1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetFrameLowering.h" 42 #include "llvm/CodeGen/TargetLowering.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/ValueTypes.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/Compiler.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/KnownBits.h" 63 #include "llvm/Support/MachineValueType.h" 64 #include "llvm/Support/ManagedStatic.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/Mutex.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include "llvm/Target/TargetOptions.h" 70 #include "llvm/Transforms/Utils/SizeOpts.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstdint> 74 #include <cstdlib> 75 #include <limits> 76 #include <set> 77 #include <string> 78 #include <utility> 79 #include <vector> 80 81 using namespace llvm; 82 83 /// makeVTList - Return an instance of the SDVTList struct initialized with the 84 /// specified members. 85 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 86 SDVTList Res = {VTs, NumVTs}; 87 return Res; 88 } 89 90 // Default null implementations of the callbacks. 91 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 94 95 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 96 97 #define DEBUG_TYPE "selectiondag" 98 99 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 100 cl::Hidden, cl::init(true), 101 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 102 103 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 104 cl::desc("Number limit for gluing ld/st of memcpy."), 105 cl::Hidden, cl::init(0)); 106 107 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 108 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 109 } 110 111 //===----------------------------------------------------------------------===// 112 // ConstantFPSDNode Class 113 //===----------------------------------------------------------------------===// 114 115 /// isExactlyValue - We don't rely on operator== working on double values, as 116 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 117 /// As such, this method can be used to do an exact bit-for-bit comparison of 118 /// two floating point values. 119 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 120 return getValueAPF().bitwiseIsEqual(V); 121 } 122 123 bool ConstantFPSDNode::isValueValidForType(EVT VT, 124 const APFloat& Val) { 125 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 126 127 // convert modifies in place, so make a copy. 128 APFloat Val2 = APFloat(Val); 129 bool losesInfo; 130 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 131 APFloat::rmNearestTiesToEven, 132 &losesInfo); 133 return !losesInfo; 134 } 135 136 //===----------------------------------------------------------------------===// 137 // ISD Namespace 138 //===----------------------------------------------------------------------===// 139 140 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 141 auto *BV = dyn_cast<BuildVectorSDNode>(N); 142 if (!BV) 143 return false; 144 145 APInt SplatUndef; 146 unsigned SplatBitSize; 147 bool HasUndefs; 148 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 149 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 150 EltSize) && 151 EltSize == SplatBitSize; 152 } 153 154 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 155 // specializations of the more general isConstantSplatVector()? 156 157 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 158 // Look through a bit convert. 159 while (N->getOpcode() == ISD::BITCAST) 160 N = N->getOperand(0).getNode(); 161 162 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 163 164 unsigned i = 0, e = N->getNumOperands(); 165 166 // Skip over all of the undef values. 167 while (i != e && N->getOperand(i).isUndef()) 168 ++i; 169 170 // Do not accept an all-undef vector. 171 if (i == e) return false; 172 173 // Do not accept build_vectors that aren't all constants or which have non-~0 174 // elements. We have to be a bit careful here, as the type of the constant 175 // may not be the same as the type of the vector elements due to type 176 // legalization (the elements are promoted to a legal type for the target and 177 // a vector of a type may be legal when the base element type is not). 178 // We only want to check enough bits to cover the vector elements, because 179 // we care if the resultant vector is all ones, not whether the individual 180 // constants are. 181 SDValue NotZero = N->getOperand(i); 182 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 183 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 184 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 185 return false; 186 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 187 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 188 return false; 189 } else 190 return false; 191 192 // Okay, we have at least one ~0 value, check to see if the rest match or are 193 // undefs. Even with the above element type twiddling, this should be OK, as 194 // the same type legalization should have applied to all the elements. 195 for (++i; i != e; ++i) 196 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 197 return false; 198 return true; 199 } 200 201 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 202 // Look through a bit convert. 203 while (N->getOpcode() == ISD::BITCAST) 204 N = N->getOperand(0).getNode(); 205 206 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 207 208 bool IsAllUndef = true; 209 for (const SDValue &Op : N->op_values()) { 210 if (Op.isUndef()) 211 continue; 212 IsAllUndef = false; 213 // Do not accept build_vectors that aren't all constants or which have non-0 214 // elements. We have to be a bit careful here, as the type of the constant 215 // may not be the same as the type of the vector elements due to type 216 // legalization (the elements are promoted to a legal type for the target 217 // and a vector of a type may be legal when the base element type is not). 218 // We only want to check enough bits to cover the vector elements, because 219 // we care if the resultant vector is all zeros, not whether the individual 220 // constants are. 221 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 222 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 223 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 224 return false; 225 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 226 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 227 return false; 228 } else 229 return false; 230 } 231 232 // Do not accept an all-undef vector. 233 if (IsAllUndef) 234 return false; 235 return true; 236 } 237 238 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 239 if (N->getOpcode() != ISD::BUILD_VECTOR) 240 return false; 241 242 for (const SDValue &Op : N->op_values()) { 243 if (Op.isUndef()) 244 continue; 245 if (!isa<ConstantSDNode>(Op)) 246 return false; 247 } 248 return true; 249 } 250 251 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 252 if (N->getOpcode() != ISD::BUILD_VECTOR) 253 return false; 254 255 for (const SDValue &Op : N->op_values()) { 256 if (Op.isUndef()) 257 continue; 258 if (!isa<ConstantFPSDNode>(Op)) 259 return false; 260 } 261 return true; 262 } 263 264 bool ISD::allOperandsUndef(const SDNode *N) { 265 // Return false if the node has no operands. 266 // This is "logically inconsistent" with the definition of "all" but 267 // is probably the desired behavior. 268 if (N->getNumOperands() == 0) 269 return false; 270 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 271 } 272 273 bool ISD::matchUnaryPredicate(SDValue Op, 274 std::function<bool(ConstantSDNode *)> Match, 275 bool AllowUndefs) { 276 // FIXME: Add support for scalar UNDEF cases? 277 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 278 return Match(Cst); 279 280 // FIXME: Add support for vector UNDEF cases? 281 if (ISD::BUILD_VECTOR != Op.getOpcode()) 282 return false; 283 284 EVT SVT = Op.getValueType().getScalarType(); 285 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 286 if (AllowUndefs && Op.getOperand(i).isUndef()) { 287 if (!Match(nullptr)) 288 return false; 289 continue; 290 } 291 292 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 293 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 294 return false; 295 } 296 return true; 297 } 298 299 bool ISD::matchBinaryPredicate( 300 SDValue LHS, SDValue RHS, 301 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 302 bool AllowUndefs, bool AllowTypeMismatch) { 303 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 304 return false; 305 306 // TODO: Add support for scalar UNDEF cases? 307 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 308 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 309 return Match(LHSCst, RHSCst); 310 311 // TODO: Add support for vector UNDEF cases? 312 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 313 ISD::BUILD_VECTOR != RHS.getOpcode()) 314 return false; 315 316 EVT SVT = LHS.getValueType().getScalarType(); 317 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 318 SDValue LHSOp = LHS.getOperand(i); 319 SDValue RHSOp = RHS.getOperand(i); 320 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 321 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 322 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 323 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 324 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 325 return false; 326 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 327 LHSOp.getValueType() != RHSOp.getValueType())) 328 return false; 329 if (!Match(LHSCst, RHSCst)) 330 return false; 331 } 332 return true; 333 } 334 335 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 336 switch (ExtType) { 337 case ISD::EXTLOAD: 338 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 339 case ISD::SEXTLOAD: 340 return ISD::SIGN_EXTEND; 341 case ISD::ZEXTLOAD: 342 return ISD::ZERO_EXTEND; 343 default: 344 break; 345 } 346 347 llvm_unreachable("Invalid LoadExtType"); 348 } 349 350 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 351 // To perform this operation, we just need to swap the L and G bits of the 352 // operation. 353 unsigned OldL = (Operation >> 2) & 1; 354 unsigned OldG = (Operation >> 1) & 1; 355 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 356 (OldL << 1) | // New G bit 357 (OldG << 2)); // New L bit. 358 } 359 360 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 361 unsigned Operation = Op; 362 if (isIntegerLike) 363 Operation ^= 7; // Flip L, G, E bits, but not U. 364 else 365 Operation ^= 15; // Flip all of the condition bits. 366 367 if (Operation > ISD::SETTRUE2) 368 Operation &= ~8; // Don't let N and U bits get set. 369 370 return ISD::CondCode(Operation); 371 } 372 373 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 374 return getSetCCInverseImpl(Op, Type.isInteger()); 375 } 376 377 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 378 bool isIntegerLike) { 379 return getSetCCInverseImpl(Op, isIntegerLike); 380 } 381 382 /// For an integer comparison, return 1 if the comparison is a signed operation 383 /// and 2 if the result is an unsigned comparison. Return zero if the operation 384 /// does not depend on the sign of the input (setne and seteq). 385 static int isSignedOp(ISD::CondCode Opcode) { 386 switch (Opcode) { 387 default: llvm_unreachable("Illegal integer setcc operation!"); 388 case ISD::SETEQ: 389 case ISD::SETNE: return 0; 390 case ISD::SETLT: 391 case ISD::SETLE: 392 case ISD::SETGT: 393 case ISD::SETGE: return 1; 394 case ISD::SETULT: 395 case ISD::SETULE: 396 case ISD::SETUGT: 397 case ISD::SETUGE: return 2; 398 } 399 } 400 401 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 402 EVT Type) { 403 bool IsInteger = Type.isInteger(); 404 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 405 // Cannot fold a signed integer setcc with an unsigned integer setcc. 406 return ISD::SETCC_INVALID; 407 408 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 409 410 // If the N and U bits get set, then the resultant comparison DOES suddenly 411 // care about orderedness, and it is true when ordered. 412 if (Op > ISD::SETTRUE2) 413 Op &= ~16; // Clear the U bit if the N bit is set. 414 415 // Canonicalize illegal integer setcc's. 416 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 417 Op = ISD::SETNE; 418 419 return ISD::CondCode(Op); 420 } 421 422 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 423 EVT Type) { 424 bool IsInteger = Type.isInteger(); 425 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 426 // Cannot fold a signed setcc with an unsigned setcc. 427 return ISD::SETCC_INVALID; 428 429 // Combine all of the condition bits. 430 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 431 432 // Canonicalize illegal integer setcc's. 433 if (IsInteger) { 434 switch (Result) { 435 default: break; 436 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 437 case ISD::SETOEQ: // SETEQ & SETU[LG]E 438 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 439 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 440 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 441 } 442 } 443 444 return Result; 445 } 446 447 //===----------------------------------------------------------------------===// 448 // SDNode Profile Support 449 //===----------------------------------------------------------------------===// 450 451 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 452 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 453 ID.AddInteger(OpC); 454 } 455 456 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 457 /// solely with their pointer. 458 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 459 ID.AddPointer(VTList.VTs); 460 } 461 462 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 463 static void AddNodeIDOperands(FoldingSetNodeID &ID, 464 ArrayRef<SDValue> Ops) { 465 for (auto& Op : Ops) { 466 ID.AddPointer(Op.getNode()); 467 ID.AddInteger(Op.getResNo()); 468 } 469 } 470 471 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 472 static void AddNodeIDOperands(FoldingSetNodeID &ID, 473 ArrayRef<SDUse> Ops) { 474 for (auto& Op : Ops) { 475 ID.AddPointer(Op.getNode()); 476 ID.AddInteger(Op.getResNo()); 477 } 478 } 479 480 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 481 SDVTList VTList, ArrayRef<SDValue> OpList) { 482 AddNodeIDOpcode(ID, OpC); 483 AddNodeIDValueTypes(ID, VTList); 484 AddNodeIDOperands(ID, OpList); 485 } 486 487 /// If this is an SDNode with special info, add this info to the NodeID data. 488 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 489 switch (N->getOpcode()) { 490 case ISD::TargetExternalSymbol: 491 case ISD::ExternalSymbol: 492 case ISD::MCSymbol: 493 llvm_unreachable("Should only be used on nodes with operands"); 494 default: break; // Normal nodes don't need extra info. 495 case ISD::TargetConstant: 496 case ISD::Constant: { 497 const ConstantSDNode *C = cast<ConstantSDNode>(N); 498 ID.AddPointer(C->getConstantIntValue()); 499 ID.AddBoolean(C->isOpaque()); 500 break; 501 } 502 case ISD::TargetConstantFP: 503 case ISD::ConstantFP: 504 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 505 break; 506 case ISD::TargetGlobalAddress: 507 case ISD::GlobalAddress: 508 case ISD::TargetGlobalTLSAddress: 509 case ISD::GlobalTLSAddress: { 510 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 511 ID.AddPointer(GA->getGlobal()); 512 ID.AddInteger(GA->getOffset()); 513 ID.AddInteger(GA->getTargetFlags()); 514 break; 515 } 516 case ISD::BasicBlock: 517 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 518 break; 519 case ISD::Register: 520 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 521 break; 522 case ISD::RegisterMask: 523 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 524 break; 525 case ISD::SRCVALUE: 526 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 527 break; 528 case ISD::FrameIndex: 529 case ISD::TargetFrameIndex: 530 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 531 break; 532 case ISD::LIFETIME_START: 533 case ISD::LIFETIME_END: 534 if (cast<LifetimeSDNode>(N)->hasOffset()) { 535 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 536 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 537 } 538 break; 539 case ISD::JumpTable: 540 case ISD::TargetJumpTable: 541 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 542 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 543 break; 544 case ISD::ConstantPool: 545 case ISD::TargetConstantPool: { 546 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 547 ID.AddInteger(CP->getAlign().value()); 548 ID.AddInteger(CP->getOffset()); 549 if (CP->isMachineConstantPoolEntry()) 550 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 551 else 552 ID.AddPointer(CP->getConstVal()); 553 ID.AddInteger(CP->getTargetFlags()); 554 break; 555 } 556 case ISD::TargetIndex: { 557 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 558 ID.AddInteger(TI->getIndex()); 559 ID.AddInteger(TI->getOffset()); 560 ID.AddInteger(TI->getTargetFlags()); 561 break; 562 } 563 case ISD::LOAD: { 564 const LoadSDNode *LD = cast<LoadSDNode>(N); 565 ID.AddInteger(LD->getMemoryVT().getRawBits()); 566 ID.AddInteger(LD->getRawSubclassData()); 567 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 568 break; 569 } 570 case ISD::STORE: { 571 const StoreSDNode *ST = cast<StoreSDNode>(N); 572 ID.AddInteger(ST->getMemoryVT().getRawBits()); 573 ID.AddInteger(ST->getRawSubclassData()); 574 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 575 break; 576 } 577 case ISD::MLOAD: { 578 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 579 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 580 ID.AddInteger(MLD->getRawSubclassData()); 581 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 582 break; 583 } 584 case ISD::MSTORE: { 585 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 586 ID.AddInteger(MST->getMemoryVT().getRawBits()); 587 ID.AddInteger(MST->getRawSubclassData()); 588 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 589 break; 590 } 591 case ISD::MGATHER: { 592 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 593 ID.AddInteger(MG->getMemoryVT().getRawBits()); 594 ID.AddInteger(MG->getRawSubclassData()); 595 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 596 break; 597 } 598 case ISD::MSCATTER: { 599 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 600 ID.AddInteger(MS->getMemoryVT().getRawBits()); 601 ID.AddInteger(MS->getRawSubclassData()); 602 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 603 break; 604 } 605 case ISD::ATOMIC_CMP_SWAP: 606 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 607 case ISD::ATOMIC_SWAP: 608 case ISD::ATOMIC_LOAD_ADD: 609 case ISD::ATOMIC_LOAD_SUB: 610 case ISD::ATOMIC_LOAD_AND: 611 case ISD::ATOMIC_LOAD_CLR: 612 case ISD::ATOMIC_LOAD_OR: 613 case ISD::ATOMIC_LOAD_XOR: 614 case ISD::ATOMIC_LOAD_NAND: 615 case ISD::ATOMIC_LOAD_MIN: 616 case ISD::ATOMIC_LOAD_MAX: 617 case ISD::ATOMIC_LOAD_UMIN: 618 case ISD::ATOMIC_LOAD_UMAX: 619 case ISD::ATOMIC_LOAD: 620 case ISD::ATOMIC_STORE: { 621 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 622 ID.AddInteger(AT->getMemoryVT().getRawBits()); 623 ID.AddInteger(AT->getRawSubclassData()); 624 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 625 break; 626 } 627 case ISD::PREFETCH: { 628 const MemSDNode *PF = cast<MemSDNode>(N); 629 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 630 break; 631 } 632 case ISD::VECTOR_SHUFFLE: { 633 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 634 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 635 i != e; ++i) 636 ID.AddInteger(SVN->getMaskElt(i)); 637 break; 638 } 639 case ISD::TargetBlockAddress: 640 case ISD::BlockAddress: { 641 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 642 ID.AddPointer(BA->getBlockAddress()); 643 ID.AddInteger(BA->getOffset()); 644 ID.AddInteger(BA->getTargetFlags()); 645 break; 646 } 647 } // end switch (N->getOpcode()) 648 649 // Target specific memory nodes could also have address spaces to check. 650 if (N->isTargetMemoryOpcode()) 651 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 652 } 653 654 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 655 /// data. 656 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 657 AddNodeIDOpcode(ID, N->getOpcode()); 658 // Add the return value info. 659 AddNodeIDValueTypes(ID, N->getVTList()); 660 // Add the operand info. 661 AddNodeIDOperands(ID, N->ops()); 662 663 // Handle SDNode leafs with special info. 664 AddNodeIDCustom(ID, N); 665 } 666 667 //===----------------------------------------------------------------------===// 668 // SelectionDAG Class 669 //===----------------------------------------------------------------------===// 670 671 /// doNotCSE - Return true if CSE should not be performed for this node. 672 static bool doNotCSE(SDNode *N) { 673 if (N->getValueType(0) == MVT::Glue) 674 return true; // Never CSE anything that produces a flag. 675 676 switch (N->getOpcode()) { 677 default: break; 678 case ISD::HANDLENODE: 679 case ISD::EH_LABEL: 680 return true; // Never CSE these nodes. 681 } 682 683 // Check that remaining values produced are not flags. 684 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 685 if (N->getValueType(i) == MVT::Glue) 686 return true; // Never CSE anything that produces a flag. 687 688 return false; 689 } 690 691 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 692 /// SelectionDAG. 693 void SelectionDAG::RemoveDeadNodes() { 694 // Create a dummy node (which is not added to allnodes), that adds a reference 695 // to the root node, preventing it from being deleted. 696 HandleSDNode Dummy(getRoot()); 697 698 SmallVector<SDNode*, 128> DeadNodes; 699 700 // Add all obviously-dead nodes to the DeadNodes worklist. 701 for (SDNode &Node : allnodes()) 702 if (Node.use_empty()) 703 DeadNodes.push_back(&Node); 704 705 RemoveDeadNodes(DeadNodes); 706 707 // If the root changed (e.g. it was a dead load, update the root). 708 setRoot(Dummy.getValue()); 709 } 710 711 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 712 /// given list, and any nodes that become unreachable as a result. 713 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 714 715 // Process the worklist, deleting the nodes and adding their uses to the 716 // worklist. 717 while (!DeadNodes.empty()) { 718 SDNode *N = DeadNodes.pop_back_val(); 719 // Skip to next node if we've already managed to delete the node. This could 720 // happen if replacing a node causes a node previously added to the node to 721 // be deleted. 722 if (N->getOpcode() == ISD::DELETED_NODE) 723 continue; 724 725 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 726 DUL->NodeDeleted(N, nullptr); 727 728 // Take the node out of the appropriate CSE map. 729 RemoveNodeFromCSEMaps(N); 730 731 // Next, brutally remove the operand list. This is safe to do, as there are 732 // no cycles in the graph. 733 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 734 SDUse &Use = *I++; 735 SDNode *Operand = Use.getNode(); 736 Use.set(SDValue()); 737 738 // Now that we removed this operand, see if there are no uses of it left. 739 if (Operand->use_empty()) 740 DeadNodes.push_back(Operand); 741 } 742 743 DeallocateNode(N); 744 } 745 } 746 747 void SelectionDAG::RemoveDeadNode(SDNode *N){ 748 SmallVector<SDNode*, 16> DeadNodes(1, N); 749 750 // Create a dummy node that adds a reference to the root node, preventing 751 // it from being deleted. (This matters if the root is an operand of the 752 // dead node.) 753 HandleSDNode Dummy(getRoot()); 754 755 RemoveDeadNodes(DeadNodes); 756 } 757 758 void SelectionDAG::DeleteNode(SDNode *N) { 759 // First take this out of the appropriate CSE map. 760 RemoveNodeFromCSEMaps(N); 761 762 // Finally, remove uses due to operands of this node, remove from the 763 // AllNodes list, and delete the node. 764 DeleteNodeNotInCSEMaps(N); 765 } 766 767 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 768 assert(N->getIterator() != AllNodes.begin() && 769 "Cannot delete the entry node!"); 770 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 771 772 // Drop all of the operands and decrement used node's use counts. 773 N->DropOperands(); 774 775 DeallocateNode(N); 776 } 777 778 void SDDbgInfo::erase(const SDNode *Node) { 779 DbgValMapType::iterator I = DbgValMap.find(Node); 780 if (I == DbgValMap.end()) 781 return; 782 for (auto &Val: I->second) 783 Val->setIsInvalidated(); 784 DbgValMap.erase(I); 785 } 786 787 void SelectionDAG::DeallocateNode(SDNode *N) { 788 // If we have operands, deallocate them. 789 removeOperands(N); 790 791 NodeAllocator.Deallocate(AllNodes.remove(N)); 792 793 // Set the opcode to DELETED_NODE to help catch bugs when node 794 // memory is reallocated. 795 // FIXME: There are places in SDag that have grown a dependency on the opcode 796 // value in the released node. 797 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 798 N->NodeType = ISD::DELETED_NODE; 799 800 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 801 // them and forget about that node. 802 DbgInfo->erase(N); 803 } 804 805 #ifndef NDEBUG 806 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 807 static void VerifySDNode(SDNode *N) { 808 switch (N->getOpcode()) { 809 default: 810 break; 811 case ISD::BUILD_PAIR: { 812 EVT VT = N->getValueType(0); 813 assert(N->getNumValues() == 1 && "Too many results!"); 814 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 815 "Wrong return type!"); 816 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 817 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 818 "Mismatched operand types!"); 819 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 820 "Wrong operand type!"); 821 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 822 "Wrong return type size"); 823 break; 824 } 825 case ISD::BUILD_VECTOR: { 826 assert(N->getNumValues() == 1 && "Too many results!"); 827 assert(N->getValueType(0).isVector() && "Wrong return type!"); 828 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 829 "Wrong number of operands!"); 830 EVT EltVT = N->getValueType(0).getVectorElementType(); 831 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 832 assert((I->getValueType() == EltVT || 833 (EltVT.isInteger() && I->getValueType().isInteger() && 834 EltVT.bitsLE(I->getValueType()))) && 835 "Wrong operand type!"); 836 assert(I->getValueType() == N->getOperand(0).getValueType() && 837 "Operands must all have the same type"); 838 } 839 break; 840 } 841 } 842 } 843 #endif // NDEBUG 844 845 /// Insert a newly allocated node into the DAG. 846 /// 847 /// Handles insertion into the all nodes list and CSE map, as well as 848 /// verification and other common operations when a new node is allocated. 849 void SelectionDAG::InsertNode(SDNode *N) { 850 AllNodes.push_back(N); 851 #ifndef NDEBUG 852 N->PersistentId = NextPersistentId++; 853 VerifySDNode(N); 854 #endif 855 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 856 DUL->NodeInserted(N); 857 } 858 859 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 860 /// correspond to it. This is useful when we're about to delete or repurpose 861 /// the node. We don't want future request for structurally identical nodes 862 /// to return N anymore. 863 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 864 bool Erased = false; 865 switch (N->getOpcode()) { 866 case ISD::HANDLENODE: return false; // noop. 867 case ISD::CONDCODE: 868 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 869 "Cond code doesn't exist!"); 870 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 871 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 872 break; 873 case ISD::ExternalSymbol: 874 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 875 break; 876 case ISD::TargetExternalSymbol: { 877 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 878 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 879 ESN->getSymbol(), ESN->getTargetFlags())); 880 break; 881 } 882 case ISD::MCSymbol: { 883 auto *MCSN = cast<MCSymbolSDNode>(N); 884 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 885 break; 886 } 887 case ISD::VALUETYPE: { 888 EVT VT = cast<VTSDNode>(N)->getVT(); 889 if (VT.isExtended()) { 890 Erased = ExtendedValueTypeNodes.erase(VT); 891 } else { 892 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 893 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 894 } 895 break; 896 } 897 default: 898 // Remove it from the CSE Map. 899 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 900 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 901 Erased = CSEMap.RemoveNode(N); 902 break; 903 } 904 #ifndef NDEBUG 905 // Verify that the node was actually in one of the CSE maps, unless it has a 906 // flag result (which cannot be CSE'd) or is one of the special cases that are 907 // not subject to CSE. 908 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 909 !N->isMachineOpcode() && !doNotCSE(N)) { 910 N->dump(this); 911 dbgs() << "\n"; 912 llvm_unreachable("Node is not in map!"); 913 } 914 #endif 915 return Erased; 916 } 917 918 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 919 /// maps and modified in place. Add it back to the CSE maps, unless an identical 920 /// node already exists, in which case transfer all its users to the existing 921 /// node. This transfer can potentially trigger recursive merging. 922 void 923 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 924 // For node types that aren't CSE'd, just act as if no identical node 925 // already exists. 926 if (!doNotCSE(N)) { 927 SDNode *Existing = CSEMap.GetOrInsertNode(N); 928 if (Existing != N) { 929 // If there was already an existing matching node, use ReplaceAllUsesWith 930 // to replace the dead one with the existing one. This can cause 931 // recursive merging of other unrelated nodes down the line. 932 ReplaceAllUsesWith(N, Existing); 933 934 // N is now dead. Inform the listeners and delete it. 935 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 936 DUL->NodeDeleted(N, Existing); 937 DeleteNodeNotInCSEMaps(N); 938 return; 939 } 940 } 941 942 // If the node doesn't already exist, we updated it. Inform listeners. 943 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 944 DUL->NodeUpdated(N); 945 } 946 947 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 948 /// were replaced with those specified. If this node is never memoized, 949 /// return null, otherwise return a pointer to the slot it would take. If a 950 /// node already exists with these operands, the slot will be non-null. 951 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 952 void *&InsertPos) { 953 if (doNotCSE(N)) 954 return nullptr; 955 956 SDValue Ops[] = { Op }; 957 FoldingSetNodeID ID; 958 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 959 AddNodeIDCustom(ID, N); 960 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 961 if (Node) 962 Node->intersectFlagsWith(N->getFlags()); 963 return Node; 964 } 965 966 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 967 /// were replaced with those specified. If this node is never memoized, 968 /// return null, otherwise return a pointer to the slot it would take. If a 969 /// node already exists with these operands, the slot will be non-null. 970 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 971 SDValue Op1, SDValue Op2, 972 void *&InsertPos) { 973 if (doNotCSE(N)) 974 return nullptr; 975 976 SDValue Ops[] = { Op1, Op2 }; 977 FoldingSetNodeID ID; 978 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 979 AddNodeIDCustom(ID, N); 980 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 981 if (Node) 982 Node->intersectFlagsWith(N->getFlags()); 983 return Node; 984 } 985 986 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 987 /// were replaced with those specified. If this node is never memoized, 988 /// return null, otherwise return a pointer to the slot it would take. If a 989 /// node already exists with these operands, the slot will be non-null. 990 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 991 void *&InsertPos) { 992 if (doNotCSE(N)) 993 return nullptr; 994 995 FoldingSetNodeID ID; 996 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 997 AddNodeIDCustom(ID, N); 998 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 999 if (Node) 1000 Node->intersectFlagsWith(N->getFlags()); 1001 return Node; 1002 } 1003 1004 Align SelectionDAG::getEVTAlign(EVT VT) const { 1005 Type *Ty = VT == MVT::iPTR ? 1006 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1007 VT.getTypeForEVT(*getContext()); 1008 1009 return getDataLayout().getABITypeAlign(Ty); 1010 } 1011 1012 // EntryNode could meaningfully have debug info if we can find it... 1013 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1014 : TM(tm), OptLevel(OL), 1015 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1016 Root(getEntryNode()) { 1017 InsertNode(&EntryNode); 1018 DbgInfo = new SDDbgInfo(); 1019 } 1020 1021 void SelectionDAG::init(MachineFunction &NewMF, 1022 OptimizationRemarkEmitter &NewORE, 1023 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1024 LegacyDivergenceAnalysis * Divergence, 1025 ProfileSummaryInfo *PSIin, 1026 BlockFrequencyInfo *BFIin) { 1027 MF = &NewMF; 1028 SDAGISelPass = PassPtr; 1029 ORE = &NewORE; 1030 TLI = getSubtarget().getTargetLowering(); 1031 TSI = getSubtarget().getSelectionDAGInfo(); 1032 LibInfo = LibraryInfo; 1033 Context = &MF->getFunction().getContext(); 1034 DA = Divergence; 1035 PSI = PSIin; 1036 BFI = BFIin; 1037 } 1038 1039 SelectionDAG::~SelectionDAG() { 1040 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1041 allnodes_clear(); 1042 OperandRecycler.clear(OperandAllocator); 1043 delete DbgInfo; 1044 } 1045 1046 bool SelectionDAG::shouldOptForSize() const { 1047 return MF->getFunction().hasOptSize() || 1048 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1049 } 1050 1051 void SelectionDAG::allnodes_clear() { 1052 assert(&*AllNodes.begin() == &EntryNode); 1053 AllNodes.remove(AllNodes.begin()); 1054 while (!AllNodes.empty()) 1055 DeallocateNode(&AllNodes.front()); 1056 #ifndef NDEBUG 1057 NextPersistentId = 0; 1058 #endif 1059 } 1060 1061 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1062 void *&InsertPos) { 1063 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1064 if (N) { 1065 switch (N->getOpcode()) { 1066 default: break; 1067 case ISD::Constant: 1068 case ISD::ConstantFP: 1069 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1070 "debug location. Use another overload."); 1071 } 1072 } 1073 return N; 1074 } 1075 1076 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1077 const SDLoc &DL, void *&InsertPos) { 1078 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1079 if (N) { 1080 switch (N->getOpcode()) { 1081 case ISD::Constant: 1082 case ISD::ConstantFP: 1083 // Erase debug location from the node if the node is used at several 1084 // different places. Do not propagate one location to all uses as it 1085 // will cause a worse single stepping debugging experience. 1086 if (N->getDebugLoc() != DL.getDebugLoc()) 1087 N->setDebugLoc(DebugLoc()); 1088 break; 1089 default: 1090 // When the node's point of use is located earlier in the instruction 1091 // sequence than its prior point of use, update its debug info to the 1092 // earlier location. 1093 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1094 N->setDebugLoc(DL.getDebugLoc()); 1095 break; 1096 } 1097 } 1098 return N; 1099 } 1100 1101 void SelectionDAG::clear() { 1102 allnodes_clear(); 1103 OperandRecycler.clear(OperandAllocator); 1104 OperandAllocator.Reset(); 1105 CSEMap.clear(); 1106 1107 ExtendedValueTypeNodes.clear(); 1108 ExternalSymbols.clear(); 1109 TargetExternalSymbols.clear(); 1110 MCSymbols.clear(); 1111 SDCallSiteDbgInfo.clear(); 1112 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1113 static_cast<CondCodeSDNode*>(nullptr)); 1114 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1115 static_cast<SDNode*>(nullptr)); 1116 1117 EntryNode.UseList = nullptr; 1118 InsertNode(&EntryNode); 1119 Root = getEntryNode(); 1120 DbgInfo->clear(); 1121 } 1122 1123 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1124 return VT.bitsGT(Op.getValueType()) 1125 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1126 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1127 } 1128 1129 std::pair<SDValue, SDValue> 1130 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1131 const SDLoc &DL, EVT VT) { 1132 assert(!VT.bitsEq(Op.getValueType()) && 1133 "Strict no-op FP extend/round not allowed."); 1134 SDValue Res = 1135 VT.bitsGT(Op.getValueType()) 1136 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1137 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1138 {Chain, Op, getIntPtrConstant(0, DL)}); 1139 1140 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1141 } 1142 1143 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1144 return VT.bitsGT(Op.getValueType()) ? 1145 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1146 getNode(ISD::TRUNCATE, DL, VT, Op); 1147 } 1148 1149 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1150 return VT.bitsGT(Op.getValueType()) ? 1151 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1152 getNode(ISD::TRUNCATE, DL, VT, Op); 1153 } 1154 1155 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1156 return VT.bitsGT(Op.getValueType()) ? 1157 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1158 getNode(ISD::TRUNCATE, DL, VT, Op); 1159 } 1160 1161 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1162 EVT OpVT) { 1163 if (VT.bitsLE(Op.getValueType())) 1164 return getNode(ISD::TRUNCATE, SL, VT, Op); 1165 1166 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1167 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1168 } 1169 1170 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1171 EVT OpVT = Op.getValueType(); 1172 assert(VT.isInteger() && OpVT.isInteger() && 1173 "Cannot getZeroExtendInReg FP types"); 1174 assert(VT.isVector() == OpVT.isVector() && 1175 "getZeroExtendInReg type should be vector iff the operand " 1176 "type is vector!"); 1177 assert((!VT.isVector() || 1178 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1179 "Vector element counts must match in getZeroExtendInReg"); 1180 assert(VT.bitsLE(OpVT) && "Not extending!"); 1181 if (OpVT == VT) 1182 return Op; 1183 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1184 VT.getScalarSizeInBits()); 1185 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1186 } 1187 1188 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1189 // Only unsigned pointer semantics are supported right now. In the future this 1190 // might delegate to TLI to check pointer signedness. 1191 return getZExtOrTrunc(Op, DL, VT); 1192 } 1193 1194 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1195 // Only unsigned pointer semantics are supported right now. In the future this 1196 // might delegate to TLI to check pointer signedness. 1197 return getZeroExtendInReg(Op, DL, VT); 1198 } 1199 1200 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1201 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1202 EVT EltVT = VT.getScalarType(); 1203 SDValue NegOne = 1204 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1205 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1206 } 1207 1208 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1209 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1210 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1211 } 1212 1213 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1214 EVT OpVT) { 1215 if (!V) 1216 return getConstant(0, DL, VT); 1217 1218 switch (TLI->getBooleanContents(OpVT)) { 1219 case TargetLowering::ZeroOrOneBooleanContent: 1220 case TargetLowering::UndefinedBooleanContent: 1221 return getConstant(1, DL, VT); 1222 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1223 return getAllOnesConstant(DL, VT); 1224 } 1225 llvm_unreachable("Unexpected boolean content enum!"); 1226 } 1227 1228 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1229 bool isT, bool isO) { 1230 EVT EltVT = VT.getScalarType(); 1231 assert((EltVT.getSizeInBits() >= 64 || 1232 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1233 "getConstant with a uint64_t value that doesn't fit in the type!"); 1234 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1235 } 1236 1237 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1238 bool isT, bool isO) { 1239 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1240 } 1241 1242 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1243 EVT VT, bool isT, bool isO) { 1244 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1245 1246 EVT EltVT = VT.getScalarType(); 1247 const ConstantInt *Elt = &Val; 1248 1249 // In some cases the vector type is legal but the element type is illegal and 1250 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1251 // inserted value (the type does not need to match the vector element type). 1252 // Any extra bits introduced will be truncated away. 1253 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1254 TargetLowering::TypePromoteInteger) { 1255 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1256 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1257 Elt = ConstantInt::get(*getContext(), NewVal); 1258 } 1259 // In other cases the element type is illegal and needs to be expanded, for 1260 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1261 // the value into n parts and use a vector type with n-times the elements. 1262 // Then bitcast to the type requested. 1263 // Legalizing constants too early makes the DAGCombiner's job harder so we 1264 // only legalize if the DAG tells us we must produce legal types. 1265 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1266 TLI->getTypeAction(*getContext(), EltVT) == 1267 TargetLowering::TypeExpandInteger) { 1268 const APInt &NewVal = Elt->getValue(); 1269 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1270 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1271 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1272 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1273 1274 // Check the temporary vector is the correct size. If this fails then 1275 // getTypeToTransformTo() probably returned a type whose size (in bits) 1276 // isn't a power-of-2 factor of the requested type size. 1277 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1278 1279 SmallVector<SDValue, 2> EltParts; 1280 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1281 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1282 .zextOrTrunc(ViaEltSizeInBits), DL, 1283 ViaEltVT, isT, isO)); 1284 } 1285 1286 // EltParts is currently in little endian order. If we actually want 1287 // big-endian order then reverse it now. 1288 if (getDataLayout().isBigEndian()) 1289 std::reverse(EltParts.begin(), EltParts.end()); 1290 1291 // The elements must be reversed when the element order is different 1292 // to the endianness of the elements (because the BITCAST is itself a 1293 // vector shuffle in this situation). However, we do not need any code to 1294 // perform this reversal because getConstant() is producing a vector 1295 // splat. 1296 // This situation occurs in MIPS MSA. 1297 1298 SmallVector<SDValue, 8> Ops; 1299 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1300 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1301 1302 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1303 return V; 1304 } 1305 1306 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1307 "APInt size does not match type size!"); 1308 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1309 FoldingSetNodeID ID; 1310 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1311 ID.AddPointer(Elt); 1312 ID.AddBoolean(isO); 1313 void *IP = nullptr; 1314 SDNode *N = nullptr; 1315 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1316 if (!VT.isVector()) 1317 return SDValue(N, 0); 1318 1319 if (!N) { 1320 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1321 CSEMap.InsertNode(N, IP); 1322 InsertNode(N); 1323 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1324 } 1325 1326 SDValue Result(N, 0); 1327 if (VT.isScalableVector()) 1328 Result = getSplatVector(VT, DL, Result); 1329 else if (VT.isVector()) 1330 Result = getSplatBuildVector(VT, DL, Result); 1331 1332 return Result; 1333 } 1334 1335 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1336 bool isTarget) { 1337 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1338 } 1339 1340 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1341 const SDLoc &DL, bool LegalTypes) { 1342 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1343 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1344 return getConstant(Val, DL, ShiftVT); 1345 } 1346 1347 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1348 bool isTarget) { 1349 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1350 } 1351 1352 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1353 bool isTarget) { 1354 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1355 } 1356 1357 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1358 EVT VT, bool isTarget) { 1359 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1360 1361 EVT EltVT = VT.getScalarType(); 1362 1363 // Do the map lookup using the actual bit pattern for the floating point 1364 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1365 // we don't have issues with SNANs. 1366 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1367 FoldingSetNodeID ID; 1368 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1369 ID.AddPointer(&V); 1370 void *IP = nullptr; 1371 SDNode *N = nullptr; 1372 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1373 if (!VT.isVector()) 1374 return SDValue(N, 0); 1375 1376 if (!N) { 1377 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1378 CSEMap.InsertNode(N, IP); 1379 InsertNode(N); 1380 } 1381 1382 SDValue Result(N, 0); 1383 if (VT.isVector()) 1384 Result = getSplatBuildVector(VT, DL, Result); 1385 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1386 return Result; 1387 } 1388 1389 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1390 bool isTarget) { 1391 EVT EltVT = VT.getScalarType(); 1392 if (EltVT == MVT::f32) 1393 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1394 else if (EltVT == MVT::f64) 1395 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1396 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1397 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1398 bool Ignored; 1399 APFloat APF = APFloat(Val); 1400 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1401 &Ignored); 1402 return getConstantFP(APF, DL, VT, isTarget); 1403 } else 1404 llvm_unreachable("Unsupported type in getConstantFP"); 1405 } 1406 1407 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1408 EVT VT, int64_t Offset, bool isTargetGA, 1409 unsigned TargetFlags) { 1410 assert((TargetFlags == 0 || isTargetGA) && 1411 "Cannot set target flags on target-independent globals"); 1412 1413 // Truncate (with sign-extension) the offset value to the pointer size. 1414 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1415 if (BitWidth < 64) 1416 Offset = SignExtend64(Offset, BitWidth); 1417 1418 unsigned Opc; 1419 if (GV->isThreadLocal()) 1420 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1421 else 1422 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1423 1424 FoldingSetNodeID ID; 1425 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1426 ID.AddPointer(GV); 1427 ID.AddInteger(Offset); 1428 ID.AddInteger(TargetFlags); 1429 void *IP = nullptr; 1430 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1431 return SDValue(E, 0); 1432 1433 auto *N = newSDNode<GlobalAddressSDNode>( 1434 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1435 CSEMap.InsertNode(N, IP); 1436 InsertNode(N); 1437 return SDValue(N, 0); 1438 } 1439 1440 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1441 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1442 FoldingSetNodeID ID; 1443 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1444 ID.AddInteger(FI); 1445 void *IP = nullptr; 1446 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1447 return SDValue(E, 0); 1448 1449 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1450 CSEMap.InsertNode(N, IP); 1451 InsertNode(N); 1452 return SDValue(N, 0); 1453 } 1454 1455 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1456 unsigned TargetFlags) { 1457 assert((TargetFlags == 0 || isTarget) && 1458 "Cannot set target flags on target-independent jump tables"); 1459 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1460 FoldingSetNodeID ID; 1461 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1462 ID.AddInteger(JTI); 1463 ID.AddInteger(TargetFlags); 1464 void *IP = nullptr; 1465 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1466 return SDValue(E, 0); 1467 1468 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1469 CSEMap.InsertNode(N, IP); 1470 InsertNode(N); 1471 return SDValue(N, 0); 1472 } 1473 1474 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1475 MaybeAlign Alignment, int Offset, 1476 bool isTarget, unsigned TargetFlags) { 1477 assert((TargetFlags == 0 || isTarget) && 1478 "Cannot set target flags on target-independent globals"); 1479 if (!Alignment) 1480 Alignment = shouldOptForSize() 1481 ? getDataLayout().getABITypeAlign(C->getType()) 1482 : getDataLayout().getPrefTypeAlign(C->getType()); 1483 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1484 FoldingSetNodeID ID; 1485 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1486 ID.AddInteger(Alignment->value()); 1487 ID.AddInteger(Offset); 1488 ID.AddPointer(C); 1489 ID.AddInteger(TargetFlags); 1490 void *IP = nullptr; 1491 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1492 return SDValue(E, 0); 1493 1494 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1495 TargetFlags); 1496 CSEMap.InsertNode(N, IP); 1497 InsertNode(N); 1498 SDValue V = SDValue(N, 0); 1499 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1500 return V; 1501 } 1502 1503 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1504 MaybeAlign Alignment, int Offset, 1505 bool isTarget, unsigned TargetFlags) { 1506 assert((TargetFlags == 0 || isTarget) && 1507 "Cannot set target flags on target-independent globals"); 1508 if (!Alignment) 1509 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1510 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1511 FoldingSetNodeID ID; 1512 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1513 ID.AddInteger(Alignment->value()); 1514 ID.AddInteger(Offset); 1515 C->addSelectionDAGCSEId(ID); 1516 ID.AddInteger(TargetFlags); 1517 void *IP = nullptr; 1518 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1519 return SDValue(E, 0); 1520 1521 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1522 TargetFlags); 1523 CSEMap.InsertNode(N, IP); 1524 InsertNode(N); 1525 return SDValue(N, 0); 1526 } 1527 1528 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1529 unsigned TargetFlags) { 1530 FoldingSetNodeID ID; 1531 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1532 ID.AddInteger(Index); 1533 ID.AddInteger(Offset); 1534 ID.AddInteger(TargetFlags); 1535 void *IP = nullptr; 1536 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1537 return SDValue(E, 0); 1538 1539 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1540 CSEMap.InsertNode(N, IP); 1541 InsertNode(N); 1542 return SDValue(N, 0); 1543 } 1544 1545 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1546 FoldingSetNodeID ID; 1547 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1548 ID.AddPointer(MBB); 1549 void *IP = nullptr; 1550 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1551 return SDValue(E, 0); 1552 1553 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1554 CSEMap.InsertNode(N, IP); 1555 InsertNode(N); 1556 return SDValue(N, 0); 1557 } 1558 1559 SDValue SelectionDAG::getValueType(EVT VT) { 1560 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1561 ValueTypeNodes.size()) 1562 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1563 1564 SDNode *&N = VT.isExtended() ? 1565 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1566 1567 if (N) return SDValue(N, 0); 1568 N = newSDNode<VTSDNode>(VT); 1569 InsertNode(N); 1570 return SDValue(N, 0); 1571 } 1572 1573 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1574 SDNode *&N = ExternalSymbols[Sym]; 1575 if (N) return SDValue(N, 0); 1576 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1577 InsertNode(N); 1578 return SDValue(N, 0); 1579 } 1580 1581 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1582 SDNode *&N = MCSymbols[Sym]; 1583 if (N) 1584 return SDValue(N, 0); 1585 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1586 InsertNode(N); 1587 return SDValue(N, 0); 1588 } 1589 1590 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1591 unsigned TargetFlags) { 1592 SDNode *&N = 1593 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1594 if (N) return SDValue(N, 0); 1595 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1596 InsertNode(N); 1597 return SDValue(N, 0); 1598 } 1599 1600 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1601 if ((unsigned)Cond >= CondCodeNodes.size()) 1602 CondCodeNodes.resize(Cond+1); 1603 1604 if (!CondCodeNodes[Cond]) { 1605 auto *N = newSDNode<CondCodeSDNode>(Cond); 1606 CondCodeNodes[Cond] = N; 1607 InsertNode(N); 1608 } 1609 1610 return SDValue(CondCodeNodes[Cond], 0); 1611 } 1612 1613 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1614 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1615 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1616 std::swap(N1, N2); 1617 ShuffleVectorSDNode::commuteMask(M); 1618 } 1619 1620 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1621 SDValue N2, ArrayRef<int> Mask) { 1622 assert(VT.getVectorNumElements() == Mask.size() && 1623 "Must have the same number of vector elements as mask elements!"); 1624 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1625 "Invalid VECTOR_SHUFFLE"); 1626 1627 // Canonicalize shuffle undef, undef -> undef 1628 if (N1.isUndef() && N2.isUndef()) 1629 return getUNDEF(VT); 1630 1631 // Validate that all indices in Mask are within the range of the elements 1632 // input to the shuffle. 1633 int NElts = Mask.size(); 1634 assert(llvm::all_of(Mask, 1635 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1636 "Index out of range"); 1637 1638 // Copy the mask so we can do any needed cleanup. 1639 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1640 1641 // Canonicalize shuffle v, v -> v, undef 1642 if (N1 == N2) { 1643 N2 = getUNDEF(VT); 1644 for (int i = 0; i != NElts; ++i) 1645 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1646 } 1647 1648 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1649 if (N1.isUndef()) 1650 commuteShuffle(N1, N2, MaskVec); 1651 1652 if (TLI->hasVectorBlend()) { 1653 // If shuffling a splat, try to blend the splat instead. We do this here so 1654 // that even when this arises during lowering we don't have to re-handle it. 1655 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1656 BitVector UndefElements; 1657 SDValue Splat = BV->getSplatValue(&UndefElements); 1658 if (!Splat) 1659 return; 1660 1661 for (int i = 0; i < NElts; ++i) { 1662 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1663 continue; 1664 1665 // If this input comes from undef, mark it as such. 1666 if (UndefElements[MaskVec[i] - Offset]) { 1667 MaskVec[i] = -1; 1668 continue; 1669 } 1670 1671 // If we can blend a non-undef lane, use that instead. 1672 if (!UndefElements[i]) 1673 MaskVec[i] = i + Offset; 1674 } 1675 }; 1676 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1677 BlendSplat(N1BV, 0); 1678 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1679 BlendSplat(N2BV, NElts); 1680 } 1681 1682 // Canonicalize all index into lhs, -> shuffle lhs, undef 1683 // Canonicalize all index into rhs, -> shuffle rhs, undef 1684 bool AllLHS = true, AllRHS = true; 1685 bool N2Undef = N2.isUndef(); 1686 for (int i = 0; i != NElts; ++i) { 1687 if (MaskVec[i] >= NElts) { 1688 if (N2Undef) 1689 MaskVec[i] = -1; 1690 else 1691 AllLHS = false; 1692 } else if (MaskVec[i] >= 0) { 1693 AllRHS = false; 1694 } 1695 } 1696 if (AllLHS && AllRHS) 1697 return getUNDEF(VT); 1698 if (AllLHS && !N2Undef) 1699 N2 = getUNDEF(VT); 1700 if (AllRHS) { 1701 N1 = getUNDEF(VT); 1702 commuteShuffle(N1, N2, MaskVec); 1703 } 1704 // Reset our undef status after accounting for the mask. 1705 N2Undef = N2.isUndef(); 1706 // Re-check whether both sides ended up undef. 1707 if (N1.isUndef() && N2Undef) 1708 return getUNDEF(VT); 1709 1710 // If Identity shuffle return that node. 1711 bool Identity = true, AllSame = true; 1712 for (int i = 0; i != NElts; ++i) { 1713 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1714 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1715 } 1716 if (Identity && NElts) 1717 return N1; 1718 1719 // Shuffling a constant splat doesn't change the result. 1720 if (N2Undef) { 1721 SDValue V = N1; 1722 1723 // Look through any bitcasts. We check that these don't change the number 1724 // (and size) of elements and just changes their types. 1725 while (V.getOpcode() == ISD::BITCAST) 1726 V = V->getOperand(0); 1727 1728 // A splat should always show up as a build vector node. 1729 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1730 BitVector UndefElements; 1731 SDValue Splat = BV->getSplatValue(&UndefElements); 1732 // If this is a splat of an undef, shuffling it is also undef. 1733 if (Splat && Splat.isUndef()) 1734 return getUNDEF(VT); 1735 1736 bool SameNumElts = 1737 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1738 1739 // We only have a splat which can skip shuffles if there is a splatted 1740 // value and no undef lanes rearranged by the shuffle. 1741 if (Splat && UndefElements.none()) { 1742 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1743 // number of elements match or the value splatted is a zero constant. 1744 if (SameNumElts) 1745 return N1; 1746 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1747 if (C->isNullValue()) 1748 return N1; 1749 } 1750 1751 // If the shuffle itself creates a splat, build the vector directly. 1752 if (AllSame && SameNumElts) { 1753 EVT BuildVT = BV->getValueType(0); 1754 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1755 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1756 1757 // We may have jumped through bitcasts, so the type of the 1758 // BUILD_VECTOR may not match the type of the shuffle. 1759 if (BuildVT != VT) 1760 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1761 return NewBV; 1762 } 1763 } 1764 } 1765 1766 FoldingSetNodeID ID; 1767 SDValue Ops[2] = { N1, N2 }; 1768 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1769 for (int i = 0; i != NElts; ++i) 1770 ID.AddInteger(MaskVec[i]); 1771 1772 void* IP = nullptr; 1773 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1774 return SDValue(E, 0); 1775 1776 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1777 // SDNode doesn't have access to it. This memory will be "leaked" when 1778 // the node is deallocated, but recovered when the NodeAllocator is released. 1779 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1780 llvm::copy(MaskVec, MaskAlloc); 1781 1782 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1783 dl.getDebugLoc(), MaskAlloc); 1784 createOperands(N, Ops); 1785 1786 CSEMap.InsertNode(N, IP); 1787 InsertNode(N); 1788 SDValue V = SDValue(N, 0); 1789 NewSDValueDbgMsg(V, "Creating new node: ", this); 1790 return V; 1791 } 1792 1793 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1794 EVT VT = SV.getValueType(0); 1795 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1796 ShuffleVectorSDNode::commuteMask(MaskVec); 1797 1798 SDValue Op0 = SV.getOperand(0); 1799 SDValue Op1 = SV.getOperand(1); 1800 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1801 } 1802 1803 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1804 FoldingSetNodeID ID; 1805 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1806 ID.AddInteger(RegNo); 1807 void *IP = nullptr; 1808 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1809 return SDValue(E, 0); 1810 1811 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1812 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1813 CSEMap.InsertNode(N, IP); 1814 InsertNode(N); 1815 return SDValue(N, 0); 1816 } 1817 1818 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1819 FoldingSetNodeID ID; 1820 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1821 ID.AddPointer(RegMask); 1822 void *IP = nullptr; 1823 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1824 return SDValue(E, 0); 1825 1826 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1827 CSEMap.InsertNode(N, IP); 1828 InsertNode(N); 1829 return SDValue(N, 0); 1830 } 1831 1832 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1833 MCSymbol *Label) { 1834 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1835 } 1836 1837 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1838 SDValue Root, MCSymbol *Label) { 1839 FoldingSetNodeID ID; 1840 SDValue Ops[] = { Root }; 1841 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1842 ID.AddPointer(Label); 1843 void *IP = nullptr; 1844 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1845 return SDValue(E, 0); 1846 1847 auto *N = 1848 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1849 createOperands(N, Ops); 1850 1851 CSEMap.InsertNode(N, IP); 1852 InsertNode(N); 1853 return SDValue(N, 0); 1854 } 1855 1856 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1857 int64_t Offset, bool isTarget, 1858 unsigned TargetFlags) { 1859 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1860 1861 FoldingSetNodeID ID; 1862 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1863 ID.AddPointer(BA); 1864 ID.AddInteger(Offset); 1865 ID.AddInteger(TargetFlags); 1866 void *IP = nullptr; 1867 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1868 return SDValue(E, 0); 1869 1870 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1871 CSEMap.InsertNode(N, IP); 1872 InsertNode(N); 1873 return SDValue(N, 0); 1874 } 1875 1876 SDValue SelectionDAG::getSrcValue(const Value *V) { 1877 FoldingSetNodeID ID; 1878 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1879 ID.AddPointer(V); 1880 1881 void *IP = nullptr; 1882 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1883 return SDValue(E, 0); 1884 1885 auto *N = newSDNode<SrcValueSDNode>(V); 1886 CSEMap.InsertNode(N, IP); 1887 InsertNode(N); 1888 return SDValue(N, 0); 1889 } 1890 1891 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1892 FoldingSetNodeID ID; 1893 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1894 ID.AddPointer(MD); 1895 1896 void *IP = nullptr; 1897 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1898 return SDValue(E, 0); 1899 1900 auto *N = newSDNode<MDNodeSDNode>(MD); 1901 CSEMap.InsertNode(N, IP); 1902 InsertNode(N); 1903 return SDValue(N, 0); 1904 } 1905 1906 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1907 if (VT == V.getValueType()) 1908 return V; 1909 1910 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1911 } 1912 1913 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1914 unsigned SrcAS, unsigned DestAS) { 1915 SDValue Ops[] = {Ptr}; 1916 FoldingSetNodeID ID; 1917 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1918 ID.AddInteger(SrcAS); 1919 ID.AddInteger(DestAS); 1920 1921 void *IP = nullptr; 1922 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1923 return SDValue(E, 0); 1924 1925 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1926 VT, SrcAS, DestAS); 1927 createOperands(N, Ops); 1928 1929 CSEMap.InsertNode(N, IP); 1930 InsertNode(N); 1931 return SDValue(N, 0); 1932 } 1933 1934 SDValue SelectionDAG::getFreeze(SDValue V) { 1935 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1936 } 1937 1938 /// getShiftAmountOperand - Return the specified value casted to 1939 /// the target's desired shift amount type. 1940 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1941 EVT OpTy = Op.getValueType(); 1942 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1943 if (OpTy == ShTy || OpTy.isVector()) return Op; 1944 1945 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1946 } 1947 1948 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1949 SDLoc dl(Node); 1950 const TargetLowering &TLI = getTargetLoweringInfo(); 1951 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1952 EVT VT = Node->getValueType(0); 1953 SDValue Tmp1 = Node->getOperand(0); 1954 SDValue Tmp2 = Node->getOperand(1); 1955 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1956 1957 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1958 Tmp2, MachinePointerInfo(V)); 1959 SDValue VAList = VAListLoad; 1960 1961 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1962 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1963 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1964 1965 VAList = 1966 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1967 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1968 } 1969 1970 // Increment the pointer, VAList, to the next vaarg 1971 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1972 getConstant(getDataLayout().getTypeAllocSize( 1973 VT.getTypeForEVT(*getContext())), 1974 dl, VAList.getValueType())); 1975 // Store the incremented VAList to the legalized pointer 1976 Tmp1 = 1977 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1978 // Load the actual argument out of the pointer VAList 1979 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1980 } 1981 1982 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1983 SDLoc dl(Node); 1984 const TargetLowering &TLI = getTargetLoweringInfo(); 1985 // This defaults to loading a pointer from the input and storing it to the 1986 // output, returning the chain. 1987 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1988 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1989 SDValue Tmp1 = 1990 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1991 Node->getOperand(2), MachinePointerInfo(VS)); 1992 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1993 MachinePointerInfo(VD)); 1994 } 1995 1996 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 1997 const DataLayout &DL = getDataLayout(); 1998 Type *Ty = VT.getTypeForEVT(*getContext()); 1999 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2000 2001 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2002 return RedAlign; 2003 2004 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2005 const Align StackAlign = TFI->getStackAlign(); 2006 2007 // See if we can choose a smaller ABI alignment in cases where it's an 2008 // illegal vector type that will get broken down. 2009 if (RedAlign > StackAlign) { 2010 EVT IntermediateVT; 2011 MVT RegisterVT; 2012 unsigned NumIntermediates; 2013 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2014 NumIntermediates, RegisterVT); 2015 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2016 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2017 if (RedAlign2 < RedAlign) 2018 RedAlign = RedAlign2; 2019 } 2020 2021 return RedAlign; 2022 } 2023 2024 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2025 MachineFrameInfo &MFI = MF->getFrameInfo(); 2026 int FrameIdx = MFI.CreateStackObject(Bytes, Alignment, false); 2027 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2028 } 2029 2030 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2031 Type *Ty = VT.getTypeForEVT(*getContext()); 2032 Align StackAlign = 2033 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2034 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2035 } 2036 2037 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2038 TypeSize Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 2039 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2040 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2041 const DataLayout &DL = getDataLayout(); 2042 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2043 return CreateStackTemporary(Bytes, Align); 2044 } 2045 2046 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2047 ISD::CondCode Cond, const SDLoc &dl) { 2048 EVT OpVT = N1.getValueType(); 2049 2050 // These setcc operations always fold. 2051 switch (Cond) { 2052 default: break; 2053 case ISD::SETFALSE: 2054 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2055 case ISD::SETTRUE: 2056 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2057 2058 case ISD::SETOEQ: 2059 case ISD::SETOGT: 2060 case ISD::SETOGE: 2061 case ISD::SETOLT: 2062 case ISD::SETOLE: 2063 case ISD::SETONE: 2064 case ISD::SETO: 2065 case ISD::SETUO: 2066 case ISD::SETUEQ: 2067 case ISD::SETUNE: 2068 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2069 break; 2070 } 2071 2072 if (OpVT.isInteger()) { 2073 // For EQ and NE, we can always pick a value for the undef to make the 2074 // predicate pass or fail, so we can return undef. 2075 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2076 // icmp eq/ne X, undef -> undef. 2077 if ((N1.isUndef() || N2.isUndef()) && 2078 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2079 return getUNDEF(VT); 2080 2081 // If both operands are undef, we can return undef for int comparison. 2082 // icmp undef, undef -> undef. 2083 if (N1.isUndef() && N2.isUndef()) 2084 return getUNDEF(VT); 2085 2086 // icmp X, X -> true/false 2087 // icmp X, undef -> true/false because undef could be X. 2088 if (N1 == N2) 2089 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2090 } 2091 2092 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2093 const APInt &C2 = N2C->getAPIntValue(); 2094 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2095 const APInt &C1 = N1C->getAPIntValue(); 2096 2097 switch (Cond) { 2098 default: llvm_unreachable("Unknown integer setcc!"); 2099 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2100 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2101 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2102 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2103 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2104 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2105 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2106 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2107 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2108 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2109 } 2110 } 2111 } 2112 2113 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2114 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2115 2116 if (N1CFP && N2CFP) { 2117 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2118 switch (Cond) { 2119 default: break; 2120 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2121 return getUNDEF(VT); 2122 LLVM_FALLTHROUGH; 2123 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2124 OpVT); 2125 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2126 return getUNDEF(VT); 2127 LLVM_FALLTHROUGH; 2128 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2129 R==APFloat::cmpLessThan, dl, VT, 2130 OpVT); 2131 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2132 return getUNDEF(VT); 2133 LLVM_FALLTHROUGH; 2134 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2135 OpVT); 2136 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2137 return getUNDEF(VT); 2138 LLVM_FALLTHROUGH; 2139 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2140 VT, OpVT); 2141 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2142 return getUNDEF(VT); 2143 LLVM_FALLTHROUGH; 2144 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2145 R==APFloat::cmpEqual, dl, VT, 2146 OpVT); 2147 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2148 return getUNDEF(VT); 2149 LLVM_FALLTHROUGH; 2150 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2151 R==APFloat::cmpEqual, dl, VT, OpVT); 2152 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2153 OpVT); 2154 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2155 OpVT); 2156 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2157 R==APFloat::cmpEqual, dl, VT, 2158 OpVT); 2159 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2160 OpVT); 2161 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2162 R==APFloat::cmpLessThan, dl, VT, 2163 OpVT); 2164 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2165 R==APFloat::cmpUnordered, dl, VT, 2166 OpVT); 2167 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2168 VT, OpVT); 2169 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2170 OpVT); 2171 } 2172 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2173 // Ensure that the constant occurs on the RHS. 2174 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2175 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2176 return SDValue(); 2177 return getSetCC(dl, VT, N2, N1, SwappedCond); 2178 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2179 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2180 // If an operand is known to be a nan (or undef that could be a nan), we can 2181 // fold it. 2182 // Choosing NaN for the undef will always make unordered comparison succeed 2183 // and ordered comparison fails. 2184 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2185 switch (ISD::getUnorderedFlavor(Cond)) { 2186 default: 2187 llvm_unreachable("Unknown flavor!"); 2188 case 0: // Known false. 2189 return getBoolConstant(false, dl, VT, OpVT); 2190 case 1: // Known true. 2191 return getBoolConstant(true, dl, VT, OpVT); 2192 case 2: // Undefined. 2193 return getUNDEF(VT); 2194 } 2195 } 2196 2197 // Could not fold it. 2198 return SDValue(); 2199 } 2200 2201 /// See if the specified operand can be simplified with the knowledge that only 2202 /// the bits specified by DemandedBits are used. 2203 /// TODO: really we should be making this into the DAG equivalent of 2204 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2205 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2206 EVT VT = V.getValueType(); 2207 APInt DemandedElts = VT.isVector() 2208 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2209 : APInt(1, 1); 2210 return GetDemandedBits(V, DemandedBits, DemandedElts); 2211 } 2212 2213 /// See if the specified operand can be simplified with the knowledge that only 2214 /// the bits specified by DemandedBits are used in the elements specified by 2215 /// DemandedElts. 2216 /// TODO: really we should be making this into the DAG equivalent of 2217 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2218 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2219 const APInt &DemandedElts) { 2220 switch (V.getOpcode()) { 2221 default: 2222 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2223 *this, 0); 2224 break; 2225 case ISD::Constant: { 2226 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2227 APInt NewVal = CVal & DemandedBits; 2228 if (NewVal != CVal) 2229 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2230 break; 2231 } 2232 case ISD::SRL: 2233 // Only look at single-use SRLs. 2234 if (!V.getNode()->hasOneUse()) 2235 break; 2236 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2237 // See if we can recursively simplify the LHS. 2238 unsigned Amt = RHSC->getZExtValue(); 2239 2240 // Watch out for shift count overflow though. 2241 if (Amt >= DemandedBits.getBitWidth()) 2242 break; 2243 APInt SrcDemandedBits = DemandedBits << Amt; 2244 if (SDValue SimplifyLHS = 2245 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2246 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2247 V.getOperand(1)); 2248 } 2249 break; 2250 case ISD::AND: { 2251 // X & -1 -> X (ignoring bits which aren't demanded). 2252 // Also handle the case where masked out bits in X are known to be zero. 2253 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2254 const APInt &AndVal = RHSC->getAPIntValue(); 2255 if (DemandedBits.isSubsetOf(AndVal) || 2256 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | 2257 AndVal)) 2258 return V.getOperand(0); 2259 } 2260 break; 2261 } 2262 } 2263 return SDValue(); 2264 } 2265 2266 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2267 /// use this predicate to simplify operations downstream. 2268 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2269 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2270 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2271 } 2272 2273 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2274 /// this predicate to simplify operations downstream. Mask is known to be zero 2275 /// for bits that V cannot have. 2276 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2277 unsigned Depth) const { 2278 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2279 } 2280 2281 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2282 /// DemandedElts. We use this predicate to simplify operations downstream. 2283 /// Mask is known to be zero for bits that V cannot have. 2284 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2285 const APInt &DemandedElts, 2286 unsigned Depth) const { 2287 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2288 } 2289 2290 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2291 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2292 unsigned Depth) const { 2293 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2294 } 2295 2296 /// isSplatValue - Return true if the vector V has the same value 2297 /// across all DemandedElts. For scalable vectors it does not make 2298 /// sense to specify which elements are demanded or undefined, therefore 2299 /// they are simply ignored. 2300 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2301 APInt &UndefElts) { 2302 EVT VT = V.getValueType(); 2303 assert(VT.isVector() && "Vector type expected"); 2304 2305 if (!VT.isScalableVector() && !DemandedElts) 2306 return false; // No demanded elts, better to assume we don't know anything. 2307 2308 // Deal with some common cases here that work for both fixed and scalable 2309 // vector types. 2310 switch (V.getOpcode()) { 2311 case ISD::SPLAT_VECTOR: 2312 return true; 2313 case ISD::ADD: 2314 case ISD::SUB: 2315 case ISD::AND: { 2316 APInt UndefLHS, UndefRHS; 2317 SDValue LHS = V.getOperand(0); 2318 SDValue RHS = V.getOperand(1); 2319 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2320 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2321 UndefElts = UndefLHS | UndefRHS; 2322 return true; 2323 } 2324 break; 2325 } 2326 } 2327 2328 // We don't support other cases than those above for scalable vectors at 2329 // the moment. 2330 if (VT.isScalableVector()) 2331 return false; 2332 2333 unsigned NumElts = VT.getVectorNumElements(); 2334 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2335 UndefElts = APInt::getNullValue(NumElts); 2336 2337 switch (V.getOpcode()) { 2338 case ISD::BUILD_VECTOR: { 2339 SDValue Scl; 2340 for (unsigned i = 0; i != NumElts; ++i) { 2341 SDValue Op = V.getOperand(i); 2342 if (Op.isUndef()) { 2343 UndefElts.setBit(i); 2344 continue; 2345 } 2346 if (!DemandedElts[i]) 2347 continue; 2348 if (Scl && Scl != Op) 2349 return false; 2350 Scl = Op; 2351 } 2352 return true; 2353 } 2354 case ISD::VECTOR_SHUFFLE: { 2355 // Check if this is a shuffle node doing a splat. 2356 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2357 int SplatIndex = -1; 2358 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2359 for (int i = 0; i != (int)NumElts; ++i) { 2360 int M = Mask[i]; 2361 if (M < 0) { 2362 UndefElts.setBit(i); 2363 continue; 2364 } 2365 if (!DemandedElts[i]) 2366 continue; 2367 if (0 <= SplatIndex && SplatIndex != M) 2368 return false; 2369 SplatIndex = M; 2370 } 2371 return true; 2372 } 2373 case ISD::EXTRACT_SUBVECTOR: { 2374 // Offset the demanded elts by the subvector index. 2375 SDValue Src = V.getOperand(0); 2376 uint64_t Idx = V.getConstantOperandVal(1); 2377 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2378 APInt UndefSrcElts; 2379 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2380 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) { 2381 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2382 return true; 2383 } 2384 break; 2385 } 2386 } 2387 2388 return false; 2389 } 2390 2391 /// Helper wrapper to main isSplatValue function. 2392 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2393 EVT VT = V.getValueType(); 2394 assert(VT.isVector() && "Vector type expected"); 2395 2396 APInt UndefElts; 2397 APInt DemandedElts; 2398 2399 // For now we don't support this with scalable vectors. 2400 if (!VT.isScalableVector()) 2401 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2402 return isSplatValue(V, DemandedElts, UndefElts) && 2403 (AllowUndefs || !UndefElts); 2404 } 2405 2406 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2407 V = peekThroughExtractSubvectors(V); 2408 2409 EVT VT = V.getValueType(); 2410 unsigned Opcode = V.getOpcode(); 2411 switch (Opcode) { 2412 default: { 2413 APInt UndefElts; 2414 APInt DemandedElts; 2415 2416 if (!VT.isScalableVector()) 2417 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2418 2419 if (isSplatValue(V, DemandedElts, UndefElts)) { 2420 if (VT.isScalableVector()) { 2421 // DemandedElts and UndefElts are ignored for scalable vectors, since 2422 // the only supported cases are SPLAT_VECTOR nodes. 2423 SplatIdx = 0; 2424 } else { 2425 // Handle case where all demanded elements are UNDEF. 2426 if (DemandedElts.isSubsetOf(UndefElts)) { 2427 SplatIdx = 0; 2428 return getUNDEF(VT); 2429 } 2430 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2431 } 2432 return V; 2433 } 2434 break; 2435 } 2436 case ISD::SPLAT_VECTOR: 2437 SplatIdx = 0; 2438 return V; 2439 case ISD::VECTOR_SHUFFLE: { 2440 if (VT.isScalableVector()) 2441 return SDValue(); 2442 2443 // Check if this is a shuffle node doing a splat. 2444 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2445 // getTargetVShiftNode currently struggles without the splat source. 2446 auto *SVN = cast<ShuffleVectorSDNode>(V); 2447 if (!SVN->isSplat()) 2448 break; 2449 int Idx = SVN->getSplatIndex(); 2450 int NumElts = V.getValueType().getVectorNumElements(); 2451 SplatIdx = Idx % NumElts; 2452 return V.getOperand(Idx / NumElts); 2453 } 2454 } 2455 2456 return SDValue(); 2457 } 2458 2459 SDValue SelectionDAG::getSplatValue(SDValue V) { 2460 int SplatIdx; 2461 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2462 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2463 SrcVector.getValueType().getScalarType(), SrcVector, 2464 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2465 return SDValue(); 2466 } 2467 2468 const APInt * 2469 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2470 const APInt &DemandedElts) const { 2471 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2472 V.getOpcode() == ISD::SRA) && 2473 "Unknown shift node"); 2474 unsigned BitWidth = V.getScalarValueSizeInBits(); 2475 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2476 // Shifting more than the bitwidth is not valid. 2477 const APInt &ShAmt = SA->getAPIntValue(); 2478 if (ShAmt.ult(BitWidth)) 2479 return &ShAmt; 2480 } 2481 return nullptr; 2482 } 2483 2484 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2485 SDValue V, const APInt &DemandedElts) const { 2486 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2487 V.getOpcode() == ISD::SRA) && 2488 "Unknown shift node"); 2489 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2490 return ValidAmt; 2491 unsigned BitWidth = V.getScalarValueSizeInBits(); 2492 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2493 if (!BV) 2494 return nullptr; 2495 const APInt *MinShAmt = nullptr; 2496 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2497 if (!DemandedElts[i]) 2498 continue; 2499 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2500 if (!SA) 2501 return nullptr; 2502 // Shifting more than the bitwidth is not valid. 2503 const APInt &ShAmt = SA->getAPIntValue(); 2504 if (ShAmt.uge(BitWidth)) 2505 return nullptr; 2506 if (MinShAmt && MinShAmt->ule(ShAmt)) 2507 continue; 2508 MinShAmt = &ShAmt; 2509 } 2510 return MinShAmt; 2511 } 2512 2513 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2514 SDValue V, const APInt &DemandedElts) const { 2515 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2516 V.getOpcode() == ISD::SRA) && 2517 "Unknown shift node"); 2518 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2519 return ValidAmt; 2520 unsigned BitWidth = V.getScalarValueSizeInBits(); 2521 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2522 if (!BV) 2523 return nullptr; 2524 const APInt *MaxShAmt = nullptr; 2525 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2526 if (!DemandedElts[i]) 2527 continue; 2528 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2529 if (!SA) 2530 return nullptr; 2531 // Shifting more than the bitwidth is not valid. 2532 const APInt &ShAmt = SA->getAPIntValue(); 2533 if (ShAmt.uge(BitWidth)) 2534 return nullptr; 2535 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2536 continue; 2537 MaxShAmt = &ShAmt; 2538 } 2539 return MaxShAmt; 2540 } 2541 2542 /// Determine which bits of Op are known to be either zero or one and return 2543 /// them in Known. For vectors, the known bits are those that are shared by 2544 /// every vector element. 2545 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2546 EVT VT = Op.getValueType(); 2547 2548 // TOOD: Until we have a plan for how to represent demanded elements for 2549 // scalable vectors, we can just bail out for now. 2550 if (Op.getValueType().isScalableVector()) { 2551 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2552 return KnownBits(BitWidth); 2553 } 2554 2555 APInt DemandedElts = VT.isVector() 2556 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2557 : APInt(1, 1); 2558 return computeKnownBits(Op, DemandedElts, Depth); 2559 } 2560 2561 /// Determine which bits of Op are known to be either zero or one and return 2562 /// them in Known. The DemandedElts argument allows us to only collect the known 2563 /// bits that are shared by the requested vector elements. 2564 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2565 unsigned Depth) const { 2566 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2567 2568 KnownBits Known(BitWidth); // Don't know anything. 2569 2570 // TOOD: Until we have a plan for how to represent demanded elements for 2571 // scalable vectors, we can just bail out for now. 2572 if (Op.getValueType().isScalableVector()) 2573 return Known; 2574 2575 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2576 // We know all of the bits for a constant! 2577 Known.One = C->getAPIntValue(); 2578 Known.Zero = ~Known.One; 2579 return Known; 2580 } 2581 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2582 // We know all of the bits for a constant fp! 2583 Known.One = C->getValueAPF().bitcastToAPInt(); 2584 Known.Zero = ~Known.One; 2585 return Known; 2586 } 2587 2588 if (Depth >= MaxRecursionDepth) 2589 return Known; // Limit search depth. 2590 2591 KnownBits Known2; 2592 unsigned NumElts = DemandedElts.getBitWidth(); 2593 assert((!Op.getValueType().isVector() || 2594 NumElts == Op.getValueType().getVectorNumElements()) && 2595 "Unexpected vector size"); 2596 2597 if (!DemandedElts) 2598 return Known; // No demanded elts, better to assume we don't know anything. 2599 2600 unsigned Opcode = Op.getOpcode(); 2601 switch (Opcode) { 2602 case ISD::BUILD_VECTOR: 2603 // Collect the known bits that are shared by every demanded vector element. 2604 Known.Zero.setAllBits(); Known.One.setAllBits(); 2605 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2606 if (!DemandedElts[i]) 2607 continue; 2608 2609 SDValue SrcOp = Op.getOperand(i); 2610 Known2 = computeKnownBits(SrcOp, Depth + 1); 2611 2612 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2613 if (SrcOp.getValueSizeInBits() != BitWidth) { 2614 assert(SrcOp.getValueSizeInBits() > BitWidth && 2615 "Expected BUILD_VECTOR implicit truncation"); 2616 Known2 = Known2.trunc(BitWidth); 2617 } 2618 2619 // Known bits are the values that are shared by every demanded element. 2620 Known.One &= Known2.One; 2621 Known.Zero &= Known2.Zero; 2622 2623 // If we don't know any bits, early out. 2624 if (Known.isUnknown()) 2625 break; 2626 } 2627 break; 2628 case ISD::VECTOR_SHUFFLE: { 2629 // Collect the known bits that are shared by every vector element referenced 2630 // by the shuffle. 2631 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2632 Known.Zero.setAllBits(); Known.One.setAllBits(); 2633 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2634 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2635 for (unsigned i = 0; i != NumElts; ++i) { 2636 if (!DemandedElts[i]) 2637 continue; 2638 2639 int M = SVN->getMaskElt(i); 2640 if (M < 0) { 2641 // For UNDEF elements, we don't know anything about the common state of 2642 // the shuffle result. 2643 Known.resetAll(); 2644 DemandedLHS.clearAllBits(); 2645 DemandedRHS.clearAllBits(); 2646 break; 2647 } 2648 2649 if ((unsigned)M < NumElts) 2650 DemandedLHS.setBit((unsigned)M % NumElts); 2651 else 2652 DemandedRHS.setBit((unsigned)M % NumElts); 2653 } 2654 // Known bits are the values that are shared by every demanded element. 2655 if (!!DemandedLHS) { 2656 SDValue LHS = Op.getOperand(0); 2657 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2658 Known.One &= Known2.One; 2659 Known.Zero &= Known2.Zero; 2660 } 2661 // If we don't know any bits, early out. 2662 if (Known.isUnknown()) 2663 break; 2664 if (!!DemandedRHS) { 2665 SDValue RHS = Op.getOperand(1); 2666 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2667 Known.One &= Known2.One; 2668 Known.Zero &= Known2.Zero; 2669 } 2670 break; 2671 } 2672 case ISD::CONCAT_VECTORS: { 2673 // Split DemandedElts and test each of the demanded subvectors. 2674 Known.Zero.setAllBits(); Known.One.setAllBits(); 2675 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2676 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2677 unsigned NumSubVectors = Op.getNumOperands(); 2678 for (unsigned i = 0; i != NumSubVectors; ++i) { 2679 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2680 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2681 if (!!DemandedSub) { 2682 SDValue Sub = Op.getOperand(i); 2683 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2684 Known.One &= Known2.One; 2685 Known.Zero &= Known2.Zero; 2686 } 2687 // If we don't know any bits, early out. 2688 if (Known.isUnknown()) 2689 break; 2690 } 2691 break; 2692 } 2693 case ISD::INSERT_SUBVECTOR: { 2694 // Demand any elements from the subvector and the remainder from the src its 2695 // inserted into. 2696 SDValue Src = Op.getOperand(0); 2697 SDValue Sub = Op.getOperand(1); 2698 uint64_t Idx = Op.getConstantOperandVal(2); 2699 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2700 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2701 APInt DemandedSrcElts = DemandedElts; 2702 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2703 2704 Known.One.setAllBits(); 2705 Known.Zero.setAllBits(); 2706 if (!!DemandedSubElts) { 2707 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2708 if (Known.isUnknown()) 2709 break; // early-out. 2710 } 2711 if (!!DemandedSrcElts) { 2712 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2713 Known.One &= Known2.One; 2714 Known.Zero &= Known2.Zero; 2715 } 2716 break; 2717 } 2718 case ISD::EXTRACT_SUBVECTOR: { 2719 // Offset the demanded elts by the subvector index. 2720 SDValue Src = Op.getOperand(0); 2721 uint64_t Idx = Op.getConstantOperandVal(1); 2722 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2723 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2724 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2725 break; 2726 } 2727 case ISD::SCALAR_TO_VECTOR: { 2728 // We know about scalar_to_vector as much as we know about it source, 2729 // which becomes the first element of otherwise unknown vector. 2730 if (DemandedElts != 1) 2731 break; 2732 2733 SDValue N0 = Op.getOperand(0); 2734 Known = computeKnownBits(N0, Depth + 1); 2735 if (N0.getValueSizeInBits() != BitWidth) 2736 Known = Known.trunc(BitWidth); 2737 2738 break; 2739 } 2740 case ISD::BITCAST: { 2741 SDValue N0 = Op.getOperand(0); 2742 EVT SubVT = N0.getValueType(); 2743 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2744 2745 // Ignore bitcasts from unsupported types. 2746 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2747 break; 2748 2749 // Fast handling of 'identity' bitcasts. 2750 if (BitWidth == SubBitWidth) { 2751 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2752 break; 2753 } 2754 2755 bool IsLE = getDataLayout().isLittleEndian(); 2756 2757 // Bitcast 'small element' vector to 'large element' scalar/vector. 2758 if ((BitWidth % SubBitWidth) == 0) { 2759 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2760 2761 // Collect known bits for the (larger) output by collecting the known 2762 // bits from each set of sub elements and shift these into place. 2763 // We need to separately call computeKnownBits for each set of 2764 // sub elements as the knownbits for each is likely to be different. 2765 unsigned SubScale = BitWidth / SubBitWidth; 2766 APInt SubDemandedElts(NumElts * SubScale, 0); 2767 for (unsigned i = 0; i != NumElts; ++i) 2768 if (DemandedElts[i]) 2769 SubDemandedElts.setBit(i * SubScale); 2770 2771 for (unsigned i = 0; i != SubScale; ++i) { 2772 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2773 Depth + 1); 2774 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2775 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2776 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2777 } 2778 } 2779 2780 // Bitcast 'large element' scalar/vector to 'small element' vector. 2781 if ((SubBitWidth % BitWidth) == 0) { 2782 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2783 2784 // Collect known bits for the (smaller) output by collecting the known 2785 // bits from the overlapping larger input elements and extracting the 2786 // sub sections we actually care about. 2787 unsigned SubScale = SubBitWidth / BitWidth; 2788 APInt SubDemandedElts(NumElts / SubScale, 0); 2789 for (unsigned i = 0; i != NumElts; ++i) 2790 if (DemandedElts[i]) 2791 SubDemandedElts.setBit(i / SubScale); 2792 2793 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2794 2795 Known.Zero.setAllBits(); Known.One.setAllBits(); 2796 for (unsigned i = 0; i != NumElts; ++i) 2797 if (DemandedElts[i]) { 2798 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2799 unsigned Offset = (Shifts % SubScale) * BitWidth; 2800 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2801 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2802 // If we don't know any bits, early out. 2803 if (Known.isUnknown()) 2804 break; 2805 } 2806 } 2807 break; 2808 } 2809 case ISD::AND: 2810 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2811 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2812 2813 Known &= Known2; 2814 break; 2815 case ISD::OR: 2816 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2817 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2818 2819 Known |= Known2; 2820 break; 2821 case ISD::XOR: 2822 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2823 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2824 2825 Known ^= Known2; 2826 break; 2827 case ISD::MUL: { 2828 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2829 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2830 2831 // If low bits are zero in either operand, output low known-0 bits. 2832 // Also compute a conservative estimate for high known-0 bits. 2833 // More trickiness is possible, but this is sufficient for the 2834 // interesting case of alignment computation. 2835 unsigned TrailZ = Known.countMinTrailingZeros() + 2836 Known2.countMinTrailingZeros(); 2837 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2838 Known2.countMinLeadingZeros(), 2839 BitWidth) - BitWidth; 2840 2841 Known.resetAll(); 2842 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2843 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2844 break; 2845 } 2846 case ISD::UDIV: { 2847 // For the purposes of computing leading zeros we can conservatively 2848 // treat a udiv as a logical right shift by the power of 2 known to 2849 // be less than the denominator. 2850 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2851 unsigned LeadZ = Known2.countMinLeadingZeros(); 2852 2853 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2854 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2855 if (RHSMaxLeadingZeros != BitWidth) 2856 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2857 2858 Known.Zero.setHighBits(LeadZ); 2859 break; 2860 } 2861 case ISD::SELECT: 2862 case ISD::VSELECT: 2863 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2864 // If we don't know any bits, early out. 2865 if (Known.isUnknown()) 2866 break; 2867 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2868 2869 // Only known if known in both the LHS and RHS. 2870 Known.One &= Known2.One; 2871 Known.Zero &= Known2.Zero; 2872 break; 2873 case ISD::SELECT_CC: 2874 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2875 // If we don't know any bits, early out. 2876 if (Known.isUnknown()) 2877 break; 2878 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2879 2880 // Only known if known in both the LHS and RHS. 2881 Known.One &= Known2.One; 2882 Known.Zero &= Known2.Zero; 2883 break; 2884 case ISD::SMULO: 2885 case ISD::UMULO: 2886 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2887 if (Op.getResNo() != 1) 2888 break; 2889 // The boolean result conforms to getBooleanContents. 2890 // If we know the result of a setcc has the top bits zero, use this info. 2891 // We know that we have an integer-based boolean since these operations 2892 // are only available for integer. 2893 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2894 TargetLowering::ZeroOrOneBooleanContent && 2895 BitWidth > 1) 2896 Known.Zero.setBitsFrom(1); 2897 break; 2898 case ISD::SETCC: 2899 case ISD::STRICT_FSETCC: 2900 case ISD::STRICT_FSETCCS: { 2901 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2902 // If we know the result of a setcc has the top bits zero, use this info. 2903 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2904 TargetLowering::ZeroOrOneBooleanContent && 2905 BitWidth > 1) 2906 Known.Zero.setBitsFrom(1); 2907 break; 2908 } 2909 case ISD::SHL: 2910 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2911 2912 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2913 unsigned Shift = ShAmt->getZExtValue(); 2914 Known.Zero <<= Shift; 2915 Known.One <<= Shift; 2916 // Low bits are known zero. 2917 Known.Zero.setLowBits(Shift); 2918 break; 2919 } 2920 2921 // No matter the shift amount, the trailing zeros will stay zero. 2922 Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros()); 2923 Known.One.clearAllBits(); 2924 2925 // Minimum shift low bits are known zero. 2926 if (const APInt *ShMinAmt = 2927 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2928 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2929 break; 2930 case ISD::SRL: 2931 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2932 2933 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2934 unsigned Shift = ShAmt->getZExtValue(); 2935 Known.Zero.lshrInPlace(Shift); 2936 Known.One.lshrInPlace(Shift); 2937 // High bits are known zero. 2938 Known.Zero.setHighBits(Shift); 2939 break; 2940 } 2941 2942 // No matter the shift amount, the leading zeros will stay zero. 2943 Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros()); 2944 Known.One.clearAllBits(); 2945 2946 // Minimum shift high bits are known zero. 2947 if (const APInt *ShMinAmt = 2948 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2949 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2950 break; 2951 case ISD::SRA: 2952 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2953 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2954 unsigned Shift = ShAmt->getZExtValue(); 2955 // Sign extend known zero/one bit (else is unknown). 2956 Known.Zero.ashrInPlace(Shift); 2957 Known.One.ashrInPlace(Shift); 2958 } 2959 break; 2960 case ISD::FSHL: 2961 case ISD::FSHR: 2962 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2963 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2964 2965 // For fshl, 0-shift returns the 1st arg. 2966 // For fshr, 0-shift returns the 2nd arg. 2967 if (Amt == 0) { 2968 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2969 DemandedElts, Depth + 1); 2970 break; 2971 } 2972 2973 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2974 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2975 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2976 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2977 if (Opcode == ISD::FSHL) { 2978 Known.One <<= Amt; 2979 Known.Zero <<= Amt; 2980 Known2.One.lshrInPlace(BitWidth - Amt); 2981 Known2.Zero.lshrInPlace(BitWidth - Amt); 2982 } else { 2983 Known.One <<= BitWidth - Amt; 2984 Known.Zero <<= BitWidth - Amt; 2985 Known2.One.lshrInPlace(Amt); 2986 Known2.Zero.lshrInPlace(Amt); 2987 } 2988 Known.One |= Known2.One; 2989 Known.Zero |= Known2.Zero; 2990 } 2991 break; 2992 case ISD::SIGN_EXTEND_INREG: { 2993 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2994 unsigned EBits = EVT.getScalarSizeInBits(); 2995 2996 // Sign extension. Compute the demanded bits in the result that are not 2997 // present in the input. 2998 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2999 3000 APInt InSignMask = APInt::getSignMask(EBits); 3001 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 3002 3003 // If the sign extended bits are demanded, we know that the sign 3004 // bit is demanded. 3005 InSignMask = InSignMask.zext(BitWidth); 3006 if (NewBits.getBoolValue()) 3007 InputDemandedBits |= InSignMask; 3008 3009 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3010 Known.One &= InputDemandedBits; 3011 Known.Zero &= InputDemandedBits; 3012 3013 // If the sign bit of the input is known set or clear, then we know the 3014 // top bits of the result. 3015 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 3016 Known.Zero |= NewBits; 3017 Known.One &= ~NewBits; 3018 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 3019 Known.One |= NewBits; 3020 Known.Zero &= ~NewBits; 3021 } else { // Input sign bit unknown 3022 Known.Zero &= ~NewBits; 3023 Known.One &= ~NewBits; 3024 } 3025 break; 3026 } 3027 case ISD::CTTZ: 3028 case ISD::CTTZ_ZERO_UNDEF: { 3029 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3030 // If we have a known 1, its position is our upper bound. 3031 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3032 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3033 Known.Zero.setBitsFrom(LowBits); 3034 break; 3035 } 3036 case ISD::CTLZ: 3037 case ISD::CTLZ_ZERO_UNDEF: { 3038 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3039 // If we have a known 1, its position is our upper bound. 3040 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3041 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3042 Known.Zero.setBitsFrom(LowBits); 3043 break; 3044 } 3045 case ISD::CTPOP: { 3046 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3047 // If we know some of the bits are zero, they can't be one. 3048 unsigned PossibleOnes = Known2.countMaxPopulation(); 3049 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3050 break; 3051 } 3052 case ISD::LOAD: { 3053 LoadSDNode *LD = cast<LoadSDNode>(Op); 3054 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3055 if (ISD::isNON_EXTLoad(LD) && Cst) { 3056 // Determine any common known bits from the loaded constant pool value. 3057 Type *CstTy = Cst->getType(); 3058 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3059 // If its a vector splat, then we can (quickly) reuse the scalar path. 3060 // NOTE: We assume all elements match and none are UNDEF. 3061 if (CstTy->isVectorTy()) { 3062 if (const Constant *Splat = Cst->getSplatValue()) { 3063 Cst = Splat; 3064 CstTy = Cst->getType(); 3065 } 3066 } 3067 // TODO - do we need to handle different bitwidths? 3068 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3069 // Iterate across all vector elements finding common known bits. 3070 Known.One.setAllBits(); 3071 Known.Zero.setAllBits(); 3072 for (unsigned i = 0; i != NumElts; ++i) { 3073 if (!DemandedElts[i]) 3074 continue; 3075 if (Constant *Elt = Cst->getAggregateElement(i)) { 3076 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3077 const APInt &Value = CInt->getValue(); 3078 Known.One &= Value; 3079 Known.Zero &= ~Value; 3080 continue; 3081 } 3082 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3083 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3084 Known.One &= Value; 3085 Known.Zero &= ~Value; 3086 continue; 3087 } 3088 } 3089 Known.One.clearAllBits(); 3090 Known.Zero.clearAllBits(); 3091 break; 3092 } 3093 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3094 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3095 const APInt &Value = CInt->getValue(); 3096 Known.One = Value; 3097 Known.Zero = ~Value; 3098 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3099 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3100 Known.One = Value; 3101 Known.Zero = ~Value; 3102 } 3103 } 3104 } 3105 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3106 // If this is a ZEXTLoad and we are looking at the loaded value. 3107 EVT VT = LD->getMemoryVT(); 3108 unsigned MemBits = VT.getScalarSizeInBits(); 3109 Known.Zero.setBitsFrom(MemBits); 3110 } else if (const MDNode *Ranges = LD->getRanges()) { 3111 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3112 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3113 } 3114 break; 3115 } 3116 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3117 EVT InVT = Op.getOperand(0).getValueType(); 3118 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3119 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3120 Known = Known.zext(BitWidth); 3121 break; 3122 } 3123 case ISD::ZERO_EXTEND: { 3124 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3125 Known = Known.zext(BitWidth); 3126 break; 3127 } 3128 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3129 EVT InVT = Op.getOperand(0).getValueType(); 3130 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3131 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3132 // If the sign bit is known to be zero or one, then sext will extend 3133 // it to the top bits, else it will just zext. 3134 Known = Known.sext(BitWidth); 3135 break; 3136 } 3137 case ISD::SIGN_EXTEND: { 3138 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3139 // If the sign bit is known to be zero or one, then sext will extend 3140 // it to the top bits, else it will just zext. 3141 Known = Known.sext(BitWidth); 3142 break; 3143 } 3144 case ISD::ANY_EXTEND_VECTOR_INREG: { 3145 EVT InVT = Op.getOperand(0).getValueType(); 3146 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3147 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3148 Known = Known.anyext(BitWidth); 3149 break; 3150 } 3151 case ISD::ANY_EXTEND: { 3152 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3153 Known = Known.anyext(BitWidth); 3154 break; 3155 } 3156 case ISD::TRUNCATE: { 3157 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3158 Known = Known.trunc(BitWidth); 3159 break; 3160 } 3161 case ISD::AssertZext: { 3162 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3163 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3164 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3165 Known.Zero |= (~InMask); 3166 Known.One &= (~Known.Zero); 3167 break; 3168 } 3169 case ISD::FGETSIGN: 3170 // All bits are zero except the low bit. 3171 Known.Zero.setBitsFrom(1); 3172 break; 3173 case ISD::USUBO: 3174 case ISD::SSUBO: 3175 if (Op.getResNo() == 1) { 3176 // If we know the result of a setcc has the top bits zero, use this info. 3177 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3178 TargetLowering::ZeroOrOneBooleanContent && 3179 BitWidth > 1) 3180 Known.Zero.setBitsFrom(1); 3181 break; 3182 } 3183 LLVM_FALLTHROUGH; 3184 case ISD::SUB: 3185 case ISD::SUBC: { 3186 assert(Op.getResNo() == 0 && 3187 "We only compute knownbits for the difference here."); 3188 3189 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3190 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3191 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3192 Known, Known2); 3193 break; 3194 } 3195 case ISD::UADDO: 3196 case ISD::SADDO: 3197 case ISD::ADDCARRY: 3198 if (Op.getResNo() == 1) { 3199 // If we know the result of a setcc has the top bits zero, use this info. 3200 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3201 TargetLowering::ZeroOrOneBooleanContent && 3202 BitWidth > 1) 3203 Known.Zero.setBitsFrom(1); 3204 break; 3205 } 3206 LLVM_FALLTHROUGH; 3207 case ISD::ADD: 3208 case ISD::ADDC: 3209 case ISD::ADDE: { 3210 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3211 3212 // With ADDE and ADDCARRY, a carry bit may be added in. 3213 KnownBits Carry(1); 3214 if (Opcode == ISD::ADDE) 3215 // Can't track carry from glue, set carry to unknown. 3216 Carry.resetAll(); 3217 else if (Opcode == ISD::ADDCARRY) 3218 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3219 // the trouble (how often will we find a known carry bit). And I haven't 3220 // tested this very much yet, but something like this might work: 3221 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3222 // Carry = Carry.zextOrTrunc(1, false); 3223 Carry.resetAll(); 3224 else 3225 Carry.setAllZero(); 3226 3227 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3228 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3229 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3230 break; 3231 } 3232 case ISD::SREM: 3233 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3234 const APInt &RA = Rem->getAPIntValue().abs(); 3235 if (RA.isPowerOf2()) { 3236 APInt LowBits = RA - 1; 3237 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3238 3239 // The low bits of the first operand are unchanged by the srem. 3240 Known.Zero = Known2.Zero & LowBits; 3241 Known.One = Known2.One & LowBits; 3242 3243 // If the first operand is non-negative or has all low bits zero, then 3244 // the upper bits are all zero. 3245 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3246 Known.Zero |= ~LowBits; 3247 3248 // If the first operand is negative and not all low bits are zero, then 3249 // the upper bits are all one. 3250 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3251 Known.One |= ~LowBits; 3252 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3253 } 3254 } 3255 break; 3256 case ISD::UREM: { 3257 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3258 const APInt &RA = Rem->getAPIntValue(); 3259 if (RA.isPowerOf2()) { 3260 APInt LowBits = (RA - 1); 3261 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3262 3263 // The upper bits are all zero, the lower ones are unchanged. 3264 Known.Zero = Known2.Zero | ~LowBits; 3265 Known.One = Known2.One & LowBits; 3266 break; 3267 } 3268 } 3269 3270 // Since the result is less than or equal to either operand, any leading 3271 // zero bits in either operand must also exist in the result. 3272 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3273 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3274 3275 uint32_t Leaders = 3276 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3277 Known.resetAll(); 3278 Known.Zero.setHighBits(Leaders); 3279 break; 3280 } 3281 case ISD::EXTRACT_ELEMENT: { 3282 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3283 const unsigned Index = Op.getConstantOperandVal(1); 3284 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3285 3286 // Remove low part of known bits mask 3287 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3288 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3289 3290 // Remove high part of known bit mask 3291 Known = Known.trunc(EltBitWidth); 3292 break; 3293 } 3294 case ISD::EXTRACT_VECTOR_ELT: { 3295 SDValue InVec = Op.getOperand(0); 3296 SDValue EltNo = Op.getOperand(1); 3297 EVT VecVT = InVec.getValueType(); 3298 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3299 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3300 3301 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3302 // anything about the extended bits. 3303 if (BitWidth > EltBitWidth) 3304 Known = Known.trunc(EltBitWidth); 3305 3306 // If we know the element index, just demand that vector element, else for 3307 // an unknown element index, ignore DemandedElts and demand them all. 3308 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3309 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3310 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3311 DemandedSrcElts = 3312 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3313 3314 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3315 if (BitWidth > EltBitWidth) 3316 Known = Known.anyext(BitWidth); 3317 break; 3318 } 3319 case ISD::INSERT_VECTOR_ELT: { 3320 // If we know the element index, split the demand between the 3321 // source vector and the inserted element, otherwise assume we need 3322 // the original demanded vector elements and the value. 3323 SDValue InVec = Op.getOperand(0); 3324 SDValue InVal = Op.getOperand(1); 3325 SDValue EltNo = Op.getOperand(2); 3326 bool DemandedVal = true; 3327 APInt DemandedVecElts = DemandedElts; 3328 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3329 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3330 unsigned EltIdx = CEltNo->getZExtValue(); 3331 DemandedVal = !!DemandedElts[EltIdx]; 3332 DemandedVecElts.clearBit(EltIdx); 3333 } 3334 Known.One.setAllBits(); 3335 Known.Zero.setAllBits(); 3336 if (DemandedVal) { 3337 Known2 = computeKnownBits(InVal, Depth + 1); 3338 Known.One &= Known2.One.zextOrTrunc(BitWidth); 3339 Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth); 3340 } 3341 if (!!DemandedVecElts) { 3342 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3343 Known.One &= Known2.One; 3344 Known.Zero &= Known2.Zero; 3345 } 3346 break; 3347 } 3348 case ISD::BITREVERSE: { 3349 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3350 Known.Zero = Known2.Zero.reverseBits(); 3351 Known.One = Known2.One.reverseBits(); 3352 break; 3353 } 3354 case ISD::BSWAP: { 3355 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3356 Known.Zero = Known2.Zero.byteSwap(); 3357 Known.One = Known2.One.byteSwap(); 3358 break; 3359 } 3360 case ISD::ABS: { 3361 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3362 3363 // If the source's MSB is zero then we know the rest of the bits already. 3364 if (Known2.isNonNegative()) { 3365 Known.Zero = Known2.Zero; 3366 Known.One = Known2.One; 3367 break; 3368 } 3369 3370 // We only know that the absolute values's MSB will be zero iff there is 3371 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3372 Known2.One.clearSignBit(); 3373 if (Known2.One.getBoolValue()) { 3374 Known.Zero = APInt::getSignMask(BitWidth); 3375 break; 3376 } 3377 break; 3378 } 3379 case ISD::UMIN: { 3380 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3381 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3382 3383 // UMIN - we know that the result will have the maximum of the 3384 // known zero leading bits of the inputs. 3385 unsigned LeadZero = Known.countMinLeadingZeros(); 3386 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3387 3388 Known.Zero &= Known2.Zero; 3389 Known.One &= Known2.One; 3390 Known.Zero.setHighBits(LeadZero); 3391 break; 3392 } 3393 case ISD::UMAX: { 3394 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3395 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3396 3397 // UMAX - we know that the result will have the maximum of the 3398 // known one leading bits of the inputs. 3399 unsigned LeadOne = Known.countMinLeadingOnes(); 3400 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3401 3402 Known.Zero &= Known2.Zero; 3403 Known.One &= Known2.One; 3404 Known.One.setHighBits(LeadOne); 3405 break; 3406 } 3407 case ISD::SMIN: 3408 case ISD::SMAX: { 3409 // If we have a clamp pattern, we know that the number of sign bits will be 3410 // the minimum of the clamp min/max range. 3411 bool IsMax = (Opcode == ISD::SMAX); 3412 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3413 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3414 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3415 CstHigh = 3416 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3417 if (CstLow && CstHigh) { 3418 if (!IsMax) 3419 std::swap(CstLow, CstHigh); 3420 3421 const APInt &ValueLow = CstLow->getAPIntValue(); 3422 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3423 if (ValueLow.sle(ValueHigh)) { 3424 unsigned LowSignBits = ValueLow.getNumSignBits(); 3425 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3426 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3427 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3428 Known.One.setHighBits(MinSignBits); 3429 break; 3430 } 3431 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3432 Known.Zero.setHighBits(MinSignBits); 3433 break; 3434 } 3435 } 3436 } 3437 3438 // Fallback - just get the shared known bits of the operands. 3439 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3440 if (Known.isUnknown()) break; // Early-out 3441 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3442 Known.Zero &= Known2.Zero; 3443 Known.One &= Known2.One; 3444 break; 3445 } 3446 case ISD::FrameIndex: 3447 case ISD::TargetFrameIndex: 3448 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3449 Known, getMachineFunction()); 3450 break; 3451 3452 default: 3453 if (Opcode < ISD::BUILTIN_OP_END) 3454 break; 3455 LLVM_FALLTHROUGH; 3456 case ISD::INTRINSIC_WO_CHAIN: 3457 case ISD::INTRINSIC_W_CHAIN: 3458 case ISD::INTRINSIC_VOID: 3459 // Allow the target to implement this method for its nodes. 3460 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3461 break; 3462 } 3463 3464 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3465 return Known; 3466 } 3467 3468 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3469 SDValue N1) const { 3470 // X + 0 never overflow 3471 if (isNullConstant(N1)) 3472 return OFK_Never; 3473 3474 KnownBits N1Known = computeKnownBits(N1); 3475 if (N1Known.Zero.getBoolValue()) { 3476 KnownBits N0Known = computeKnownBits(N0); 3477 3478 bool overflow; 3479 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3480 if (!overflow) 3481 return OFK_Never; 3482 } 3483 3484 // mulhi + 1 never overflow 3485 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3486 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3487 return OFK_Never; 3488 3489 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3490 KnownBits N0Known = computeKnownBits(N0); 3491 3492 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3493 return OFK_Never; 3494 } 3495 3496 return OFK_Sometime; 3497 } 3498 3499 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3500 EVT OpVT = Val.getValueType(); 3501 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3502 3503 // Is the constant a known power of 2? 3504 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3505 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3506 3507 // A left-shift of a constant one will have exactly one bit set because 3508 // shifting the bit off the end is undefined. 3509 if (Val.getOpcode() == ISD::SHL) { 3510 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3511 if (C && C->getAPIntValue() == 1) 3512 return true; 3513 } 3514 3515 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3516 // one bit set. 3517 if (Val.getOpcode() == ISD::SRL) { 3518 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3519 if (C && C->getAPIntValue().isSignMask()) 3520 return true; 3521 } 3522 3523 // Are all operands of a build vector constant powers of two? 3524 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3525 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3526 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3527 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3528 return false; 3529 })) 3530 return true; 3531 3532 // More could be done here, though the above checks are enough 3533 // to handle some common cases. 3534 3535 // Fall back to computeKnownBits to catch other known cases. 3536 KnownBits Known = computeKnownBits(Val); 3537 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3538 } 3539 3540 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3541 EVT VT = Op.getValueType(); 3542 3543 // TODO: Assume we don't know anything for now. 3544 if (VT.isScalableVector()) 3545 return 1; 3546 3547 APInt DemandedElts = VT.isVector() 3548 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3549 : APInt(1, 1); 3550 return ComputeNumSignBits(Op, DemandedElts, Depth); 3551 } 3552 3553 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3554 unsigned Depth) const { 3555 EVT VT = Op.getValueType(); 3556 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3557 unsigned VTBits = VT.getScalarSizeInBits(); 3558 unsigned NumElts = DemandedElts.getBitWidth(); 3559 unsigned Tmp, Tmp2; 3560 unsigned FirstAnswer = 1; 3561 3562 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3563 const APInt &Val = C->getAPIntValue(); 3564 return Val.getNumSignBits(); 3565 } 3566 3567 if (Depth >= MaxRecursionDepth) 3568 return 1; // Limit search depth. 3569 3570 if (!DemandedElts || VT.isScalableVector()) 3571 return 1; // No demanded elts, better to assume we don't know anything. 3572 3573 unsigned Opcode = Op.getOpcode(); 3574 switch (Opcode) { 3575 default: break; 3576 case ISD::AssertSext: 3577 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3578 return VTBits-Tmp+1; 3579 case ISD::AssertZext: 3580 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3581 return VTBits-Tmp; 3582 3583 case ISD::BUILD_VECTOR: 3584 Tmp = VTBits; 3585 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3586 if (!DemandedElts[i]) 3587 continue; 3588 3589 SDValue SrcOp = Op.getOperand(i); 3590 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3591 3592 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3593 if (SrcOp.getValueSizeInBits() != VTBits) { 3594 assert(SrcOp.getValueSizeInBits() > VTBits && 3595 "Expected BUILD_VECTOR implicit truncation"); 3596 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3597 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3598 } 3599 Tmp = std::min(Tmp, Tmp2); 3600 } 3601 return Tmp; 3602 3603 case ISD::VECTOR_SHUFFLE: { 3604 // Collect the minimum number of sign bits that are shared by every vector 3605 // element referenced by the shuffle. 3606 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3607 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3608 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3609 for (unsigned i = 0; i != NumElts; ++i) { 3610 int M = SVN->getMaskElt(i); 3611 if (!DemandedElts[i]) 3612 continue; 3613 // For UNDEF elements, we don't know anything about the common state of 3614 // the shuffle result. 3615 if (M < 0) 3616 return 1; 3617 if ((unsigned)M < NumElts) 3618 DemandedLHS.setBit((unsigned)M % NumElts); 3619 else 3620 DemandedRHS.setBit((unsigned)M % NumElts); 3621 } 3622 Tmp = std::numeric_limits<unsigned>::max(); 3623 if (!!DemandedLHS) 3624 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3625 if (!!DemandedRHS) { 3626 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3627 Tmp = std::min(Tmp, Tmp2); 3628 } 3629 // If we don't know anything, early out and try computeKnownBits fall-back. 3630 if (Tmp == 1) 3631 break; 3632 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3633 return Tmp; 3634 } 3635 3636 case ISD::BITCAST: { 3637 SDValue N0 = Op.getOperand(0); 3638 EVT SrcVT = N0.getValueType(); 3639 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3640 3641 // Ignore bitcasts from unsupported types.. 3642 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3643 break; 3644 3645 // Fast handling of 'identity' bitcasts. 3646 if (VTBits == SrcBits) 3647 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3648 3649 bool IsLE = getDataLayout().isLittleEndian(); 3650 3651 // Bitcast 'large element' scalar/vector to 'small element' vector. 3652 if ((SrcBits % VTBits) == 0) { 3653 assert(VT.isVector() && "Expected bitcast to vector"); 3654 3655 unsigned Scale = SrcBits / VTBits; 3656 APInt SrcDemandedElts(NumElts / Scale, 0); 3657 for (unsigned i = 0; i != NumElts; ++i) 3658 if (DemandedElts[i]) 3659 SrcDemandedElts.setBit(i / Scale); 3660 3661 // Fast case - sign splat can be simply split across the small elements. 3662 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3663 if (Tmp == SrcBits) 3664 return VTBits; 3665 3666 // Slow case - determine how far the sign extends into each sub-element. 3667 Tmp2 = VTBits; 3668 for (unsigned i = 0; i != NumElts; ++i) 3669 if (DemandedElts[i]) { 3670 unsigned SubOffset = i % Scale; 3671 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3672 SubOffset = SubOffset * VTBits; 3673 if (Tmp <= SubOffset) 3674 return 1; 3675 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3676 } 3677 return Tmp2; 3678 } 3679 break; 3680 } 3681 3682 case ISD::SIGN_EXTEND: 3683 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3684 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3685 case ISD::SIGN_EXTEND_INREG: 3686 // Max of the input and what this extends. 3687 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3688 Tmp = VTBits-Tmp+1; 3689 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3690 return std::max(Tmp, Tmp2); 3691 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3692 SDValue Src = Op.getOperand(0); 3693 EVT SrcVT = Src.getValueType(); 3694 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3695 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3696 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3697 } 3698 case ISD::SRA: 3699 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3700 // SRA X, C -> adds C sign bits. 3701 if (const APInt *ShAmt = 3702 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3703 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3704 return Tmp; 3705 case ISD::SHL: 3706 if (const APInt *ShAmt = 3707 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3708 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3709 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3710 if (ShAmt->ult(Tmp)) 3711 return Tmp - ShAmt->getZExtValue(); 3712 } 3713 break; 3714 case ISD::AND: 3715 case ISD::OR: 3716 case ISD::XOR: // NOT is handled here. 3717 // Logical binary ops preserve the number of sign bits at the worst. 3718 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3719 if (Tmp != 1) { 3720 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3721 FirstAnswer = std::min(Tmp, Tmp2); 3722 // We computed what we know about the sign bits as our first 3723 // answer. Now proceed to the generic code that uses 3724 // computeKnownBits, and pick whichever answer is better. 3725 } 3726 break; 3727 3728 case ISD::SELECT: 3729 case ISD::VSELECT: 3730 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3731 if (Tmp == 1) return 1; // Early out. 3732 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3733 return std::min(Tmp, Tmp2); 3734 case ISD::SELECT_CC: 3735 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3736 if (Tmp == 1) return 1; // Early out. 3737 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3738 return std::min(Tmp, Tmp2); 3739 3740 case ISD::SMIN: 3741 case ISD::SMAX: { 3742 // If we have a clamp pattern, we know that the number of sign bits will be 3743 // the minimum of the clamp min/max range. 3744 bool IsMax = (Opcode == ISD::SMAX); 3745 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3746 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3747 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3748 CstHigh = 3749 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3750 if (CstLow && CstHigh) { 3751 if (!IsMax) 3752 std::swap(CstLow, CstHigh); 3753 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3754 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3755 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3756 return std::min(Tmp, Tmp2); 3757 } 3758 } 3759 3760 // Fallback - just get the minimum number of sign bits of the operands. 3761 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3762 if (Tmp == 1) 3763 return 1; // Early out. 3764 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3765 return std::min(Tmp, Tmp2); 3766 } 3767 case ISD::UMIN: 3768 case ISD::UMAX: 3769 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3770 if (Tmp == 1) 3771 return 1; // Early out. 3772 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3773 return std::min(Tmp, Tmp2); 3774 case ISD::SADDO: 3775 case ISD::UADDO: 3776 case ISD::SSUBO: 3777 case ISD::USUBO: 3778 case ISD::SMULO: 3779 case ISD::UMULO: 3780 if (Op.getResNo() != 1) 3781 break; 3782 // The boolean result conforms to getBooleanContents. Fall through. 3783 // If setcc returns 0/-1, all bits are sign bits. 3784 // We know that we have an integer-based boolean since these operations 3785 // are only available for integer. 3786 if (TLI->getBooleanContents(VT.isVector(), false) == 3787 TargetLowering::ZeroOrNegativeOneBooleanContent) 3788 return VTBits; 3789 break; 3790 case ISD::SETCC: 3791 case ISD::STRICT_FSETCC: 3792 case ISD::STRICT_FSETCCS: { 3793 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3794 // If setcc returns 0/-1, all bits are sign bits. 3795 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3796 TargetLowering::ZeroOrNegativeOneBooleanContent) 3797 return VTBits; 3798 break; 3799 } 3800 case ISD::ROTL: 3801 case ISD::ROTR: 3802 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3803 3804 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3805 if (Tmp == VTBits) 3806 return VTBits; 3807 3808 if (ConstantSDNode *C = 3809 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3810 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3811 3812 // Handle rotate right by N like a rotate left by 32-N. 3813 if (Opcode == ISD::ROTR) 3814 RotAmt = (VTBits - RotAmt) % VTBits; 3815 3816 // If we aren't rotating out all of the known-in sign bits, return the 3817 // number that are left. This handles rotl(sext(x), 1) for example. 3818 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3819 } 3820 break; 3821 case ISD::ADD: 3822 case ISD::ADDC: 3823 // Add can have at most one carry bit. Thus we know that the output 3824 // is, at worst, one more bit than the inputs. 3825 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3826 if (Tmp == 1) return 1; // Early out. 3827 3828 // Special case decrementing a value (ADD X, -1): 3829 if (ConstantSDNode *CRHS = 3830 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3831 if (CRHS->isAllOnesValue()) { 3832 KnownBits Known = 3833 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3834 3835 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3836 // sign bits set. 3837 if ((Known.Zero | 1).isAllOnesValue()) 3838 return VTBits; 3839 3840 // If we are subtracting one from a positive number, there is no carry 3841 // out of the result. 3842 if (Known.isNonNegative()) 3843 return Tmp; 3844 } 3845 3846 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3847 if (Tmp2 == 1) return 1; // Early out. 3848 return std::min(Tmp, Tmp2) - 1; 3849 case ISD::SUB: 3850 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3851 if (Tmp2 == 1) return 1; // Early out. 3852 3853 // Handle NEG. 3854 if (ConstantSDNode *CLHS = 3855 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3856 if (CLHS->isNullValue()) { 3857 KnownBits Known = 3858 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3859 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3860 // sign bits set. 3861 if ((Known.Zero | 1).isAllOnesValue()) 3862 return VTBits; 3863 3864 // If the input is known to be positive (the sign bit is known clear), 3865 // the output of the NEG has the same number of sign bits as the input. 3866 if (Known.isNonNegative()) 3867 return Tmp2; 3868 3869 // Otherwise, we treat this like a SUB. 3870 } 3871 3872 // Sub can have at most one carry bit. Thus we know that the output 3873 // is, at worst, one more bit than the inputs. 3874 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3875 if (Tmp == 1) return 1; // Early out. 3876 return std::min(Tmp, Tmp2) - 1; 3877 case ISD::MUL: { 3878 // The output of the Mul can be at most twice the valid bits in the inputs. 3879 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3880 if (SignBitsOp0 == 1) 3881 break; 3882 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3883 if (SignBitsOp1 == 1) 3884 break; 3885 unsigned OutValidBits = 3886 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3887 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3888 } 3889 case ISD::TRUNCATE: { 3890 // Check if the sign bits of source go down as far as the truncated value. 3891 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3892 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3893 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3894 return NumSrcSignBits - (NumSrcBits - VTBits); 3895 break; 3896 } 3897 case ISD::EXTRACT_ELEMENT: { 3898 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3899 const int BitWidth = Op.getValueSizeInBits(); 3900 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3901 3902 // Get reverse index (starting from 1), Op1 value indexes elements from 3903 // little end. Sign starts at big end. 3904 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3905 3906 // If the sign portion ends in our element the subtraction gives correct 3907 // result. Otherwise it gives either negative or > bitwidth result 3908 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3909 } 3910 case ISD::INSERT_VECTOR_ELT: { 3911 // If we know the element index, split the demand between the 3912 // source vector and the inserted element, otherwise assume we need 3913 // the original demanded vector elements and the value. 3914 SDValue InVec = Op.getOperand(0); 3915 SDValue InVal = Op.getOperand(1); 3916 SDValue EltNo = Op.getOperand(2); 3917 bool DemandedVal = true; 3918 APInt DemandedVecElts = DemandedElts; 3919 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3920 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3921 unsigned EltIdx = CEltNo->getZExtValue(); 3922 DemandedVal = !!DemandedElts[EltIdx]; 3923 DemandedVecElts.clearBit(EltIdx); 3924 } 3925 Tmp = std::numeric_limits<unsigned>::max(); 3926 if (DemandedVal) { 3927 // TODO - handle implicit truncation of inserted elements. 3928 if (InVal.getScalarValueSizeInBits() != VTBits) 3929 break; 3930 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3931 Tmp = std::min(Tmp, Tmp2); 3932 } 3933 if (!!DemandedVecElts) { 3934 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3935 Tmp = std::min(Tmp, Tmp2); 3936 } 3937 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3938 return Tmp; 3939 } 3940 case ISD::EXTRACT_VECTOR_ELT: { 3941 SDValue InVec = Op.getOperand(0); 3942 SDValue EltNo = Op.getOperand(1); 3943 EVT VecVT = InVec.getValueType(); 3944 const unsigned BitWidth = Op.getValueSizeInBits(); 3945 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3946 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3947 3948 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3949 // anything about sign bits. But if the sizes match we can derive knowledge 3950 // about sign bits from the vector operand. 3951 if (BitWidth != EltBitWidth) 3952 break; 3953 3954 // If we know the element index, just demand that vector element, else for 3955 // an unknown element index, ignore DemandedElts and demand them all. 3956 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3957 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3958 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3959 DemandedSrcElts = 3960 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3961 3962 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3963 } 3964 case ISD::EXTRACT_SUBVECTOR: { 3965 // Offset the demanded elts by the subvector index. 3966 SDValue Src = Op.getOperand(0); 3967 uint64_t Idx = Op.getConstantOperandVal(1); 3968 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3969 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3970 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3971 } 3972 case ISD::CONCAT_VECTORS: { 3973 // Determine the minimum number of sign bits across all demanded 3974 // elts of the input vectors. Early out if the result is already 1. 3975 Tmp = std::numeric_limits<unsigned>::max(); 3976 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3977 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3978 unsigned NumSubVectors = Op.getNumOperands(); 3979 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3980 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3981 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3982 if (!DemandedSub) 3983 continue; 3984 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3985 Tmp = std::min(Tmp, Tmp2); 3986 } 3987 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3988 return Tmp; 3989 } 3990 case ISD::INSERT_SUBVECTOR: { 3991 // Demand any elements from the subvector and the remainder from the src its 3992 // inserted into. 3993 SDValue Src = Op.getOperand(0); 3994 SDValue Sub = Op.getOperand(1); 3995 uint64_t Idx = Op.getConstantOperandVal(2); 3996 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3997 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3998 APInt DemandedSrcElts = DemandedElts; 3999 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 4000 4001 Tmp = std::numeric_limits<unsigned>::max(); 4002 if (!!DemandedSubElts) { 4003 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4004 if (Tmp == 1) 4005 return 1; // early-out 4006 } 4007 if (!!DemandedSrcElts) { 4008 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4009 Tmp = std::min(Tmp, Tmp2); 4010 } 4011 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4012 return Tmp; 4013 } 4014 } 4015 4016 // If we are looking at the loaded value of the SDNode. 4017 if (Op.getResNo() == 0) { 4018 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4019 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4020 unsigned ExtType = LD->getExtensionType(); 4021 switch (ExtType) { 4022 default: break; 4023 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4024 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4025 return VTBits - Tmp + 1; 4026 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4027 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4028 return VTBits - Tmp; 4029 case ISD::NON_EXTLOAD: 4030 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4031 // We only need to handle vectors - computeKnownBits should handle 4032 // scalar cases. 4033 Type *CstTy = Cst->getType(); 4034 if (CstTy->isVectorTy() && 4035 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4036 Tmp = VTBits; 4037 for (unsigned i = 0; i != NumElts; ++i) { 4038 if (!DemandedElts[i]) 4039 continue; 4040 if (Constant *Elt = Cst->getAggregateElement(i)) { 4041 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4042 const APInt &Value = CInt->getValue(); 4043 Tmp = std::min(Tmp, Value.getNumSignBits()); 4044 continue; 4045 } 4046 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4047 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4048 Tmp = std::min(Tmp, Value.getNumSignBits()); 4049 continue; 4050 } 4051 } 4052 // Unknown type. Conservatively assume no bits match sign bit. 4053 return 1; 4054 } 4055 return Tmp; 4056 } 4057 } 4058 break; 4059 } 4060 } 4061 } 4062 4063 // Allow the target to implement this method for its nodes. 4064 if (Opcode >= ISD::BUILTIN_OP_END || 4065 Opcode == ISD::INTRINSIC_WO_CHAIN || 4066 Opcode == ISD::INTRINSIC_W_CHAIN || 4067 Opcode == ISD::INTRINSIC_VOID) { 4068 unsigned NumBits = 4069 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4070 if (NumBits > 1) 4071 FirstAnswer = std::max(FirstAnswer, NumBits); 4072 } 4073 4074 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4075 // use this information. 4076 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4077 4078 APInt Mask; 4079 if (Known.isNonNegative()) { // sign bit is 0 4080 Mask = Known.Zero; 4081 } else if (Known.isNegative()) { // sign bit is 1; 4082 Mask = Known.One; 4083 } else { 4084 // Nothing known. 4085 return FirstAnswer; 4086 } 4087 4088 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4089 // the number of identical bits in the top of the input value. 4090 Mask <<= Mask.getBitWidth()-VTBits; 4091 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4092 } 4093 4094 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4095 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4096 !isa<ConstantSDNode>(Op.getOperand(1))) 4097 return false; 4098 4099 if (Op.getOpcode() == ISD::OR && 4100 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4101 return false; 4102 4103 return true; 4104 } 4105 4106 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4107 // If we're told that NaNs won't happen, assume they won't. 4108 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4109 return true; 4110 4111 if (Depth >= MaxRecursionDepth) 4112 return false; // Limit search depth. 4113 4114 // TODO: Handle vectors. 4115 // If the value is a constant, we can obviously see if it is a NaN or not. 4116 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4117 return !C->getValueAPF().isNaN() || 4118 (SNaN && !C->getValueAPF().isSignaling()); 4119 } 4120 4121 unsigned Opcode = Op.getOpcode(); 4122 switch (Opcode) { 4123 case ISD::FADD: 4124 case ISD::FSUB: 4125 case ISD::FMUL: 4126 case ISD::FDIV: 4127 case ISD::FREM: 4128 case ISD::FSIN: 4129 case ISD::FCOS: { 4130 if (SNaN) 4131 return true; 4132 // TODO: Need isKnownNeverInfinity 4133 return false; 4134 } 4135 case ISD::FCANONICALIZE: 4136 case ISD::FEXP: 4137 case ISD::FEXP2: 4138 case ISD::FTRUNC: 4139 case ISD::FFLOOR: 4140 case ISD::FCEIL: 4141 case ISD::FROUND: 4142 case ISD::FROUNDEVEN: 4143 case ISD::FRINT: 4144 case ISD::FNEARBYINT: { 4145 if (SNaN) 4146 return true; 4147 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4148 } 4149 case ISD::FABS: 4150 case ISD::FNEG: 4151 case ISD::FCOPYSIGN: { 4152 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4153 } 4154 case ISD::SELECT: 4155 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4156 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4157 case ISD::FP_EXTEND: 4158 case ISD::FP_ROUND: { 4159 if (SNaN) 4160 return true; 4161 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4162 } 4163 case ISD::SINT_TO_FP: 4164 case ISD::UINT_TO_FP: 4165 return true; 4166 case ISD::FMA: 4167 case ISD::FMAD: { 4168 if (SNaN) 4169 return true; 4170 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4171 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4172 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4173 } 4174 case ISD::FSQRT: // Need is known positive 4175 case ISD::FLOG: 4176 case ISD::FLOG2: 4177 case ISD::FLOG10: 4178 case ISD::FPOWI: 4179 case ISD::FPOW: { 4180 if (SNaN) 4181 return true; 4182 // TODO: Refine on operand 4183 return false; 4184 } 4185 case ISD::FMINNUM: 4186 case ISD::FMAXNUM: { 4187 // Only one needs to be known not-nan, since it will be returned if the 4188 // other ends up being one. 4189 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4190 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4191 } 4192 case ISD::FMINNUM_IEEE: 4193 case ISD::FMAXNUM_IEEE: { 4194 if (SNaN) 4195 return true; 4196 // This can return a NaN if either operand is an sNaN, or if both operands 4197 // are NaN. 4198 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4199 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4200 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4201 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4202 } 4203 case ISD::FMINIMUM: 4204 case ISD::FMAXIMUM: { 4205 // TODO: Does this quiet or return the origina NaN as-is? 4206 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4207 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4208 } 4209 case ISD::EXTRACT_VECTOR_ELT: { 4210 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4211 } 4212 default: 4213 if (Opcode >= ISD::BUILTIN_OP_END || 4214 Opcode == ISD::INTRINSIC_WO_CHAIN || 4215 Opcode == ISD::INTRINSIC_W_CHAIN || 4216 Opcode == ISD::INTRINSIC_VOID) { 4217 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4218 } 4219 4220 return false; 4221 } 4222 } 4223 4224 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4225 assert(Op.getValueType().isFloatingPoint() && 4226 "Floating point type expected"); 4227 4228 // If the value is a constant, we can obviously see if it is a zero or not. 4229 // TODO: Add BuildVector support. 4230 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4231 return !C->isZero(); 4232 return false; 4233 } 4234 4235 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4236 assert(!Op.getValueType().isFloatingPoint() && 4237 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4238 4239 // If the value is a constant, we can obviously see if it is a zero or not. 4240 if (ISD::matchUnaryPredicate( 4241 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4242 return true; 4243 4244 // TODO: Recognize more cases here. 4245 switch (Op.getOpcode()) { 4246 default: break; 4247 case ISD::OR: 4248 if (isKnownNeverZero(Op.getOperand(1)) || 4249 isKnownNeverZero(Op.getOperand(0))) 4250 return true; 4251 break; 4252 } 4253 4254 return false; 4255 } 4256 4257 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4258 // Check the obvious case. 4259 if (A == B) return true; 4260 4261 // For for negative and positive zero. 4262 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4263 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4264 if (CA->isZero() && CB->isZero()) return true; 4265 4266 // Otherwise they may not be equal. 4267 return false; 4268 } 4269 4270 // FIXME: unify with llvm::haveNoCommonBitsSet. 4271 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4272 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4273 assert(A.getValueType() == B.getValueType() && 4274 "Values must have the same type"); 4275 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4276 } 4277 4278 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4279 ArrayRef<SDValue> Ops, 4280 SelectionDAG &DAG) { 4281 int NumOps = Ops.size(); 4282 assert(NumOps != 0 && "Can't build an empty vector!"); 4283 assert(!VT.isScalableVector() && 4284 "BUILD_VECTOR cannot be used with scalable types"); 4285 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4286 "Incorrect element count in BUILD_VECTOR!"); 4287 4288 // BUILD_VECTOR of UNDEFs is UNDEF. 4289 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4290 return DAG.getUNDEF(VT); 4291 4292 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4293 SDValue IdentitySrc; 4294 bool IsIdentity = true; 4295 for (int i = 0; i != NumOps; ++i) { 4296 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4297 Ops[i].getOperand(0).getValueType() != VT || 4298 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4299 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4300 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4301 IsIdentity = false; 4302 break; 4303 } 4304 IdentitySrc = Ops[i].getOperand(0); 4305 } 4306 if (IsIdentity) 4307 return IdentitySrc; 4308 4309 return SDValue(); 4310 } 4311 4312 /// Try to simplify vector concatenation to an input value, undef, or build 4313 /// vector. 4314 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4315 ArrayRef<SDValue> Ops, 4316 SelectionDAG &DAG) { 4317 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4318 assert(llvm::all_of(Ops, 4319 [Ops](SDValue Op) { 4320 return Ops[0].getValueType() == Op.getValueType(); 4321 }) && 4322 "Concatenation of vectors with inconsistent value types!"); 4323 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4324 VT.getVectorElementCount() && 4325 "Incorrect element count in vector concatenation!"); 4326 4327 if (Ops.size() == 1) 4328 return Ops[0]; 4329 4330 // Concat of UNDEFs is UNDEF. 4331 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4332 return DAG.getUNDEF(VT); 4333 4334 // Scan the operands and look for extract operations from a single source 4335 // that correspond to insertion at the same location via this concatenation: 4336 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4337 SDValue IdentitySrc; 4338 bool IsIdentity = true; 4339 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4340 SDValue Op = Ops[i]; 4341 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4342 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4343 Op.getOperand(0).getValueType() != VT || 4344 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4345 Op.getConstantOperandVal(1) != IdentityIndex) { 4346 IsIdentity = false; 4347 break; 4348 } 4349 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4350 "Unexpected identity source vector for concat of extracts"); 4351 IdentitySrc = Op.getOperand(0); 4352 } 4353 if (IsIdentity) { 4354 assert(IdentitySrc && "Failed to set source vector of extracts"); 4355 return IdentitySrc; 4356 } 4357 4358 // The code below this point is only designed to work for fixed width 4359 // vectors, so we bail out for now. 4360 if (VT.isScalableVector()) 4361 return SDValue(); 4362 4363 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4364 // simplified to one big BUILD_VECTOR. 4365 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4366 EVT SVT = VT.getScalarType(); 4367 SmallVector<SDValue, 16> Elts; 4368 for (SDValue Op : Ops) { 4369 EVT OpVT = Op.getValueType(); 4370 if (Op.isUndef()) 4371 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4372 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4373 Elts.append(Op->op_begin(), Op->op_end()); 4374 else 4375 return SDValue(); 4376 } 4377 4378 // BUILD_VECTOR requires all inputs to be of the same type, find the 4379 // maximum type and extend them all. 4380 for (SDValue Op : Elts) 4381 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4382 4383 if (SVT.bitsGT(VT.getScalarType())) 4384 for (SDValue &Op : Elts) 4385 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4386 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4387 : DAG.getSExtOrTrunc(Op, DL, SVT); 4388 4389 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4390 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4391 return V; 4392 } 4393 4394 /// Gets or creates the specified node. 4395 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4396 FoldingSetNodeID ID; 4397 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4398 void *IP = nullptr; 4399 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4400 return SDValue(E, 0); 4401 4402 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4403 getVTList(VT)); 4404 CSEMap.InsertNode(N, IP); 4405 4406 InsertNode(N); 4407 SDValue V = SDValue(N, 0); 4408 NewSDValueDbgMsg(V, "Creating new node: ", this); 4409 return V; 4410 } 4411 4412 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4413 SDValue Operand, const SDNodeFlags Flags) { 4414 // Constant fold unary operations with an integer constant operand. Even 4415 // opaque constant will be folded, because the folding of unary operations 4416 // doesn't create new constants with different values. Nevertheless, the 4417 // opaque flag is preserved during folding to prevent future folding with 4418 // other constants. 4419 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4420 const APInt &Val = C->getAPIntValue(); 4421 switch (Opcode) { 4422 default: break; 4423 case ISD::SIGN_EXTEND: 4424 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4425 C->isTargetOpcode(), C->isOpaque()); 4426 case ISD::TRUNCATE: 4427 if (C->isOpaque()) 4428 break; 4429 LLVM_FALLTHROUGH; 4430 case ISD::ANY_EXTEND: 4431 case ISD::ZERO_EXTEND: 4432 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4433 C->isTargetOpcode(), C->isOpaque()); 4434 case ISD::UINT_TO_FP: 4435 case ISD::SINT_TO_FP: { 4436 APFloat apf(EVTToAPFloatSemantics(VT), 4437 APInt::getNullValue(VT.getSizeInBits())); 4438 (void)apf.convertFromAPInt(Val, 4439 Opcode==ISD::SINT_TO_FP, 4440 APFloat::rmNearestTiesToEven); 4441 return getConstantFP(apf, DL, VT); 4442 } 4443 case ISD::BITCAST: 4444 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4445 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4446 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4447 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4448 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4449 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4450 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4451 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4452 break; 4453 case ISD::ABS: 4454 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4455 C->isOpaque()); 4456 case ISD::BITREVERSE: 4457 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4458 C->isOpaque()); 4459 case ISD::BSWAP: 4460 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4461 C->isOpaque()); 4462 case ISD::CTPOP: 4463 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4464 C->isOpaque()); 4465 case ISD::CTLZ: 4466 case ISD::CTLZ_ZERO_UNDEF: 4467 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4468 C->isOpaque()); 4469 case ISD::CTTZ: 4470 case ISD::CTTZ_ZERO_UNDEF: 4471 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4472 C->isOpaque()); 4473 case ISD::FP16_TO_FP: { 4474 bool Ignored; 4475 APFloat FPV(APFloat::IEEEhalf(), 4476 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4477 4478 // This can return overflow, underflow, or inexact; we don't care. 4479 // FIXME need to be more flexible about rounding mode. 4480 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4481 APFloat::rmNearestTiesToEven, &Ignored); 4482 return getConstantFP(FPV, DL, VT); 4483 } 4484 } 4485 } 4486 4487 // Constant fold unary operations with a floating point constant operand. 4488 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4489 APFloat V = C->getValueAPF(); // make copy 4490 switch (Opcode) { 4491 case ISD::FNEG: 4492 V.changeSign(); 4493 return getConstantFP(V, DL, VT); 4494 case ISD::FABS: 4495 V.clearSign(); 4496 return getConstantFP(V, DL, VT); 4497 case ISD::FCEIL: { 4498 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4499 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4500 return getConstantFP(V, DL, VT); 4501 break; 4502 } 4503 case ISD::FTRUNC: { 4504 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4505 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4506 return getConstantFP(V, DL, VT); 4507 break; 4508 } 4509 case ISD::FFLOOR: { 4510 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4511 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4512 return getConstantFP(V, DL, VT); 4513 break; 4514 } 4515 case ISD::FP_EXTEND: { 4516 bool ignored; 4517 // This can return overflow, underflow, or inexact; we don't care. 4518 // FIXME need to be more flexible about rounding mode. 4519 (void)V.convert(EVTToAPFloatSemantics(VT), 4520 APFloat::rmNearestTiesToEven, &ignored); 4521 return getConstantFP(V, DL, VT); 4522 } 4523 case ISD::FP_TO_SINT: 4524 case ISD::FP_TO_UINT: { 4525 bool ignored; 4526 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4527 // FIXME need to be more flexible about rounding mode. 4528 APFloat::opStatus s = 4529 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4530 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4531 break; 4532 return getConstant(IntVal, DL, VT); 4533 } 4534 case ISD::BITCAST: 4535 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4536 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4537 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4538 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4539 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4540 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4541 break; 4542 case ISD::FP_TO_FP16: { 4543 bool Ignored; 4544 // This can return overflow, underflow, or inexact; we don't care. 4545 // FIXME need to be more flexible about rounding mode. 4546 (void)V.convert(APFloat::IEEEhalf(), 4547 APFloat::rmNearestTiesToEven, &Ignored); 4548 return getConstant(V.bitcastToAPInt(), DL, VT); 4549 } 4550 } 4551 } 4552 4553 // Constant fold unary operations with a vector integer or float operand. 4554 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4555 if (BV->isConstant()) { 4556 switch (Opcode) { 4557 default: 4558 // FIXME: Entirely reasonable to perform folding of other unary 4559 // operations here as the need arises. 4560 break; 4561 case ISD::FNEG: 4562 case ISD::FABS: 4563 case ISD::FCEIL: 4564 case ISD::FTRUNC: 4565 case ISD::FFLOOR: 4566 case ISD::FP_EXTEND: 4567 case ISD::FP_TO_SINT: 4568 case ISD::FP_TO_UINT: 4569 case ISD::TRUNCATE: 4570 case ISD::ANY_EXTEND: 4571 case ISD::ZERO_EXTEND: 4572 case ISD::SIGN_EXTEND: 4573 case ISD::UINT_TO_FP: 4574 case ISD::SINT_TO_FP: 4575 case ISD::ABS: 4576 case ISD::BITREVERSE: 4577 case ISD::BSWAP: 4578 case ISD::CTLZ: 4579 case ISD::CTLZ_ZERO_UNDEF: 4580 case ISD::CTTZ: 4581 case ISD::CTTZ_ZERO_UNDEF: 4582 case ISD::CTPOP: { 4583 SDValue Ops = { Operand }; 4584 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4585 return Fold; 4586 } 4587 } 4588 } 4589 } 4590 4591 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4592 switch (Opcode) { 4593 case ISD::FREEZE: 4594 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4595 break; 4596 case ISD::TokenFactor: 4597 case ISD::MERGE_VALUES: 4598 case ISD::CONCAT_VECTORS: 4599 return Operand; // Factor, merge or concat of one node? No need. 4600 case ISD::BUILD_VECTOR: { 4601 // Attempt to simplify BUILD_VECTOR. 4602 SDValue Ops[] = {Operand}; 4603 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4604 return V; 4605 break; 4606 } 4607 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4608 case ISD::FP_EXTEND: 4609 assert(VT.isFloatingPoint() && 4610 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4611 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4612 assert((!VT.isVector() || 4613 VT.getVectorNumElements() == 4614 Operand.getValueType().getVectorNumElements()) && 4615 "Vector element count mismatch!"); 4616 assert(Operand.getValueType().bitsLT(VT) && 4617 "Invalid fpext node, dst < src!"); 4618 if (Operand.isUndef()) 4619 return getUNDEF(VT); 4620 break; 4621 case ISD::FP_TO_SINT: 4622 case ISD::FP_TO_UINT: 4623 if (Operand.isUndef()) 4624 return getUNDEF(VT); 4625 break; 4626 case ISD::SINT_TO_FP: 4627 case ISD::UINT_TO_FP: 4628 // [us]itofp(undef) = 0, because the result value is bounded. 4629 if (Operand.isUndef()) 4630 return getConstantFP(0.0, DL, VT); 4631 break; 4632 case ISD::SIGN_EXTEND: 4633 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4634 "Invalid SIGN_EXTEND!"); 4635 assert(VT.isVector() == Operand.getValueType().isVector() && 4636 "SIGN_EXTEND result type type should be vector iff the operand " 4637 "type is vector!"); 4638 if (Operand.getValueType() == VT) return Operand; // noop extension 4639 assert((!VT.isVector() || 4640 VT.getVectorElementCount() == 4641 Operand.getValueType().getVectorElementCount()) && 4642 "Vector element count mismatch!"); 4643 assert(Operand.getValueType().bitsLT(VT) && 4644 "Invalid sext node, dst < src!"); 4645 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4646 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4647 else if (OpOpcode == ISD::UNDEF) 4648 // sext(undef) = 0, because the top bits will all be the same. 4649 return getConstant(0, DL, VT); 4650 break; 4651 case ISD::ZERO_EXTEND: 4652 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4653 "Invalid ZERO_EXTEND!"); 4654 assert(VT.isVector() == Operand.getValueType().isVector() && 4655 "ZERO_EXTEND result type type should be vector iff the operand " 4656 "type is vector!"); 4657 if (Operand.getValueType() == VT) return Operand; // noop extension 4658 assert((!VT.isVector() || 4659 VT.getVectorElementCount() == 4660 Operand.getValueType().getVectorElementCount()) && 4661 "Vector element count mismatch!"); 4662 assert(Operand.getValueType().bitsLT(VT) && 4663 "Invalid zext node, dst < src!"); 4664 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4665 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4666 else if (OpOpcode == ISD::UNDEF) 4667 // zext(undef) = 0, because the top bits will be zero. 4668 return getConstant(0, DL, VT); 4669 break; 4670 case ISD::ANY_EXTEND: 4671 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4672 "Invalid ANY_EXTEND!"); 4673 assert(VT.isVector() == Operand.getValueType().isVector() && 4674 "ANY_EXTEND result type type should be vector iff the operand " 4675 "type is vector!"); 4676 if (Operand.getValueType() == VT) return Operand; // noop extension 4677 assert((!VT.isVector() || 4678 VT.getVectorElementCount() == 4679 Operand.getValueType().getVectorElementCount()) && 4680 "Vector element count mismatch!"); 4681 assert(Operand.getValueType().bitsLT(VT) && 4682 "Invalid anyext node, dst < src!"); 4683 4684 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4685 OpOpcode == ISD::ANY_EXTEND) 4686 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4687 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4688 else if (OpOpcode == ISD::UNDEF) 4689 return getUNDEF(VT); 4690 4691 // (ext (trunc x)) -> x 4692 if (OpOpcode == ISD::TRUNCATE) { 4693 SDValue OpOp = Operand.getOperand(0); 4694 if (OpOp.getValueType() == VT) { 4695 transferDbgValues(Operand, OpOp); 4696 return OpOp; 4697 } 4698 } 4699 break; 4700 case ISD::TRUNCATE: 4701 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4702 "Invalid TRUNCATE!"); 4703 assert(VT.isVector() == Operand.getValueType().isVector() && 4704 "TRUNCATE result type type should be vector iff the operand " 4705 "type is vector!"); 4706 if (Operand.getValueType() == VT) return Operand; // noop truncate 4707 assert((!VT.isVector() || 4708 VT.getVectorElementCount() == 4709 Operand.getValueType().getVectorElementCount()) && 4710 "Vector element count mismatch!"); 4711 assert(Operand.getValueType().bitsGT(VT) && 4712 "Invalid truncate node, src < dst!"); 4713 if (OpOpcode == ISD::TRUNCATE) 4714 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4715 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4716 OpOpcode == ISD::ANY_EXTEND) { 4717 // If the source is smaller than the dest, we still need an extend. 4718 if (Operand.getOperand(0).getValueType().getScalarType() 4719 .bitsLT(VT.getScalarType())) 4720 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4721 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4722 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4723 return Operand.getOperand(0); 4724 } 4725 if (OpOpcode == ISD::UNDEF) 4726 return getUNDEF(VT); 4727 break; 4728 case ISD::ANY_EXTEND_VECTOR_INREG: 4729 case ISD::ZERO_EXTEND_VECTOR_INREG: 4730 case ISD::SIGN_EXTEND_VECTOR_INREG: 4731 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4732 assert(Operand.getValueType().bitsLE(VT) && 4733 "The input must be the same size or smaller than the result."); 4734 assert(VT.getVectorNumElements() < 4735 Operand.getValueType().getVectorNumElements() && 4736 "The destination vector type must have fewer lanes than the input."); 4737 break; 4738 case ISD::ABS: 4739 assert(VT.isInteger() && VT == Operand.getValueType() && 4740 "Invalid ABS!"); 4741 if (OpOpcode == ISD::UNDEF) 4742 return getUNDEF(VT); 4743 break; 4744 case ISD::BSWAP: 4745 assert(VT.isInteger() && VT == Operand.getValueType() && 4746 "Invalid BSWAP!"); 4747 assert((VT.getScalarSizeInBits() % 16 == 0) && 4748 "BSWAP types must be a multiple of 16 bits!"); 4749 if (OpOpcode == ISD::UNDEF) 4750 return getUNDEF(VT); 4751 break; 4752 case ISD::BITREVERSE: 4753 assert(VT.isInteger() && VT == Operand.getValueType() && 4754 "Invalid BITREVERSE!"); 4755 if (OpOpcode == ISD::UNDEF) 4756 return getUNDEF(VT); 4757 break; 4758 case ISD::BITCAST: 4759 // Basic sanity checking. 4760 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4761 "Cannot BITCAST between types of different sizes!"); 4762 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4763 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4764 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4765 if (OpOpcode == ISD::UNDEF) 4766 return getUNDEF(VT); 4767 break; 4768 case ISD::SCALAR_TO_VECTOR: 4769 assert(VT.isVector() && !Operand.getValueType().isVector() && 4770 (VT.getVectorElementType() == Operand.getValueType() || 4771 (VT.getVectorElementType().isInteger() && 4772 Operand.getValueType().isInteger() && 4773 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4774 "Illegal SCALAR_TO_VECTOR node!"); 4775 if (OpOpcode == ISD::UNDEF) 4776 return getUNDEF(VT); 4777 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4778 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4779 isa<ConstantSDNode>(Operand.getOperand(1)) && 4780 Operand.getConstantOperandVal(1) == 0 && 4781 Operand.getOperand(0).getValueType() == VT) 4782 return Operand.getOperand(0); 4783 break; 4784 case ISD::FNEG: 4785 // Negation of an unknown bag of bits is still completely undefined. 4786 if (OpOpcode == ISD::UNDEF) 4787 return getUNDEF(VT); 4788 4789 if (OpOpcode == ISD::FNEG) // --X -> X 4790 return Operand.getOperand(0); 4791 break; 4792 case ISD::FABS: 4793 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4794 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4795 break; 4796 } 4797 4798 SDNode *N; 4799 SDVTList VTs = getVTList(VT); 4800 SDValue Ops[] = {Operand}; 4801 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4802 FoldingSetNodeID ID; 4803 AddNodeIDNode(ID, Opcode, VTs, Ops); 4804 void *IP = nullptr; 4805 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4806 E->intersectFlagsWith(Flags); 4807 return SDValue(E, 0); 4808 } 4809 4810 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4811 N->setFlags(Flags); 4812 createOperands(N, Ops); 4813 CSEMap.InsertNode(N, IP); 4814 } else { 4815 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4816 createOperands(N, Ops); 4817 } 4818 4819 InsertNode(N); 4820 SDValue V = SDValue(N, 0); 4821 NewSDValueDbgMsg(V, "Creating new node: ", this); 4822 return V; 4823 } 4824 4825 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4826 const APInt &C2) { 4827 switch (Opcode) { 4828 case ISD::ADD: return C1 + C2; 4829 case ISD::SUB: return C1 - C2; 4830 case ISD::MUL: return C1 * C2; 4831 case ISD::AND: return C1 & C2; 4832 case ISD::OR: return C1 | C2; 4833 case ISD::XOR: return C1 ^ C2; 4834 case ISD::SHL: return C1 << C2; 4835 case ISD::SRL: return C1.lshr(C2); 4836 case ISD::SRA: return C1.ashr(C2); 4837 case ISD::ROTL: return C1.rotl(C2); 4838 case ISD::ROTR: return C1.rotr(C2); 4839 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4840 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4841 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4842 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4843 case ISD::SADDSAT: return C1.sadd_sat(C2); 4844 case ISD::UADDSAT: return C1.uadd_sat(C2); 4845 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4846 case ISD::USUBSAT: return C1.usub_sat(C2); 4847 case ISD::UDIV: 4848 if (!C2.getBoolValue()) 4849 break; 4850 return C1.udiv(C2); 4851 case ISD::UREM: 4852 if (!C2.getBoolValue()) 4853 break; 4854 return C1.urem(C2); 4855 case ISD::SDIV: 4856 if (!C2.getBoolValue()) 4857 break; 4858 return C1.sdiv(C2); 4859 case ISD::SREM: 4860 if (!C2.getBoolValue()) 4861 break; 4862 return C1.srem(C2); 4863 } 4864 return llvm::None; 4865 } 4866 4867 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4868 const GlobalAddressSDNode *GA, 4869 const SDNode *N2) { 4870 if (GA->getOpcode() != ISD::GlobalAddress) 4871 return SDValue(); 4872 if (!TLI->isOffsetFoldingLegal(GA)) 4873 return SDValue(); 4874 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4875 if (!C2) 4876 return SDValue(); 4877 int64_t Offset = C2->getSExtValue(); 4878 switch (Opcode) { 4879 case ISD::ADD: break; 4880 case ISD::SUB: Offset = -uint64_t(Offset); break; 4881 default: return SDValue(); 4882 } 4883 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4884 GA->getOffset() + uint64_t(Offset)); 4885 } 4886 4887 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4888 switch (Opcode) { 4889 case ISD::SDIV: 4890 case ISD::UDIV: 4891 case ISD::SREM: 4892 case ISD::UREM: { 4893 // If a divisor is zero/undef or any element of a divisor vector is 4894 // zero/undef, the whole op is undef. 4895 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4896 SDValue Divisor = Ops[1]; 4897 if (Divisor.isUndef() || isNullConstant(Divisor)) 4898 return true; 4899 4900 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4901 llvm::any_of(Divisor->op_values(), 4902 [](SDValue V) { return V.isUndef() || 4903 isNullConstant(V); }); 4904 // TODO: Handle signed overflow. 4905 } 4906 // TODO: Handle oversized shifts. 4907 default: 4908 return false; 4909 } 4910 } 4911 4912 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4913 EVT VT, ArrayRef<SDValue> Ops) { 4914 // If the opcode is a target-specific ISD node, there's nothing we can 4915 // do here and the operand rules may not line up with the below, so 4916 // bail early. 4917 if (Opcode >= ISD::BUILTIN_OP_END) 4918 return SDValue(); 4919 4920 // For now, the array Ops should only contain two values. 4921 // This enforcement will be removed once this function is merged with 4922 // FoldConstantVectorArithmetic 4923 if (Ops.size() != 2) 4924 return SDValue(); 4925 4926 if (isUndef(Opcode, Ops)) 4927 return getUNDEF(VT); 4928 4929 SDNode *N1 = Ops[0].getNode(); 4930 SDNode *N2 = Ops[1].getNode(); 4931 4932 // Handle the case of two scalars. 4933 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4934 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4935 if (C1->isOpaque() || C2->isOpaque()) 4936 return SDValue(); 4937 4938 Optional<APInt> FoldAttempt = 4939 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4940 if (!FoldAttempt) 4941 return SDValue(); 4942 4943 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4944 assert((!Folded || !VT.isVector()) && 4945 "Can't fold vectors ops with scalar operands"); 4946 return Folded; 4947 } 4948 } 4949 4950 // fold (add Sym, c) -> Sym+c 4951 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4952 return FoldSymbolOffset(Opcode, VT, GA, N2); 4953 if (TLI->isCommutativeBinOp(Opcode)) 4954 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4955 return FoldSymbolOffset(Opcode, VT, GA, N1); 4956 4957 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4958 // vector width, however we should be able to do constant folds involving 4959 // splat vector nodes too. 4960 if (VT.isScalableVector()) 4961 return SDValue(); 4962 4963 // For fixed width vectors, extract each constant element and fold them 4964 // individually. Either input may be an undef value. 4965 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4966 if (!BV1 && !N1->isUndef()) 4967 return SDValue(); 4968 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4969 if (!BV2 && !N2->isUndef()) 4970 return SDValue(); 4971 // If both operands are undef, that's handled the same way as scalars. 4972 if (!BV1 && !BV2) 4973 return SDValue(); 4974 4975 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4976 "Vector binop with different number of elements in operands?"); 4977 4978 EVT SVT = VT.getScalarType(); 4979 EVT LegalSVT = SVT; 4980 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4981 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4982 if (LegalSVT.bitsLT(SVT)) 4983 return SDValue(); 4984 } 4985 SmallVector<SDValue, 4> Outputs; 4986 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4987 for (unsigned I = 0; I != NumOps; ++I) { 4988 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4989 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4990 if (SVT.isInteger()) { 4991 if (V1->getValueType(0).bitsGT(SVT)) 4992 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4993 if (V2->getValueType(0).bitsGT(SVT)) 4994 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4995 } 4996 4997 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4998 return SDValue(); 4999 5000 // Fold one vector element. 5001 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5002 if (LegalSVT != SVT) 5003 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5004 5005 // Scalar folding only succeeded if the result is a constant or UNDEF. 5006 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5007 ScalarResult.getOpcode() != ISD::ConstantFP) 5008 return SDValue(); 5009 Outputs.push_back(ScalarResult); 5010 } 5011 5012 assert(VT.getVectorNumElements() == Outputs.size() && 5013 "Vector size mismatch!"); 5014 5015 // We may have a vector type but a scalar result. Create a splat. 5016 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 5017 5018 // Build a big vector out of the scalar elements we generated. 5019 return getBuildVector(VT, SDLoc(), Outputs); 5020 } 5021 5022 // TODO: Merge with FoldConstantArithmetic 5023 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5024 const SDLoc &DL, EVT VT, 5025 ArrayRef<SDValue> Ops, 5026 const SDNodeFlags Flags) { 5027 // If the opcode is a target-specific ISD node, there's nothing we can 5028 // do here and the operand rules may not line up with the below, so 5029 // bail early. 5030 if (Opcode >= ISD::BUILTIN_OP_END) 5031 return SDValue(); 5032 5033 if (isUndef(Opcode, Ops)) 5034 return getUNDEF(VT); 5035 5036 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5037 if (!VT.isVector()) 5038 return SDValue(); 5039 5040 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5041 // vector width, however we should be able to do constant folds involving 5042 // splat vector nodes too. 5043 if (VT.isScalableVector()) 5044 return SDValue(); 5045 5046 // From this point onwards all vectors are assumed to be fixed width. 5047 unsigned NumElts = VT.getVectorNumElements(); 5048 5049 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5050 return !Op.getValueType().isVector() || 5051 Op.getValueType().getVectorNumElements() == NumElts; 5052 }; 5053 5054 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5055 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5056 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5057 (BV && BV->isConstant()); 5058 }; 5059 5060 // All operands must be vector types with the same number of elements as 5061 // the result type and must be either UNDEF or a build vector of constant 5062 // or UNDEF scalars. 5063 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5064 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5065 return SDValue(); 5066 5067 // If we are comparing vectors, then the result needs to be a i1 boolean 5068 // that is then sign-extended back to the legal result type. 5069 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5070 5071 // Find legal integer scalar type for constant promotion and 5072 // ensure that its scalar size is at least as large as source. 5073 EVT LegalSVT = VT.getScalarType(); 5074 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5075 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5076 if (LegalSVT.bitsLT(VT.getScalarType())) 5077 return SDValue(); 5078 } 5079 5080 // Constant fold each scalar lane separately. 5081 SmallVector<SDValue, 4> ScalarResults; 5082 for (unsigned i = 0; i != NumElts; i++) { 5083 SmallVector<SDValue, 4> ScalarOps; 5084 for (SDValue Op : Ops) { 5085 EVT InSVT = Op.getValueType().getScalarType(); 5086 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5087 if (!InBV) { 5088 // We've checked that this is UNDEF or a constant of some kind. 5089 if (Op.isUndef()) 5090 ScalarOps.push_back(getUNDEF(InSVT)); 5091 else 5092 ScalarOps.push_back(Op); 5093 continue; 5094 } 5095 5096 SDValue ScalarOp = InBV->getOperand(i); 5097 EVT ScalarVT = ScalarOp.getValueType(); 5098 5099 // Build vector (integer) scalar operands may need implicit 5100 // truncation - do this before constant folding. 5101 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5102 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5103 5104 ScalarOps.push_back(ScalarOp); 5105 } 5106 5107 // Constant fold the scalar operands. 5108 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5109 5110 // Legalize the (integer) scalar constant if necessary. 5111 if (LegalSVT != SVT) 5112 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5113 5114 // Scalar folding only succeeded if the result is a constant or UNDEF. 5115 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5116 ScalarResult.getOpcode() != ISD::ConstantFP) 5117 return SDValue(); 5118 ScalarResults.push_back(ScalarResult); 5119 } 5120 5121 SDValue V = getBuildVector(VT, DL, ScalarResults); 5122 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5123 return V; 5124 } 5125 5126 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5127 EVT VT, SDValue N1, SDValue N2) { 5128 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5129 // should. That will require dealing with a potentially non-default 5130 // rounding mode, checking the "opStatus" return value from the APFloat 5131 // math calculations, and possibly other variations. 5132 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5133 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5134 if (N1CFP && N2CFP) { 5135 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5136 switch (Opcode) { 5137 case ISD::FADD: 5138 C1.add(C2, APFloat::rmNearestTiesToEven); 5139 return getConstantFP(C1, DL, VT); 5140 case ISD::FSUB: 5141 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5142 return getConstantFP(C1, DL, VT); 5143 case ISD::FMUL: 5144 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5145 return getConstantFP(C1, DL, VT); 5146 case ISD::FDIV: 5147 C1.divide(C2, APFloat::rmNearestTiesToEven); 5148 return getConstantFP(C1, DL, VT); 5149 case ISD::FREM: 5150 C1.mod(C2); 5151 return getConstantFP(C1, DL, VT); 5152 case ISD::FCOPYSIGN: 5153 C1.copySign(C2); 5154 return getConstantFP(C1, DL, VT); 5155 default: break; 5156 } 5157 } 5158 if (N1CFP && Opcode == ISD::FP_ROUND) { 5159 APFloat C1 = N1CFP->getValueAPF(); // make copy 5160 bool Unused; 5161 // This can return overflow, underflow, or inexact; we don't care. 5162 // FIXME need to be more flexible about rounding mode. 5163 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5164 &Unused); 5165 return getConstantFP(C1, DL, VT); 5166 } 5167 5168 switch (Opcode) { 5169 case ISD::FSUB: 5170 // -0.0 - undef --> undef (consistent with "fneg undef") 5171 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5172 return getUNDEF(VT); 5173 LLVM_FALLTHROUGH; 5174 5175 case ISD::FADD: 5176 case ISD::FMUL: 5177 case ISD::FDIV: 5178 case ISD::FREM: 5179 // If both operands are undef, the result is undef. If 1 operand is undef, 5180 // the result is NaN. This should match the behavior of the IR optimizer. 5181 if (N1.isUndef() && N2.isUndef()) 5182 return getUNDEF(VT); 5183 if (N1.isUndef() || N2.isUndef()) 5184 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5185 } 5186 return SDValue(); 5187 } 5188 5189 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5190 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5191 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5192 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5193 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5194 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5195 5196 // Canonicalize constant to RHS if commutative. 5197 if (TLI->isCommutativeBinOp(Opcode)) { 5198 if (N1C && !N2C) { 5199 std::swap(N1C, N2C); 5200 std::swap(N1, N2); 5201 } else if (N1CFP && !N2CFP) { 5202 std::swap(N1CFP, N2CFP); 5203 std::swap(N1, N2); 5204 } 5205 } 5206 5207 switch (Opcode) { 5208 default: break; 5209 case ISD::TokenFactor: 5210 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5211 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5212 // Fold trivial token factors. 5213 if (N1.getOpcode() == ISD::EntryToken) return N2; 5214 if (N2.getOpcode() == ISD::EntryToken) return N1; 5215 if (N1 == N2) return N1; 5216 break; 5217 case ISD::BUILD_VECTOR: { 5218 // Attempt to simplify BUILD_VECTOR. 5219 SDValue Ops[] = {N1, N2}; 5220 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5221 return V; 5222 break; 5223 } 5224 case ISD::CONCAT_VECTORS: { 5225 SDValue Ops[] = {N1, N2}; 5226 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5227 return V; 5228 break; 5229 } 5230 case ISD::AND: 5231 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5232 assert(N1.getValueType() == N2.getValueType() && 5233 N1.getValueType() == VT && "Binary operator types must match!"); 5234 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5235 // worth handling here. 5236 if (N2C && N2C->isNullValue()) 5237 return N2; 5238 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5239 return N1; 5240 break; 5241 case ISD::OR: 5242 case ISD::XOR: 5243 case ISD::ADD: 5244 case ISD::SUB: 5245 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5246 assert(N1.getValueType() == N2.getValueType() && 5247 N1.getValueType() == VT && "Binary operator types must match!"); 5248 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5249 // it's worth handling here. 5250 if (N2C && N2C->isNullValue()) 5251 return N1; 5252 break; 5253 case ISD::MUL: 5254 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5255 assert(N1.getValueType() == N2.getValueType() && 5256 N1.getValueType() == VT && "Binary operator types must match!"); 5257 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5258 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5259 APInt N2CImm = N2C->getAPIntValue(); 5260 return getVScale(DL, VT, MulImm * N2CImm); 5261 } 5262 break; 5263 case ISD::UDIV: 5264 case ISD::UREM: 5265 case ISD::MULHU: 5266 case ISD::MULHS: 5267 case ISD::SDIV: 5268 case ISD::SREM: 5269 case ISD::SMIN: 5270 case ISD::SMAX: 5271 case ISD::UMIN: 5272 case ISD::UMAX: 5273 case ISD::SADDSAT: 5274 case ISD::SSUBSAT: 5275 case ISD::UADDSAT: 5276 case ISD::USUBSAT: 5277 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5278 assert(N1.getValueType() == N2.getValueType() && 5279 N1.getValueType() == VT && "Binary operator types must match!"); 5280 break; 5281 case ISD::FADD: 5282 case ISD::FSUB: 5283 case ISD::FMUL: 5284 case ISD::FDIV: 5285 case ISD::FREM: 5286 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5287 assert(N1.getValueType() == N2.getValueType() && 5288 N1.getValueType() == VT && "Binary operator types must match!"); 5289 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5290 return V; 5291 break; 5292 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5293 assert(N1.getValueType() == VT && 5294 N1.getValueType().isFloatingPoint() && 5295 N2.getValueType().isFloatingPoint() && 5296 "Invalid FCOPYSIGN!"); 5297 break; 5298 case ISD::SHL: 5299 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5300 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5301 APInt ShiftImm = N2C->getAPIntValue(); 5302 return getVScale(DL, VT, MulImm << ShiftImm); 5303 } 5304 LLVM_FALLTHROUGH; 5305 case ISD::SRA: 5306 case ISD::SRL: 5307 if (SDValue V = simplifyShift(N1, N2)) 5308 return V; 5309 LLVM_FALLTHROUGH; 5310 case ISD::ROTL: 5311 case ISD::ROTR: 5312 assert(VT == N1.getValueType() && 5313 "Shift operators return type must be the same as their first arg"); 5314 assert(VT.isInteger() && N2.getValueType().isInteger() && 5315 "Shifts only work on integers"); 5316 assert((!VT.isVector() || VT == N2.getValueType()) && 5317 "Vector shift amounts must be in the same as their first arg"); 5318 // Verify that the shift amount VT is big enough to hold valid shift 5319 // amounts. This catches things like trying to shift an i1024 value by an 5320 // i8, which is easy to fall into in generic code that uses 5321 // TLI.getShiftAmount(). 5322 assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >= 5323 Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) && 5324 "Invalid use of small shift amount with oversized value!"); 5325 5326 // Always fold shifts of i1 values so the code generator doesn't need to 5327 // handle them. Since we know the size of the shift has to be less than the 5328 // size of the value, the shift/rotate count is guaranteed to be zero. 5329 if (VT == MVT::i1) 5330 return N1; 5331 if (N2C && N2C->isNullValue()) 5332 return N1; 5333 break; 5334 case ISD::FP_ROUND: 5335 assert(VT.isFloatingPoint() && 5336 N1.getValueType().isFloatingPoint() && 5337 VT.bitsLE(N1.getValueType()) && 5338 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5339 "Invalid FP_ROUND!"); 5340 if (N1.getValueType() == VT) return N1; // noop conversion. 5341 break; 5342 case ISD::AssertSext: 5343 case ISD::AssertZext: { 5344 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5345 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5346 assert(VT.isInteger() && EVT.isInteger() && 5347 "Cannot *_EXTEND_INREG FP types"); 5348 assert(!EVT.isVector() && 5349 "AssertSExt/AssertZExt type should be the vector element type " 5350 "rather than the vector type!"); 5351 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5352 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5353 break; 5354 } 5355 case ISD::SIGN_EXTEND_INREG: { 5356 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5357 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5358 assert(VT.isInteger() && EVT.isInteger() && 5359 "Cannot *_EXTEND_INREG FP types"); 5360 assert(EVT.isVector() == VT.isVector() && 5361 "SIGN_EXTEND_INREG type should be vector iff the operand " 5362 "type is vector!"); 5363 assert((!EVT.isVector() || 5364 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5365 "Vector element counts must match in SIGN_EXTEND_INREG"); 5366 assert(EVT.bitsLE(VT) && "Not extending!"); 5367 if (EVT == VT) return N1; // Not actually extending 5368 5369 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5370 unsigned FromBits = EVT.getScalarSizeInBits(); 5371 Val <<= Val.getBitWidth() - FromBits; 5372 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5373 return getConstant(Val, DL, ConstantVT); 5374 }; 5375 5376 if (N1C) { 5377 const APInt &Val = N1C->getAPIntValue(); 5378 return SignExtendInReg(Val, VT); 5379 } 5380 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5381 SmallVector<SDValue, 8> Ops; 5382 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5383 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5384 SDValue Op = N1.getOperand(i); 5385 if (Op.isUndef()) { 5386 Ops.push_back(getUNDEF(OpVT)); 5387 continue; 5388 } 5389 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5390 APInt Val = C->getAPIntValue(); 5391 Ops.push_back(SignExtendInReg(Val, OpVT)); 5392 } 5393 return getBuildVector(VT, DL, Ops); 5394 } 5395 break; 5396 } 5397 case ISD::EXTRACT_VECTOR_ELT: 5398 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5399 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5400 element type of the vector."); 5401 5402 // Extract from an undefined value or using an undefined index is undefined. 5403 if (N1.isUndef() || N2.isUndef()) 5404 return getUNDEF(VT); 5405 5406 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5407 // vectors. For scalable vectors we will provide appropriate support for 5408 // dealing with arbitrary indices. 5409 if (N2C && N1.getValueType().isFixedLengthVector() && 5410 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5411 return getUNDEF(VT); 5412 5413 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5414 // expanding copies of large vectors from registers. This only works for 5415 // fixed length vectors, since we need to know the exact number of 5416 // elements. 5417 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5418 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5419 unsigned Factor = 5420 N1.getOperand(0).getValueType().getVectorNumElements(); 5421 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5422 N1.getOperand(N2C->getZExtValue() / Factor), 5423 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5424 } 5425 5426 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5427 // lowering is expanding large vector constants. 5428 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5429 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5430 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5431 N1.getValueType().isFixedLengthVector()) && 5432 "BUILD_VECTOR used for scalable vectors"); 5433 unsigned Index = 5434 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5435 SDValue Elt = N1.getOperand(Index); 5436 5437 if (VT != Elt.getValueType()) 5438 // If the vector element type is not legal, the BUILD_VECTOR operands 5439 // are promoted and implicitly truncated, and the result implicitly 5440 // extended. Make that explicit here. 5441 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5442 5443 return Elt; 5444 } 5445 5446 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5447 // operations are lowered to scalars. 5448 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5449 // If the indices are the same, return the inserted element else 5450 // if the indices are known different, extract the element from 5451 // the original vector. 5452 SDValue N1Op2 = N1.getOperand(2); 5453 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5454 5455 if (N1Op2C && N2C) { 5456 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5457 if (VT == N1.getOperand(1).getValueType()) 5458 return N1.getOperand(1); 5459 else 5460 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5461 } 5462 5463 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5464 } 5465 } 5466 5467 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5468 // when vector types are scalarized and v1iX is legal. 5469 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5470 // Here we are completely ignoring the extract element index (N2), 5471 // which is fine for fixed width vectors, since any index other than 0 5472 // is undefined anyway. However, this cannot be ignored for scalable 5473 // vectors - in theory we could support this, but we don't want to do this 5474 // without a profitability check. 5475 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5476 N1.getValueType().isFixedLengthVector() && 5477 N1.getValueType().getVectorNumElements() == 1) { 5478 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5479 N1.getOperand(1)); 5480 } 5481 break; 5482 case ISD::EXTRACT_ELEMENT: 5483 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5484 assert(!N1.getValueType().isVector() && !VT.isVector() && 5485 (N1.getValueType().isInteger() == VT.isInteger()) && 5486 N1.getValueType() != VT && 5487 "Wrong types for EXTRACT_ELEMENT!"); 5488 5489 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5490 // 64-bit integers into 32-bit parts. Instead of building the extract of 5491 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5492 if (N1.getOpcode() == ISD::BUILD_PAIR) 5493 return N1.getOperand(N2C->getZExtValue()); 5494 5495 // EXTRACT_ELEMENT of a constant int is also very common. 5496 if (N1C) { 5497 unsigned ElementSize = VT.getSizeInBits(); 5498 unsigned Shift = ElementSize * N2C->getZExtValue(); 5499 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5500 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5501 } 5502 break; 5503 case ISD::EXTRACT_SUBVECTOR: 5504 EVT N1VT = N1.getValueType(); 5505 assert(VT.isVector() && N1VT.isVector() && 5506 "Extract subvector VTs must be vectors!"); 5507 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5508 "Extract subvector VTs must have the same element type!"); 5509 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5510 "Cannot extract a scalable vector from a fixed length vector!"); 5511 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5512 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5513 "Extract subvector must be from larger vector to smaller vector!"); 5514 assert(N2C && "Extract subvector index must be a constant"); 5515 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5516 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5517 N1VT.getVectorMinNumElements()) && 5518 "Extract subvector overflow!"); 5519 5520 // Trivial extraction. 5521 if (VT == N1VT) 5522 return N1; 5523 5524 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5525 if (N1.isUndef()) 5526 return getUNDEF(VT); 5527 5528 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5529 // the concat have the same type as the extract. 5530 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5531 N1.getNumOperands() > 0 && VT == N1.getOperand(0).getValueType()) { 5532 unsigned Factor = VT.getVectorNumElements(); 5533 return N1.getOperand(N2C->getZExtValue() / Factor); 5534 } 5535 5536 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5537 // during shuffle legalization. 5538 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5539 VT == N1.getOperand(1).getValueType()) 5540 return N1.getOperand(1); 5541 break; 5542 } 5543 5544 // Perform trivial constant folding. 5545 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5546 return SV; 5547 5548 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5549 return V; 5550 5551 // Canonicalize an UNDEF to the RHS, even over a constant. 5552 if (N1.isUndef()) { 5553 if (TLI->isCommutativeBinOp(Opcode)) { 5554 std::swap(N1, N2); 5555 } else { 5556 switch (Opcode) { 5557 case ISD::SIGN_EXTEND_INREG: 5558 case ISD::SUB: 5559 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5560 case ISD::UDIV: 5561 case ISD::SDIV: 5562 case ISD::UREM: 5563 case ISD::SREM: 5564 case ISD::SSUBSAT: 5565 case ISD::USUBSAT: 5566 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5567 } 5568 } 5569 } 5570 5571 // Fold a bunch of operators when the RHS is undef. 5572 if (N2.isUndef()) { 5573 switch (Opcode) { 5574 case ISD::XOR: 5575 if (N1.isUndef()) 5576 // Handle undef ^ undef -> 0 special case. This is a common 5577 // idiom (misuse). 5578 return getConstant(0, DL, VT); 5579 LLVM_FALLTHROUGH; 5580 case ISD::ADD: 5581 case ISD::SUB: 5582 case ISD::UDIV: 5583 case ISD::SDIV: 5584 case ISD::UREM: 5585 case ISD::SREM: 5586 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5587 case ISD::MUL: 5588 case ISD::AND: 5589 case ISD::SSUBSAT: 5590 case ISD::USUBSAT: 5591 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5592 case ISD::OR: 5593 case ISD::SADDSAT: 5594 case ISD::UADDSAT: 5595 return getAllOnesConstant(DL, VT); 5596 } 5597 } 5598 5599 // Memoize this node if possible. 5600 SDNode *N; 5601 SDVTList VTs = getVTList(VT); 5602 SDValue Ops[] = {N1, N2}; 5603 if (VT != MVT::Glue) { 5604 FoldingSetNodeID ID; 5605 AddNodeIDNode(ID, Opcode, VTs, Ops); 5606 void *IP = nullptr; 5607 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5608 E->intersectFlagsWith(Flags); 5609 return SDValue(E, 0); 5610 } 5611 5612 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5613 N->setFlags(Flags); 5614 createOperands(N, Ops); 5615 CSEMap.InsertNode(N, IP); 5616 } else { 5617 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5618 createOperands(N, Ops); 5619 } 5620 5621 InsertNode(N); 5622 SDValue V = SDValue(N, 0); 5623 NewSDValueDbgMsg(V, "Creating new node: ", this); 5624 return V; 5625 } 5626 5627 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5628 SDValue N1, SDValue N2, SDValue N3, 5629 const SDNodeFlags Flags) { 5630 // Perform various simplifications. 5631 switch (Opcode) { 5632 case ISD::FMA: { 5633 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5634 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5635 N3.getValueType() == VT && "FMA types must match!"); 5636 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5637 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5638 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5639 if (N1CFP && N2CFP && N3CFP) { 5640 APFloat V1 = N1CFP->getValueAPF(); 5641 const APFloat &V2 = N2CFP->getValueAPF(); 5642 const APFloat &V3 = N3CFP->getValueAPF(); 5643 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5644 return getConstantFP(V1, DL, VT); 5645 } 5646 break; 5647 } 5648 case ISD::BUILD_VECTOR: { 5649 // Attempt to simplify BUILD_VECTOR. 5650 SDValue Ops[] = {N1, N2, N3}; 5651 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5652 return V; 5653 break; 5654 } 5655 case ISD::CONCAT_VECTORS: { 5656 SDValue Ops[] = {N1, N2, N3}; 5657 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5658 return V; 5659 break; 5660 } 5661 case ISD::SETCC: { 5662 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5663 assert(N1.getValueType() == N2.getValueType() && 5664 "SETCC operands must have the same type!"); 5665 assert(VT.isVector() == N1.getValueType().isVector() && 5666 "SETCC type should be vector iff the operand type is vector!"); 5667 assert((!VT.isVector() || VT.getVectorElementCount() == 5668 N1.getValueType().getVectorElementCount()) && 5669 "SETCC vector element counts must match!"); 5670 // Use FoldSetCC to simplify SETCC's. 5671 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5672 return V; 5673 // Vector constant folding. 5674 SDValue Ops[] = {N1, N2, N3}; 5675 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5676 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5677 return V; 5678 } 5679 break; 5680 } 5681 case ISD::SELECT: 5682 case ISD::VSELECT: 5683 if (SDValue V = simplifySelect(N1, N2, N3)) 5684 return V; 5685 break; 5686 case ISD::VECTOR_SHUFFLE: 5687 llvm_unreachable("should use getVectorShuffle constructor!"); 5688 case ISD::INSERT_VECTOR_ELT: { 5689 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5690 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5691 // for scalable vectors where we will generate appropriate code to 5692 // deal with out-of-bounds cases correctly. 5693 if (N3C && N1.getValueType().isFixedLengthVector() && 5694 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5695 return getUNDEF(VT); 5696 5697 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5698 if (N3.isUndef()) 5699 return getUNDEF(VT); 5700 5701 // If the inserted element is an UNDEF, just use the input vector. 5702 if (N2.isUndef()) 5703 return N1; 5704 5705 break; 5706 } 5707 case ISD::INSERT_SUBVECTOR: { 5708 // Inserting undef into undef is still undef. 5709 if (N1.isUndef() && N2.isUndef()) 5710 return getUNDEF(VT); 5711 5712 EVT N2VT = N2.getValueType(); 5713 assert(VT == N1.getValueType() && 5714 "Dest and insert subvector source types must match!"); 5715 assert(VT.isVector() && N2VT.isVector() && 5716 "Insert subvector VTs must be vectors!"); 5717 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5718 "Cannot insert a scalable vector into a fixed length vector!"); 5719 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5720 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5721 "Insert subvector must be from smaller vector to larger vector!"); 5722 assert(isa<ConstantSDNode>(N3) && 5723 "Insert subvector index must be constant"); 5724 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5725 (N2VT.getVectorMinNumElements() + 5726 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5727 VT.getVectorMinNumElements()) && 5728 "Insert subvector overflow!"); 5729 5730 // Trivial insertion. 5731 if (VT == N2VT) 5732 return N2; 5733 5734 // If this is an insert of an extracted vector into an undef vector, we 5735 // can just use the input to the extract. 5736 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5737 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5738 return N2.getOperand(0); 5739 break; 5740 } 5741 case ISD::BITCAST: 5742 // Fold bit_convert nodes from a type to themselves. 5743 if (N1.getValueType() == VT) 5744 return N1; 5745 break; 5746 } 5747 5748 // Memoize node if it doesn't produce a flag. 5749 SDNode *N; 5750 SDVTList VTs = getVTList(VT); 5751 SDValue Ops[] = {N1, N2, N3}; 5752 if (VT != MVT::Glue) { 5753 FoldingSetNodeID ID; 5754 AddNodeIDNode(ID, Opcode, VTs, Ops); 5755 void *IP = nullptr; 5756 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5757 E->intersectFlagsWith(Flags); 5758 return SDValue(E, 0); 5759 } 5760 5761 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5762 N->setFlags(Flags); 5763 createOperands(N, Ops); 5764 CSEMap.InsertNode(N, IP); 5765 } else { 5766 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5767 createOperands(N, Ops); 5768 } 5769 5770 InsertNode(N); 5771 SDValue V = SDValue(N, 0); 5772 NewSDValueDbgMsg(V, "Creating new node: ", this); 5773 return V; 5774 } 5775 5776 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5777 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5778 SDValue Ops[] = { N1, N2, N3, N4 }; 5779 return getNode(Opcode, DL, VT, Ops); 5780 } 5781 5782 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5783 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5784 SDValue N5) { 5785 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5786 return getNode(Opcode, DL, VT, Ops); 5787 } 5788 5789 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5790 /// the incoming stack arguments to be loaded from the stack. 5791 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5792 SmallVector<SDValue, 8> ArgChains; 5793 5794 // Include the original chain at the beginning of the list. When this is 5795 // used by target LowerCall hooks, this helps legalize find the 5796 // CALLSEQ_BEGIN node. 5797 ArgChains.push_back(Chain); 5798 5799 // Add a chain value for each stack argument. 5800 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5801 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5802 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5803 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5804 if (FI->getIndex() < 0) 5805 ArgChains.push_back(SDValue(L, 1)); 5806 5807 // Build a tokenfactor for all the chains. 5808 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5809 } 5810 5811 /// getMemsetValue - Vectorized representation of the memset value 5812 /// operand. 5813 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5814 const SDLoc &dl) { 5815 assert(!Value.isUndef()); 5816 5817 unsigned NumBits = VT.getScalarSizeInBits(); 5818 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5819 assert(C->getAPIntValue().getBitWidth() == 8); 5820 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5821 if (VT.isInteger()) { 5822 bool IsOpaque = VT.getSizeInBits() > 64 || 5823 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5824 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5825 } 5826 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5827 VT); 5828 } 5829 5830 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5831 EVT IntVT = VT.getScalarType(); 5832 if (!IntVT.isInteger()) 5833 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5834 5835 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5836 if (NumBits > 8) { 5837 // Use a multiplication with 0x010101... to extend the input to the 5838 // required length. 5839 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5840 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5841 DAG.getConstant(Magic, dl, IntVT)); 5842 } 5843 5844 if (VT != Value.getValueType() && !VT.isInteger()) 5845 Value = DAG.getBitcast(VT.getScalarType(), Value); 5846 if (VT != Value.getValueType()) 5847 Value = DAG.getSplatBuildVector(VT, dl, Value); 5848 5849 return Value; 5850 } 5851 5852 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5853 /// used when a memcpy is turned into a memset when the source is a constant 5854 /// string ptr. 5855 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5856 const TargetLowering &TLI, 5857 const ConstantDataArraySlice &Slice) { 5858 // Handle vector with all elements zero. 5859 if (Slice.Array == nullptr) { 5860 if (VT.isInteger()) 5861 return DAG.getConstant(0, dl, VT); 5862 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5863 return DAG.getConstantFP(0.0, dl, VT); 5864 else if (VT.isVector()) { 5865 unsigned NumElts = VT.getVectorNumElements(); 5866 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5867 return DAG.getNode(ISD::BITCAST, dl, VT, 5868 DAG.getConstant(0, dl, 5869 EVT::getVectorVT(*DAG.getContext(), 5870 EltVT, NumElts))); 5871 } else 5872 llvm_unreachable("Expected type!"); 5873 } 5874 5875 assert(!VT.isVector() && "Can't handle vector type here!"); 5876 unsigned NumVTBits = VT.getSizeInBits(); 5877 unsigned NumVTBytes = NumVTBits / 8; 5878 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5879 5880 APInt Val(NumVTBits, 0); 5881 if (DAG.getDataLayout().isLittleEndian()) { 5882 for (unsigned i = 0; i != NumBytes; ++i) 5883 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5884 } else { 5885 for (unsigned i = 0; i != NumBytes; ++i) 5886 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5887 } 5888 5889 // If the "cost" of materializing the integer immediate is less than the cost 5890 // of a load, then it is cost effective to turn the load into the immediate. 5891 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5892 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5893 return DAG.getConstant(Val, dl, VT); 5894 return SDValue(nullptr, 0); 5895 } 5896 5897 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset, 5898 const SDLoc &DL, 5899 const SDNodeFlags Flags) { 5900 EVT VT = Base.getValueType(); 5901 return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags); 5902 } 5903 5904 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5905 const SDLoc &DL, 5906 const SDNodeFlags Flags) { 5907 assert(Offset.getValueType().isInteger()); 5908 EVT BasePtrVT = Ptr.getValueType(); 5909 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5910 } 5911 5912 /// Returns true if memcpy source is constant data. 5913 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5914 uint64_t SrcDelta = 0; 5915 GlobalAddressSDNode *G = nullptr; 5916 if (Src.getOpcode() == ISD::GlobalAddress) 5917 G = cast<GlobalAddressSDNode>(Src); 5918 else if (Src.getOpcode() == ISD::ADD && 5919 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5920 Src.getOperand(1).getOpcode() == ISD::Constant) { 5921 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5922 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5923 } 5924 if (!G) 5925 return false; 5926 5927 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5928 SrcDelta + G->getOffset()); 5929 } 5930 5931 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5932 SelectionDAG &DAG) { 5933 // On Darwin, -Os means optimize for size without hurting performance, so 5934 // only really optimize for size when -Oz (MinSize) is used. 5935 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5936 return MF.getFunction().hasMinSize(); 5937 return DAG.shouldOptForSize(); 5938 } 5939 5940 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5941 SmallVector<SDValue, 32> &OutChains, unsigned From, 5942 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5943 SmallVector<SDValue, 16> &OutStoreChains) { 5944 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5945 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5946 SmallVector<SDValue, 16> GluedLoadChains; 5947 for (unsigned i = From; i < To; ++i) { 5948 OutChains.push_back(OutLoadChains[i]); 5949 GluedLoadChains.push_back(OutLoadChains[i]); 5950 } 5951 5952 // Chain for all loads. 5953 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5954 GluedLoadChains); 5955 5956 for (unsigned i = From; i < To; ++i) { 5957 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5958 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5959 ST->getBasePtr(), ST->getMemoryVT(), 5960 ST->getMemOperand()); 5961 OutChains.push_back(NewStore); 5962 } 5963 } 5964 5965 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5966 SDValue Chain, SDValue Dst, SDValue Src, 5967 uint64_t Size, Align Alignment, 5968 bool isVol, bool AlwaysInline, 5969 MachinePointerInfo DstPtrInfo, 5970 MachinePointerInfo SrcPtrInfo) { 5971 // Turn a memcpy of undef to nop. 5972 // FIXME: We need to honor volatile even is Src is undef. 5973 if (Src.isUndef()) 5974 return Chain; 5975 5976 // Expand memcpy to a series of load and store ops if the size operand falls 5977 // below a certain threshold. 5978 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5979 // rather than maybe a humongous number of loads and stores. 5980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5981 const DataLayout &DL = DAG.getDataLayout(); 5982 LLVMContext &C = *DAG.getContext(); 5983 std::vector<EVT> MemOps; 5984 bool DstAlignCanChange = false; 5985 MachineFunction &MF = DAG.getMachineFunction(); 5986 MachineFrameInfo &MFI = MF.getFrameInfo(); 5987 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 5988 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5989 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5990 DstAlignCanChange = true; 5991 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 5992 if (!SrcAlign || Alignment > *SrcAlign) 5993 SrcAlign = Alignment; 5994 assert(SrcAlign && "SrcAlign must be set"); 5995 ConstantDataArraySlice Slice; 5996 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5997 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5998 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5999 const MemOp Op = isZeroConstant 6000 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6001 /*IsZeroMemset*/ true, isVol) 6002 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6003 *SrcAlign, isVol, CopyFromConstant); 6004 if (!TLI.findOptimalMemOpLowering( 6005 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6006 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6007 return SDValue(); 6008 6009 if (DstAlignCanChange) { 6010 Type *Ty = MemOps[0].getTypeForEVT(C); 6011 Align NewAlign = DL.getABITypeAlign(Ty); 6012 6013 // Don't promote to an alignment that would require dynamic stack 6014 // realignment. 6015 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6016 if (!TRI->needsStackRealignment(MF)) 6017 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6018 NewAlign = NewAlign / 2; 6019 6020 if (NewAlign > Alignment) { 6021 // Give the stack frame object a larger alignment if needed. 6022 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6023 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6024 Alignment = NewAlign; 6025 } 6026 } 6027 6028 MachineMemOperand::Flags MMOFlags = 6029 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6030 SmallVector<SDValue, 16> OutLoadChains; 6031 SmallVector<SDValue, 16> OutStoreChains; 6032 SmallVector<SDValue, 32> OutChains; 6033 unsigned NumMemOps = MemOps.size(); 6034 uint64_t SrcOff = 0, DstOff = 0; 6035 for (unsigned i = 0; i != NumMemOps; ++i) { 6036 EVT VT = MemOps[i]; 6037 unsigned VTSize = VT.getSizeInBits() / 8; 6038 SDValue Value, Store; 6039 6040 if (VTSize > Size) { 6041 // Issuing an unaligned load / store pair that overlaps with the previous 6042 // pair. Adjust the offset accordingly. 6043 assert(i == NumMemOps-1 && i != 0); 6044 SrcOff -= VTSize - Size; 6045 DstOff -= VTSize - Size; 6046 } 6047 6048 if (CopyFromConstant && 6049 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6050 // It's unlikely a store of a vector immediate can be done in a single 6051 // instruction. It would require a load from a constantpool first. 6052 // We only handle zero vectors here. 6053 // FIXME: Handle other cases where store of vector immediate is done in 6054 // a single instruction. 6055 ConstantDataArraySlice SubSlice; 6056 if (SrcOff < Slice.Length) { 6057 SubSlice = Slice; 6058 SubSlice.move(SrcOff); 6059 } else { 6060 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6061 SubSlice.Array = nullptr; 6062 SubSlice.Offset = 0; 6063 SubSlice.Length = VTSize; 6064 } 6065 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6066 if (Value.getNode()) { 6067 Store = DAG.getStore( 6068 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6069 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6070 OutChains.push_back(Store); 6071 } 6072 } 6073 6074 if (!Store.getNode()) { 6075 // The type might not be legal for the target. This should only happen 6076 // if the type is smaller than a legal type, as on PPC, so the right 6077 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6078 // to Load/Store if NVT==VT. 6079 // FIXME does the case above also need this? 6080 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6081 assert(NVT.bitsGE(VT)); 6082 6083 bool isDereferenceable = 6084 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6085 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6086 if (isDereferenceable) 6087 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6088 6089 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 6090 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6091 SrcPtrInfo.getWithOffset(SrcOff), VT, 6092 commonAlignment(*SrcAlign, SrcOff).value(), 6093 SrcMMOFlags); 6094 OutLoadChains.push_back(Value.getValue(1)); 6095 6096 Store = DAG.getTruncStore( 6097 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6098 DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags); 6099 OutStoreChains.push_back(Store); 6100 } 6101 SrcOff += VTSize; 6102 DstOff += VTSize; 6103 Size -= VTSize; 6104 } 6105 6106 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6107 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6108 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6109 6110 if (NumLdStInMemcpy) { 6111 // It may be that memcpy might be converted to memset if it's memcpy 6112 // of constants. In such a case, we won't have loads and stores, but 6113 // just stores. In the absence of loads, there is nothing to gang up. 6114 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6115 // If target does not care, just leave as it. 6116 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6117 OutChains.push_back(OutLoadChains[i]); 6118 OutChains.push_back(OutStoreChains[i]); 6119 } 6120 } else { 6121 // Ld/St less than/equal limit set by target. 6122 if (NumLdStInMemcpy <= GluedLdStLimit) { 6123 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6124 NumLdStInMemcpy, OutLoadChains, 6125 OutStoreChains); 6126 } else { 6127 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6128 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6129 unsigned GlueIter = 0; 6130 6131 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6132 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6133 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6134 6135 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6136 OutLoadChains, OutStoreChains); 6137 GlueIter += GluedLdStLimit; 6138 } 6139 6140 // Residual ld/st. 6141 if (RemainingLdStInMemcpy) { 6142 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6143 RemainingLdStInMemcpy, OutLoadChains, 6144 OutStoreChains); 6145 } 6146 } 6147 } 6148 } 6149 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6150 } 6151 6152 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6153 SDValue Chain, SDValue Dst, SDValue Src, 6154 uint64_t Size, Align Alignment, 6155 bool isVol, bool AlwaysInline, 6156 MachinePointerInfo DstPtrInfo, 6157 MachinePointerInfo SrcPtrInfo) { 6158 // Turn a memmove of undef to nop. 6159 // FIXME: We need to honor volatile even is Src is undef. 6160 if (Src.isUndef()) 6161 return Chain; 6162 6163 // Expand memmove to a series of load and store ops if the size operand falls 6164 // below a certain threshold. 6165 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6166 const DataLayout &DL = DAG.getDataLayout(); 6167 LLVMContext &C = *DAG.getContext(); 6168 std::vector<EVT> MemOps; 6169 bool DstAlignCanChange = false; 6170 MachineFunction &MF = DAG.getMachineFunction(); 6171 MachineFrameInfo &MFI = MF.getFrameInfo(); 6172 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6173 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6174 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6175 DstAlignCanChange = true; 6176 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6177 if (!SrcAlign || Alignment > *SrcAlign) 6178 SrcAlign = Alignment; 6179 assert(SrcAlign && "SrcAlign must be set"); 6180 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6181 if (!TLI.findOptimalMemOpLowering( 6182 MemOps, Limit, 6183 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6184 /*IsVolatile*/ true), 6185 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6186 MF.getFunction().getAttributes())) 6187 return SDValue(); 6188 6189 if (DstAlignCanChange) { 6190 Type *Ty = MemOps[0].getTypeForEVT(C); 6191 Align NewAlign = DL.getABITypeAlign(Ty); 6192 if (NewAlign > Alignment) { 6193 // Give the stack frame object a larger alignment if needed. 6194 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6195 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6196 Alignment = NewAlign; 6197 } 6198 } 6199 6200 MachineMemOperand::Flags MMOFlags = 6201 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6202 uint64_t SrcOff = 0, DstOff = 0; 6203 SmallVector<SDValue, 8> LoadValues; 6204 SmallVector<SDValue, 8> LoadChains; 6205 SmallVector<SDValue, 8> OutChains; 6206 unsigned NumMemOps = MemOps.size(); 6207 for (unsigned i = 0; i < NumMemOps; i++) { 6208 EVT VT = MemOps[i]; 6209 unsigned VTSize = VT.getSizeInBits() / 8; 6210 SDValue Value; 6211 6212 bool isDereferenceable = 6213 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6214 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6215 if (isDereferenceable) 6216 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6217 6218 Value = DAG.getLoad( 6219 VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6220 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags); 6221 LoadValues.push_back(Value); 6222 LoadChains.push_back(Value.getValue(1)); 6223 SrcOff += VTSize; 6224 } 6225 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6226 OutChains.clear(); 6227 for (unsigned i = 0; i < NumMemOps; i++) { 6228 EVT VT = MemOps[i]; 6229 unsigned VTSize = VT.getSizeInBits() / 8; 6230 SDValue Store; 6231 6232 Store = DAG.getStore( 6233 Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6234 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6235 OutChains.push_back(Store); 6236 DstOff += VTSize; 6237 } 6238 6239 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6240 } 6241 6242 /// Lower the call to 'memset' intrinsic function into a series of store 6243 /// operations. 6244 /// 6245 /// \param DAG Selection DAG where lowered code is placed. 6246 /// \param dl Link to corresponding IR location. 6247 /// \param Chain Control flow dependency. 6248 /// \param Dst Pointer to destination memory location. 6249 /// \param Src Value of byte to write into the memory. 6250 /// \param Size Number of bytes to write. 6251 /// \param Alignment Alignment of the destination in bytes. 6252 /// \param isVol True if destination is volatile. 6253 /// \param DstPtrInfo IR information on the memory pointer. 6254 /// \returns New head in the control flow, if lowering was successful, empty 6255 /// SDValue otherwise. 6256 /// 6257 /// The function tries to replace 'llvm.memset' intrinsic with several store 6258 /// operations and value calculation code. This is usually profitable for small 6259 /// memory size. 6260 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6261 SDValue Chain, SDValue Dst, SDValue Src, 6262 uint64_t Size, Align Alignment, bool isVol, 6263 MachinePointerInfo DstPtrInfo) { 6264 // Turn a memset of undef to nop. 6265 // FIXME: We need to honor volatile even is Src is undef. 6266 if (Src.isUndef()) 6267 return Chain; 6268 6269 // Expand memset to a series of load/store ops if the size operand 6270 // falls below a certain threshold. 6271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6272 std::vector<EVT> MemOps; 6273 bool DstAlignCanChange = false; 6274 MachineFunction &MF = DAG.getMachineFunction(); 6275 MachineFrameInfo &MFI = MF.getFrameInfo(); 6276 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6277 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6278 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6279 DstAlignCanChange = true; 6280 bool IsZeroVal = 6281 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6282 if (!TLI.findOptimalMemOpLowering( 6283 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6284 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6285 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6286 return SDValue(); 6287 6288 if (DstAlignCanChange) { 6289 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6290 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6291 if (NewAlign > Alignment) { 6292 // Give the stack frame object a larger alignment if needed. 6293 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6294 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6295 Alignment = NewAlign; 6296 } 6297 } 6298 6299 SmallVector<SDValue, 8> OutChains; 6300 uint64_t DstOff = 0; 6301 unsigned NumMemOps = MemOps.size(); 6302 6303 // Find the largest store and generate the bit pattern for it. 6304 EVT LargestVT = MemOps[0]; 6305 for (unsigned i = 1; i < NumMemOps; i++) 6306 if (MemOps[i].bitsGT(LargestVT)) 6307 LargestVT = MemOps[i]; 6308 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6309 6310 for (unsigned i = 0; i < NumMemOps; i++) { 6311 EVT VT = MemOps[i]; 6312 unsigned VTSize = VT.getSizeInBits() / 8; 6313 if (VTSize > Size) { 6314 // Issuing an unaligned load / store pair that overlaps with the previous 6315 // pair. Adjust the offset accordingly. 6316 assert(i == NumMemOps-1 && i != 0); 6317 DstOff -= VTSize - Size; 6318 } 6319 6320 // If this store is smaller than the largest store see whether we can get 6321 // the smaller value for free with a truncate. 6322 SDValue Value = MemSetValue; 6323 if (VT.bitsLT(LargestVT)) { 6324 if (!LargestVT.isVector() && !VT.isVector() && 6325 TLI.isTruncateFree(LargestVT, VT)) 6326 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6327 else 6328 Value = getMemsetValue(Src, VT, DAG, dl); 6329 } 6330 assert(Value.getValueType() == VT && "Value with wrong type."); 6331 SDValue Store = DAG.getStore( 6332 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6333 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), 6334 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6335 OutChains.push_back(Store); 6336 DstOff += VT.getSizeInBits() / 8; 6337 Size -= VTSize; 6338 } 6339 6340 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6341 } 6342 6343 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6344 unsigned AS) { 6345 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6346 // pointer operands can be losslessly bitcasted to pointers of address space 0 6347 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 6348 report_fatal_error("cannot lower memory intrinsic in address space " + 6349 Twine(AS)); 6350 } 6351 } 6352 6353 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6354 SDValue Src, SDValue Size, Align Alignment, 6355 bool isVol, bool AlwaysInline, bool isTailCall, 6356 MachinePointerInfo DstPtrInfo, 6357 MachinePointerInfo SrcPtrInfo) { 6358 // Check to see if we should lower the memcpy to loads and stores first. 6359 // For cases within the target-specified limits, this is the best choice. 6360 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6361 if (ConstantSize) { 6362 // Memcpy with size zero? Just return the original chain. 6363 if (ConstantSize->isNullValue()) 6364 return Chain; 6365 6366 SDValue Result = getMemcpyLoadsAndStores( 6367 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6368 isVol, false, DstPtrInfo, SrcPtrInfo); 6369 if (Result.getNode()) 6370 return Result; 6371 } 6372 6373 // Then check to see if we should lower the memcpy with target-specific 6374 // code. If the target chooses to do this, this is the next best. 6375 if (TSI) { 6376 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6377 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, 6378 AlwaysInline, DstPtrInfo, SrcPtrInfo); 6379 if (Result.getNode()) 6380 return Result; 6381 } 6382 6383 // If we really need inline code and the target declined to provide it, 6384 // use a (potentially long) sequence of loads and stores. 6385 if (AlwaysInline) { 6386 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6387 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6388 ConstantSize->getZExtValue(), Alignment, 6389 isVol, true, DstPtrInfo, SrcPtrInfo); 6390 } 6391 6392 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6393 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6394 6395 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6396 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6397 // respect volatile, so they may do things like read or write memory 6398 // beyond the given memory regions. But fixing this isn't easy, and most 6399 // people don't care. 6400 6401 // Emit a library call. 6402 TargetLowering::ArgListTy Args; 6403 TargetLowering::ArgListEntry Entry; 6404 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6405 Entry.Node = Dst; Args.push_back(Entry); 6406 Entry.Node = Src; Args.push_back(Entry); 6407 6408 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6409 Entry.Node = Size; Args.push_back(Entry); 6410 // FIXME: pass in SDLoc 6411 TargetLowering::CallLoweringInfo CLI(*this); 6412 CLI.setDebugLoc(dl) 6413 .setChain(Chain) 6414 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6415 Dst.getValueType().getTypeForEVT(*getContext()), 6416 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6417 TLI->getPointerTy(getDataLayout())), 6418 std::move(Args)) 6419 .setDiscardResult() 6420 .setTailCall(isTailCall); 6421 6422 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6423 return CallResult.second; 6424 } 6425 6426 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6427 SDValue Dst, unsigned DstAlign, 6428 SDValue Src, unsigned SrcAlign, 6429 SDValue Size, Type *SizeTy, 6430 unsigned ElemSz, bool isTailCall, 6431 MachinePointerInfo DstPtrInfo, 6432 MachinePointerInfo SrcPtrInfo) { 6433 // Emit a library call. 6434 TargetLowering::ArgListTy Args; 6435 TargetLowering::ArgListEntry Entry; 6436 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6437 Entry.Node = Dst; 6438 Args.push_back(Entry); 6439 6440 Entry.Node = Src; 6441 Args.push_back(Entry); 6442 6443 Entry.Ty = SizeTy; 6444 Entry.Node = Size; 6445 Args.push_back(Entry); 6446 6447 RTLIB::Libcall LibraryCall = 6448 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6449 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6450 report_fatal_error("Unsupported element size"); 6451 6452 TargetLowering::CallLoweringInfo CLI(*this); 6453 CLI.setDebugLoc(dl) 6454 .setChain(Chain) 6455 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6456 Type::getVoidTy(*getContext()), 6457 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6458 TLI->getPointerTy(getDataLayout())), 6459 std::move(Args)) 6460 .setDiscardResult() 6461 .setTailCall(isTailCall); 6462 6463 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6464 return CallResult.second; 6465 } 6466 6467 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6468 SDValue Src, SDValue Size, Align Alignment, 6469 bool isVol, bool isTailCall, 6470 MachinePointerInfo DstPtrInfo, 6471 MachinePointerInfo SrcPtrInfo) { 6472 // Check to see if we should lower the memmove to loads and stores first. 6473 // For cases within the target-specified limits, this is the best choice. 6474 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6475 if (ConstantSize) { 6476 // Memmove with size zero? Just return the original chain. 6477 if (ConstantSize->isNullValue()) 6478 return Chain; 6479 6480 SDValue Result = getMemmoveLoadsAndStores( 6481 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6482 isVol, false, DstPtrInfo, SrcPtrInfo); 6483 if (Result.getNode()) 6484 return Result; 6485 } 6486 6487 // Then check to see if we should lower the memmove with target-specific 6488 // code. If the target chooses to do this, this is the next best. 6489 if (TSI) { 6490 SDValue Result = TSI->EmitTargetCodeForMemmove( 6491 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo, 6492 SrcPtrInfo); 6493 if (Result.getNode()) 6494 return Result; 6495 } 6496 6497 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6498 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6499 6500 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6501 // not be safe. See memcpy above for more details. 6502 6503 // Emit a library call. 6504 TargetLowering::ArgListTy Args; 6505 TargetLowering::ArgListEntry Entry; 6506 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6507 Entry.Node = Dst; Args.push_back(Entry); 6508 Entry.Node = Src; Args.push_back(Entry); 6509 6510 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6511 Entry.Node = Size; Args.push_back(Entry); 6512 // FIXME: pass in SDLoc 6513 TargetLowering::CallLoweringInfo CLI(*this); 6514 CLI.setDebugLoc(dl) 6515 .setChain(Chain) 6516 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6517 Dst.getValueType().getTypeForEVT(*getContext()), 6518 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6519 TLI->getPointerTy(getDataLayout())), 6520 std::move(Args)) 6521 .setDiscardResult() 6522 .setTailCall(isTailCall); 6523 6524 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6525 return CallResult.second; 6526 } 6527 6528 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6529 SDValue Dst, unsigned DstAlign, 6530 SDValue Src, unsigned SrcAlign, 6531 SDValue Size, Type *SizeTy, 6532 unsigned ElemSz, bool isTailCall, 6533 MachinePointerInfo DstPtrInfo, 6534 MachinePointerInfo SrcPtrInfo) { 6535 // Emit a library call. 6536 TargetLowering::ArgListTy Args; 6537 TargetLowering::ArgListEntry Entry; 6538 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6539 Entry.Node = Dst; 6540 Args.push_back(Entry); 6541 6542 Entry.Node = Src; 6543 Args.push_back(Entry); 6544 6545 Entry.Ty = SizeTy; 6546 Entry.Node = Size; 6547 Args.push_back(Entry); 6548 6549 RTLIB::Libcall LibraryCall = 6550 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6551 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6552 report_fatal_error("Unsupported element size"); 6553 6554 TargetLowering::CallLoweringInfo CLI(*this); 6555 CLI.setDebugLoc(dl) 6556 .setChain(Chain) 6557 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6558 Type::getVoidTy(*getContext()), 6559 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6560 TLI->getPointerTy(getDataLayout())), 6561 std::move(Args)) 6562 .setDiscardResult() 6563 .setTailCall(isTailCall); 6564 6565 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6566 return CallResult.second; 6567 } 6568 6569 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6570 SDValue Src, SDValue Size, Align Alignment, 6571 bool isVol, bool isTailCall, 6572 MachinePointerInfo DstPtrInfo) { 6573 // Check to see if we should lower the memset to stores first. 6574 // For cases within the target-specified limits, this is the best choice. 6575 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6576 if (ConstantSize) { 6577 // Memset with size zero? Just return the original chain. 6578 if (ConstantSize->isNullValue()) 6579 return Chain; 6580 6581 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6582 ConstantSize->getZExtValue(), Alignment, 6583 isVol, DstPtrInfo); 6584 6585 if (Result.getNode()) 6586 return Result; 6587 } 6588 6589 // Then check to see if we should lower the memset with target-specific 6590 // code. If the target chooses to do this, this is the next best. 6591 if (TSI) { 6592 SDValue Result = TSI->EmitTargetCodeForMemset( 6593 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo); 6594 if (Result.getNode()) 6595 return Result; 6596 } 6597 6598 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6599 6600 // Emit a library call. 6601 TargetLowering::ArgListTy Args; 6602 TargetLowering::ArgListEntry Entry; 6603 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6604 Args.push_back(Entry); 6605 Entry.Node = Src; 6606 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6607 Args.push_back(Entry); 6608 Entry.Node = Size; 6609 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6610 Args.push_back(Entry); 6611 6612 // FIXME: pass in SDLoc 6613 TargetLowering::CallLoweringInfo CLI(*this); 6614 CLI.setDebugLoc(dl) 6615 .setChain(Chain) 6616 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6617 Dst.getValueType().getTypeForEVT(*getContext()), 6618 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6619 TLI->getPointerTy(getDataLayout())), 6620 std::move(Args)) 6621 .setDiscardResult() 6622 .setTailCall(isTailCall); 6623 6624 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6625 return CallResult.second; 6626 } 6627 6628 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6629 SDValue Dst, unsigned DstAlign, 6630 SDValue Value, SDValue Size, Type *SizeTy, 6631 unsigned ElemSz, bool isTailCall, 6632 MachinePointerInfo DstPtrInfo) { 6633 // Emit a library call. 6634 TargetLowering::ArgListTy Args; 6635 TargetLowering::ArgListEntry Entry; 6636 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6637 Entry.Node = Dst; 6638 Args.push_back(Entry); 6639 6640 Entry.Ty = Type::getInt8Ty(*getContext()); 6641 Entry.Node = Value; 6642 Args.push_back(Entry); 6643 6644 Entry.Ty = SizeTy; 6645 Entry.Node = Size; 6646 Args.push_back(Entry); 6647 6648 RTLIB::Libcall LibraryCall = 6649 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6650 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6651 report_fatal_error("Unsupported element size"); 6652 6653 TargetLowering::CallLoweringInfo CLI(*this); 6654 CLI.setDebugLoc(dl) 6655 .setChain(Chain) 6656 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6657 Type::getVoidTy(*getContext()), 6658 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6659 TLI->getPointerTy(getDataLayout())), 6660 std::move(Args)) 6661 .setDiscardResult() 6662 .setTailCall(isTailCall); 6663 6664 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6665 return CallResult.second; 6666 } 6667 6668 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6669 SDVTList VTList, ArrayRef<SDValue> Ops, 6670 MachineMemOperand *MMO) { 6671 FoldingSetNodeID ID; 6672 ID.AddInteger(MemVT.getRawBits()); 6673 AddNodeIDNode(ID, Opcode, VTList, Ops); 6674 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6675 void* IP = nullptr; 6676 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6677 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6678 return SDValue(E, 0); 6679 } 6680 6681 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6682 VTList, MemVT, MMO); 6683 createOperands(N, Ops); 6684 6685 CSEMap.InsertNode(N, IP); 6686 InsertNode(N); 6687 return SDValue(N, 0); 6688 } 6689 6690 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6691 EVT MemVT, SDVTList VTs, SDValue Chain, 6692 SDValue Ptr, SDValue Cmp, SDValue Swp, 6693 MachineMemOperand *MMO) { 6694 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6695 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6696 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6697 6698 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6699 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6700 } 6701 6702 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6703 SDValue Chain, SDValue Ptr, SDValue Val, 6704 MachineMemOperand *MMO) { 6705 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6706 Opcode == ISD::ATOMIC_LOAD_SUB || 6707 Opcode == ISD::ATOMIC_LOAD_AND || 6708 Opcode == ISD::ATOMIC_LOAD_CLR || 6709 Opcode == ISD::ATOMIC_LOAD_OR || 6710 Opcode == ISD::ATOMIC_LOAD_XOR || 6711 Opcode == ISD::ATOMIC_LOAD_NAND || 6712 Opcode == ISD::ATOMIC_LOAD_MIN || 6713 Opcode == ISD::ATOMIC_LOAD_MAX || 6714 Opcode == ISD::ATOMIC_LOAD_UMIN || 6715 Opcode == ISD::ATOMIC_LOAD_UMAX || 6716 Opcode == ISD::ATOMIC_LOAD_FADD || 6717 Opcode == ISD::ATOMIC_LOAD_FSUB || 6718 Opcode == ISD::ATOMIC_SWAP || 6719 Opcode == ISD::ATOMIC_STORE) && 6720 "Invalid Atomic Op"); 6721 6722 EVT VT = Val.getValueType(); 6723 6724 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6725 getVTList(VT, MVT::Other); 6726 SDValue Ops[] = {Chain, Ptr, Val}; 6727 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6728 } 6729 6730 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6731 EVT VT, SDValue Chain, SDValue Ptr, 6732 MachineMemOperand *MMO) { 6733 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6734 6735 SDVTList VTs = getVTList(VT, MVT::Other); 6736 SDValue Ops[] = {Chain, Ptr}; 6737 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6738 } 6739 6740 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6741 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6742 if (Ops.size() == 1) 6743 return Ops[0]; 6744 6745 SmallVector<EVT, 4> VTs; 6746 VTs.reserve(Ops.size()); 6747 for (unsigned i = 0; i < Ops.size(); ++i) 6748 VTs.push_back(Ops[i].getValueType()); 6749 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6750 } 6751 6752 SDValue SelectionDAG::getMemIntrinsicNode( 6753 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6754 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6755 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6756 if (!Size && MemVT.isScalableVector()) 6757 Size = MemoryLocation::UnknownSize; 6758 else if (!Size) 6759 Size = MemVT.getStoreSize(); 6760 6761 MachineFunction &MF = getMachineFunction(); 6762 MachineMemOperand *MMO = 6763 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6764 6765 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6766 } 6767 6768 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6769 SDVTList VTList, 6770 ArrayRef<SDValue> Ops, EVT MemVT, 6771 MachineMemOperand *MMO) { 6772 assert((Opcode == ISD::INTRINSIC_VOID || 6773 Opcode == ISD::INTRINSIC_W_CHAIN || 6774 Opcode == ISD::PREFETCH || 6775 ((int)Opcode <= std::numeric_limits<int>::max() && 6776 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6777 "Opcode is not a memory-accessing opcode!"); 6778 6779 // Memoize the node unless it returns a flag. 6780 MemIntrinsicSDNode *N; 6781 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6782 FoldingSetNodeID ID; 6783 AddNodeIDNode(ID, Opcode, VTList, Ops); 6784 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6785 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6786 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6787 void *IP = nullptr; 6788 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6789 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6790 return SDValue(E, 0); 6791 } 6792 6793 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6794 VTList, MemVT, MMO); 6795 createOperands(N, Ops); 6796 6797 CSEMap.InsertNode(N, IP); 6798 } else { 6799 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6800 VTList, MemVT, MMO); 6801 createOperands(N, Ops); 6802 } 6803 InsertNode(N); 6804 SDValue V(N, 0); 6805 NewSDValueDbgMsg(V, "Creating new node: ", this); 6806 return V; 6807 } 6808 6809 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6810 SDValue Chain, int FrameIndex, 6811 int64_t Size, int64_t Offset) { 6812 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6813 const auto VTs = getVTList(MVT::Other); 6814 SDValue Ops[2] = { 6815 Chain, 6816 getFrameIndex(FrameIndex, 6817 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6818 true)}; 6819 6820 FoldingSetNodeID ID; 6821 AddNodeIDNode(ID, Opcode, VTs, Ops); 6822 ID.AddInteger(FrameIndex); 6823 ID.AddInteger(Size); 6824 ID.AddInteger(Offset); 6825 void *IP = nullptr; 6826 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6827 return SDValue(E, 0); 6828 6829 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6830 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6831 createOperands(N, Ops); 6832 CSEMap.InsertNode(N, IP); 6833 InsertNode(N); 6834 SDValue V(N, 0); 6835 NewSDValueDbgMsg(V, "Creating new node: ", this); 6836 return V; 6837 } 6838 6839 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6840 /// MachinePointerInfo record from it. This is particularly useful because the 6841 /// code generator has many cases where it doesn't bother passing in a 6842 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6843 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6844 SelectionDAG &DAG, SDValue Ptr, 6845 int64_t Offset = 0) { 6846 // If this is FI+Offset, we can model it. 6847 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6848 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6849 FI->getIndex(), Offset); 6850 6851 // If this is (FI+Offset1)+Offset2, we can model it. 6852 if (Ptr.getOpcode() != ISD::ADD || 6853 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6854 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6855 return Info; 6856 6857 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6858 return MachinePointerInfo::getFixedStack( 6859 DAG.getMachineFunction(), FI, 6860 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6861 } 6862 6863 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6864 /// MachinePointerInfo record from it. This is particularly useful because the 6865 /// code generator has many cases where it doesn't bother passing in a 6866 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6867 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6868 SelectionDAG &DAG, SDValue Ptr, 6869 SDValue OffsetOp) { 6870 // If the 'Offset' value isn't a constant, we can't handle this. 6871 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6872 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6873 if (OffsetOp.isUndef()) 6874 return InferPointerInfo(Info, DAG, Ptr); 6875 return Info; 6876 } 6877 6878 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6879 EVT VT, const SDLoc &dl, SDValue Chain, 6880 SDValue Ptr, SDValue Offset, 6881 MachinePointerInfo PtrInfo, EVT MemVT, 6882 Align Alignment, 6883 MachineMemOperand::Flags MMOFlags, 6884 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6885 assert(Chain.getValueType() == MVT::Other && 6886 "Invalid chain type"); 6887 6888 MMOFlags |= MachineMemOperand::MOLoad; 6889 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6890 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6891 // clients. 6892 if (PtrInfo.V.isNull()) 6893 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6894 6895 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6896 MachineFunction &MF = getMachineFunction(); 6897 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 6898 Alignment, AAInfo, Ranges); 6899 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6900 } 6901 6902 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6903 EVT VT, const SDLoc &dl, SDValue Chain, 6904 SDValue Ptr, SDValue Offset, EVT MemVT, 6905 MachineMemOperand *MMO) { 6906 if (VT == MemVT) { 6907 ExtType = ISD::NON_EXTLOAD; 6908 } else if (ExtType == ISD::NON_EXTLOAD) { 6909 assert(VT == MemVT && "Non-extending load from different memory type!"); 6910 } else { 6911 // Extending load. 6912 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6913 "Should only be an extending load, not truncating!"); 6914 assert(VT.isInteger() == MemVT.isInteger() && 6915 "Cannot convert from FP to Int or Int -> FP!"); 6916 assert(VT.isVector() == MemVT.isVector() && 6917 "Cannot use an ext load to convert to or from a vector!"); 6918 assert((!VT.isVector() || 6919 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6920 "Cannot use an ext load to change the number of vector elements!"); 6921 } 6922 6923 bool Indexed = AM != ISD::UNINDEXED; 6924 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6925 6926 SDVTList VTs = Indexed ? 6927 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6928 SDValue Ops[] = { Chain, Ptr, Offset }; 6929 FoldingSetNodeID ID; 6930 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6931 ID.AddInteger(MemVT.getRawBits()); 6932 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6933 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6934 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6935 void *IP = nullptr; 6936 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6937 cast<LoadSDNode>(E)->refineAlignment(MMO); 6938 return SDValue(E, 0); 6939 } 6940 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6941 ExtType, MemVT, MMO); 6942 createOperands(N, Ops); 6943 6944 CSEMap.InsertNode(N, IP); 6945 InsertNode(N); 6946 SDValue V(N, 0); 6947 NewSDValueDbgMsg(V, "Creating new node: ", this); 6948 return V; 6949 } 6950 6951 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6952 SDValue Ptr, MachinePointerInfo PtrInfo, 6953 MaybeAlign Alignment, 6954 MachineMemOperand::Flags MMOFlags, 6955 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6956 SDValue Undef = getUNDEF(Ptr.getValueType()); 6957 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6958 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6959 } 6960 6961 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6962 SDValue Ptr, MachineMemOperand *MMO) { 6963 SDValue Undef = getUNDEF(Ptr.getValueType()); 6964 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6965 VT, MMO); 6966 } 6967 6968 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6969 EVT VT, SDValue Chain, SDValue Ptr, 6970 MachinePointerInfo PtrInfo, EVT MemVT, 6971 MaybeAlign Alignment, 6972 MachineMemOperand::Flags MMOFlags, 6973 const AAMDNodes &AAInfo) { 6974 SDValue Undef = getUNDEF(Ptr.getValueType()); 6975 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6976 MemVT, Alignment, MMOFlags, AAInfo); 6977 } 6978 6979 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6980 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6981 MachineMemOperand *MMO) { 6982 SDValue Undef = getUNDEF(Ptr.getValueType()); 6983 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6984 MemVT, MMO); 6985 } 6986 6987 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6988 SDValue Base, SDValue Offset, 6989 ISD::MemIndexedMode AM) { 6990 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6991 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6992 // Don't propagate the invariant or dereferenceable flags. 6993 auto MMOFlags = 6994 LD->getMemOperand()->getFlags() & 6995 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6996 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6997 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6998 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6999 LD->getAAInfo()); 7000 } 7001 7002 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7003 SDValue Ptr, MachinePointerInfo PtrInfo, 7004 Align Alignment, 7005 MachineMemOperand::Flags MMOFlags, 7006 const AAMDNodes &AAInfo) { 7007 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7008 7009 MMOFlags |= MachineMemOperand::MOStore; 7010 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7011 7012 if (PtrInfo.V.isNull()) 7013 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7014 7015 MachineFunction &MF = getMachineFunction(); 7016 uint64_t Size = 7017 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7018 MachineMemOperand *MMO = 7019 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7020 return getStore(Chain, dl, Val, Ptr, MMO); 7021 } 7022 7023 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7024 SDValue Ptr, MachineMemOperand *MMO) { 7025 assert(Chain.getValueType() == MVT::Other && 7026 "Invalid chain type"); 7027 EVT VT = Val.getValueType(); 7028 SDVTList VTs = getVTList(MVT::Other); 7029 SDValue Undef = getUNDEF(Ptr.getValueType()); 7030 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7031 FoldingSetNodeID ID; 7032 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7033 ID.AddInteger(VT.getRawBits()); 7034 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7035 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7036 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7037 void *IP = nullptr; 7038 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7039 cast<StoreSDNode>(E)->refineAlignment(MMO); 7040 return SDValue(E, 0); 7041 } 7042 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7043 ISD::UNINDEXED, false, VT, MMO); 7044 createOperands(N, Ops); 7045 7046 CSEMap.InsertNode(N, IP); 7047 InsertNode(N); 7048 SDValue V(N, 0); 7049 NewSDValueDbgMsg(V, "Creating new node: ", this); 7050 return V; 7051 } 7052 7053 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7054 SDValue Ptr, MachinePointerInfo PtrInfo, 7055 EVT SVT, Align Alignment, 7056 MachineMemOperand::Flags MMOFlags, 7057 const AAMDNodes &AAInfo) { 7058 assert(Chain.getValueType() == MVT::Other && 7059 "Invalid chain type"); 7060 7061 MMOFlags |= MachineMemOperand::MOStore; 7062 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7063 7064 if (PtrInfo.V.isNull()) 7065 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7066 7067 MachineFunction &MF = getMachineFunction(); 7068 MachineMemOperand *MMO = MF.getMachineMemOperand( 7069 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 7070 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7071 } 7072 7073 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7074 SDValue Ptr, EVT SVT, 7075 MachineMemOperand *MMO) { 7076 EVT VT = Val.getValueType(); 7077 7078 assert(Chain.getValueType() == MVT::Other && 7079 "Invalid chain type"); 7080 if (VT == SVT) 7081 return getStore(Chain, dl, Val, Ptr, MMO); 7082 7083 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7084 "Should only be a truncating store, not extending!"); 7085 assert(VT.isInteger() == SVT.isInteger() && 7086 "Can't do FP-INT conversion!"); 7087 assert(VT.isVector() == SVT.isVector() && 7088 "Cannot use trunc store to convert to or from a vector!"); 7089 assert((!VT.isVector() || 7090 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 7091 "Cannot use trunc store to change the number of vector elements!"); 7092 7093 SDVTList VTs = getVTList(MVT::Other); 7094 SDValue Undef = getUNDEF(Ptr.getValueType()); 7095 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7096 FoldingSetNodeID ID; 7097 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7098 ID.AddInteger(SVT.getRawBits()); 7099 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7100 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7101 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7102 void *IP = nullptr; 7103 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7104 cast<StoreSDNode>(E)->refineAlignment(MMO); 7105 return SDValue(E, 0); 7106 } 7107 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7108 ISD::UNINDEXED, true, SVT, MMO); 7109 createOperands(N, Ops); 7110 7111 CSEMap.InsertNode(N, IP); 7112 InsertNode(N); 7113 SDValue V(N, 0); 7114 NewSDValueDbgMsg(V, "Creating new node: ", this); 7115 return V; 7116 } 7117 7118 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7119 SDValue Base, SDValue Offset, 7120 ISD::MemIndexedMode AM) { 7121 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7122 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7123 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7124 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7125 FoldingSetNodeID ID; 7126 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7127 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7128 ID.AddInteger(ST->getRawSubclassData()); 7129 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7130 void *IP = nullptr; 7131 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7132 return SDValue(E, 0); 7133 7134 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7135 ST->isTruncatingStore(), ST->getMemoryVT(), 7136 ST->getMemOperand()); 7137 createOperands(N, Ops); 7138 7139 CSEMap.InsertNode(N, IP); 7140 InsertNode(N); 7141 SDValue V(N, 0); 7142 NewSDValueDbgMsg(V, "Creating new node: ", this); 7143 return V; 7144 } 7145 7146 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7147 SDValue Base, SDValue Offset, SDValue Mask, 7148 SDValue PassThru, EVT MemVT, 7149 MachineMemOperand *MMO, 7150 ISD::MemIndexedMode AM, 7151 ISD::LoadExtType ExtTy, bool isExpanding) { 7152 bool Indexed = AM != ISD::UNINDEXED; 7153 assert((Indexed || Offset.isUndef()) && 7154 "Unindexed masked load with an offset!"); 7155 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7156 : getVTList(VT, MVT::Other); 7157 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7158 FoldingSetNodeID ID; 7159 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7160 ID.AddInteger(MemVT.getRawBits()); 7161 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7162 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7163 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7164 void *IP = nullptr; 7165 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7166 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7167 return SDValue(E, 0); 7168 } 7169 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7170 AM, ExtTy, isExpanding, MemVT, MMO); 7171 createOperands(N, Ops); 7172 7173 CSEMap.InsertNode(N, IP); 7174 InsertNode(N); 7175 SDValue V(N, 0); 7176 NewSDValueDbgMsg(V, "Creating new node: ", this); 7177 return V; 7178 } 7179 7180 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7181 SDValue Base, SDValue Offset, 7182 ISD::MemIndexedMode AM) { 7183 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7184 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7185 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7186 Offset, LD->getMask(), LD->getPassThru(), 7187 LD->getMemoryVT(), LD->getMemOperand(), AM, 7188 LD->getExtensionType(), LD->isExpandingLoad()); 7189 } 7190 7191 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7192 SDValue Val, SDValue Base, SDValue Offset, 7193 SDValue Mask, EVT MemVT, 7194 MachineMemOperand *MMO, 7195 ISD::MemIndexedMode AM, bool IsTruncating, 7196 bool IsCompressing) { 7197 assert(Chain.getValueType() == MVT::Other && 7198 "Invalid chain type"); 7199 bool Indexed = AM != ISD::UNINDEXED; 7200 assert((Indexed || Offset.isUndef()) && 7201 "Unindexed masked store with an offset!"); 7202 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7203 : getVTList(MVT::Other); 7204 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7205 FoldingSetNodeID ID; 7206 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7207 ID.AddInteger(MemVT.getRawBits()); 7208 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7209 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7210 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7211 void *IP = nullptr; 7212 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7213 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7214 return SDValue(E, 0); 7215 } 7216 auto *N = 7217 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7218 IsTruncating, IsCompressing, MemVT, MMO); 7219 createOperands(N, Ops); 7220 7221 CSEMap.InsertNode(N, IP); 7222 InsertNode(N); 7223 SDValue V(N, 0); 7224 NewSDValueDbgMsg(V, "Creating new node: ", this); 7225 return V; 7226 } 7227 7228 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7229 SDValue Base, SDValue Offset, 7230 ISD::MemIndexedMode AM) { 7231 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7232 assert(ST->getOffset().isUndef() && 7233 "Masked store is already a indexed store!"); 7234 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7235 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7236 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7237 } 7238 7239 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7240 ArrayRef<SDValue> Ops, 7241 MachineMemOperand *MMO, 7242 ISD::MemIndexType IndexType) { 7243 assert(Ops.size() == 6 && "Incompatible number of operands"); 7244 7245 FoldingSetNodeID ID; 7246 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7247 ID.AddInteger(VT.getRawBits()); 7248 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7249 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7250 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7251 void *IP = nullptr; 7252 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7253 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7254 return SDValue(E, 0); 7255 } 7256 7257 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7258 VTs, VT, MMO, IndexType); 7259 createOperands(N, Ops); 7260 7261 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7262 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7263 assert(N->getMask().getValueType().getVectorNumElements() == 7264 N->getValueType(0).getVectorNumElements() && 7265 "Vector width mismatch between mask and data"); 7266 assert(N->getIndex().getValueType().getVectorNumElements() >= 7267 N->getValueType(0).getVectorNumElements() && 7268 "Vector width mismatch between index and data"); 7269 assert(isa<ConstantSDNode>(N->getScale()) && 7270 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7271 "Scale should be a constant power of 2"); 7272 7273 CSEMap.InsertNode(N, IP); 7274 InsertNode(N); 7275 SDValue V(N, 0); 7276 NewSDValueDbgMsg(V, "Creating new node: ", this); 7277 return V; 7278 } 7279 7280 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7281 ArrayRef<SDValue> Ops, 7282 MachineMemOperand *MMO, 7283 ISD::MemIndexType IndexType) { 7284 assert(Ops.size() == 6 && "Incompatible number of operands"); 7285 7286 FoldingSetNodeID ID; 7287 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7288 ID.AddInteger(VT.getRawBits()); 7289 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7290 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7291 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7292 void *IP = nullptr; 7293 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7294 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7295 return SDValue(E, 0); 7296 } 7297 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7298 VTs, VT, MMO, IndexType); 7299 createOperands(N, Ops); 7300 7301 assert(N->getMask().getValueType().getVectorNumElements() == 7302 N->getValue().getValueType().getVectorNumElements() && 7303 "Vector width mismatch between mask and data"); 7304 assert(N->getIndex().getValueType().getVectorNumElements() >= 7305 N->getValue().getValueType().getVectorNumElements() && 7306 "Vector width mismatch between index and data"); 7307 assert(isa<ConstantSDNode>(N->getScale()) && 7308 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7309 "Scale should be a constant power of 2"); 7310 7311 CSEMap.InsertNode(N, IP); 7312 InsertNode(N); 7313 SDValue V(N, 0); 7314 NewSDValueDbgMsg(V, "Creating new node: ", this); 7315 return V; 7316 } 7317 7318 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7319 // select undef, T, F --> T (if T is a constant), otherwise F 7320 // select, ?, undef, F --> F 7321 // select, ?, T, undef --> T 7322 if (Cond.isUndef()) 7323 return isConstantValueOfAnyType(T) ? T : F; 7324 if (T.isUndef()) 7325 return F; 7326 if (F.isUndef()) 7327 return T; 7328 7329 // select true, T, F --> T 7330 // select false, T, F --> F 7331 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7332 return CondC->isNullValue() ? F : T; 7333 7334 // TODO: This should simplify VSELECT with constant condition using something 7335 // like this (but check boolean contents to be complete?): 7336 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7337 // return T; 7338 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7339 // return F; 7340 7341 // select ?, T, T --> T 7342 if (T == F) 7343 return T; 7344 7345 return SDValue(); 7346 } 7347 7348 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7349 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7350 if (X.isUndef()) 7351 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7352 // shift X, undef --> undef (because it may shift by the bitwidth) 7353 if (Y.isUndef()) 7354 return getUNDEF(X.getValueType()); 7355 7356 // shift 0, Y --> 0 7357 // shift X, 0 --> X 7358 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7359 return X; 7360 7361 // shift X, C >= bitwidth(X) --> undef 7362 // All vector elements must be too big (or undef) to avoid partial undefs. 7363 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7364 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7365 }; 7366 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7367 return getUNDEF(X.getValueType()); 7368 7369 return SDValue(); 7370 } 7371 7372 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7373 SDNodeFlags Flags) { 7374 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7375 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7376 // operation is poison. That result can be relaxed to undef. 7377 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7378 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7379 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7380 (YC && YC->getValueAPF().isNaN()); 7381 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7382 (YC && YC->getValueAPF().isInfinity()); 7383 7384 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7385 return getUNDEF(X.getValueType()); 7386 7387 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7388 return getUNDEF(X.getValueType()); 7389 7390 if (!YC) 7391 return SDValue(); 7392 7393 // X + -0.0 --> X 7394 if (Opcode == ISD::FADD) 7395 if (YC->getValueAPF().isNegZero()) 7396 return X; 7397 7398 // X - +0.0 --> X 7399 if (Opcode == ISD::FSUB) 7400 if (YC->getValueAPF().isPosZero()) 7401 return X; 7402 7403 // X * 1.0 --> X 7404 // X / 1.0 --> X 7405 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7406 if (YC->getValueAPF().isExactlyValue(1.0)) 7407 return X; 7408 7409 return SDValue(); 7410 } 7411 7412 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7413 SDValue Ptr, SDValue SV, unsigned Align) { 7414 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7415 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7416 } 7417 7418 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7419 ArrayRef<SDUse> Ops) { 7420 switch (Ops.size()) { 7421 case 0: return getNode(Opcode, DL, VT); 7422 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7423 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7424 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7425 default: break; 7426 } 7427 7428 // Copy from an SDUse array into an SDValue array for use with 7429 // the regular getNode logic. 7430 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7431 return getNode(Opcode, DL, VT, NewOps); 7432 } 7433 7434 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7435 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7436 unsigned NumOps = Ops.size(); 7437 switch (NumOps) { 7438 case 0: return getNode(Opcode, DL, VT); 7439 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7440 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7441 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7442 default: break; 7443 } 7444 7445 switch (Opcode) { 7446 default: break; 7447 case ISD::BUILD_VECTOR: 7448 // Attempt to simplify BUILD_VECTOR. 7449 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7450 return V; 7451 break; 7452 case ISD::CONCAT_VECTORS: 7453 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7454 return V; 7455 break; 7456 case ISD::SELECT_CC: 7457 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7458 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7459 "LHS and RHS of condition must have same type!"); 7460 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7461 "True and False arms of SelectCC must have same type!"); 7462 assert(Ops[2].getValueType() == VT && 7463 "select_cc node must be of same type as true and false value!"); 7464 break; 7465 case ISD::BR_CC: 7466 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7467 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7468 "LHS/RHS of comparison should match types!"); 7469 break; 7470 } 7471 7472 // Memoize nodes. 7473 SDNode *N; 7474 SDVTList VTs = getVTList(VT); 7475 7476 if (VT != MVT::Glue) { 7477 FoldingSetNodeID ID; 7478 AddNodeIDNode(ID, Opcode, VTs, Ops); 7479 void *IP = nullptr; 7480 7481 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7482 return SDValue(E, 0); 7483 7484 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7485 createOperands(N, Ops); 7486 7487 CSEMap.InsertNode(N, IP); 7488 } else { 7489 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7490 createOperands(N, Ops); 7491 } 7492 7493 N->setFlags(Flags); 7494 InsertNode(N); 7495 SDValue V(N, 0); 7496 NewSDValueDbgMsg(V, "Creating new node: ", this); 7497 return V; 7498 } 7499 7500 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7501 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7502 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7503 } 7504 7505 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7506 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7507 if (VTList.NumVTs == 1) 7508 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7509 7510 switch (Opcode) { 7511 case ISD::STRICT_FP_EXTEND: 7512 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7513 "Invalid STRICT_FP_EXTEND!"); 7514 assert(VTList.VTs[0].isFloatingPoint() && 7515 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7516 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7517 "STRICT_FP_EXTEND result type should be vector iff the operand " 7518 "type is vector!"); 7519 assert((!VTList.VTs[0].isVector() || 7520 VTList.VTs[0].getVectorNumElements() == 7521 Ops[1].getValueType().getVectorNumElements()) && 7522 "Vector element count mismatch!"); 7523 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7524 "Invalid fpext node, dst <= src!"); 7525 break; 7526 case ISD::STRICT_FP_ROUND: 7527 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7528 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7529 "STRICT_FP_ROUND result type should be vector iff the operand " 7530 "type is vector!"); 7531 assert((!VTList.VTs[0].isVector() || 7532 VTList.VTs[0].getVectorNumElements() == 7533 Ops[1].getValueType().getVectorNumElements()) && 7534 "Vector element count mismatch!"); 7535 assert(VTList.VTs[0].isFloatingPoint() && 7536 Ops[1].getValueType().isFloatingPoint() && 7537 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7538 isa<ConstantSDNode>(Ops[2]) && 7539 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7540 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7541 "Invalid STRICT_FP_ROUND!"); 7542 break; 7543 #if 0 7544 // FIXME: figure out how to safely handle things like 7545 // int foo(int x) { return 1 << (x & 255); } 7546 // int bar() { return foo(256); } 7547 case ISD::SRA_PARTS: 7548 case ISD::SRL_PARTS: 7549 case ISD::SHL_PARTS: 7550 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7551 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7552 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7553 else if (N3.getOpcode() == ISD::AND) 7554 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7555 // If the and is only masking out bits that cannot effect the shift, 7556 // eliminate the and. 7557 unsigned NumBits = VT.getScalarSizeInBits()*2; 7558 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7559 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7560 } 7561 break; 7562 #endif 7563 } 7564 7565 // Memoize the node unless it returns a flag. 7566 SDNode *N; 7567 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7568 FoldingSetNodeID ID; 7569 AddNodeIDNode(ID, Opcode, VTList, Ops); 7570 void *IP = nullptr; 7571 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7572 return SDValue(E, 0); 7573 7574 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7575 createOperands(N, Ops); 7576 CSEMap.InsertNode(N, IP); 7577 } else { 7578 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7579 createOperands(N, Ops); 7580 } 7581 7582 N->setFlags(Flags); 7583 InsertNode(N); 7584 SDValue V(N, 0); 7585 NewSDValueDbgMsg(V, "Creating new node: ", this); 7586 return V; 7587 } 7588 7589 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7590 SDVTList VTList) { 7591 return getNode(Opcode, DL, VTList, None); 7592 } 7593 7594 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7595 SDValue N1) { 7596 SDValue Ops[] = { N1 }; 7597 return getNode(Opcode, DL, VTList, Ops); 7598 } 7599 7600 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7601 SDValue N1, SDValue N2) { 7602 SDValue Ops[] = { N1, N2 }; 7603 return getNode(Opcode, DL, VTList, Ops); 7604 } 7605 7606 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7607 SDValue N1, SDValue N2, SDValue N3) { 7608 SDValue Ops[] = { N1, N2, N3 }; 7609 return getNode(Opcode, DL, VTList, Ops); 7610 } 7611 7612 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7613 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7614 SDValue Ops[] = { N1, N2, N3, N4 }; 7615 return getNode(Opcode, DL, VTList, Ops); 7616 } 7617 7618 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7619 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7620 SDValue N5) { 7621 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7622 return getNode(Opcode, DL, VTList, Ops); 7623 } 7624 7625 SDVTList SelectionDAG::getVTList(EVT VT) { 7626 return makeVTList(SDNode::getValueTypeList(VT), 1); 7627 } 7628 7629 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7630 FoldingSetNodeID ID; 7631 ID.AddInteger(2U); 7632 ID.AddInteger(VT1.getRawBits()); 7633 ID.AddInteger(VT2.getRawBits()); 7634 7635 void *IP = nullptr; 7636 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7637 if (!Result) { 7638 EVT *Array = Allocator.Allocate<EVT>(2); 7639 Array[0] = VT1; 7640 Array[1] = VT2; 7641 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7642 VTListMap.InsertNode(Result, IP); 7643 } 7644 return Result->getSDVTList(); 7645 } 7646 7647 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7648 FoldingSetNodeID ID; 7649 ID.AddInteger(3U); 7650 ID.AddInteger(VT1.getRawBits()); 7651 ID.AddInteger(VT2.getRawBits()); 7652 ID.AddInteger(VT3.getRawBits()); 7653 7654 void *IP = nullptr; 7655 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7656 if (!Result) { 7657 EVT *Array = Allocator.Allocate<EVT>(3); 7658 Array[0] = VT1; 7659 Array[1] = VT2; 7660 Array[2] = VT3; 7661 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7662 VTListMap.InsertNode(Result, IP); 7663 } 7664 return Result->getSDVTList(); 7665 } 7666 7667 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7668 FoldingSetNodeID ID; 7669 ID.AddInteger(4U); 7670 ID.AddInteger(VT1.getRawBits()); 7671 ID.AddInteger(VT2.getRawBits()); 7672 ID.AddInteger(VT3.getRawBits()); 7673 ID.AddInteger(VT4.getRawBits()); 7674 7675 void *IP = nullptr; 7676 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7677 if (!Result) { 7678 EVT *Array = Allocator.Allocate<EVT>(4); 7679 Array[0] = VT1; 7680 Array[1] = VT2; 7681 Array[2] = VT3; 7682 Array[3] = VT4; 7683 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7684 VTListMap.InsertNode(Result, IP); 7685 } 7686 return Result->getSDVTList(); 7687 } 7688 7689 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7690 unsigned NumVTs = VTs.size(); 7691 FoldingSetNodeID ID; 7692 ID.AddInteger(NumVTs); 7693 for (unsigned index = 0; index < NumVTs; index++) { 7694 ID.AddInteger(VTs[index].getRawBits()); 7695 } 7696 7697 void *IP = nullptr; 7698 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7699 if (!Result) { 7700 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7701 llvm::copy(VTs, Array); 7702 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7703 VTListMap.InsertNode(Result, IP); 7704 } 7705 return Result->getSDVTList(); 7706 } 7707 7708 7709 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7710 /// specified operands. If the resultant node already exists in the DAG, 7711 /// this does not modify the specified node, instead it returns the node that 7712 /// already exists. If the resultant node does not exist in the DAG, the 7713 /// input node is returned. As a degenerate case, if you specify the same 7714 /// input operands as the node already has, the input node is returned. 7715 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7716 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7717 7718 // Check to see if there is no change. 7719 if (Op == N->getOperand(0)) return N; 7720 7721 // See if the modified node already exists. 7722 void *InsertPos = nullptr; 7723 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7724 return Existing; 7725 7726 // Nope it doesn't. Remove the node from its current place in the maps. 7727 if (InsertPos) 7728 if (!RemoveNodeFromCSEMaps(N)) 7729 InsertPos = nullptr; 7730 7731 // Now we update the operands. 7732 N->OperandList[0].set(Op); 7733 7734 updateDivergence(N); 7735 // If this gets put into a CSE map, add it. 7736 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7737 return N; 7738 } 7739 7740 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7741 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7742 7743 // Check to see if there is no change. 7744 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7745 return N; // No operands changed, just return the input node. 7746 7747 // See if the modified node already exists. 7748 void *InsertPos = nullptr; 7749 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7750 return Existing; 7751 7752 // Nope it doesn't. Remove the node from its current place in the maps. 7753 if (InsertPos) 7754 if (!RemoveNodeFromCSEMaps(N)) 7755 InsertPos = nullptr; 7756 7757 // Now we update the operands. 7758 if (N->OperandList[0] != Op1) 7759 N->OperandList[0].set(Op1); 7760 if (N->OperandList[1] != Op2) 7761 N->OperandList[1].set(Op2); 7762 7763 updateDivergence(N); 7764 // If this gets put into a CSE map, add it. 7765 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7766 return N; 7767 } 7768 7769 SDNode *SelectionDAG:: 7770 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7771 SDValue Ops[] = { Op1, Op2, Op3 }; 7772 return UpdateNodeOperands(N, Ops); 7773 } 7774 7775 SDNode *SelectionDAG:: 7776 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7777 SDValue Op3, SDValue Op4) { 7778 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7779 return UpdateNodeOperands(N, Ops); 7780 } 7781 7782 SDNode *SelectionDAG:: 7783 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7784 SDValue Op3, SDValue Op4, SDValue Op5) { 7785 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7786 return UpdateNodeOperands(N, Ops); 7787 } 7788 7789 SDNode *SelectionDAG:: 7790 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7791 unsigned NumOps = Ops.size(); 7792 assert(N->getNumOperands() == NumOps && 7793 "Update with wrong number of operands"); 7794 7795 // If no operands changed just return the input node. 7796 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7797 return N; 7798 7799 // See if the modified node already exists. 7800 void *InsertPos = nullptr; 7801 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7802 return Existing; 7803 7804 // Nope it doesn't. Remove the node from its current place in the maps. 7805 if (InsertPos) 7806 if (!RemoveNodeFromCSEMaps(N)) 7807 InsertPos = nullptr; 7808 7809 // Now we update the operands. 7810 for (unsigned i = 0; i != NumOps; ++i) 7811 if (N->OperandList[i] != Ops[i]) 7812 N->OperandList[i].set(Ops[i]); 7813 7814 updateDivergence(N); 7815 // If this gets put into a CSE map, add it. 7816 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7817 return N; 7818 } 7819 7820 /// DropOperands - Release the operands and set this node to have 7821 /// zero operands. 7822 void SDNode::DropOperands() { 7823 // Unlike the code in MorphNodeTo that does this, we don't need to 7824 // watch for dead nodes here. 7825 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7826 SDUse &Use = *I++; 7827 Use.set(SDValue()); 7828 } 7829 } 7830 7831 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7832 ArrayRef<MachineMemOperand *> NewMemRefs) { 7833 if (NewMemRefs.empty()) { 7834 N->clearMemRefs(); 7835 return; 7836 } 7837 7838 // Check if we can avoid allocating by storing a single reference directly. 7839 if (NewMemRefs.size() == 1) { 7840 N->MemRefs = NewMemRefs[0]; 7841 N->NumMemRefs = 1; 7842 return; 7843 } 7844 7845 MachineMemOperand **MemRefsBuffer = 7846 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7847 llvm::copy(NewMemRefs, MemRefsBuffer); 7848 N->MemRefs = MemRefsBuffer; 7849 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7850 } 7851 7852 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7853 /// machine opcode. 7854 /// 7855 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7856 EVT VT) { 7857 SDVTList VTs = getVTList(VT); 7858 return SelectNodeTo(N, MachineOpc, VTs, None); 7859 } 7860 7861 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7862 EVT VT, SDValue Op1) { 7863 SDVTList VTs = getVTList(VT); 7864 SDValue Ops[] = { Op1 }; 7865 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7866 } 7867 7868 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7869 EVT VT, SDValue Op1, 7870 SDValue Op2) { 7871 SDVTList VTs = getVTList(VT); 7872 SDValue Ops[] = { Op1, Op2 }; 7873 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7874 } 7875 7876 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7877 EVT VT, SDValue Op1, 7878 SDValue Op2, SDValue Op3) { 7879 SDVTList VTs = getVTList(VT); 7880 SDValue Ops[] = { Op1, Op2, Op3 }; 7881 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7882 } 7883 7884 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7885 EVT VT, ArrayRef<SDValue> Ops) { 7886 SDVTList VTs = getVTList(VT); 7887 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7888 } 7889 7890 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7891 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7892 SDVTList VTs = getVTList(VT1, VT2); 7893 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7894 } 7895 7896 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7897 EVT VT1, EVT VT2) { 7898 SDVTList VTs = getVTList(VT1, VT2); 7899 return SelectNodeTo(N, MachineOpc, VTs, None); 7900 } 7901 7902 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7903 EVT VT1, EVT VT2, EVT VT3, 7904 ArrayRef<SDValue> Ops) { 7905 SDVTList VTs = getVTList(VT1, VT2, VT3); 7906 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7907 } 7908 7909 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7910 EVT VT1, EVT VT2, 7911 SDValue Op1, SDValue Op2) { 7912 SDVTList VTs = getVTList(VT1, VT2); 7913 SDValue Ops[] = { Op1, Op2 }; 7914 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7915 } 7916 7917 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7918 SDVTList VTs,ArrayRef<SDValue> Ops) { 7919 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7920 // Reset the NodeID to -1. 7921 New->setNodeId(-1); 7922 if (New != N) { 7923 ReplaceAllUsesWith(N, New); 7924 RemoveDeadNode(N); 7925 } 7926 return New; 7927 } 7928 7929 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7930 /// the line number information on the merged node since it is not possible to 7931 /// preserve the information that operation is associated with multiple lines. 7932 /// This will make the debugger working better at -O0, were there is a higher 7933 /// probability having other instructions associated with that line. 7934 /// 7935 /// For IROrder, we keep the smaller of the two 7936 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7937 DebugLoc NLoc = N->getDebugLoc(); 7938 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7939 N->setDebugLoc(DebugLoc()); 7940 } 7941 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7942 N->setIROrder(Order); 7943 return N; 7944 } 7945 7946 /// MorphNodeTo - This *mutates* the specified node to have the specified 7947 /// return type, opcode, and operands. 7948 /// 7949 /// Note that MorphNodeTo returns the resultant node. If there is already a 7950 /// node of the specified opcode and operands, it returns that node instead of 7951 /// the current one. Note that the SDLoc need not be the same. 7952 /// 7953 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7954 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7955 /// node, and because it doesn't require CSE recalculation for any of 7956 /// the node's users. 7957 /// 7958 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7959 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7960 /// the legalizer which maintain worklists that would need to be updated when 7961 /// deleting things. 7962 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7963 SDVTList VTs, ArrayRef<SDValue> Ops) { 7964 // If an identical node already exists, use it. 7965 void *IP = nullptr; 7966 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7967 FoldingSetNodeID ID; 7968 AddNodeIDNode(ID, Opc, VTs, Ops); 7969 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7970 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7971 } 7972 7973 if (!RemoveNodeFromCSEMaps(N)) 7974 IP = nullptr; 7975 7976 // Start the morphing. 7977 N->NodeType = Opc; 7978 N->ValueList = VTs.VTs; 7979 N->NumValues = VTs.NumVTs; 7980 7981 // Clear the operands list, updating used nodes to remove this from their 7982 // use list. Keep track of any operands that become dead as a result. 7983 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7984 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7985 SDUse &Use = *I++; 7986 SDNode *Used = Use.getNode(); 7987 Use.set(SDValue()); 7988 if (Used->use_empty()) 7989 DeadNodeSet.insert(Used); 7990 } 7991 7992 // For MachineNode, initialize the memory references information. 7993 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7994 MN->clearMemRefs(); 7995 7996 // Swap for an appropriately sized array from the recycler. 7997 removeOperands(N); 7998 createOperands(N, Ops); 7999 8000 // Delete any nodes that are still dead after adding the uses for the 8001 // new operands. 8002 if (!DeadNodeSet.empty()) { 8003 SmallVector<SDNode *, 16> DeadNodes; 8004 for (SDNode *N : DeadNodeSet) 8005 if (N->use_empty()) 8006 DeadNodes.push_back(N); 8007 RemoveDeadNodes(DeadNodes); 8008 } 8009 8010 if (IP) 8011 CSEMap.InsertNode(N, IP); // Memoize the new node. 8012 return N; 8013 } 8014 8015 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8016 unsigned OrigOpc = Node->getOpcode(); 8017 unsigned NewOpc; 8018 switch (OrigOpc) { 8019 default: 8020 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8021 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8022 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8023 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8024 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8025 #include "llvm/IR/ConstrainedOps.def" 8026 } 8027 8028 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8029 8030 // We're taking this node out of the chain, so we need to re-link things. 8031 SDValue InputChain = Node->getOperand(0); 8032 SDValue OutputChain = SDValue(Node, 1); 8033 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8034 8035 SmallVector<SDValue, 3> Ops; 8036 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8037 Ops.push_back(Node->getOperand(i)); 8038 8039 SDVTList VTs = getVTList(Node->getValueType(0)); 8040 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8041 8042 // MorphNodeTo can operate in two ways: if an existing node with the 8043 // specified operands exists, it can just return it. Otherwise, it 8044 // updates the node in place to have the requested operands. 8045 if (Res == Node) { 8046 // If we updated the node in place, reset the node ID. To the isel, 8047 // this should be just like a newly allocated machine node. 8048 Res->setNodeId(-1); 8049 } else { 8050 ReplaceAllUsesWith(Node, Res); 8051 RemoveDeadNode(Node); 8052 } 8053 8054 return Res; 8055 } 8056 8057 /// getMachineNode - These are used for target selectors to create a new node 8058 /// with specified return type(s), MachineInstr opcode, and operands. 8059 /// 8060 /// Note that getMachineNode returns the resultant node. If there is already a 8061 /// node of the specified opcode and operands, it returns that node instead of 8062 /// the current one. 8063 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8064 EVT VT) { 8065 SDVTList VTs = getVTList(VT); 8066 return getMachineNode(Opcode, dl, VTs, None); 8067 } 8068 8069 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8070 EVT VT, SDValue Op1) { 8071 SDVTList VTs = getVTList(VT); 8072 SDValue Ops[] = { Op1 }; 8073 return getMachineNode(Opcode, dl, VTs, Ops); 8074 } 8075 8076 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8077 EVT VT, SDValue Op1, SDValue Op2) { 8078 SDVTList VTs = getVTList(VT); 8079 SDValue Ops[] = { Op1, Op2 }; 8080 return getMachineNode(Opcode, dl, VTs, Ops); 8081 } 8082 8083 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8084 EVT VT, SDValue Op1, SDValue Op2, 8085 SDValue Op3) { 8086 SDVTList VTs = getVTList(VT); 8087 SDValue Ops[] = { Op1, Op2, Op3 }; 8088 return getMachineNode(Opcode, dl, VTs, Ops); 8089 } 8090 8091 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8092 EVT VT, ArrayRef<SDValue> Ops) { 8093 SDVTList VTs = getVTList(VT); 8094 return getMachineNode(Opcode, dl, VTs, Ops); 8095 } 8096 8097 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8098 EVT VT1, EVT VT2, SDValue Op1, 8099 SDValue Op2) { 8100 SDVTList VTs = getVTList(VT1, VT2); 8101 SDValue Ops[] = { Op1, Op2 }; 8102 return getMachineNode(Opcode, dl, VTs, Ops); 8103 } 8104 8105 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8106 EVT VT1, EVT VT2, SDValue Op1, 8107 SDValue Op2, SDValue Op3) { 8108 SDVTList VTs = getVTList(VT1, VT2); 8109 SDValue Ops[] = { Op1, Op2, Op3 }; 8110 return getMachineNode(Opcode, dl, VTs, Ops); 8111 } 8112 8113 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8114 EVT VT1, EVT VT2, 8115 ArrayRef<SDValue> Ops) { 8116 SDVTList VTs = getVTList(VT1, VT2); 8117 return getMachineNode(Opcode, dl, VTs, Ops); 8118 } 8119 8120 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8121 EVT VT1, EVT VT2, EVT VT3, 8122 SDValue Op1, SDValue Op2) { 8123 SDVTList VTs = getVTList(VT1, VT2, VT3); 8124 SDValue Ops[] = { Op1, Op2 }; 8125 return getMachineNode(Opcode, dl, VTs, Ops); 8126 } 8127 8128 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8129 EVT VT1, EVT VT2, EVT VT3, 8130 SDValue Op1, SDValue Op2, 8131 SDValue Op3) { 8132 SDVTList VTs = getVTList(VT1, VT2, VT3); 8133 SDValue Ops[] = { Op1, Op2, Op3 }; 8134 return getMachineNode(Opcode, dl, VTs, Ops); 8135 } 8136 8137 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8138 EVT VT1, EVT VT2, EVT VT3, 8139 ArrayRef<SDValue> Ops) { 8140 SDVTList VTs = getVTList(VT1, VT2, VT3); 8141 return getMachineNode(Opcode, dl, VTs, Ops); 8142 } 8143 8144 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8145 ArrayRef<EVT> ResultTys, 8146 ArrayRef<SDValue> Ops) { 8147 SDVTList VTs = getVTList(ResultTys); 8148 return getMachineNode(Opcode, dl, VTs, Ops); 8149 } 8150 8151 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8152 SDVTList VTs, 8153 ArrayRef<SDValue> Ops) { 8154 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8155 MachineSDNode *N; 8156 void *IP = nullptr; 8157 8158 if (DoCSE) { 8159 FoldingSetNodeID ID; 8160 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8161 IP = nullptr; 8162 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8163 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8164 } 8165 } 8166 8167 // Allocate a new MachineSDNode. 8168 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8169 createOperands(N, Ops); 8170 8171 if (DoCSE) 8172 CSEMap.InsertNode(N, IP); 8173 8174 InsertNode(N); 8175 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8176 return N; 8177 } 8178 8179 /// getTargetExtractSubreg - A convenience function for creating 8180 /// TargetOpcode::EXTRACT_SUBREG nodes. 8181 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8182 SDValue Operand) { 8183 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8184 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8185 VT, Operand, SRIdxVal); 8186 return SDValue(Subreg, 0); 8187 } 8188 8189 /// getTargetInsertSubreg - A convenience function for creating 8190 /// TargetOpcode::INSERT_SUBREG nodes. 8191 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8192 SDValue Operand, SDValue Subreg) { 8193 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8194 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8195 VT, Operand, Subreg, SRIdxVal); 8196 return SDValue(Result, 0); 8197 } 8198 8199 /// getNodeIfExists - Get the specified node if it's already available, or 8200 /// else return NULL. 8201 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8202 ArrayRef<SDValue> Ops, 8203 const SDNodeFlags Flags) { 8204 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8205 FoldingSetNodeID ID; 8206 AddNodeIDNode(ID, Opcode, VTList, Ops); 8207 void *IP = nullptr; 8208 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8209 E->intersectFlagsWith(Flags); 8210 return E; 8211 } 8212 } 8213 return nullptr; 8214 } 8215 8216 /// getDbgValue - Creates a SDDbgValue node. 8217 /// 8218 /// SDNode 8219 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8220 SDNode *N, unsigned R, bool IsIndirect, 8221 const DebugLoc &DL, unsigned O) { 8222 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8223 "Expected inlined-at fields to agree"); 8224 return new (DbgInfo->getAlloc()) 8225 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8226 } 8227 8228 /// Constant 8229 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8230 DIExpression *Expr, 8231 const Value *C, 8232 const DebugLoc &DL, unsigned O) { 8233 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8234 "Expected inlined-at fields to agree"); 8235 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8236 } 8237 8238 /// FrameIndex 8239 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8240 DIExpression *Expr, unsigned FI, 8241 bool IsIndirect, 8242 const DebugLoc &DL, 8243 unsigned O) { 8244 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8245 "Expected inlined-at fields to agree"); 8246 return new (DbgInfo->getAlloc()) 8247 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8248 } 8249 8250 /// VReg 8251 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8252 DIExpression *Expr, 8253 unsigned VReg, bool IsIndirect, 8254 const DebugLoc &DL, unsigned O) { 8255 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8256 "Expected inlined-at fields to agree"); 8257 return new (DbgInfo->getAlloc()) 8258 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8259 } 8260 8261 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8262 unsigned OffsetInBits, unsigned SizeInBits, 8263 bool InvalidateDbg) { 8264 SDNode *FromNode = From.getNode(); 8265 SDNode *ToNode = To.getNode(); 8266 assert(FromNode && ToNode && "Can't modify dbg values"); 8267 8268 // PR35338 8269 // TODO: assert(From != To && "Redundant dbg value transfer"); 8270 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8271 if (From == To || FromNode == ToNode) 8272 return; 8273 8274 if (!FromNode->getHasDebugValue()) 8275 return; 8276 8277 SmallVector<SDDbgValue *, 2> ClonedDVs; 8278 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8279 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8280 continue; 8281 8282 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8283 8284 // Just transfer the dbg value attached to From. 8285 if (Dbg->getResNo() != From.getResNo()) 8286 continue; 8287 8288 DIVariable *Var = Dbg->getVariable(); 8289 auto *Expr = Dbg->getExpression(); 8290 // If a fragment is requested, update the expression. 8291 if (SizeInBits) { 8292 // When splitting a larger (e.g., sign-extended) value whose 8293 // lower bits are described with an SDDbgValue, do not attempt 8294 // to transfer the SDDbgValue to the upper bits. 8295 if (auto FI = Expr->getFragmentInfo()) 8296 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8297 continue; 8298 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8299 SizeInBits); 8300 if (!Fragment) 8301 continue; 8302 Expr = *Fragment; 8303 } 8304 // Clone the SDDbgValue and move it to To. 8305 SDDbgValue *Clone = getDbgValue( 8306 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8307 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8308 ClonedDVs.push_back(Clone); 8309 8310 if (InvalidateDbg) { 8311 // Invalidate value and indicate the SDDbgValue should not be emitted. 8312 Dbg->setIsInvalidated(); 8313 Dbg->setIsEmitted(); 8314 } 8315 } 8316 8317 for (SDDbgValue *Dbg : ClonedDVs) 8318 AddDbgValue(Dbg, ToNode, false); 8319 } 8320 8321 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8322 if (!N.getHasDebugValue()) 8323 return; 8324 8325 SmallVector<SDDbgValue *, 2> ClonedDVs; 8326 for (auto DV : GetDbgValues(&N)) { 8327 if (DV->isInvalidated()) 8328 continue; 8329 switch (N.getOpcode()) { 8330 default: 8331 break; 8332 case ISD::ADD: 8333 SDValue N0 = N.getOperand(0); 8334 SDValue N1 = N.getOperand(1); 8335 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8336 isConstantIntBuildVectorOrConstantInt(N1)) { 8337 uint64_t Offset = N.getConstantOperandVal(1); 8338 // Rewrite an ADD constant node into a DIExpression. Since we are 8339 // performing arithmetic to compute the variable's *value* in the 8340 // DIExpression, we need to mark the expression with a 8341 // DW_OP_stack_value. 8342 auto *DIExpr = DV->getExpression(); 8343 DIExpr = 8344 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8345 SDDbgValue *Clone = 8346 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8347 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8348 ClonedDVs.push_back(Clone); 8349 DV->setIsInvalidated(); 8350 DV->setIsEmitted(); 8351 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8352 N0.getNode()->dumprFull(this); 8353 dbgs() << " into " << *DIExpr << '\n'); 8354 } 8355 } 8356 } 8357 8358 for (SDDbgValue *Dbg : ClonedDVs) 8359 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8360 } 8361 8362 /// Creates a SDDbgLabel node. 8363 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8364 const DebugLoc &DL, unsigned O) { 8365 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8366 "Expected inlined-at fields to agree"); 8367 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8368 } 8369 8370 namespace { 8371 8372 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8373 /// pointed to by a use iterator is deleted, increment the use iterator 8374 /// so that it doesn't dangle. 8375 /// 8376 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8377 SDNode::use_iterator &UI; 8378 SDNode::use_iterator &UE; 8379 8380 void NodeDeleted(SDNode *N, SDNode *E) override { 8381 // Increment the iterator as needed. 8382 while (UI != UE && N == *UI) 8383 ++UI; 8384 } 8385 8386 public: 8387 RAUWUpdateListener(SelectionDAG &d, 8388 SDNode::use_iterator &ui, 8389 SDNode::use_iterator &ue) 8390 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8391 }; 8392 8393 } // end anonymous namespace 8394 8395 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8396 /// This can cause recursive merging of nodes in the DAG. 8397 /// 8398 /// This version assumes From has a single result value. 8399 /// 8400 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8401 SDNode *From = FromN.getNode(); 8402 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8403 "Cannot replace with this method!"); 8404 assert(From != To.getNode() && "Cannot replace uses of with self"); 8405 8406 // Preserve Debug Values 8407 transferDbgValues(FromN, To); 8408 8409 // Iterate over all the existing uses of From. New uses will be added 8410 // to the beginning of the use list, which we avoid visiting. 8411 // This specifically avoids visiting uses of From that arise while the 8412 // replacement is happening, because any such uses would be the result 8413 // of CSE: If an existing node looks like From after one of its operands 8414 // is replaced by To, we don't want to replace of all its users with To 8415 // too. See PR3018 for more info. 8416 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8417 RAUWUpdateListener Listener(*this, UI, UE); 8418 while (UI != UE) { 8419 SDNode *User = *UI; 8420 8421 // This node is about to morph, remove its old self from the CSE maps. 8422 RemoveNodeFromCSEMaps(User); 8423 8424 // A user can appear in a use list multiple times, and when this 8425 // happens the uses are usually next to each other in the list. 8426 // To help reduce the number of CSE recomputations, process all 8427 // the uses of this user that we can find this way. 8428 do { 8429 SDUse &Use = UI.getUse(); 8430 ++UI; 8431 Use.set(To); 8432 if (To->isDivergent() != From->isDivergent()) 8433 updateDivergence(User); 8434 } while (UI != UE && *UI == User); 8435 // Now that we have modified User, add it back to the CSE maps. If it 8436 // already exists there, recursively merge the results together. 8437 AddModifiedNodeToCSEMaps(User); 8438 } 8439 8440 // If we just RAUW'd the root, take note. 8441 if (FromN == getRoot()) 8442 setRoot(To); 8443 } 8444 8445 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8446 /// This can cause recursive merging of nodes in the DAG. 8447 /// 8448 /// This version assumes that for each value of From, there is a 8449 /// corresponding value in To in the same position with the same type. 8450 /// 8451 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8452 #ifndef NDEBUG 8453 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8454 assert((!From->hasAnyUseOfValue(i) || 8455 From->getValueType(i) == To->getValueType(i)) && 8456 "Cannot use this version of ReplaceAllUsesWith!"); 8457 #endif 8458 8459 // Handle the trivial case. 8460 if (From == To) 8461 return; 8462 8463 // Preserve Debug Info. Only do this if there's a use. 8464 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8465 if (From->hasAnyUseOfValue(i)) { 8466 assert((i < To->getNumValues()) && "Invalid To location"); 8467 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8468 } 8469 8470 // Iterate over just the existing users of From. See the comments in 8471 // the ReplaceAllUsesWith above. 8472 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8473 RAUWUpdateListener Listener(*this, UI, UE); 8474 while (UI != UE) { 8475 SDNode *User = *UI; 8476 8477 // This node is about to morph, remove its old self from the CSE maps. 8478 RemoveNodeFromCSEMaps(User); 8479 8480 // A user can appear in a use list multiple times, and when this 8481 // happens the uses are usually next to each other in the list. 8482 // To help reduce the number of CSE recomputations, process all 8483 // the uses of this user that we can find this way. 8484 do { 8485 SDUse &Use = UI.getUse(); 8486 ++UI; 8487 Use.setNode(To); 8488 if (To->isDivergent() != From->isDivergent()) 8489 updateDivergence(User); 8490 } while (UI != UE && *UI == User); 8491 8492 // Now that we have modified User, add it back to the CSE maps. If it 8493 // already exists there, recursively merge the results together. 8494 AddModifiedNodeToCSEMaps(User); 8495 } 8496 8497 // If we just RAUW'd the root, take note. 8498 if (From == getRoot().getNode()) 8499 setRoot(SDValue(To, getRoot().getResNo())); 8500 } 8501 8502 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8503 /// This can cause recursive merging of nodes in the DAG. 8504 /// 8505 /// This version can replace From with any result values. To must match the 8506 /// number and types of values returned by From. 8507 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8508 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8509 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8510 8511 // Preserve Debug Info. 8512 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8513 transferDbgValues(SDValue(From, i), To[i]); 8514 8515 // Iterate over just the existing users of From. See the comments in 8516 // the ReplaceAllUsesWith above. 8517 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8518 RAUWUpdateListener Listener(*this, UI, UE); 8519 while (UI != UE) { 8520 SDNode *User = *UI; 8521 8522 // This node is about to morph, remove its old self from the CSE maps. 8523 RemoveNodeFromCSEMaps(User); 8524 8525 // A user can appear in a use list multiple times, and when this happens the 8526 // uses are usually next to each other in the list. To help reduce the 8527 // number of CSE and divergence recomputations, process all the uses of this 8528 // user that we can find this way. 8529 bool To_IsDivergent = false; 8530 do { 8531 SDUse &Use = UI.getUse(); 8532 const SDValue &ToOp = To[Use.getResNo()]; 8533 ++UI; 8534 Use.set(ToOp); 8535 To_IsDivergent |= ToOp->isDivergent(); 8536 } while (UI != UE && *UI == User); 8537 8538 if (To_IsDivergent != From->isDivergent()) 8539 updateDivergence(User); 8540 8541 // Now that we have modified User, add it back to the CSE maps. If it 8542 // already exists there, recursively merge the results together. 8543 AddModifiedNodeToCSEMaps(User); 8544 } 8545 8546 // If we just RAUW'd the root, take note. 8547 if (From == getRoot().getNode()) 8548 setRoot(SDValue(To[getRoot().getResNo()])); 8549 } 8550 8551 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8552 /// uses of other values produced by From.getNode() alone. The Deleted 8553 /// vector is handled the same way as for ReplaceAllUsesWith. 8554 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8555 // Handle the really simple, really trivial case efficiently. 8556 if (From == To) return; 8557 8558 // Handle the simple, trivial, case efficiently. 8559 if (From.getNode()->getNumValues() == 1) { 8560 ReplaceAllUsesWith(From, To); 8561 return; 8562 } 8563 8564 // Preserve Debug Info. 8565 transferDbgValues(From, To); 8566 8567 // Iterate over just the existing users of From. See the comments in 8568 // the ReplaceAllUsesWith above. 8569 SDNode::use_iterator UI = From.getNode()->use_begin(), 8570 UE = From.getNode()->use_end(); 8571 RAUWUpdateListener Listener(*this, UI, UE); 8572 while (UI != UE) { 8573 SDNode *User = *UI; 8574 bool UserRemovedFromCSEMaps = false; 8575 8576 // A user can appear in a use list multiple times, and when this 8577 // happens the uses are usually next to each other in the list. 8578 // To help reduce the number of CSE recomputations, process all 8579 // the uses of this user that we can find this way. 8580 do { 8581 SDUse &Use = UI.getUse(); 8582 8583 // Skip uses of different values from the same node. 8584 if (Use.getResNo() != From.getResNo()) { 8585 ++UI; 8586 continue; 8587 } 8588 8589 // If this node hasn't been modified yet, it's still in the CSE maps, 8590 // so remove its old self from the CSE maps. 8591 if (!UserRemovedFromCSEMaps) { 8592 RemoveNodeFromCSEMaps(User); 8593 UserRemovedFromCSEMaps = true; 8594 } 8595 8596 ++UI; 8597 Use.set(To); 8598 if (To->isDivergent() != From->isDivergent()) 8599 updateDivergence(User); 8600 } while (UI != UE && *UI == User); 8601 // We are iterating over all uses of the From node, so if a use 8602 // doesn't use the specific value, no changes are made. 8603 if (!UserRemovedFromCSEMaps) 8604 continue; 8605 8606 // Now that we have modified User, add it back to the CSE maps. If it 8607 // already exists there, recursively merge the results together. 8608 AddModifiedNodeToCSEMaps(User); 8609 } 8610 8611 // If we just RAUW'd the root, take note. 8612 if (From == getRoot()) 8613 setRoot(To); 8614 } 8615 8616 namespace { 8617 8618 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8619 /// to record information about a use. 8620 struct UseMemo { 8621 SDNode *User; 8622 unsigned Index; 8623 SDUse *Use; 8624 }; 8625 8626 /// operator< - Sort Memos by User. 8627 bool operator<(const UseMemo &L, const UseMemo &R) { 8628 return (intptr_t)L.User < (intptr_t)R.User; 8629 } 8630 8631 } // end anonymous namespace 8632 8633 void SelectionDAG::updateDivergence(SDNode * N) 8634 { 8635 if (TLI->isSDNodeAlwaysUniform(N)) 8636 return; 8637 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8638 for (auto &Op : N->ops()) { 8639 if (Op.Val.getValueType() != MVT::Other) 8640 IsDivergent |= Op.getNode()->isDivergent(); 8641 } 8642 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8643 N->SDNodeBits.IsDivergent = IsDivergent; 8644 for (auto U : N->uses()) { 8645 updateDivergence(U); 8646 } 8647 } 8648 } 8649 8650 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8651 DenseMap<SDNode *, unsigned> Degree; 8652 Order.reserve(AllNodes.size()); 8653 for (auto &N : allnodes()) { 8654 unsigned NOps = N.getNumOperands(); 8655 Degree[&N] = NOps; 8656 if (0 == NOps) 8657 Order.push_back(&N); 8658 } 8659 for (size_t I = 0; I != Order.size(); ++I) { 8660 SDNode *N = Order[I]; 8661 for (auto U : N->uses()) { 8662 unsigned &UnsortedOps = Degree[U]; 8663 if (0 == --UnsortedOps) 8664 Order.push_back(U); 8665 } 8666 } 8667 } 8668 8669 #ifndef NDEBUG 8670 void SelectionDAG::VerifyDAGDiverence() { 8671 std::vector<SDNode *> TopoOrder; 8672 CreateTopologicalOrder(TopoOrder); 8673 const TargetLowering &TLI = getTargetLoweringInfo(); 8674 DenseMap<const SDNode *, bool> DivergenceMap; 8675 for (auto &N : allnodes()) { 8676 DivergenceMap[&N] = false; 8677 } 8678 for (auto N : TopoOrder) { 8679 bool IsDivergent = DivergenceMap[N]; 8680 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8681 for (auto &Op : N->ops()) { 8682 if (Op.Val.getValueType() != MVT::Other) 8683 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8684 } 8685 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8686 DivergenceMap[N] = true; 8687 } 8688 } 8689 for (auto &N : allnodes()) { 8690 (void)N; 8691 assert(DivergenceMap[&N] == N.isDivergent() && 8692 "Divergence bit inconsistency detected\n"); 8693 } 8694 } 8695 #endif 8696 8697 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8698 /// uses of other values produced by From.getNode() alone. The same value 8699 /// may appear in both the From and To list. The Deleted vector is 8700 /// handled the same way as for ReplaceAllUsesWith. 8701 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8702 const SDValue *To, 8703 unsigned Num){ 8704 // Handle the simple, trivial case efficiently. 8705 if (Num == 1) 8706 return ReplaceAllUsesOfValueWith(*From, *To); 8707 8708 transferDbgValues(*From, *To); 8709 8710 // Read up all the uses and make records of them. This helps 8711 // processing new uses that are introduced during the 8712 // replacement process. 8713 SmallVector<UseMemo, 4> Uses; 8714 for (unsigned i = 0; i != Num; ++i) { 8715 unsigned FromResNo = From[i].getResNo(); 8716 SDNode *FromNode = From[i].getNode(); 8717 for (SDNode::use_iterator UI = FromNode->use_begin(), 8718 E = FromNode->use_end(); UI != E; ++UI) { 8719 SDUse &Use = UI.getUse(); 8720 if (Use.getResNo() == FromResNo) { 8721 UseMemo Memo = { *UI, i, &Use }; 8722 Uses.push_back(Memo); 8723 } 8724 } 8725 } 8726 8727 // Sort the uses, so that all the uses from a given User are together. 8728 llvm::sort(Uses); 8729 8730 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8731 UseIndex != UseIndexEnd; ) { 8732 // We know that this user uses some value of From. If it is the right 8733 // value, update it. 8734 SDNode *User = Uses[UseIndex].User; 8735 8736 // This node is about to morph, remove its old self from the CSE maps. 8737 RemoveNodeFromCSEMaps(User); 8738 8739 // The Uses array is sorted, so all the uses for a given User 8740 // are next to each other in the list. 8741 // To help reduce the number of CSE recomputations, process all 8742 // the uses of this user that we can find this way. 8743 do { 8744 unsigned i = Uses[UseIndex].Index; 8745 SDUse &Use = *Uses[UseIndex].Use; 8746 ++UseIndex; 8747 8748 Use.set(To[i]); 8749 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8750 8751 // Now that we have modified User, add it back to the CSE maps. If it 8752 // already exists there, recursively merge the results together. 8753 AddModifiedNodeToCSEMaps(User); 8754 } 8755 } 8756 8757 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8758 /// based on their topological order. It returns the maximum id and a vector 8759 /// of the SDNodes* in assigned order by reference. 8760 unsigned SelectionDAG::AssignTopologicalOrder() { 8761 unsigned DAGSize = 0; 8762 8763 // SortedPos tracks the progress of the algorithm. Nodes before it are 8764 // sorted, nodes after it are unsorted. When the algorithm completes 8765 // it is at the end of the list. 8766 allnodes_iterator SortedPos = allnodes_begin(); 8767 8768 // Visit all the nodes. Move nodes with no operands to the front of 8769 // the list immediately. Annotate nodes that do have operands with their 8770 // operand count. Before we do this, the Node Id fields of the nodes 8771 // may contain arbitrary values. After, the Node Id fields for nodes 8772 // before SortedPos will contain the topological sort index, and the 8773 // Node Id fields for nodes At SortedPos and after will contain the 8774 // count of outstanding operands. 8775 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8776 SDNode *N = &*I++; 8777 checkForCycles(N, this); 8778 unsigned Degree = N->getNumOperands(); 8779 if (Degree == 0) { 8780 // A node with no uses, add it to the result array immediately. 8781 N->setNodeId(DAGSize++); 8782 allnodes_iterator Q(N); 8783 if (Q != SortedPos) 8784 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8785 assert(SortedPos != AllNodes.end() && "Overran node list"); 8786 ++SortedPos; 8787 } else { 8788 // Temporarily use the Node Id as scratch space for the degree count. 8789 N->setNodeId(Degree); 8790 } 8791 } 8792 8793 // Visit all the nodes. As we iterate, move nodes into sorted order, 8794 // such that by the time the end is reached all nodes will be sorted. 8795 for (SDNode &Node : allnodes()) { 8796 SDNode *N = &Node; 8797 checkForCycles(N, this); 8798 // N is in sorted position, so all its uses have one less operand 8799 // that needs to be sorted. 8800 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8801 UI != UE; ++UI) { 8802 SDNode *P = *UI; 8803 unsigned Degree = P->getNodeId(); 8804 assert(Degree != 0 && "Invalid node degree"); 8805 --Degree; 8806 if (Degree == 0) { 8807 // All of P's operands are sorted, so P may sorted now. 8808 P->setNodeId(DAGSize++); 8809 if (P->getIterator() != SortedPos) 8810 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8811 assert(SortedPos != AllNodes.end() && "Overran node list"); 8812 ++SortedPos; 8813 } else { 8814 // Update P's outstanding operand count. 8815 P->setNodeId(Degree); 8816 } 8817 } 8818 if (Node.getIterator() == SortedPos) { 8819 #ifndef NDEBUG 8820 allnodes_iterator I(N); 8821 SDNode *S = &*++I; 8822 dbgs() << "Overran sorted position:\n"; 8823 S->dumprFull(this); dbgs() << "\n"; 8824 dbgs() << "Checking if this is due to cycles\n"; 8825 checkForCycles(this, true); 8826 #endif 8827 llvm_unreachable(nullptr); 8828 } 8829 } 8830 8831 assert(SortedPos == AllNodes.end() && 8832 "Topological sort incomplete!"); 8833 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8834 "First node in topological sort is not the entry token!"); 8835 assert(AllNodes.front().getNodeId() == 0 && 8836 "First node in topological sort has non-zero id!"); 8837 assert(AllNodes.front().getNumOperands() == 0 && 8838 "First node in topological sort has operands!"); 8839 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8840 "Last node in topologic sort has unexpected id!"); 8841 assert(AllNodes.back().use_empty() && 8842 "Last node in topologic sort has users!"); 8843 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8844 return DAGSize; 8845 } 8846 8847 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8848 /// value is produced by SD. 8849 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8850 if (SD) { 8851 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8852 SD->setHasDebugValue(true); 8853 } 8854 DbgInfo->add(DB, SD, isParameter); 8855 } 8856 8857 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8858 DbgInfo->add(DB); 8859 } 8860 8861 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8862 SDValue NewMemOp) { 8863 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8864 // The new memory operation must have the same position as the old load in 8865 // terms of memory dependency. Create a TokenFactor for the old load and new 8866 // memory operation and update uses of the old load's output chain to use that 8867 // TokenFactor. 8868 SDValue OldChain = SDValue(OldLoad, 1); 8869 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8870 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8871 return NewChain; 8872 8873 SDValue TokenFactor = 8874 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8875 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8876 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8877 return TokenFactor; 8878 } 8879 8880 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8881 Function **OutFunction) { 8882 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8883 8884 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8885 auto *Module = MF->getFunction().getParent(); 8886 auto *Function = Module->getFunction(Symbol); 8887 8888 if (OutFunction != nullptr) 8889 *OutFunction = Function; 8890 8891 if (Function != nullptr) { 8892 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8893 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8894 } 8895 8896 std::string ErrorStr; 8897 raw_string_ostream ErrorFormatter(ErrorStr); 8898 8899 ErrorFormatter << "Undefined external symbol "; 8900 ErrorFormatter << '"' << Symbol << '"'; 8901 ErrorFormatter.flush(); 8902 8903 report_fatal_error(ErrorStr); 8904 } 8905 8906 //===----------------------------------------------------------------------===// 8907 // SDNode Class 8908 //===----------------------------------------------------------------------===// 8909 8910 bool llvm::isNullConstant(SDValue V) { 8911 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8912 return Const != nullptr && Const->isNullValue(); 8913 } 8914 8915 bool llvm::isNullFPConstant(SDValue V) { 8916 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8917 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8918 } 8919 8920 bool llvm::isAllOnesConstant(SDValue V) { 8921 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8922 return Const != nullptr && Const->isAllOnesValue(); 8923 } 8924 8925 bool llvm::isOneConstant(SDValue V) { 8926 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8927 return Const != nullptr && Const->isOne(); 8928 } 8929 8930 SDValue llvm::peekThroughBitcasts(SDValue V) { 8931 while (V.getOpcode() == ISD::BITCAST) 8932 V = V.getOperand(0); 8933 return V; 8934 } 8935 8936 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8937 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8938 V = V.getOperand(0); 8939 return V; 8940 } 8941 8942 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8943 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8944 V = V.getOperand(0); 8945 return V; 8946 } 8947 8948 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 8949 if (V.getOpcode() != ISD::XOR) 8950 return false; 8951 V = peekThroughBitcasts(V.getOperand(1)); 8952 unsigned NumBits = V.getScalarValueSizeInBits(); 8953 ConstantSDNode *C = 8954 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 8955 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 8956 } 8957 8958 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 8959 bool AllowTruncation) { 8960 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8961 return CN; 8962 8963 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8964 BitVector UndefElements; 8965 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8966 8967 // BuildVectors can truncate their operands. Ignore that case here unless 8968 // AllowTruncation is set. 8969 if (CN && (UndefElements.none() || AllowUndefs)) { 8970 EVT CVT = CN->getValueType(0); 8971 EVT NSVT = N.getValueType().getScalarType(); 8972 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8973 if (AllowTruncation || (CVT == NSVT)) 8974 return CN; 8975 } 8976 } 8977 8978 return nullptr; 8979 } 8980 8981 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 8982 bool AllowUndefs, 8983 bool AllowTruncation) { 8984 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8985 return CN; 8986 8987 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8988 BitVector UndefElements; 8989 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 8990 8991 // BuildVectors can truncate their operands. Ignore that case here unless 8992 // AllowTruncation is set. 8993 if (CN && (UndefElements.none() || AllowUndefs)) { 8994 EVT CVT = CN->getValueType(0); 8995 EVT NSVT = N.getValueType().getScalarType(); 8996 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8997 if (AllowTruncation || (CVT == NSVT)) 8998 return CN; 8999 } 9000 } 9001 9002 return nullptr; 9003 } 9004 9005 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9006 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9007 return CN; 9008 9009 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9010 BitVector UndefElements; 9011 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9012 if (CN && (UndefElements.none() || AllowUndefs)) 9013 return CN; 9014 } 9015 9016 return nullptr; 9017 } 9018 9019 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9020 const APInt &DemandedElts, 9021 bool AllowUndefs) { 9022 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9023 return CN; 9024 9025 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9026 BitVector UndefElements; 9027 ConstantFPSDNode *CN = 9028 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9029 if (CN && (UndefElements.none() || AllowUndefs)) 9030 return CN; 9031 } 9032 9033 return nullptr; 9034 } 9035 9036 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9037 // TODO: may want to use peekThroughBitcast() here. 9038 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9039 return C && C->isNullValue(); 9040 } 9041 9042 bool llvm::isOneOrOneSplat(SDValue N) { 9043 // TODO: may want to use peekThroughBitcast() here. 9044 unsigned BitWidth = N.getScalarValueSizeInBits(); 9045 ConstantSDNode *C = isConstOrConstSplat(N); 9046 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9047 } 9048 9049 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 9050 N = peekThroughBitcasts(N); 9051 unsigned BitWidth = N.getScalarValueSizeInBits(); 9052 ConstantSDNode *C = isConstOrConstSplat(N); 9053 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9054 } 9055 9056 HandleSDNode::~HandleSDNode() { 9057 DropOperands(); 9058 } 9059 9060 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9061 const DebugLoc &DL, 9062 const GlobalValue *GA, EVT VT, 9063 int64_t o, unsigned TF) 9064 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9065 TheGlobal = GA; 9066 } 9067 9068 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9069 EVT VT, unsigned SrcAS, 9070 unsigned DestAS) 9071 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9072 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9073 9074 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9075 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9076 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9077 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9078 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9079 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9080 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9081 9082 // We check here that the size of the memory operand fits within the size of 9083 // the MMO. This is because the MMO might indicate only a possible address 9084 // range instead of specifying the affected memory addresses precisely. 9085 // TODO: Make MachineMemOperands aware of scalable vectors. 9086 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9087 "Size mismatch!"); 9088 } 9089 9090 /// Profile - Gather unique data for the node. 9091 /// 9092 void SDNode::Profile(FoldingSetNodeID &ID) const { 9093 AddNodeIDNode(ID, this); 9094 } 9095 9096 namespace { 9097 9098 struct EVTArray { 9099 std::vector<EVT> VTs; 9100 9101 EVTArray() { 9102 VTs.reserve(MVT::LAST_VALUETYPE); 9103 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9104 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9105 } 9106 }; 9107 9108 } // end anonymous namespace 9109 9110 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9111 static ManagedStatic<EVTArray> SimpleVTArray; 9112 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9113 9114 /// getValueTypeList - Return a pointer to the specified value type. 9115 /// 9116 const EVT *SDNode::getValueTypeList(EVT VT) { 9117 if (VT.isExtended()) { 9118 sys::SmartScopedLock<true> Lock(*VTMutex); 9119 return &(*EVTs->insert(VT).first); 9120 } else { 9121 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9122 "Value type out of range!"); 9123 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9124 } 9125 } 9126 9127 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9128 /// indicated value. This method ignores uses of other values defined by this 9129 /// operation. 9130 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9131 assert(Value < getNumValues() && "Bad value!"); 9132 9133 // TODO: Only iterate over uses of a given value of the node 9134 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9135 if (UI.getUse().getResNo() == Value) { 9136 if (NUses == 0) 9137 return false; 9138 --NUses; 9139 } 9140 } 9141 9142 // Found exactly the right number of uses? 9143 return NUses == 0; 9144 } 9145 9146 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9147 /// value. This method ignores uses of other values defined by this operation. 9148 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9149 assert(Value < getNumValues() && "Bad value!"); 9150 9151 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9152 if (UI.getUse().getResNo() == Value) 9153 return true; 9154 9155 return false; 9156 } 9157 9158 /// isOnlyUserOf - Return true if this node is the only use of N. 9159 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9160 bool Seen = false; 9161 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9162 SDNode *User = *I; 9163 if (User == this) 9164 Seen = true; 9165 else 9166 return false; 9167 } 9168 9169 return Seen; 9170 } 9171 9172 /// Return true if the only users of N are contained in Nodes. 9173 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9174 bool Seen = false; 9175 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9176 SDNode *User = *I; 9177 if (llvm::any_of(Nodes, 9178 [&User](const SDNode *Node) { return User == Node; })) 9179 Seen = true; 9180 else 9181 return false; 9182 } 9183 9184 return Seen; 9185 } 9186 9187 /// isOperand - Return true if this node is an operand of N. 9188 bool SDValue::isOperandOf(const SDNode *N) const { 9189 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9190 } 9191 9192 bool SDNode::isOperandOf(const SDNode *N) const { 9193 return any_of(N->op_values(), 9194 [this](SDValue Op) { return this == Op.getNode(); }); 9195 } 9196 9197 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9198 /// be a chain) reaches the specified operand without crossing any 9199 /// side-effecting instructions on any chain path. In practice, this looks 9200 /// through token factors and non-volatile loads. In order to remain efficient, 9201 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9202 /// 9203 /// Note that we only need to examine chains when we're searching for 9204 /// side-effects; SelectionDAG requires that all side-effects are represented 9205 /// by chains, even if another operand would force a specific ordering. This 9206 /// constraint is necessary to allow transformations like splitting loads. 9207 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9208 unsigned Depth) const { 9209 if (*this == Dest) return true; 9210 9211 // Don't search too deeply, we just want to be able to see through 9212 // TokenFactor's etc. 9213 if (Depth == 0) return false; 9214 9215 // If this is a token factor, all inputs to the TF happen in parallel. 9216 if (getOpcode() == ISD::TokenFactor) { 9217 // First, try a shallow search. 9218 if (is_contained((*this)->ops(), Dest)) { 9219 // We found the chain we want as an operand of this TokenFactor. 9220 // Essentially, we reach the chain without side-effects if we could 9221 // serialize the TokenFactor into a simple chain of operations with 9222 // Dest as the last operation. This is automatically true if the 9223 // chain has one use: there are no other ordering constraints. 9224 // If the chain has more than one use, we give up: some other 9225 // use of Dest might force a side-effect between Dest and the current 9226 // node. 9227 if (Dest.hasOneUse()) 9228 return true; 9229 } 9230 // Next, try a deep search: check whether every operand of the TokenFactor 9231 // reaches Dest. 9232 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9233 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9234 }); 9235 } 9236 9237 // Loads don't have side effects, look through them. 9238 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9239 if (Ld->isUnordered()) 9240 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9241 } 9242 return false; 9243 } 9244 9245 bool SDNode::hasPredecessor(const SDNode *N) const { 9246 SmallPtrSet<const SDNode *, 32> Visited; 9247 SmallVector<const SDNode *, 16> Worklist; 9248 Worklist.push_back(this); 9249 return hasPredecessorHelper(N, Visited, Worklist); 9250 } 9251 9252 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9253 this->Flags.intersectWith(Flags); 9254 } 9255 9256 SDValue 9257 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9258 ArrayRef<ISD::NodeType> CandidateBinOps, 9259 bool AllowPartials) { 9260 // The pattern must end in an extract from index 0. 9261 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9262 !isNullConstant(Extract->getOperand(1))) 9263 return SDValue(); 9264 9265 // Match against one of the candidate binary ops. 9266 SDValue Op = Extract->getOperand(0); 9267 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9268 return Op.getOpcode() == unsigned(BinOp); 9269 })) 9270 return SDValue(); 9271 9272 // Floating-point reductions may require relaxed constraints on the final step 9273 // of the reduction because they may reorder intermediate operations. 9274 unsigned CandidateBinOp = Op.getOpcode(); 9275 if (Op.getValueType().isFloatingPoint()) { 9276 SDNodeFlags Flags = Op->getFlags(); 9277 switch (CandidateBinOp) { 9278 case ISD::FADD: 9279 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9280 return SDValue(); 9281 break; 9282 default: 9283 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9284 } 9285 } 9286 9287 // Matching failed - attempt to see if we did enough stages that a partial 9288 // reduction from a subvector is possible. 9289 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9290 if (!AllowPartials || !Op) 9291 return SDValue(); 9292 EVT OpVT = Op.getValueType(); 9293 EVT OpSVT = OpVT.getScalarType(); 9294 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9295 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9296 return SDValue(); 9297 BinOp = (ISD::NodeType)CandidateBinOp; 9298 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9299 getVectorIdxConstant(0, SDLoc(Op))); 9300 }; 9301 9302 // At each stage, we're looking for something that looks like: 9303 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9304 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9305 // i32 undef, i32 undef, i32 undef, i32 undef> 9306 // %a = binop <8 x i32> %op, %s 9307 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9308 // we expect something like: 9309 // <4,5,6,7,u,u,u,u> 9310 // <2,3,u,u,u,u,u,u> 9311 // <1,u,u,u,u,u,u,u> 9312 // While a partial reduction match would be: 9313 // <2,3,u,u,u,u,u,u> 9314 // <1,u,u,u,u,u,u,u> 9315 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9316 SDValue PrevOp; 9317 for (unsigned i = 0; i < Stages; ++i) { 9318 unsigned MaskEnd = (1 << i); 9319 9320 if (Op.getOpcode() != CandidateBinOp) 9321 return PartialReduction(PrevOp, MaskEnd); 9322 9323 SDValue Op0 = Op.getOperand(0); 9324 SDValue Op1 = Op.getOperand(1); 9325 9326 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9327 if (Shuffle) { 9328 Op = Op1; 9329 } else { 9330 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9331 Op = Op0; 9332 } 9333 9334 // The first operand of the shuffle should be the same as the other operand 9335 // of the binop. 9336 if (!Shuffle || Shuffle->getOperand(0) != Op) 9337 return PartialReduction(PrevOp, MaskEnd); 9338 9339 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9340 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9341 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9342 return PartialReduction(PrevOp, MaskEnd); 9343 9344 PrevOp = Op; 9345 } 9346 9347 BinOp = (ISD::NodeType)CandidateBinOp; 9348 return Op; 9349 } 9350 9351 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9352 assert(N->getNumValues() == 1 && 9353 "Can't unroll a vector with multiple results!"); 9354 9355 EVT VT = N->getValueType(0); 9356 unsigned NE = VT.getVectorNumElements(); 9357 EVT EltVT = VT.getVectorElementType(); 9358 SDLoc dl(N); 9359 9360 SmallVector<SDValue, 8> Scalars; 9361 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9362 9363 // If ResNE is 0, fully unroll the vector op. 9364 if (ResNE == 0) 9365 ResNE = NE; 9366 else if (NE > ResNE) 9367 NE = ResNE; 9368 9369 unsigned i; 9370 for (i= 0; i != NE; ++i) { 9371 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9372 SDValue Operand = N->getOperand(j); 9373 EVT OperandVT = Operand.getValueType(); 9374 if (OperandVT.isVector()) { 9375 // A vector operand; extract a single element. 9376 EVT OperandEltVT = OperandVT.getVectorElementType(); 9377 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9378 Operand, getVectorIdxConstant(i, dl)); 9379 } else { 9380 // A scalar operand; just use it as is. 9381 Operands[j] = Operand; 9382 } 9383 } 9384 9385 switch (N->getOpcode()) { 9386 default: { 9387 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9388 N->getFlags())); 9389 break; 9390 } 9391 case ISD::VSELECT: 9392 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9393 break; 9394 case ISD::SHL: 9395 case ISD::SRA: 9396 case ISD::SRL: 9397 case ISD::ROTL: 9398 case ISD::ROTR: 9399 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9400 getShiftAmountOperand(Operands[0].getValueType(), 9401 Operands[1]))); 9402 break; 9403 case ISD::SIGN_EXTEND_INREG: { 9404 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9405 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9406 Operands[0], 9407 getValueType(ExtVT))); 9408 } 9409 } 9410 } 9411 9412 for (; i < ResNE; ++i) 9413 Scalars.push_back(getUNDEF(EltVT)); 9414 9415 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9416 return getBuildVector(VecVT, dl, Scalars); 9417 } 9418 9419 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9420 SDNode *N, unsigned ResNE) { 9421 unsigned Opcode = N->getOpcode(); 9422 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9423 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9424 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9425 "Expected an overflow opcode"); 9426 9427 EVT ResVT = N->getValueType(0); 9428 EVT OvVT = N->getValueType(1); 9429 EVT ResEltVT = ResVT.getVectorElementType(); 9430 EVT OvEltVT = OvVT.getVectorElementType(); 9431 SDLoc dl(N); 9432 9433 // If ResNE is 0, fully unroll the vector op. 9434 unsigned NE = ResVT.getVectorNumElements(); 9435 if (ResNE == 0) 9436 ResNE = NE; 9437 else if (NE > ResNE) 9438 NE = ResNE; 9439 9440 SmallVector<SDValue, 8> LHSScalars; 9441 SmallVector<SDValue, 8> RHSScalars; 9442 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9443 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9444 9445 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9446 SDVTList VTs = getVTList(ResEltVT, SVT); 9447 SmallVector<SDValue, 8> ResScalars; 9448 SmallVector<SDValue, 8> OvScalars; 9449 for (unsigned i = 0; i < NE; ++i) { 9450 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9451 SDValue Ov = 9452 getSelect(dl, OvEltVT, Res.getValue(1), 9453 getBoolConstant(true, dl, OvEltVT, ResVT), 9454 getConstant(0, dl, OvEltVT)); 9455 9456 ResScalars.push_back(Res); 9457 OvScalars.push_back(Ov); 9458 } 9459 9460 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9461 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9462 9463 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9464 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9465 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9466 getBuildVector(NewOvVT, dl, OvScalars)); 9467 } 9468 9469 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9470 LoadSDNode *Base, 9471 unsigned Bytes, 9472 int Dist) const { 9473 if (LD->isVolatile() || Base->isVolatile()) 9474 return false; 9475 // TODO: probably too restrictive for atomics, revisit 9476 if (!LD->isSimple()) 9477 return false; 9478 if (LD->isIndexed() || Base->isIndexed()) 9479 return false; 9480 if (LD->getChain() != Base->getChain()) 9481 return false; 9482 EVT VT = LD->getValueType(0); 9483 if (VT.getSizeInBits() / 8 != Bytes) 9484 return false; 9485 9486 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9487 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9488 9489 int64_t Offset = 0; 9490 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9491 return (Dist * Bytes == Offset); 9492 return false; 9493 } 9494 9495 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9496 /// if it cannot be inferred. 9497 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9498 // If this is a GlobalAddress + cst, return the alignment. 9499 const GlobalValue *GV = nullptr; 9500 int64_t GVOffset = 0; 9501 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9502 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9503 KnownBits Known(PtrWidth); 9504 llvm::computeKnownBits(GV, Known, getDataLayout()); 9505 unsigned AlignBits = Known.countMinTrailingZeros(); 9506 if (AlignBits) 9507 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9508 } 9509 9510 // If this is a direct reference to a stack slot, use information about the 9511 // stack slot's alignment. 9512 int FrameIdx = INT_MIN; 9513 int64_t FrameOffset = 0; 9514 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9515 FrameIdx = FI->getIndex(); 9516 } else if (isBaseWithConstantOffset(Ptr) && 9517 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9518 // Handle FI+Cst 9519 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9520 FrameOffset = Ptr.getConstantOperandVal(1); 9521 } 9522 9523 if (FrameIdx != INT_MIN) { 9524 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9525 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9526 } 9527 9528 return None; 9529 } 9530 9531 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9532 /// which is split (or expanded) into two not necessarily identical pieces. 9533 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9534 // Currently all types are split in half. 9535 EVT LoVT, HiVT; 9536 if (!VT.isVector()) 9537 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9538 else 9539 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9540 9541 return std::make_pair(LoVT, HiVT); 9542 } 9543 9544 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9545 /// type, dependent on an enveloping VT that has been split into two identical 9546 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9547 std::pair<EVT, EVT> 9548 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9549 bool *HiIsEmpty) const { 9550 EVT EltTp = VT.getVectorElementType(); 9551 bool IsScalable = VT.isScalableVector(); 9552 // Examples: 9553 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9554 // custom VL=9 with enveloping VL=8/8 yields 8/1 9555 // custom VL=10 with enveloping VL=8/8 yields 8/2 9556 // etc. 9557 unsigned VTNumElts = VT.getVectorNumElements(); 9558 unsigned EnvNumElts = EnvVT.getVectorNumElements(); 9559 EVT LoVT, HiVT; 9560 if (VTNumElts > EnvNumElts) { 9561 LoVT = EnvVT; 9562 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts, 9563 IsScalable); 9564 *HiIsEmpty = false; 9565 } else { 9566 // Flag that hi type has zero storage size, but return split envelop type 9567 // (this would be easier if vector types with zero elements were allowed). 9568 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts, IsScalable); 9569 HiVT = EnvVT; 9570 *HiIsEmpty = true; 9571 } 9572 return std::make_pair(LoVT, HiVT); 9573 } 9574 9575 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9576 /// low/high part. 9577 std::pair<SDValue, SDValue> 9578 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9579 const EVT &HiVT) { 9580 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9581 N.getValueType().getVectorNumElements() && 9582 "More vector elements requested than available!"); 9583 SDValue Lo, Hi; 9584 Lo = 9585 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9586 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9587 getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 9588 return std::make_pair(Lo, Hi); 9589 } 9590 9591 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9592 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9593 EVT VT = N.getValueType(); 9594 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9595 NextPowerOf2(VT.getVectorNumElements())); 9596 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9597 getVectorIdxConstant(0, DL)); 9598 } 9599 9600 void SelectionDAG::ExtractVectorElements(SDValue Op, 9601 SmallVectorImpl<SDValue> &Args, 9602 unsigned Start, unsigned Count, 9603 EVT EltVT) { 9604 EVT VT = Op.getValueType(); 9605 if (Count == 0) 9606 Count = VT.getVectorNumElements(); 9607 if (EltVT == EVT()) 9608 EltVT = VT.getVectorElementType(); 9609 SDLoc SL(Op); 9610 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9611 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9612 getVectorIdxConstant(i, SL))); 9613 } 9614 } 9615 9616 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9617 unsigned GlobalAddressSDNode::getAddressSpace() const { 9618 return getGlobal()->getType()->getAddressSpace(); 9619 } 9620 9621 Type *ConstantPoolSDNode::getType() const { 9622 if (isMachineConstantPoolEntry()) 9623 return Val.MachineCPVal->getType(); 9624 return Val.ConstVal->getType(); 9625 } 9626 9627 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9628 unsigned &SplatBitSize, 9629 bool &HasAnyUndefs, 9630 unsigned MinSplatBits, 9631 bool IsBigEndian) const { 9632 EVT VT = getValueType(0); 9633 assert(VT.isVector() && "Expected a vector type"); 9634 unsigned VecWidth = VT.getSizeInBits(); 9635 if (MinSplatBits > VecWidth) 9636 return false; 9637 9638 // FIXME: The widths are based on this node's type, but build vectors can 9639 // truncate their operands. 9640 SplatValue = APInt(VecWidth, 0); 9641 SplatUndef = APInt(VecWidth, 0); 9642 9643 // Get the bits. Bits with undefined values (when the corresponding element 9644 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9645 // in SplatValue. If any of the values are not constant, give up and return 9646 // false. 9647 unsigned int NumOps = getNumOperands(); 9648 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9649 unsigned EltWidth = VT.getScalarSizeInBits(); 9650 9651 for (unsigned j = 0; j < NumOps; ++j) { 9652 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9653 SDValue OpVal = getOperand(i); 9654 unsigned BitPos = j * EltWidth; 9655 9656 if (OpVal.isUndef()) 9657 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9658 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9659 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9660 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9661 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9662 else 9663 return false; 9664 } 9665 9666 // The build_vector is all constants or undefs. Find the smallest element 9667 // size that splats the vector. 9668 HasAnyUndefs = (SplatUndef != 0); 9669 9670 // FIXME: This does not work for vectors with elements less than 8 bits. 9671 while (VecWidth > 8) { 9672 unsigned HalfSize = VecWidth / 2; 9673 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9674 APInt LowValue = SplatValue.trunc(HalfSize); 9675 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9676 APInt LowUndef = SplatUndef.trunc(HalfSize); 9677 9678 // If the two halves do not match (ignoring undef bits), stop here. 9679 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9680 MinSplatBits > HalfSize) 9681 break; 9682 9683 SplatValue = HighValue | LowValue; 9684 SplatUndef = HighUndef & LowUndef; 9685 9686 VecWidth = HalfSize; 9687 } 9688 9689 SplatBitSize = VecWidth; 9690 return true; 9691 } 9692 9693 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9694 BitVector *UndefElements) const { 9695 if (UndefElements) { 9696 UndefElements->clear(); 9697 UndefElements->resize(getNumOperands()); 9698 } 9699 assert(getNumOperands() == DemandedElts.getBitWidth() && 9700 "Unexpected vector size"); 9701 if (!DemandedElts) 9702 return SDValue(); 9703 SDValue Splatted; 9704 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9705 if (!DemandedElts[i]) 9706 continue; 9707 SDValue Op = getOperand(i); 9708 if (Op.isUndef()) { 9709 if (UndefElements) 9710 (*UndefElements)[i] = true; 9711 } else if (!Splatted) { 9712 Splatted = Op; 9713 } else if (Splatted != Op) { 9714 return SDValue(); 9715 } 9716 } 9717 9718 if (!Splatted) { 9719 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9720 assert(getOperand(FirstDemandedIdx).isUndef() && 9721 "Can only have a splat without a constant for all undefs."); 9722 return getOperand(FirstDemandedIdx); 9723 } 9724 9725 return Splatted; 9726 } 9727 9728 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9729 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9730 return getSplatValue(DemandedElts, UndefElements); 9731 } 9732 9733 ConstantSDNode * 9734 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9735 BitVector *UndefElements) const { 9736 return dyn_cast_or_null<ConstantSDNode>( 9737 getSplatValue(DemandedElts, UndefElements)); 9738 } 9739 9740 ConstantSDNode * 9741 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9742 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9743 } 9744 9745 ConstantFPSDNode * 9746 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9747 BitVector *UndefElements) const { 9748 return dyn_cast_or_null<ConstantFPSDNode>( 9749 getSplatValue(DemandedElts, UndefElements)); 9750 } 9751 9752 ConstantFPSDNode * 9753 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9754 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9755 } 9756 9757 int32_t 9758 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9759 uint32_t BitWidth) const { 9760 if (ConstantFPSDNode *CN = 9761 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9762 bool IsExact; 9763 APSInt IntVal(BitWidth); 9764 const APFloat &APF = CN->getValueAPF(); 9765 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9766 APFloat::opOK || 9767 !IsExact) 9768 return -1; 9769 9770 return IntVal.exactLogBase2(); 9771 } 9772 return -1; 9773 } 9774 9775 bool BuildVectorSDNode::isConstant() const { 9776 for (const SDValue &Op : op_values()) { 9777 unsigned Opc = Op.getOpcode(); 9778 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9779 return false; 9780 } 9781 return true; 9782 } 9783 9784 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9785 // Find the first non-undef value in the shuffle mask. 9786 unsigned i, e; 9787 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9788 /* search */; 9789 9790 // If all elements are undefined, this shuffle can be considered a splat 9791 // (although it should eventually get simplified away completely). 9792 if (i == e) 9793 return true; 9794 9795 // Make sure all remaining elements are either undef or the same as the first 9796 // non-undef value. 9797 for (int Idx = Mask[i]; i != e; ++i) 9798 if (Mask[i] >= 0 && Mask[i] != Idx) 9799 return false; 9800 return true; 9801 } 9802 9803 // Returns the SDNode if it is a constant integer BuildVector 9804 // or constant integer. 9805 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9806 if (isa<ConstantSDNode>(N)) 9807 return N.getNode(); 9808 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9809 return N.getNode(); 9810 // Treat a GlobalAddress supporting constant offset folding as a 9811 // constant integer. 9812 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9813 if (GA->getOpcode() == ISD::GlobalAddress && 9814 TLI->isOffsetFoldingLegal(GA)) 9815 return GA; 9816 return nullptr; 9817 } 9818 9819 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9820 if (isa<ConstantFPSDNode>(N)) 9821 return N.getNode(); 9822 9823 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9824 return N.getNode(); 9825 9826 return nullptr; 9827 } 9828 9829 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9830 assert(!Node->OperandList && "Node already has operands"); 9831 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9832 "too many operands to fit into SDNode"); 9833 SDUse *Ops = OperandRecycler.allocate( 9834 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9835 9836 bool IsDivergent = false; 9837 for (unsigned I = 0; I != Vals.size(); ++I) { 9838 Ops[I].setUser(Node); 9839 Ops[I].setInitial(Vals[I]); 9840 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9841 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9842 } 9843 Node->NumOperands = Vals.size(); 9844 Node->OperandList = Ops; 9845 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9846 if (!TLI->isSDNodeAlwaysUniform(Node)) 9847 Node->SDNodeBits.IsDivergent = IsDivergent; 9848 checkForCycles(Node); 9849 } 9850 9851 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9852 SmallVectorImpl<SDValue> &Vals) { 9853 size_t Limit = SDNode::getMaxNumOperands(); 9854 while (Vals.size() > Limit) { 9855 unsigned SliceIdx = Vals.size() - Limit; 9856 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9857 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9858 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9859 Vals.emplace_back(NewTF); 9860 } 9861 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9862 } 9863 9864 #ifndef NDEBUG 9865 static void checkForCyclesHelper(const SDNode *N, 9866 SmallPtrSetImpl<const SDNode*> &Visited, 9867 SmallPtrSetImpl<const SDNode*> &Checked, 9868 const llvm::SelectionDAG *DAG) { 9869 // If this node has already been checked, don't check it again. 9870 if (Checked.count(N)) 9871 return; 9872 9873 // If a node has already been visited on this depth-first walk, reject it as 9874 // a cycle. 9875 if (!Visited.insert(N).second) { 9876 errs() << "Detected cycle in SelectionDAG\n"; 9877 dbgs() << "Offending node:\n"; 9878 N->dumprFull(DAG); dbgs() << "\n"; 9879 abort(); 9880 } 9881 9882 for (const SDValue &Op : N->op_values()) 9883 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9884 9885 Checked.insert(N); 9886 Visited.erase(N); 9887 } 9888 #endif 9889 9890 void llvm::checkForCycles(const llvm::SDNode *N, 9891 const llvm::SelectionDAG *DAG, 9892 bool force) { 9893 #ifndef NDEBUG 9894 bool check = force; 9895 #ifdef EXPENSIVE_CHECKS 9896 check = true; 9897 #endif // EXPENSIVE_CHECKS 9898 if (check) { 9899 assert(N && "Checking nonexistent SDNode"); 9900 SmallPtrSet<const SDNode*, 32> visited; 9901 SmallPtrSet<const SDNode*, 32> checked; 9902 checkForCyclesHelper(N, visited, checked, DAG); 9903 } 9904 #endif // !NDEBUG 9905 } 9906 9907 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9908 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9909 } 9910