1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetFrameLowering.h"
42 #include "llvm/CodeGen/TargetLowering.h"
43 #include "llvm/CodeGen/TargetRegisterInfo.h"
44 #include "llvm/CodeGen/TargetSubtargetInfo.h"
45 #include "llvm/CodeGen/ValueTypes.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/Compiler.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/KnownBits.h"
63 #include "llvm/Support/MachineValueType.h"
64 #include "llvm/Support/ManagedStatic.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/Mutex.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetOptions.h"
70 #include "llvm/Transforms/Utils/SizeOpts.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstdint>
74 #include <cstdlib>
75 #include <limits>
76 #include <set>
77 #include <string>
78 #include <utility>
79 #include <vector>
80 
81 using namespace llvm;
82 
83 /// makeVTList - Return an instance of the SDVTList struct initialized with the
84 /// specified members.
85 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
86   SDVTList Res = {VTs, NumVTs};
87   return Res;
88 }
89 
90 // Default null implementations of the callbacks.
91 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
92 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
94 
95 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
96 
97 #define DEBUG_TYPE "selectiondag"
98 
99 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
100        cl::Hidden, cl::init(true),
101        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
102 
103 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
104        cl::desc("Number limit for gluing ld/st of memcpy."),
105        cl::Hidden, cl::init(0));
106 
107 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
108   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
109 }
110 
111 //===----------------------------------------------------------------------===//
112 //                              ConstantFPSDNode Class
113 //===----------------------------------------------------------------------===//
114 
115 /// isExactlyValue - We don't rely on operator== working on double values, as
116 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
117 /// As such, this method can be used to do an exact bit-for-bit comparison of
118 /// two floating point values.
119 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
120   return getValueAPF().bitwiseIsEqual(V);
121 }
122 
123 bool ConstantFPSDNode::isValueValidForType(EVT VT,
124                                            const APFloat& Val) {
125   assert(VT.isFloatingPoint() && "Can only convert between FP types");
126 
127   // convert modifies in place, so make a copy.
128   APFloat Val2 = APFloat(Val);
129   bool losesInfo;
130   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
131                       APFloat::rmNearestTiesToEven,
132                       &losesInfo);
133   return !losesInfo;
134 }
135 
136 //===----------------------------------------------------------------------===//
137 //                              ISD Namespace
138 //===----------------------------------------------------------------------===//
139 
140 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
141   auto *BV = dyn_cast<BuildVectorSDNode>(N);
142   if (!BV)
143     return false;
144 
145   APInt SplatUndef;
146   unsigned SplatBitSize;
147   bool HasUndefs;
148   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
149   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
150                              EltSize) &&
151          EltSize == SplatBitSize;
152 }
153 
154 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
155 // specializations of the more general isConstantSplatVector()?
156 
157 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
158   // Look through a bit convert.
159   while (N->getOpcode() == ISD::BITCAST)
160     N = N->getOperand(0).getNode();
161 
162   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
163 
164   unsigned i = 0, e = N->getNumOperands();
165 
166   // Skip over all of the undef values.
167   while (i != e && N->getOperand(i).isUndef())
168     ++i;
169 
170   // Do not accept an all-undef vector.
171   if (i == e) return false;
172 
173   // Do not accept build_vectors that aren't all constants or which have non-~0
174   // elements. We have to be a bit careful here, as the type of the constant
175   // may not be the same as the type of the vector elements due to type
176   // legalization (the elements are promoted to a legal type for the target and
177   // a vector of a type may be legal when the base element type is not).
178   // We only want to check enough bits to cover the vector elements, because
179   // we care if the resultant vector is all ones, not whether the individual
180   // constants are.
181   SDValue NotZero = N->getOperand(i);
182   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
183   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
184     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
185       return false;
186   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
187     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
188       return false;
189   } else
190     return false;
191 
192   // Okay, we have at least one ~0 value, check to see if the rest match or are
193   // undefs. Even with the above element type twiddling, this should be OK, as
194   // the same type legalization should have applied to all the elements.
195   for (++i; i != e; ++i)
196     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
197       return false;
198   return true;
199 }
200 
201 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
202   // Look through a bit convert.
203   while (N->getOpcode() == ISD::BITCAST)
204     N = N->getOperand(0).getNode();
205 
206   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
207 
208   bool IsAllUndef = true;
209   for (const SDValue &Op : N->op_values()) {
210     if (Op.isUndef())
211       continue;
212     IsAllUndef = false;
213     // Do not accept build_vectors that aren't all constants or which have non-0
214     // elements. We have to be a bit careful here, as the type of the constant
215     // may not be the same as the type of the vector elements due to type
216     // legalization (the elements are promoted to a legal type for the target
217     // and a vector of a type may be legal when the base element type is not).
218     // We only want to check enough bits to cover the vector elements, because
219     // we care if the resultant vector is all zeros, not whether the individual
220     // constants are.
221     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
222     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
223       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
224         return false;
225     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
226       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
227         return false;
228     } else
229       return false;
230   }
231 
232   // Do not accept an all-undef vector.
233   if (IsAllUndef)
234     return false;
235   return true;
236 }
237 
238 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
239   if (N->getOpcode() != ISD::BUILD_VECTOR)
240     return false;
241 
242   for (const SDValue &Op : N->op_values()) {
243     if (Op.isUndef())
244       continue;
245     if (!isa<ConstantSDNode>(Op))
246       return false;
247   }
248   return true;
249 }
250 
251 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
252   if (N->getOpcode() != ISD::BUILD_VECTOR)
253     return false;
254 
255   for (const SDValue &Op : N->op_values()) {
256     if (Op.isUndef())
257       continue;
258     if (!isa<ConstantFPSDNode>(Op))
259       return false;
260   }
261   return true;
262 }
263 
264 bool ISD::allOperandsUndef(const SDNode *N) {
265   // Return false if the node has no operands.
266   // This is "logically inconsistent" with the definition of "all" but
267   // is probably the desired behavior.
268   if (N->getNumOperands() == 0)
269     return false;
270   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
271 }
272 
273 bool ISD::matchUnaryPredicate(SDValue Op,
274                               std::function<bool(ConstantSDNode *)> Match,
275                               bool AllowUndefs) {
276   // FIXME: Add support for scalar UNDEF cases?
277   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
278     return Match(Cst);
279 
280   // FIXME: Add support for vector UNDEF cases?
281   if (ISD::BUILD_VECTOR != Op.getOpcode())
282     return false;
283 
284   EVT SVT = Op.getValueType().getScalarType();
285   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
286     if (AllowUndefs && Op.getOperand(i).isUndef()) {
287       if (!Match(nullptr))
288         return false;
289       continue;
290     }
291 
292     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
293     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
294       return false;
295   }
296   return true;
297 }
298 
299 bool ISD::matchBinaryPredicate(
300     SDValue LHS, SDValue RHS,
301     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
302     bool AllowUndefs, bool AllowTypeMismatch) {
303   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
304     return false;
305 
306   // TODO: Add support for scalar UNDEF cases?
307   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
308     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
309       return Match(LHSCst, RHSCst);
310 
311   // TODO: Add support for vector UNDEF cases?
312   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
313       ISD::BUILD_VECTOR != RHS.getOpcode())
314     return false;
315 
316   EVT SVT = LHS.getValueType().getScalarType();
317   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
318     SDValue LHSOp = LHS.getOperand(i);
319     SDValue RHSOp = RHS.getOperand(i);
320     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
321     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
322     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
323     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
324     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
325       return false;
326     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
327                                LHSOp.getValueType() != RHSOp.getValueType()))
328       return false;
329     if (!Match(LHSCst, RHSCst))
330       return false;
331   }
332   return true;
333 }
334 
335 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
336   switch (ExtType) {
337   case ISD::EXTLOAD:
338     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
339   case ISD::SEXTLOAD:
340     return ISD::SIGN_EXTEND;
341   case ISD::ZEXTLOAD:
342     return ISD::ZERO_EXTEND;
343   default:
344     break;
345   }
346 
347   llvm_unreachable("Invalid LoadExtType");
348 }
349 
350 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
351   // To perform this operation, we just need to swap the L and G bits of the
352   // operation.
353   unsigned OldL = (Operation >> 2) & 1;
354   unsigned OldG = (Operation >> 1) & 1;
355   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
356                        (OldL << 1) |       // New G bit
357                        (OldG << 2));       // New L bit.
358 }
359 
360 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
361   unsigned Operation = Op;
362   if (isIntegerLike)
363     Operation ^= 7;   // Flip L, G, E bits, but not U.
364   else
365     Operation ^= 15;  // Flip all of the condition bits.
366 
367   if (Operation > ISD::SETTRUE2)
368     Operation &= ~8;  // Don't let N and U bits get set.
369 
370   return ISD::CondCode(Operation);
371 }
372 
373 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
374   return getSetCCInverseImpl(Op, Type.isInteger());
375 }
376 
377 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
378                                                bool isIntegerLike) {
379   return getSetCCInverseImpl(Op, isIntegerLike);
380 }
381 
382 /// For an integer comparison, return 1 if the comparison is a signed operation
383 /// and 2 if the result is an unsigned comparison. Return zero if the operation
384 /// does not depend on the sign of the input (setne and seteq).
385 static int isSignedOp(ISD::CondCode Opcode) {
386   switch (Opcode) {
387   default: llvm_unreachable("Illegal integer setcc operation!");
388   case ISD::SETEQ:
389   case ISD::SETNE: return 0;
390   case ISD::SETLT:
391   case ISD::SETLE:
392   case ISD::SETGT:
393   case ISD::SETGE: return 1;
394   case ISD::SETULT:
395   case ISD::SETULE:
396   case ISD::SETUGT:
397   case ISD::SETUGE: return 2;
398   }
399 }
400 
401 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
402                                        EVT Type) {
403   bool IsInteger = Type.isInteger();
404   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
405     // Cannot fold a signed integer setcc with an unsigned integer setcc.
406     return ISD::SETCC_INVALID;
407 
408   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
409 
410   // If the N and U bits get set, then the resultant comparison DOES suddenly
411   // care about orderedness, and it is true when ordered.
412   if (Op > ISD::SETTRUE2)
413     Op &= ~16;     // Clear the U bit if the N bit is set.
414 
415   // Canonicalize illegal integer setcc's.
416   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
417     Op = ISD::SETNE;
418 
419   return ISD::CondCode(Op);
420 }
421 
422 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
423                                         EVT Type) {
424   bool IsInteger = Type.isInteger();
425   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
426     // Cannot fold a signed setcc with an unsigned setcc.
427     return ISD::SETCC_INVALID;
428 
429   // Combine all of the condition bits.
430   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
431 
432   // Canonicalize illegal integer setcc's.
433   if (IsInteger) {
434     switch (Result) {
435     default: break;
436     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
437     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
438     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
439     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
440     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
441     }
442   }
443 
444   return Result;
445 }
446 
447 //===----------------------------------------------------------------------===//
448 //                           SDNode Profile Support
449 //===----------------------------------------------------------------------===//
450 
451 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
452 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
453   ID.AddInteger(OpC);
454 }
455 
456 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
457 /// solely with their pointer.
458 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
459   ID.AddPointer(VTList.VTs);
460 }
461 
462 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
463 static void AddNodeIDOperands(FoldingSetNodeID &ID,
464                               ArrayRef<SDValue> Ops) {
465   for (auto& Op : Ops) {
466     ID.AddPointer(Op.getNode());
467     ID.AddInteger(Op.getResNo());
468   }
469 }
470 
471 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
472 static void AddNodeIDOperands(FoldingSetNodeID &ID,
473                               ArrayRef<SDUse> Ops) {
474   for (auto& Op : Ops) {
475     ID.AddPointer(Op.getNode());
476     ID.AddInteger(Op.getResNo());
477   }
478 }
479 
480 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
481                           SDVTList VTList, ArrayRef<SDValue> OpList) {
482   AddNodeIDOpcode(ID, OpC);
483   AddNodeIDValueTypes(ID, VTList);
484   AddNodeIDOperands(ID, OpList);
485 }
486 
487 /// If this is an SDNode with special info, add this info to the NodeID data.
488 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
489   switch (N->getOpcode()) {
490   case ISD::TargetExternalSymbol:
491   case ISD::ExternalSymbol:
492   case ISD::MCSymbol:
493     llvm_unreachable("Should only be used on nodes with operands");
494   default: break;  // Normal nodes don't need extra info.
495   case ISD::TargetConstant:
496   case ISD::Constant: {
497     const ConstantSDNode *C = cast<ConstantSDNode>(N);
498     ID.AddPointer(C->getConstantIntValue());
499     ID.AddBoolean(C->isOpaque());
500     break;
501   }
502   case ISD::TargetConstantFP:
503   case ISD::ConstantFP:
504     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
505     break;
506   case ISD::TargetGlobalAddress:
507   case ISD::GlobalAddress:
508   case ISD::TargetGlobalTLSAddress:
509   case ISD::GlobalTLSAddress: {
510     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
511     ID.AddPointer(GA->getGlobal());
512     ID.AddInteger(GA->getOffset());
513     ID.AddInteger(GA->getTargetFlags());
514     break;
515   }
516   case ISD::BasicBlock:
517     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
518     break;
519   case ISD::Register:
520     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
521     break;
522   case ISD::RegisterMask:
523     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
524     break;
525   case ISD::SRCVALUE:
526     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
527     break;
528   case ISD::FrameIndex:
529   case ISD::TargetFrameIndex:
530     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
531     break;
532   case ISD::LIFETIME_START:
533   case ISD::LIFETIME_END:
534     if (cast<LifetimeSDNode>(N)->hasOffset()) {
535       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
536       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
537     }
538     break;
539   case ISD::JumpTable:
540   case ISD::TargetJumpTable:
541     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
542     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
543     break;
544   case ISD::ConstantPool:
545   case ISD::TargetConstantPool: {
546     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
547     ID.AddInteger(CP->getAlign().value());
548     ID.AddInteger(CP->getOffset());
549     if (CP->isMachineConstantPoolEntry())
550       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
551     else
552       ID.AddPointer(CP->getConstVal());
553     ID.AddInteger(CP->getTargetFlags());
554     break;
555   }
556   case ISD::TargetIndex: {
557     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
558     ID.AddInteger(TI->getIndex());
559     ID.AddInteger(TI->getOffset());
560     ID.AddInteger(TI->getTargetFlags());
561     break;
562   }
563   case ISD::LOAD: {
564     const LoadSDNode *LD = cast<LoadSDNode>(N);
565     ID.AddInteger(LD->getMemoryVT().getRawBits());
566     ID.AddInteger(LD->getRawSubclassData());
567     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
568     break;
569   }
570   case ISD::STORE: {
571     const StoreSDNode *ST = cast<StoreSDNode>(N);
572     ID.AddInteger(ST->getMemoryVT().getRawBits());
573     ID.AddInteger(ST->getRawSubclassData());
574     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
575     break;
576   }
577   case ISD::MLOAD: {
578     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
579     ID.AddInteger(MLD->getMemoryVT().getRawBits());
580     ID.AddInteger(MLD->getRawSubclassData());
581     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
582     break;
583   }
584   case ISD::MSTORE: {
585     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
586     ID.AddInteger(MST->getMemoryVT().getRawBits());
587     ID.AddInteger(MST->getRawSubclassData());
588     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
589     break;
590   }
591   case ISD::MGATHER: {
592     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
593     ID.AddInteger(MG->getMemoryVT().getRawBits());
594     ID.AddInteger(MG->getRawSubclassData());
595     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
596     break;
597   }
598   case ISD::MSCATTER: {
599     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
600     ID.AddInteger(MS->getMemoryVT().getRawBits());
601     ID.AddInteger(MS->getRawSubclassData());
602     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
603     break;
604   }
605   case ISD::ATOMIC_CMP_SWAP:
606   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
607   case ISD::ATOMIC_SWAP:
608   case ISD::ATOMIC_LOAD_ADD:
609   case ISD::ATOMIC_LOAD_SUB:
610   case ISD::ATOMIC_LOAD_AND:
611   case ISD::ATOMIC_LOAD_CLR:
612   case ISD::ATOMIC_LOAD_OR:
613   case ISD::ATOMIC_LOAD_XOR:
614   case ISD::ATOMIC_LOAD_NAND:
615   case ISD::ATOMIC_LOAD_MIN:
616   case ISD::ATOMIC_LOAD_MAX:
617   case ISD::ATOMIC_LOAD_UMIN:
618   case ISD::ATOMIC_LOAD_UMAX:
619   case ISD::ATOMIC_LOAD:
620   case ISD::ATOMIC_STORE: {
621     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
622     ID.AddInteger(AT->getMemoryVT().getRawBits());
623     ID.AddInteger(AT->getRawSubclassData());
624     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
625     break;
626   }
627   case ISD::PREFETCH: {
628     const MemSDNode *PF = cast<MemSDNode>(N);
629     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
630     break;
631   }
632   case ISD::VECTOR_SHUFFLE: {
633     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
634     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
635          i != e; ++i)
636       ID.AddInteger(SVN->getMaskElt(i));
637     break;
638   }
639   case ISD::TargetBlockAddress:
640   case ISD::BlockAddress: {
641     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
642     ID.AddPointer(BA->getBlockAddress());
643     ID.AddInteger(BA->getOffset());
644     ID.AddInteger(BA->getTargetFlags());
645     break;
646   }
647   } // end switch (N->getOpcode())
648 
649   // Target specific memory nodes could also have address spaces to check.
650   if (N->isTargetMemoryOpcode())
651     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
652 }
653 
654 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
655 /// data.
656 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
657   AddNodeIDOpcode(ID, N->getOpcode());
658   // Add the return value info.
659   AddNodeIDValueTypes(ID, N->getVTList());
660   // Add the operand info.
661   AddNodeIDOperands(ID, N->ops());
662 
663   // Handle SDNode leafs with special info.
664   AddNodeIDCustom(ID, N);
665 }
666 
667 //===----------------------------------------------------------------------===//
668 //                              SelectionDAG Class
669 //===----------------------------------------------------------------------===//
670 
671 /// doNotCSE - Return true if CSE should not be performed for this node.
672 static bool doNotCSE(SDNode *N) {
673   if (N->getValueType(0) == MVT::Glue)
674     return true; // Never CSE anything that produces a flag.
675 
676   switch (N->getOpcode()) {
677   default: break;
678   case ISD::HANDLENODE:
679   case ISD::EH_LABEL:
680     return true;   // Never CSE these nodes.
681   }
682 
683   // Check that remaining values produced are not flags.
684   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
685     if (N->getValueType(i) == MVT::Glue)
686       return true; // Never CSE anything that produces a flag.
687 
688   return false;
689 }
690 
691 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
692 /// SelectionDAG.
693 void SelectionDAG::RemoveDeadNodes() {
694   // Create a dummy node (which is not added to allnodes), that adds a reference
695   // to the root node, preventing it from being deleted.
696   HandleSDNode Dummy(getRoot());
697 
698   SmallVector<SDNode*, 128> DeadNodes;
699 
700   // Add all obviously-dead nodes to the DeadNodes worklist.
701   for (SDNode &Node : allnodes())
702     if (Node.use_empty())
703       DeadNodes.push_back(&Node);
704 
705   RemoveDeadNodes(DeadNodes);
706 
707   // If the root changed (e.g. it was a dead load, update the root).
708   setRoot(Dummy.getValue());
709 }
710 
711 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
712 /// given list, and any nodes that become unreachable as a result.
713 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
714 
715   // Process the worklist, deleting the nodes and adding their uses to the
716   // worklist.
717   while (!DeadNodes.empty()) {
718     SDNode *N = DeadNodes.pop_back_val();
719     // Skip to next node if we've already managed to delete the node. This could
720     // happen if replacing a node causes a node previously added to the node to
721     // be deleted.
722     if (N->getOpcode() == ISD::DELETED_NODE)
723       continue;
724 
725     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
726       DUL->NodeDeleted(N, nullptr);
727 
728     // Take the node out of the appropriate CSE map.
729     RemoveNodeFromCSEMaps(N);
730 
731     // Next, brutally remove the operand list.  This is safe to do, as there are
732     // no cycles in the graph.
733     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
734       SDUse &Use = *I++;
735       SDNode *Operand = Use.getNode();
736       Use.set(SDValue());
737 
738       // Now that we removed this operand, see if there are no uses of it left.
739       if (Operand->use_empty())
740         DeadNodes.push_back(Operand);
741     }
742 
743     DeallocateNode(N);
744   }
745 }
746 
747 void SelectionDAG::RemoveDeadNode(SDNode *N){
748   SmallVector<SDNode*, 16> DeadNodes(1, N);
749 
750   // Create a dummy node that adds a reference to the root node, preventing
751   // it from being deleted.  (This matters if the root is an operand of the
752   // dead node.)
753   HandleSDNode Dummy(getRoot());
754 
755   RemoveDeadNodes(DeadNodes);
756 }
757 
758 void SelectionDAG::DeleteNode(SDNode *N) {
759   // First take this out of the appropriate CSE map.
760   RemoveNodeFromCSEMaps(N);
761 
762   // Finally, remove uses due to operands of this node, remove from the
763   // AllNodes list, and delete the node.
764   DeleteNodeNotInCSEMaps(N);
765 }
766 
767 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
768   assert(N->getIterator() != AllNodes.begin() &&
769          "Cannot delete the entry node!");
770   assert(N->use_empty() && "Cannot delete a node that is not dead!");
771 
772   // Drop all of the operands and decrement used node's use counts.
773   N->DropOperands();
774 
775   DeallocateNode(N);
776 }
777 
778 void SDDbgInfo::erase(const SDNode *Node) {
779   DbgValMapType::iterator I = DbgValMap.find(Node);
780   if (I == DbgValMap.end())
781     return;
782   for (auto &Val: I->second)
783     Val->setIsInvalidated();
784   DbgValMap.erase(I);
785 }
786 
787 void SelectionDAG::DeallocateNode(SDNode *N) {
788   // If we have operands, deallocate them.
789   removeOperands(N);
790 
791   NodeAllocator.Deallocate(AllNodes.remove(N));
792 
793   // Set the opcode to DELETED_NODE to help catch bugs when node
794   // memory is reallocated.
795   // FIXME: There are places in SDag that have grown a dependency on the opcode
796   // value in the released node.
797   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
798   N->NodeType = ISD::DELETED_NODE;
799 
800   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
801   // them and forget about that node.
802   DbgInfo->erase(N);
803 }
804 
805 #ifndef NDEBUG
806 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
807 static void VerifySDNode(SDNode *N) {
808   switch (N->getOpcode()) {
809   default:
810     break;
811   case ISD::BUILD_PAIR: {
812     EVT VT = N->getValueType(0);
813     assert(N->getNumValues() == 1 && "Too many results!");
814     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
815            "Wrong return type!");
816     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
817     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
818            "Mismatched operand types!");
819     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
820            "Wrong operand type!");
821     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
822            "Wrong return type size");
823     break;
824   }
825   case ISD::BUILD_VECTOR: {
826     assert(N->getNumValues() == 1 && "Too many results!");
827     assert(N->getValueType(0).isVector() && "Wrong return type!");
828     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
829            "Wrong number of operands!");
830     EVT EltVT = N->getValueType(0).getVectorElementType();
831     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
832       assert((I->getValueType() == EltVT ||
833              (EltVT.isInteger() && I->getValueType().isInteger() &&
834               EltVT.bitsLE(I->getValueType()))) &&
835             "Wrong operand type!");
836       assert(I->getValueType() == N->getOperand(0).getValueType() &&
837              "Operands must all have the same type");
838     }
839     break;
840   }
841   }
842 }
843 #endif // NDEBUG
844 
845 /// Insert a newly allocated node into the DAG.
846 ///
847 /// Handles insertion into the all nodes list and CSE map, as well as
848 /// verification and other common operations when a new node is allocated.
849 void SelectionDAG::InsertNode(SDNode *N) {
850   AllNodes.push_back(N);
851 #ifndef NDEBUG
852   N->PersistentId = NextPersistentId++;
853   VerifySDNode(N);
854 #endif
855   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
856     DUL->NodeInserted(N);
857 }
858 
859 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
860 /// correspond to it.  This is useful when we're about to delete or repurpose
861 /// the node.  We don't want future request for structurally identical nodes
862 /// to return N anymore.
863 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
864   bool Erased = false;
865   switch (N->getOpcode()) {
866   case ISD::HANDLENODE: return false;  // noop.
867   case ISD::CONDCODE:
868     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
869            "Cond code doesn't exist!");
870     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
871     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
872     break;
873   case ISD::ExternalSymbol:
874     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
875     break;
876   case ISD::TargetExternalSymbol: {
877     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
878     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
879         ESN->getSymbol(), ESN->getTargetFlags()));
880     break;
881   }
882   case ISD::MCSymbol: {
883     auto *MCSN = cast<MCSymbolSDNode>(N);
884     Erased = MCSymbols.erase(MCSN->getMCSymbol());
885     break;
886   }
887   case ISD::VALUETYPE: {
888     EVT VT = cast<VTSDNode>(N)->getVT();
889     if (VT.isExtended()) {
890       Erased = ExtendedValueTypeNodes.erase(VT);
891     } else {
892       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
893       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
894     }
895     break;
896   }
897   default:
898     // Remove it from the CSE Map.
899     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
900     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
901     Erased = CSEMap.RemoveNode(N);
902     break;
903   }
904 #ifndef NDEBUG
905   // Verify that the node was actually in one of the CSE maps, unless it has a
906   // flag result (which cannot be CSE'd) or is one of the special cases that are
907   // not subject to CSE.
908   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
909       !N->isMachineOpcode() && !doNotCSE(N)) {
910     N->dump(this);
911     dbgs() << "\n";
912     llvm_unreachable("Node is not in map!");
913   }
914 #endif
915   return Erased;
916 }
917 
918 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
919 /// maps and modified in place. Add it back to the CSE maps, unless an identical
920 /// node already exists, in which case transfer all its users to the existing
921 /// node. This transfer can potentially trigger recursive merging.
922 void
923 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
924   // For node types that aren't CSE'd, just act as if no identical node
925   // already exists.
926   if (!doNotCSE(N)) {
927     SDNode *Existing = CSEMap.GetOrInsertNode(N);
928     if (Existing != N) {
929       // If there was already an existing matching node, use ReplaceAllUsesWith
930       // to replace the dead one with the existing one.  This can cause
931       // recursive merging of other unrelated nodes down the line.
932       ReplaceAllUsesWith(N, Existing);
933 
934       // N is now dead. Inform the listeners and delete it.
935       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
936         DUL->NodeDeleted(N, Existing);
937       DeleteNodeNotInCSEMaps(N);
938       return;
939     }
940   }
941 
942   // If the node doesn't already exist, we updated it.  Inform listeners.
943   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
944     DUL->NodeUpdated(N);
945 }
946 
947 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
948 /// were replaced with those specified.  If this node is never memoized,
949 /// return null, otherwise return a pointer to the slot it would take.  If a
950 /// node already exists with these operands, the slot will be non-null.
951 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
952                                            void *&InsertPos) {
953   if (doNotCSE(N))
954     return nullptr;
955 
956   SDValue Ops[] = { Op };
957   FoldingSetNodeID ID;
958   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
959   AddNodeIDCustom(ID, N);
960   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
961   if (Node)
962     Node->intersectFlagsWith(N->getFlags());
963   return Node;
964 }
965 
966 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
967 /// were replaced with those specified.  If this node is never memoized,
968 /// return null, otherwise return a pointer to the slot it would take.  If a
969 /// node already exists with these operands, the slot will be non-null.
970 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
971                                            SDValue Op1, SDValue Op2,
972                                            void *&InsertPos) {
973   if (doNotCSE(N))
974     return nullptr;
975 
976   SDValue Ops[] = { Op1, Op2 };
977   FoldingSetNodeID ID;
978   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
979   AddNodeIDCustom(ID, N);
980   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
981   if (Node)
982     Node->intersectFlagsWith(N->getFlags());
983   return Node;
984 }
985 
986 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
987 /// were replaced with those specified.  If this node is never memoized,
988 /// return null, otherwise return a pointer to the slot it would take.  If a
989 /// node already exists with these operands, the slot will be non-null.
990 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
991                                            void *&InsertPos) {
992   if (doNotCSE(N))
993     return nullptr;
994 
995   FoldingSetNodeID ID;
996   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
997   AddNodeIDCustom(ID, N);
998   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
999   if (Node)
1000     Node->intersectFlagsWith(N->getFlags());
1001   return Node;
1002 }
1003 
1004 Align SelectionDAG::getEVTAlign(EVT VT) const {
1005   Type *Ty = VT == MVT::iPTR ?
1006                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1007                    VT.getTypeForEVT(*getContext());
1008 
1009   return getDataLayout().getABITypeAlign(Ty);
1010 }
1011 
1012 // EntryNode could meaningfully have debug info if we can find it...
1013 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1014     : TM(tm), OptLevel(OL),
1015       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1016       Root(getEntryNode()) {
1017   InsertNode(&EntryNode);
1018   DbgInfo = new SDDbgInfo();
1019 }
1020 
1021 void SelectionDAG::init(MachineFunction &NewMF,
1022                         OptimizationRemarkEmitter &NewORE,
1023                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1024                         LegacyDivergenceAnalysis * Divergence,
1025                         ProfileSummaryInfo *PSIin,
1026                         BlockFrequencyInfo *BFIin) {
1027   MF = &NewMF;
1028   SDAGISelPass = PassPtr;
1029   ORE = &NewORE;
1030   TLI = getSubtarget().getTargetLowering();
1031   TSI = getSubtarget().getSelectionDAGInfo();
1032   LibInfo = LibraryInfo;
1033   Context = &MF->getFunction().getContext();
1034   DA = Divergence;
1035   PSI = PSIin;
1036   BFI = BFIin;
1037 }
1038 
1039 SelectionDAG::~SelectionDAG() {
1040   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1041   allnodes_clear();
1042   OperandRecycler.clear(OperandAllocator);
1043   delete DbgInfo;
1044 }
1045 
1046 bool SelectionDAG::shouldOptForSize() const {
1047   return MF->getFunction().hasOptSize() ||
1048       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1049 }
1050 
1051 void SelectionDAG::allnodes_clear() {
1052   assert(&*AllNodes.begin() == &EntryNode);
1053   AllNodes.remove(AllNodes.begin());
1054   while (!AllNodes.empty())
1055     DeallocateNode(&AllNodes.front());
1056 #ifndef NDEBUG
1057   NextPersistentId = 0;
1058 #endif
1059 }
1060 
1061 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1062                                           void *&InsertPos) {
1063   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1064   if (N) {
1065     switch (N->getOpcode()) {
1066     default: break;
1067     case ISD::Constant:
1068     case ISD::ConstantFP:
1069       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1070                        "debug location.  Use another overload.");
1071     }
1072   }
1073   return N;
1074 }
1075 
1076 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1077                                           const SDLoc &DL, void *&InsertPos) {
1078   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1079   if (N) {
1080     switch (N->getOpcode()) {
1081     case ISD::Constant:
1082     case ISD::ConstantFP:
1083       // Erase debug location from the node if the node is used at several
1084       // different places. Do not propagate one location to all uses as it
1085       // will cause a worse single stepping debugging experience.
1086       if (N->getDebugLoc() != DL.getDebugLoc())
1087         N->setDebugLoc(DebugLoc());
1088       break;
1089     default:
1090       // When the node's point of use is located earlier in the instruction
1091       // sequence than its prior point of use, update its debug info to the
1092       // earlier location.
1093       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1094         N->setDebugLoc(DL.getDebugLoc());
1095       break;
1096     }
1097   }
1098   return N;
1099 }
1100 
1101 void SelectionDAG::clear() {
1102   allnodes_clear();
1103   OperandRecycler.clear(OperandAllocator);
1104   OperandAllocator.Reset();
1105   CSEMap.clear();
1106 
1107   ExtendedValueTypeNodes.clear();
1108   ExternalSymbols.clear();
1109   TargetExternalSymbols.clear();
1110   MCSymbols.clear();
1111   SDCallSiteDbgInfo.clear();
1112   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1113             static_cast<CondCodeSDNode*>(nullptr));
1114   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1115             static_cast<SDNode*>(nullptr));
1116 
1117   EntryNode.UseList = nullptr;
1118   InsertNode(&EntryNode);
1119   Root = getEntryNode();
1120   DbgInfo->clear();
1121 }
1122 
1123 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1124   return VT.bitsGT(Op.getValueType())
1125              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1126              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1127 }
1128 
1129 std::pair<SDValue, SDValue>
1130 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1131                                        const SDLoc &DL, EVT VT) {
1132   assert(!VT.bitsEq(Op.getValueType()) &&
1133          "Strict no-op FP extend/round not allowed.");
1134   SDValue Res =
1135       VT.bitsGT(Op.getValueType())
1136           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1137           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1138                     {Chain, Op, getIntPtrConstant(0, DL)});
1139 
1140   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1141 }
1142 
1143 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1144   return VT.bitsGT(Op.getValueType()) ?
1145     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1146     getNode(ISD::TRUNCATE, DL, VT, Op);
1147 }
1148 
1149 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1150   return VT.bitsGT(Op.getValueType()) ?
1151     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1152     getNode(ISD::TRUNCATE, DL, VT, Op);
1153 }
1154 
1155 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1156   return VT.bitsGT(Op.getValueType()) ?
1157     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1158     getNode(ISD::TRUNCATE, DL, VT, Op);
1159 }
1160 
1161 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1162                                         EVT OpVT) {
1163   if (VT.bitsLE(Op.getValueType()))
1164     return getNode(ISD::TRUNCATE, SL, VT, Op);
1165 
1166   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1167   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1168 }
1169 
1170 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1171   EVT OpVT = Op.getValueType();
1172   assert(VT.isInteger() && OpVT.isInteger() &&
1173          "Cannot getZeroExtendInReg FP types");
1174   assert(VT.isVector() == OpVT.isVector() &&
1175          "getZeroExtendInReg type should be vector iff the operand "
1176          "type is vector!");
1177   assert((!VT.isVector() ||
1178           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1179          "Vector element counts must match in getZeroExtendInReg");
1180   assert(VT.bitsLE(OpVT) && "Not extending!");
1181   if (OpVT == VT)
1182     return Op;
1183   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1184                                    VT.getScalarSizeInBits());
1185   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1186 }
1187 
1188 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1189   // Only unsigned pointer semantics are supported right now. In the future this
1190   // might delegate to TLI to check pointer signedness.
1191   return getZExtOrTrunc(Op, DL, VT);
1192 }
1193 
1194 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1195   // Only unsigned pointer semantics are supported right now. In the future this
1196   // might delegate to TLI to check pointer signedness.
1197   return getZeroExtendInReg(Op, DL, VT);
1198 }
1199 
1200 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1201 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1202   EVT EltVT = VT.getScalarType();
1203   SDValue NegOne =
1204     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1205   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1206 }
1207 
1208 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1209   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1210   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1211 }
1212 
1213 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1214                                       EVT OpVT) {
1215   if (!V)
1216     return getConstant(0, DL, VT);
1217 
1218   switch (TLI->getBooleanContents(OpVT)) {
1219   case TargetLowering::ZeroOrOneBooleanContent:
1220   case TargetLowering::UndefinedBooleanContent:
1221     return getConstant(1, DL, VT);
1222   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1223     return getAllOnesConstant(DL, VT);
1224   }
1225   llvm_unreachable("Unexpected boolean content enum!");
1226 }
1227 
1228 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1229                                   bool isT, bool isO) {
1230   EVT EltVT = VT.getScalarType();
1231   assert((EltVT.getSizeInBits() >= 64 ||
1232          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1233          "getConstant with a uint64_t value that doesn't fit in the type!");
1234   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1235 }
1236 
1237 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1238                                   bool isT, bool isO) {
1239   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1240 }
1241 
1242 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1243                                   EVT VT, bool isT, bool isO) {
1244   assert(VT.isInteger() && "Cannot create FP integer constant!");
1245 
1246   EVT EltVT = VT.getScalarType();
1247   const ConstantInt *Elt = &Val;
1248 
1249   // In some cases the vector type is legal but the element type is illegal and
1250   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1251   // inserted value (the type does not need to match the vector element type).
1252   // Any extra bits introduced will be truncated away.
1253   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1254       TargetLowering::TypePromoteInteger) {
1255    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1256    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1257    Elt = ConstantInt::get(*getContext(), NewVal);
1258   }
1259   // In other cases the element type is illegal and needs to be expanded, for
1260   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1261   // the value into n parts and use a vector type with n-times the elements.
1262   // Then bitcast to the type requested.
1263   // Legalizing constants too early makes the DAGCombiner's job harder so we
1264   // only legalize if the DAG tells us we must produce legal types.
1265   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1266            TLI->getTypeAction(*getContext(), EltVT) ==
1267            TargetLowering::TypeExpandInteger) {
1268     const APInt &NewVal = Elt->getValue();
1269     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1270     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1271     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1272     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1273 
1274     // Check the temporary vector is the correct size. If this fails then
1275     // getTypeToTransformTo() probably returned a type whose size (in bits)
1276     // isn't a power-of-2 factor of the requested type size.
1277     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1278 
1279     SmallVector<SDValue, 2> EltParts;
1280     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1281       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1282                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1283                                      ViaEltVT, isT, isO));
1284     }
1285 
1286     // EltParts is currently in little endian order. If we actually want
1287     // big-endian order then reverse it now.
1288     if (getDataLayout().isBigEndian())
1289       std::reverse(EltParts.begin(), EltParts.end());
1290 
1291     // The elements must be reversed when the element order is different
1292     // to the endianness of the elements (because the BITCAST is itself a
1293     // vector shuffle in this situation). However, we do not need any code to
1294     // perform this reversal because getConstant() is producing a vector
1295     // splat.
1296     // This situation occurs in MIPS MSA.
1297 
1298     SmallVector<SDValue, 8> Ops;
1299     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1300       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1301 
1302     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1303     return V;
1304   }
1305 
1306   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1307          "APInt size does not match type size!");
1308   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1309   FoldingSetNodeID ID;
1310   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1311   ID.AddPointer(Elt);
1312   ID.AddBoolean(isO);
1313   void *IP = nullptr;
1314   SDNode *N = nullptr;
1315   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1316     if (!VT.isVector())
1317       return SDValue(N, 0);
1318 
1319   if (!N) {
1320     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1321     CSEMap.InsertNode(N, IP);
1322     InsertNode(N);
1323     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1324   }
1325 
1326   SDValue Result(N, 0);
1327   if (VT.isScalableVector())
1328     Result = getSplatVector(VT, DL, Result);
1329   else if (VT.isVector())
1330     Result = getSplatBuildVector(VT, DL, Result);
1331 
1332   return Result;
1333 }
1334 
1335 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1336                                         bool isTarget) {
1337   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1338 }
1339 
1340 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1341                                              const SDLoc &DL, bool LegalTypes) {
1342   assert(VT.isInteger() && "Shift amount is not an integer type!");
1343   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1344   return getConstant(Val, DL, ShiftVT);
1345 }
1346 
1347 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1348                                            bool isTarget) {
1349   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1350 }
1351 
1352 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1353                                     bool isTarget) {
1354   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1355 }
1356 
1357 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1358                                     EVT VT, bool isTarget) {
1359   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1360 
1361   EVT EltVT = VT.getScalarType();
1362 
1363   // Do the map lookup using the actual bit pattern for the floating point
1364   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1365   // we don't have issues with SNANs.
1366   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1367   FoldingSetNodeID ID;
1368   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1369   ID.AddPointer(&V);
1370   void *IP = nullptr;
1371   SDNode *N = nullptr;
1372   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1373     if (!VT.isVector())
1374       return SDValue(N, 0);
1375 
1376   if (!N) {
1377     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1378     CSEMap.InsertNode(N, IP);
1379     InsertNode(N);
1380   }
1381 
1382   SDValue Result(N, 0);
1383   if (VT.isVector())
1384     Result = getSplatBuildVector(VT, DL, Result);
1385   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1386   return Result;
1387 }
1388 
1389 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1390                                     bool isTarget) {
1391   EVT EltVT = VT.getScalarType();
1392   if (EltVT == MVT::f32)
1393     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1394   else if (EltVT == MVT::f64)
1395     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1396   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1397            EltVT == MVT::f16 || EltVT == MVT::bf16) {
1398     bool Ignored;
1399     APFloat APF = APFloat(Val);
1400     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1401                 &Ignored);
1402     return getConstantFP(APF, DL, VT, isTarget);
1403   } else
1404     llvm_unreachable("Unsupported type in getConstantFP");
1405 }
1406 
1407 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1408                                        EVT VT, int64_t Offset, bool isTargetGA,
1409                                        unsigned TargetFlags) {
1410   assert((TargetFlags == 0 || isTargetGA) &&
1411          "Cannot set target flags on target-independent globals");
1412 
1413   // Truncate (with sign-extension) the offset value to the pointer size.
1414   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1415   if (BitWidth < 64)
1416     Offset = SignExtend64(Offset, BitWidth);
1417 
1418   unsigned Opc;
1419   if (GV->isThreadLocal())
1420     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1421   else
1422     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1423 
1424   FoldingSetNodeID ID;
1425   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1426   ID.AddPointer(GV);
1427   ID.AddInteger(Offset);
1428   ID.AddInteger(TargetFlags);
1429   void *IP = nullptr;
1430   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1431     return SDValue(E, 0);
1432 
1433   auto *N = newSDNode<GlobalAddressSDNode>(
1434       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1435   CSEMap.InsertNode(N, IP);
1436     InsertNode(N);
1437   return SDValue(N, 0);
1438 }
1439 
1440 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1441   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1442   FoldingSetNodeID ID;
1443   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1444   ID.AddInteger(FI);
1445   void *IP = nullptr;
1446   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1447     return SDValue(E, 0);
1448 
1449   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1450   CSEMap.InsertNode(N, IP);
1451   InsertNode(N);
1452   return SDValue(N, 0);
1453 }
1454 
1455 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1456                                    unsigned TargetFlags) {
1457   assert((TargetFlags == 0 || isTarget) &&
1458          "Cannot set target flags on target-independent jump tables");
1459   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1460   FoldingSetNodeID ID;
1461   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1462   ID.AddInteger(JTI);
1463   ID.AddInteger(TargetFlags);
1464   void *IP = nullptr;
1465   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1466     return SDValue(E, 0);
1467 
1468   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1469   CSEMap.InsertNode(N, IP);
1470   InsertNode(N);
1471   return SDValue(N, 0);
1472 }
1473 
1474 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1475                                       MaybeAlign Alignment, int Offset,
1476                                       bool isTarget, unsigned TargetFlags) {
1477   assert((TargetFlags == 0 || isTarget) &&
1478          "Cannot set target flags on target-independent globals");
1479   if (!Alignment)
1480     Alignment = shouldOptForSize()
1481                     ? getDataLayout().getABITypeAlign(C->getType())
1482                     : getDataLayout().getPrefTypeAlign(C->getType());
1483   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1484   FoldingSetNodeID ID;
1485   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1486   ID.AddInteger(Alignment->value());
1487   ID.AddInteger(Offset);
1488   ID.AddPointer(C);
1489   ID.AddInteger(TargetFlags);
1490   void *IP = nullptr;
1491   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1492     return SDValue(E, 0);
1493 
1494   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1495                                           TargetFlags);
1496   CSEMap.InsertNode(N, IP);
1497   InsertNode(N);
1498   SDValue V = SDValue(N, 0);
1499   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1500   return V;
1501 }
1502 
1503 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1504                                       MaybeAlign Alignment, int Offset,
1505                                       bool isTarget, unsigned TargetFlags) {
1506   assert((TargetFlags == 0 || isTarget) &&
1507          "Cannot set target flags on target-independent globals");
1508   if (!Alignment)
1509     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1510   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1511   FoldingSetNodeID ID;
1512   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1513   ID.AddInteger(Alignment->value());
1514   ID.AddInteger(Offset);
1515   C->addSelectionDAGCSEId(ID);
1516   ID.AddInteger(TargetFlags);
1517   void *IP = nullptr;
1518   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1519     return SDValue(E, 0);
1520 
1521   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1522                                           TargetFlags);
1523   CSEMap.InsertNode(N, IP);
1524   InsertNode(N);
1525   return SDValue(N, 0);
1526 }
1527 
1528 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1529                                      unsigned TargetFlags) {
1530   FoldingSetNodeID ID;
1531   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1532   ID.AddInteger(Index);
1533   ID.AddInteger(Offset);
1534   ID.AddInteger(TargetFlags);
1535   void *IP = nullptr;
1536   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1537     return SDValue(E, 0);
1538 
1539   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1540   CSEMap.InsertNode(N, IP);
1541   InsertNode(N);
1542   return SDValue(N, 0);
1543 }
1544 
1545 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1546   FoldingSetNodeID ID;
1547   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1548   ID.AddPointer(MBB);
1549   void *IP = nullptr;
1550   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1551     return SDValue(E, 0);
1552 
1553   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1554   CSEMap.InsertNode(N, IP);
1555   InsertNode(N);
1556   return SDValue(N, 0);
1557 }
1558 
1559 SDValue SelectionDAG::getValueType(EVT VT) {
1560   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1561       ValueTypeNodes.size())
1562     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1563 
1564   SDNode *&N = VT.isExtended() ?
1565     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1566 
1567   if (N) return SDValue(N, 0);
1568   N = newSDNode<VTSDNode>(VT);
1569   InsertNode(N);
1570   return SDValue(N, 0);
1571 }
1572 
1573 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1574   SDNode *&N = ExternalSymbols[Sym];
1575   if (N) return SDValue(N, 0);
1576   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1577   InsertNode(N);
1578   return SDValue(N, 0);
1579 }
1580 
1581 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1582   SDNode *&N = MCSymbols[Sym];
1583   if (N)
1584     return SDValue(N, 0);
1585   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1586   InsertNode(N);
1587   return SDValue(N, 0);
1588 }
1589 
1590 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1591                                               unsigned TargetFlags) {
1592   SDNode *&N =
1593       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1594   if (N) return SDValue(N, 0);
1595   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1596   InsertNode(N);
1597   return SDValue(N, 0);
1598 }
1599 
1600 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1601   if ((unsigned)Cond >= CondCodeNodes.size())
1602     CondCodeNodes.resize(Cond+1);
1603 
1604   if (!CondCodeNodes[Cond]) {
1605     auto *N = newSDNode<CondCodeSDNode>(Cond);
1606     CondCodeNodes[Cond] = N;
1607     InsertNode(N);
1608   }
1609 
1610   return SDValue(CondCodeNodes[Cond], 0);
1611 }
1612 
1613 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1614 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1615 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1616   std::swap(N1, N2);
1617   ShuffleVectorSDNode::commuteMask(M);
1618 }
1619 
1620 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1621                                        SDValue N2, ArrayRef<int> Mask) {
1622   assert(VT.getVectorNumElements() == Mask.size() &&
1623            "Must have the same number of vector elements as mask elements!");
1624   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1625          "Invalid VECTOR_SHUFFLE");
1626 
1627   // Canonicalize shuffle undef, undef -> undef
1628   if (N1.isUndef() && N2.isUndef())
1629     return getUNDEF(VT);
1630 
1631   // Validate that all indices in Mask are within the range of the elements
1632   // input to the shuffle.
1633   int NElts = Mask.size();
1634   assert(llvm::all_of(Mask,
1635                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1636          "Index out of range");
1637 
1638   // Copy the mask so we can do any needed cleanup.
1639   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1640 
1641   // Canonicalize shuffle v, v -> v, undef
1642   if (N1 == N2) {
1643     N2 = getUNDEF(VT);
1644     for (int i = 0; i != NElts; ++i)
1645       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1646   }
1647 
1648   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1649   if (N1.isUndef())
1650     commuteShuffle(N1, N2, MaskVec);
1651 
1652   if (TLI->hasVectorBlend()) {
1653     // If shuffling a splat, try to blend the splat instead. We do this here so
1654     // that even when this arises during lowering we don't have to re-handle it.
1655     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1656       BitVector UndefElements;
1657       SDValue Splat = BV->getSplatValue(&UndefElements);
1658       if (!Splat)
1659         return;
1660 
1661       for (int i = 0; i < NElts; ++i) {
1662         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1663           continue;
1664 
1665         // If this input comes from undef, mark it as such.
1666         if (UndefElements[MaskVec[i] - Offset]) {
1667           MaskVec[i] = -1;
1668           continue;
1669         }
1670 
1671         // If we can blend a non-undef lane, use that instead.
1672         if (!UndefElements[i])
1673           MaskVec[i] = i + Offset;
1674       }
1675     };
1676     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1677       BlendSplat(N1BV, 0);
1678     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1679       BlendSplat(N2BV, NElts);
1680   }
1681 
1682   // Canonicalize all index into lhs, -> shuffle lhs, undef
1683   // Canonicalize all index into rhs, -> shuffle rhs, undef
1684   bool AllLHS = true, AllRHS = true;
1685   bool N2Undef = N2.isUndef();
1686   for (int i = 0; i != NElts; ++i) {
1687     if (MaskVec[i] >= NElts) {
1688       if (N2Undef)
1689         MaskVec[i] = -1;
1690       else
1691         AllLHS = false;
1692     } else if (MaskVec[i] >= 0) {
1693       AllRHS = false;
1694     }
1695   }
1696   if (AllLHS && AllRHS)
1697     return getUNDEF(VT);
1698   if (AllLHS && !N2Undef)
1699     N2 = getUNDEF(VT);
1700   if (AllRHS) {
1701     N1 = getUNDEF(VT);
1702     commuteShuffle(N1, N2, MaskVec);
1703   }
1704   // Reset our undef status after accounting for the mask.
1705   N2Undef = N2.isUndef();
1706   // Re-check whether both sides ended up undef.
1707   if (N1.isUndef() && N2Undef)
1708     return getUNDEF(VT);
1709 
1710   // If Identity shuffle return that node.
1711   bool Identity = true, AllSame = true;
1712   for (int i = 0; i != NElts; ++i) {
1713     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1714     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1715   }
1716   if (Identity && NElts)
1717     return N1;
1718 
1719   // Shuffling a constant splat doesn't change the result.
1720   if (N2Undef) {
1721     SDValue V = N1;
1722 
1723     // Look through any bitcasts. We check that these don't change the number
1724     // (and size) of elements and just changes their types.
1725     while (V.getOpcode() == ISD::BITCAST)
1726       V = V->getOperand(0);
1727 
1728     // A splat should always show up as a build vector node.
1729     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1730       BitVector UndefElements;
1731       SDValue Splat = BV->getSplatValue(&UndefElements);
1732       // If this is a splat of an undef, shuffling it is also undef.
1733       if (Splat && Splat.isUndef())
1734         return getUNDEF(VT);
1735 
1736       bool SameNumElts =
1737           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1738 
1739       // We only have a splat which can skip shuffles if there is a splatted
1740       // value and no undef lanes rearranged by the shuffle.
1741       if (Splat && UndefElements.none()) {
1742         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1743         // number of elements match or the value splatted is a zero constant.
1744         if (SameNumElts)
1745           return N1;
1746         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1747           if (C->isNullValue())
1748             return N1;
1749       }
1750 
1751       // If the shuffle itself creates a splat, build the vector directly.
1752       if (AllSame && SameNumElts) {
1753         EVT BuildVT = BV->getValueType(0);
1754         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1755         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1756 
1757         // We may have jumped through bitcasts, so the type of the
1758         // BUILD_VECTOR may not match the type of the shuffle.
1759         if (BuildVT != VT)
1760           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1761         return NewBV;
1762       }
1763     }
1764   }
1765 
1766   FoldingSetNodeID ID;
1767   SDValue Ops[2] = { N1, N2 };
1768   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1769   for (int i = 0; i != NElts; ++i)
1770     ID.AddInteger(MaskVec[i]);
1771 
1772   void* IP = nullptr;
1773   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1774     return SDValue(E, 0);
1775 
1776   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1777   // SDNode doesn't have access to it.  This memory will be "leaked" when
1778   // the node is deallocated, but recovered when the NodeAllocator is released.
1779   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1780   llvm::copy(MaskVec, MaskAlloc);
1781 
1782   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1783                                            dl.getDebugLoc(), MaskAlloc);
1784   createOperands(N, Ops);
1785 
1786   CSEMap.InsertNode(N, IP);
1787   InsertNode(N);
1788   SDValue V = SDValue(N, 0);
1789   NewSDValueDbgMsg(V, "Creating new node: ", this);
1790   return V;
1791 }
1792 
1793 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1794   EVT VT = SV.getValueType(0);
1795   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1796   ShuffleVectorSDNode::commuteMask(MaskVec);
1797 
1798   SDValue Op0 = SV.getOperand(0);
1799   SDValue Op1 = SV.getOperand(1);
1800   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1801 }
1802 
1803 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1804   FoldingSetNodeID ID;
1805   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1806   ID.AddInteger(RegNo);
1807   void *IP = nullptr;
1808   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1809     return SDValue(E, 0);
1810 
1811   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1812   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1813   CSEMap.InsertNode(N, IP);
1814   InsertNode(N);
1815   return SDValue(N, 0);
1816 }
1817 
1818 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1819   FoldingSetNodeID ID;
1820   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1821   ID.AddPointer(RegMask);
1822   void *IP = nullptr;
1823   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1824     return SDValue(E, 0);
1825 
1826   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1827   CSEMap.InsertNode(N, IP);
1828   InsertNode(N);
1829   return SDValue(N, 0);
1830 }
1831 
1832 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1833                                  MCSymbol *Label) {
1834   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1835 }
1836 
1837 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1838                                    SDValue Root, MCSymbol *Label) {
1839   FoldingSetNodeID ID;
1840   SDValue Ops[] = { Root };
1841   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1842   ID.AddPointer(Label);
1843   void *IP = nullptr;
1844   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1845     return SDValue(E, 0);
1846 
1847   auto *N =
1848       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1849   createOperands(N, Ops);
1850 
1851   CSEMap.InsertNode(N, IP);
1852   InsertNode(N);
1853   return SDValue(N, 0);
1854 }
1855 
1856 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1857                                       int64_t Offset, bool isTarget,
1858                                       unsigned TargetFlags) {
1859   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1860 
1861   FoldingSetNodeID ID;
1862   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1863   ID.AddPointer(BA);
1864   ID.AddInteger(Offset);
1865   ID.AddInteger(TargetFlags);
1866   void *IP = nullptr;
1867   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1868     return SDValue(E, 0);
1869 
1870   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1871   CSEMap.InsertNode(N, IP);
1872   InsertNode(N);
1873   return SDValue(N, 0);
1874 }
1875 
1876 SDValue SelectionDAG::getSrcValue(const Value *V) {
1877   FoldingSetNodeID ID;
1878   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1879   ID.AddPointer(V);
1880 
1881   void *IP = nullptr;
1882   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1883     return SDValue(E, 0);
1884 
1885   auto *N = newSDNode<SrcValueSDNode>(V);
1886   CSEMap.InsertNode(N, IP);
1887   InsertNode(N);
1888   return SDValue(N, 0);
1889 }
1890 
1891 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1892   FoldingSetNodeID ID;
1893   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1894   ID.AddPointer(MD);
1895 
1896   void *IP = nullptr;
1897   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1898     return SDValue(E, 0);
1899 
1900   auto *N = newSDNode<MDNodeSDNode>(MD);
1901   CSEMap.InsertNode(N, IP);
1902   InsertNode(N);
1903   return SDValue(N, 0);
1904 }
1905 
1906 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1907   if (VT == V.getValueType())
1908     return V;
1909 
1910   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1911 }
1912 
1913 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1914                                        unsigned SrcAS, unsigned DestAS) {
1915   SDValue Ops[] = {Ptr};
1916   FoldingSetNodeID ID;
1917   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1918   ID.AddInteger(SrcAS);
1919   ID.AddInteger(DestAS);
1920 
1921   void *IP = nullptr;
1922   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1923     return SDValue(E, 0);
1924 
1925   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1926                                            VT, SrcAS, DestAS);
1927   createOperands(N, Ops);
1928 
1929   CSEMap.InsertNode(N, IP);
1930   InsertNode(N);
1931   return SDValue(N, 0);
1932 }
1933 
1934 SDValue SelectionDAG::getFreeze(SDValue V) {
1935   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
1936 }
1937 
1938 /// getShiftAmountOperand - Return the specified value casted to
1939 /// the target's desired shift amount type.
1940 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1941   EVT OpTy = Op.getValueType();
1942   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1943   if (OpTy == ShTy || OpTy.isVector()) return Op;
1944 
1945   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1946 }
1947 
1948 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1949   SDLoc dl(Node);
1950   const TargetLowering &TLI = getTargetLoweringInfo();
1951   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1952   EVT VT = Node->getValueType(0);
1953   SDValue Tmp1 = Node->getOperand(0);
1954   SDValue Tmp2 = Node->getOperand(1);
1955   const MaybeAlign MA(Node->getConstantOperandVal(3));
1956 
1957   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1958                                Tmp2, MachinePointerInfo(V));
1959   SDValue VAList = VAListLoad;
1960 
1961   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1962     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1963                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
1964 
1965     VAList =
1966         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1967                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
1968   }
1969 
1970   // Increment the pointer, VAList, to the next vaarg
1971   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1972                  getConstant(getDataLayout().getTypeAllocSize(
1973                                                VT.getTypeForEVT(*getContext())),
1974                              dl, VAList.getValueType()));
1975   // Store the incremented VAList to the legalized pointer
1976   Tmp1 =
1977       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1978   // Load the actual argument out of the pointer VAList
1979   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1980 }
1981 
1982 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1983   SDLoc dl(Node);
1984   const TargetLowering &TLI = getTargetLoweringInfo();
1985   // This defaults to loading a pointer from the input and storing it to the
1986   // output, returning the chain.
1987   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1988   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1989   SDValue Tmp1 =
1990       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1991               Node->getOperand(2), MachinePointerInfo(VS));
1992   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1993                   MachinePointerInfo(VD));
1994 }
1995 
1996 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
1997   const DataLayout &DL = getDataLayout();
1998   Type *Ty = VT.getTypeForEVT(*getContext());
1999   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2000 
2001   if (TLI->isTypeLegal(VT) || !VT.isVector())
2002     return RedAlign;
2003 
2004   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2005   const Align StackAlign = TFI->getStackAlign();
2006 
2007   // See if we can choose a smaller ABI alignment in cases where it's an
2008   // illegal vector type that will get broken down.
2009   if (RedAlign > StackAlign) {
2010     EVT IntermediateVT;
2011     MVT RegisterVT;
2012     unsigned NumIntermediates;
2013     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2014                                 NumIntermediates, RegisterVT);
2015     Ty = IntermediateVT.getTypeForEVT(*getContext());
2016     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2017     if (RedAlign2 < RedAlign)
2018       RedAlign = RedAlign2;
2019   }
2020 
2021   return RedAlign;
2022 }
2023 
2024 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2025   MachineFrameInfo &MFI = MF->getFrameInfo();
2026   int FrameIdx = MFI.CreateStackObject(Bytes, Alignment, false);
2027   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2028 }
2029 
2030 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2031   Type *Ty = VT.getTypeForEVT(*getContext());
2032   Align StackAlign =
2033       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2034   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2035 }
2036 
2037 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2038   TypeSize Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
2039   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2040   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2041   const DataLayout &DL = getDataLayout();
2042   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2043   return CreateStackTemporary(Bytes, Align);
2044 }
2045 
2046 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2047                                 ISD::CondCode Cond, const SDLoc &dl) {
2048   EVT OpVT = N1.getValueType();
2049 
2050   // These setcc operations always fold.
2051   switch (Cond) {
2052   default: break;
2053   case ISD::SETFALSE:
2054   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2055   case ISD::SETTRUE:
2056   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2057 
2058   case ISD::SETOEQ:
2059   case ISD::SETOGT:
2060   case ISD::SETOGE:
2061   case ISD::SETOLT:
2062   case ISD::SETOLE:
2063   case ISD::SETONE:
2064   case ISD::SETO:
2065   case ISD::SETUO:
2066   case ISD::SETUEQ:
2067   case ISD::SETUNE:
2068     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2069     break;
2070   }
2071 
2072   if (OpVT.isInteger()) {
2073     // For EQ and NE, we can always pick a value for the undef to make the
2074     // predicate pass or fail, so we can return undef.
2075     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2076     // icmp eq/ne X, undef -> undef.
2077     if ((N1.isUndef() || N2.isUndef()) &&
2078         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2079       return getUNDEF(VT);
2080 
2081     // If both operands are undef, we can return undef for int comparison.
2082     // icmp undef, undef -> undef.
2083     if (N1.isUndef() && N2.isUndef())
2084       return getUNDEF(VT);
2085 
2086     // icmp X, X -> true/false
2087     // icmp X, undef -> true/false because undef could be X.
2088     if (N1 == N2)
2089       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2090   }
2091 
2092   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2093     const APInt &C2 = N2C->getAPIntValue();
2094     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2095       const APInt &C1 = N1C->getAPIntValue();
2096 
2097       switch (Cond) {
2098       default: llvm_unreachable("Unknown integer setcc!");
2099       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2100       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2101       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2102       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2103       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2104       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2105       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2106       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2107       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2108       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2109       }
2110     }
2111   }
2112 
2113   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2114   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2115 
2116   if (N1CFP && N2CFP) {
2117     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2118     switch (Cond) {
2119     default: break;
2120     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2121                         return getUNDEF(VT);
2122                       LLVM_FALLTHROUGH;
2123     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2124                                              OpVT);
2125     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2126                         return getUNDEF(VT);
2127                       LLVM_FALLTHROUGH;
2128     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2129                                              R==APFloat::cmpLessThan, dl, VT,
2130                                              OpVT);
2131     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2132                         return getUNDEF(VT);
2133                       LLVM_FALLTHROUGH;
2134     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2135                                              OpVT);
2136     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2137                         return getUNDEF(VT);
2138                       LLVM_FALLTHROUGH;
2139     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2140                                              VT, OpVT);
2141     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2142                         return getUNDEF(VT);
2143                       LLVM_FALLTHROUGH;
2144     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2145                                              R==APFloat::cmpEqual, dl, VT,
2146                                              OpVT);
2147     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2148                         return getUNDEF(VT);
2149                       LLVM_FALLTHROUGH;
2150     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2151                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2152     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2153                                              OpVT);
2154     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2155                                              OpVT);
2156     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2157                                              R==APFloat::cmpEqual, dl, VT,
2158                                              OpVT);
2159     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2160                                              OpVT);
2161     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2162                                              R==APFloat::cmpLessThan, dl, VT,
2163                                              OpVT);
2164     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2165                                              R==APFloat::cmpUnordered, dl, VT,
2166                                              OpVT);
2167     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2168                                              VT, OpVT);
2169     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2170                                              OpVT);
2171     }
2172   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2173     // Ensure that the constant occurs on the RHS.
2174     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2175     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2176       return SDValue();
2177     return getSetCC(dl, VT, N2, N1, SwappedCond);
2178   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2179              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2180     // If an operand is known to be a nan (or undef that could be a nan), we can
2181     // fold it.
2182     // Choosing NaN for the undef will always make unordered comparison succeed
2183     // and ordered comparison fails.
2184     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2185     switch (ISD::getUnorderedFlavor(Cond)) {
2186     default:
2187       llvm_unreachable("Unknown flavor!");
2188     case 0: // Known false.
2189       return getBoolConstant(false, dl, VT, OpVT);
2190     case 1: // Known true.
2191       return getBoolConstant(true, dl, VT, OpVT);
2192     case 2: // Undefined.
2193       return getUNDEF(VT);
2194     }
2195   }
2196 
2197   // Could not fold it.
2198   return SDValue();
2199 }
2200 
2201 /// See if the specified operand can be simplified with the knowledge that only
2202 /// the bits specified by DemandedBits are used.
2203 /// TODO: really we should be making this into the DAG equivalent of
2204 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2205 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2206   EVT VT = V.getValueType();
2207   APInt DemandedElts = VT.isVector()
2208                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2209                            : APInt(1, 1);
2210   return GetDemandedBits(V, DemandedBits, DemandedElts);
2211 }
2212 
2213 /// See if the specified operand can be simplified with the knowledge that only
2214 /// the bits specified by DemandedBits are used in the elements specified by
2215 /// DemandedElts.
2216 /// TODO: really we should be making this into the DAG equivalent of
2217 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2218 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2219                                       const APInt &DemandedElts) {
2220   switch (V.getOpcode()) {
2221   default:
2222     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2223                                                 *this, 0);
2224     break;
2225   case ISD::Constant: {
2226     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2227     APInt NewVal = CVal & DemandedBits;
2228     if (NewVal != CVal)
2229       return getConstant(NewVal, SDLoc(V), V.getValueType());
2230     break;
2231   }
2232   case ISD::SRL:
2233     // Only look at single-use SRLs.
2234     if (!V.getNode()->hasOneUse())
2235       break;
2236     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2237       // See if we can recursively simplify the LHS.
2238       unsigned Amt = RHSC->getZExtValue();
2239 
2240       // Watch out for shift count overflow though.
2241       if (Amt >= DemandedBits.getBitWidth())
2242         break;
2243       APInt SrcDemandedBits = DemandedBits << Amt;
2244       if (SDValue SimplifyLHS =
2245               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2246         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2247                        V.getOperand(1));
2248     }
2249     break;
2250   case ISD::AND: {
2251     // X & -1 -> X (ignoring bits which aren't demanded).
2252     // Also handle the case where masked out bits in X are known to be zero.
2253     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2254       const APInt &AndVal = RHSC->getAPIntValue();
2255       if (DemandedBits.isSubsetOf(AndVal) ||
2256           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2257                                   AndVal))
2258         return V.getOperand(0);
2259     }
2260     break;
2261   }
2262   }
2263   return SDValue();
2264 }
2265 
2266 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2267 /// use this predicate to simplify operations downstream.
2268 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2269   unsigned BitWidth = Op.getScalarValueSizeInBits();
2270   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2271 }
2272 
2273 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2274 /// this predicate to simplify operations downstream.  Mask is known to be zero
2275 /// for bits that V cannot have.
2276 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2277                                      unsigned Depth) const {
2278   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2279 }
2280 
2281 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2282 /// DemandedElts.  We use this predicate to simplify operations downstream.
2283 /// Mask is known to be zero for bits that V cannot have.
2284 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2285                                      const APInt &DemandedElts,
2286                                      unsigned Depth) const {
2287   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2288 }
2289 
2290 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2291 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2292                                         unsigned Depth) const {
2293   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2294 }
2295 
2296 /// isSplatValue - Return true if the vector V has the same value
2297 /// across all DemandedElts. For scalable vectors it does not make
2298 /// sense to specify which elements are demanded or undefined, therefore
2299 /// they are simply ignored.
2300 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2301                                 APInt &UndefElts) {
2302   EVT VT = V.getValueType();
2303   assert(VT.isVector() && "Vector type expected");
2304 
2305   if (!VT.isScalableVector() && !DemandedElts)
2306     return false; // No demanded elts, better to assume we don't know anything.
2307 
2308   // Deal with some common cases here that work for both fixed and scalable
2309   // vector types.
2310   switch (V.getOpcode()) {
2311   case ISD::SPLAT_VECTOR:
2312     return true;
2313   case ISD::ADD:
2314   case ISD::SUB:
2315   case ISD::AND: {
2316     APInt UndefLHS, UndefRHS;
2317     SDValue LHS = V.getOperand(0);
2318     SDValue RHS = V.getOperand(1);
2319     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2320         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2321       UndefElts = UndefLHS | UndefRHS;
2322       return true;
2323     }
2324     break;
2325   }
2326   }
2327 
2328   // We don't support other cases than those above for scalable vectors at
2329   // the moment.
2330   if (VT.isScalableVector())
2331     return false;
2332 
2333   unsigned NumElts = VT.getVectorNumElements();
2334   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2335   UndefElts = APInt::getNullValue(NumElts);
2336 
2337   switch (V.getOpcode()) {
2338   case ISD::BUILD_VECTOR: {
2339     SDValue Scl;
2340     for (unsigned i = 0; i != NumElts; ++i) {
2341       SDValue Op = V.getOperand(i);
2342       if (Op.isUndef()) {
2343         UndefElts.setBit(i);
2344         continue;
2345       }
2346       if (!DemandedElts[i])
2347         continue;
2348       if (Scl && Scl != Op)
2349         return false;
2350       Scl = Op;
2351     }
2352     return true;
2353   }
2354   case ISD::VECTOR_SHUFFLE: {
2355     // Check if this is a shuffle node doing a splat.
2356     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2357     int SplatIndex = -1;
2358     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2359     for (int i = 0; i != (int)NumElts; ++i) {
2360       int M = Mask[i];
2361       if (M < 0) {
2362         UndefElts.setBit(i);
2363         continue;
2364       }
2365       if (!DemandedElts[i])
2366         continue;
2367       if (0 <= SplatIndex && SplatIndex != M)
2368         return false;
2369       SplatIndex = M;
2370     }
2371     return true;
2372   }
2373   case ISD::EXTRACT_SUBVECTOR: {
2374     // Offset the demanded elts by the subvector index.
2375     SDValue Src = V.getOperand(0);
2376     uint64_t Idx = V.getConstantOperandVal(1);
2377     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2378     APInt UndefSrcElts;
2379     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2380     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) {
2381       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2382       return true;
2383     }
2384     break;
2385   }
2386   }
2387 
2388   return false;
2389 }
2390 
2391 /// Helper wrapper to main isSplatValue function.
2392 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2393   EVT VT = V.getValueType();
2394   assert(VT.isVector() && "Vector type expected");
2395 
2396   APInt UndefElts;
2397   APInt DemandedElts;
2398 
2399   // For now we don't support this with scalable vectors.
2400   if (!VT.isScalableVector())
2401     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2402   return isSplatValue(V, DemandedElts, UndefElts) &&
2403          (AllowUndefs || !UndefElts);
2404 }
2405 
2406 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2407   V = peekThroughExtractSubvectors(V);
2408 
2409   EVT VT = V.getValueType();
2410   unsigned Opcode = V.getOpcode();
2411   switch (Opcode) {
2412   default: {
2413     APInt UndefElts;
2414     APInt DemandedElts;
2415 
2416     if (!VT.isScalableVector())
2417       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2418 
2419     if (isSplatValue(V, DemandedElts, UndefElts)) {
2420       if (VT.isScalableVector()) {
2421         // DemandedElts and UndefElts are ignored for scalable vectors, since
2422         // the only supported cases are SPLAT_VECTOR nodes.
2423         SplatIdx = 0;
2424       } else {
2425         // Handle case where all demanded elements are UNDEF.
2426         if (DemandedElts.isSubsetOf(UndefElts)) {
2427           SplatIdx = 0;
2428           return getUNDEF(VT);
2429         }
2430         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2431       }
2432       return V;
2433     }
2434     break;
2435   }
2436   case ISD::SPLAT_VECTOR:
2437     SplatIdx = 0;
2438     return V;
2439   case ISD::VECTOR_SHUFFLE: {
2440     if (VT.isScalableVector())
2441       return SDValue();
2442 
2443     // Check if this is a shuffle node doing a splat.
2444     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2445     // getTargetVShiftNode currently struggles without the splat source.
2446     auto *SVN = cast<ShuffleVectorSDNode>(V);
2447     if (!SVN->isSplat())
2448       break;
2449     int Idx = SVN->getSplatIndex();
2450     int NumElts = V.getValueType().getVectorNumElements();
2451     SplatIdx = Idx % NumElts;
2452     return V.getOperand(Idx / NumElts);
2453   }
2454   }
2455 
2456   return SDValue();
2457 }
2458 
2459 SDValue SelectionDAG::getSplatValue(SDValue V) {
2460   int SplatIdx;
2461   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2462     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2463                    SrcVector.getValueType().getScalarType(), SrcVector,
2464                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2465   return SDValue();
2466 }
2467 
2468 const APInt *
2469 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2470                                           const APInt &DemandedElts) const {
2471   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2472           V.getOpcode() == ISD::SRA) &&
2473          "Unknown shift node");
2474   unsigned BitWidth = V.getScalarValueSizeInBits();
2475   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2476     // Shifting more than the bitwidth is not valid.
2477     const APInt &ShAmt = SA->getAPIntValue();
2478     if (ShAmt.ult(BitWidth))
2479       return &ShAmt;
2480   }
2481   return nullptr;
2482 }
2483 
2484 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2485     SDValue V, const APInt &DemandedElts) const {
2486   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2487           V.getOpcode() == ISD::SRA) &&
2488          "Unknown shift node");
2489   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2490     return ValidAmt;
2491   unsigned BitWidth = V.getScalarValueSizeInBits();
2492   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2493   if (!BV)
2494     return nullptr;
2495   const APInt *MinShAmt = nullptr;
2496   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2497     if (!DemandedElts[i])
2498       continue;
2499     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2500     if (!SA)
2501       return nullptr;
2502     // Shifting more than the bitwidth is not valid.
2503     const APInt &ShAmt = SA->getAPIntValue();
2504     if (ShAmt.uge(BitWidth))
2505       return nullptr;
2506     if (MinShAmt && MinShAmt->ule(ShAmt))
2507       continue;
2508     MinShAmt = &ShAmt;
2509   }
2510   return MinShAmt;
2511 }
2512 
2513 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2514     SDValue V, const APInt &DemandedElts) const {
2515   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2516           V.getOpcode() == ISD::SRA) &&
2517          "Unknown shift node");
2518   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2519     return ValidAmt;
2520   unsigned BitWidth = V.getScalarValueSizeInBits();
2521   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2522   if (!BV)
2523     return nullptr;
2524   const APInt *MaxShAmt = nullptr;
2525   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2526     if (!DemandedElts[i])
2527       continue;
2528     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2529     if (!SA)
2530       return nullptr;
2531     // Shifting more than the bitwidth is not valid.
2532     const APInt &ShAmt = SA->getAPIntValue();
2533     if (ShAmt.uge(BitWidth))
2534       return nullptr;
2535     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2536       continue;
2537     MaxShAmt = &ShAmt;
2538   }
2539   return MaxShAmt;
2540 }
2541 
2542 /// Determine which bits of Op are known to be either zero or one and return
2543 /// them in Known. For vectors, the known bits are those that are shared by
2544 /// every vector element.
2545 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2546   EVT VT = Op.getValueType();
2547 
2548   // TOOD: Until we have a plan for how to represent demanded elements for
2549   // scalable vectors, we can just bail out for now.
2550   if (Op.getValueType().isScalableVector()) {
2551     unsigned BitWidth = Op.getScalarValueSizeInBits();
2552     return KnownBits(BitWidth);
2553   }
2554 
2555   APInt DemandedElts = VT.isVector()
2556                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2557                            : APInt(1, 1);
2558   return computeKnownBits(Op, DemandedElts, Depth);
2559 }
2560 
2561 /// Determine which bits of Op are known to be either zero or one and return
2562 /// them in Known. The DemandedElts argument allows us to only collect the known
2563 /// bits that are shared by the requested vector elements.
2564 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2565                                          unsigned Depth) const {
2566   unsigned BitWidth = Op.getScalarValueSizeInBits();
2567 
2568   KnownBits Known(BitWidth);   // Don't know anything.
2569 
2570   // TOOD: Until we have a plan for how to represent demanded elements for
2571   // scalable vectors, we can just bail out for now.
2572   if (Op.getValueType().isScalableVector())
2573     return Known;
2574 
2575   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2576     // We know all of the bits for a constant!
2577     Known.One = C->getAPIntValue();
2578     Known.Zero = ~Known.One;
2579     return Known;
2580   }
2581   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2582     // We know all of the bits for a constant fp!
2583     Known.One = C->getValueAPF().bitcastToAPInt();
2584     Known.Zero = ~Known.One;
2585     return Known;
2586   }
2587 
2588   if (Depth >= MaxRecursionDepth)
2589     return Known;  // Limit search depth.
2590 
2591   KnownBits Known2;
2592   unsigned NumElts = DemandedElts.getBitWidth();
2593   assert((!Op.getValueType().isVector() ||
2594           NumElts == Op.getValueType().getVectorNumElements()) &&
2595          "Unexpected vector size");
2596 
2597   if (!DemandedElts)
2598     return Known;  // No demanded elts, better to assume we don't know anything.
2599 
2600   unsigned Opcode = Op.getOpcode();
2601   switch (Opcode) {
2602   case ISD::BUILD_VECTOR:
2603     // Collect the known bits that are shared by every demanded vector element.
2604     Known.Zero.setAllBits(); Known.One.setAllBits();
2605     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2606       if (!DemandedElts[i])
2607         continue;
2608 
2609       SDValue SrcOp = Op.getOperand(i);
2610       Known2 = computeKnownBits(SrcOp, Depth + 1);
2611 
2612       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2613       if (SrcOp.getValueSizeInBits() != BitWidth) {
2614         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2615                "Expected BUILD_VECTOR implicit truncation");
2616         Known2 = Known2.trunc(BitWidth);
2617       }
2618 
2619       // Known bits are the values that are shared by every demanded element.
2620       Known.One &= Known2.One;
2621       Known.Zero &= Known2.Zero;
2622 
2623       // If we don't know any bits, early out.
2624       if (Known.isUnknown())
2625         break;
2626     }
2627     break;
2628   case ISD::VECTOR_SHUFFLE: {
2629     // Collect the known bits that are shared by every vector element referenced
2630     // by the shuffle.
2631     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2632     Known.Zero.setAllBits(); Known.One.setAllBits();
2633     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2634     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2635     for (unsigned i = 0; i != NumElts; ++i) {
2636       if (!DemandedElts[i])
2637         continue;
2638 
2639       int M = SVN->getMaskElt(i);
2640       if (M < 0) {
2641         // For UNDEF elements, we don't know anything about the common state of
2642         // the shuffle result.
2643         Known.resetAll();
2644         DemandedLHS.clearAllBits();
2645         DemandedRHS.clearAllBits();
2646         break;
2647       }
2648 
2649       if ((unsigned)M < NumElts)
2650         DemandedLHS.setBit((unsigned)M % NumElts);
2651       else
2652         DemandedRHS.setBit((unsigned)M % NumElts);
2653     }
2654     // Known bits are the values that are shared by every demanded element.
2655     if (!!DemandedLHS) {
2656       SDValue LHS = Op.getOperand(0);
2657       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2658       Known.One &= Known2.One;
2659       Known.Zero &= Known2.Zero;
2660     }
2661     // If we don't know any bits, early out.
2662     if (Known.isUnknown())
2663       break;
2664     if (!!DemandedRHS) {
2665       SDValue RHS = Op.getOperand(1);
2666       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2667       Known.One &= Known2.One;
2668       Known.Zero &= Known2.Zero;
2669     }
2670     break;
2671   }
2672   case ISD::CONCAT_VECTORS: {
2673     // Split DemandedElts and test each of the demanded subvectors.
2674     Known.Zero.setAllBits(); Known.One.setAllBits();
2675     EVT SubVectorVT = Op.getOperand(0).getValueType();
2676     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2677     unsigned NumSubVectors = Op.getNumOperands();
2678     for (unsigned i = 0; i != NumSubVectors; ++i) {
2679       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2680       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2681       if (!!DemandedSub) {
2682         SDValue Sub = Op.getOperand(i);
2683         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2684         Known.One &= Known2.One;
2685         Known.Zero &= Known2.Zero;
2686       }
2687       // If we don't know any bits, early out.
2688       if (Known.isUnknown())
2689         break;
2690     }
2691     break;
2692   }
2693   case ISD::INSERT_SUBVECTOR: {
2694     // Demand any elements from the subvector and the remainder from the src its
2695     // inserted into.
2696     SDValue Src = Op.getOperand(0);
2697     SDValue Sub = Op.getOperand(1);
2698     uint64_t Idx = Op.getConstantOperandVal(2);
2699     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2700     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2701     APInt DemandedSrcElts = DemandedElts;
2702     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2703 
2704     Known.One.setAllBits();
2705     Known.Zero.setAllBits();
2706     if (!!DemandedSubElts) {
2707       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2708       if (Known.isUnknown())
2709         break; // early-out.
2710     }
2711     if (!!DemandedSrcElts) {
2712       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2713       Known.One &= Known2.One;
2714       Known.Zero &= Known2.Zero;
2715     }
2716     break;
2717   }
2718   case ISD::EXTRACT_SUBVECTOR: {
2719     // Offset the demanded elts by the subvector index.
2720     SDValue Src = Op.getOperand(0);
2721     uint64_t Idx = Op.getConstantOperandVal(1);
2722     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2723     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2724     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2725     break;
2726   }
2727   case ISD::SCALAR_TO_VECTOR: {
2728     // We know about scalar_to_vector as much as we know about it source,
2729     // which becomes the first element of otherwise unknown vector.
2730     if (DemandedElts != 1)
2731       break;
2732 
2733     SDValue N0 = Op.getOperand(0);
2734     Known = computeKnownBits(N0, Depth + 1);
2735     if (N0.getValueSizeInBits() != BitWidth)
2736       Known = Known.trunc(BitWidth);
2737 
2738     break;
2739   }
2740   case ISD::BITCAST: {
2741     SDValue N0 = Op.getOperand(0);
2742     EVT SubVT = N0.getValueType();
2743     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2744 
2745     // Ignore bitcasts from unsupported types.
2746     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2747       break;
2748 
2749     // Fast handling of 'identity' bitcasts.
2750     if (BitWidth == SubBitWidth) {
2751       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2752       break;
2753     }
2754 
2755     bool IsLE = getDataLayout().isLittleEndian();
2756 
2757     // Bitcast 'small element' vector to 'large element' scalar/vector.
2758     if ((BitWidth % SubBitWidth) == 0) {
2759       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2760 
2761       // Collect known bits for the (larger) output by collecting the known
2762       // bits from each set of sub elements and shift these into place.
2763       // We need to separately call computeKnownBits for each set of
2764       // sub elements as the knownbits for each is likely to be different.
2765       unsigned SubScale = BitWidth / SubBitWidth;
2766       APInt SubDemandedElts(NumElts * SubScale, 0);
2767       for (unsigned i = 0; i != NumElts; ++i)
2768         if (DemandedElts[i])
2769           SubDemandedElts.setBit(i * SubScale);
2770 
2771       for (unsigned i = 0; i != SubScale; ++i) {
2772         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2773                          Depth + 1);
2774         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2775         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2776         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2777       }
2778     }
2779 
2780     // Bitcast 'large element' scalar/vector to 'small element' vector.
2781     if ((SubBitWidth % BitWidth) == 0) {
2782       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2783 
2784       // Collect known bits for the (smaller) output by collecting the known
2785       // bits from the overlapping larger input elements and extracting the
2786       // sub sections we actually care about.
2787       unsigned SubScale = SubBitWidth / BitWidth;
2788       APInt SubDemandedElts(NumElts / SubScale, 0);
2789       for (unsigned i = 0; i != NumElts; ++i)
2790         if (DemandedElts[i])
2791           SubDemandedElts.setBit(i / SubScale);
2792 
2793       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2794 
2795       Known.Zero.setAllBits(); Known.One.setAllBits();
2796       for (unsigned i = 0; i != NumElts; ++i)
2797         if (DemandedElts[i]) {
2798           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2799           unsigned Offset = (Shifts % SubScale) * BitWidth;
2800           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2801           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2802           // If we don't know any bits, early out.
2803           if (Known.isUnknown())
2804             break;
2805         }
2806     }
2807     break;
2808   }
2809   case ISD::AND:
2810     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2811     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2812 
2813     Known &= Known2;
2814     break;
2815   case ISD::OR:
2816     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2817     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2818 
2819     Known |= Known2;
2820     break;
2821   case ISD::XOR:
2822     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2823     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2824 
2825     Known ^= Known2;
2826     break;
2827   case ISD::MUL: {
2828     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2829     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2830 
2831     // If low bits are zero in either operand, output low known-0 bits.
2832     // Also compute a conservative estimate for high known-0 bits.
2833     // More trickiness is possible, but this is sufficient for the
2834     // interesting case of alignment computation.
2835     unsigned TrailZ = Known.countMinTrailingZeros() +
2836                       Known2.countMinTrailingZeros();
2837     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2838                                Known2.countMinLeadingZeros(),
2839                                BitWidth) - BitWidth;
2840 
2841     Known.resetAll();
2842     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2843     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2844     break;
2845   }
2846   case ISD::UDIV: {
2847     // For the purposes of computing leading zeros we can conservatively
2848     // treat a udiv as a logical right shift by the power of 2 known to
2849     // be less than the denominator.
2850     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2851     unsigned LeadZ = Known2.countMinLeadingZeros();
2852 
2853     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2854     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2855     if (RHSMaxLeadingZeros != BitWidth)
2856       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2857 
2858     Known.Zero.setHighBits(LeadZ);
2859     break;
2860   }
2861   case ISD::SELECT:
2862   case ISD::VSELECT:
2863     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2864     // If we don't know any bits, early out.
2865     if (Known.isUnknown())
2866       break;
2867     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2868 
2869     // Only known if known in both the LHS and RHS.
2870     Known.One &= Known2.One;
2871     Known.Zero &= Known2.Zero;
2872     break;
2873   case ISD::SELECT_CC:
2874     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2875     // If we don't know any bits, early out.
2876     if (Known.isUnknown())
2877       break;
2878     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2879 
2880     // Only known if known in both the LHS and RHS.
2881     Known.One &= Known2.One;
2882     Known.Zero &= Known2.Zero;
2883     break;
2884   case ISD::SMULO:
2885   case ISD::UMULO:
2886   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2887     if (Op.getResNo() != 1)
2888       break;
2889     // The boolean result conforms to getBooleanContents.
2890     // If we know the result of a setcc has the top bits zero, use this info.
2891     // We know that we have an integer-based boolean since these operations
2892     // are only available for integer.
2893     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2894             TargetLowering::ZeroOrOneBooleanContent &&
2895         BitWidth > 1)
2896       Known.Zero.setBitsFrom(1);
2897     break;
2898   case ISD::SETCC:
2899   case ISD::STRICT_FSETCC:
2900   case ISD::STRICT_FSETCCS: {
2901     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2902     // If we know the result of a setcc has the top bits zero, use this info.
2903     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2904             TargetLowering::ZeroOrOneBooleanContent &&
2905         BitWidth > 1)
2906       Known.Zero.setBitsFrom(1);
2907     break;
2908   }
2909   case ISD::SHL:
2910     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2911 
2912     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2913       unsigned Shift = ShAmt->getZExtValue();
2914       Known.Zero <<= Shift;
2915       Known.One <<= Shift;
2916       // Low bits are known zero.
2917       Known.Zero.setLowBits(Shift);
2918       break;
2919     }
2920 
2921     // No matter the shift amount, the trailing zeros will stay zero.
2922     Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros());
2923     Known.One.clearAllBits();
2924 
2925     // Minimum shift low bits are known zero.
2926     if (const APInt *ShMinAmt =
2927             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2928       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2929     break;
2930   case ISD::SRL:
2931     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2932 
2933     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2934       unsigned Shift = ShAmt->getZExtValue();
2935       Known.Zero.lshrInPlace(Shift);
2936       Known.One.lshrInPlace(Shift);
2937       // High bits are known zero.
2938       Known.Zero.setHighBits(Shift);
2939       break;
2940     }
2941 
2942     // No matter the shift amount, the leading zeros will stay zero.
2943     Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros());
2944     Known.One.clearAllBits();
2945 
2946     // Minimum shift high bits are known zero.
2947     if (const APInt *ShMinAmt =
2948             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2949       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2950     break;
2951   case ISD::SRA:
2952     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2953       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2954       unsigned Shift = ShAmt->getZExtValue();
2955       // Sign extend known zero/one bit (else is unknown).
2956       Known.Zero.ashrInPlace(Shift);
2957       Known.One.ashrInPlace(Shift);
2958     }
2959     break;
2960   case ISD::FSHL:
2961   case ISD::FSHR:
2962     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2963       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2964 
2965       // For fshl, 0-shift returns the 1st arg.
2966       // For fshr, 0-shift returns the 2nd arg.
2967       if (Amt == 0) {
2968         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2969                                  DemandedElts, Depth + 1);
2970         break;
2971       }
2972 
2973       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2974       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2975       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2976       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2977       if (Opcode == ISD::FSHL) {
2978         Known.One <<= Amt;
2979         Known.Zero <<= Amt;
2980         Known2.One.lshrInPlace(BitWidth - Amt);
2981         Known2.Zero.lshrInPlace(BitWidth - Amt);
2982       } else {
2983         Known.One <<= BitWidth - Amt;
2984         Known.Zero <<= BitWidth - Amt;
2985         Known2.One.lshrInPlace(Amt);
2986         Known2.Zero.lshrInPlace(Amt);
2987       }
2988       Known.One |= Known2.One;
2989       Known.Zero |= Known2.Zero;
2990     }
2991     break;
2992   case ISD::SIGN_EXTEND_INREG: {
2993     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2994     unsigned EBits = EVT.getScalarSizeInBits();
2995 
2996     // Sign extension.  Compute the demanded bits in the result that are not
2997     // present in the input.
2998     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2999 
3000     APInt InSignMask = APInt::getSignMask(EBits);
3001     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
3002 
3003     // If the sign extended bits are demanded, we know that the sign
3004     // bit is demanded.
3005     InSignMask = InSignMask.zext(BitWidth);
3006     if (NewBits.getBoolValue())
3007       InputDemandedBits |= InSignMask;
3008 
3009     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3010     Known.One &= InputDemandedBits;
3011     Known.Zero &= InputDemandedBits;
3012 
3013     // If the sign bit of the input is known set or clear, then we know the
3014     // top bits of the result.
3015     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
3016       Known.Zero |= NewBits;
3017       Known.One  &= ~NewBits;
3018     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
3019       Known.One  |= NewBits;
3020       Known.Zero &= ~NewBits;
3021     } else {                              // Input sign bit unknown
3022       Known.Zero &= ~NewBits;
3023       Known.One  &= ~NewBits;
3024     }
3025     break;
3026   }
3027   case ISD::CTTZ:
3028   case ISD::CTTZ_ZERO_UNDEF: {
3029     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3030     // If we have a known 1, its position is our upper bound.
3031     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3032     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3033     Known.Zero.setBitsFrom(LowBits);
3034     break;
3035   }
3036   case ISD::CTLZ:
3037   case ISD::CTLZ_ZERO_UNDEF: {
3038     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3039     // If we have a known 1, its position is our upper bound.
3040     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3041     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3042     Known.Zero.setBitsFrom(LowBits);
3043     break;
3044   }
3045   case ISD::CTPOP: {
3046     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3047     // If we know some of the bits are zero, they can't be one.
3048     unsigned PossibleOnes = Known2.countMaxPopulation();
3049     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3050     break;
3051   }
3052   case ISD::LOAD: {
3053     LoadSDNode *LD = cast<LoadSDNode>(Op);
3054     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3055     if (ISD::isNON_EXTLoad(LD) && Cst) {
3056       // Determine any common known bits from the loaded constant pool value.
3057       Type *CstTy = Cst->getType();
3058       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3059         // If its a vector splat, then we can (quickly) reuse the scalar path.
3060         // NOTE: We assume all elements match and none are UNDEF.
3061         if (CstTy->isVectorTy()) {
3062           if (const Constant *Splat = Cst->getSplatValue()) {
3063             Cst = Splat;
3064             CstTy = Cst->getType();
3065           }
3066         }
3067         // TODO - do we need to handle different bitwidths?
3068         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3069           // Iterate across all vector elements finding common known bits.
3070           Known.One.setAllBits();
3071           Known.Zero.setAllBits();
3072           for (unsigned i = 0; i != NumElts; ++i) {
3073             if (!DemandedElts[i])
3074               continue;
3075             if (Constant *Elt = Cst->getAggregateElement(i)) {
3076               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3077                 const APInt &Value = CInt->getValue();
3078                 Known.One &= Value;
3079                 Known.Zero &= ~Value;
3080                 continue;
3081               }
3082               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3083                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3084                 Known.One &= Value;
3085                 Known.Zero &= ~Value;
3086                 continue;
3087               }
3088             }
3089             Known.One.clearAllBits();
3090             Known.Zero.clearAllBits();
3091             break;
3092           }
3093         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3094           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3095             const APInt &Value = CInt->getValue();
3096             Known.One = Value;
3097             Known.Zero = ~Value;
3098           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3099             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3100             Known.One = Value;
3101             Known.Zero = ~Value;
3102           }
3103         }
3104       }
3105     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3106       // If this is a ZEXTLoad and we are looking at the loaded value.
3107       EVT VT = LD->getMemoryVT();
3108       unsigned MemBits = VT.getScalarSizeInBits();
3109       Known.Zero.setBitsFrom(MemBits);
3110     } else if (const MDNode *Ranges = LD->getRanges()) {
3111       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3112         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3113     }
3114     break;
3115   }
3116   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3117     EVT InVT = Op.getOperand(0).getValueType();
3118     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3119     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3120     Known = Known.zext(BitWidth);
3121     break;
3122   }
3123   case ISD::ZERO_EXTEND: {
3124     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3125     Known = Known.zext(BitWidth);
3126     break;
3127   }
3128   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3129     EVT InVT = Op.getOperand(0).getValueType();
3130     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3131     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3132     // If the sign bit is known to be zero or one, then sext will extend
3133     // it to the top bits, else it will just zext.
3134     Known = Known.sext(BitWidth);
3135     break;
3136   }
3137   case ISD::SIGN_EXTEND: {
3138     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3139     // If the sign bit is known to be zero or one, then sext will extend
3140     // it to the top bits, else it will just zext.
3141     Known = Known.sext(BitWidth);
3142     break;
3143   }
3144   case ISD::ANY_EXTEND_VECTOR_INREG: {
3145     EVT InVT = Op.getOperand(0).getValueType();
3146     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3147     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3148     Known = Known.anyext(BitWidth);
3149     break;
3150   }
3151   case ISD::ANY_EXTEND: {
3152     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3153     Known = Known.anyext(BitWidth);
3154     break;
3155   }
3156   case ISD::TRUNCATE: {
3157     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3158     Known = Known.trunc(BitWidth);
3159     break;
3160   }
3161   case ISD::AssertZext: {
3162     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3163     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3164     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3165     Known.Zero |= (~InMask);
3166     Known.One  &= (~Known.Zero);
3167     break;
3168   }
3169   case ISD::FGETSIGN:
3170     // All bits are zero except the low bit.
3171     Known.Zero.setBitsFrom(1);
3172     break;
3173   case ISD::USUBO:
3174   case ISD::SSUBO:
3175     if (Op.getResNo() == 1) {
3176       // If we know the result of a setcc has the top bits zero, use this info.
3177       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3178               TargetLowering::ZeroOrOneBooleanContent &&
3179           BitWidth > 1)
3180         Known.Zero.setBitsFrom(1);
3181       break;
3182     }
3183     LLVM_FALLTHROUGH;
3184   case ISD::SUB:
3185   case ISD::SUBC: {
3186     assert(Op.getResNo() == 0 &&
3187            "We only compute knownbits for the difference here.");
3188 
3189     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3190     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3191     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3192                                         Known, Known2);
3193     break;
3194   }
3195   case ISD::UADDO:
3196   case ISD::SADDO:
3197   case ISD::ADDCARRY:
3198     if (Op.getResNo() == 1) {
3199       // If we know the result of a setcc has the top bits zero, use this info.
3200       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3201               TargetLowering::ZeroOrOneBooleanContent &&
3202           BitWidth > 1)
3203         Known.Zero.setBitsFrom(1);
3204       break;
3205     }
3206     LLVM_FALLTHROUGH;
3207   case ISD::ADD:
3208   case ISD::ADDC:
3209   case ISD::ADDE: {
3210     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3211 
3212     // With ADDE and ADDCARRY, a carry bit may be added in.
3213     KnownBits Carry(1);
3214     if (Opcode == ISD::ADDE)
3215       // Can't track carry from glue, set carry to unknown.
3216       Carry.resetAll();
3217     else if (Opcode == ISD::ADDCARRY)
3218       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3219       // the trouble (how often will we find a known carry bit). And I haven't
3220       // tested this very much yet, but something like this might work:
3221       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3222       //   Carry = Carry.zextOrTrunc(1, false);
3223       Carry.resetAll();
3224     else
3225       Carry.setAllZero();
3226 
3227     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3228     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3229     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3230     break;
3231   }
3232   case ISD::SREM:
3233     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3234       const APInt &RA = Rem->getAPIntValue().abs();
3235       if (RA.isPowerOf2()) {
3236         APInt LowBits = RA - 1;
3237         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3238 
3239         // The low bits of the first operand are unchanged by the srem.
3240         Known.Zero = Known2.Zero & LowBits;
3241         Known.One = Known2.One & LowBits;
3242 
3243         // If the first operand is non-negative or has all low bits zero, then
3244         // the upper bits are all zero.
3245         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3246           Known.Zero |= ~LowBits;
3247 
3248         // If the first operand is negative and not all low bits are zero, then
3249         // the upper bits are all one.
3250         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3251           Known.One |= ~LowBits;
3252         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3253       }
3254     }
3255     break;
3256   case ISD::UREM: {
3257     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3258       const APInt &RA = Rem->getAPIntValue();
3259       if (RA.isPowerOf2()) {
3260         APInt LowBits = (RA - 1);
3261         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3262 
3263         // The upper bits are all zero, the lower ones are unchanged.
3264         Known.Zero = Known2.Zero | ~LowBits;
3265         Known.One = Known2.One & LowBits;
3266         break;
3267       }
3268     }
3269 
3270     // Since the result is less than or equal to either operand, any leading
3271     // zero bits in either operand must also exist in the result.
3272     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3273     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3274 
3275     uint32_t Leaders =
3276         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3277     Known.resetAll();
3278     Known.Zero.setHighBits(Leaders);
3279     break;
3280   }
3281   case ISD::EXTRACT_ELEMENT: {
3282     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3283     const unsigned Index = Op.getConstantOperandVal(1);
3284     const unsigned EltBitWidth = Op.getValueSizeInBits();
3285 
3286     // Remove low part of known bits mask
3287     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3288     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3289 
3290     // Remove high part of known bit mask
3291     Known = Known.trunc(EltBitWidth);
3292     break;
3293   }
3294   case ISD::EXTRACT_VECTOR_ELT: {
3295     SDValue InVec = Op.getOperand(0);
3296     SDValue EltNo = Op.getOperand(1);
3297     EVT VecVT = InVec.getValueType();
3298     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3299     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3300 
3301     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3302     // anything about the extended bits.
3303     if (BitWidth > EltBitWidth)
3304       Known = Known.trunc(EltBitWidth);
3305 
3306     // If we know the element index, just demand that vector element, else for
3307     // an unknown element index, ignore DemandedElts and demand them all.
3308     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3309     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3310     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3311       DemandedSrcElts =
3312           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3313 
3314     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3315     if (BitWidth > EltBitWidth)
3316       Known = Known.anyext(BitWidth);
3317     break;
3318   }
3319   case ISD::INSERT_VECTOR_ELT: {
3320     // If we know the element index, split the demand between the
3321     // source vector and the inserted element, otherwise assume we need
3322     // the original demanded vector elements and the value.
3323     SDValue InVec = Op.getOperand(0);
3324     SDValue InVal = Op.getOperand(1);
3325     SDValue EltNo = Op.getOperand(2);
3326     bool DemandedVal = true;
3327     APInt DemandedVecElts = DemandedElts;
3328     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3329     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3330       unsigned EltIdx = CEltNo->getZExtValue();
3331       DemandedVal = !!DemandedElts[EltIdx];
3332       DemandedVecElts.clearBit(EltIdx);
3333     }
3334     Known.One.setAllBits();
3335     Known.Zero.setAllBits();
3336     if (DemandedVal) {
3337       Known2 = computeKnownBits(InVal, Depth + 1);
3338       Known.One &= Known2.One.zextOrTrunc(BitWidth);
3339       Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth);
3340     }
3341     if (!!DemandedVecElts) {
3342       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3343       Known.One &= Known2.One;
3344       Known.Zero &= Known2.Zero;
3345     }
3346     break;
3347   }
3348   case ISD::BITREVERSE: {
3349     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3350     Known.Zero = Known2.Zero.reverseBits();
3351     Known.One = Known2.One.reverseBits();
3352     break;
3353   }
3354   case ISD::BSWAP: {
3355     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3356     Known.Zero = Known2.Zero.byteSwap();
3357     Known.One = Known2.One.byteSwap();
3358     break;
3359   }
3360   case ISD::ABS: {
3361     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3362 
3363     // If the source's MSB is zero then we know the rest of the bits already.
3364     if (Known2.isNonNegative()) {
3365       Known.Zero = Known2.Zero;
3366       Known.One = Known2.One;
3367       break;
3368     }
3369 
3370     // We only know that the absolute values's MSB will be zero iff there is
3371     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3372     Known2.One.clearSignBit();
3373     if (Known2.One.getBoolValue()) {
3374       Known.Zero = APInt::getSignMask(BitWidth);
3375       break;
3376     }
3377     break;
3378   }
3379   case ISD::UMIN: {
3380     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3381     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3382 
3383     // UMIN - we know that the result will have the maximum of the
3384     // known zero leading bits of the inputs.
3385     unsigned LeadZero = Known.countMinLeadingZeros();
3386     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3387 
3388     Known.Zero &= Known2.Zero;
3389     Known.One &= Known2.One;
3390     Known.Zero.setHighBits(LeadZero);
3391     break;
3392   }
3393   case ISD::UMAX: {
3394     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3395     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3396 
3397     // UMAX - we know that the result will have the maximum of the
3398     // known one leading bits of the inputs.
3399     unsigned LeadOne = Known.countMinLeadingOnes();
3400     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3401 
3402     Known.Zero &= Known2.Zero;
3403     Known.One &= Known2.One;
3404     Known.One.setHighBits(LeadOne);
3405     break;
3406   }
3407   case ISD::SMIN:
3408   case ISD::SMAX: {
3409     // If we have a clamp pattern, we know that the number of sign bits will be
3410     // the minimum of the clamp min/max range.
3411     bool IsMax = (Opcode == ISD::SMAX);
3412     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3413     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3414       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3415         CstHigh =
3416             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3417     if (CstLow && CstHigh) {
3418       if (!IsMax)
3419         std::swap(CstLow, CstHigh);
3420 
3421       const APInt &ValueLow = CstLow->getAPIntValue();
3422       const APInt &ValueHigh = CstHigh->getAPIntValue();
3423       if (ValueLow.sle(ValueHigh)) {
3424         unsigned LowSignBits = ValueLow.getNumSignBits();
3425         unsigned HighSignBits = ValueHigh.getNumSignBits();
3426         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3427         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3428           Known.One.setHighBits(MinSignBits);
3429           break;
3430         }
3431         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3432           Known.Zero.setHighBits(MinSignBits);
3433           break;
3434         }
3435       }
3436     }
3437 
3438     // Fallback - just get the shared known bits of the operands.
3439     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3440     if (Known.isUnknown()) break; // Early-out
3441     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3442     Known.Zero &= Known2.Zero;
3443     Known.One &= Known2.One;
3444     break;
3445   }
3446   case ISD::FrameIndex:
3447   case ISD::TargetFrameIndex:
3448     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3449                                        Known, getMachineFunction());
3450     break;
3451 
3452   default:
3453     if (Opcode < ISD::BUILTIN_OP_END)
3454       break;
3455     LLVM_FALLTHROUGH;
3456   case ISD::INTRINSIC_WO_CHAIN:
3457   case ISD::INTRINSIC_W_CHAIN:
3458   case ISD::INTRINSIC_VOID:
3459     // Allow the target to implement this method for its nodes.
3460     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3461     break;
3462   }
3463 
3464   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3465   return Known;
3466 }
3467 
3468 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3469                                                              SDValue N1) const {
3470   // X + 0 never overflow
3471   if (isNullConstant(N1))
3472     return OFK_Never;
3473 
3474   KnownBits N1Known = computeKnownBits(N1);
3475   if (N1Known.Zero.getBoolValue()) {
3476     KnownBits N0Known = computeKnownBits(N0);
3477 
3478     bool overflow;
3479     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3480     if (!overflow)
3481       return OFK_Never;
3482   }
3483 
3484   // mulhi + 1 never overflow
3485   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3486       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3487     return OFK_Never;
3488 
3489   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3490     KnownBits N0Known = computeKnownBits(N0);
3491 
3492     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3493       return OFK_Never;
3494   }
3495 
3496   return OFK_Sometime;
3497 }
3498 
3499 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3500   EVT OpVT = Val.getValueType();
3501   unsigned BitWidth = OpVT.getScalarSizeInBits();
3502 
3503   // Is the constant a known power of 2?
3504   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3505     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3506 
3507   // A left-shift of a constant one will have exactly one bit set because
3508   // shifting the bit off the end is undefined.
3509   if (Val.getOpcode() == ISD::SHL) {
3510     auto *C = isConstOrConstSplat(Val.getOperand(0));
3511     if (C && C->getAPIntValue() == 1)
3512       return true;
3513   }
3514 
3515   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3516   // one bit set.
3517   if (Val.getOpcode() == ISD::SRL) {
3518     auto *C = isConstOrConstSplat(Val.getOperand(0));
3519     if (C && C->getAPIntValue().isSignMask())
3520       return true;
3521   }
3522 
3523   // Are all operands of a build vector constant powers of two?
3524   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3525     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3526           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3527             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3528           return false;
3529         }))
3530       return true;
3531 
3532   // More could be done here, though the above checks are enough
3533   // to handle some common cases.
3534 
3535   // Fall back to computeKnownBits to catch other known cases.
3536   KnownBits Known = computeKnownBits(Val);
3537   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3538 }
3539 
3540 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3541   EVT VT = Op.getValueType();
3542 
3543   // TODO: Assume we don't know anything for now.
3544   if (VT.isScalableVector())
3545     return 1;
3546 
3547   APInt DemandedElts = VT.isVector()
3548                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3549                            : APInt(1, 1);
3550   return ComputeNumSignBits(Op, DemandedElts, Depth);
3551 }
3552 
3553 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3554                                           unsigned Depth) const {
3555   EVT VT = Op.getValueType();
3556   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3557   unsigned VTBits = VT.getScalarSizeInBits();
3558   unsigned NumElts = DemandedElts.getBitWidth();
3559   unsigned Tmp, Tmp2;
3560   unsigned FirstAnswer = 1;
3561 
3562   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3563     const APInt &Val = C->getAPIntValue();
3564     return Val.getNumSignBits();
3565   }
3566 
3567   if (Depth >= MaxRecursionDepth)
3568     return 1;  // Limit search depth.
3569 
3570   if (!DemandedElts || VT.isScalableVector())
3571     return 1;  // No demanded elts, better to assume we don't know anything.
3572 
3573   unsigned Opcode = Op.getOpcode();
3574   switch (Opcode) {
3575   default: break;
3576   case ISD::AssertSext:
3577     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3578     return VTBits-Tmp+1;
3579   case ISD::AssertZext:
3580     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3581     return VTBits-Tmp;
3582 
3583   case ISD::BUILD_VECTOR:
3584     Tmp = VTBits;
3585     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3586       if (!DemandedElts[i])
3587         continue;
3588 
3589       SDValue SrcOp = Op.getOperand(i);
3590       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3591 
3592       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3593       if (SrcOp.getValueSizeInBits() != VTBits) {
3594         assert(SrcOp.getValueSizeInBits() > VTBits &&
3595                "Expected BUILD_VECTOR implicit truncation");
3596         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3597         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3598       }
3599       Tmp = std::min(Tmp, Tmp2);
3600     }
3601     return Tmp;
3602 
3603   case ISD::VECTOR_SHUFFLE: {
3604     // Collect the minimum number of sign bits that are shared by every vector
3605     // element referenced by the shuffle.
3606     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3607     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3608     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3609     for (unsigned i = 0; i != NumElts; ++i) {
3610       int M = SVN->getMaskElt(i);
3611       if (!DemandedElts[i])
3612         continue;
3613       // For UNDEF elements, we don't know anything about the common state of
3614       // the shuffle result.
3615       if (M < 0)
3616         return 1;
3617       if ((unsigned)M < NumElts)
3618         DemandedLHS.setBit((unsigned)M % NumElts);
3619       else
3620         DemandedRHS.setBit((unsigned)M % NumElts);
3621     }
3622     Tmp = std::numeric_limits<unsigned>::max();
3623     if (!!DemandedLHS)
3624       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3625     if (!!DemandedRHS) {
3626       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3627       Tmp = std::min(Tmp, Tmp2);
3628     }
3629     // If we don't know anything, early out and try computeKnownBits fall-back.
3630     if (Tmp == 1)
3631       break;
3632     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3633     return Tmp;
3634   }
3635 
3636   case ISD::BITCAST: {
3637     SDValue N0 = Op.getOperand(0);
3638     EVT SrcVT = N0.getValueType();
3639     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3640 
3641     // Ignore bitcasts from unsupported types..
3642     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3643       break;
3644 
3645     // Fast handling of 'identity' bitcasts.
3646     if (VTBits == SrcBits)
3647       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3648 
3649     bool IsLE = getDataLayout().isLittleEndian();
3650 
3651     // Bitcast 'large element' scalar/vector to 'small element' vector.
3652     if ((SrcBits % VTBits) == 0) {
3653       assert(VT.isVector() && "Expected bitcast to vector");
3654 
3655       unsigned Scale = SrcBits / VTBits;
3656       APInt SrcDemandedElts(NumElts / Scale, 0);
3657       for (unsigned i = 0; i != NumElts; ++i)
3658         if (DemandedElts[i])
3659           SrcDemandedElts.setBit(i / Scale);
3660 
3661       // Fast case - sign splat can be simply split across the small elements.
3662       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3663       if (Tmp == SrcBits)
3664         return VTBits;
3665 
3666       // Slow case - determine how far the sign extends into each sub-element.
3667       Tmp2 = VTBits;
3668       for (unsigned i = 0; i != NumElts; ++i)
3669         if (DemandedElts[i]) {
3670           unsigned SubOffset = i % Scale;
3671           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3672           SubOffset = SubOffset * VTBits;
3673           if (Tmp <= SubOffset)
3674             return 1;
3675           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3676         }
3677       return Tmp2;
3678     }
3679     break;
3680   }
3681 
3682   case ISD::SIGN_EXTEND:
3683     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3684     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3685   case ISD::SIGN_EXTEND_INREG:
3686     // Max of the input and what this extends.
3687     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3688     Tmp = VTBits-Tmp+1;
3689     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3690     return std::max(Tmp, Tmp2);
3691   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3692     SDValue Src = Op.getOperand(0);
3693     EVT SrcVT = Src.getValueType();
3694     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3695     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3696     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3697   }
3698   case ISD::SRA:
3699     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3700     // SRA X, C -> adds C sign bits.
3701     if (const APInt *ShAmt =
3702             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3703       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3704     return Tmp;
3705   case ISD::SHL:
3706     if (const APInt *ShAmt =
3707             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3708       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3709       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3710       if (ShAmt->ult(Tmp))
3711         return Tmp - ShAmt->getZExtValue();
3712     }
3713     break;
3714   case ISD::AND:
3715   case ISD::OR:
3716   case ISD::XOR:    // NOT is handled here.
3717     // Logical binary ops preserve the number of sign bits at the worst.
3718     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3719     if (Tmp != 1) {
3720       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3721       FirstAnswer = std::min(Tmp, Tmp2);
3722       // We computed what we know about the sign bits as our first
3723       // answer. Now proceed to the generic code that uses
3724       // computeKnownBits, and pick whichever answer is better.
3725     }
3726     break;
3727 
3728   case ISD::SELECT:
3729   case ISD::VSELECT:
3730     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3731     if (Tmp == 1) return 1;  // Early out.
3732     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3733     return std::min(Tmp, Tmp2);
3734   case ISD::SELECT_CC:
3735     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3736     if (Tmp == 1) return 1;  // Early out.
3737     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3738     return std::min(Tmp, Tmp2);
3739 
3740   case ISD::SMIN:
3741   case ISD::SMAX: {
3742     // If we have a clamp pattern, we know that the number of sign bits will be
3743     // the minimum of the clamp min/max range.
3744     bool IsMax = (Opcode == ISD::SMAX);
3745     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3746     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3747       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3748         CstHigh =
3749             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3750     if (CstLow && CstHigh) {
3751       if (!IsMax)
3752         std::swap(CstLow, CstHigh);
3753       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3754         Tmp = CstLow->getAPIntValue().getNumSignBits();
3755         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3756         return std::min(Tmp, Tmp2);
3757       }
3758     }
3759 
3760     // Fallback - just get the minimum number of sign bits of the operands.
3761     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3762     if (Tmp == 1)
3763       return 1;  // Early out.
3764     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3765     return std::min(Tmp, Tmp2);
3766   }
3767   case ISD::UMIN:
3768   case ISD::UMAX:
3769     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3770     if (Tmp == 1)
3771       return 1;  // Early out.
3772     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3773     return std::min(Tmp, Tmp2);
3774   case ISD::SADDO:
3775   case ISD::UADDO:
3776   case ISD::SSUBO:
3777   case ISD::USUBO:
3778   case ISD::SMULO:
3779   case ISD::UMULO:
3780     if (Op.getResNo() != 1)
3781       break;
3782     // The boolean result conforms to getBooleanContents.  Fall through.
3783     // If setcc returns 0/-1, all bits are sign bits.
3784     // We know that we have an integer-based boolean since these operations
3785     // are only available for integer.
3786     if (TLI->getBooleanContents(VT.isVector(), false) ==
3787         TargetLowering::ZeroOrNegativeOneBooleanContent)
3788       return VTBits;
3789     break;
3790   case ISD::SETCC:
3791   case ISD::STRICT_FSETCC:
3792   case ISD::STRICT_FSETCCS: {
3793     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3794     // If setcc returns 0/-1, all bits are sign bits.
3795     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3796         TargetLowering::ZeroOrNegativeOneBooleanContent)
3797       return VTBits;
3798     break;
3799   }
3800   case ISD::ROTL:
3801   case ISD::ROTR:
3802     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3803 
3804     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3805     if (Tmp == VTBits)
3806       return VTBits;
3807 
3808     if (ConstantSDNode *C =
3809             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3810       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3811 
3812       // Handle rotate right by N like a rotate left by 32-N.
3813       if (Opcode == ISD::ROTR)
3814         RotAmt = (VTBits - RotAmt) % VTBits;
3815 
3816       // If we aren't rotating out all of the known-in sign bits, return the
3817       // number that are left.  This handles rotl(sext(x), 1) for example.
3818       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3819     }
3820     break;
3821   case ISD::ADD:
3822   case ISD::ADDC:
3823     // Add can have at most one carry bit.  Thus we know that the output
3824     // is, at worst, one more bit than the inputs.
3825     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3826     if (Tmp == 1) return 1; // Early out.
3827 
3828     // Special case decrementing a value (ADD X, -1):
3829     if (ConstantSDNode *CRHS =
3830             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3831       if (CRHS->isAllOnesValue()) {
3832         KnownBits Known =
3833             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3834 
3835         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3836         // sign bits set.
3837         if ((Known.Zero | 1).isAllOnesValue())
3838           return VTBits;
3839 
3840         // If we are subtracting one from a positive number, there is no carry
3841         // out of the result.
3842         if (Known.isNonNegative())
3843           return Tmp;
3844       }
3845 
3846     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3847     if (Tmp2 == 1) return 1; // Early out.
3848     return std::min(Tmp, Tmp2) - 1;
3849   case ISD::SUB:
3850     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3851     if (Tmp2 == 1) return 1; // Early out.
3852 
3853     // Handle NEG.
3854     if (ConstantSDNode *CLHS =
3855             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3856       if (CLHS->isNullValue()) {
3857         KnownBits Known =
3858             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3859         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3860         // sign bits set.
3861         if ((Known.Zero | 1).isAllOnesValue())
3862           return VTBits;
3863 
3864         // If the input is known to be positive (the sign bit is known clear),
3865         // the output of the NEG has the same number of sign bits as the input.
3866         if (Known.isNonNegative())
3867           return Tmp2;
3868 
3869         // Otherwise, we treat this like a SUB.
3870       }
3871 
3872     // Sub can have at most one carry bit.  Thus we know that the output
3873     // is, at worst, one more bit than the inputs.
3874     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3875     if (Tmp == 1) return 1; // Early out.
3876     return std::min(Tmp, Tmp2) - 1;
3877   case ISD::MUL: {
3878     // The output of the Mul can be at most twice the valid bits in the inputs.
3879     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3880     if (SignBitsOp0 == 1)
3881       break;
3882     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3883     if (SignBitsOp1 == 1)
3884       break;
3885     unsigned OutValidBits =
3886         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3887     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3888   }
3889   case ISD::TRUNCATE: {
3890     // Check if the sign bits of source go down as far as the truncated value.
3891     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3892     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3893     if (NumSrcSignBits > (NumSrcBits - VTBits))
3894       return NumSrcSignBits - (NumSrcBits - VTBits);
3895     break;
3896   }
3897   case ISD::EXTRACT_ELEMENT: {
3898     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3899     const int BitWidth = Op.getValueSizeInBits();
3900     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3901 
3902     // Get reverse index (starting from 1), Op1 value indexes elements from
3903     // little end. Sign starts at big end.
3904     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3905 
3906     // If the sign portion ends in our element the subtraction gives correct
3907     // result. Otherwise it gives either negative or > bitwidth result
3908     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3909   }
3910   case ISD::INSERT_VECTOR_ELT: {
3911     // If we know the element index, split the demand between the
3912     // source vector and the inserted element, otherwise assume we need
3913     // the original demanded vector elements and the value.
3914     SDValue InVec = Op.getOperand(0);
3915     SDValue InVal = Op.getOperand(1);
3916     SDValue EltNo = Op.getOperand(2);
3917     bool DemandedVal = true;
3918     APInt DemandedVecElts = DemandedElts;
3919     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3920     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3921       unsigned EltIdx = CEltNo->getZExtValue();
3922       DemandedVal = !!DemandedElts[EltIdx];
3923       DemandedVecElts.clearBit(EltIdx);
3924     }
3925     Tmp = std::numeric_limits<unsigned>::max();
3926     if (DemandedVal) {
3927       // TODO - handle implicit truncation of inserted elements.
3928       if (InVal.getScalarValueSizeInBits() != VTBits)
3929         break;
3930       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3931       Tmp = std::min(Tmp, Tmp2);
3932     }
3933     if (!!DemandedVecElts) {
3934       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3935       Tmp = std::min(Tmp, Tmp2);
3936     }
3937     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3938     return Tmp;
3939   }
3940   case ISD::EXTRACT_VECTOR_ELT: {
3941     SDValue InVec = Op.getOperand(0);
3942     SDValue EltNo = Op.getOperand(1);
3943     EVT VecVT = InVec.getValueType();
3944     const unsigned BitWidth = Op.getValueSizeInBits();
3945     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3946     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3947 
3948     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3949     // anything about sign bits. But if the sizes match we can derive knowledge
3950     // about sign bits from the vector operand.
3951     if (BitWidth != EltBitWidth)
3952       break;
3953 
3954     // If we know the element index, just demand that vector element, else for
3955     // an unknown element index, ignore DemandedElts and demand them all.
3956     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3957     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3958     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3959       DemandedSrcElts =
3960           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3961 
3962     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3963   }
3964   case ISD::EXTRACT_SUBVECTOR: {
3965     // Offset the demanded elts by the subvector index.
3966     SDValue Src = Op.getOperand(0);
3967     uint64_t Idx = Op.getConstantOperandVal(1);
3968     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3969     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3970     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3971   }
3972   case ISD::CONCAT_VECTORS: {
3973     // Determine the minimum number of sign bits across all demanded
3974     // elts of the input vectors. Early out if the result is already 1.
3975     Tmp = std::numeric_limits<unsigned>::max();
3976     EVT SubVectorVT = Op.getOperand(0).getValueType();
3977     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3978     unsigned NumSubVectors = Op.getNumOperands();
3979     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3980       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3981       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3982       if (!DemandedSub)
3983         continue;
3984       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3985       Tmp = std::min(Tmp, Tmp2);
3986     }
3987     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3988     return Tmp;
3989   }
3990   case ISD::INSERT_SUBVECTOR: {
3991     // Demand any elements from the subvector and the remainder from the src its
3992     // inserted into.
3993     SDValue Src = Op.getOperand(0);
3994     SDValue Sub = Op.getOperand(1);
3995     uint64_t Idx = Op.getConstantOperandVal(2);
3996     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3997     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3998     APInt DemandedSrcElts = DemandedElts;
3999     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4000 
4001     Tmp = std::numeric_limits<unsigned>::max();
4002     if (!!DemandedSubElts) {
4003       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4004       if (Tmp == 1)
4005         return 1; // early-out
4006     }
4007     if (!!DemandedSrcElts) {
4008       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4009       Tmp = std::min(Tmp, Tmp2);
4010     }
4011     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4012     return Tmp;
4013   }
4014   }
4015 
4016   // If we are looking at the loaded value of the SDNode.
4017   if (Op.getResNo() == 0) {
4018     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4019     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4020       unsigned ExtType = LD->getExtensionType();
4021       switch (ExtType) {
4022       default: break;
4023       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4024         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4025         return VTBits - Tmp + 1;
4026       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4027         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4028         return VTBits - Tmp;
4029       case ISD::NON_EXTLOAD:
4030         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4031           // We only need to handle vectors - computeKnownBits should handle
4032           // scalar cases.
4033           Type *CstTy = Cst->getType();
4034           if (CstTy->isVectorTy() &&
4035               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4036             Tmp = VTBits;
4037             for (unsigned i = 0; i != NumElts; ++i) {
4038               if (!DemandedElts[i])
4039                 continue;
4040               if (Constant *Elt = Cst->getAggregateElement(i)) {
4041                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4042                   const APInt &Value = CInt->getValue();
4043                   Tmp = std::min(Tmp, Value.getNumSignBits());
4044                   continue;
4045                 }
4046                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4047                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4048                   Tmp = std::min(Tmp, Value.getNumSignBits());
4049                   continue;
4050                 }
4051               }
4052               // Unknown type. Conservatively assume no bits match sign bit.
4053               return 1;
4054             }
4055             return Tmp;
4056           }
4057         }
4058         break;
4059       }
4060     }
4061   }
4062 
4063   // Allow the target to implement this method for its nodes.
4064   if (Opcode >= ISD::BUILTIN_OP_END ||
4065       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4066       Opcode == ISD::INTRINSIC_W_CHAIN ||
4067       Opcode == ISD::INTRINSIC_VOID) {
4068     unsigned NumBits =
4069         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4070     if (NumBits > 1)
4071       FirstAnswer = std::max(FirstAnswer, NumBits);
4072   }
4073 
4074   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4075   // use this information.
4076   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4077 
4078   APInt Mask;
4079   if (Known.isNonNegative()) {        // sign bit is 0
4080     Mask = Known.Zero;
4081   } else if (Known.isNegative()) {  // sign bit is 1;
4082     Mask = Known.One;
4083   } else {
4084     // Nothing known.
4085     return FirstAnswer;
4086   }
4087 
4088   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4089   // the number of identical bits in the top of the input value.
4090   Mask <<= Mask.getBitWidth()-VTBits;
4091   return std::max(FirstAnswer, Mask.countLeadingOnes());
4092 }
4093 
4094 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4095   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4096       !isa<ConstantSDNode>(Op.getOperand(1)))
4097     return false;
4098 
4099   if (Op.getOpcode() == ISD::OR &&
4100       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4101     return false;
4102 
4103   return true;
4104 }
4105 
4106 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4107   // If we're told that NaNs won't happen, assume they won't.
4108   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4109     return true;
4110 
4111   if (Depth >= MaxRecursionDepth)
4112     return false; // Limit search depth.
4113 
4114   // TODO: Handle vectors.
4115   // If the value is a constant, we can obviously see if it is a NaN or not.
4116   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4117     return !C->getValueAPF().isNaN() ||
4118            (SNaN && !C->getValueAPF().isSignaling());
4119   }
4120 
4121   unsigned Opcode = Op.getOpcode();
4122   switch (Opcode) {
4123   case ISD::FADD:
4124   case ISD::FSUB:
4125   case ISD::FMUL:
4126   case ISD::FDIV:
4127   case ISD::FREM:
4128   case ISD::FSIN:
4129   case ISD::FCOS: {
4130     if (SNaN)
4131       return true;
4132     // TODO: Need isKnownNeverInfinity
4133     return false;
4134   }
4135   case ISD::FCANONICALIZE:
4136   case ISD::FEXP:
4137   case ISD::FEXP2:
4138   case ISD::FTRUNC:
4139   case ISD::FFLOOR:
4140   case ISD::FCEIL:
4141   case ISD::FROUND:
4142   case ISD::FROUNDEVEN:
4143   case ISD::FRINT:
4144   case ISD::FNEARBYINT: {
4145     if (SNaN)
4146       return true;
4147     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4148   }
4149   case ISD::FABS:
4150   case ISD::FNEG:
4151   case ISD::FCOPYSIGN: {
4152     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4153   }
4154   case ISD::SELECT:
4155     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4156            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4157   case ISD::FP_EXTEND:
4158   case ISD::FP_ROUND: {
4159     if (SNaN)
4160       return true;
4161     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4162   }
4163   case ISD::SINT_TO_FP:
4164   case ISD::UINT_TO_FP:
4165     return true;
4166   case ISD::FMA:
4167   case ISD::FMAD: {
4168     if (SNaN)
4169       return true;
4170     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4171            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4172            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4173   }
4174   case ISD::FSQRT: // Need is known positive
4175   case ISD::FLOG:
4176   case ISD::FLOG2:
4177   case ISD::FLOG10:
4178   case ISD::FPOWI:
4179   case ISD::FPOW: {
4180     if (SNaN)
4181       return true;
4182     // TODO: Refine on operand
4183     return false;
4184   }
4185   case ISD::FMINNUM:
4186   case ISD::FMAXNUM: {
4187     // Only one needs to be known not-nan, since it will be returned if the
4188     // other ends up being one.
4189     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4190            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4191   }
4192   case ISD::FMINNUM_IEEE:
4193   case ISD::FMAXNUM_IEEE: {
4194     if (SNaN)
4195       return true;
4196     // This can return a NaN if either operand is an sNaN, or if both operands
4197     // are NaN.
4198     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4199             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4200            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4201             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4202   }
4203   case ISD::FMINIMUM:
4204   case ISD::FMAXIMUM: {
4205     // TODO: Does this quiet or return the origina NaN as-is?
4206     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4207            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4208   }
4209   case ISD::EXTRACT_VECTOR_ELT: {
4210     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4211   }
4212   default:
4213     if (Opcode >= ISD::BUILTIN_OP_END ||
4214         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4215         Opcode == ISD::INTRINSIC_W_CHAIN ||
4216         Opcode == ISD::INTRINSIC_VOID) {
4217       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4218     }
4219 
4220     return false;
4221   }
4222 }
4223 
4224 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4225   assert(Op.getValueType().isFloatingPoint() &&
4226          "Floating point type expected");
4227 
4228   // If the value is a constant, we can obviously see if it is a zero or not.
4229   // TODO: Add BuildVector support.
4230   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4231     return !C->isZero();
4232   return false;
4233 }
4234 
4235 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4236   assert(!Op.getValueType().isFloatingPoint() &&
4237          "Floating point types unsupported - use isKnownNeverZeroFloat");
4238 
4239   // If the value is a constant, we can obviously see if it is a zero or not.
4240   if (ISD::matchUnaryPredicate(
4241           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4242     return true;
4243 
4244   // TODO: Recognize more cases here.
4245   switch (Op.getOpcode()) {
4246   default: break;
4247   case ISD::OR:
4248     if (isKnownNeverZero(Op.getOperand(1)) ||
4249         isKnownNeverZero(Op.getOperand(0)))
4250       return true;
4251     break;
4252   }
4253 
4254   return false;
4255 }
4256 
4257 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4258   // Check the obvious case.
4259   if (A == B) return true;
4260 
4261   // For for negative and positive zero.
4262   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4263     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4264       if (CA->isZero() && CB->isZero()) return true;
4265 
4266   // Otherwise they may not be equal.
4267   return false;
4268 }
4269 
4270 // FIXME: unify with llvm::haveNoCommonBitsSet.
4271 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4272 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4273   assert(A.getValueType() == B.getValueType() &&
4274          "Values must have the same type");
4275   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4276 }
4277 
4278 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4279                                 ArrayRef<SDValue> Ops,
4280                                 SelectionDAG &DAG) {
4281   int NumOps = Ops.size();
4282   assert(NumOps != 0 && "Can't build an empty vector!");
4283   assert(!VT.isScalableVector() &&
4284          "BUILD_VECTOR cannot be used with scalable types");
4285   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4286          "Incorrect element count in BUILD_VECTOR!");
4287 
4288   // BUILD_VECTOR of UNDEFs is UNDEF.
4289   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4290     return DAG.getUNDEF(VT);
4291 
4292   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4293   SDValue IdentitySrc;
4294   bool IsIdentity = true;
4295   for (int i = 0; i != NumOps; ++i) {
4296     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4297         Ops[i].getOperand(0).getValueType() != VT ||
4298         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4299         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4300         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4301       IsIdentity = false;
4302       break;
4303     }
4304     IdentitySrc = Ops[i].getOperand(0);
4305   }
4306   if (IsIdentity)
4307     return IdentitySrc;
4308 
4309   return SDValue();
4310 }
4311 
4312 /// Try to simplify vector concatenation to an input value, undef, or build
4313 /// vector.
4314 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4315                                   ArrayRef<SDValue> Ops,
4316                                   SelectionDAG &DAG) {
4317   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4318   assert(llvm::all_of(Ops,
4319                       [Ops](SDValue Op) {
4320                         return Ops[0].getValueType() == Op.getValueType();
4321                       }) &&
4322          "Concatenation of vectors with inconsistent value types!");
4323   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4324              VT.getVectorElementCount() &&
4325          "Incorrect element count in vector concatenation!");
4326 
4327   if (Ops.size() == 1)
4328     return Ops[0];
4329 
4330   // Concat of UNDEFs is UNDEF.
4331   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4332     return DAG.getUNDEF(VT);
4333 
4334   // Scan the operands and look for extract operations from a single source
4335   // that correspond to insertion at the same location via this concatenation:
4336   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4337   SDValue IdentitySrc;
4338   bool IsIdentity = true;
4339   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4340     SDValue Op = Ops[i];
4341     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4342     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4343         Op.getOperand(0).getValueType() != VT ||
4344         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4345         Op.getConstantOperandVal(1) != IdentityIndex) {
4346       IsIdentity = false;
4347       break;
4348     }
4349     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4350            "Unexpected identity source vector for concat of extracts");
4351     IdentitySrc = Op.getOperand(0);
4352   }
4353   if (IsIdentity) {
4354     assert(IdentitySrc && "Failed to set source vector of extracts");
4355     return IdentitySrc;
4356   }
4357 
4358   // The code below this point is only designed to work for fixed width
4359   // vectors, so we bail out for now.
4360   if (VT.isScalableVector())
4361     return SDValue();
4362 
4363   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4364   // simplified to one big BUILD_VECTOR.
4365   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4366   EVT SVT = VT.getScalarType();
4367   SmallVector<SDValue, 16> Elts;
4368   for (SDValue Op : Ops) {
4369     EVT OpVT = Op.getValueType();
4370     if (Op.isUndef())
4371       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4372     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4373       Elts.append(Op->op_begin(), Op->op_end());
4374     else
4375       return SDValue();
4376   }
4377 
4378   // BUILD_VECTOR requires all inputs to be of the same type, find the
4379   // maximum type and extend them all.
4380   for (SDValue Op : Elts)
4381     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4382 
4383   if (SVT.bitsGT(VT.getScalarType()))
4384     for (SDValue &Op : Elts)
4385       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4386                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4387                : DAG.getSExtOrTrunc(Op, DL, SVT);
4388 
4389   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4390   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4391   return V;
4392 }
4393 
4394 /// Gets or creates the specified node.
4395 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4396   FoldingSetNodeID ID;
4397   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4398   void *IP = nullptr;
4399   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4400     return SDValue(E, 0);
4401 
4402   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4403                               getVTList(VT));
4404   CSEMap.InsertNode(N, IP);
4405 
4406   InsertNode(N);
4407   SDValue V = SDValue(N, 0);
4408   NewSDValueDbgMsg(V, "Creating new node: ", this);
4409   return V;
4410 }
4411 
4412 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4413                               SDValue Operand, const SDNodeFlags Flags) {
4414   // Constant fold unary operations with an integer constant operand. Even
4415   // opaque constant will be folded, because the folding of unary operations
4416   // doesn't create new constants with different values. Nevertheless, the
4417   // opaque flag is preserved during folding to prevent future folding with
4418   // other constants.
4419   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4420     const APInt &Val = C->getAPIntValue();
4421     switch (Opcode) {
4422     default: break;
4423     case ISD::SIGN_EXTEND:
4424       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4425                          C->isTargetOpcode(), C->isOpaque());
4426     case ISD::TRUNCATE:
4427       if (C->isOpaque())
4428         break;
4429       LLVM_FALLTHROUGH;
4430     case ISD::ANY_EXTEND:
4431     case ISD::ZERO_EXTEND:
4432       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4433                          C->isTargetOpcode(), C->isOpaque());
4434     case ISD::UINT_TO_FP:
4435     case ISD::SINT_TO_FP: {
4436       APFloat apf(EVTToAPFloatSemantics(VT),
4437                   APInt::getNullValue(VT.getSizeInBits()));
4438       (void)apf.convertFromAPInt(Val,
4439                                  Opcode==ISD::SINT_TO_FP,
4440                                  APFloat::rmNearestTiesToEven);
4441       return getConstantFP(apf, DL, VT);
4442     }
4443     case ISD::BITCAST:
4444       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4445         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4446       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4447         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4448       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4449         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4450       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4451         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4452       break;
4453     case ISD::ABS:
4454       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4455                          C->isOpaque());
4456     case ISD::BITREVERSE:
4457       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4458                          C->isOpaque());
4459     case ISD::BSWAP:
4460       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4461                          C->isOpaque());
4462     case ISD::CTPOP:
4463       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4464                          C->isOpaque());
4465     case ISD::CTLZ:
4466     case ISD::CTLZ_ZERO_UNDEF:
4467       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4468                          C->isOpaque());
4469     case ISD::CTTZ:
4470     case ISD::CTTZ_ZERO_UNDEF:
4471       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4472                          C->isOpaque());
4473     case ISD::FP16_TO_FP: {
4474       bool Ignored;
4475       APFloat FPV(APFloat::IEEEhalf(),
4476                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4477 
4478       // This can return overflow, underflow, or inexact; we don't care.
4479       // FIXME need to be more flexible about rounding mode.
4480       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4481                         APFloat::rmNearestTiesToEven, &Ignored);
4482       return getConstantFP(FPV, DL, VT);
4483     }
4484     }
4485   }
4486 
4487   // Constant fold unary operations with a floating point constant operand.
4488   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4489     APFloat V = C->getValueAPF();    // make copy
4490     switch (Opcode) {
4491     case ISD::FNEG:
4492       V.changeSign();
4493       return getConstantFP(V, DL, VT);
4494     case ISD::FABS:
4495       V.clearSign();
4496       return getConstantFP(V, DL, VT);
4497     case ISD::FCEIL: {
4498       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4499       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4500         return getConstantFP(V, DL, VT);
4501       break;
4502     }
4503     case ISD::FTRUNC: {
4504       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4505       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4506         return getConstantFP(V, DL, VT);
4507       break;
4508     }
4509     case ISD::FFLOOR: {
4510       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4511       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4512         return getConstantFP(V, DL, VT);
4513       break;
4514     }
4515     case ISD::FP_EXTEND: {
4516       bool ignored;
4517       // This can return overflow, underflow, or inexact; we don't care.
4518       // FIXME need to be more flexible about rounding mode.
4519       (void)V.convert(EVTToAPFloatSemantics(VT),
4520                       APFloat::rmNearestTiesToEven, &ignored);
4521       return getConstantFP(V, DL, VT);
4522     }
4523     case ISD::FP_TO_SINT:
4524     case ISD::FP_TO_UINT: {
4525       bool ignored;
4526       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4527       // FIXME need to be more flexible about rounding mode.
4528       APFloat::opStatus s =
4529           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4530       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4531         break;
4532       return getConstant(IntVal, DL, VT);
4533     }
4534     case ISD::BITCAST:
4535       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4536         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4537       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4538         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4539       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4540         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4541       break;
4542     case ISD::FP_TO_FP16: {
4543       bool Ignored;
4544       // This can return overflow, underflow, or inexact; we don't care.
4545       // FIXME need to be more flexible about rounding mode.
4546       (void)V.convert(APFloat::IEEEhalf(),
4547                       APFloat::rmNearestTiesToEven, &Ignored);
4548       return getConstant(V.bitcastToAPInt(), DL, VT);
4549     }
4550     }
4551   }
4552 
4553   // Constant fold unary operations with a vector integer or float operand.
4554   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4555     if (BV->isConstant()) {
4556       switch (Opcode) {
4557       default:
4558         // FIXME: Entirely reasonable to perform folding of other unary
4559         // operations here as the need arises.
4560         break;
4561       case ISD::FNEG:
4562       case ISD::FABS:
4563       case ISD::FCEIL:
4564       case ISD::FTRUNC:
4565       case ISD::FFLOOR:
4566       case ISD::FP_EXTEND:
4567       case ISD::FP_TO_SINT:
4568       case ISD::FP_TO_UINT:
4569       case ISD::TRUNCATE:
4570       case ISD::ANY_EXTEND:
4571       case ISD::ZERO_EXTEND:
4572       case ISD::SIGN_EXTEND:
4573       case ISD::UINT_TO_FP:
4574       case ISD::SINT_TO_FP:
4575       case ISD::ABS:
4576       case ISD::BITREVERSE:
4577       case ISD::BSWAP:
4578       case ISD::CTLZ:
4579       case ISD::CTLZ_ZERO_UNDEF:
4580       case ISD::CTTZ:
4581       case ISD::CTTZ_ZERO_UNDEF:
4582       case ISD::CTPOP: {
4583         SDValue Ops = { Operand };
4584         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4585           return Fold;
4586       }
4587       }
4588     }
4589   }
4590 
4591   unsigned OpOpcode = Operand.getNode()->getOpcode();
4592   switch (Opcode) {
4593   case ISD::FREEZE:
4594     assert(VT == Operand.getValueType() && "Unexpected VT!");
4595     break;
4596   case ISD::TokenFactor:
4597   case ISD::MERGE_VALUES:
4598   case ISD::CONCAT_VECTORS:
4599     return Operand;         // Factor, merge or concat of one node?  No need.
4600   case ISD::BUILD_VECTOR: {
4601     // Attempt to simplify BUILD_VECTOR.
4602     SDValue Ops[] = {Operand};
4603     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4604       return V;
4605     break;
4606   }
4607   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4608   case ISD::FP_EXTEND:
4609     assert(VT.isFloatingPoint() &&
4610            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4611     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4612     assert((!VT.isVector() ||
4613             VT.getVectorNumElements() ==
4614             Operand.getValueType().getVectorNumElements()) &&
4615            "Vector element count mismatch!");
4616     assert(Operand.getValueType().bitsLT(VT) &&
4617            "Invalid fpext node, dst < src!");
4618     if (Operand.isUndef())
4619       return getUNDEF(VT);
4620     break;
4621   case ISD::FP_TO_SINT:
4622   case ISD::FP_TO_UINT:
4623     if (Operand.isUndef())
4624       return getUNDEF(VT);
4625     break;
4626   case ISD::SINT_TO_FP:
4627   case ISD::UINT_TO_FP:
4628     // [us]itofp(undef) = 0, because the result value is bounded.
4629     if (Operand.isUndef())
4630       return getConstantFP(0.0, DL, VT);
4631     break;
4632   case ISD::SIGN_EXTEND:
4633     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4634            "Invalid SIGN_EXTEND!");
4635     assert(VT.isVector() == Operand.getValueType().isVector() &&
4636            "SIGN_EXTEND result type type should be vector iff the operand "
4637            "type is vector!");
4638     if (Operand.getValueType() == VT) return Operand;   // noop extension
4639     assert((!VT.isVector() ||
4640             VT.getVectorElementCount() ==
4641                 Operand.getValueType().getVectorElementCount()) &&
4642            "Vector element count mismatch!");
4643     assert(Operand.getValueType().bitsLT(VT) &&
4644            "Invalid sext node, dst < src!");
4645     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4646       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4647     else if (OpOpcode == ISD::UNDEF)
4648       // sext(undef) = 0, because the top bits will all be the same.
4649       return getConstant(0, DL, VT);
4650     break;
4651   case ISD::ZERO_EXTEND:
4652     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4653            "Invalid ZERO_EXTEND!");
4654     assert(VT.isVector() == Operand.getValueType().isVector() &&
4655            "ZERO_EXTEND result type type should be vector iff the operand "
4656            "type is vector!");
4657     if (Operand.getValueType() == VT) return Operand;   // noop extension
4658     assert((!VT.isVector() ||
4659             VT.getVectorElementCount() ==
4660                 Operand.getValueType().getVectorElementCount()) &&
4661            "Vector element count mismatch!");
4662     assert(Operand.getValueType().bitsLT(VT) &&
4663            "Invalid zext node, dst < src!");
4664     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4665       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4666     else if (OpOpcode == ISD::UNDEF)
4667       // zext(undef) = 0, because the top bits will be zero.
4668       return getConstant(0, DL, VT);
4669     break;
4670   case ISD::ANY_EXTEND:
4671     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4672            "Invalid ANY_EXTEND!");
4673     assert(VT.isVector() == Operand.getValueType().isVector() &&
4674            "ANY_EXTEND result type type should be vector iff the operand "
4675            "type is vector!");
4676     if (Operand.getValueType() == VT) return Operand;   // noop extension
4677     assert((!VT.isVector() ||
4678             VT.getVectorElementCount() ==
4679                 Operand.getValueType().getVectorElementCount()) &&
4680            "Vector element count mismatch!");
4681     assert(Operand.getValueType().bitsLT(VT) &&
4682            "Invalid anyext node, dst < src!");
4683 
4684     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4685         OpOpcode == ISD::ANY_EXTEND)
4686       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4687       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4688     else if (OpOpcode == ISD::UNDEF)
4689       return getUNDEF(VT);
4690 
4691     // (ext (trunc x)) -> x
4692     if (OpOpcode == ISD::TRUNCATE) {
4693       SDValue OpOp = Operand.getOperand(0);
4694       if (OpOp.getValueType() == VT) {
4695         transferDbgValues(Operand, OpOp);
4696         return OpOp;
4697       }
4698     }
4699     break;
4700   case ISD::TRUNCATE:
4701     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4702            "Invalid TRUNCATE!");
4703     assert(VT.isVector() == Operand.getValueType().isVector() &&
4704            "TRUNCATE result type type should be vector iff the operand "
4705            "type is vector!");
4706     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4707     assert((!VT.isVector() ||
4708             VT.getVectorElementCount() ==
4709                 Operand.getValueType().getVectorElementCount()) &&
4710            "Vector element count mismatch!");
4711     assert(Operand.getValueType().bitsGT(VT) &&
4712            "Invalid truncate node, src < dst!");
4713     if (OpOpcode == ISD::TRUNCATE)
4714       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4715     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4716         OpOpcode == ISD::ANY_EXTEND) {
4717       // If the source is smaller than the dest, we still need an extend.
4718       if (Operand.getOperand(0).getValueType().getScalarType()
4719             .bitsLT(VT.getScalarType()))
4720         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4721       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4722         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4723       return Operand.getOperand(0);
4724     }
4725     if (OpOpcode == ISD::UNDEF)
4726       return getUNDEF(VT);
4727     break;
4728   case ISD::ANY_EXTEND_VECTOR_INREG:
4729   case ISD::ZERO_EXTEND_VECTOR_INREG:
4730   case ISD::SIGN_EXTEND_VECTOR_INREG:
4731     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4732     assert(Operand.getValueType().bitsLE(VT) &&
4733            "The input must be the same size or smaller than the result.");
4734     assert(VT.getVectorNumElements() <
4735              Operand.getValueType().getVectorNumElements() &&
4736            "The destination vector type must have fewer lanes than the input.");
4737     break;
4738   case ISD::ABS:
4739     assert(VT.isInteger() && VT == Operand.getValueType() &&
4740            "Invalid ABS!");
4741     if (OpOpcode == ISD::UNDEF)
4742       return getUNDEF(VT);
4743     break;
4744   case ISD::BSWAP:
4745     assert(VT.isInteger() && VT == Operand.getValueType() &&
4746            "Invalid BSWAP!");
4747     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4748            "BSWAP types must be a multiple of 16 bits!");
4749     if (OpOpcode == ISD::UNDEF)
4750       return getUNDEF(VT);
4751     break;
4752   case ISD::BITREVERSE:
4753     assert(VT.isInteger() && VT == Operand.getValueType() &&
4754            "Invalid BITREVERSE!");
4755     if (OpOpcode == ISD::UNDEF)
4756       return getUNDEF(VT);
4757     break;
4758   case ISD::BITCAST:
4759     // Basic sanity checking.
4760     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4761            "Cannot BITCAST between types of different sizes!");
4762     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4763     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4764       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4765     if (OpOpcode == ISD::UNDEF)
4766       return getUNDEF(VT);
4767     break;
4768   case ISD::SCALAR_TO_VECTOR:
4769     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4770            (VT.getVectorElementType() == Operand.getValueType() ||
4771             (VT.getVectorElementType().isInteger() &&
4772              Operand.getValueType().isInteger() &&
4773              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4774            "Illegal SCALAR_TO_VECTOR node!");
4775     if (OpOpcode == ISD::UNDEF)
4776       return getUNDEF(VT);
4777     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4778     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4779         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4780         Operand.getConstantOperandVal(1) == 0 &&
4781         Operand.getOperand(0).getValueType() == VT)
4782       return Operand.getOperand(0);
4783     break;
4784   case ISD::FNEG:
4785     // Negation of an unknown bag of bits is still completely undefined.
4786     if (OpOpcode == ISD::UNDEF)
4787       return getUNDEF(VT);
4788 
4789     if (OpOpcode == ISD::FNEG)  // --X -> X
4790       return Operand.getOperand(0);
4791     break;
4792   case ISD::FABS:
4793     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4794       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4795     break;
4796   }
4797 
4798   SDNode *N;
4799   SDVTList VTs = getVTList(VT);
4800   SDValue Ops[] = {Operand};
4801   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4802     FoldingSetNodeID ID;
4803     AddNodeIDNode(ID, Opcode, VTs, Ops);
4804     void *IP = nullptr;
4805     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4806       E->intersectFlagsWith(Flags);
4807       return SDValue(E, 0);
4808     }
4809 
4810     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4811     N->setFlags(Flags);
4812     createOperands(N, Ops);
4813     CSEMap.InsertNode(N, IP);
4814   } else {
4815     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4816     createOperands(N, Ops);
4817   }
4818 
4819   InsertNode(N);
4820   SDValue V = SDValue(N, 0);
4821   NewSDValueDbgMsg(V, "Creating new node: ", this);
4822   return V;
4823 }
4824 
4825 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4826                                        const APInt &C2) {
4827   switch (Opcode) {
4828   case ISD::ADD:  return C1 + C2;
4829   case ISD::SUB:  return C1 - C2;
4830   case ISD::MUL:  return C1 * C2;
4831   case ISD::AND:  return C1 & C2;
4832   case ISD::OR:   return C1 | C2;
4833   case ISD::XOR:  return C1 ^ C2;
4834   case ISD::SHL:  return C1 << C2;
4835   case ISD::SRL:  return C1.lshr(C2);
4836   case ISD::SRA:  return C1.ashr(C2);
4837   case ISD::ROTL: return C1.rotl(C2);
4838   case ISD::ROTR: return C1.rotr(C2);
4839   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4840   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4841   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4842   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4843   case ISD::SADDSAT: return C1.sadd_sat(C2);
4844   case ISD::UADDSAT: return C1.uadd_sat(C2);
4845   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4846   case ISD::USUBSAT: return C1.usub_sat(C2);
4847   case ISD::UDIV:
4848     if (!C2.getBoolValue())
4849       break;
4850     return C1.udiv(C2);
4851   case ISD::UREM:
4852     if (!C2.getBoolValue())
4853       break;
4854     return C1.urem(C2);
4855   case ISD::SDIV:
4856     if (!C2.getBoolValue())
4857       break;
4858     return C1.sdiv(C2);
4859   case ISD::SREM:
4860     if (!C2.getBoolValue())
4861       break;
4862     return C1.srem(C2);
4863   }
4864   return llvm::None;
4865 }
4866 
4867 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4868                                        const GlobalAddressSDNode *GA,
4869                                        const SDNode *N2) {
4870   if (GA->getOpcode() != ISD::GlobalAddress)
4871     return SDValue();
4872   if (!TLI->isOffsetFoldingLegal(GA))
4873     return SDValue();
4874   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4875   if (!C2)
4876     return SDValue();
4877   int64_t Offset = C2->getSExtValue();
4878   switch (Opcode) {
4879   case ISD::ADD: break;
4880   case ISD::SUB: Offset = -uint64_t(Offset); break;
4881   default: return SDValue();
4882   }
4883   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4884                           GA->getOffset() + uint64_t(Offset));
4885 }
4886 
4887 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4888   switch (Opcode) {
4889   case ISD::SDIV:
4890   case ISD::UDIV:
4891   case ISD::SREM:
4892   case ISD::UREM: {
4893     // If a divisor is zero/undef or any element of a divisor vector is
4894     // zero/undef, the whole op is undef.
4895     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4896     SDValue Divisor = Ops[1];
4897     if (Divisor.isUndef() || isNullConstant(Divisor))
4898       return true;
4899 
4900     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4901            llvm::any_of(Divisor->op_values(),
4902                         [](SDValue V) { return V.isUndef() ||
4903                                         isNullConstant(V); });
4904     // TODO: Handle signed overflow.
4905   }
4906   // TODO: Handle oversized shifts.
4907   default:
4908     return false;
4909   }
4910 }
4911 
4912 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4913                                              EVT VT, ArrayRef<SDValue> Ops) {
4914   // If the opcode is a target-specific ISD node, there's nothing we can
4915   // do here and the operand rules may not line up with the below, so
4916   // bail early.
4917   if (Opcode >= ISD::BUILTIN_OP_END)
4918     return SDValue();
4919 
4920   // For now, the array Ops should only contain two values.
4921   // This enforcement will be removed once this function is merged with
4922   // FoldConstantVectorArithmetic
4923   if (Ops.size() != 2)
4924     return SDValue();
4925 
4926   if (isUndef(Opcode, Ops))
4927     return getUNDEF(VT);
4928 
4929   SDNode *N1 = Ops[0].getNode();
4930   SDNode *N2 = Ops[1].getNode();
4931 
4932   // Handle the case of two scalars.
4933   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4934     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4935       if (C1->isOpaque() || C2->isOpaque())
4936         return SDValue();
4937 
4938       Optional<APInt> FoldAttempt =
4939           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
4940       if (!FoldAttempt)
4941         return SDValue();
4942 
4943       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
4944       assert((!Folded || !VT.isVector()) &&
4945              "Can't fold vectors ops with scalar operands");
4946       return Folded;
4947     }
4948   }
4949 
4950   // fold (add Sym, c) -> Sym+c
4951   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4952     return FoldSymbolOffset(Opcode, VT, GA, N2);
4953   if (TLI->isCommutativeBinOp(Opcode))
4954     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4955       return FoldSymbolOffset(Opcode, VT, GA, N1);
4956 
4957   // TODO: All the folds below are performed lane-by-lane and assume a fixed
4958   // vector width, however we should be able to do constant folds involving
4959   // splat vector nodes too.
4960   if (VT.isScalableVector())
4961     return SDValue();
4962 
4963   // For fixed width vectors, extract each constant element and fold them
4964   // individually. Either input may be an undef value.
4965   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4966   if (!BV1 && !N1->isUndef())
4967     return SDValue();
4968   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4969   if (!BV2 && !N2->isUndef())
4970     return SDValue();
4971   // If both operands are undef, that's handled the same way as scalars.
4972   if (!BV1 && !BV2)
4973     return SDValue();
4974 
4975   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4976          "Vector binop with different number of elements in operands?");
4977 
4978   EVT SVT = VT.getScalarType();
4979   EVT LegalSVT = SVT;
4980   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4981     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4982     if (LegalSVT.bitsLT(SVT))
4983       return SDValue();
4984   }
4985   SmallVector<SDValue, 4> Outputs;
4986   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4987   for (unsigned I = 0; I != NumOps; ++I) {
4988     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4989     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4990     if (SVT.isInteger()) {
4991       if (V1->getValueType(0).bitsGT(SVT))
4992         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4993       if (V2->getValueType(0).bitsGT(SVT))
4994         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4995     }
4996 
4997     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4998       return SDValue();
4999 
5000     // Fold one vector element.
5001     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5002     if (LegalSVT != SVT)
5003       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5004 
5005     // Scalar folding only succeeded if the result is a constant or UNDEF.
5006     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5007         ScalarResult.getOpcode() != ISD::ConstantFP)
5008       return SDValue();
5009     Outputs.push_back(ScalarResult);
5010   }
5011 
5012   assert(VT.getVectorNumElements() == Outputs.size() &&
5013          "Vector size mismatch!");
5014 
5015   // We may have a vector type but a scalar result. Create a splat.
5016   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
5017 
5018   // Build a big vector out of the scalar elements we generated.
5019   return getBuildVector(VT, SDLoc(), Outputs);
5020 }
5021 
5022 // TODO: Merge with FoldConstantArithmetic
5023 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5024                                                    const SDLoc &DL, EVT VT,
5025                                                    ArrayRef<SDValue> Ops,
5026                                                    const SDNodeFlags Flags) {
5027   // If the opcode is a target-specific ISD node, there's nothing we can
5028   // do here and the operand rules may not line up with the below, so
5029   // bail early.
5030   if (Opcode >= ISD::BUILTIN_OP_END)
5031     return SDValue();
5032 
5033   if (isUndef(Opcode, Ops))
5034     return getUNDEF(VT);
5035 
5036   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5037   if (!VT.isVector())
5038     return SDValue();
5039 
5040   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5041   // vector width, however we should be able to do constant folds involving
5042   // splat vector nodes too.
5043   if (VT.isScalableVector())
5044     return SDValue();
5045 
5046   // From this point onwards all vectors are assumed to be fixed width.
5047   unsigned NumElts = VT.getVectorNumElements();
5048 
5049   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5050     return !Op.getValueType().isVector() ||
5051            Op.getValueType().getVectorNumElements() == NumElts;
5052   };
5053 
5054   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5055     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5056     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5057            (BV && BV->isConstant());
5058   };
5059 
5060   // All operands must be vector types with the same number of elements as
5061   // the result type and must be either UNDEF or a build vector of constant
5062   // or UNDEF scalars.
5063   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5064       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5065     return SDValue();
5066 
5067   // If we are comparing vectors, then the result needs to be a i1 boolean
5068   // that is then sign-extended back to the legal result type.
5069   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5070 
5071   // Find legal integer scalar type for constant promotion and
5072   // ensure that its scalar size is at least as large as source.
5073   EVT LegalSVT = VT.getScalarType();
5074   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5075     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5076     if (LegalSVT.bitsLT(VT.getScalarType()))
5077       return SDValue();
5078   }
5079 
5080   // Constant fold each scalar lane separately.
5081   SmallVector<SDValue, 4> ScalarResults;
5082   for (unsigned i = 0; i != NumElts; i++) {
5083     SmallVector<SDValue, 4> ScalarOps;
5084     for (SDValue Op : Ops) {
5085       EVT InSVT = Op.getValueType().getScalarType();
5086       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5087       if (!InBV) {
5088         // We've checked that this is UNDEF or a constant of some kind.
5089         if (Op.isUndef())
5090           ScalarOps.push_back(getUNDEF(InSVT));
5091         else
5092           ScalarOps.push_back(Op);
5093         continue;
5094       }
5095 
5096       SDValue ScalarOp = InBV->getOperand(i);
5097       EVT ScalarVT = ScalarOp.getValueType();
5098 
5099       // Build vector (integer) scalar operands may need implicit
5100       // truncation - do this before constant folding.
5101       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5102         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5103 
5104       ScalarOps.push_back(ScalarOp);
5105     }
5106 
5107     // Constant fold the scalar operands.
5108     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5109 
5110     // Legalize the (integer) scalar constant if necessary.
5111     if (LegalSVT != SVT)
5112       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5113 
5114     // Scalar folding only succeeded if the result is a constant or UNDEF.
5115     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5116         ScalarResult.getOpcode() != ISD::ConstantFP)
5117       return SDValue();
5118     ScalarResults.push_back(ScalarResult);
5119   }
5120 
5121   SDValue V = getBuildVector(VT, DL, ScalarResults);
5122   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5123   return V;
5124 }
5125 
5126 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5127                                          EVT VT, SDValue N1, SDValue N2) {
5128   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5129   //       should. That will require dealing with a potentially non-default
5130   //       rounding mode, checking the "opStatus" return value from the APFloat
5131   //       math calculations, and possibly other variations.
5132   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5133   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5134   if (N1CFP && N2CFP) {
5135     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5136     switch (Opcode) {
5137     case ISD::FADD:
5138       C1.add(C2, APFloat::rmNearestTiesToEven);
5139       return getConstantFP(C1, DL, VT);
5140     case ISD::FSUB:
5141       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5142       return getConstantFP(C1, DL, VT);
5143     case ISD::FMUL:
5144       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5145       return getConstantFP(C1, DL, VT);
5146     case ISD::FDIV:
5147       C1.divide(C2, APFloat::rmNearestTiesToEven);
5148       return getConstantFP(C1, DL, VT);
5149     case ISD::FREM:
5150       C1.mod(C2);
5151       return getConstantFP(C1, DL, VT);
5152     case ISD::FCOPYSIGN:
5153       C1.copySign(C2);
5154       return getConstantFP(C1, DL, VT);
5155     default: break;
5156     }
5157   }
5158   if (N1CFP && Opcode == ISD::FP_ROUND) {
5159     APFloat C1 = N1CFP->getValueAPF();    // make copy
5160     bool Unused;
5161     // This can return overflow, underflow, or inexact; we don't care.
5162     // FIXME need to be more flexible about rounding mode.
5163     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5164                       &Unused);
5165     return getConstantFP(C1, DL, VT);
5166   }
5167 
5168   switch (Opcode) {
5169   case ISD::FSUB:
5170     // -0.0 - undef --> undef (consistent with "fneg undef")
5171     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5172       return getUNDEF(VT);
5173     LLVM_FALLTHROUGH;
5174 
5175   case ISD::FADD:
5176   case ISD::FMUL:
5177   case ISD::FDIV:
5178   case ISD::FREM:
5179     // If both operands are undef, the result is undef. If 1 operand is undef,
5180     // the result is NaN. This should match the behavior of the IR optimizer.
5181     if (N1.isUndef() && N2.isUndef())
5182       return getUNDEF(VT);
5183     if (N1.isUndef() || N2.isUndef())
5184       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5185   }
5186   return SDValue();
5187 }
5188 
5189 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5190                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5191   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5192   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5193   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5194   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5195 
5196   // Canonicalize constant to RHS if commutative.
5197   if (TLI->isCommutativeBinOp(Opcode)) {
5198     if (N1C && !N2C) {
5199       std::swap(N1C, N2C);
5200       std::swap(N1, N2);
5201     } else if (N1CFP && !N2CFP) {
5202       std::swap(N1CFP, N2CFP);
5203       std::swap(N1, N2);
5204     }
5205   }
5206 
5207   switch (Opcode) {
5208   default: break;
5209   case ISD::TokenFactor:
5210     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5211            N2.getValueType() == MVT::Other && "Invalid token factor!");
5212     // Fold trivial token factors.
5213     if (N1.getOpcode() == ISD::EntryToken) return N2;
5214     if (N2.getOpcode() == ISD::EntryToken) return N1;
5215     if (N1 == N2) return N1;
5216     break;
5217   case ISD::BUILD_VECTOR: {
5218     // Attempt to simplify BUILD_VECTOR.
5219     SDValue Ops[] = {N1, N2};
5220     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5221       return V;
5222     break;
5223   }
5224   case ISD::CONCAT_VECTORS: {
5225     SDValue Ops[] = {N1, N2};
5226     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5227       return V;
5228     break;
5229   }
5230   case ISD::AND:
5231     assert(VT.isInteger() && "This operator does not apply to FP types!");
5232     assert(N1.getValueType() == N2.getValueType() &&
5233            N1.getValueType() == VT && "Binary operator types must match!");
5234     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5235     // worth handling here.
5236     if (N2C && N2C->isNullValue())
5237       return N2;
5238     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5239       return N1;
5240     break;
5241   case ISD::OR:
5242   case ISD::XOR:
5243   case ISD::ADD:
5244   case ISD::SUB:
5245     assert(VT.isInteger() && "This operator does not apply to FP types!");
5246     assert(N1.getValueType() == N2.getValueType() &&
5247            N1.getValueType() == VT && "Binary operator types must match!");
5248     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5249     // it's worth handling here.
5250     if (N2C && N2C->isNullValue())
5251       return N1;
5252     break;
5253   case ISD::MUL:
5254     assert(VT.isInteger() && "This operator does not apply to FP types!");
5255     assert(N1.getValueType() == N2.getValueType() &&
5256            N1.getValueType() == VT && "Binary operator types must match!");
5257     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5258       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5259       APInt N2CImm = N2C->getAPIntValue();
5260       return getVScale(DL, VT, MulImm * N2CImm);
5261     }
5262     break;
5263   case ISD::UDIV:
5264   case ISD::UREM:
5265   case ISD::MULHU:
5266   case ISD::MULHS:
5267   case ISD::SDIV:
5268   case ISD::SREM:
5269   case ISD::SMIN:
5270   case ISD::SMAX:
5271   case ISD::UMIN:
5272   case ISD::UMAX:
5273   case ISD::SADDSAT:
5274   case ISD::SSUBSAT:
5275   case ISD::UADDSAT:
5276   case ISD::USUBSAT:
5277     assert(VT.isInteger() && "This operator does not apply to FP types!");
5278     assert(N1.getValueType() == N2.getValueType() &&
5279            N1.getValueType() == VT && "Binary operator types must match!");
5280     break;
5281   case ISD::FADD:
5282   case ISD::FSUB:
5283   case ISD::FMUL:
5284   case ISD::FDIV:
5285   case ISD::FREM:
5286     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5287     assert(N1.getValueType() == N2.getValueType() &&
5288            N1.getValueType() == VT && "Binary operator types must match!");
5289     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5290       return V;
5291     break;
5292   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5293     assert(N1.getValueType() == VT &&
5294            N1.getValueType().isFloatingPoint() &&
5295            N2.getValueType().isFloatingPoint() &&
5296            "Invalid FCOPYSIGN!");
5297     break;
5298   case ISD::SHL:
5299     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5300       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5301       APInt ShiftImm = N2C->getAPIntValue();
5302       return getVScale(DL, VT, MulImm << ShiftImm);
5303     }
5304     LLVM_FALLTHROUGH;
5305   case ISD::SRA:
5306   case ISD::SRL:
5307     if (SDValue V = simplifyShift(N1, N2))
5308       return V;
5309     LLVM_FALLTHROUGH;
5310   case ISD::ROTL:
5311   case ISD::ROTR:
5312     assert(VT == N1.getValueType() &&
5313            "Shift operators return type must be the same as their first arg");
5314     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5315            "Shifts only work on integers");
5316     assert((!VT.isVector() || VT == N2.getValueType()) &&
5317            "Vector shift amounts must be in the same as their first arg");
5318     // Verify that the shift amount VT is big enough to hold valid shift
5319     // amounts.  This catches things like trying to shift an i1024 value by an
5320     // i8, which is easy to fall into in generic code that uses
5321     // TLI.getShiftAmount().
5322     assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >=
5323                Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) &&
5324            "Invalid use of small shift amount with oversized value!");
5325 
5326     // Always fold shifts of i1 values so the code generator doesn't need to
5327     // handle them.  Since we know the size of the shift has to be less than the
5328     // size of the value, the shift/rotate count is guaranteed to be zero.
5329     if (VT == MVT::i1)
5330       return N1;
5331     if (N2C && N2C->isNullValue())
5332       return N1;
5333     break;
5334   case ISD::FP_ROUND:
5335     assert(VT.isFloatingPoint() &&
5336            N1.getValueType().isFloatingPoint() &&
5337            VT.bitsLE(N1.getValueType()) &&
5338            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5339            "Invalid FP_ROUND!");
5340     if (N1.getValueType() == VT) return N1;  // noop conversion.
5341     break;
5342   case ISD::AssertSext:
5343   case ISD::AssertZext: {
5344     EVT EVT = cast<VTSDNode>(N2)->getVT();
5345     assert(VT == N1.getValueType() && "Not an inreg extend!");
5346     assert(VT.isInteger() && EVT.isInteger() &&
5347            "Cannot *_EXTEND_INREG FP types");
5348     assert(!EVT.isVector() &&
5349            "AssertSExt/AssertZExt type should be the vector element type "
5350            "rather than the vector type!");
5351     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5352     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5353     break;
5354   }
5355   case ISD::SIGN_EXTEND_INREG: {
5356     EVT EVT = cast<VTSDNode>(N2)->getVT();
5357     assert(VT == N1.getValueType() && "Not an inreg extend!");
5358     assert(VT.isInteger() && EVT.isInteger() &&
5359            "Cannot *_EXTEND_INREG FP types");
5360     assert(EVT.isVector() == VT.isVector() &&
5361            "SIGN_EXTEND_INREG type should be vector iff the operand "
5362            "type is vector!");
5363     assert((!EVT.isVector() ||
5364             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5365            "Vector element counts must match in SIGN_EXTEND_INREG");
5366     assert(EVT.bitsLE(VT) && "Not extending!");
5367     if (EVT == VT) return N1;  // Not actually extending
5368 
5369     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5370       unsigned FromBits = EVT.getScalarSizeInBits();
5371       Val <<= Val.getBitWidth() - FromBits;
5372       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5373       return getConstant(Val, DL, ConstantVT);
5374     };
5375 
5376     if (N1C) {
5377       const APInt &Val = N1C->getAPIntValue();
5378       return SignExtendInReg(Val, VT);
5379     }
5380     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5381       SmallVector<SDValue, 8> Ops;
5382       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5383       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5384         SDValue Op = N1.getOperand(i);
5385         if (Op.isUndef()) {
5386           Ops.push_back(getUNDEF(OpVT));
5387           continue;
5388         }
5389         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5390         APInt Val = C->getAPIntValue();
5391         Ops.push_back(SignExtendInReg(Val, OpVT));
5392       }
5393       return getBuildVector(VT, DL, Ops);
5394     }
5395     break;
5396   }
5397   case ISD::EXTRACT_VECTOR_ELT:
5398     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5399            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5400              element type of the vector.");
5401 
5402     // Extract from an undefined value or using an undefined index is undefined.
5403     if (N1.isUndef() || N2.isUndef())
5404       return getUNDEF(VT);
5405 
5406     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5407     // vectors. For scalable vectors we will provide appropriate support for
5408     // dealing with arbitrary indices.
5409     if (N2C && N1.getValueType().isFixedLengthVector() &&
5410         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5411       return getUNDEF(VT);
5412 
5413     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5414     // expanding copies of large vectors from registers. This only works for
5415     // fixed length vectors, since we need to know the exact number of
5416     // elements.
5417     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5418         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5419       unsigned Factor =
5420         N1.getOperand(0).getValueType().getVectorNumElements();
5421       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5422                      N1.getOperand(N2C->getZExtValue() / Factor),
5423                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5424     }
5425 
5426     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5427     // lowering is expanding large vector constants.
5428     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5429                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5430       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5431               N1.getValueType().isFixedLengthVector()) &&
5432              "BUILD_VECTOR used for scalable vectors");
5433       unsigned Index =
5434           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5435       SDValue Elt = N1.getOperand(Index);
5436 
5437       if (VT != Elt.getValueType())
5438         // If the vector element type is not legal, the BUILD_VECTOR operands
5439         // are promoted and implicitly truncated, and the result implicitly
5440         // extended. Make that explicit here.
5441         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5442 
5443       return Elt;
5444     }
5445 
5446     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5447     // operations are lowered to scalars.
5448     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5449       // If the indices are the same, return the inserted element else
5450       // if the indices are known different, extract the element from
5451       // the original vector.
5452       SDValue N1Op2 = N1.getOperand(2);
5453       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5454 
5455       if (N1Op2C && N2C) {
5456         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5457           if (VT == N1.getOperand(1).getValueType())
5458             return N1.getOperand(1);
5459           else
5460             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5461         }
5462 
5463         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5464       }
5465     }
5466 
5467     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5468     // when vector types are scalarized and v1iX is legal.
5469     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5470     // Here we are completely ignoring the extract element index (N2),
5471     // which is fine for fixed width vectors, since any index other than 0
5472     // is undefined anyway. However, this cannot be ignored for scalable
5473     // vectors - in theory we could support this, but we don't want to do this
5474     // without a profitability check.
5475     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5476         N1.getValueType().isFixedLengthVector() &&
5477         N1.getValueType().getVectorNumElements() == 1) {
5478       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5479                      N1.getOperand(1));
5480     }
5481     break;
5482   case ISD::EXTRACT_ELEMENT:
5483     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5484     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5485            (N1.getValueType().isInteger() == VT.isInteger()) &&
5486            N1.getValueType() != VT &&
5487            "Wrong types for EXTRACT_ELEMENT!");
5488 
5489     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5490     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5491     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5492     if (N1.getOpcode() == ISD::BUILD_PAIR)
5493       return N1.getOperand(N2C->getZExtValue());
5494 
5495     // EXTRACT_ELEMENT of a constant int is also very common.
5496     if (N1C) {
5497       unsigned ElementSize = VT.getSizeInBits();
5498       unsigned Shift = ElementSize * N2C->getZExtValue();
5499       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5500       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5501     }
5502     break;
5503   case ISD::EXTRACT_SUBVECTOR:
5504     EVT N1VT = N1.getValueType();
5505     assert(VT.isVector() && N1VT.isVector() &&
5506            "Extract subvector VTs must be vectors!");
5507     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5508            "Extract subvector VTs must have the same element type!");
5509     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5510            "Cannot extract a scalable vector from a fixed length vector!");
5511     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5512             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5513            "Extract subvector must be from larger vector to smaller vector!");
5514     assert(N2C && "Extract subvector index must be a constant");
5515     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5516             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5517                 N1VT.getVectorMinNumElements()) &&
5518            "Extract subvector overflow!");
5519 
5520     // Trivial extraction.
5521     if (VT == N1VT)
5522       return N1;
5523 
5524     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5525     if (N1.isUndef())
5526       return getUNDEF(VT);
5527 
5528     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5529     // the concat have the same type as the extract.
5530     if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5531         N1.getNumOperands() > 0 && VT == N1.getOperand(0).getValueType()) {
5532       unsigned Factor = VT.getVectorNumElements();
5533       return N1.getOperand(N2C->getZExtValue() / Factor);
5534     }
5535 
5536     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5537     // during shuffle legalization.
5538     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5539         VT == N1.getOperand(1).getValueType())
5540       return N1.getOperand(1);
5541     break;
5542   }
5543 
5544   // Perform trivial constant folding.
5545   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5546     return SV;
5547 
5548   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5549     return V;
5550 
5551   // Canonicalize an UNDEF to the RHS, even over a constant.
5552   if (N1.isUndef()) {
5553     if (TLI->isCommutativeBinOp(Opcode)) {
5554       std::swap(N1, N2);
5555     } else {
5556       switch (Opcode) {
5557       case ISD::SIGN_EXTEND_INREG:
5558       case ISD::SUB:
5559         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5560       case ISD::UDIV:
5561       case ISD::SDIV:
5562       case ISD::UREM:
5563       case ISD::SREM:
5564       case ISD::SSUBSAT:
5565       case ISD::USUBSAT:
5566         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5567       }
5568     }
5569   }
5570 
5571   // Fold a bunch of operators when the RHS is undef.
5572   if (N2.isUndef()) {
5573     switch (Opcode) {
5574     case ISD::XOR:
5575       if (N1.isUndef())
5576         // Handle undef ^ undef -> 0 special case. This is a common
5577         // idiom (misuse).
5578         return getConstant(0, DL, VT);
5579       LLVM_FALLTHROUGH;
5580     case ISD::ADD:
5581     case ISD::SUB:
5582     case ISD::UDIV:
5583     case ISD::SDIV:
5584     case ISD::UREM:
5585     case ISD::SREM:
5586       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5587     case ISD::MUL:
5588     case ISD::AND:
5589     case ISD::SSUBSAT:
5590     case ISD::USUBSAT:
5591       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5592     case ISD::OR:
5593     case ISD::SADDSAT:
5594     case ISD::UADDSAT:
5595       return getAllOnesConstant(DL, VT);
5596     }
5597   }
5598 
5599   // Memoize this node if possible.
5600   SDNode *N;
5601   SDVTList VTs = getVTList(VT);
5602   SDValue Ops[] = {N1, N2};
5603   if (VT != MVT::Glue) {
5604     FoldingSetNodeID ID;
5605     AddNodeIDNode(ID, Opcode, VTs, Ops);
5606     void *IP = nullptr;
5607     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5608       E->intersectFlagsWith(Flags);
5609       return SDValue(E, 0);
5610     }
5611 
5612     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5613     N->setFlags(Flags);
5614     createOperands(N, Ops);
5615     CSEMap.InsertNode(N, IP);
5616   } else {
5617     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5618     createOperands(N, Ops);
5619   }
5620 
5621   InsertNode(N);
5622   SDValue V = SDValue(N, 0);
5623   NewSDValueDbgMsg(V, "Creating new node: ", this);
5624   return V;
5625 }
5626 
5627 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5628                               SDValue N1, SDValue N2, SDValue N3,
5629                               const SDNodeFlags Flags) {
5630   // Perform various simplifications.
5631   switch (Opcode) {
5632   case ISD::FMA: {
5633     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5634     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5635            N3.getValueType() == VT && "FMA types must match!");
5636     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5637     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5638     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5639     if (N1CFP && N2CFP && N3CFP) {
5640       APFloat  V1 = N1CFP->getValueAPF();
5641       const APFloat &V2 = N2CFP->getValueAPF();
5642       const APFloat &V3 = N3CFP->getValueAPF();
5643       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5644       return getConstantFP(V1, DL, VT);
5645     }
5646     break;
5647   }
5648   case ISD::BUILD_VECTOR: {
5649     // Attempt to simplify BUILD_VECTOR.
5650     SDValue Ops[] = {N1, N2, N3};
5651     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5652       return V;
5653     break;
5654   }
5655   case ISD::CONCAT_VECTORS: {
5656     SDValue Ops[] = {N1, N2, N3};
5657     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5658       return V;
5659     break;
5660   }
5661   case ISD::SETCC: {
5662     assert(VT.isInteger() && "SETCC result type must be an integer!");
5663     assert(N1.getValueType() == N2.getValueType() &&
5664            "SETCC operands must have the same type!");
5665     assert(VT.isVector() == N1.getValueType().isVector() &&
5666            "SETCC type should be vector iff the operand type is vector!");
5667     assert((!VT.isVector() || VT.getVectorElementCount() ==
5668                                   N1.getValueType().getVectorElementCount()) &&
5669            "SETCC vector element counts must match!");
5670     // Use FoldSetCC to simplify SETCC's.
5671     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5672       return V;
5673     // Vector constant folding.
5674     SDValue Ops[] = {N1, N2, N3};
5675     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5676       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5677       return V;
5678     }
5679     break;
5680   }
5681   case ISD::SELECT:
5682   case ISD::VSELECT:
5683     if (SDValue V = simplifySelect(N1, N2, N3))
5684       return V;
5685     break;
5686   case ISD::VECTOR_SHUFFLE:
5687     llvm_unreachable("should use getVectorShuffle constructor!");
5688   case ISD::INSERT_VECTOR_ELT: {
5689     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5690     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5691     // for scalable vectors where we will generate appropriate code to
5692     // deal with out-of-bounds cases correctly.
5693     if (N3C && N1.getValueType().isFixedLengthVector() &&
5694         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5695       return getUNDEF(VT);
5696 
5697     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5698     if (N3.isUndef())
5699       return getUNDEF(VT);
5700 
5701     // If the inserted element is an UNDEF, just use the input vector.
5702     if (N2.isUndef())
5703       return N1;
5704 
5705     break;
5706   }
5707   case ISD::INSERT_SUBVECTOR: {
5708     // Inserting undef into undef is still undef.
5709     if (N1.isUndef() && N2.isUndef())
5710       return getUNDEF(VT);
5711 
5712     EVT N2VT = N2.getValueType();
5713     assert(VT == N1.getValueType() &&
5714            "Dest and insert subvector source types must match!");
5715     assert(VT.isVector() && N2VT.isVector() &&
5716            "Insert subvector VTs must be vectors!");
5717     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5718            "Cannot insert a scalable vector into a fixed length vector!");
5719     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5720             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5721            "Insert subvector must be from smaller vector to larger vector!");
5722     assert(isa<ConstantSDNode>(N3) &&
5723            "Insert subvector index must be constant");
5724     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5725             (N2VT.getVectorMinNumElements() +
5726              cast<ConstantSDNode>(N3)->getZExtValue()) <=
5727                 VT.getVectorMinNumElements()) &&
5728            "Insert subvector overflow!");
5729 
5730     // Trivial insertion.
5731     if (VT == N2VT)
5732       return N2;
5733 
5734     // If this is an insert of an extracted vector into an undef vector, we
5735     // can just use the input to the extract.
5736     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5737         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5738       return N2.getOperand(0);
5739     break;
5740   }
5741   case ISD::BITCAST:
5742     // Fold bit_convert nodes from a type to themselves.
5743     if (N1.getValueType() == VT)
5744       return N1;
5745     break;
5746   }
5747 
5748   // Memoize node if it doesn't produce a flag.
5749   SDNode *N;
5750   SDVTList VTs = getVTList(VT);
5751   SDValue Ops[] = {N1, N2, N3};
5752   if (VT != MVT::Glue) {
5753     FoldingSetNodeID ID;
5754     AddNodeIDNode(ID, Opcode, VTs, Ops);
5755     void *IP = nullptr;
5756     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5757       E->intersectFlagsWith(Flags);
5758       return SDValue(E, 0);
5759     }
5760 
5761     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5762     N->setFlags(Flags);
5763     createOperands(N, Ops);
5764     CSEMap.InsertNode(N, IP);
5765   } else {
5766     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5767     createOperands(N, Ops);
5768   }
5769 
5770   InsertNode(N);
5771   SDValue V = SDValue(N, 0);
5772   NewSDValueDbgMsg(V, "Creating new node: ", this);
5773   return V;
5774 }
5775 
5776 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5777                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5778   SDValue Ops[] = { N1, N2, N3, N4 };
5779   return getNode(Opcode, DL, VT, Ops);
5780 }
5781 
5782 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5783                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5784                               SDValue N5) {
5785   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5786   return getNode(Opcode, DL, VT, Ops);
5787 }
5788 
5789 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5790 /// the incoming stack arguments to be loaded from the stack.
5791 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5792   SmallVector<SDValue, 8> ArgChains;
5793 
5794   // Include the original chain at the beginning of the list. When this is
5795   // used by target LowerCall hooks, this helps legalize find the
5796   // CALLSEQ_BEGIN node.
5797   ArgChains.push_back(Chain);
5798 
5799   // Add a chain value for each stack argument.
5800   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5801        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5802     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5803       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5804         if (FI->getIndex() < 0)
5805           ArgChains.push_back(SDValue(L, 1));
5806 
5807   // Build a tokenfactor for all the chains.
5808   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5809 }
5810 
5811 /// getMemsetValue - Vectorized representation of the memset value
5812 /// operand.
5813 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5814                               const SDLoc &dl) {
5815   assert(!Value.isUndef());
5816 
5817   unsigned NumBits = VT.getScalarSizeInBits();
5818   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5819     assert(C->getAPIntValue().getBitWidth() == 8);
5820     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5821     if (VT.isInteger()) {
5822       bool IsOpaque = VT.getSizeInBits() > 64 ||
5823           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5824       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5825     }
5826     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5827                              VT);
5828   }
5829 
5830   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5831   EVT IntVT = VT.getScalarType();
5832   if (!IntVT.isInteger())
5833     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5834 
5835   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5836   if (NumBits > 8) {
5837     // Use a multiplication with 0x010101... to extend the input to the
5838     // required length.
5839     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5840     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5841                         DAG.getConstant(Magic, dl, IntVT));
5842   }
5843 
5844   if (VT != Value.getValueType() && !VT.isInteger())
5845     Value = DAG.getBitcast(VT.getScalarType(), Value);
5846   if (VT != Value.getValueType())
5847     Value = DAG.getSplatBuildVector(VT, dl, Value);
5848 
5849   return Value;
5850 }
5851 
5852 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5853 /// used when a memcpy is turned into a memset when the source is a constant
5854 /// string ptr.
5855 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5856                                   const TargetLowering &TLI,
5857                                   const ConstantDataArraySlice &Slice) {
5858   // Handle vector with all elements zero.
5859   if (Slice.Array == nullptr) {
5860     if (VT.isInteger())
5861       return DAG.getConstant(0, dl, VT);
5862     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5863       return DAG.getConstantFP(0.0, dl, VT);
5864     else if (VT.isVector()) {
5865       unsigned NumElts = VT.getVectorNumElements();
5866       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5867       return DAG.getNode(ISD::BITCAST, dl, VT,
5868                          DAG.getConstant(0, dl,
5869                                          EVT::getVectorVT(*DAG.getContext(),
5870                                                           EltVT, NumElts)));
5871     } else
5872       llvm_unreachable("Expected type!");
5873   }
5874 
5875   assert(!VT.isVector() && "Can't handle vector type here!");
5876   unsigned NumVTBits = VT.getSizeInBits();
5877   unsigned NumVTBytes = NumVTBits / 8;
5878   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5879 
5880   APInt Val(NumVTBits, 0);
5881   if (DAG.getDataLayout().isLittleEndian()) {
5882     for (unsigned i = 0; i != NumBytes; ++i)
5883       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5884   } else {
5885     for (unsigned i = 0; i != NumBytes; ++i)
5886       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5887   }
5888 
5889   // If the "cost" of materializing the integer immediate is less than the cost
5890   // of a load, then it is cost effective to turn the load into the immediate.
5891   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5892   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5893     return DAG.getConstant(Val, dl, VT);
5894   return SDValue(nullptr, 0);
5895 }
5896 
5897 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset,
5898                                            const SDLoc &DL,
5899                                            const SDNodeFlags Flags) {
5900   EVT VT = Base.getValueType();
5901   return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags);
5902 }
5903 
5904 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5905                                            const SDLoc &DL,
5906                                            const SDNodeFlags Flags) {
5907   assert(Offset.getValueType().isInteger());
5908   EVT BasePtrVT = Ptr.getValueType();
5909   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5910 }
5911 
5912 /// Returns true if memcpy source is constant data.
5913 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5914   uint64_t SrcDelta = 0;
5915   GlobalAddressSDNode *G = nullptr;
5916   if (Src.getOpcode() == ISD::GlobalAddress)
5917     G = cast<GlobalAddressSDNode>(Src);
5918   else if (Src.getOpcode() == ISD::ADD &&
5919            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5920            Src.getOperand(1).getOpcode() == ISD::Constant) {
5921     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5922     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5923   }
5924   if (!G)
5925     return false;
5926 
5927   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5928                                   SrcDelta + G->getOffset());
5929 }
5930 
5931 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
5932                                       SelectionDAG &DAG) {
5933   // On Darwin, -Os means optimize for size without hurting performance, so
5934   // only really optimize for size when -Oz (MinSize) is used.
5935   if (MF.getTarget().getTargetTriple().isOSDarwin())
5936     return MF.getFunction().hasMinSize();
5937   return DAG.shouldOptForSize();
5938 }
5939 
5940 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5941                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5942                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5943                           SmallVector<SDValue, 16> &OutStoreChains) {
5944   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5945   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5946   SmallVector<SDValue, 16> GluedLoadChains;
5947   for (unsigned i = From; i < To; ++i) {
5948     OutChains.push_back(OutLoadChains[i]);
5949     GluedLoadChains.push_back(OutLoadChains[i]);
5950   }
5951 
5952   // Chain for all loads.
5953   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5954                                   GluedLoadChains);
5955 
5956   for (unsigned i = From; i < To; ++i) {
5957     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5958     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5959                                   ST->getBasePtr(), ST->getMemoryVT(),
5960                                   ST->getMemOperand());
5961     OutChains.push_back(NewStore);
5962   }
5963 }
5964 
5965 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5966                                        SDValue Chain, SDValue Dst, SDValue Src,
5967                                        uint64_t Size, Align Alignment,
5968                                        bool isVol, bool AlwaysInline,
5969                                        MachinePointerInfo DstPtrInfo,
5970                                        MachinePointerInfo SrcPtrInfo) {
5971   // Turn a memcpy of undef to nop.
5972   // FIXME: We need to honor volatile even is Src is undef.
5973   if (Src.isUndef())
5974     return Chain;
5975 
5976   // Expand memcpy to a series of load and store ops if the size operand falls
5977   // below a certain threshold.
5978   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5979   // rather than maybe a humongous number of loads and stores.
5980   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5981   const DataLayout &DL = DAG.getDataLayout();
5982   LLVMContext &C = *DAG.getContext();
5983   std::vector<EVT> MemOps;
5984   bool DstAlignCanChange = false;
5985   MachineFunction &MF = DAG.getMachineFunction();
5986   MachineFrameInfo &MFI = MF.getFrameInfo();
5987   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
5988   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5989   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5990     DstAlignCanChange = true;
5991   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
5992   if (!SrcAlign || Alignment > *SrcAlign)
5993     SrcAlign = Alignment;
5994   assert(SrcAlign && "SrcAlign must be set");
5995   ConstantDataArraySlice Slice;
5996   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5997   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5998   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5999   const MemOp Op = isZeroConstant
6000                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6001                                     /*IsZeroMemset*/ true, isVol)
6002                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6003                                      *SrcAlign, isVol, CopyFromConstant);
6004   if (!TLI.findOptimalMemOpLowering(
6005           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6006           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6007     return SDValue();
6008 
6009   if (DstAlignCanChange) {
6010     Type *Ty = MemOps[0].getTypeForEVT(C);
6011     Align NewAlign = DL.getABITypeAlign(Ty);
6012 
6013     // Don't promote to an alignment that would require dynamic stack
6014     // realignment.
6015     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6016     if (!TRI->needsStackRealignment(MF))
6017       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6018         NewAlign = NewAlign / 2;
6019 
6020     if (NewAlign > Alignment) {
6021       // Give the stack frame object a larger alignment if needed.
6022       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6023         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6024       Alignment = NewAlign;
6025     }
6026   }
6027 
6028   MachineMemOperand::Flags MMOFlags =
6029       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6030   SmallVector<SDValue, 16> OutLoadChains;
6031   SmallVector<SDValue, 16> OutStoreChains;
6032   SmallVector<SDValue, 32> OutChains;
6033   unsigned NumMemOps = MemOps.size();
6034   uint64_t SrcOff = 0, DstOff = 0;
6035   for (unsigned i = 0; i != NumMemOps; ++i) {
6036     EVT VT = MemOps[i];
6037     unsigned VTSize = VT.getSizeInBits() / 8;
6038     SDValue Value, Store;
6039 
6040     if (VTSize > Size) {
6041       // Issuing an unaligned load / store pair  that overlaps with the previous
6042       // pair. Adjust the offset accordingly.
6043       assert(i == NumMemOps-1 && i != 0);
6044       SrcOff -= VTSize - Size;
6045       DstOff -= VTSize - Size;
6046     }
6047 
6048     if (CopyFromConstant &&
6049         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6050       // It's unlikely a store of a vector immediate can be done in a single
6051       // instruction. It would require a load from a constantpool first.
6052       // We only handle zero vectors here.
6053       // FIXME: Handle other cases where store of vector immediate is done in
6054       // a single instruction.
6055       ConstantDataArraySlice SubSlice;
6056       if (SrcOff < Slice.Length) {
6057         SubSlice = Slice;
6058         SubSlice.move(SrcOff);
6059       } else {
6060         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6061         SubSlice.Array = nullptr;
6062         SubSlice.Offset = 0;
6063         SubSlice.Length = VTSize;
6064       }
6065       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6066       if (Value.getNode()) {
6067         Store = DAG.getStore(
6068             Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6069             DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
6070         OutChains.push_back(Store);
6071       }
6072     }
6073 
6074     if (!Store.getNode()) {
6075       // The type might not be legal for the target.  This should only happen
6076       // if the type is smaller than a legal type, as on PPC, so the right
6077       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6078       // to Load/Store if NVT==VT.
6079       // FIXME does the case above also need this?
6080       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6081       assert(NVT.bitsGE(VT));
6082 
6083       bool isDereferenceable =
6084         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6085       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6086       if (isDereferenceable)
6087         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6088 
6089       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
6090                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6091                              SrcPtrInfo.getWithOffset(SrcOff), VT,
6092                              commonAlignment(*SrcAlign, SrcOff).value(),
6093                              SrcMMOFlags);
6094       OutLoadChains.push_back(Value.getValue(1));
6095 
6096       Store = DAG.getTruncStore(
6097           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6098           DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags);
6099       OutStoreChains.push_back(Store);
6100     }
6101     SrcOff += VTSize;
6102     DstOff += VTSize;
6103     Size -= VTSize;
6104   }
6105 
6106   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6107                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6108   unsigned NumLdStInMemcpy = OutStoreChains.size();
6109 
6110   if (NumLdStInMemcpy) {
6111     // It may be that memcpy might be converted to memset if it's memcpy
6112     // of constants. In such a case, we won't have loads and stores, but
6113     // just stores. In the absence of loads, there is nothing to gang up.
6114     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6115       // If target does not care, just leave as it.
6116       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6117         OutChains.push_back(OutLoadChains[i]);
6118         OutChains.push_back(OutStoreChains[i]);
6119       }
6120     } else {
6121       // Ld/St less than/equal limit set by target.
6122       if (NumLdStInMemcpy <= GluedLdStLimit) {
6123           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6124                                         NumLdStInMemcpy, OutLoadChains,
6125                                         OutStoreChains);
6126       } else {
6127         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6128         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6129         unsigned GlueIter = 0;
6130 
6131         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6132           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6133           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6134 
6135           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6136                                        OutLoadChains, OutStoreChains);
6137           GlueIter += GluedLdStLimit;
6138         }
6139 
6140         // Residual ld/st.
6141         if (RemainingLdStInMemcpy) {
6142           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6143                                         RemainingLdStInMemcpy, OutLoadChains,
6144                                         OutStoreChains);
6145         }
6146       }
6147     }
6148   }
6149   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6150 }
6151 
6152 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6153                                         SDValue Chain, SDValue Dst, SDValue Src,
6154                                         uint64_t Size, Align Alignment,
6155                                         bool isVol, bool AlwaysInline,
6156                                         MachinePointerInfo DstPtrInfo,
6157                                         MachinePointerInfo SrcPtrInfo) {
6158   // Turn a memmove of undef to nop.
6159   // FIXME: We need to honor volatile even is Src is undef.
6160   if (Src.isUndef())
6161     return Chain;
6162 
6163   // Expand memmove to a series of load and store ops if the size operand falls
6164   // below a certain threshold.
6165   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6166   const DataLayout &DL = DAG.getDataLayout();
6167   LLVMContext &C = *DAG.getContext();
6168   std::vector<EVT> MemOps;
6169   bool DstAlignCanChange = false;
6170   MachineFunction &MF = DAG.getMachineFunction();
6171   MachineFrameInfo &MFI = MF.getFrameInfo();
6172   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6173   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6174   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6175     DstAlignCanChange = true;
6176   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6177   if (!SrcAlign || Alignment > *SrcAlign)
6178     SrcAlign = Alignment;
6179   assert(SrcAlign && "SrcAlign must be set");
6180   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6181   if (!TLI.findOptimalMemOpLowering(
6182           MemOps, Limit,
6183           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6184                       /*IsVolatile*/ true),
6185           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6186           MF.getFunction().getAttributes()))
6187     return SDValue();
6188 
6189   if (DstAlignCanChange) {
6190     Type *Ty = MemOps[0].getTypeForEVT(C);
6191     Align NewAlign = DL.getABITypeAlign(Ty);
6192     if (NewAlign > Alignment) {
6193       // Give the stack frame object a larger alignment if needed.
6194       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6195         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6196       Alignment = NewAlign;
6197     }
6198   }
6199 
6200   MachineMemOperand::Flags MMOFlags =
6201       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6202   uint64_t SrcOff = 0, DstOff = 0;
6203   SmallVector<SDValue, 8> LoadValues;
6204   SmallVector<SDValue, 8> LoadChains;
6205   SmallVector<SDValue, 8> OutChains;
6206   unsigned NumMemOps = MemOps.size();
6207   for (unsigned i = 0; i < NumMemOps; i++) {
6208     EVT VT = MemOps[i];
6209     unsigned VTSize = VT.getSizeInBits() / 8;
6210     SDValue Value;
6211 
6212     bool isDereferenceable =
6213       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6214     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6215     if (isDereferenceable)
6216       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6217 
6218     Value = DAG.getLoad(
6219         VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6220         SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags);
6221     LoadValues.push_back(Value);
6222     LoadChains.push_back(Value.getValue(1));
6223     SrcOff += VTSize;
6224   }
6225   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6226   OutChains.clear();
6227   for (unsigned i = 0; i < NumMemOps; i++) {
6228     EVT VT = MemOps[i];
6229     unsigned VTSize = VT.getSizeInBits() / 8;
6230     SDValue Store;
6231 
6232     Store = DAG.getStore(
6233         Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6234         DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
6235     OutChains.push_back(Store);
6236     DstOff += VTSize;
6237   }
6238 
6239   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6240 }
6241 
6242 /// Lower the call to 'memset' intrinsic function into a series of store
6243 /// operations.
6244 ///
6245 /// \param DAG Selection DAG where lowered code is placed.
6246 /// \param dl Link to corresponding IR location.
6247 /// \param Chain Control flow dependency.
6248 /// \param Dst Pointer to destination memory location.
6249 /// \param Src Value of byte to write into the memory.
6250 /// \param Size Number of bytes to write.
6251 /// \param Alignment Alignment of the destination in bytes.
6252 /// \param isVol True if destination is volatile.
6253 /// \param DstPtrInfo IR information on the memory pointer.
6254 /// \returns New head in the control flow, if lowering was successful, empty
6255 /// SDValue otherwise.
6256 ///
6257 /// The function tries to replace 'llvm.memset' intrinsic with several store
6258 /// operations and value calculation code. This is usually profitable for small
6259 /// memory size.
6260 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6261                                SDValue Chain, SDValue Dst, SDValue Src,
6262                                uint64_t Size, Align Alignment, bool isVol,
6263                                MachinePointerInfo DstPtrInfo) {
6264   // Turn a memset of undef to nop.
6265   // FIXME: We need to honor volatile even is Src is undef.
6266   if (Src.isUndef())
6267     return Chain;
6268 
6269   // Expand memset to a series of load/store ops if the size operand
6270   // falls below a certain threshold.
6271   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6272   std::vector<EVT> MemOps;
6273   bool DstAlignCanChange = false;
6274   MachineFunction &MF = DAG.getMachineFunction();
6275   MachineFrameInfo &MFI = MF.getFrameInfo();
6276   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6277   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6278   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6279     DstAlignCanChange = true;
6280   bool IsZeroVal =
6281     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6282   if (!TLI.findOptimalMemOpLowering(
6283           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6284           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6285           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6286     return SDValue();
6287 
6288   if (DstAlignCanChange) {
6289     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6290     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6291     if (NewAlign > Alignment) {
6292       // Give the stack frame object a larger alignment if needed.
6293       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6294         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6295       Alignment = NewAlign;
6296     }
6297   }
6298 
6299   SmallVector<SDValue, 8> OutChains;
6300   uint64_t DstOff = 0;
6301   unsigned NumMemOps = MemOps.size();
6302 
6303   // Find the largest store and generate the bit pattern for it.
6304   EVT LargestVT = MemOps[0];
6305   for (unsigned i = 1; i < NumMemOps; i++)
6306     if (MemOps[i].bitsGT(LargestVT))
6307       LargestVT = MemOps[i];
6308   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6309 
6310   for (unsigned i = 0; i < NumMemOps; i++) {
6311     EVT VT = MemOps[i];
6312     unsigned VTSize = VT.getSizeInBits() / 8;
6313     if (VTSize > Size) {
6314       // Issuing an unaligned load / store pair  that overlaps with the previous
6315       // pair. Adjust the offset accordingly.
6316       assert(i == NumMemOps-1 && i != 0);
6317       DstOff -= VTSize - Size;
6318     }
6319 
6320     // If this store is smaller than the largest store see whether we can get
6321     // the smaller value for free with a truncate.
6322     SDValue Value = MemSetValue;
6323     if (VT.bitsLT(LargestVT)) {
6324       if (!LargestVT.isVector() && !VT.isVector() &&
6325           TLI.isTruncateFree(LargestVT, VT))
6326         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6327       else
6328         Value = getMemsetValue(Src, VT, DAG, dl);
6329     }
6330     assert(Value.getValueType() == VT && "Value with wrong type.");
6331     SDValue Store = DAG.getStore(
6332         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6333         DstPtrInfo.getWithOffset(DstOff), Alignment.value(),
6334         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6335     OutChains.push_back(Store);
6336     DstOff += VT.getSizeInBits() / 8;
6337     Size -= VTSize;
6338   }
6339 
6340   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6341 }
6342 
6343 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6344                                             unsigned AS) {
6345   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6346   // pointer operands can be losslessly bitcasted to pointers of address space 0
6347   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6348     report_fatal_error("cannot lower memory intrinsic in address space " +
6349                        Twine(AS));
6350   }
6351 }
6352 
6353 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6354                                 SDValue Src, SDValue Size, Align Alignment,
6355                                 bool isVol, bool AlwaysInline, bool isTailCall,
6356                                 MachinePointerInfo DstPtrInfo,
6357                                 MachinePointerInfo SrcPtrInfo) {
6358   // Check to see if we should lower the memcpy to loads and stores first.
6359   // For cases within the target-specified limits, this is the best choice.
6360   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6361   if (ConstantSize) {
6362     // Memcpy with size zero? Just return the original chain.
6363     if (ConstantSize->isNullValue())
6364       return Chain;
6365 
6366     SDValue Result = getMemcpyLoadsAndStores(
6367         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6368         isVol, false, DstPtrInfo, SrcPtrInfo);
6369     if (Result.getNode())
6370       return Result;
6371   }
6372 
6373   // Then check to see if we should lower the memcpy with target-specific
6374   // code. If the target chooses to do this, this is the next best.
6375   if (TSI) {
6376     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6377         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol,
6378         AlwaysInline, DstPtrInfo, SrcPtrInfo);
6379     if (Result.getNode())
6380       return Result;
6381   }
6382 
6383   // If we really need inline code and the target declined to provide it,
6384   // use a (potentially long) sequence of loads and stores.
6385   if (AlwaysInline) {
6386     assert(ConstantSize && "AlwaysInline requires a constant size!");
6387     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6388                                    ConstantSize->getZExtValue(), Alignment,
6389                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6390   }
6391 
6392   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6393   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6394 
6395   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6396   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6397   // respect volatile, so they may do things like read or write memory
6398   // beyond the given memory regions. But fixing this isn't easy, and most
6399   // people don't care.
6400 
6401   // Emit a library call.
6402   TargetLowering::ArgListTy Args;
6403   TargetLowering::ArgListEntry Entry;
6404   Entry.Ty = Type::getInt8PtrTy(*getContext());
6405   Entry.Node = Dst; Args.push_back(Entry);
6406   Entry.Node = Src; Args.push_back(Entry);
6407 
6408   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6409   Entry.Node = Size; Args.push_back(Entry);
6410   // FIXME: pass in SDLoc
6411   TargetLowering::CallLoweringInfo CLI(*this);
6412   CLI.setDebugLoc(dl)
6413       .setChain(Chain)
6414       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6415                     Dst.getValueType().getTypeForEVT(*getContext()),
6416                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6417                                       TLI->getPointerTy(getDataLayout())),
6418                     std::move(Args))
6419       .setDiscardResult()
6420       .setTailCall(isTailCall);
6421 
6422   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6423   return CallResult.second;
6424 }
6425 
6426 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6427                                       SDValue Dst, unsigned DstAlign,
6428                                       SDValue Src, unsigned SrcAlign,
6429                                       SDValue Size, Type *SizeTy,
6430                                       unsigned ElemSz, bool isTailCall,
6431                                       MachinePointerInfo DstPtrInfo,
6432                                       MachinePointerInfo SrcPtrInfo) {
6433   // Emit a library call.
6434   TargetLowering::ArgListTy Args;
6435   TargetLowering::ArgListEntry Entry;
6436   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6437   Entry.Node = Dst;
6438   Args.push_back(Entry);
6439 
6440   Entry.Node = Src;
6441   Args.push_back(Entry);
6442 
6443   Entry.Ty = SizeTy;
6444   Entry.Node = Size;
6445   Args.push_back(Entry);
6446 
6447   RTLIB::Libcall LibraryCall =
6448       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6449   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6450     report_fatal_error("Unsupported element size");
6451 
6452   TargetLowering::CallLoweringInfo CLI(*this);
6453   CLI.setDebugLoc(dl)
6454       .setChain(Chain)
6455       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6456                     Type::getVoidTy(*getContext()),
6457                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6458                                       TLI->getPointerTy(getDataLayout())),
6459                     std::move(Args))
6460       .setDiscardResult()
6461       .setTailCall(isTailCall);
6462 
6463   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6464   return CallResult.second;
6465 }
6466 
6467 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6468                                  SDValue Src, SDValue Size, Align Alignment,
6469                                  bool isVol, bool isTailCall,
6470                                  MachinePointerInfo DstPtrInfo,
6471                                  MachinePointerInfo SrcPtrInfo) {
6472   // Check to see if we should lower the memmove to loads and stores first.
6473   // For cases within the target-specified limits, this is the best choice.
6474   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6475   if (ConstantSize) {
6476     // Memmove with size zero? Just return the original chain.
6477     if (ConstantSize->isNullValue())
6478       return Chain;
6479 
6480     SDValue Result = getMemmoveLoadsAndStores(
6481         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6482         isVol, false, DstPtrInfo, SrcPtrInfo);
6483     if (Result.getNode())
6484       return Result;
6485   }
6486 
6487   // Then check to see if we should lower the memmove with target-specific
6488   // code. If the target chooses to do this, this is the next best.
6489   if (TSI) {
6490     SDValue Result = TSI->EmitTargetCodeForMemmove(
6491         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo,
6492         SrcPtrInfo);
6493     if (Result.getNode())
6494       return Result;
6495   }
6496 
6497   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6498   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6499 
6500   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6501   // not be safe.  See memcpy above for more details.
6502 
6503   // Emit a library call.
6504   TargetLowering::ArgListTy Args;
6505   TargetLowering::ArgListEntry Entry;
6506   Entry.Ty = Type::getInt8PtrTy(*getContext());
6507   Entry.Node = Dst; Args.push_back(Entry);
6508   Entry.Node = Src; Args.push_back(Entry);
6509 
6510   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6511   Entry.Node = Size; Args.push_back(Entry);
6512   // FIXME:  pass in SDLoc
6513   TargetLowering::CallLoweringInfo CLI(*this);
6514   CLI.setDebugLoc(dl)
6515       .setChain(Chain)
6516       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6517                     Dst.getValueType().getTypeForEVT(*getContext()),
6518                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6519                                       TLI->getPointerTy(getDataLayout())),
6520                     std::move(Args))
6521       .setDiscardResult()
6522       .setTailCall(isTailCall);
6523 
6524   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6525   return CallResult.second;
6526 }
6527 
6528 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6529                                        SDValue Dst, unsigned DstAlign,
6530                                        SDValue Src, unsigned SrcAlign,
6531                                        SDValue Size, Type *SizeTy,
6532                                        unsigned ElemSz, bool isTailCall,
6533                                        MachinePointerInfo DstPtrInfo,
6534                                        MachinePointerInfo SrcPtrInfo) {
6535   // Emit a library call.
6536   TargetLowering::ArgListTy Args;
6537   TargetLowering::ArgListEntry Entry;
6538   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6539   Entry.Node = Dst;
6540   Args.push_back(Entry);
6541 
6542   Entry.Node = Src;
6543   Args.push_back(Entry);
6544 
6545   Entry.Ty = SizeTy;
6546   Entry.Node = Size;
6547   Args.push_back(Entry);
6548 
6549   RTLIB::Libcall LibraryCall =
6550       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6551   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6552     report_fatal_error("Unsupported element size");
6553 
6554   TargetLowering::CallLoweringInfo CLI(*this);
6555   CLI.setDebugLoc(dl)
6556       .setChain(Chain)
6557       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6558                     Type::getVoidTy(*getContext()),
6559                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6560                                       TLI->getPointerTy(getDataLayout())),
6561                     std::move(Args))
6562       .setDiscardResult()
6563       .setTailCall(isTailCall);
6564 
6565   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6566   return CallResult.second;
6567 }
6568 
6569 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6570                                 SDValue Src, SDValue Size, Align Alignment,
6571                                 bool isVol, bool isTailCall,
6572                                 MachinePointerInfo DstPtrInfo) {
6573   // Check to see if we should lower the memset to stores first.
6574   // For cases within the target-specified limits, this is the best choice.
6575   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6576   if (ConstantSize) {
6577     // Memset with size zero? Just return the original chain.
6578     if (ConstantSize->isNullValue())
6579       return Chain;
6580 
6581     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6582                                      ConstantSize->getZExtValue(), Alignment,
6583                                      isVol, DstPtrInfo);
6584 
6585     if (Result.getNode())
6586       return Result;
6587   }
6588 
6589   // Then check to see if we should lower the memset with target-specific
6590   // code. If the target chooses to do this, this is the next best.
6591   if (TSI) {
6592     SDValue Result = TSI->EmitTargetCodeForMemset(
6593         *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo);
6594     if (Result.getNode())
6595       return Result;
6596   }
6597 
6598   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6599 
6600   // Emit a library call.
6601   TargetLowering::ArgListTy Args;
6602   TargetLowering::ArgListEntry Entry;
6603   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6604   Args.push_back(Entry);
6605   Entry.Node = Src;
6606   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6607   Args.push_back(Entry);
6608   Entry.Node = Size;
6609   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6610   Args.push_back(Entry);
6611 
6612   // FIXME: pass in SDLoc
6613   TargetLowering::CallLoweringInfo CLI(*this);
6614   CLI.setDebugLoc(dl)
6615       .setChain(Chain)
6616       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6617                     Dst.getValueType().getTypeForEVT(*getContext()),
6618                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6619                                       TLI->getPointerTy(getDataLayout())),
6620                     std::move(Args))
6621       .setDiscardResult()
6622       .setTailCall(isTailCall);
6623 
6624   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6625   return CallResult.second;
6626 }
6627 
6628 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6629                                       SDValue Dst, unsigned DstAlign,
6630                                       SDValue Value, SDValue Size, Type *SizeTy,
6631                                       unsigned ElemSz, bool isTailCall,
6632                                       MachinePointerInfo DstPtrInfo) {
6633   // Emit a library call.
6634   TargetLowering::ArgListTy Args;
6635   TargetLowering::ArgListEntry Entry;
6636   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6637   Entry.Node = Dst;
6638   Args.push_back(Entry);
6639 
6640   Entry.Ty = Type::getInt8Ty(*getContext());
6641   Entry.Node = Value;
6642   Args.push_back(Entry);
6643 
6644   Entry.Ty = SizeTy;
6645   Entry.Node = Size;
6646   Args.push_back(Entry);
6647 
6648   RTLIB::Libcall LibraryCall =
6649       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6650   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6651     report_fatal_error("Unsupported element size");
6652 
6653   TargetLowering::CallLoweringInfo CLI(*this);
6654   CLI.setDebugLoc(dl)
6655       .setChain(Chain)
6656       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6657                     Type::getVoidTy(*getContext()),
6658                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6659                                       TLI->getPointerTy(getDataLayout())),
6660                     std::move(Args))
6661       .setDiscardResult()
6662       .setTailCall(isTailCall);
6663 
6664   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6665   return CallResult.second;
6666 }
6667 
6668 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6669                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6670                                 MachineMemOperand *MMO) {
6671   FoldingSetNodeID ID;
6672   ID.AddInteger(MemVT.getRawBits());
6673   AddNodeIDNode(ID, Opcode, VTList, Ops);
6674   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6675   void* IP = nullptr;
6676   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6677     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6678     return SDValue(E, 0);
6679   }
6680 
6681   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6682                                     VTList, MemVT, MMO);
6683   createOperands(N, Ops);
6684 
6685   CSEMap.InsertNode(N, IP);
6686   InsertNode(N);
6687   return SDValue(N, 0);
6688 }
6689 
6690 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6691                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6692                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6693                                        MachineMemOperand *MMO) {
6694   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6695          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6696   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6697 
6698   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6699   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6700 }
6701 
6702 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6703                                 SDValue Chain, SDValue Ptr, SDValue Val,
6704                                 MachineMemOperand *MMO) {
6705   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6706           Opcode == ISD::ATOMIC_LOAD_SUB ||
6707           Opcode == ISD::ATOMIC_LOAD_AND ||
6708           Opcode == ISD::ATOMIC_LOAD_CLR ||
6709           Opcode == ISD::ATOMIC_LOAD_OR ||
6710           Opcode == ISD::ATOMIC_LOAD_XOR ||
6711           Opcode == ISD::ATOMIC_LOAD_NAND ||
6712           Opcode == ISD::ATOMIC_LOAD_MIN ||
6713           Opcode == ISD::ATOMIC_LOAD_MAX ||
6714           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6715           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6716           Opcode == ISD::ATOMIC_LOAD_FADD ||
6717           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6718           Opcode == ISD::ATOMIC_SWAP ||
6719           Opcode == ISD::ATOMIC_STORE) &&
6720          "Invalid Atomic Op");
6721 
6722   EVT VT = Val.getValueType();
6723 
6724   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6725                                                getVTList(VT, MVT::Other);
6726   SDValue Ops[] = {Chain, Ptr, Val};
6727   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6728 }
6729 
6730 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6731                                 EVT VT, SDValue Chain, SDValue Ptr,
6732                                 MachineMemOperand *MMO) {
6733   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6734 
6735   SDVTList VTs = getVTList(VT, MVT::Other);
6736   SDValue Ops[] = {Chain, Ptr};
6737   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6738 }
6739 
6740 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6741 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6742   if (Ops.size() == 1)
6743     return Ops[0];
6744 
6745   SmallVector<EVT, 4> VTs;
6746   VTs.reserve(Ops.size());
6747   for (unsigned i = 0; i < Ops.size(); ++i)
6748     VTs.push_back(Ops[i].getValueType());
6749   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6750 }
6751 
6752 SDValue SelectionDAG::getMemIntrinsicNode(
6753     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6754     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
6755     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6756   if (!Size && MemVT.isScalableVector())
6757     Size = MemoryLocation::UnknownSize;
6758   else if (!Size)
6759     Size = MemVT.getStoreSize();
6760 
6761   MachineFunction &MF = getMachineFunction();
6762   MachineMemOperand *MMO =
6763       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
6764 
6765   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6766 }
6767 
6768 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6769                                           SDVTList VTList,
6770                                           ArrayRef<SDValue> Ops, EVT MemVT,
6771                                           MachineMemOperand *MMO) {
6772   assert((Opcode == ISD::INTRINSIC_VOID ||
6773           Opcode == ISD::INTRINSIC_W_CHAIN ||
6774           Opcode == ISD::PREFETCH ||
6775           ((int)Opcode <= std::numeric_limits<int>::max() &&
6776            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6777          "Opcode is not a memory-accessing opcode!");
6778 
6779   // Memoize the node unless it returns a flag.
6780   MemIntrinsicSDNode *N;
6781   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6782     FoldingSetNodeID ID;
6783     AddNodeIDNode(ID, Opcode, VTList, Ops);
6784     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6785         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6786     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6787     void *IP = nullptr;
6788     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6789       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6790       return SDValue(E, 0);
6791     }
6792 
6793     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6794                                       VTList, MemVT, MMO);
6795     createOperands(N, Ops);
6796 
6797   CSEMap.InsertNode(N, IP);
6798   } else {
6799     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6800                                       VTList, MemVT, MMO);
6801     createOperands(N, Ops);
6802   }
6803   InsertNode(N);
6804   SDValue V(N, 0);
6805   NewSDValueDbgMsg(V, "Creating new node: ", this);
6806   return V;
6807 }
6808 
6809 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6810                                       SDValue Chain, int FrameIndex,
6811                                       int64_t Size, int64_t Offset) {
6812   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6813   const auto VTs = getVTList(MVT::Other);
6814   SDValue Ops[2] = {
6815       Chain,
6816       getFrameIndex(FrameIndex,
6817                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6818                     true)};
6819 
6820   FoldingSetNodeID ID;
6821   AddNodeIDNode(ID, Opcode, VTs, Ops);
6822   ID.AddInteger(FrameIndex);
6823   ID.AddInteger(Size);
6824   ID.AddInteger(Offset);
6825   void *IP = nullptr;
6826   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6827     return SDValue(E, 0);
6828 
6829   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6830       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6831   createOperands(N, Ops);
6832   CSEMap.InsertNode(N, IP);
6833   InsertNode(N);
6834   SDValue V(N, 0);
6835   NewSDValueDbgMsg(V, "Creating new node: ", this);
6836   return V;
6837 }
6838 
6839 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6840 /// MachinePointerInfo record from it.  This is particularly useful because the
6841 /// code generator has many cases where it doesn't bother passing in a
6842 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6843 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6844                                            SelectionDAG &DAG, SDValue Ptr,
6845                                            int64_t Offset = 0) {
6846   // If this is FI+Offset, we can model it.
6847   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6848     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6849                                              FI->getIndex(), Offset);
6850 
6851   // If this is (FI+Offset1)+Offset2, we can model it.
6852   if (Ptr.getOpcode() != ISD::ADD ||
6853       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6854       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6855     return Info;
6856 
6857   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6858   return MachinePointerInfo::getFixedStack(
6859       DAG.getMachineFunction(), FI,
6860       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6861 }
6862 
6863 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6864 /// MachinePointerInfo record from it.  This is particularly useful because the
6865 /// code generator has many cases where it doesn't bother passing in a
6866 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6867 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6868                                            SelectionDAG &DAG, SDValue Ptr,
6869                                            SDValue OffsetOp) {
6870   // If the 'Offset' value isn't a constant, we can't handle this.
6871   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6872     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6873   if (OffsetOp.isUndef())
6874     return InferPointerInfo(Info, DAG, Ptr);
6875   return Info;
6876 }
6877 
6878 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6879                               EVT VT, const SDLoc &dl, SDValue Chain,
6880                               SDValue Ptr, SDValue Offset,
6881                               MachinePointerInfo PtrInfo, EVT MemVT,
6882                               Align Alignment,
6883                               MachineMemOperand::Flags MMOFlags,
6884                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6885   assert(Chain.getValueType() == MVT::Other &&
6886         "Invalid chain type");
6887 
6888   MMOFlags |= MachineMemOperand::MOLoad;
6889   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6890   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6891   // clients.
6892   if (PtrInfo.V.isNull())
6893     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6894 
6895   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
6896   MachineFunction &MF = getMachineFunction();
6897   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
6898                                                    Alignment, AAInfo, Ranges);
6899   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6900 }
6901 
6902 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6903                               EVT VT, const SDLoc &dl, SDValue Chain,
6904                               SDValue Ptr, SDValue Offset, EVT MemVT,
6905                               MachineMemOperand *MMO) {
6906   if (VT == MemVT) {
6907     ExtType = ISD::NON_EXTLOAD;
6908   } else if (ExtType == ISD::NON_EXTLOAD) {
6909     assert(VT == MemVT && "Non-extending load from different memory type!");
6910   } else {
6911     // Extending load.
6912     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6913            "Should only be an extending load, not truncating!");
6914     assert(VT.isInteger() == MemVT.isInteger() &&
6915            "Cannot convert from FP to Int or Int -> FP!");
6916     assert(VT.isVector() == MemVT.isVector() &&
6917            "Cannot use an ext load to convert to or from a vector!");
6918     assert((!VT.isVector() ||
6919             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6920            "Cannot use an ext load to change the number of vector elements!");
6921   }
6922 
6923   bool Indexed = AM != ISD::UNINDEXED;
6924   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6925 
6926   SDVTList VTs = Indexed ?
6927     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6928   SDValue Ops[] = { Chain, Ptr, Offset };
6929   FoldingSetNodeID ID;
6930   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6931   ID.AddInteger(MemVT.getRawBits());
6932   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6933       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6934   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6935   void *IP = nullptr;
6936   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6937     cast<LoadSDNode>(E)->refineAlignment(MMO);
6938     return SDValue(E, 0);
6939   }
6940   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6941                                   ExtType, MemVT, MMO);
6942   createOperands(N, Ops);
6943 
6944   CSEMap.InsertNode(N, IP);
6945   InsertNode(N);
6946   SDValue V(N, 0);
6947   NewSDValueDbgMsg(V, "Creating new node: ", this);
6948   return V;
6949 }
6950 
6951 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6952                               SDValue Ptr, MachinePointerInfo PtrInfo,
6953                               MaybeAlign Alignment,
6954                               MachineMemOperand::Flags MMOFlags,
6955                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6956   SDValue Undef = getUNDEF(Ptr.getValueType());
6957   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6958                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6959 }
6960 
6961 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6962                               SDValue Ptr, MachineMemOperand *MMO) {
6963   SDValue Undef = getUNDEF(Ptr.getValueType());
6964   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6965                  VT, MMO);
6966 }
6967 
6968 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6969                                  EVT VT, SDValue Chain, SDValue Ptr,
6970                                  MachinePointerInfo PtrInfo, EVT MemVT,
6971                                  MaybeAlign Alignment,
6972                                  MachineMemOperand::Flags MMOFlags,
6973                                  const AAMDNodes &AAInfo) {
6974   SDValue Undef = getUNDEF(Ptr.getValueType());
6975   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6976                  MemVT, Alignment, MMOFlags, AAInfo);
6977 }
6978 
6979 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6980                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6981                                  MachineMemOperand *MMO) {
6982   SDValue Undef = getUNDEF(Ptr.getValueType());
6983   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6984                  MemVT, MMO);
6985 }
6986 
6987 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6988                                      SDValue Base, SDValue Offset,
6989                                      ISD::MemIndexedMode AM) {
6990   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6991   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6992   // Don't propagate the invariant or dereferenceable flags.
6993   auto MMOFlags =
6994       LD->getMemOperand()->getFlags() &
6995       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6996   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6997                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6998                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6999                  LD->getAAInfo());
7000 }
7001 
7002 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7003                                SDValue Ptr, MachinePointerInfo PtrInfo,
7004                                Align Alignment,
7005                                MachineMemOperand::Flags MMOFlags,
7006                                const AAMDNodes &AAInfo) {
7007   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7008 
7009   MMOFlags |= MachineMemOperand::MOStore;
7010   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7011 
7012   if (PtrInfo.V.isNull())
7013     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7014 
7015   MachineFunction &MF = getMachineFunction();
7016   uint64_t Size =
7017       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7018   MachineMemOperand *MMO =
7019       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7020   return getStore(Chain, dl, Val, Ptr, MMO);
7021 }
7022 
7023 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7024                                SDValue Ptr, MachineMemOperand *MMO) {
7025   assert(Chain.getValueType() == MVT::Other &&
7026         "Invalid chain type");
7027   EVT VT = Val.getValueType();
7028   SDVTList VTs = getVTList(MVT::Other);
7029   SDValue Undef = getUNDEF(Ptr.getValueType());
7030   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7031   FoldingSetNodeID ID;
7032   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7033   ID.AddInteger(VT.getRawBits());
7034   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7035       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7036   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7037   void *IP = nullptr;
7038   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7039     cast<StoreSDNode>(E)->refineAlignment(MMO);
7040     return SDValue(E, 0);
7041   }
7042   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7043                                    ISD::UNINDEXED, false, VT, MMO);
7044   createOperands(N, Ops);
7045 
7046   CSEMap.InsertNode(N, IP);
7047   InsertNode(N);
7048   SDValue V(N, 0);
7049   NewSDValueDbgMsg(V, "Creating new node: ", this);
7050   return V;
7051 }
7052 
7053 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7054                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7055                                     EVT SVT, Align Alignment,
7056                                     MachineMemOperand::Flags MMOFlags,
7057                                     const AAMDNodes &AAInfo) {
7058   assert(Chain.getValueType() == MVT::Other &&
7059         "Invalid chain type");
7060 
7061   MMOFlags |= MachineMemOperand::MOStore;
7062   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7063 
7064   if (PtrInfo.V.isNull())
7065     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7066 
7067   MachineFunction &MF = getMachineFunction();
7068   MachineMemOperand *MMO = MF.getMachineMemOperand(
7069       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
7070   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7071 }
7072 
7073 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7074                                     SDValue Ptr, EVT SVT,
7075                                     MachineMemOperand *MMO) {
7076   EVT VT = Val.getValueType();
7077 
7078   assert(Chain.getValueType() == MVT::Other &&
7079         "Invalid chain type");
7080   if (VT == SVT)
7081     return getStore(Chain, dl, Val, Ptr, MMO);
7082 
7083   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7084          "Should only be a truncating store, not extending!");
7085   assert(VT.isInteger() == SVT.isInteger() &&
7086          "Can't do FP-INT conversion!");
7087   assert(VT.isVector() == SVT.isVector() &&
7088          "Cannot use trunc store to convert to or from a vector!");
7089   assert((!VT.isVector() ||
7090           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
7091          "Cannot use trunc store to change the number of vector elements!");
7092 
7093   SDVTList VTs = getVTList(MVT::Other);
7094   SDValue Undef = getUNDEF(Ptr.getValueType());
7095   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7096   FoldingSetNodeID ID;
7097   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7098   ID.AddInteger(SVT.getRawBits());
7099   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7100       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7101   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7102   void *IP = nullptr;
7103   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7104     cast<StoreSDNode>(E)->refineAlignment(MMO);
7105     return SDValue(E, 0);
7106   }
7107   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7108                                    ISD::UNINDEXED, true, SVT, MMO);
7109   createOperands(N, Ops);
7110 
7111   CSEMap.InsertNode(N, IP);
7112   InsertNode(N);
7113   SDValue V(N, 0);
7114   NewSDValueDbgMsg(V, "Creating new node: ", this);
7115   return V;
7116 }
7117 
7118 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7119                                       SDValue Base, SDValue Offset,
7120                                       ISD::MemIndexedMode AM) {
7121   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7122   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7123   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7124   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7125   FoldingSetNodeID ID;
7126   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7127   ID.AddInteger(ST->getMemoryVT().getRawBits());
7128   ID.AddInteger(ST->getRawSubclassData());
7129   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7130   void *IP = nullptr;
7131   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7132     return SDValue(E, 0);
7133 
7134   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7135                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7136                                    ST->getMemOperand());
7137   createOperands(N, Ops);
7138 
7139   CSEMap.InsertNode(N, IP);
7140   InsertNode(N);
7141   SDValue V(N, 0);
7142   NewSDValueDbgMsg(V, "Creating new node: ", this);
7143   return V;
7144 }
7145 
7146 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7147                                     SDValue Base, SDValue Offset, SDValue Mask,
7148                                     SDValue PassThru, EVT MemVT,
7149                                     MachineMemOperand *MMO,
7150                                     ISD::MemIndexedMode AM,
7151                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7152   bool Indexed = AM != ISD::UNINDEXED;
7153   assert((Indexed || Offset.isUndef()) &&
7154          "Unindexed masked load with an offset!");
7155   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7156                          : getVTList(VT, MVT::Other);
7157   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7158   FoldingSetNodeID ID;
7159   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7160   ID.AddInteger(MemVT.getRawBits());
7161   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7162       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7163   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7164   void *IP = nullptr;
7165   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7166     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7167     return SDValue(E, 0);
7168   }
7169   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7170                                         AM, ExtTy, isExpanding, MemVT, MMO);
7171   createOperands(N, Ops);
7172 
7173   CSEMap.InsertNode(N, IP);
7174   InsertNode(N);
7175   SDValue V(N, 0);
7176   NewSDValueDbgMsg(V, "Creating new node: ", this);
7177   return V;
7178 }
7179 
7180 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7181                                            SDValue Base, SDValue Offset,
7182                                            ISD::MemIndexedMode AM) {
7183   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7184   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7185   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7186                        Offset, LD->getMask(), LD->getPassThru(),
7187                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7188                        LD->getExtensionType(), LD->isExpandingLoad());
7189 }
7190 
7191 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7192                                      SDValue Val, SDValue Base, SDValue Offset,
7193                                      SDValue Mask, EVT MemVT,
7194                                      MachineMemOperand *MMO,
7195                                      ISD::MemIndexedMode AM, bool IsTruncating,
7196                                      bool IsCompressing) {
7197   assert(Chain.getValueType() == MVT::Other &&
7198         "Invalid chain type");
7199   bool Indexed = AM != ISD::UNINDEXED;
7200   assert((Indexed || Offset.isUndef()) &&
7201          "Unindexed masked store with an offset!");
7202   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7203                          : getVTList(MVT::Other);
7204   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7205   FoldingSetNodeID ID;
7206   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7207   ID.AddInteger(MemVT.getRawBits());
7208   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7209       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7210   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7211   void *IP = nullptr;
7212   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7213     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7214     return SDValue(E, 0);
7215   }
7216   auto *N =
7217       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7218                                    IsTruncating, IsCompressing, MemVT, MMO);
7219   createOperands(N, Ops);
7220 
7221   CSEMap.InsertNode(N, IP);
7222   InsertNode(N);
7223   SDValue V(N, 0);
7224   NewSDValueDbgMsg(V, "Creating new node: ", this);
7225   return V;
7226 }
7227 
7228 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7229                                             SDValue Base, SDValue Offset,
7230                                             ISD::MemIndexedMode AM) {
7231   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7232   assert(ST->getOffset().isUndef() &&
7233          "Masked store is already a indexed store!");
7234   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7235                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7236                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7237 }
7238 
7239 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7240                                       ArrayRef<SDValue> Ops,
7241                                       MachineMemOperand *MMO,
7242                                       ISD::MemIndexType IndexType) {
7243   assert(Ops.size() == 6 && "Incompatible number of operands");
7244 
7245   FoldingSetNodeID ID;
7246   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7247   ID.AddInteger(VT.getRawBits());
7248   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7249       dl.getIROrder(), VTs, VT, MMO, IndexType));
7250   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7251   void *IP = nullptr;
7252   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7253     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7254     return SDValue(E, 0);
7255   }
7256 
7257   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7258                                           VTs, VT, MMO, IndexType);
7259   createOperands(N, Ops);
7260 
7261   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7262          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7263   assert(N->getMask().getValueType().getVectorNumElements() ==
7264              N->getValueType(0).getVectorNumElements() &&
7265          "Vector width mismatch between mask and data");
7266   assert(N->getIndex().getValueType().getVectorNumElements() >=
7267              N->getValueType(0).getVectorNumElements() &&
7268          "Vector width mismatch between index and data");
7269   assert(isa<ConstantSDNode>(N->getScale()) &&
7270          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7271          "Scale should be a constant power of 2");
7272 
7273   CSEMap.InsertNode(N, IP);
7274   InsertNode(N);
7275   SDValue V(N, 0);
7276   NewSDValueDbgMsg(V, "Creating new node: ", this);
7277   return V;
7278 }
7279 
7280 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7281                                        ArrayRef<SDValue> Ops,
7282                                        MachineMemOperand *MMO,
7283                                        ISD::MemIndexType IndexType) {
7284   assert(Ops.size() == 6 && "Incompatible number of operands");
7285 
7286   FoldingSetNodeID ID;
7287   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7288   ID.AddInteger(VT.getRawBits());
7289   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7290       dl.getIROrder(), VTs, VT, MMO, IndexType));
7291   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7292   void *IP = nullptr;
7293   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7294     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7295     return SDValue(E, 0);
7296   }
7297   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7298                                            VTs, VT, MMO, IndexType);
7299   createOperands(N, Ops);
7300 
7301   assert(N->getMask().getValueType().getVectorNumElements() ==
7302              N->getValue().getValueType().getVectorNumElements() &&
7303          "Vector width mismatch between mask and data");
7304   assert(N->getIndex().getValueType().getVectorNumElements() >=
7305              N->getValue().getValueType().getVectorNumElements() &&
7306          "Vector width mismatch between index and data");
7307   assert(isa<ConstantSDNode>(N->getScale()) &&
7308          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7309          "Scale should be a constant power of 2");
7310 
7311   CSEMap.InsertNode(N, IP);
7312   InsertNode(N);
7313   SDValue V(N, 0);
7314   NewSDValueDbgMsg(V, "Creating new node: ", this);
7315   return V;
7316 }
7317 
7318 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7319   // select undef, T, F --> T (if T is a constant), otherwise F
7320   // select, ?, undef, F --> F
7321   // select, ?, T, undef --> T
7322   if (Cond.isUndef())
7323     return isConstantValueOfAnyType(T) ? T : F;
7324   if (T.isUndef())
7325     return F;
7326   if (F.isUndef())
7327     return T;
7328 
7329   // select true, T, F --> T
7330   // select false, T, F --> F
7331   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7332     return CondC->isNullValue() ? F : T;
7333 
7334   // TODO: This should simplify VSELECT with constant condition using something
7335   // like this (but check boolean contents to be complete?):
7336   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7337   //    return T;
7338   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7339   //    return F;
7340 
7341   // select ?, T, T --> T
7342   if (T == F)
7343     return T;
7344 
7345   return SDValue();
7346 }
7347 
7348 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7349   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7350   if (X.isUndef())
7351     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7352   // shift X, undef --> undef (because it may shift by the bitwidth)
7353   if (Y.isUndef())
7354     return getUNDEF(X.getValueType());
7355 
7356   // shift 0, Y --> 0
7357   // shift X, 0 --> X
7358   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7359     return X;
7360 
7361   // shift X, C >= bitwidth(X) --> undef
7362   // All vector elements must be too big (or undef) to avoid partial undefs.
7363   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7364     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7365   };
7366   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7367     return getUNDEF(X.getValueType());
7368 
7369   return SDValue();
7370 }
7371 
7372 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7373                                       SDNodeFlags Flags) {
7374   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7375   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7376   // operation is poison. That result can be relaxed to undef.
7377   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7378   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7379   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7380                 (YC && YC->getValueAPF().isNaN());
7381   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7382                 (YC && YC->getValueAPF().isInfinity());
7383 
7384   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7385     return getUNDEF(X.getValueType());
7386 
7387   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7388     return getUNDEF(X.getValueType());
7389 
7390   if (!YC)
7391     return SDValue();
7392 
7393   // X + -0.0 --> X
7394   if (Opcode == ISD::FADD)
7395     if (YC->getValueAPF().isNegZero())
7396       return X;
7397 
7398   // X - +0.0 --> X
7399   if (Opcode == ISD::FSUB)
7400     if (YC->getValueAPF().isPosZero())
7401       return X;
7402 
7403   // X * 1.0 --> X
7404   // X / 1.0 --> X
7405   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7406     if (YC->getValueAPF().isExactlyValue(1.0))
7407       return X;
7408 
7409   return SDValue();
7410 }
7411 
7412 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7413                                SDValue Ptr, SDValue SV, unsigned Align) {
7414   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7415   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7416 }
7417 
7418 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7419                               ArrayRef<SDUse> Ops) {
7420   switch (Ops.size()) {
7421   case 0: return getNode(Opcode, DL, VT);
7422   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7423   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7424   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7425   default: break;
7426   }
7427 
7428   // Copy from an SDUse array into an SDValue array for use with
7429   // the regular getNode logic.
7430   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7431   return getNode(Opcode, DL, VT, NewOps);
7432 }
7433 
7434 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7435                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7436   unsigned NumOps = Ops.size();
7437   switch (NumOps) {
7438   case 0: return getNode(Opcode, DL, VT);
7439   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7440   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7441   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7442   default: break;
7443   }
7444 
7445   switch (Opcode) {
7446   default: break;
7447   case ISD::BUILD_VECTOR:
7448     // Attempt to simplify BUILD_VECTOR.
7449     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7450       return V;
7451     break;
7452   case ISD::CONCAT_VECTORS:
7453     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7454       return V;
7455     break;
7456   case ISD::SELECT_CC:
7457     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7458     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7459            "LHS and RHS of condition must have same type!");
7460     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7461            "True and False arms of SelectCC must have same type!");
7462     assert(Ops[2].getValueType() == VT &&
7463            "select_cc node must be of same type as true and false value!");
7464     break;
7465   case ISD::BR_CC:
7466     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7467     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7468            "LHS/RHS of comparison should match types!");
7469     break;
7470   }
7471 
7472   // Memoize nodes.
7473   SDNode *N;
7474   SDVTList VTs = getVTList(VT);
7475 
7476   if (VT != MVT::Glue) {
7477     FoldingSetNodeID ID;
7478     AddNodeIDNode(ID, Opcode, VTs, Ops);
7479     void *IP = nullptr;
7480 
7481     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7482       return SDValue(E, 0);
7483 
7484     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7485     createOperands(N, Ops);
7486 
7487     CSEMap.InsertNode(N, IP);
7488   } else {
7489     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7490     createOperands(N, Ops);
7491   }
7492 
7493   N->setFlags(Flags);
7494   InsertNode(N);
7495   SDValue V(N, 0);
7496   NewSDValueDbgMsg(V, "Creating new node: ", this);
7497   return V;
7498 }
7499 
7500 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7501                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7502   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7503 }
7504 
7505 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7506                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7507   if (VTList.NumVTs == 1)
7508     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7509 
7510   switch (Opcode) {
7511   case ISD::STRICT_FP_EXTEND:
7512     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7513            "Invalid STRICT_FP_EXTEND!");
7514     assert(VTList.VTs[0].isFloatingPoint() &&
7515            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7516     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7517            "STRICT_FP_EXTEND result type should be vector iff the operand "
7518            "type is vector!");
7519     assert((!VTList.VTs[0].isVector() ||
7520             VTList.VTs[0].getVectorNumElements() ==
7521             Ops[1].getValueType().getVectorNumElements()) &&
7522            "Vector element count mismatch!");
7523     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7524            "Invalid fpext node, dst <= src!");
7525     break;
7526   case ISD::STRICT_FP_ROUND:
7527     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7528     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7529            "STRICT_FP_ROUND result type should be vector iff the operand "
7530            "type is vector!");
7531     assert((!VTList.VTs[0].isVector() ||
7532             VTList.VTs[0].getVectorNumElements() ==
7533             Ops[1].getValueType().getVectorNumElements()) &&
7534            "Vector element count mismatch!");
7535     assert(VTList.VTs[0].isFloatingPoint() &&
7536            Ops[1].getValueType().isFloatingPoint() &&
7537            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7538            isa<ConstantSDNode>(Ops[2]) &&
7539            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7540             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7541            "Invalid STRICT_FP_ROUND!");
7542     break;
7543 #if 0
7544   // FIXME: figure out how to safely handle things like
7545   // int foo(int x) { return 1 << (x & 255); }
7546   // int bar() { return foo(256); }
7547   case ISD::SRA_PARTS:
7548   case ISD::SRL_PARTS:
7549   case ISD::SHL_PARTS:
7550     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7551         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7552       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7553     else if (N3.getOpcode() == ISD::AND)
7554       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7555         // If the and is only masking out bits that cannot effect the shift,
7556         // eliminate the and.
7557         unsigned NumBits = VT.getScalarSizeInBits()*2;
7558         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7559           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7560       }
7561     break;
7562 #endif
7563   }
7564 
7565   // Memoize the node unless it returns a flag.
7566   SDNode *N;
7567   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7568     FoldingSetNodeID ID;
7569     AddNodeIDNode(ID, Opcode, VTList, Ops);
7570     void *IP = nullptr;
7571     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7572       return SDValue(E, 0);
7573 
7574     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7575     createOperands(N, Ops);
7576     CSEMap.InsertNode(N, IP);
7577   } else {
7578     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7579     createOperands(N, Ops);
7580   }
7581 
7582   N->setFlags(Flags);
7583   InsertNode(N);
7584   SDValue V(N, 0);
7585   NewSDValueDbgMsg(V, "Creating new node: ", this);
7586   return V;
7587 }
7588 
7589 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7590                               SDVTList VTList) {
7591   return getNode(Opcode, DL, VTList, None);
7592 }
7593 
7594 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7595                               SDValue N1) {
7596   SDValue Ops[] = { N1 };
7597   return getNode(Opcode, DL, VTList, Ops);
7598 }
7599 
7600 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7601                               SDValue N1, SDValue N2) {
7602   SDValue Ops[] = { N1, N2 };
7603   return getNode(Opcode, DL, VTList, Ops);
7604 }
7605 
7606 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7607                               SDValue N1, SDValue N2, SDValue N3) {
7608   SDValue Ops[] = { N1, N2, N3 };
7609   return getNode(Opcode, DL, VTList, Ops);
7610 }
7611 
7612 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7613                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7614   SDValue Ops[] = { N1, N2, N3, N4 };
7615   return getNode(Opcode, DL, VTList, Ops);
7616 }
7617 
7618 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7619                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7620                               SDValue N5) {
7621   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7622   return getNode(Opcode, DL, VTList, Ops);
7623 }
7624 
7625 SDVTList SelectionDAG::getVTList(EVT VT) {
7626   return makeVTList(SDNode::getValueTypeList(VT), 1);
7627 }
7628 
7629 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7630   FoldingSetNodeID ID;
7631   ID.AddInteger(2U);
7632   ID.AddInteger(VT1.getRawBits());
7633   ID.AddInteger(VT2.getRawBits());
7634 
7635   void *IP = nullptr;
7636   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7637   if (!Result) {
7638     EVT *Array = Allocator.Allocate<EVT>(2);
7639     Array[0] = VT1;
7640     Array[1] = VT2;
7641     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7642     VTListMap.InsertNode(Result, IP);
7643   }
7644   return Result->getSDVTList();
7645 }
7646 
7647 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7648   FoldingSetNodeID ID;
7649   ID.AddInteger(3U);
7650   ID.AddInteger(VT1.getRawBits());
7651   ID.AddInteger(VT2.getRawBits());
7652   ID.AddInteger(VT3.getRawBits());
7653 
7654   void *IP = nullptr;
7655   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7656   if (!Result) {
7657     EVT *Array = Allocator.Allocate<EVT>(3);
7658     Array[0] = VT1;
7659     Array[1] = VT2;
7660     Array[2] = VT3;
7661     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7662     VTListMap.InsertNode(Result, IP);
7663   }
7664   return Result->getSDVTList();
7665 }
7666 
7667 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7668   FoldingSetNodeID ID;
7669   ID.AddInteger(4U);
7670   ID.AddInteger(VT1.getRawBits());
7671   ID.AddInteger(VT2.getRawBits());
7672   ID.AddInteger(VT3.getRawBits());
7673   ID.AddInteger(VT4.getRawBits());
7674 
7675   void *IP = nullptr;
7676   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7677   if (!Result) {
7678     EVT *Array = Allocator.Allocate<EVT>(4);
7679     Array[0] = VT1;
7680     Array[1] = VT2;
7681     Array[2] = VT3;
7682     Array[3] = VT4;
7683     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7684     VTListMap.InsertNode(Result, IP);
7685   }
7686   return Result->getSDVTList();
7687 }
7688 
7689 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7690   unsigned NumVTs = VTs.size();
7691   FoldingSetNodeID ID;
7692   ID.AddInteger(NumVTs);
7693   for (unsigned index = 0; index < NumVTs; index++) {
7694     ID.AddInteger(VTs[index].getRawBits());
7695   }
7696 
7697   void *IP = nullptr;
7698   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7699   if (!Result) {
7700     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7701     llvm::copy(VTs, Array);
7702     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7703     VTListMap.InsertNode(Result, IP);
7704   }
7705   return Result->getSDVTList();
7706 }
7707 
7708 
7709 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7710 /// specified operands.  If the resultant node already exists in the DAG,
7711 /// this does not modify the specified node, instead it returns the node that
7712 /// already exists.  If the resultant node does not exist in the DAG, the
7713 /// input node is returned.  As a degenerate case, if you specify the same
7714 /// input operands as the node already has, the input node is returned.
7715 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7716   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7717 
7718   // Check to see if there is no change.
7719   if (Op == N->getOperand(0)) return N;
7720 
7721   // See if the modified node already exists.
7722   void *InsertPos = nullptr;
7723   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7724     return Existing;
7725 
7726   // Nope it doesn't.  Remove the node from its current place in the maps.
7727   if (InsertPos)
7728     if (!RemoveNodeFromCSEMaps(N))
7729       InsertPos = nullptr;
7730 
7731   // Now we update the operands.
7732   N->OperandList[0].set(Op);
7733 
7734   updateDivergence(N);
7735   // If this gets put into a CSE map, add it.
7736   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7737   return N;
7738 }
7739 
7740 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7741   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7742 
7743   // Check to see if there is no change.
7744   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7745     return N;   // No operands changed, just return the input node.
7746 
7747   // See if the modified node already exists.
7748   void *InsertPos = nullptr;
7749   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7750     return Existing;
7751 
7752   // Nope it doesn't.  Remove the node from its current place in the maps.
7753   if (InsertPos)
7754     if (!RemoveNodeFromCSEMaps(N))
7755       InsertPos = nullptr;
7756 
7757   // Now we update the operands.
7758   if (N->OperandList[0] != Op1)
7759     N->OperandList[0].set(Op1);
7760   if (N->OperandList[1] != Op2)
7761     N->OperandList[1].set(Op2);
7762 
7763   updateDivergence(N);
7764   // If this gets put into a CSE map, add it.
7765   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7766   return N;
7767 }
7768 
7769 SDNode *SelectionDAG::
7770 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7771   SDValue Ops[] = { Op1, Op2, Op3 };
7772   return UpdateNodeOperands(N, Ops);
7773 }
7774 
7775 SDNode *SelectionDAG::
7776 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7777                    SDValue Op3, SDValue Op4) {
7778   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7779   return UpdateNodeOperands(N, Ops);
7780 }
7781 
7782 SDNode *SelectionDAG::
7783 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7784                    SDValue Op3, SDValue Op4, SDValue Op5) {
7785   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7786   return UpdateNodeOperands(N, Ops);
7787 }
7788 
7789 SDNode *SelectionDAG::
7790 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7791   unsigned NumOps = Ops.size();
7792   assert(N->getNumOperands() == NumOps &&
7793          "Update with wrong number of operands");
7794 
7795   // If no operands changed just return the input node.
7796   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7797     return N;
7798 
7799   // See if the modified node already exists.
7800   void *InsertPos = nullptr;
7801   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7802     return Existing;
7803 
7804   // Nope it doesn't.  Remove the node from its current place in the maps.
7805   if (InsertPos)
7806     if (!RemoveNodeFromCSEMaps(N))
7807       InsertPos = nullptr;
7808 
7809   // Now we update the operands.
7810   for (unsigned i = 0; i != NumOps; ++i)
7811     if (N->OperandList[i] != Ops[i])
7812       N->OperandList[i].set(Ops[i]);
7813 
7814   updateDivergence(N);
7815   // If this gets put into a CSE map, add it.
7816   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7817   return N;
7818 }
7819 
7820 /// DropOperands - Release the operands and set this node to have
7821 /// zero operands.
7822 void SDNode::DropOperands() {
7823   // Unlike the code in MorphNodeTo that does this, we don't need to
7824   // watch for dead nodes here.
7825   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7826     SDUse &Use = *I++;
7827     Use.set(SDValue());
7828   }
7829 }
7830 
7831 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7832                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7833   if (NewMemRefs.empty()) {
7834     N->clearMemRefs();
7835     return;
7836   }
7837 
7838   // Check if we can avoid allocating by storing a single reference directly.
7839   if (NewMemRefs.size() == 1) {
7840     N->MemRefs = NewMemRefs[0];
7841     N->NumMemRefs = 1;
7842     return;
7843   }
7844 
7845   MachineMemOperand **MemRefsBuffer =
7846       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7847   llvm::copy(NewMemRefs, MemRefsBuffer);
7848   N->MemRefs = MemRefsBuffer;
7849   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7850 }
7851 
7852 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7853 /// machine opcode.
7854 ///
7855 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7856                                    EVT VT) {
7857   SDVTList VTs = getVTList(VT);
7858   return SelectNodeTo(N, MachineOpc, VTs, None);
7859 }
7860 
7861 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7862                                    EVT VT, SDValue Op1) {
7863   SDVTList VTs = getVTList(VT);
7864   SDValue Ops[] = { Op1 };
7865   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7866 }
7867 
7868 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7869                                    EVT VT, SDValue Op1,
7870                                    SDValue Op2) {
7871   SDVTList VTs = getVTList(VT);
7872   SDValue Ops[] = { Op1, Op2 };
7873   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7874 }
7875 
7876 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7877                                    EVT VT, SDValue Op1,
7878                                    SDValue Op2, SDValue Op3) {
7879   SDVTList VTs = getVTList(VT);
7880   SDValue Ops[] = { Op1, Op2, Op3 };
7881   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7882 }
7883 
7884 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7885                                    EVT VT, ArrayRef<SDValue> Ops) {
7886   SDVTList VTs = getVTList(VT);
7887   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7888 }
7889 
7890 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7891                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7892   SDVTList VTs = getVTList(VT1, VT2);
7893   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7894 }
7895 
7896 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7897                                    EVT VT1, EVT VT2) {
7898   SDVTList VTs = getVTList(VT1, VT2);
7899   return SelectNodeTo(N, MachineOpc, VTs, None);
7900 }
7901 
7902 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7903                                    EVT VT1, EVT VT2, EVT VT3,
7904                                    ArrayRef<SDValue> Ops) {
7905   SDVTList VTs = getVTList(VT1, VT2, VT3);
7906   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7907 }
7908 
7909 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7910                                    EVT VT1, EVT VT2,
7911                                    SDValue Op1, SDValue Op2) {
7912   SDVTList VTs = getVTList(VT1, VT2);
7913   SDValue Ops[] = { Op1, Op2 };
7914   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7915 }
7916 
7917 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7918                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7919   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7920   // Reset the NodeID to -1.
7921   New->setNodeId(-1);
7922   if (New != N) {
7923     ReplaceAllUsesWith(N, New);
7924     RemoveDeadNode(N);
7925   }
7926   return New;
7927 }
7928 
7929 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7930 /// the line number information on the merged node since it is not possible to
7931 /// preserve the information that operation is associated with multiple lines.
7932 /// This will make the debugger working better at -O0, were there is a higher
7933 /// probability having other instructions associated with that line.
7934 ///
7935 /// For IROrder, we keep the smaller of the two
7936 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7937   DebugLoc NLoc = N->getDebugLoc();
7938   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7939     N->setDebugLoc(DebugLoc());
7940   }
7941   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7942   N->setIROrder(Order);
7943   return N;
7944 }
7945 
7946 /// MorphNodeTo - This *mutates* the specified node to have the specified
7947 /// return type, opcode, and operands.
7948 ///
7949 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7950 /// node of the specified opcode and operands, it returns that node instead of
7951 /// the current one.  Note that the SDLoc need not be the same.
7952 ///
7953 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7954 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7955 /// node, and because it doesn't require CSE recalculation for any of
7956 /// the node's users.
7957 ///
7958 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7959 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7960 /// the legalizer which maintain worklists that would need to be updated when
7961 /// deleting things.
7962 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7963                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7964   // If an identical node already exists, use it.
7965   void *IP = nullptr;
7966   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7967     FoldingSetNodeID ID;
7968     AddNodeIDNode(ID, Opc, VTs, Ops);
7969     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7970       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7971   }
7972 
7973   if (!RemoveNodeFromCSEMaps(N))
7974     IP = nullptr;
7975 
7976   // Start the morphing.
7977   N->NodeType = Opc;
7978   N->ValueList = VTs.VTs;
7979   N->NumValues = VTs.NumVTs;
7980 
7981   // Clear the operands list, updating used nodes to remove this from their
7982   // use list.  Keep track of any operands that become dead as a result.
7983   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7984   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7985     SDUse &Use = *I++;
7986     SDNode *Used = Use.getNode();
7987     Use.set(SDValue());
7988     if (Used->use_empty())
7989       DeadNodeSet.insert(Used);
7990   }
7991 
7992   // For MachineNode, initialize the memory references information.
7993   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7994     MN->clearMemRefs();
7995 
7996   // Swap for an appropriately sized array from the recycler.
7997   removeOperands(N);
7998   createOperands(N, Ops);
7999 
8000   // Delete any nodes that are still dead after adding the uses for the
8001   // new operands.
8002   if (!DeadNodeSet.empty()) {
8003     SmallVector<SDNode *, 16> DeadNodes;
8004     for (SDNode *N : DeadNodeSet)
8005       if (N->use_empty())
8006         DeadNodes.push_back(N);
8007     RemoveDeadNodes(DeadNodes);
8008   }
8009 
8010   if (IP)
8011     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8012   return N;
8013 }
8014 
8015 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8016   unsigned OrigOpc = Node->getOpcode();
8017   unsigned NewOpc;
8018   switch (OrigOpc) {
8019   default:
8020     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8021 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8022   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8023 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8024   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8025 #include "llvm/IR/ConstrainedOps.def"
8026   }
8027 
8028   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8029 
8030   // We're taking this node out of the chain, so we need to re-link things.
8031   SDValue InputChain = Node->getOperand(0);
8032   SDValue OutputChain = SDValue(Node, 1);
8033   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8034 
8035   SmallVector<SDValue, 3> Ops;
8036   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8037     Ops.push_back(Node->getOperand(i));
8038 
8039   SDVTList VTs = getVTList(Node->getValueType(0));
8040   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8041 
8042   // MorphNodeTo can operate in two ways: if an existing node with the
8043   // specified operands exists, it can just return it.  Otherwise, it
8044   // updates the node in place to have the requested operands.
8045   if (Res == Node) {
8046     // If we updated the node in place, reset the node ID.  To the isel,
8047     // this should be just like a newly allocated machine node.
8048     Res->setNodeId(-1);
8049   } else {
8050     ReplaceAllUsesWith(Node, Res);
8051     RemoveDeadNode(Node);
8052   }
8053 
8054   return Res;
8055 }
8056 
8057 /// getMachineNode - These are used for target selectors to create a new node
8058 /// with specified return type(s), MachineInstr opcode, and operands.
8059 ///
8060 /// Note that getMachineNode returns the resultant node.  If there is already a
8061 /// node of the specified opcode and operands, it returns that node instead of
8062 /// the current one.
8063 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8064                                             EVT VT) {
8065   SDVTList VTs = getVTList(VT);
8066   return getMachineNode(Opcode, dl, VTs, None);
8067 }
8068 
8069 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8070                                             EVT VT, SDValue Op1) {
8071   SDVTList VTs = getVTList(VT);
8072   SDValue Ops[] = { Op1 };
8073   return getMachineNode(Opcode, dl, VTs, Ops);
8074 }
8075 
8076 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8077                                             EVT VT, SDValue Op1, SDValue Op2) {
8078   SDVTList VTs = getVTList(VT);
8079   SDValue Ops[] = { Op1, Op2 };
8080   return getMachineNode(Opcode, dl, VTs, Ops);
8081 }
8082 
8083 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8084                                             EVT VT, SDValue Op1, SDValue Op2,
8085                                             SDValue Op3) {
8086   SDVTList VTs = getVTList(VT);
8087   SDValue Ops[] = { Op1, Op2, Op3 };
8088   return getMachineNode(Opcode, dl, VTs, Ops);
8089 }
8090 
8091 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8092                                             EVT VT, ArrayRef<SDValue> Ops) {
8093   SDVTList VTs = getVTList(VT);
8094   return getMachineNode(Opcode, dl, VTs, Ops);
8095 }
8096 
8097 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8098                                             EVT VT1, EVT VT2, SDValue Op1,
8099                                             SDValue Op2) {
8100   SDVTList VTs = getVTList(VT1, VT2);
8101   SDValue Ops[] = { Op1, Op2 };
8102   return getMachineNode(Opcode, dl, VTs, Ops);
8103 }
8104 
8105 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8106                                             EVT VT1, EVT VT2, SDValue Op1,
8107                                             SDValue Op2, SDValue Op3) {
8108   SDVTList VTs = getVTList(VT1, VT2);
8109   SDValue Ops[] = { Op1, Op2, Op3 };
8110   return getMachineNode(Opcode, dl, VTs, Ops);
8111 }
8112 
8113 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8114                                             EVT VT1, EVT VT2,
8115                                             ArrayRef<SDValue> Ops) {
8116   SDVTList VTs = getVTList(VT1, VT2);
8117   return getMachineNode(Opcode, dl, VTs, Ops);
8118 }
8119 
8120 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8121                                             EVT VT1, EVT VT2, EVT VT3,
8122                                             SDValue Op1, SDValue Op2) {
8123   SDVTList VTs = getVTList(VT1, VT2, VT3);
8124   SDValue Ops[] = { Op1, Op2 };
8125   return getMachineNode(Opcode, dl, VTs, Ops);
8126 }
8127 
8128 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8129                                             EVT VT1, EVT VT2, EVT VT3,
8130                                             SDValue Op1, SDValue Op2,
8131                                             SDValue Op3) {
8132   SDVTList VTs = getVTList(VT1, VT2, VT3);
8133   SDValue Ops[] = { Op1, Op2, Op3 };
8134   return getMachineNode(Opcode, dl, VTs, Ops);
8135 }
8136 
8137 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8138                                             EVT VT1, EVT VT2, EVT VT3,
8139                                             ArrayRef<SDValue> Ops) {
8140   SDVTList VTs = getVTList(VT1, VT2, VT3);
8141   return getMachineNode(Opcode, dl, VTs, Ops);
8142 }
8143 
8144 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8145                                             ArrayRef<EVT> ResultTys,
8146                                             ArrayRef<SDValue> Ops) {
8147   SDVTList VTs = getVTList(ResultTys);
8148   return getMachineNode(Opcode, dl, VTs, Ops);
8149 }
8150 
8151 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8152                                             SDVTList VTs,
8153                                             ArrayRef<SDValue> Ops) {
8154   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8155   MachineSDNode *N;
8156   void *IP = nullptr;
8157 
8158   if (DoCSE) {
8159     FoldingSetNodeID ID;
8160     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8161     IP = nullptr;
8162     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8163       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8164     }
8165   }
8166 
8167   // Allocate a new MachineSDNode.
8168   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8169   createOperands(N, Ops);
8170 
8171   if (DoCSE)
8172     CSEMap.InsertNode(N, IP);
8173 
8174   InsertNode(N);
8175   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8176   return N;
8177 }
8178 
8179 /// getTargetExtractSubreg - A convenience function for creating
8180 /// TargetOpcode::EXTRACT_SUBREG nodes.
8181 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8182                                              SDValue Operand) {
8183   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8184   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8185                                   VT, Operand, SRIdxVal);
8186   return SDValue(Subreg, 0);
8187 }
8188 
8189 /// getTargetInsertSubreg - A convenience function for creating
8190 /// TargetOpcode::INSERT_SUBREG nodes.
8191 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8192                                             SDValue Operand, SDValue Subreg) {
8193   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8194   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8195                                   VT, Operand, Subreg, SRIdxVal);
8196   return SDValue(Result, 0);
8197 }
8198 
8199 /// getNodeIfExists - Get the specified node if it's already available, or
8200 /// else return NULL.
8201 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8202                                       ArrayRef<SDValue> Ops,
8203                                       const SDNodeFlags Flags) {
8204   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8205     FoldingSetNodeID ID;
8206     AddNodeIDNode(ID, Opcode, VTList, Ops);
8207     void *IP = nullptr;
8208     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8209       E->intersectFlagsWith(Flags);
8210       return E;
8211     }
8212   }
8213   return nullptr;
8214 }
8215 
8216 /// getDbgValue - Creates a SDDbgValue node.
8217 ///
8218 /// SDNode
8219 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8220                                       SDNode *N, unsigned R, bool IsIndirect,
8221                                       const DebugLoc &DL, unsigned O) {
8222   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8223          "Expected inlined-at fields to agree");
8224   return new (DbgInfo->getAlloc())
8225       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8226 }
8227 
8228 /// Constant
8229 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8230                                               DIExpression *Expr,
8231                                               const Value *C,
8232                                               const DebugLoc &DL, unsigned O) {
8233   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8234          "Expected inlined-at fields to agree");
8235   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8236 }
8237 
8238 /// FrameIndex
8239 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8240                                                 DIExpression *Expr, unsigned FI,
8241                                                 bool IsIndirect,
8242                                                 const DebugLoc &DL,
8243                                                 unsigned O) {
8244   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8245          "Expected inlined-at fields to agree");
8246   return new (DbgInfo->getAlloc())
8247       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8248 }
8249 
8250 /// VReg
8251 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8252                                           DIExpression *Expr,
8253                                           unsigned VReg, bool IsIndirect,
8254                                           const DebugLoc &DL, unsigned O) {
8255   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8256          "Expected inlined-at fields to agree");
8257   return new (DbgInfo->getAlloc())
8258       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8259 }
8260 
8261 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8262                                      unsigned OffsetInBits, unsigned SizeInBits,
8263                                      bool InvalidateDbg) {
8264   SDNode *FromNode = From.getNode();
8265   SDNode *ToNode = To.getNode();
8266   assert(FromNode && ToNode && "Can't modify dbg values");
8267 
8268   // PR35338
8269   // TODO: assert(From != To && "Redundant dbg value transfer");
8270   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8271   if (From == To || FromNode == ToNode)
8272     return;
8273 
8274   if (!FromNode->getHasDebugValue())
8275     return;
8276 
8277   SmallVector<SDDbgValue *, 2> ClonedDVs;
8278   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8279     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8280       continue;
8281 
8282     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8283 
8284     // Just transfer the dbg value attached to From.
8285     if (Dbg->getResNo() != From.getResNo())
8286       continue;
8287 
8288     DIVariable *Var = Dbg->getVariable();
8289     auto *Expr = Dbg->getExpression();
8290     // If a fragment is requested, update the expression.
8291     if (SizeInBits) {
8292       // When splitting a larger (e.g., sign-extended) value whose
8293       // lower bits are described with an SDDbgValue, do not attempt
8294       // to transfer the SDDbgValue to the upper bits.
8295       if (auto FI = Expr->getFragmentInfo())
8296         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8297           continue;
8298       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8299                                                              SizeInBits);
8300       if (!Fragment)
8301         continue;
8302       Expr = *Fragment;
8303     }
8304     // Clone the SDDbgValue and move it to To.
8305     SDDbgValue *Clone = getDbgValue(
8306         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8307         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8308     ClonedDVs.push_back(Clone);
8309 
8310     if (InvalidateDbg) {
8311       // Invalidate value and indicate the SDDbgValue should not be emitted.
8312       Dbg->setIsInvalidated();
8313       Dbg->setIsEmitted();
8314     }
8315   }
8316 
8317   for (SDDbgValue *Dbg : ClonedDVs)
8318     AddDbgValue(Dbg, ToNode, false);
8319 }
8320 
8321 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8322   if (!N.getHasDebugValue())
8323     return;
8324 
8325   SmallVector<SDDbgValue *, 2> ClonedDVs;
8326   for (auto DV : GetDbgValues(&N)) {
8327     if (DV->isInvalidated())
8328       continue;
8329     switch (N.getOpcode()) {
8330     default:
8331       break;
8332     case ISD::ADD:
8333       SDValue N0 = N.getOperand(0);
8334       SDValue N1 = N.getOperand(1);
8335       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8336           isConstantIntBuildVectorOrConstantInt(N1)) {
8337         uint64_t Offset = N.getConstantOperandVal(1);
8338         // Rewrite an ADD constant node into a DIExpression. Since we are
8339         // performing arithmetic to compute the variable's *value* in the
8340         // DIExpression, we need to mark the expression with a
8341         // DW_OP_stack_value.
8342         auto *DIExpr = DV->getExpression();
8343         DIExpr =
8344             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8345         SDDbgValue *Clone =
8346             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8347                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8348         ClonedDVs.push_back(Clone);
8349         DV->setIsInvalidated();
8350         DV->setIsEmitted();
8351         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8352                    N0.getNode()->dumprFull(this);
8353                    dbgs() << " into " << *DIExpr << '\n');
8354       }
8355     }
8356   }
8357 
8358   for (SDDbgValue *Dbg : ClonedDVs)
8359     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8360 }
8361 
8362 /// Creates a SDDbgLabel node.
8363 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8364                                       const DebugLoc &DL, unsigned O) {
8365   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8366          "Expected inlined-at fields to agree");
8367   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8368 }
8369 
8370 namespace {
8371 
8372 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8373 /// pointed to by a use iterator is deleted, increment the use iterator
8374 /// so that it doesn't dangle.
8375 ///
8376 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8377   SDNode::use_iterator &UI;
8378   SDNode::use_iterator &UE;
8379 
8380   void NodeDeleted(SDNode *N, SDNode *E) override {
8381     // Increment the iterator as needed.
8382     while (UI != UE && N == *UI)
8383       ++UI;
8384   }
8385 
8386 public:
8387   RAUWUpdateListener(SelectionDAG &d,
8388                      SDNode::use_iterator &ui,
8389                      SDNode::use_iterator &ue)
8390     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8391 };
8392 
8393 } // end anonymous namespace
8394 
8395 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8396 /// This can cause recursive merging of nodes in the DAG.
8397 ///
8398 /// This version assumes From has a single result value.
8399 ///
8400 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8401   SDNode *From = FromN.getNode();
8402   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8403          "Cannot replace with this method!");
8404   assert(From != To.getNode() && "Cannot replace uses of with self");
8405 
8406   // Preserve Debug Values
8407   transferDbgValues(FromN, To);
8408 
8409   // Iterate over all the existing uses of From. New uses will be added
8410   // to the beginning of the use list, which we avoid visiting.
8411   // This specifically avoids visiting uses of From that arise while the
8412   // replacement is happening, because any such uses would be the result
8413   // of CSE: If an existing node looks like From after one of its operands
8414   // is replaced by To, we don't want to replace of all its users with To
8415   // too. See PR3018 for more info.
8416   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8417   RAUWUpdateListener Listener(*this, UI, UE);
8418   while (UI != UE) {
8419     SDNode *User = *UI;
8420 
8421     // This node is about to morph, remove its old self from the CSE maps.
8422     RemoveNodeFromCSEMaps(User);
8423 
8424     // A user can appear in a use list multiple times, and when this
8425     // happens the uses are usually next to each other in the list.
8426     // To help reduce the number of CSE recomputations, process all
8427     // the uses of this user that we can find this way.
8428     do {
8429       SDUse &Use = UI.getUse();
8430       ++UI;
8431       Use.set(To);
8432       if (To->isDivergent() != From->isDivergent())
8433         updateDivergence(User);
8434     } while (UI != UE && *UI == User);
8435     // Now that we have modified User, add it back to the CSE maps.  If it
8436     // already exists there, recursively merge the results together.
8437     AddModifiedNodeToCSEMaps(User);
8438   }
8439 
8440   // If we just RAUW'd the root, take note.
8441   if (FromN == getRoot())
8442     setRoot(To);
8443 }
8444 
8445 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8446 /// This can cause recursive merging of nodes in the DAG.
8447 ///
8448 /// This version assumes that for each value of From, there is a
8449 /// corresponding value in To in the same position with the same type.
8450 ///
8451 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8452 #ifndef NDEBUG
8453   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8454     assert((!From->hasAnyUseOfValue(i) ||
8455             From->getValueType(i) == To->getValueType(i)) &&
8456            "Cannot use this version of ReplaceAllUsesWith!");
8457 #endif
8458 
8459   // Handle the trivial case.
8460   if (From == To)
8461     return;
8462 
8463   // Preserve Debug Info. Only do this if there's a use.
8464   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8465     if (From->hasAnyUseOfValue(i)) {
8466       assert((i < To->getNumValues()) && "Invalid To location");
8467       transferDbgValues(SDValue(From, i), SDValue(To, i));
8468     }
8469 
8470   // Iterate over just the existing users of From. See the comments in
8471   // the ReplaceAllUsesWith above.
8472   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8473   RAUWUpdateListener Listener(*this, UI, UE);
8474   while (UI != UE) {
8475     SDNode *User = *UI;
8476 
8477     // This node is about to morph, remove its old self from the CSE maps.
8478     RemoveNodeFromCSEMaps(User);
8479 
8480     // A user can appear in a use list multiple times, and when this
8481     // happens the uses are usually next to each other in the list.
8482     // To help reduce the number of CSE recomputations, process all
8483     // the uses of this user that we can find this way.
8484     do {
8485       SDUse &Use = UI.getUse();
8486       ++UI;
8487       Use.setNode(To);
8488       if (To->isDivergent() != From->isDivergent())
8489         updateDivergence(User);
8490     } while (UI != UE && *UI == User);
8491 
8492     // Now that we have modified User, add it back to the CSE maps.  If it
8493     // already exists there, recursively merge the results together.
8494     AddModifiedNodeToCSEMaps(User);
8495   }
8496 
8497   // If we just RAUW'd the root, take note.
8498   if (From == getRoot().getNode())
8499     setRoot(SDValue(To, getRoot().getResNo()));
8500 }
8501 
8502 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8503 /// This can cause recursive merging of nodes in the DAG.
8504 ///
8505 /// This version can replace From with any result values.  To must match the
8506 /// number and types of values returned by From.
8507 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8508   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8509     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8510 
8511   // Preserve Debug Info.
8512   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8513     transferDbgValues(SDValue(From, i), To[i]);
8514 
8515   // Iterate over just the existing users of From. See the comments in
8516   // the ReplaceAllUsesWith above.
8517   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8518   RAUWUpdateListener Listener(*this, UI, UE);
8519   while (UI != UE) {
8520     SDNode *User = *UI;
8521 
8522     // This node is about to morph, remove its old self from the CSE maps.
8523     RemoveNodeFromCSEMaps(User);
8524 
8525     // A user can appear in a use list multiple times, and when this happens the
8526     // uses are usually next to each other in the list.  To help reduce the
8527     // number of CSE and divergence recomputations, process all the uses of this
8528     // user that we can find this way.
8529     bool To_IsDivergent = false;
8530     do {
8531       SDUse &Use = UI.getUse();
8532       const SDValue &ToOp = To[Use.getResNo()];
8533       ++UI;
8534       Use.set(ToOp);
8535       To_IsDivergent |= ToOp->isDivergent();
8536     } while (UI != UE && *UI == User);
8537 
8538     if (To_IsDivergent != From->isDivergent())
8539       updateDivergence(User);
8540 
8541     // Now that we have modified User, add it back to the CSE maps.  If it
8542     // already exists there, recursively merge the results together.
8543     AddModifiedNodeToCSEMaps(User);
8544   }
8545 
8546   // If we just RAUW'd the root, take note.
8547   if (From == getRoot().getNode())
8548     setRoot(SDValue(To[getRoot().getResNo()]));
8549 }
8550 
8551 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8552 /// uses of other values produced by From.getNode() alone.  The Deleted
8553 /// vector is handled the same way as for ReplaceAllUsesWith.
8554 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8555   // Handle the really simple, really trivial case efficiently.
8556   if (From == To) return;
8557 
8558   // Handle the simple, trivial, case efficiently.
8559   if (From.getNode()->getNumValues() == 1) {
8560     ReplaceAllUsesWith(From, To);
8561     return;
8562   }
8563 
8564   // Preserve Debug Info.
8565   transferDbgValues(From, To);
8566 
8567   // Iterate over just the existing users of From. See the comments in
8568   // the ReplaceAllUsesWith above.
8569   SDNode::use_iterator UI = From.getNode()->use_begin(),
8570                        UE = From.getNode()->use_end();
8571   RAUWUpdateListener Listener(*this, UI, UE);
8572   while (UI != UE) {
8573     SDNode *User = *UI;
8574     bool UserRemovedFromCSEMaps = false;
8575 
8576     // A user can appear in a use list multiple times, and when this
8577     // happens the uses are usually next to each other in the list.
8578     // To help reduce the number of CSE recomputations, process all
8579     // the uses of this user that we can find this way.
8580     do {
8581       SDUse &Use = UI.getUse();
8582 
8583       // Skip uses of different values from the same node.
8584       if (Use.getResNo() != From.getResNo()) {
8585         ++UI;
8586         continue;
8587       }
8588 
8589       // If this node hasn't been modified yet, it's still in the CSE maps,
8590       // so remove its old self from the CSE maps.
8591       if (!UserRemovedFromCSEMaps) {
8592         RemoveNodeFromCSEMaps(User);
8593         UserRemovedFromCSEMaps = true;
8594       }
8595 
8596       ++UI;
8597       Use.set(To);
8598       if (To->isDivergent() != From->isDivergent())
8599         updateDivergence(User);
8600     } while (UI != UE && *UI == User);
8601     // We are iterating over all uses of the From node, so if a use
8602     // doesn't use the specific value, no changes are made.
8603     if (!UserRemovedFromCSEMaps)
8604       continue;
8605 
8606     // Now that we have modified User, add it back to the CSE maps.  If it
8607     // already exists there, recursively merge the results together.
8608     AddModifiedNodeToCSEMaps(User);
8609   }
8610 
8611   // If we just RAUW'd the root, take note.
8612   if (From == getRoot())
8613     setRoot(To);
8614 }
8615 
8616 namespace {
8617 
8618   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8619   /// to record information about a use.
8620   struct UseMemo {
8621     SDNode *User;
8622     unsigned Index;
8623     SDUse *Use;
8624   };
8625 
8626   /// operator< - Sort Memos by User.
8627   bool operator<(const UseMemo &L, const UseMemo &R) {
8628     return (intptr_t)L.User < (intptr_t)R.User;
8629   }
8630 
8631 } // end anonymous namespace
8632 
8633 void SelectionDAG::updateDivergence(SDNode * N)
8634 {
8635   if (TLI->isSDNodeAlwaysUniform(N))
8636     return;
8637   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8638   for (auto &Op : N->ops()) {
8639     if (Op.Val.getValueType() != MVT::Other)
8640       IsDivergent |= Op.getNode()->isDivergent();
8641   }
8642   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8643     N->SDNodeBits.IsDivergent = IsDivergent;
8644     for (auto U : N->uses()) {
8645       updateDivergence(U);
8646     }
8647   }
8648 }
8649 
8650 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8651   DenseMap<SDNode *, unsigned> Degree;
8652   Order.reserve(AllNodes.size());
8653   for (auto &N : allnodes()) {
8654     unsigned NOps = N.getNumOperands();
8655     Degree[&N] = NOps;
8656     if (0 == NOps)
8657       Order.push_back(&N);
8658   }
8659   for (size_t I = 0; I != Order.size(); ++I) {
8660     SDNode *N = Order[I];
8661     for (auto U : N->uses()) {
8662       unsigned &UnsortedOps = Degree[U];
8663       if (0 == --UnsortedOps)
8664         Order.push_back(U);
8665     }
8666   }
8667 }
8668 
8669 #ifndef NDEBUG
8670 void SelectionDAG::VerifyDAGDiverence() {
8671   std::vector<SDNode *> TopoOrder;
8672   CreateTopologicalOrder(TopoOrder);
8673   const TargetLowering &TLI = getTargetLoweringInfo();
8674   DenseMap<const SDNode *, bool> DivergenceMap;
8675   for (auto &N : allnodes()) {
8676     DivergenceMap[&N] = false;
8677   }
8678   for (auto N : TopoOrder) {
8679     bool IsDivergent = DivergenceMap[N];
8680     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8681     for (auto &Op : N->ops()) {
8682       if (Op.Val.getValueType() != MVT::Other)
8683         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8684     }
8685     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8686       DivergenceMap[N] = true;
8687     }
8688   }
8689   for (auto &N : allnodes()) {
8690     (void)N;
8691     assert(DivergenceMap[&N] == N.isDivergent() &&
8692            "Divergence bit inconsistency detected\n");
8693   }
8694 }
8695 #endif
8696 
8697 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8698 /// uses of other values produced by From.getNode() alone.  The same value
8699 /// may appear in both the From and To list.  The Deleted vector is
8700 /// handled the same way as for ReplaceAllUsesWith.
8701 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8702                                               const SDValue *To,
8703                                               unsigned Num){
8704   // Handle the simple, trivial case efficiently.
8705   if (Num == 1)
8706     return ReplaceAllUsesOfValueWith(*From, *To);
8707 
8708   transferDbgValues(*From, *To);
8709 
8710   // Read up all the uses and make records of them. This helps
8711   // processing new uses that are introduced during the
8712   // replacement process.
8713   SmallVector<UseMemo, 4> Uses;
8714   for (unsigned i = 0; i != Num; ++i) {
8715     unsigned FromResNo = From[i].getResNo();
8716     SDNode *FromNode = From[i].getNode();
8717     for (SDNode::use_iterator UI = FromNode->use_begin(),
8718          E = FromNode->use_end(); UI != E; ++UI) {
8719       SDUse &Use = UI.getUse();
8720       if (Use.getResNo() == FromResNo) {
8721         UseMemo Memo = { *UI, i, &Use };
8722         Uses.push_back(Memo);
8723       }
8724     }
8725   }
8726 
8727   // Sort the uses, so that all the uses from a given User are together.
8728   llvm::sort(Uses);
8729 
8730   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8731        UseIndex != UseIndexEnd; ) {
8732     // We know that this user uses some value of From.  If it is the right
8733     // value, update it.
8734     SDNode *User = Uses[UseIndex].User;
8735 
8736     // This node is about to morph, remove its old self from the CSE maps.
8737     RemoveNodeFromCSEMaps(User);
8738 
8739     // The Uses array is sorted, so all the uses for a given User
8740     // are next to each other in the list.
8741     // To help reduce the number of CSE recomputations, process all
8742     // the uses of this user that we can find this way.
8743     do {
8744       unsigned i = Uses[UseIndex].Index;
8745       SDUse &Use = *Uses[UseIndex].Use;
8746       ++UseIndex;
8747 
8748       Use.set(To[i]);
8749     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8750 
8751     // Now that we have modified User, add it back to the CSE maps.  If it
8752     // already exists there, recursively merge the results together.
8753     AddModifiedNodeToCSEMaps(User);
8754   }
8755 }
8756 
8757 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8758 /// based on their topological order. It returns the maximum id and a vector
8759 /// of the SDNodes* in assigned order by reference.
8760 unsigned SelectionDAG::AssignTopologicalOrder() {
8761   unsigned DAGSize = 0;
8762 
8763   // SortedPos tracks the progress of the algorithm. Nodes before it are
8764   // sorted, nodes after it are unsorted. When the algorithm completes
8765   // it is at the end of the list.
8766   allnodes_iterator SortedPos = allnodes_begin();
8767 
8768   // Visit all the nodes. Move nodes with no operands to the front of
8769   // the list immediately. Annotate nodes that do have operands with their
8770   // operand count. Before we do this, the Node Id fields of the nodes
8771   // may contain arbitrary values. After, the Node Id fields for nodes
8772   // before SortedPos will contain the topological sort index, and the
8773   // Node Id fields for nodes At SortedPos and after will contain the
8774   // count of outstanding operands.
8775   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8776     SDNode *N = &*I++;
8777     checkForCycles(N, this);
8778     unsigned Degree = N->getNumOperands();
8779     if (Degree == 0) {
8780       // A node with no uses, add it to the result array immediately.
8781       N->setNodeId(DAGSize++);
8782       allnodes_iterator Q(N);
8783       if (Q != SortedPos)
8784         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8785       assert(SortedPos != AllNodes.end() && "Overran node list");
8786       ++SortedPos;
8787     } else {
8788       // Temporarily use the Node Id as scratch space for the degree count.
8789       N->setNodeId(Degree);
8790     }
8791   }
8792 
8793   // Visit all the nodes. As we iterate, move nodes into sorted order,
8794   // such that by the time the end is reached all nodes will be sorted.
8795   for (SDNode &Node : allnodes()) {
8796     SDNode *N = &Node;
8797     checkForCycles(N, this);
8798     // N is in sorted position, so all its uses have one less operand
8799     // that needs to be sorted.
8800     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8801          UI != UE; ++UI) {
8802       SDNode *P = *UI;
8803       unsigned Degree = P->getNodeId();
8804       assert(Degree != 0 && "Invalid node degree");
8805       --Degree;
8806       if (Degree == 0) {
8807         // All of P's operands are sorted, so P may sorted now.
8808         P->setNodeId(DAGSize++);
8809         if (P->getIterator() != SortedPos)
8810           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8811         assert(SortedPos != AllNodes.end() && "Overran node list");
8812         ++SortedPos;
8813       } else {
8814         // Update P's outstanding operand count.
8815         P->setNodeId(Degree);
8816       }
8817     }
8818     if (Node.getIterator() == SortedPos) {
8819 #ifndef NDEBUG
8820       allnodes_iterator I(N);
8821       SDNode *S = &*++I;
8822       dbgs() << "Overran sorted position:\n";
8823       S->dumprFull(this); dbgs() << "\n";
8824       dbgs() << "Checking if this is due to cycles\n";
8825       checkForCycles(this, true);
8826 #endif
8827       llvm_unreachable(nullptr);
8828     }
8829   }
8830 
8831   assert(SortedPos == AllNodes.end() &&
8832          "Topological sort incomplete!");
8833   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8834          "First node in topological sort is not the entry token!");
8835   assert(AllNodes.front().getNodeId() == 0 &&
8836          "First node in topological sort has non-zero id!");
8837   assert(AllNodes.front().getNumOperands() == 0 &&
8838          "First node in topological sort has operands!");
8839   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8840          "Last node in topologic sort has unexpected id!");
8841   assert(AllNodes.back().use_empty() &&
8842          "Last node in topologic sort has users!");
8843   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8844   return DAGSize;
8845 }
8846 
8847 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8848 /// value is produced by SD.
8849 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8850   if (SD) {
8851     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8852     SD->setHasDebugValue(true);
8853   }
8854   DbgInfo->add(DB, SD, isParameter);
8855 }
8856 
8857 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8858   DbgInfo->add(DB);
8859 }
8860 
8861 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8862                                                    SDValue NewMemOp) {
8863   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8864   // The new memory operation must have the same position as the old load in
8865   // terms of memory dependency. Create a TokenFactor for the old load and new
8866   // memory operation and update uses of the old load's output chain to use that
8867   // TokenFactor.
8868   SDValue OldChain = SDValue(OldLoad, 1);
8869   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8870   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8871     return NewChain;
8872 
8873   SDValue TokenFactor =
8874       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8875   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8876   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8877   return TokenFactor;
8878 }
8879 
8880 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8881                                                      Function **OutFunction) {
8882   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8883 
8884   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8885   auto *Module = MF->getFunction().getParent();
8886   auto *Function = Module->getFunction(Symbol);
8887 
8888   if (OutFunction != nullptr)
8889       *OutFunction = Function;
8890 
8891   if (Function != nullptr) {
8892     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8893     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8894   }
8895 
8896   std::string ErrorStr;
8897   raw_string_ostream ErrorFormatter(ErrorStr);
8898 
8899   ErrorFormatter << "Undefined external symbol ";
8900   ErrorFormatter << '"' << Symbol << '"';
8901   ErrorFormatter.flush();
8902 
8903   report_fatal_error(ErrorStr);
8904 }
8905 
8906 //===----------------------------------------------------------------------===//
8907 //                              SDNode Class
8908 //===----------------------------------------------------------------------===//
8909 
8910 bool llvm::isNullConstant(SDValue V) {
8911   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8912   return Const != nullptr && Const->isNullValue();
8913 }
8914 
8915 bool llvm::isNullFPConstant(SDValue V) {
8916   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8917   return Const != nullptr && Const->isZero() && !Const->isNegative();
8918 }
8919 
8920 bool llvm::isAllOnesConstant(SDValue V) {
8921   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8922   return Const != nullptr && Const->isAllOnesValue();
8923 }
8924 
8925 bool llvm::isOneConstant(SDValue V) {
8926   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8927   return Const != nullptr && Const->isOne();
8928 }
8929 
8930 SDValue llvm::peekThroughBitcasts(SDValue V) {
8931   while (V.getOpcode() == ISD::BITCAST)
8932     V = V.getOperand(0);
8933   return V;
8934 }
8935 
8936 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8937   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8938     V = V.getOperand(0);
8939   return V;
8940 }
8941 
8942 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8943   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8944     V = V.getOperand(0);
8945   return V;
8946 }
8947 
8948 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8949   if (V.getOpcode() != ISD::XOR)
8950     return false;
8951   V = peekThroughBitcasts(V.getOperand(1));
8952   unsigned NumBits = V.getScalarValueSizeInBits();
8953   ConstantSDNode *C =
8954       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
8955   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
8956 }
8957 
8958 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
8959                                           bool AllowTruncation) {
8960   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8961     return CN;
8962 
8963   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8964     BitVector UndefElements;
8965     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8966 
8967     // BuildVectors can truncate their operands. Ignore that case here unless
8968     // AllowTruncation is set.
8969     if (CN && (UndefElements.none() || AllowUndefs)) {
8970       EVT CVT = CN->getValueType(0);
8971       EVT NSVT = N.getValueType().getScalarType();
8972       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8973       if (AllowTruncation || (CVT == NSVT))
8974         return CN;
8975     }
8976   }
8977 
8978   return nullptr;
8979 }
8980 
8981 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8982                                           bool AllowUndefs,
8983                                           bool AllowTruncation) {
8984   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8985     return CN;
8986 
8987   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8988     BitVector UndefElements;
8989     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8990 
8991     // BuildVectors can truncate their operands. Ignore that case here unless
8992     // AllowTruncation is set.
8993     if (CN && (UndefElements.none() || AllowUndefs)) {
8994       EVT CVT = CN->getValueType(0);
8995       EVT NSVT = N.getValueType().getScalarType();
8996       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8997       if (AllowTruncation || (CVT == NSVT))
8998         return CN;
8999     }
9000   }
9001 
9002   return nullptr;
9003 }
9004 
9005 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9006   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9007     return CN;
9008 
9009   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9010     BitVector UndefElements;
9011     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9012     if (CN && (UndefElements.none() || AllowUndefs))
9013       return CN;
9014   }
9015 
9016   return nullptr;
9017 }
9018 
9019 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9020                                               const APInt &DemandedElts,
9021                                               bool AllowUndefs) {
9022   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9023     return CN;
9024 
9025   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9026     BitVector UndefElements;
9027     ConstantFPSDNode *CN =
9028         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9029     if (CN && (UndefElements.none() || AllowUndefs))
9030       return CN;
9031   }
9032 
9033   return nullptr;
9034 }
9035 
9036 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9037   // TODO: may want to use peekThroughBitcast() here.
9038   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9039   return C && C->isNullValue();
9040 }
9041 
9042 bool llvm::isOneOrOneSplat(SDValue N) {
9043   // TODO: may want to use peekThroughBitcast() here.
9044   unsigned BitWidth = N.getScalarValueSizeInBits();
9045   ConstantSDNode *C = isConstOrConstSplat(N);
9046   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9047 }
9048 
9049 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
9050   N = peekThroughBitcasts(N);
9051   unsigned BitWidth = N.getScalarValueSizeInBits();
9052   ConstantSDNode *C = isConstOrConstSplat(N);
9053   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9054 }
9055 
9056 HandleSDNode::~HandleSDNode() {
9057   DropOperands();
9058 }
9059 
9060 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9061                                          const DebugLoc &DL,
9062                                          const GlobalValue *GA, EVT VT,
9063                                          int64_t o, unsigned TF)
9064     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9065   TheGlobal = GA;
9066 }
9067 
9068 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9069                                          EVT VT, unsigned SrcAS,
9070                                          unsigned DestAS)
9071     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9072       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9073 
9074 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9075                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9076     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9077   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9078   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9079   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9080   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9081 
9082   // We check here that the size of the memory operand fits within the size of
9083   // the MMO. This is because the MMO might indicate only a possible address
9084   // range instead of specifying the affected memory addresses precisely.
9085   // TODO: Make MachineMemOperands aware of scalable vectors.
9086   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9087          "Size mismatch!");
9088 }
9089 
9090 /// Profile - Gather unique data for the node.
9091 ///
9092 void SDNode::Profile(FoldingSetNodeID &ID) const {
9093   AddNodeIDNode(ID, this);
9094 }
9095 
9096 namespace {
9097 
9098   struct EVTArray {
9099     std::vector<EVT> VTs;
9100 
9101     EVTArray() {
9102       VTs.reserve(MVT::LAST_VALUETYPE);
9103       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9104         VTs.push_back(MVT((MVT::SimpleValueType)i));
9105     }
9106   };
9107 
9108 } // end anonymous namespace
9109 
9110 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9111 static ManagedStatic<EVTArray> SimpleVTArray;
9112 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9113 
9114 /// getValueTypeList - Return a pointer to the specified value type.
9115 ///
9116 const EVT *SDNode::getValueTypeList(EVT VT) {
9117   if (VT.isExtended()) {
9118     sys::SmartScopedLock<true> Lock(*VTMutex);
9119     return &(*EVTs->insert(VT).first);
9120   } else {
9121     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9122            "Value type out of range!");
9123     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9124   }
9125 }
9126 
9127 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9128 /// indicated value.  This method ignores uses of other values defined by this
9129 /// operation.
9130 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9131   assert(Value < getNumValues() && "Bad value!");
9132 
9133   // TODO: Only iterate over uses of a given value of the node
9134   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9135     if (UI.getUse().getResNo() == Value) {
9136       if (NUses == 0)
9137         return false;
9138       --NUses;
9139     }
9140   }
9141 
9142   // Found exactly the right number of uses?
9143   return NUses == 0;
9144 }
9145 
9146 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9147 /// value. This method ignores uses of other values defined by this operation.
9148 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9149   assert(Value < getNumValues() && "Bad value!");
9150 
9151   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9152     if (UI.getUse().getResNo() == Value)
9153       return true;
9154 
9155   return false;
9156 }
9157 
9158 /// isOnlyUserOf - Return true if this node is the only use of N.
9159 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9160   bool Seen = false;
9161   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9162     SDNode *User = *I;
9163     if (User == this)
9164       Seen = true;
9165     else
9166       return false;
9167   }
9168 
9169   return Seen;
9170 }
9171 
9172 /// Return true if the only users of N are contained in Nodes.
9173 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9174   bool Seen = false;
9175   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9176     SDNode *User = *I;
9177     if (llvm::any_of(Nodes,
9178                      [&User](const SDNode *Node) { return User == Node; }))
9179       Seen = true;
9180     else
9181       return false;
9182   }
9183 
9184   return Seen;
9185 }
9186 
9187 /// isOperand - Return true if this node is an operand of N.
9188 bool SDValue::isOperandOf(const SDNode *N) const {
9189   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9190 }
9191 
9192 bool SDNode::isOperandOf(const SDNode *N) const {
9193   return any_of(N->op_values(),
9194                 [this](SDValue Op) { return this == Op.getNode(); });
9195 }
9196 
9197 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9198 /// be a chain) reaches the specified operand without crossing any
9199 /// side-effecting instructions on any chain path.  In practice, this looks
9200 /// through token factors and non-volatile loads.  In order to remain efficient,
9201 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9202 ///
9203 /// Note that we only need to examine chains when we're searching for
9204 /// side-effects; SelectionDAG requires that all side-effects are represented
9205 /// by chains, even if another operand would force a specific ordering. This
9206 /// constraint is necessary to allow transformations like splitting loads.
9207 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9208                                              unsigned Depth) const {
9209   if (*this == Dest) return true;
9210 
9211   // Don't search too deeply, we just want to be able to see through
9212   // TokenFactor's etc.
9213   if (Depth == 0) return false;
9214 
9215   // If this is a token factor, all inputs to the TF happen in parallel.
9216   if (getOpcode() == ISD::TokenFactor) {
9217     // First, try a shallow search.
9218     if (is_contained((*this)->ops(), Dest)) {
9219       // We found the chain we want as an operand of this TokenFactor.
9220       // Essentially, we reach the chain without side-effects if we could
9221       // serialize the TokenFactor into a simple chain of operations with
9222       // Dest as the last operation. This is automatically true if the
9223       // chain has one use: there are no other ordering constraints.
9224       // If the chain has more than one use, we give up: some other
9225       // use of Dest might force a side-effect between Dest and the current
9226       // node.
9227       if (Dest.hasOneUse())
9228         return true;
9229     }
9230     // Next, try a deep search: check whether every operand of the TokenFactor
9231     // reaches Dest.
9232     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9233       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9234     });
9235   }
9236 
9237   // Loads don't have side effects, look through them.
9238   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9239     if (Ld->isUnordered())
9240       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9241   }
9242   return false;
9243 }
9244 
9245 bool SDNode::hasPredecessor(const SDNode *N) const {
9246   SmallPtrSet<const SDNode *, 32> Visited;
9247   SmallVector<const SDNode *, 16> Worklist;
9248   Worklist.push_back(this);
9249   return hasPredecessorHelper(N, Visited, Worklist);
9250 }
9251 
9252 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9253   this->Flags.intersectWith(Flags);
9254 }
9255 
9256 SDValue
9257 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9258                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9259                                   bool AllowPartials) {
9260   // The pattern must end in an extract from index 0.
9261   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9262       !isNullConstant(Extract->getOperand(1)))
9263     return SDValue();
9264 
9265   // Match against one of the candidate binary ops.
9266   SDValue Op = Extract->getOperand(0);
9267   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9268         return Op.getOpcode() == unsigned(BinOp);
9269       }))
9270     return SDValue();
9271 
9272   // Floating-point reductions may require relaxed constraints on the final step
9273   // of the reduction because they may reorder intermediate operations.
9274   unsigned CandidateBinOp = Op.getOpcode();
9275   if (Op.getValueType().isFloatingPoint()) {
9276     SDNodeFlags Flags = Op->getFlags();
9277     switch (CandidateBinOp) {
9278     case ISD::FADD:
9279       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9280         return SDValue();
9281       break;
9282     default:
9283       llvm_unreachable("Unhandled FP opcode for binop reduction");
9284     }
9285   }
9286 
9287   // Matching failed - attempt to see if we did enough stages that a partial
9288   // reduction from a subvector is possible.
9289   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9290     if (!AllowPartials || !Op)
9291       return SDValue();
9292     EVT OpVT = Op.getValueType();
9293     EVT OpSVT = OpVT.getScalarType();
9294     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9295     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9296       return SDValue();
9297     BinOp = (ISD::NodeType)CandidateBinOp;
9298     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9299                    getVectorIdxConstant(0, SDLoc(Op)));
9300   };
9301 
9302   // At each stage, we're looking for something that looks like:
9303   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9304   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9305   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9306   // %a = binop <8 x i32> %op, %s
9307   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9308   // we expect something like:
9309   // <4,5,6,7,u,u,u,u>
9310   // <2,3,u,u,u,u,u,u>
9311   // <1,u,u,u,u,u,u,u>
9312   // While a partial reduction match would be:
9313   // <2,3,u,u,u,u,u,u>
9314   // <1,u,u,u,u,u,u,u>
9315   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9316   SDValue PrevOp;
9317   for (unsigned i = 0; i < Stages; ++i) {
9318     unsigned MaskEnd = (1 << i);
9319 
9320     if (Op.getOpcode() != CandidateBinOp)
9321       return PartialReduction(PrevOp, MaskEnd);
9322 
9323     SDValue Op0 = Op.getOperand(0);
9324     SDValue Op1 = Op.getOperand(1);
9325 
9326     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9327     if (Shuffle) {
9328       Op = Op1;
9329     } else {
9330       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9331       Op = Op0;
9332     }
9333 
9334     // The first operand of the shuffle should be the same as the other operand
9335     // of the binop.
9336     if (!Shuffle || Shuffle->getOperand(0) != Op)
9337       return PartialReduction(PrevOp, MaskEnd);
9338 
9339     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9340     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9341       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9342         return PartialReduction(PrevOp, MaskEnd);
9343 
9344     PrevOp = Op;
9345   }
9346 
9347   BinOp = (ISD::NodeType)CandidateBinOp;
9348   return Op;
9349 }
9350 
9351 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9352   assert(N->getNumValues() == 1 &&
9353          "Can't unroll a vector with multiple results!");
9354 
9355   EVT VT = N->getValueType(0);
9356   unsigned NE = VT.getVectorNumElements();
9357   EVT EltVT = VT.getVectorElementType();
9358   SDLoc dl(N);
9359 
9360   SmallVector<SDValue, 8> Scalars;
9361   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9362 
9363   // If ResNE is 0, fully unroll the vector op.
9364   if (ResNE == 0)
9365     ResNE = NE;
9366   else if (NE > ResNE)
9367     NE = ResNE;
9368 
9369   unsigned i;
9370   for (i= 0; i != NE; ++i) {
9371     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9372       SDValue Operand = N->getOperand(j);
9373       EVT OperandVT = Operand.getValueType();
9374       if (OperandVT.isVector()) {
9375         // A vector operand; extract a single element.
9376         EVT OperandEltVT = OperandVT.getVectorElementType();
9377         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9378                               Operand, getVectorIdxConstant(i, dl));
9379       } else {
9380         // A scalar operand; just use it as is.
9381         Operands[j] = Operand;
9382       }
9383     }
9384 
9385     switch (N->getOpcode()) {
9386     default: {
9387       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9388                                 N->getFlags()));
9389       break;
9390     }
9391     case ISD::VSELECT:
9392       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9393       break;
9394     case ISD::SHL:
9395     case ISD::SRA:
9396     case ISD::SRL:
9397     case ISD::ROTL:
9398     case ISD::ROTR:
9399       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9400                                getShiftAmountOperand(Operands[0].getValueType(),
9401                                                      Operands[1])));
9402       break;
9403     case ISD::SIGN_EXTEND_INREG: {
9404       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9405       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9406                                 Operands[0],
9407                                 getValueType(ExtVT)));
9408     }
9409     }
9410   }
9411 
9412   for (; i < ResNE; ++i)
9413     Scalars.push_back(getUNDEF(EltVT));
9414 
9415   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9416   return getBuildVector(VecVT, dl, Scalars);
9417 }
9418 
9419 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9420     SDNode *N, unsigned ResNE) {
9421   unsigned Opcode = N->getOpcode();
9422   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9423           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9424           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9425          "Expected an overflow opcode");
9426 
9427   EVT ResVT = N->getValueType(0);
9428   EVT OvVT = N->getValueType(1);
9429   EVT ResEltVT = ResVT.getVectorElementType();
9430   EVT OvEltVT = OvVT.getVectorElementType();
9431   SDLoc dl(N);
9432 
9433   // If ResNE is 0, fully unroll the vector op.
9434   unsigned NE = ResVT.getVectorNumElements();
9435   if (ResNE == 0)
9436     ResNE = NE;
9437   else if (NE > ResNE)
9438     NE = ResNE;
9439 
9440   SmallVector<SDValue, 8> LHSScalars;
9441   SmallVector<SDValue, 8> RHSScalars;
9442   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9443   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9444 
9445   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9446   SDVTList VTs = getVTList(ResEltVT, SVT);
9447   SmallVector<SDValue, 8> ResScalars;
9448   SmallVector<SDValue, 8> OvScalars;
9449   for (unsigned i = 0; i < NE; ++i) {
9450     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9451     SDValue Ov =
9452         getSelect(dl, OvEltVT, Res.getValue(1),
9453                   getBoolConstant(true, dl, OvEltVT, ResVT),
9454                   getConstant(0, dl, OvEltVT));
9455 
9456     ResScalars.push_back(Res);
9457     OvScalars.push_back(Ov);
9458   }
9459 
9460   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9461   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9462 
9463   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9464   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9465   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9466                         getBuildVector(NewOvVT, dl, OvScalars));
9467 }
9468 
9469 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9470                                                   LoadSDNode *Base,
9471                                                   unsigned Bytes,
9472                                                   int Dist) const {
9473   if (LD->isVolatile() || Base->isVolatile())
9474     return false;
9475   // TODO: probably too restrictive for atomics, revisit
9476   if (!LD->isSimple())
9477     return false;
9478   if (LD->isIndexed() || Base->isIndexed())
9479     return false;
9480   if (LD->getChain() != Base->getChain())
9481     return false;
9482   EVT VT = LD->getValueType(0);
9483   if (VT.getSizeInBits() / 8 != Bytes)
9484     return false;
9485 
9486   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9487   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9488 
9489   int64_t Offset = 0;
9490   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9491     return (Dist * Bytes == Offset);
9492   return false;
9493 }
9494 
9495 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9496 /// if it cannot be inferred.
9497 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9498   // If this is a GlobalAddress + cst, return the alignment.
9499   const GlobalValue *GV = nullptr;
9500   int64_t GVOffset = 0;
9501   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9502     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9503     KnownBits Known(PtrWidth);
9504     llvm::computeKnownBits(GV, Known, getDataLayout());
9505     unsigned AlignBits = Known.countMinTrailingZeros();
9506     if (AlignBits)
9507       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9508   }
9509 
9510   // If this is a direct reference to a stack slot, use information about the
9511   // stack slot's alignment.
9512   int FrameIdx = INT_MIN;
9513   int64_t FrameOffset = 0;
9514   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9515     FrameIdx = FI->getIndex();
9516   } else if (isBaseWithConstantOffset(Ptr) &&
9517              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9518     // Handle FI+Cst
9519     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9520     FrameOffset = Ptr.getConstantOperandVal(1);
9521   }
9522 
9523   if (FrameIdx != INT_MIN) {
9524     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9525     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
9526   }
9527 
9528   return None;
9529 }
9530 
9531 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9532 /// which is split (or expanded) into two not necessarily identical pieces.
9533 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9534   // Currently all types are split in half.
9535   EVT LoVT, HiVT;
9536   if (!VT.isVector())
9537     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9538   else
9539     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9540 
9541   return std::make_pair(LoVT, HiVT);
9542 }
9543 
9544 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
9545 /// type, dependent on an enveloping VT that has been split into two identical
9546 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
9547 std::pair<EVT, EVT>
9548 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
9549                                        bool *HiIsEmpty) const {
9550   EVT EltTp = VT.getVectorElementType();
9551   bool IsScalable = VT.isScalableVector();
9552   // Examples:
9553   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
9554   //   custom VL=9  with enveloping VL=8/8 yields 8/1
9555   //   custom VL=10 with enveloping VL=8/8 yields 8/2
9556   //   etc.
9557   unsigned VTNumElts = VT.getVectorNumElements();
9558   unsigned EnvNumElts = EnvVT.getVectorNumElements();
9559   EVT LoVT, HiVT;
9560   if (VTNumElts > EnvNumElts) {
9561     LoVT = EnvVT;
9562     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts,
9563                             IsScalable);
9564     *HiIsEmpty = false;
9565   } else {
9566     // Flag that hi type has zero storage size, but return split envelop type
9567     // (this would be easier if vector types with zero elements were allowed).
9568     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts, IsScalable);
9569     HiVT = EnvVT;
9570     *HiIsEmpty = true;
9571   }
9572   return std::make_pair(LoVT, HiVT);
9573 }
9574 
9575 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9576 /// low/high part.
9577 std::pair<SDValue, SDValue>
9578 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9579                           const EVT &HiVT) {
9580   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9581          N.getValueType().getVectorNumElements() &&
9582          "More vector elements requested than available!");
9583   SDValue Lo, Hi;
9584   Lo =
9585       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9586   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9587                getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
9588   return std::make_pair(Lo, Hi);
9589 }
9590 
9591 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9592 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9593   EVT VT = N.getValueType();
9594   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9595                                 NextPowerOf2(VT.getVectorNumElements()));
9596   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9597                  getVectorIdxConstant(0, DL));
9598 }
9599 
9600 void SelectionDAG::ExtractVectorElements(SDValue Op,
9601                                          SmallVectorImpl<SDValue> &Args,
9602                                          unsigned Start, unsigned Count,
9603                                          EVT EltVT) {
9604   EVT VT = Op.getValueType();
9605   if (Count == 0)
9606     Count = VT.getVectorNumElements();
9607   if (EltVT == EVT())
9608     EltVT = VT.getVectorElementType();
9609   SDLoc SL(Op);
9610   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9611     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9612                            getVectorIdxConstant(i, SL)));
9613   }
9614 }
9615 
9616 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9617 unsigned GlobalAddressSDNode::getAddressSpace() const {
9618   return getGlobal()->getType()->getAddressSpace();
9619 }
9620 
9621 Type *ConstantPoolSDNode::getType() const {
9622   if (isMachineConstantPoolEntry())
9623     return Val.MachineCPVal->getType();
9624   return Val.ConstVal->getType();
9625 }
9626 
9627 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9628                                         unsigned &SplatBitSize,
9629                                         bool &HasAnyUndefs,
9630                                         unsigned MinSplatBits,
9631                                         bool IsBigEndian) const {
9632   EVT VT = getValueType(0);
9633   assert(VT.isVector() && "Expected a vector type");
9634   unsigned VecWidth = VT.getSizeInBits();
9635   if (MinSplatBits > VecWidth)
9636     return false;
9637 
9638   // FIXME: The widths are based on this node's type, but build vectors can
9639   // truncate their operands.
9640   SplatValue = APInt(VecWidth, 0);
9641   SplatUndef = APInt(VecWidth, 0);
9642 
9643   // Get the bits. Bits with undefined values (when the corresponding element
9644   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9645   // in SplatValue. If any of the values are not constant, give up and return
9646   // false.
9647   unsigned int NumOps = getNumOperands();
9648   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9649   unsigned EltWidth = VT.getScalarSizeInBits();
9650 
9651   for (unsigned j = 0; j < NumOps; ++j) {
9652     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9653     SDValue OpVal = getOperand(i);
9654     unsigned BitPos = j * EltWidth;
9655 
9656     if (OpVal.isUndef())
9657       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9658     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9659       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9660     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9661       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9662     else
9663       return false;
9664   }
9665 
9666   // The build_vector is all constants or undefs. Find the smallest element
9667   // size that splats the vector.
9668   HasAnyUndefs = (SplatUndef != 0);
9669 
9670   // FIXME: This does not work for vectors with elements less than 8 bits.
9671   while (VecWidth > 8) {
9672     unsigned HalfSize = VecWidth / 2;
9673     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9674     APInt LowValue = SplatValue.trunc(HalfSize);
9675     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9676     APInt LowUndef = SplatUndef.trunc(HalfSize);
9677 
9678     // If the two halves do not match (ignoring undef bits), stop here.
9679     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9680         MinSplatBits > HalfSize)
9681       break;
9682 
9683     SplatValue = HighValue | LowValue;
9684     SplatUndef = HighUndef & LowUndef;
9685 
9686     VecWidth = HalfSize;
9687   }
9688 
9689   SplatBitSize = VecWidth;
9690   return true;
9691 }
9692 
9693 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9694                                          BitVector *UndefElements) const {
9695   if (UndefElements) {
9696     UndefElements->clear();
9697     UndefElements->resize(getNumOperands());
9698   }
9699   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9700          "Unexpected vector size");
9701   if (!DemandedElts)
9702     return SDValue();
9703   SDValue Splatted;
9704   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9705     if (!DemandedElts[i])
9706       continue;
9707     SDValue Op = getOperand(i);
9708     if (Op.isUndef()) {
9709       if (UndefElements)
9710         (*UndefElements)[i] = true;
9711     } else if (!Splatted) {
9712       Splatted = Op;
9713     } else if (Splatted != Op) {
9714       return SDValue();
9715     }
9716   }
9717 
9718   if (!Splatted) {
9719     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9720     assert(getOperand(FirstDemandedIdx).isUndef() &&
9721            "Can only have a splat without a constant for all undefs.");
9722     return getOperand(FirstDemandedIdx);
9723   }
9724 
9725   return Splatted;
9726 }
9727 
9728 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9729   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9730   return getSplatValue(DemandedElts, UndefElements);
9731 }
9732 
9733 ConstantSDNode *
9734 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9735                                         BitVector *UndefElements) const {
9736   return dyn_cast_or_null<ConstantSDNode>(
9737       getSplatValue(DemandedElts, UndefElements));
9738 }
9739 
9740 ConstantSDNode *
9741 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9742   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9743 }
9744 
9745 ConstantFPSDNode *
9746 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9747                                           BitVector *UndefElements) const {
9748   return dyn_cast_or_null<ConstantFPSDNode>(
9749       getSplatValue(DemandedElts, UndefElements));
9750 }
9751 
9752 ConstantFPSDNode *
9753 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9754   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9755 }
9756 
9757 int32_t
9758 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9759                                                    uint32_t BitWidth) const {
9760   if (ConstantFPSDNode *CN =
9761           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9762     bool IsExact;
9763     APSInt IntVal(BitWidth);
9764     const APFloat &APF = CN->getValueAPF();
9765     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9766             APFloat::opOK ||
9767         !IsExact)
9768       return -1;
9769 
9770     return IntVal.exactLogBase2();
9771   }
9772   return -1;
9773 }
9774 
9775 bool BuildVectorSDNode::isConstant() const {
9776   for (const SDValue &Op : op_values()) {
9777     unsigned Opc = Op.getOpcode();
9778     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9779       return false;
9780   }
9781   return true;
9782 }
9783 
9784 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9785   // Find the first non-undef value in the shuffle mask.
9786   unsigned i, e;
9787   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9788     /* search */;
9789 
9790   // If all elements are undefined, this shuffle can be considered a splat
9791   // (although it should eventually get simplified away completely).
9792   if (i == e)
9793     return true;
9794 
9795   // Make sure all remaining elements are either undef or the same as the first
9796   // non-undef value.
9797   for (int Idx = Mask[i]; i != e; ++i)
9798     if (Mask[i] >= 0 && Mask[i] != Idx)
9799       return false;
9800   return true;
9801 }
9802 
9803 // Returns the SDNode if it is a constant integer BuildVector
9804 // or constant integer.
9805 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9806   if (isa<ConstantSDNode>(N))
9807     return N.getNode();
9808   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9809     return N.getNode();
9810   // Treat a GlobalAddress supporting constant offset folding as a
9811   // constant integer.
9812   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9813     if (GA->getOpcode() == ISD::GlobalAddress &&
9814         TLI->isOffsetFoldingLegal(GA))
9815       return GA;
9816   return nullptr;
9817 }
9818 
9819 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9820   if (isa<ConstantFPSDNode>(N))
9821     return N.getNode();
9822 
9823   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9824     return N.getNode();
9825 
9826   return nullptr;
9827 }
9828 
9829 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9830   assert(!Node->OperandList && "Node already has operands");
9831   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9832          "too many operands to fit into SDNode");
9833   SDUse *Ops = OperandRecycler.allocate(
9834       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9835 
9836   bool IsDivergent = false;
9837   for (unsigned I = 0; I != Vals.size(); ++I) {
9838     Ops[I].setUser(Node);
9839     Ops[I].setInitial(Vals[I]);
9840     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9841       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9842   }
9843   Node->NumOperands = Vals.size();
9844   Node->OperandList = Ops;
9845   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9846   if (!TLI->isSDNodeAlwaysUniform(Node))
9847     Node->SDNodeBits.IsDivergent = IsDivergent;
9848   checkForCycles(Node);
9849 }
9850 
9851 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9852                                      SmallVectorImpl<SDValue> &Vals) {
9853   size_t Limit = SDNode::getMaxNumOperands();
9854   while (Vals.size() > Limit) {
9855     unsigned SliceIdx = Vals.size() - Limit;
9856     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9857     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9858     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9859     Vals.emplace_back(NewTF);
9860   }
9861   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9862 }
9863 
9864 #ifndef NDEBUG
9865 static void checkForCyclesHelper(const SDNode *N,
9866                                  SmallPtrSetImpl<const SDNode*> &Visited,
9867                                  SmallPtrSetImpl<const SDNode*> &Checked,
9868                                  const llvm::SelectionDAG *DAG) {
9869   // If this node has already been checked, don't check it again.
9870   if (Checked.count(N))
9871     return;
9872 
9873   // If a node has already been visited on this depth-first walk, reject it as
9874   // a cycle.
9875   if (!Visited.insert(N).second) {
9876     errs() << "Detected cycle in SelectionDAG\n";
9877     dbgs() << "Offending node:\n";
9878     N->dumprFull(DAG); dbgs() << "\n";
9879     abort();
9880   }
9881 
9882   for (const SDValue &Op : N->op_values())
9883     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9884 
9885   Checked.insert(N);
9886   Visited.erase(N);
9887 }
9888 #endif
9889 
9890 void llvm::checkForCycles(const llvm::SDNode *N,
9891                           const llvm::SelectionDAG *DAG,
9892                           bool force) {
9893 #ifndef NDEBUG
9894   bool check = force;
9895 #ifdef EXPENSIVE_CHECKS
9896   check = true;
9897 #endif  // EXPENSIVE_CHECKS
9898   if (check) {
9899     assert(N && "Checking nonexistent SDNode");
9900     SmallPtrSet<const SDNode*, 32> visited;
9901     SmallPtrSet<const SDNode*, 32> checked;
9902     checkForCyclesHelper(N, visited, checked, DAG);
9903   }
9904 #endif  // !NDEBUG
9905 }
9906 
9907 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9908   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9909 }
9910