterator() != SortedPos) 7239 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 7240 assert(SortedPos != AllNodes.end() && "Overran node list"); 7241 ++SortedPos; 7242 } else { 7243 // Update P's outstanding operand count. 7244 P->setNodeId(Degree); 7245 } 7246 } 7247 if (Node.getIterator() == SortedPos) { 7248 #ifndef NDEBUG 7249 allnodes_iterator I(N); 7250 SDNode *S = &*++I; 7251 dbgs() << "Overran sorted position:\n"; 7252 S->dumprFull(this); dbgs() << "\n"; 7253 dbgs() << "Checking if this is due to cycles\n"; 7254 checkForCycles(this, true); 7255 #endif 7256 llvm_unreachable(nullptr); 7257 } 7258 } 7259 7260 assert(SortedPos == AllNodes.end() && 7261 "Topological sort incomplete!"); 7262 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 7263 "First node in topological sort is not the entry token!"); 7264 assert(AllNodes.front().getNodeId() == 0 && 7265 "First node in topological sort has non-zero id!"); 7266 assert(AllNodes.front().getNumOperands() == 0 && 7267 "First node in topological sort has operands!"); 7268 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 7269 "Last node in topologic sort has unexpected id!"); 7270 assert(AllNodes.back().use_empty() && 7271 "Last node in topologic sort has users!"); 7272 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 7273 return DAGSize; 7274 } 7275 7276 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 7277 /// value is produced by SD. 7278 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 7279 if (SD) { 7280 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 7281 SD->setHasDebugValue(true); 7282 } 7283 DbgInfo->add(DB, SD, isParameter); 7284 } 7285 7286 /// TransferDbgValues - Transfer SDDbgValues. Called in replace nodes. 7287 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) { 7288 if (From == To || !From.getNode()->getHasDebugValue()) 7289 return; 7290 SDNode *FromNode = From.getNode(); 7291 SDNode *ToNode = To.getNode(); 7292 ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode); 7293 SmallVector<SDDbgValue *, 2> ClonedDVs; 7294 for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end(); 7295 I != E; ++I) { 7296 SDDbgValue *Dbg = *I; 7297 // Only add Dbgvalues attached to same ResNo. 7298 if (Dbg->getKind() == SDDbgValue::SDNODE && 7299 Dbg->getSDNode() == From.getNode() && 7300 Dbg->getResNo() == From.getResNo() && !Dbg->isInvalidated()) { 7301 assert(FromNode != ToNode && 7302 "Should not transfer Debug Values intranode"); 7303 SDDbgValue *Clone = getDbgValue(Dbg->getVariable(), Dbg->getExpression(), 7304 ToNode, To.getResNo(), Dbg->isIndirect(), 7305 Dbg->getDebugLoc(), Dbg->getOrder()); 7306 ClonedDVs.push_back(Clone); 7307 Dbg->setIsInvalidated(); 7308 } 7309 } 7310 for (SDDbgValue *I : ClonedDVs) 7311 AddDbgValue(I, ToNode, false); 7312 } 7313 7314 void SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 7315 SDValue NewMemOp) { 7316 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 7317 if (!OldLoad->hasAnyUseOfValue(1)) 7318 return; 7319 7320 // The new memory operation must have the same position as the old load in 7321 // terms of memory dependency. Create a TokenFactor for the old load and new 7322 // memory operation and update uses of the old load's output chain to use that 7323 // TokenFactor. 7324 SDValue OldChain = SDValue(OldLoad, 1); 7325 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 7326 SDValue TokenFactor = 7327 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 7328 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 7329 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 7330 } 7331 7332 //===----------------------------------------------------------------------===// 7333 // SDNode Class 7334 //===----------------------------------------------------------------------===// 7335 7336 bool llvm::isNullConstant(SDValue V) { 7337 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7338 return Const != nullptr && Const->isNullValue(); 7339 } 7340 7341 bool llvm::isNullFPConstant(SDValue V) { 7342 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 7343 return Const != nullptr && Const->isZero() && !Const->isNegative(); 7344 } 7345 7346 bool llvm::isAllOnesConstant(SDValue V) { 7347 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7348 return Const != nullptr && Const->isAllOnesValue(); 7349 } 7350 7351 bool llvm::isOneConstant(SDValue V) { 7352 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7353 return Const != nullptr && Const->isOne(); 7354 } 7355 7356 bool llvm::isBitwiseNot(SDValue V) { 7357 return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1)); 7358 } 7359 7360 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) { 7361 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 7362 return CN; 7363 7364 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 7365 BitVector UndefElements; 7366 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 7367 7368 // BuildVectors can truncate their operands. Ignore that case here. 7369 // FIXME: We blindly ignore splats which include undef which is overly 7370 // pessimistic. 7371 if (CN && UndefElements.none() && 7372 CN->getValueType(0) == N.getValueType().getScalarType()) 7373 return CN; 7374 } 7375 7376 return nullptr; 7377 } 7378 7379 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) { 7380 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 7381 return CN; 7382 7383 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 7384 BitVector UndefElements; 7385 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 7386 7387 if (CN && UndefElements.none()) 7388 return CN; 7389 } 7390 7391 return nullptr; 7392 } 7393 7394 HandleSDNode::~HandleSDNode() { 7395 DropOperands(); 7396 } 7397 7398 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 7399 const DebugLoc &DL, 7400 const GlobalValue *GA, EVT VT, 7401 int64_t o, unsigned char TF) 7402 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 7403 TheGlobal = GA; 7404 } 7405 7406 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 7407 EVT VT, unsigned SrcAS, 7408 unsigned DestAS) 7409 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 7410 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 7411 7412 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 7413 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 7414 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 7415 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 7416 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 7417 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 7418 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 7419 7420 // We check here that the size of the memory operand fits within the size of 7421 // the MMO. This is because the MMO might indicate only a possible address 7422 // range instead of specifying the affected memory addresses precisely. 7423 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 7424 } 7425 7426 /// Profile - Gather unique data for the node. 7427 /// 7428 void SDNode::Profile(FoldingSetNodeID &ID) const { 7429 AddNodeIDNode(ID, this); 7430 } 7431 7432 namespace { 7433 7434 struct EVTArray { 7435 std::vector<EVT> VTs; 7436 7437 EVTArray() { 7438 VTs.reserve(MVT::LAST_VALUETYPE); 7439 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 7440 VTs.push_back(MVT((MVT::SimpleValueType)i)); 7441 } 7442 }; 7443 7444 } // end anonymous namespace 7445 7446 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 7447 static ManagedStatic<EVTArray> SimpleVTArray; 7448 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 7449 7450 /// getValueTypeList - Return a pointer to the specified value type. 7451 /// 7452 const EVT *SDNode::getValueTypeList(EVT VT) { 7453 if (VT.isExtended()) { 7454 sys::SmartScopedLock<true> Lock(*VTMutex); 7455 return &(*EVTs->insert(VT).first); 7456 } else { 7457 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 7458 "Value type out of range!"); 7459 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 7460 } 7461 } 7462 7463 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 7464 /// indicated value. This method ignores uses of other values defined by this 7465 /// operation. 7466 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 7467 assert(Value < getNumValues() && "Bad value!"); 7468 7469 // TODO: Only iterate over uses of a given value of the node 7470 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 7471 if (UI.getUse().getResNo() == Value) { 7472 if (NUses == 0) 7473 return false; 7474 --NUses; 7475 } 7476 } 7477 7478 // Found exactly the right number of uses? 7479 return NUses == 0; 7480 } 7481 7482 /// hasAnyUseOfValue - Return true if there are any use of the indicated 7483 /// value. This method ignores uses of other values defined by this operation. 7484 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 7485 assert(Value < getNumValues() && "Bad value!"); 7486 7487 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 7488 if (UI.getUse().getResNo() == Value) 7489 return true; 7490 7491 return false; 7492 } 7493 7494 /// isOnlyUserOf - Return true if this node is the only use of N. 7495 bool SDNode::isOnlyUserOf(const SDNode *N) const { 7496 bool Seen = false; 7497 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7498 SDNode *User = *I; 7499 if (User == this) 7500 Seen = true; 7501 else 7502 return false; 7503 } 7504 7505 return Seen; 7506 } 7507 7508 /// Return true if the only users of N are contained in Nodes. 7509 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 7510 bool Seen = false; 7511 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7512 SDNode *User = *I; 7513 if (llvm::any_of(Nodes, 7514 [&User](const SDNode *Node) { return User == Node; })) 7515 Seen = true; 7516 else 7517 return false; 7518 } 7519 7520 return Seen; 7521 } 7522 7523 /// isOperand - Return true if this node is an operand of N. 7524 bool SDValue::isOperandOf(const SDNode *N) const { 7525 for (const SDValue &Op : N->op_values()) 7526 if (*this == Op) 7527 return true; 7528 return false; 7529 } 7530 7531 bool SDNode::isOperandOf(const SDNode *N) const { 7532 for (const SDValue &Op : N->op_values()) 7533 if (this == Op.getNode()) 7534 return true; 7535 return false; 7536 } 7537 7538 /// reachesChainWithoutSideEffects - Return true if this operand (which must 7539 /// be a chain) reaches the specified operand without crossing any 7540 /// side-effecting instructions on any chain path. In practice, this looks 7541 /// through token factors and non-volatile loads. In order to remain efficient, 7542 /// this only looks a couple of nodes in, it does not do an exhaustive search. 7543 /// 7544 /// Note that we only need to examine chains when we're searching for 7545 /// side-effects; SelectionDAG requires that all side-effects are represented 7546 /// by chains, even if another operand would force a specific ordering. This 7547 /// constraint is necessary to allow transformations like splitting loads. 7548 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 7549 unsigned Depth) const { 7550 if (*this == Dest) return true; 7551 7552 // Don't search too deeply, we just want to be able to see through 7553 // TokenFactor's etc. 7554 if (Depth == 0) return false; 7555 7556 // If this is a token factor, all inputs to the TF happen in parallel. 7557 if (getOpcode() == ISD::TokenFactor) { 7558 // First, try a shallow search. 7559 if (is_contained((*this)->ops(), Dest)) { 7560 // We found the chain we want as an operand of this TokenFactor. 7561 // Essentially, we reach the chain without side-effects if we could 7562 // serialize the TokenFactor into a simple chain of operations with 7563 // Dest as the last operation. This is automatically true if the 7564 // chain has one use: there are no other ordering constraints. 7565 // If the chain has more than one use, we give up: some other 7566 // use of Dest might force a side-effect between Dest and the current 7567 // node. 7568 if (Dest.hasOneUse()) 7569 return true; 7570 } 7571 // Next, try a deep search: check whether every operand of the TokenFactor 7572 // reaches Dest. 7573 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 7574 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 7575 }); 7576 } 7577 7578 // Loads don't have side effects, look through them. 7579 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 7580 if (!Ld->isVolatile()) 7581 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 7582 } 7583 return false; 7584 } 7585 7586 bool SDNode::hasPredecessor(const SDNode *N) const { 7587 SmallPtrSet<const SDNode *, 32> Visited; 7588 SmallVector<const SDNode *, 16> Worklist; 7589 Worklist.push_back(this); 7590 return hasPredecessorHelper(N, Visited, Worklist); 7591 } 7592 7593 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 7594 this->Flags.intersectWith(Flags); 7595 } 7596 7597 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 7598 assert(N->getNumValues() == 1 && 7599 "Can't unroll a vector with multiple results!"); 7600 7601 EVT VT = N->getValueType(0); 7602 unsigned NE = VT.getVectorNumElements(); 7603 EVT EltVT = VT.getVectorElementType(); 7604 SDLoc dl(N); 7605 7606 SmallVector<SDValue, 8> Scalars; 7607 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 7608 7609 // If ResNE is 0, fully unroll the vector op. 7610 if (ResNE == 0) 7611 ResNE = NE; 7612 else if (NE > ResNE) 7613 NE = ResNE; 7614 7615 unsigned i; 7616 for (i= 0; i != NE; ++i) { 7617 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 7618 SDValue Operand = N->getOperand(j); 7619 EVT OperandVT = Operand.getValueType(); 7620 if (OperandVT.isVector()) { 7621 // A vector operand; extract a single element. 7622 EVT OperandEltVT = OperandVT.getVectorElementType(); 7623 Operands[j] = 7624 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 7625 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 7626 } else { 7627 // A scalar operand; just use it as is. 7628 Operands[j] = Operand; 7629 } 7630 } 7631 7632 switch (N->getOpcode()) { 7633 default: { 7634 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 7635 N->getFlags())); 7636 break; 7637 } 7638 case ISD::VSELECT: 7639 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 7640 break; 7641 case ISD::SHL: 7642 case ISD::SRA: 7643 case ISD::SRL: 7644 case ISD::ROTL: 7645 case ISD::ROTR: 7646 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 7647 getShiftAmountOperand(Operands[0].getValueType(), 7648 Operands[1]))); 7649 break; 7650 case ISD::SIGN_EXTEND_INREG: 7651 case ISD::FP_ROUND_INREG: { 7652 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 7653 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 7654 Operands[0], 7655 getValueType(ExtVT))); 7656 } 7657 } 7658 } 7659 7660 for (; i < ResNE; ++i) 7661 Scalars.push_back(getUNDEF(EltVT)); 7662 7663 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 7664 return getBuildVector(VecVT, dl, Scalars); 7665 } 7666 7667 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 7668 LoadSDNode *Base, 7669 unsigned Bytes, 7670 int Dist) const { 7671 if (LD->isVolatile() || Base->isVolatile()) 7672 return false; 7673 if (LD->isIndexed() || Base->isIndexed()) 7674 return false; 7675 if (LD->getChain() != Base->getChain()) 7676 return false; 7677 EVT VT = LD->getValueType(0); 7678 if (VT.getSizeInBits() / 8 != Bytes) 7679 return false; 7680 7681 SDValue Loc = LD->getOperand(1); 7682 SDValue BaseLoc = Base->getOperand(1); 7683 7684 auto BaseLocDecomp = BaseIndexOffset::match(BaseLoc, *this); 7685 auto LocDecomp = BaseIndexOffset::match(Loc, *this); 7686 7687 int64_t Offset = 0; 7688 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 7689 return (Dist * Bytes == Offset); 7690 return false; 7691 } 7692 7693 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 7694 /// it cannot be inferred. 7695 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 7696 // If this is a GlobalAddress + cst, return the alignment. 7697 const GlobalValue *GV; 7698 int64_t GVOffset = 0; 7699 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 7700 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 7701 KnownBits Known(PtrWidth); 7702 llvm::computeKnownBits(GV, Known, getDataLayout()); 7703 unsigned AlignBits = Known.countMinTrailingZeros(); 7704 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 7705 if (Align) 7706 return MinAlign(Align, GVOffset); 7707 } 7708 7709 // If this is a direct reference to a stack slot, use information about the 7710 // stack slot's alignment. 7711 int FrameIdx = 1 << 31; 7712 int64_t FrameOffset = 0; 7713 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 7714 FrameIdx = FI->getIndex(); 7715 } else if (isBaseWithConstantOffset(Ptr) && 7716 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 7717 // Handle FI+Cst 7718 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7719 FrameOffset = Ptr.getConstantOperandVal(1); 7720 } 7721 7722 if (FrameIdx != (1 << 31)) { 7723 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 7724 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 7725 FrameOffset); 7726 return FIInfoAlign; 7727 } 7728 7729 return 0; 7730 } 7731 7732 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 7733 /// which is split (or expanded) into two not necessarily identical pieces. 7734 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 7735 // Currently all types are split in half. 7736 EVT LoVT, HiVT; 7737 if (!VT.isVector()) 7738 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 7739 else 7740 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 7741 7742 return std::make_pair(LoVT, HiVT); 7743 } 7744 7745 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 7746 /// low/high part. 7747 std::pair<SDValue, SDValue> 7748 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 7749 const EVT &HiVT) { 7750 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 7751 N.getValueType().getVectorNumElements() && 7752 "More vector elements requested than available!"); 7753 SDValue Lo, Hi; 7754 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 7755 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 7756 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 7757 getConstant(LoVT.getVectorNumElements(), DL, 7758 TLI->getVectorIdxTy(getDataLayout()))); 7759 return std::make_pair(Lo, Hi); 7760 } 7761 7762 void SelectionDAG::ExtractVectorElements(SDValue Op, 7763 SmallVectorImpl<SDValue> &Args, 7764 unsigned Start, unsigned Count) { 7765 EVT VT = Op.getValueType(); 7766 if (Count == 0) 7767 Count = VT.getVectorNumElements(); 7768 7769 EVT EltVT = VT.getVectorElementType(); 7770 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 7771 SDLoc SL(Op); 7772 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 7773 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 7774 Op, getConstant(i, SL, IdxTy))); 7775 } 7776 } 7777 7778 // getAddressSpace - Return the address space this GlobalAddress belongs to. 7779 unsigned GlobalAddressSDNode::getAddressSpace() const { 7780 return getGlobal()->getType()->getAddressSpace(); 7781 } 7782 7783 Type *ConstantPoolSDNode::getType() const { 7784 if (isMachineConstantPoolEntry()) 7785 return Val.MachineCPVal->getType(); 7786 return Val.ConstVal->getType(); 7787 } 7788 7789 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 7790 unsigned &SplatBitSize, 7791 bool &HasAnyUndefs, 7792 unsigned MinSplatBits, 7793 bool IsBigEndian) const { 7794 EVT VT = getValueType(0); 7795 assert(VT.isVector() && "Expected a vector type"); 7796 unsigned VecWidth = VT.getSizeInBits(); 7797 if (MinSplatBits > VecWidth) 7798 return false; 7799 7800 // FIXME: The widths are based on this node's type, but build vectors can 7801 // truncate their operands. 7802 SplatValue = APInt(VecWidth, 0); 7803 SplatUndef = APInt(VecWidth, 0); 7804 7805 // Get the bits. Bits with undefined values (when the corresponding element 7806 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 7807 // in SplatValue. If any of the values are not constant, give up and return 7808 // false. 7809 unsigned int NumOps = getNumOperands(); 7810 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 7811 unsigned EltWidth = VT.getScalarSizeInBits(); 7812 7813 for (unsigned j = 0; j < NumOps; ++j) { 7814 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 7815 SDValue OpVal = getOperand(i); 7816 unsigned BitPos = j * EltWidth; 7817 7818 if (OpVal.isUndef()) 7819 SplatUndef.setBits(BitPos, BitPos + EltWidth); 7820 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 7821 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 7822 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 7823 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 7824 else 7825 return false; 7826 } 7827 7828 // The build_vector is all constants or undefs. Find the smallest element 7829 // size that splats the vector. 7830 HasAnyUndefs = (SplatUndef != 0); 7831 7832 // FIXME: This does not work for vectors with elements less than 8 bits. 7833 while (VecWidth > 8) { 7834 unsigned HalfSize = VecWidth / 2; 7835 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 7836 APInt LowValue = SplatValue.trunc(HalfSize); 7837 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 7838 APInt LowUndef = SplatUndef.trunc(HalfSize); 7839 7840 // If the two halves do not match (ignoring undef bits), stop here. 7841 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 7842 MinSplatBits > HalfSize) 7843 break; 7844 7845 SplatValue = HighValue | LowValue; 7846 SplatUndef = HighUndef & LowUndef; 7847 7848 VecWidth = HalfSize; 7849 } 7850 7851 SplatBitSize = VecWidth; 7852 return true; 7853 } 7854 7855 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 7856 if (UndefElements) { 7857 UndefElements->clear(); 7858 UndefElements->resize(getNumOperands()); 7859 } 7860 SDValue Splatted; 7861 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 7862 SDValue Op = getOperand(i); 7863 if (Op.isUndef()) { 7864 if (UndefElements) 7865 (*UndefElements)[i] = true; 7866 } else if (!Splatted) { 7867 Splatted = Op; 7868 } else if (Splatted != Op) { 7869 return SDValue(); 7870 } 7871 } 7872 7873 if (!Splatted) { 7874 assert(getOperand(0).isUndef() && 7875 "Can only have a splat without a constant for all undefs."); 7876 return getOperand(0); 7877 } 7878 7879 return Splatted; 7880 } 7881 7882 ConstantSDNode * 7883 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 7884 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 7885 } 7886 7887 ConstantFPSDNode * 7888 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 7889 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 7890 } 7891 7892 int32_t 7893 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 7894 uint32_t BitWidth) const { 7895 if (ConstantFPSDNode *CN = 7896 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 7897 bool IsExact; 7898 APSInt IntVal(BitWidth); 7899 const APFloat &APF = CN->getValueAPF(); 7900 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 7901 APFloat::opOK || 7902 !IsExact) 7903 return -1; 7904 7905 return IntVal.exactLogBase2(); 7906 } 7907 return -1; 7908 } 7909 7910 bool BuildVectorSDNode::isConstant() const { 7911 for (const SDValue &Op : op_values()) { 7912 unsigned Opc = Op.getOpcode(); 7913 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 7914 return false; 7915 } 7916 return true; 7917 } 7918 7919 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 7920 // Find the first non-undef value in the shuffle mask. 7921 unsigned i, e; 7922 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 7923 /* search */; 7924 7925 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); 7926 7927 // Make sure all remaining elements are either undef or the same as the first 7928 // non-undef value. 7929 for (int Idx = Mask[i]; i != e; ++i) 7930 if (Mask[i] >= 0 && Mask[i] != Idx) 7931 return false; 7932 return true; 7933 } 7934 7935 // \brief Returns the SDNode if it is a constant integer BuildVector 7936 // or constant integer. 7937 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 7938 if (isa<ConstantSDNode>(N)) 7939 return N.getNode(); 7940 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 7941 return N.getNode(); 7942 // Treat a GlobalAddress supporting constant offset folding as a 7943 // constant integer. 7944 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 7945 if (GA->getOpcode() == ISD::GlobalAddress && 7946 TLI->isOffsetFoldingLegal(GA)) 7947 return GA; 7948 return nullptr; 7949 } 7950 7951 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 7952 if (isa<ConstantFPSDNode>(N)) 7953 return N.getNode(); 7954 7955 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 7956 return N.getNode(); 7957 7958 return nullptr; 7959 } 7960 7961 #ifndef NDEBUG 7962 static void checkForCyclesHelper(const SDNode *N, 7963 SmallPtrSetImpl<const SDNode*> &Visited, 7964 SmallPtrSetImpl<const SDNode*> &Checked, 7965 const llvm::SelectionDAG *DAG) { 7966 // If this node has already been checked, don't check it again. 7967 if (Checked.count(N)) 7968 return; 7969 7970 // If a node has already been visited on this depth-first walk, reject it as 7971 // a cycle. 7972 if (!Visited.insert(N).second) { 7973 errs() << "Detected cycle in SelectionDAG\n"; 7974 dbgs() << "Offending node:\n"; 7975 N->dumprFull(DAG); dbgs() << "\n"; 7976 abort(); 7977 } 7978 7979 for (const SDValue &Op : N->op_values()) 7980 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 7981 7982 Checked.insert(N); 7983 Visited.erase(N); 7984 } 7985 #endif 7986 7987 void llvm::checkForCycles(const llvm::SDNode *N, 7988 const llvm::SelectionDAG *DAG, 7989 bool force) { 7990 #ifndef NDEBUG 7991 bool check = force; 7992 #ifdef EXPENSIVE_CHECKS 7993 check = true; 7994 #endif // EXPENSIVE_CHECKS 7995 if (check) { 7996 assert(N && "Checking nonexistent SDNode"); 7997 SmallPtrSet<const SDNode*, 32> visited; 7998 SmallPtrSet<const SDNode*, 32> checked; 7999 checkForCyclesHelper(N, visited, checked, DAG); 8000 } 8001 #endif // !NDEBUG 8002 } 8003 8004 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 8005 checkForCycles(DAG->getRoot().getNode(), DAG, force); 8006 } 8007