1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/CodeGen/ISDOpcodes.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/RuntimeLibcalls.h"
35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CodeGen.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/KnownBits.h"
59 #include "llvm/Support/MachineValueType.h"
60 #include "llvm/Support/ManagedStatic.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/Mutex.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <cstdlib>
70 #include <limits>
71 #include <set>
72 #include <string>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 
78 /// makeVTList - Return an instance of the SDVTList struct initialized with the
79 /// specified members.
80 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
81   SDVTList Res = {VTs, NumVTs};
82   return Res;
83 }
84 
85 // Default null implementations of the callbacks.
86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
88 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
89 
90 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
91 
92 #define DEBUG_TYPE "selectiondag"
93 
94 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
95        cl::Hidden, cl::init(true),
96        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
97 
98 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
99        cl::desc("Number limit for gluing ld/st of memcpy."),
100        cl::Hidden, cl::init(0));
101 
102 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
103   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
104 }
105 
106 //===----------------------------------------------------------------------===//
107 //                              ConstantFPSDNode Class
108 //===----------------------------------------------------------------------===//
109 
110 /// isExactlyValue - We don't rely on operator== working on double values, as
111 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
112 /// As such, this method can be used to do an exact bit-for-bit comparison of
113 /// two floating point values.
114 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
115   return getValueAPF().bitwiseIsEqual(V);
116 }
117 
118 bool ConstantFPSDNode::isValueValidForType(EVT VT,
119                                            const APFloat& Val) {
120   assert(VT.isFloatingPoint() && "Can only convert between FP types");
121 
122   // convert modifies in place, so make a copy.
123   APFloat Val2 = APFloat(Val);
124   bool losesInfo;
125   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
126                       APFloat::rmNearestTiesToEven,
127                       &losesInfo);
128   return !losesInfo;
129 }
130 
131 //===----------------------------------------------------------------------===//
132 //                              ISD Namespace
133 //===----------------------------------------------------------------------===//
134 
135 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
136   auto *BV = dyn_cast<BuildVectorSDNode>(N);
137   if (!BV)
138     return false;
139 
140   APInt SplatUndef;
141   unsigned SplatBitSize;
142   bool HasUndefs;
143   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
144   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
145                              EltSize) &&
146          EltSize == SplatBitSize;
147 }
148 
149 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
150 // specializations of the more general isConstantSplatVector()?
151 
152 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
153   // Look through a bit convert.
154   while (N->getOpcode() == ISD::BITCAST)
155     N = N->getOperand(0).getNode();
156 
157   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158 
159   unsigned i = 0, e = N->getNumOperands();
160 
161   // Skip over all of the undef values.
162   while (i != e && N->getOperand(i).isUndef())
163     ++i;
164 
165   // Do not accept an all-undef vector.
166   if (i == e) return false;
167 
168   // Do not accept build_vectors that aren't all constants or which have non-~0
169   // elements. We have to be a bit careful here, as the type of the constant
170   // may not be the same as the type of the vector elements due to type
171   // legalization (the elements are promoted to a legal type for the target and
172   // a vector of a type may be legal when the base element type is not).
173   // We only want to check enough bits to cover the vector elements, because
174   // we care if the resultant vector is all ones, not whether the individual
175   // constants are.
176   SDValue NotZero = N->getOperand(i);
177   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
178   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
179     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
180       return false;
181   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
182     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
183       return false;
184   } else
185     return false;
186 
187   // Okay, we have at least one ~0 value, check to see if the rest match or are
188   // undefs. Even with the above element type twiddling, this should be OK, as
189   // the same type legalization should have applied to all the elements.
190   for (++i; i != e; ++i)
191     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
192       return false;
193   return true;
194 }
195 
196 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
197   // Look through a bit convert.
198   while (N->getOpcode() == ISD::BITCAST)
199     N = N->getOperand(0).getNode();
200 
201   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
202 
203   bool IsAllUndef = true;
204   for (const SDValue &Op : N->op_values()) {
205     if (Op.isUndef())
206       continue;
207     IsAllUndef = false;
208     // Do not accept build_vectors that aren't all constants or which have non-0
209     // elements. We have to be a bit careful here, as the type of the constant
210     // may not be the same as the type of the vector elements due to type
211     // legalization (the elements are promoted to a legal type for the target
212     // and a vector of a type may be legal when the base element type is not).
213     // We only want to check enough bits to cover the vector elements, because
214     // we care if the resultant vector is all zeros, not whether the individual
215     // constants are.
216     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
217     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
218       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
219         return false;
220     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
221       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
222         return false;
223     } else
224       return false;
225   }
226 
227   // Do not accept an all-undef vector.
228   if (IsAllUndef)
229     return false;
230   return true;
231 }
232 
233 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
234   if (N->getOpcode() != ISD::BUILD_VECTOR)
235     return false;
236 
237   for (const SDValue &Op : N->op_values()) {
238     if (Op.isUndef())
239       continue;
240     if (!isa<ConstantSDNode>(Op))
241       return false;
242   }
243   return true;
244 }
245 
246 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
247   if (N->getOpcode() != ISD::BUILD_VECTOR)
248     return false;
249 
250   for (const SDValue &Op : N->op_values()) {
251     if (Op.isUndef())
252       continue;
253     if (!isa<ConstantFPSDNode>(Op))
254       return false;
255   }
256   return true;
257 }
258 
259 bool ISD::allOperandsUndef(const SDNode *N) {
260   // Return false if the node has no operands.
261   // This is "logically inconsistent" with the definition of "all" but
262   // is probably the desired behavior.
263   if (N->getNumOperands() == 0)
264     return false;
265 
266   for (const SDValue &Op : N->op_values())
267     if (!Op.isUndef())
268       return false;
269 
270   return true;
271 }
272 
273 bool ISD::matchUnaryPredicate(SDValue Op,
274                               std::function<bool(ConstantSDNode *)> Match,
275                               bool AllowUndefs) {
276   // FIXME: Add support for scalar UNDEF cases?
277   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
278     return Match(Cst);
279 
280   // FIXME: Add support for vector UNDEF cases?
281   if (ISD::BUILD_VECTOR != Op.getOpcode())
282     return false;
283 
284   EVT SVT = Op.getValueType().getScalarType();
285   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
286     if (AllowUndefs && Op.getOperand(i).isUndef()) {
287       if (!Match(nullptr))
288         return false;
289       continue;
290     }
291 
292     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
293     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
294       return false;
295   }
296   return true;
297 }
298 
299 bool ISD::matchBinaryPredicate(
300     SDValue LHS, SDValue RHS,
301     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
302     bool AllowUndefs) {
303   if (LHS.getValueType() != RHS.getValueType())
304     return false;
305 
306   // TODO: Add support for scalar UNDEF cases?
307   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
308     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
309       return Match(LHSCst, RHSCst);
310 
311   // TODO: Add support for vector UNDEF cases?
312   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
313       ISD::BUILD_VECTOR != RHS.getOpcode())
314     return false;
315 
316   EVT SVT = LHS.getValueType().getScalarType();
317   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
318     SDValue LHSOp = LHS.getOperand(i);
319     SDValue RHSOp = RHS.getOperand(i);
320     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
321     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
322     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
323     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
324     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
325       return false;
326     if (LHSOp.getValueType() != SVT ||
327         LHSOp.getValueType() != RHSOp.getValueType())
328       return false;
329     if (!Match(LHSCst, RHSCst))
330       return false;
331   }
332   return true;
333 }
334 
335 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
336   switch (ExtType) {
337   case ISD::EXTLOAD:
338     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
339   case ISD::SEXTLOAD:
340     return ISD::SIGN_EXTEND;
341   case ISD::ZEXTLOAD:
342     return ISD::ZERO_EXTEND;
343   default:
344     break;
345   }
346 
347   llvm_unreachable("Invalid LoadExtType");
348 }
349 
350 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
351   // To perform this operation, we just need to swap the L and G bits of the
352   // operation.
353   unsigned OldL = (Operation >> 2) & 1;
354   unsigned OldG = (Operation >> 1) & 1;
355   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
356                        (OldL << 1) |       // New G bit
357                        (OldG << 2));       // New L bit.
358 }
359 
360 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
361   unsigned Operation = Op;
362   if (isInteger)
363     Operation ^= 7;   // Flip L, G, E bits, but not U.
364   else
365     Operation ^= 15;  // Flip all of the condition bits.
366 
367   if (Operation > ISD::SETTRUE2)
368     Operation &= ~8;  // Don't let N and U bits get set.
369 
370   return ISD::CondCode(Operation);
371 }
372 
373 /// For an integer comparison, return 1 if the comparison is a signed operation
374 /// and 2 if the result is an unsigned comparison. Return zero if the operation
375 /// does not depend on the sign of the input (setne and seteq).
376 static int isSignedOp(ISD::CondCode Opcode) {
377   switch (Opcode) {
378   default: llvm_unreachable("Illegal integer setcc operation!");
379   case ISD::SETEQ:
380   case ISD::SETNE: return 0;
381   case ISD::SETLT:
382   case ISD::SETLE:
383   case ISD::SETGT:
384   case ISD::SETGE: return 1;
385   case ISD::SETULT:
386   case ISD::SETULE:
387   case ISD::SETUGT:
388   case ISD::SETUGE: return 2;
389   }
390 }
391 
392 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
393                                        bool IsInteger) {
394   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
395     // Cannot fold a signed integer setcc with an unsigned integer setcc.
396     return ISD::SETCC_INVALID;
397 
398   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
399 
400   // If the N and U bits get set, then the resultant comparison DOES suddenly
401   // care about orderedness, and it is true when ordered.
402   if (Op > ISD::SETTRUE2)
403     Op &= ~16;     // Clear the U bit if the N bit is set.
404 
405   // Canonicalize illegal integer setcc's.
406   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
407     Op = ISD::SETNE;
408 
409   return ISD::CondCode(Op);
410 }
411 
412 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
413                                         bool IsInteger) {
414   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
415     // Cannot fold a signed setcc with an unsigned setcc.
416     return ISD::SETCC_INVALID;
417 
418   // Combine all of the condition bits.
419   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
420 
421   // Canonicalize illegal integer setcc's.
422   if (IsInteger) {
423     switch (Result) {
424     default: break;
425     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
426     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
427     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
428     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
429     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
430     }
431   }
432 
433   return Result;
434 }
435 
436 //===----------------------------------------------------------------------===//
437 //                           SDNode Profile Support
438 //===----------------------------------------------------------------------===//
439 
440 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
441 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
442   ID.AddInteger(OpC);
443 }
444 
445 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
446 /// solely with their pointer.
447 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
448   ID.AddPointer(VTList.VTs);
449 }
450 
451 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
452 static void AddNodeIDOperands(FoldingSetNodeID &ID,
453                               ArrayRef<SDValue> Ops) {
454   for (auto& Op : Ops) {
455     ID.AddPointer(Op.getNode());
456     ID.AddInteger(Op.getResNo());
457   }
458 }
459 
460 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
461 static void AddNodeIDOperands(FoldingSetNodeID &ID,
462                               ArrayRef<SDUse> Ops) {
463   for (auto& Op : Ops) {
464     ID.AddPointer(Op.getNode());
465     ID.AddInteger(Op.getResNo());
466   }
467 }
468 
469 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
470                           SDVTList VTList, ArrayRef<SDValue> OpList) {
471   AddNodeIDOpcode(ID, OpC);
472   AddNodeIDValueTypes(ID, VTList);
473   AddNodeIDOperands(ID, OpList);
474 }
475 
476 /// If this is an SDNode with special info, add this info to the NodeID data.
477 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
478   switch (N->getOpcode()) {
479   case ISD::TargetExternalSymbol:
480   case ISD::ExternalSymbol:
481   case ISD::MCSymbol:
482     llvm_unreachable("Should only be used on nodes with operands");
483   default: break;  // Normal nodes don't need extra info.
484   case ISD::TargetConstant:
485   case ISD::Constant: {
486     const ConstantSDNode *C = cast<ConstantSDNode>(N);
487     ID.AddPointer(C->getConstantIntValue());
488     ID.AddBoolean(C->isOpaque());
489     break;
490   }
491   case ISD::TargetConstantFP:
492   case ISD::ConstantFP:
493     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
494     break;
495   case ISD::TargetGlobalAddress:
496   case ISD::GlobalAddress:
497   case ISD::TargetGlobalTLSAddress:
498   case ISD::GlobalTLSAddress: {
499     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
500     ID.AddPointer(GA->getGlobal());
501     ID.AddInteger(GA->getOffset());
502     ID.AddInteger(GA->getTargetFlags());
503     break;
504   }
505   case ISD::BasicBlock:
506     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
507     break;
508   case ISD::Register:
509     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
510     break;
511   case ISD::RegisterMask:
512     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
513     break;
514   case ISD::SRCVALUE:
515     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
516     break;
517   case ISD::FrameIndex:
518   case ISD::TargetFrameIndex:
519     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
520     break;
521   case ISD::LIFETIME_START:
522   case ISD::LIFETIME_END:
523     if (cast<LifetimeSDNode>(N)->hasOffset()) {
524       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
525       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
526     }
527     break;
528   case ISD::JumpTable:
529   case ISD::TargetJumpTable:
530     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
531     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
532     break;
533   case ISD::ConstantPool:
534   case ISD::TargetConstantPool: {
535     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
536     ID.AddInteger(CP->getAlignment());
537     ID.AddInteger(CP->getOffset());
538     if (CP->isMachineConstantPoolEntry())
539       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
540     else
541       ID.AddPointer(CP->getConstVal());
542     ID.AddInteger(CP->getTargetFlags());
543     break;
544   }
545   case ISD::TargetIndex: {
546     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
547     ID.AddInteger(TI->getIndex());
548     ID.AddInteger(TI->getOffset());
549     ID.AddInteger(TI->getTargetFlags());
550     break;
551   }
552   case ISD::LOAD: {
553     const LoadSDNode *LD = cast<LoadSDNode>(N);
554     ID.AddInteger(LD->getMemoryVT().getRawBits());
555     ID.AddInteger(LD->getRawSubclassData());
556     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
557     break;
558   }
559   case ISD::STORE: {
560     const StoreSDNode *ST = cast<StoreSDNode>(N);
561     ID.AddInteger(ST->getMemoryVT().getRawBits());
562     ID.AddInteger(ST->getRawSubclassData());
563     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
564     break;
565   }
566   case ISD::MLOAD: {
567     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
568     ID.AddInteger(MLD->getMemoryVT().getRawBits());
569     ID.AddInteger(MLD->getRawSubclassData());
570     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
571     break;
572   }
573   case ISD::MSTORE: {
574     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
575     ID.AddInteger(MST->getMemoryVT().getRawBits());
576     ID.AddInteger(MST->getRawSubclassData());
577     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
578     break;
579   }
580   case ISD::MGATHER: {
581     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
582     ID.AddInteger(MG->getMemoryVT().getRawBits());
583     ID.AddInteger(MG->getRawSubclassData());
584     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
585     break;
586   }
587   case ISD::MSCATTER: {
588     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
589     ID.AddInteger(MS->getMemoryVT().getRawBits());
590     ID.AddInteger(MS->getRawSubclassData());
591     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
592     break;
593   }
594   case ISD::ATOMIC_CMP_SWAP:
595   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
596   case ISD::ATOMIC_SWAP:
597   case ISD::ATOMIC_LOAD_ADD:
598   case ISD::ATOMIC_LOAD_SUB:
599   case ISD::ATOMIC_LOAD_AND:
600   case ISD::ATOMIC_LOAD_CLR:
601   case ISD::ATOMIC_LOAD_OR:
602   case ISD::ATOMIC_LOAD_XOR:
603   case ISD::ATOMIC_LOAD_NAND:
604   case ISD::ATOMIC_LOAD_MIN:
605   case ISD::ATOMIC_LOAD_MAX:
606   case ISD::ATOMIC_LOAD_UMIN:
607   case ISD::ATOMIC_LOAD_UMAX:
608   case ISD::ATOMIC_LOAD:
609   case ISD::ATOMIC_STORE: {
610     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
611     ID.AddInteger(AT->getMemoryVT().getRawBits());
612     ID.AddInteger(AT->getRawSubclassData());
613     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
614     break;
615   }
616   case ISD::PREFETCH: {
617     const MemSDNode *PF = cast<MemSDNode>(N);
618     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
619     break;
620   }
621   case ISD::VECTOR_SHUFFLE: {
622     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
623     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
624          i != e; ++i)
625       ID.AddInteger(SVN->getMaskElt(i));
626     break;
627   }
628   case ISD::TargetBlockAddress:
629   case ISD::BlockAddress: {
630     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
631     ID.AddPointer(BA->getBlockAddress());
632     ID.AddInteger(BA->getOffset());
633     ID.AddInteger(BA->getTargetFlags());
634     break;
635   }
636   } // end switch (N->getOpcode())
637 
638   // Target specific memory nodes could also have address spaces to check.
639   if (N->isTargetMemoryOpcode())
640     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
641 }
642 
643 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
644 /// data.
645 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
646   AddNodeIDOpcode(ID, N->getOpcode());
647   // Add the return value info.
648   AddNodeIDValueTypes(ID, N->getVTList());
649   // Add the operand info.
650   AddNodeIDOperands(ID, N->ops());
651 
652   // Handle SDNode leafs with special info.
653   AddNodeIDCustom(ID, N);
654 }
655 
656 //===----------------------------------------------------------------------===//
657 //                              SelectionDAG Class
658 //===----------------------------------------------------------------------===//
659 
660 /// doNotCSE - Return true if CSE should not be performed for this node.
661 static bool doNotCSE(SDNode *N) {
662   if (N->getValueType(0) == MVT::Glue)
663     return true; // Never CSE anything that produces a flag.
664 
665   switch (N->getOpcode()) {
666   default: break;
667   case ISD::HANDLENODE:
668   case ISD::EH_LABEL:
669     return true;   // Never CSE these nodes.
670   }
671 
672   // Check that remaining values produced are not flags.
673   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
674     if (N->getValueType(i) == MVT::Glue)
675       return true; // Never CSE anything that produces a flag.
676 
677   return false;
678 }
679 
680 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
681 /// SelectionDAG.
682 void SelectionDAG::RemoveDeadNodes() {
683   // Create a dummy node (which is not added to allnodes), that adds a reference
684   // to the root node, preventing it from being deleted.
685   HandleSDNode Dummy(getRoot());
686 
687   SmallVector<SDNode*, 128> DeadNodes;
688 
689   // Add all obviously-dead nodes to the DeadNodes worklist.
690   for (SDNode &Node : allnodes())
691     if (Node.use_empty())
692       DeadNodes.push_back(&Node);
693 
694   RemoveDeadNodes(DeadNodes);
695 
696   // If the root changed (e.g. it was a dead load, update the root).
697   setRoot(Dummy.getValue());
698 }
699 
700 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
701 /// given list, and any nodes that become unreachable as a result.
702 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
703 
704   // Process the worklist, deleting the nodes and adding their uses to the
705   // worklist.
706   while (!DeadNodes.empty()) {
707     SDNode *N = DeadNodes.pop_back_val();
708     // Skip to next node if we've already managed to delete the node. This could
709     // happen if replacing a node causes a node previously added to the node to
710     // be deleted.
711     if (N->getOpcode() == ISD::DELETED_NODE)
712       continue;
713 
714     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
715       DUL->NodeDeleted(N, nullptr);
716 
717     // Take the node out of the appropriate CSE map.
718     RemoveNodeFromCSEMaps(N);
719 
720     // Next, brutally remove the operand list.  This is safe to do, as there are
721     // no cycles in the graph.
722     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
723       SDUse &Use = *I++;
724       SDNode *Operand = Use.getNode();
725       Use.set(SDValue());
726 
727       // Now that we removed this operand, see if there are no uses of it left.
728       if (Operand->use_empty())
729         DeadNodes.push_back(Operand);
730     }
731 
732     DeallocateNode(N);
733   }
734 }
735 
736 void SelectionDAG::RemoveDeadNode(SDNode *N){
737   SmallVector<SDNode*, 16> DeadNodes(1, N);
738 
739   // Create a dummy node that adds a reference to the root node, preventing
740   // it from being deleted.  (This matters if the root is an operand of the
741   // dead node.)
742   HandleSDNode Dummy(getRoot());
743 
744   RemoveDeadNodes(DeadNodes);
745 }
746 
747 void SelectionDAG::DeleteNode(SDNode *N) {
748   // First take this out of the appropriate CSE map.
749   RemoveNodeFromCSEMaps(N);
750 
751   // Finally, remove uses due to operands of this node, remove from the
752   // AllNodes list, and delete the node.
753   DeleteNodeNotInCSEMaps(N);
754 }
755 
756 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
757   assert(N->getIterator() != AllNodes.begin() &&
758          "Cannot delete the entry node!");
759   assert(N->use_empty() && "Cannot delete a node that is not dead!");
760 
761   // Drop all of the operands and decrement used node's use counts.
762   N->DropOperands();
763 
764   DeallocateNode(N);
765 }
766 
767 void SDDbgInfo::erase(const SDNode *Node) {
768   DbgValMapType::iterator I = DbgValMap.find(Node);
769   if (I == DbgValMap.end())
770     return;
771   for (auto &Val: I->second)
772     Val->setIsInvalidated();
773   DbgValMap.erase(I);
774 }
775 
776 void SelectionDAG::DeallocateNode(SDNode *N) {
777   // If we have operands, deallocate them.
778   removeOperands(N);
779 
780   NodeAllocator.Deallocate(AllNodes.remove(N));
781 
782   // Set the opcode to DELETED_NODE to help catch bugs when node
783   // memory is reallocated.
784   // FIXME: There are places in SDag that have grown a dependency on the opcode
785   // value in the released node.
786   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
787   N->NodeType = ISD::DELETED_NODE;
788 
789   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
790   // them and forget about that node.
791   DbgInfo->erase(N);
792 }
793 
794 #ifndef NDEBUG
795 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
796 static void VerifySDNode(SDNode *N) {
797   switch (N->getOpcode()) {
798   default:
799     break;
800   case ISD::BUILD_PAIR: {
801     EVT VT = N->getValueType(0);
802     assert(N->getNumValues() == 1 && "Too many results!");
803     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
804            "Wrong return type!");
805     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
806     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
807            "Mismatched operand types!");
808     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
809            "Wrong operand type!");
810     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
811            "Wrong return type size");
812     break;
813   }
814   case ISD::BUILD_VECTOR: {
815     assert(N->getNumValues() == 1 && "Too many results!");
816     assert(N->getValueType(0).isVector() && "Wrong return type!");
817     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
818            "Wrong number of operands!");
819     EVT EltVT = N->getValueType(0).getVectorElementType();
820     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
821       assert((I->getValueType() == EltVT ||
822              (EltVT.isInteger() && I->getValueType().isInteger() &&
823               EltVT.bitsLE(I->getValueType()))) &&
824             "Wrong operand type!");
825       assert(I->getValueType() == N->getOperand(0).getValueType() &&
826              "Operands must all have the same type");
827     }
828     break;
829   }
830   }
831 }
832 #endif // NDEBUG
833 
834 /// Insert a newly allocated node into the DAG.
835 ///
836 /// Handles insertion into the all nodes list and CSE map, as well as
837 /// verification and other common operations when a new node is allocated.
838 void SelectionDAG::InsertNode(SDNode *N) {
839   AllNodes.push_back(N);
840 #ifndef NDEBUG
841   N->PersistentId = NextPersistentId++;
842   VerifySDNode(N);
843 #endif
844   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
845     DUL->NodeInserted(N);
846 }
847 
848 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
849 /// correspond to it.  This is useful when we're about to delete or repurpose
850 /// the node.  We don't want future request for structurally identical nodes
851 /// to return N anymore.
852 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
853   bool Erased = false;
854   switch (N->getOpcode()) {
855   case ISD::HANDLENODE: return false;  // noop.
856   case ISD::CONDCODE:
857     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
858            "Cond code doesn't exist!");
859     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
860     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
861     break;
862   case ISD::ExternalSymbol:
863     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
864     break;
865   case ISD::TargetExternalSymbol: {
866     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
867     Erased = TargetExternalSymbols.erase(
868                std::pair<std::string,unsigned char>(ESN->getSymbol(),
869                                                     ESN->getTargetFlags()));
870     break;
871   }
872   case ISD::MCSymbol: {
873     auto *MCSN = cast<MCSymbolSDNode>(N);
874     Erased = MCSymbols.erase(MCSN->getMCSymbol());
875     break;
876   }
877   case ISD::VALUETYPE: {
878     EVT VT = cast<VTSDNode>(N)->getVT();
879     if (VT.isExtended()) {
880       Erased = ExtendedValueTypeNodes.erase(VT);
881     } else {
882       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
883       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
884     }
885     break;
886   }
887   default:
888     // Remove it from the CSE Map.
889     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
890     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
891     Erased = CSEMap.RemoveNode(N);
892     break;
893   }
894 #ifndef NDEBUG
895   // Verify that the node was actually in one of the CSE maps, unless it has a
896   // flag result (which cannot be CSE'd) or is one of the special cases that are
897   // not subject to CSE.
898   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
899       !N->isMachineOpcode() && !doNotCSE(N)) {
900     N->dump(this);
901     dbgs() << "\n";
902     llvm_unreachable("Node is not in map!");
903   }
904 #endif
905   return Erased;
906 }
907 
908 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
909 /// maps and modified in place. Add it back to the CSE maps, unless an identical
910 /// node already exists, in which case transfer all its users to the existing
911 /// node. This transfer can potentially trigger recursive merging.
912 void
913 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
914   // For node types that aren't CSE'd, just act as if no identical node
915   // already exists.
916   if (!doNotCSE(N)) {
917     SDNode *Existing = CSEMap.GetOrInsertNode(N);
918     if (Existing != N) {
919       // If there was already an existing matching node, use ReplaceAllUsesWith
920       // to replace the dead one with the existing one.  This can cause
921       // recursive merging of other unrelated nodes down the line.
922       ReplaceAllUsesWith(N, Existing);
923 
924       // N is now dead. Inform the listeners and delete it.
925       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
926         DUL->NodeDeleted(N, Existing);
927       DeleteNodeNotInCSEMaps(N);
928       return;
929     }
930   }
931 
932   // If the node doesn't already exist, we updated it.  Inform listeners.
933   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
934     DUL->NodeUpdated(N);
935 }
936 
937 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
938 /// were replaced with those specified.  If this node is never memoized,
939 /// return null, otherwise return a pointer to the slot it would take.  If a
940 /// node already exists with these operands, the slot will be non-null.
941 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
942                                            void *&InsertPos) {
943   if (doNotCSE(N))
944     return nullptr;
945 
946   SDValue Ops[] = { Op };
947   FoldingSetNodeID ID;
948   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
949   AddNodeIDCustom(ID, N);
950   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
951   if (Node)
952     Node->intersectFlagsWith(N->getFlags());
953   return Node;
954 }
955 
956 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
957 /// were replaced with those specified.  If this node is never memoized,
958 /// return null, otherwise return a pointer to the slot it would take.  If a
959 /// node already exists with these operands, the slot will be non-null.
960 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
961                                            SDValue Op1, SDValue Op2,
962                                            void *&InsertPos) {
963   if (doNotCSE(N))
964     return nullptr;
965 
966   SDValue Ops[] = { Op1, Op2 };
967   FoldingSetNodeID ID;
968   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
969   AddNodeIDCustom(ID, N);
970   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
971   if (Node)
972     Node->intersectFlagsWith(N->getFlags());
973   return Node;
974 }
975 
976 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
977 /// were replaced with those specified.  If this node is never memoized,
978 /// return null, otherwise return a pointer to the slot it would take.  If a
979 /// node already exists with these operands, the slot will be non-null.
980 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
981                                            void *&InsertPos) {
982   if (doNotCSE(N))
983     return nullptr;
984 
985   FoldingSetNodeID ID;
986   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
987   AddNodeIDCustom(ID, N);
988   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
989   if (Node)
990     Node->intersectFlagsWith(N->getFlags());
991   return Node;
992 }
993 
994 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
995   Type *Ty = VT == MVT::iPTR ?
996                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
997                    VT.getTypeForEVT(*getContext());
998 
999   return getDataLayout().getABITypeAlignment(Ty);
1000 }
1001 
1002 // EntryNode could meaningfully have debug info if we can find it...
1003 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1004     : TM(tm), OptLevel(OL),
1005       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1006       Root(getEntryNode()) {
1007   InsertNode(&EntryNode);
1008   DbgInfo = new SDDbgInfo();
1009 }
1010 
1011 void SelectionDAG::init(MachineFunction &NewMF,
1012                         OptimizationRemarkEmitter &NewORE,
1013                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1014                         LegacyDivergenceAnalysis * Divergence) {
1015   MF = &NewMF;
1016   SDAGISelPass = PassPtr;
1017   ORE = &NewORE;
1018   TLI = getSubtarget().getTargetLowering();
1019   TSI = getSubtarget().getSelectionDAGInfo();
1020   LibInfo = LibraryInfo;
1021   Context = &MF->getFunction().getContext();
1022   DA = Divergence;
1023 }
1024 
1025 SelectionDAG::~SelectionDAG() {
1026   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1027   allnodes_clear();
1028   OperandRecycler.clear(OperandAllocator);
1029   delete DbgInfo;
1030 }
1031 
1032 void SelectionDAG::allnodes_clear() {
1033   assert(&*AllNodes.begin() == &EntryNode);
1034   AllNodes.remove(AllNodes.begin());
1035   while (!AllNodes.empty())
1036     DeallocateNode(&AllNodes.front());
1037 #ifndef NDEBUG
1038   NextPersistentId = 0;
1039 #endif
1040 }
1041 
1042 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1043                                           void *&InsertPos) {
1044   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1045   if (N) {
1046     switch (N->getOpcode()) {
1047     default: break;
1048     case ISD::Constant:
1049     case ISD::ConstantFP:
1050       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1051                        "debug location.  Use another overload.");
1052     }
1053   }
1054   return N;
1055 }
1056 
1057 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1058                                           const SDLoc &DL, void *&InsertPos) {
1059   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1060   if (N) {
1061     switch (N->getOpcode()) {
1062     case ISD::Constant:
1063     case ISD::ConstantFP:
1064       // Erase debug location from the node if the node is used at several
1065       // different places. Do not propagate one location to all uses as it
1066       // will cause a worse single stepping debugging experience.
1067       if (N->getDebugLoc() != DL.getDebugLoc())
1068         N->setDebugLoc(DebugLoc());
1069       break;
1070     default:
1071       // When the node's point of use is located earlier in the instruction
1072       // sequence than its prior point of use, update its debug info to the
1073       // earlier location.
1074       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1075         N->setDebugLoc(DL.getDebugLoc());
1076       break;
1077     }
1078   }
1079   return N;
1080 }
1081 
1082 void SelectionDAG::clear() {
1083   allnodes_clear();
1084   OperandRecycler.clear(OperandAllocator);
1085   OperandAllocator.Reset();
1086   CSEMap.clear();
1087 
1088   ExtendedValueTypeNodes.clear();
1089   ExternalSymbols.clear();
1090   TargetExternalSymbols.clear();
1091   MCSymbols.clear();
1092   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1093             static_cast<CondCodeSDNode*>(nullptr));
1094   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1095             static_cast<SDNode*>(nullptr));
1096 
1097   EntryNode.UseList = nullptr;
1098   InsertNode(&EntryNode);
1099   Root = getEntryNode();
1100   DbgInfo->clear();
1101 }
1102 
1103 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1104   return VT.bitsGT(Op.getValueType())
1105              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1106              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1107 }
1108 
1109 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1110   return VT.bitsGT(Op.getValueType()) ?
1111     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1112     getNode(ISD::TRUNCATE, DL, VT, Op);
1113 }
1114 
1115 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1116   return VT.bitsGT(Op.getValueType()) ?
1117     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1118     getNode(ISD::TRUNCATE, DL, VT, Op);
1119 }
1120 
1121 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1122   return VT.bitsGT(Op.getValueType()) ?
1123     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1124     getNode(ISD::TRUNCATE, DL, VT, Op);
1125 }
1126 
1127 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1128                                         EVT OpVT) {
1129   if (VT.bitsLE(Op.getValueType()))
1130     return getNode(ISD::TRUNCATE, SL, VT, Op);
1131 
1132   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1133   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1134 }
1135 
1136 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1137   assert(!VT.isVector() &&
1138          "getZeroExtendInReg should use the vector element type instead of "
1139          "the vector type!");
1140   if (Op.getValueType().getScalarType() == VT) return Op;
1141   unsigned BitWidth = Op.getScalarValueSizeInBits();
1142   APInt Imm = APInt::getLowBitsSet(BitWidth,
1143                                    VT.getSizeInBits());
1144   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1145                  getConstant(Imm, DL, Op.getValueType()));
1146 }
1147 
1148 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1149 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1150   EVT EltVT = VT.getScalarType();
1151   SDValue NegOne =
1152     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1153   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1154 }
1155 
1156 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1157   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1158   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1159 }
1160 
1161 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1162                                       EVT OpVT) {
1163   if (!V)
1164     return getConstant(0, DL, VT);
1165 
1166   switch (TLI->getBooleanContents(OpVT)) {
1167   case TargetLowering::ZeroOrOneBooleanContent:
1168   case TargetLowering::UndefinedBooleanContent:
1169     return getConstant(1, DL, VT);
1170   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1171     return getAllOnesConstant(DL, VT);
1172   }
1173   llvm_unreachable("Unexpected boolean content enum!");
1174 }
1175 
1176 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1177                                   bool isT, bool isO) {
1178   EVT EltVT = VT.getScalarType();
1179   assert((EltVT.getSizeInBits() >= 64 ||
1180          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1181          "getConstant with a uint64_t value that doesn't fit in the type!");
1182   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1183 }
1184 
1185 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1186                                   bool isT, bool isO) {
1187   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1188 }
1189 
1190 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1191                                   EVT VT, bool isT, bool isO) {
1192   assert(VT.isInteger() && "Cannot create FP integer constant!");
1193 
1194   EVT EltVT = VT.getScalarType();
1195   const ConstantInt *Elt = &Val;
1196 
1197   // In some cases the vector type is legal but the element type is illegal and
1198   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1199   // inserted value (the type does not need to match the vector element type).
1200   // Any extra bits introduced will be truncated away.
1201   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1202       TargetLowering::TypePromoteInteger) {
1203    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1204    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1205    Elt = ConstantInt::get(*getContext(), NewVal);
1206   }
1207   // In other cases the element type is illegal and needs to be expanded, for
1208   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1209   // the value into n parts and use a vector type with n-times the elements.
1210   // Then bitcast to the type requested.
1211   // Legalizing constants too early makes the DAGCombiner's job harder so we
1212   // only legalize if the DAG tells us we must produce legal types.
1213   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1214            TLI->getTypeAction(*getContext(), EltVT) ==
1215            TargetLowering::TypeExpandInteger) {
1216     const APInt &NewVal = Elt->getValue();
1217     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1218     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1219     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1220     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1221 
1222     // Check the temporary vector is the correct size. If this fails then
1223     // getTypeToTransformTo() probably returned a type whose size (in bits)
1224     // isn't a power-of-2 factor of the requested type size.
1225     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1226 
1227     SmallVector<SDValue, 2> EltParts;
1228     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1229       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1230                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1231                                      ViaEltVT, isT, isO));
1232     }
1233 
1234     // EltParts is currently in little endian order. If we actually want
1235     // big-endian order then reverse it now.
1236     if (getDataLayout().isBigEndian())
1237       std::reverse(EltParts.begin(), EltParts.end());
1238 
1239     // The elements must be reversed when the element order is different
1240     // to the endianness of the elements (because the BITCAST is itself a
1241     // vector shuffle in this situation). However, we do not need any code to
1242     // perform this reversal because getConstant() is producing a vector
1243     // splat.
1244     // This situation occurs in MIPS MSA.
1245 
1246     SmallVector<SDValue, 8> Ops;
1247     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1248       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1249 
1250     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1251     return V;
1252   }
1253 
1254   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1255          "APInt size does not match type size!");
1256   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1257   FoldingSetNodeID ID;
1258   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1259   ID.AddPointer(Elt);
1260   ID.AddBoolean(isO);
1261   void *IP = nullptr;
1262   SDNode *N = nullptr;
1263   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1264     if (!VT.isVector())
1265       return SDValue(N, 0);
1266 
1267   if (!N) {
1268     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1269     CSEMap.InsertNode(N, IP);
1270     InsertNode(N);
1271     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1272   }
1273 
1274   SDValue Result(N, 0);
1275   if (VT.isVector())
1276     Result = getSplatBuildVector(VT, DL, Result);
1277 
1278   return Result;
1279 }
1280 
1281 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1282                                         bool isTarget) {
1283   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1284 }
1285 
1286 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1287                                              const SDLoc &DL, bool LegalTypes) {
1288   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1289   return getConstant(Val, DL, ShiftVT);
1290 }
1291 
1292 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1293                                     bool isTarget) {
1294   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1295 }
1296 
1297 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1298                                     EVT VT, bool isTarget) {
1299   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1300 
1301   EVT EltVT = VT.getScalarType();
1302 
1303   // Do the map lookup using the actual bit pattern for the floating point
1304   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1305   // we don't have issues with SNANs.
1306   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1307   FoldingSetNodeID ID;
1308   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1309   ID.AddPointer(&V);
1310   void *IP = nullptr;
1311   SDNode *N = nullptr;
1312   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1313     if (!VT.isVector())
1314       return SDValue(N, 0);
1315 
1316   if (!N) {
1317     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1318     CSEMap.InsertNode(N, IP);
1319     InsertNode(N);
1320   }
1321 
1322   SDValue Result(N, 0);
1323   if (VT.isVector())
1324     Result = getSplatBuildVector(VT, DL, Result);
1325   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1326   return Result;
1327 }
1328 
1329 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1330                                     bool isTarget) {
1331   EVT EltVT = VT.getScalarType();
1332   if (EltVT == MVT::f32)
1333     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1334   else if (EltVT == MVT::f64)
1335     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1336   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1337            EltVT == MVT::f16) {
1338     bool Ignored;
1339     APFloat APF = APFloat(Val);
1340     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1341                 &Ignored);
1342     return getConstantFP(APF, DL, VT, isTarget);
1343   } else
1344     llvm_unreachable("Unsupported type in getConstantFP");
1345 }
1346 
1347 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1348                                        EVT VT, int64_t Offset, bool isTargetGA,
1349                                        unsigned char TargetFlags) {
1350   assert((TargetFlags == 0 || isTargetGA) &&
1351          "Cannot set target flags on target-independent globals");
1352 
1353   // Truncate (with sign-extension) the offset value to the pointer size.
1354   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1355   if (BitWidth < 64)
1356     Offset = SignExtend64(Offset, BitWidth);
1357 
1358   unsigned Opc;
1359   if (GV->isThreadLocal())
1360     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1361   else
1362     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1363 
1364   FoldingSetNodeID ID;
1365   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1366   ID.AddPointer(GV);
1367   ID.AddInteger(Offset);
1368   ID.AddInteger(TargetFlags);
1369   void *IP = nullptr;
1370   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1371     return SDValue(E, 0);
1372 
1373   auto *N = newSDNode<GlobalAddressSDNode>(
1374       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1375   CSEMap.InsertNode(N, IP);
1376     InsertNode(N);
1377   return SDValue(N, 0);
1378 }
1379 
1380 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1381   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1382   FoldingSetNodeID ID;
1383   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1384   ID.AddInteger(FI);
1385   void *IP = nullptr;
1386   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1387     return SDValue(E, 0);
1388 
1389   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1390   CSEMap.InsertNode(N, IP);
1391   InsertNode(N);
1392   return SDValue(N, 0);
1393 }
1394 
1395 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1396                                    unsigned char TargetFlags) {
1397   assert((TargetFlags == 0 || isTarget) &&
1398          "Cannot set target flags on target-independent jump tables");
1399   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1400   FoldingSetNodeID ID;
1401   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1402   ID.AddInteger(JTI);
1403   ID.AddInteger(TargetFlags);
1404   void *IP = nullptr;
1405   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1406     return SDValue(E, 0);
1407 
1408   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1409   CSEMap.InsertNode(N, IP);
1410   InsertNode(N);
1411   return SDValue(N, 0);
1412 }
1413 
1414 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1415                                       unsigned Alignment, int Offset,
1416                                       bool isTarget,
1417                                       unsigned char TargetFlags) {
1418   assert((TargetFlags == 0 || isTarget) &&
1419          "Cannot set target flags on target-independent globals");
1420   if (Alignment == 0)
1421     Alignment = MF->getFunction().hasOptSize()
1422                     ? getDataLayout().getABITypeAlignment(C->getType())
1423                     : getDataLayout().getPrefTypeAlignment(C->getType());
1424   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1425   FoldingSetNodeID ID;
1426   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1427   ID.AddInteger(Alignment);
1428   ID.AddInteger(Offset);
1429   ID.AddPointer(C);
1430   ID.AddInteger(TargetFlags);
1431   void *IP = nullptr;
1432   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1433     return SDValue(E, 0);
1434 
1435   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1436                                           TargetFlags);
1437   CSEMap.InsertNode(N, IP);
1438   InsertNode(N);
1439   return SDValue(N, 0);
1440 }
1441 
1442 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1443                                       unsigned Alignment, int Offset,
1444                                       bool isTarget,
1445                                       unsigned char TargetFlags) {
1446   assert((TargetFlags == 0 || isTarget) &&
1447          "Cannot set target flags on target-independent globals");
1448   if (Alignment == 0)
1449     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1450   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1451   FoldingSetNodeID ID;
1452   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1453   ID.AddInteger(Alignment);
1454   ID.AddInteger(Offset);
1455   C->addSelectionDAGCSEId(ID);
1456   ID.AddInteger(TargetFlags);
1457   void *IP = nullptr;
1458   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1459     return SDValue(E, 0);
1460 
1461   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1462                                           TargetFlags);
1463   CSEMap.InsertNode(N, IP);
1464   InsertNode(N);
1465   return SDValue(N, 0);
1466 }
1467 
1468 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1469                                      unsigned char TargetFlags) {
1470   FoldingSetNodeID ID;
1471   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1472   ID.AddInteger(Index);
1473   ID.AddInteger(Offset);
1474   ID.AddInteger(TargetFlags);
1475   void *IP = nullptr;
1476   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1477     return SDValue(E, 0);
1478 
1479   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1480   CSEMap.InsertNode(N, IP);
1481   InsertNode(N);
1482   return SDValue(N, 0);
1483 }
1484 
1485 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1486   FoldingSetNodeID ID;
1487   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1488   ID.AddPointer(MBB);
1489   void *IP = nullptr;
1490   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1491     return SDValue(E, 0);
1492 
1493   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1494   CSEMap.InsertNode(N, IP);
1495   InsertNode(N);
1496   return SDValue(N, 0);
1497 }
1498 
1499 SDValue SelectionDAG::getValueType(EVT VT) {
1500   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1501       ValueTypeNodes.size())
1502     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1503 
1504   SDNode *&N = VT.isExtended() ?
1505     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1506 
1507   if (N) return SDValue(N, 0);
1508   N = newSDNode<VTSDNode>(VT);
1509   InsertNode(N);
1510   return SDValue(N, 0);
1511 }
1512 
1513 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1514   SDNode *&N = ExternalSymbols[Sym];
1515   if (N) return SDValue(N, 0);
1516   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1517   InsertNode(N);
1518   return SDValue(N, 0);
1519 }
1520 
1521 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1522   SDNode *&N = MCSymbols[Sym];
1523   if (N)
1524     return SDValue(N, 0);
1525   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1526   InsertNode(N);
1527   return SDValue(N, 0);
1528 }
1529 
1530 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1531                                               unsigned char TargetFlags) {
1532   SDNode *&N =
1533     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1534                                                                TargetFlags)];
1535   if (N) return SDValue(N, 0);
1536   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1537   InsertNode(N);
1538   return SDValue(N, 0);
1539 }
1540 
1541 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1542   if ((unsigned)Cond >= CondCodeNodes.size())
1543     CondCodeNodes.resize(Cond+1);
1544 
1545   if (!CondCodeNodes[Cond]) {
1546     auto *N = newSDNode<CondCodeSDNode>(Cond);
1547     CondCodeNodes[Cond] = N;
1548     InsertNode(N);
1549   }
1550 
1551   return SDValue(CondCodeNodes[Cond], 0);
1552 }
1553 
1554 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1555 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1556 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1557   std::swap(N1, N2);
1558   ShuffleVectorSDNode::commuteMask(M);
1559 }
1560 
1561 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1562                                        SDValue N2, ArrayRef<int> Mask) {
1563   assert(VT.getVectorNumElements() == Mask.size() &&
1564            "Must have the same number of vector elements as mask elements!");
1565   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1566          "Invalid VECTOR_SHUFFLE");
1567 
1568   // Canonicalize shuffle undef, undef -> undef
1569   if (N1.isUndef() && N2.isUndef())
1570     return getUNDEF(VT);
1571 
1572   // Validate that all indices in Mask are within the range of the elements
1573   // input to the shuffle.
1574   int NElts = Mask.size();
1575   assert(llvm::all_of(Mask,
1576                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1577          "Index out of range");
1578 
1579   // Copy the mask so we can do any needed cleanup.
1580   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1581 
1582   // Canonicalize shuffle v, v -> v, undef
1583   if (N1 == N2) {
1584     N2 = getUNDEF(VT);
1585     for (int i = 0; i != NElts; ++i)
1586       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1587   }
1588 
1589   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1590   if (N1.isUndef())
1591     commuteShuffle(N1, N2, MaskVec);
1592 
1593   if (TLI->hasVectorBlend()) {
1594     // If shuffling a splat, try to blend the splat instead. We do this here so
1595     // that even when this arises during lowering we don't have to re-handle it.
1596     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1597       BitVector UndefElements;
1598       SDValue Splat = BV->getSplatValue(&UndefElements);
1599       if (!Splat)
1600         return;
1601 
1602       for (int i = 0; i < NElts; ++i) {
1603         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1604           continue;
1605 
1606         // If this input comes from undef, mark it as such.
1607         if (UndefElements[MaskVec[i] - Offset]) {
1608           MaskVec[i] = -1;
1609           continue;
1610         }
1611 
1612         // If we can blend a non-undef lane, use that instead.
1613         if (!UndefElements[i])
1614           MaskVec[i] = i + Offset;
1615       }
1616     };
1617     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1618       BlendSplat(N1BV, 0);
1619     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1620       BlendSplat(N2BV, NElts);
1621   }
1622 
1623   // Canonicalize all index into lhs, -> shuffle lhs, undef
1624   // Canonicalize all index into rhs, -> shuffle rhs, undef
1625   bool AllLHS = true, AllRHS = true;
1626   bool N2Undef = N2.isUndef();
1627   for (int i = 0; i != NElts; ++i) {
1628     if (MaskVec[i] >= NElts) {
1629       if (N2Undef)
1630         MaskVec[i] = -1;
1631       else
1632         AllLHS = false;
1633     } else if (MaskVec[i] >= 0) {
1634       AllRHS = false;
1635     }
1636   }
1637   if (AllLHS && AllRHS)
1638     return getUNDEF(VT);
1639   if (AllLHS && !N2Undef)
1640     N2 = getUNDEF(VT);
1641   if (AllRHS) {
1642     N1 = getUNDEF(VT);
1643     commuteShuffle(N1, N2, MaskVec);
1644   }
1645   // Reset our undef status after accounting for the mask.
1646   N2Undef = N2.isUndef();
1647   // Re-check whether both sides ended up undef.
1648   if (N1.isUndef() && N2Undef)
1649     return getUNDEF(VT);
1650 
1651   // If Identity shuffle return that node.
1652   bool Identity = true, AllSame = true;
1653   for (int i = 0; i != NElts; ++i) {
1654     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1655     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1656   }
1657   if (Identity && NElts)
1658     return N1;
1659 
1660   // Shuffling a constant splat doesn't change the result.
1661   if (N2Undef) {
1662     SDValue V = N1;
1663 
1664     // Look through any bitcasts. We check that these don't change the number
1665     // (and size) of elements and just changes their types.
1666     while (V.getOpcode() == ISD::BITCAST)
1667       V = V->getOperand(0);
1668 
1669     // A splat should always show up as a build vector node.
1670     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1671       BitVector UndefElements;
1672       SDValue Splat = BV->getSplatValue(&UndefElements);
1673       // If this is a splat of an undef, shuffling it is also undef.
1674       if (Splat && Splat.isUndef())
1675         return getUNDEF(VT);
1676 
1677       bool SameNumElts =
1678           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1679 
1680       // We only have a splat which can skip shuffles if there is a splatted
1681       // value and no undef lanes rearranged by the shuffle.
1682       if (Splat && UndefElements.none()) {
1683         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1684         // number of elements match or the value splatted is a zero constant.
1685         if (SameNumElts)
1686           return N1;
1687         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1688           if (C->isNullValue())
1689             return N1;
1690       }
1691 
1692       // If the shuffle itself creates a splat, build the vector directly.
1693       if (AllSame && SameNumElts) {
1694         EVT BuildVT = BV->getValueType(0);
1695         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1696         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1697 
1698         // We may have jumped through bitcasts, so the type of the
1699         // BUILD_VECTOR may not match the type of the shuffle.
1700         if (BuildVT != VT)
1701           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1702         return NewBV;
1703       }
1704     }
1705   }
1706 
1707   FoldingSetNodeID ID;
1708   SDValue Ops[2] = { N1, N2 };
1709   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1710   for (int i = 0; i != NElts; ++i)
1711     ID.AddInteger(MaskVec[i]);
1712 
1713   void* IP = nullptr;
1714   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1715     return SDValue(E, 0);
1716 
1717   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1718   // SDNode doesn't have access to it.  This memory will be "leaked" when
1719   // the node is deallocated, but recovered when the NodeAllocator is released.
1720   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1721   llvm::copy(MaskVec, MaskAlloc);
1722 
1723   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1724                                            dl.getDebugLoc(), MaskAlloc);
1725   createOperands(N, Ops);
1726 
1727   CSEMap.InsertNode(N, IP);
1728   InsertNode(N);
1729   SDValue V = SDValue(N, 0);
1730   NewSDValueDbgMsg(V, "Creating new node: ", this);
1731   return V;
1732 }
1733 
1734 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1735   EVT VT = SV.getValueType(0);
1736   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1737   ShuffleVectorSDNode::commuteMask(MaskVec);
1738 
1739   SDValue Op0 = SV.getOperand(0);
1740   SDValue Op1 = SV.getOperand(1);
1741   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1742 }
1743 
1744 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1745   FoldingSetNodeID ID;
1746   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1747   ID.AddInteger(RegNo);
1748   void *IP = nullptr;
1749   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1750     return SDValue(E, 0);
1751 
1752   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1753   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1754   CSEMap.InsertNode(N, IP);
1755   InsertNode(N);
1756   return SDValue(N, 0);
1757 }
1758 
1759 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1760   FoldingSetNodeID ID;
1761   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1762   ID.AddPointer(RegMask);
1763   void *IP = nullptr;
1764   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1765     return SDValue(E, 0);
1766 
1767   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1768   CSEMap.InsertNode(N, IP);
1769   InsertNode(N);
1770   return SDValue(N, 0);
1771 }
1772 
1773 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1774                                  MCSymbol *Label) {
1775   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1776 }
1777 
1778 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1779                                    SDValue Root, MCSymbol *Label) {
1780   FoldingSetNodeID ID;
1781   SDValue Ops[] = { Root };
1782   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1783   ID.AddPointer(Label);
1784   void *IP = nullptr;
1785   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1786     return SDValue(E, 0);
1787 
1788   auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1789   createOperands(N, Ops);
1790 
1791   CSEMap.InsertNode(N, IP);
1792   InsertNode(N);
1793   return SDValue(N, 0);
1794 }
1795 
1796 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1797                                       int64_t Offset,
1798                                       bool isTarget,
1799                                       unsigned char TargetFlags) {
1800   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1801 
1802   FoldingSetNodeID ID;
1803   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1804   ID.AddPointer(BA);
1805   ID.AddInteger(Offset);
1806   ID.AddInteger(TargetFlags);
1807   void *IP = nullptr;
1808   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1809     return SDValue(E, 0);
1810 
1811   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1812   CSEMap.InsertNode(N, IP);
1813   InsertNode(N);
1814   return SDValue(N, 0);
1815 }
1816 
1817 SDValue SelectionDAG::getSrcValue(const Value *V) {
1818   assert((!V || V->getType()->isPointerTy()) &&
1819          "SrcValue is not a pointer?");
1820 
1821   FoldingSetNodeID ID;
1822   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1823   ID.AddPointer(V);
1824 
1825   void *IP = nullptr;
1826   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1827     return SDValue(E, 0);
1828 
1829   auto *N = newSDNode<SrcValueSDNode>(V);
1830   CSEMap.InsertNode(N, IP);
1831   InsertNode(N);
1832   return SDValue(N, 0);
1833 }
1834 
1835 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1836   FoldingSetNodeID ID;
1837   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1838   ID.AddPointer(MD);
1839 
1840   void *IP = nullptr;
1841   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1842     return SDValue(E, 0);
1843 
1844   auto *N = newSDNode<MDNodeSDNode>(MD);
1845   CSEMap.InsertNode(N, IP);
1846   InsertNode(N);
1847   return SDValue(N, 0);
1848 }
1849 
1850 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1851   if (VT == V.getValueType())
1852     return V;
1853 
1854   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1855 }
1856 
1857 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1858                                        unsigned SrcAS, unsigned DestAS) {
1859   SDValue Ops[] = {Ptr};
1860   FoldingSetNodeID ID;
1861   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1862   ID.AddInteger(SrcAS);
1863   ID.AddInteger(DestAS);
1864 
1865   void *IP = nullptr;
1866   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1867     return SDValue(E, 0);
1868 
1869   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1870                                            VT, SrcAS, DestAS);
1871   createOperands(N, Ops);
1872 
1873   CSEMap.InsertNode(N, IP);
1874   InsertNode(N);
1875   return SDValue(N, 0);
1876 }
1877 
1878 /// getShiftAmountOperand - Return the specified value casted to
1879 /// the target's desired shift amount type.
1880 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1881   EVT OpTy = Op.getValueType();
1882   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1883   if (OpTy == ShTy || OpTy.isVector()) return Op;
1884 
1885   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1886 }
1887 
1888 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1889   SDLoc dl(Node);
1890   const TargetLowering &TLI = getTargetLoweringInfo();
1891   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1892   EVT VT = Node->getValueType(0);
1893   SDValue Tmp1 = Node->getOperand(0);
1894   SDValue Tmp2 = Node->getOperand(1);
1895   unsigned Align = Node->getConstantOperandVal(3);
1896 
1897   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1898                                Tmp2, MachinePointerInfo(V));
1899   SDValue VAList = VAListLoad;
1900 
1901   if (Align > TLI.getMinStackArgumentAlignment()) {
1902     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1903 
1904     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1905                      getConstant(Align - 1, dl, VAList.getValueType()));
1906 
1907     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1908                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1909   }
1910 
1911   // Increment the pointer, VAList, to the next vaarg
1912   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1913                  getConstant(getDataLayout().getTypeAllocSize(
1914                                                VT.getTypeForEVT(*getContext())),
1915                              dl, VAList.getValueType()));
1916   // Store the incremented VAList to the legalized pointer
1917   Tmp1 =
1918       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1919   // Load the actual argument out of the pointer VAList
1920   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1921 }
1922 
1923 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1924   SDLoc dl(Node);
1925   const TargetLowering &TLI = getTargetLoweringInfo();
1926   // This defaults to loading a pointer from the input and storing it to the
1927   // output, returning the chain.
1928   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1929   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1930   SDValue Tmp1 =
1931       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1932               Node->getOperand(2), MachinePointerInfo(VS));
1933   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1934                   MachinePointerInfo(VD));
1935 }
1936 
1937 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1938   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1939   unsigned ByteSize = VT.getStoreSize();
1940   Type *Ty = VT.getTypeForEVT(*getContext());
1941   unsigned StackAlign =
1942       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1943 
1944   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1945   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1946 }
1947 
1948 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1949   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1950   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1951   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1952   const DataLayout &DL = getDataLayout();
1953   unsigned Align =
1954       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1955 
1956   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1957   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1958   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1959 }
1960 
1961 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1962                                 ISD::CondCode Cond, const SDLoc &dl) {
1963   EVT OpVT = N1.getValueType();
1964 
1965   // These setcc operations always fold.
1966   switch (Cond) {
1967   default: break;
1968   case ISD::SETFALSE:
1969   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
1970   case ISD::SETTRUE:
1971   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
1972 
1973   case ISD::SETOEQ:
1974   case ISD::SETOGT:
1975   case ISD::SETOGE:
1976   case ISD::SETOLT:
1977   case ISD::SETOLE:
1978   case ISD::SETONE:
1979   case ISD::SETO:
1980   case ISD::SETUO:
1981   case ISD::SETUEQ:
1982   case ISD::SETUNE:
1983     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
1984     break;
1985   }
1986 
1987   if (OpVT.isInteger()) {
1988     // For EQ and NE, we can always pick a value for the undef to make the
1989     // predicate pass or fail, so we can return undef.
1990     // Matches behavior in llvm::ConstantFoldCompareInstruction.
1991     // icmp eq/ne X, undef -> undef.
1992     if ((N1.isUndef() || N2.isUndef()) &&
1993         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
1994       return getUNDEF(VT);
1995 
1996     // If both operands are undef, we can return undef for int comparison.
1997     // icmp undef, undef -> undef.
1998     if (N1.isUndef() && N2.isUndef())
1999       return getUNDEF(VT);
2000 
2001     // icmp X, X -> true/false
2002     // icmp X, undef -> true/false because undef could be X.
2003     if (N1 == N2)
2004       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2005   }
2006 
2007   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2008     const APInt &C2 = N2C->getAPIntValue();
2009     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2010       const APInt &C1 = N1C->getAPIntValue();
2011 
2012       switch (Cond) {
2013       default: llvm_unreachable("Unknown integer setcc!");
2014       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2015       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2016       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2017       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2018       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2019       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2020       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2021       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2022       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2023       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2024       }
2025     }
2026   }
2027 
2028   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2029   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2030 
2031   if (N1CFP && N2CFP) {
2032     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2033     switch (Cond) {
2034     default: break;
2035     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2036                         return getUNDEF(VT);
2037                       LLVM_FALLTHROUGH;
2038     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2039                                              OpVT);
2040     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2041                         return getUNDEF(VT);
2042                       LLVM_FALLTHROUGH;
2043     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2044                                              R==APFloat::cmpLessThan, dl, VT,
2045                                              OpVT);
2046     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2047                         return getUNDEF(VT);
2048                       LLVM_FALLTHROUGH;
2049     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2050                                              OpVT);
2051     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2052                         return getUNDEF(VT);
2053                       LLVM_FALLTHROUGH;
2054     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2055                                              VT, OpVT);
2056     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2057                         return getUNDEF(VT);
2058                       LLVM_FALLTHROUGH;
2059     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2060                                              R==APFloat::cmpEqual, dl, VT,
2061                                              OpVT);
2062     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2063                         return getUNDEF(VT);
2064                       LLVM_FALLTHROUGH;
2065     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2066                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2067     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2068                                              OpVT);
2069     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2070                                              OpVT);
2071     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2072                                              R==APFloat::cmpEqual, dl, VT,
2073                                              OpVT);
2074     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2075                                              OpVT);
2076     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2077                                              R==APFloat::cmpLessThan, dl, VT,
2078                                              OpVT);
2079     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2080                                              R==APFloat::cmpUnordered, dl, VT,
2081                                              OpVT);
2082     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2083                                              VT, OpVT);
2084     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2085                                              OpVT);
2086     }
2087   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2088     // Ensure that the constant occurs on the RHS.
2089     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2090     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2091       return SDValue();
2092     return getSetCC(dl, VT, N2, N1, SwappedCond);
2093   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2094              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2095     // If an operand is known to be a nan (or undef that could be a nan), we can
2096     // fold it.
2097     // Choosing NaN for the undef will always make unordered comparison succeed
2098     // and ordered comparison fails.
2099     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2100     switch (ISD::getUnorderedFlavor(Cond)) {
2101     default:
2102       llvm_unreachable("Unknown flavor!");
2103     case 0: // Known false.
2104       return getBoolConstant(false, dl, VT, OpVT);
2105     case 1: // Known true.
2106       return getBoolConstant(true, dl, VT, OpVT);
2107     case 2: // Undefined.
2108       return getUNDEF(VT);
2109     }
2110   }
2111 
2112   // Could not fold it.
2113   return SDValue();
2114 }
2115 
2116 /// See if the specified operand can be simplified with the knowledge that only
2117 /// the bits specified by Mask are used.
2118 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) {
2119   switch (V.getOpcode()) {
2120   default:
2121     break;
2122   case ISD::Constant: {
2123     const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
2124     assert(CV && "Const value should be ConstSDNode.");
2125     const APInt &CVal = CV->getAPIntValue();
2126     APInt NewVal = CVal & Mask;
2127     if (NewVal != CVal)
2128       return getConstant(NewVal, SDLoc(V), V.getValueType());
2129     break;
2130   }
2131   case ISD::OR:
2132   case ISD::XOR:
2133     // If the LHS or RHS don't contribute bits to the or, drop them.
2134     if (MaskedValueIsZero(V.getOperand(0), Mask))
2135       return V.getOperand(1);
2136     if (MaskedValueIsZero(V.getOperand(1), Mask))
2137       return V.getOperand(0);
2138     break;
2139   case ISD::SRL:
2140     // Only look at single-use SRLs.
2141     if (!V.getNode()->hasOneUse())
2142       break;
2143     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2144       // See if we can recursively simplify the LHS.
2145       unsigned Amt = RHSC->getZExtValue();
2146 
2147       // Watch out for shift count overflow though.
2148       if (Amt >= Mask.getBitWidth())
2149         break;
2150       APInt NewMask = Mask << Amt;
2151       if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
2152         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2153                        V.getOperand(1));
2154     }
2155     break;
2156   case ISD::AND: {
2157     // X & -1 -> X (ignoring bits which aren't demanded).
2158     // Also handle the case where masked out bits in X are known to be zero.
2159     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2160       const APInt &AndVal = RHSC->getAPIntValue();
2161       if (Mask.isSubsetOf(AndVal) ||
2162           Mask.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | AndVal))
2163         return V.getOperand(0);
2164     }
2165     break;
2166   }
2167   case ISD::ANY_EXTEND: {
2168     SDValue Src = V.getOperand(0);
2169     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2170     // Being conservative here - only peek through if we only demand bits in the
2171     // non-extended source (even though the extended bits are technically undef).
2172     if (Mask.getActiveBits() > SrcBitWidth)
2173       break;
2174     APInt SrcMask = Mask.trunc(SrcBitWidth);
2175     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask))
2176       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2177     break;
2178   }
2179   case ISD::SIGN_EXTEND_INREG:
2180     EVT ExVT = cast<VTSDNode>(V.getOperand(1))->getVT();
2181     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2182 
2183     // If none of the extended bits are demanded, eliminate the sextinreg.
2184     if (Mask.getActiveBits() <= ExVTBits)
2185       return V.getOperand(0);
2186 
2187     break;
2188   }
2189   return SDValue();
2190 }
2191 
2192 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2193 /// use this predicate to simplify operations downstream.
2194 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2195   unsigned BitWidth = Op.getScalarValueSizeInBits();
2196   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2197 }
2198 
2199 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2200 /// this predicate to simplify operations downstream.  Mask is known to be zero
2201 /// for bits that V cannot have.
2202 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
2203                                      unsigned Depth) const {
2204   return Mask.isSubsetOf(computeKnownBits(Op, Depth).Zero);
2205 }
2206 
2207 /// isSplatValue - Return true if the vector V has the same value
2208 /// across all DemandedElts.
2209 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2210                                 APInt &UndefElts) {
2211   if (!DemandedElts)
2212     return false; // No demanded elts, better to assume we don't know anything.
2213 
2214   EVT VT = V.getValueType();
2215   assert(VT.isVector() && "Vector type expected");
2216 
2217   unsigned NumElts = VT.getVectorNumElements();
2218   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2219   UndefElts = APInt::getNullValue(NumElts);
2220 
2221   switch (V.getOpcode()) {
2222   case ISD::BUILD_VECTOR: {
2223     SDValue Scl;
2224     for (unsigned i = 0; i != NumElts; ++i) {
2225       SDValue Op = V.getOperand(i);
2226       if (Op.isUndef()) {
2227         UndefElts.setBit(i);
2228         continue;
2229       }
2230       if (!DemandedElts[i])
2231         continue;
2232       if (Scl && Scl != Op)
2233         return false;
2234       Scl = Op;
2235     }
2236     return true;
2237   }
2238   case ISD::VECTOR_SHUFFLE: {
2239     // Check if this is a shuffle node doing a splat.
2240     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2241     int SplatIndex = -1;
2242     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2243     for (int i = 0; i != (int)NumElts; ++i) {
2244       int M = Mask[i];
2245       if (M < 0) {
2246         UndefElts.setBit(i);
2247         continue;
2248       }
2249       if (!DemandedElts[i])
2250         continue;
2251       if (0 <= SplatIndex && SplatIndex != M)
2252         return false;
2253       SplatIndex = M;
2254     }
2255     return true;
2256   }
2257   case ISD::EXTRACT_SUBVECTOR: {
2258     SDValue Src = V.getOperand(0);
2259     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2260     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2261     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2262       // Offset the demanded elts by the subvector index.
2263       uint64_t Idx = SubIdx->getZExtValue();
2264       APInt UndefSrcElts;
2265       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2266       if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2267         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2268         return true;
2269       }
2270     }
2271     break;
2272   }
2273   case ISD::ADD:
2274   case ISD::SUB:
2275   case ISD::AND: {
2276     APInt UndefLHS, UndefRHS;
2277     SDValue LHS = V.getOperand(0);
2278     SDValue RHS = V.getOperand(1);
2279     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2280         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2281       UndefElts = UndefLHS | UndefRHS;
2282       return true;
2283     }
2284     break;
2285   }
2286   }
2287 
2288   return false;
2289 }
2290 
2291 /// Helper wrapper to main isSplatValue function.
2292 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2293   EVT VT = V.getValueType();
2294   assert(VT.isVector() && "Vector type expected");
2295   unsigned NumElts = VT.getVectorNumElements();
2296 
2297   APInt UndefElts;
2298   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2299   return isSplatValue(V, DemandedElts, UndefElts) &&
2300          (AllowUndefs || !UndefElts);
2301 }
2302 
2303 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2304 /// is less than the element bit-width of the shift node, return it.
2305 static const APInt *getValidShiftAmountConstant(SDValue V) {
2306   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2307     // Shifting more than the bitwidth is not valid.
2308     const APInt &ShAmt = SA->getAPIntValue();
2309     if (ShAmt.ult(V.getScalarValueSizeInBits()))
2310       return &ShAmt;
2311   }
2312   return nullptr;
2313 }
2314 
2315 /// Determine which bits of Op are known to be either zero or one and return
2316 /// them in Known. For vectors, the known bits are those that are shared by
2317 /// every vector element.
2318 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2319   EVT VT = Op.getValueType();
2320   APInt DemandedElts = VT.isVector()
2321                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2322                            : APInt(1, 1);
2323   return computeKnownBits(Op, DemandedElts, Depth);
2324 }
2325 
2326 /// Determine which bits of Op are known to be either zero or one and return
2327 /// them in Known. The DemandedElts argument allows us to only collect the known
2328 /// bits that are shared by the requested vector elements.
2329 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2330                                          unsigned Depth) const {
2331   unsigned BitWidth = Op.getScalarValueSizeInBits();
2332 
2333   KnownBits Known(BitWidth);   // Don't know anything.
2334 
2335   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2336     // We know all of the bits for a constant!
2337     Known.One = C->getAPIntValue();
2338     Known.Zero = ~Known.One;
2339     return Known;
2340   }
2341   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2342     // We know all of the bits for a constant fp!
2343     Known.One = C->getValueAPF().bitcastToAPInt();
2344     Known.Zero = ~Known.One;
2345     return Known;
2346   }
2347 
2348   if (Depth == 6)
2349     return Known;  // Limit search depth.
2350 
2351   KnownBits Known2;
2352   unsigned NumElts = DemandedElts.getBitWidth();
2353   assert((!Op.getValueType().isVector() ||
2354           NumElts == Op.getValueType().getVectorNumElements()) &&
2355          "Unexpected vector size");
2356 
2357   if (!DemandedElts)
2358     return Known;  // No demanded elts, better to assume we don't know anything.
2359 
2360   unsigned Opcode = Op.getOpcode();
2361   switch (Opcode) {
2362   case ISD::BUILD_VECTOR:
2363     // Collect the known bits that are shared by every demanded vector element.
2364     Known.Zero.setAllBits(); Known.One.setAllBits();
2365     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2366       if (!DemandedElts[i])
2367         continue;
2368 
2369       SDValue SrcOp = Op.getOperand(i);
2370       Known2 = computeKnownBits(SrcOp, Depth + 1);
2371 
2372       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2373       if (SrcOp.getValueSizeInBits() != BitWidth) {
2374         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2375                "Expected BUILD_VECTOR implicit truncation");
2376         Known2 = Known2.trunc(BitWidth);
2377       }
2378 
2379       // Known bits are the values that are shared by every demanded element.
2380       Known.One &= Known2.One;
2381       Known.Zero &= Known2.Zero;
2382 
2383       // If we don't know any bits, early out.
2384       if (Known.isUnknown())
2385         break;
2386     }
2387     break;
2388   case ISD::VECTOR_SHUFFLE: {
2389     // Collect the known bits that are shared by every vector element referenced
2390     // by the shuffle.
2391     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2392     Known.Zero.setAllBits(); Known.One.setAllBits();
2393     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2394     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2395     for (unsigned i = 0; i != NumElts; ++i) {
2396       if (!DemandedElts[i])
2397         continue;
2398 
2399       int M = SVN->getMaskElt(i);
2400       if (M < 0) {
2401         // For UNDEF elements, we don't know anything about the common state of
2402         // the shuffle result.
2403         Known.resetAll();
2404         DemandedLHS.clearAllBits();
2405         DemandedRHS.clearAllBits();
2406         break;
2407       }
2408 
2409       if ((unsigned)M < NumElts)
2410         DemandedLHS.setBit((unsigned)M % NumElts);
2411       else
2412         DemandedRHS.setBit((unsigned)M % NumElts);
2413     }
2414     // Known bits are the values that are shared by every demanded element.
2415     if (!!DemandedLHS) {
2416       SDValue LHS = Op.getOperand(0);
2417       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2418       Known.One &= Known2.One;
2419       Known.Zero &= Known2.Zero;
2420     }
2421     // If we don't know any bits, early out.
2422     if (Known.isUnknown())
2423       break;
2424     if (!!DemandedRHS) {
2425       SDValue RHS = Op.getOperand(1);
2426       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2427       Known.One &= Known2.One;
2428       Known.Zero &= Known2.Zero;
2429     }
2430     break;
2431   }
2432   case ISD::CONCAT_VECTORS: {
2433     // Split DemandedElts and test each of the demanded subvectors.
2434     Known.Zero.setAllBits(); Known.One.setAllBits();
2435     EVT SubVectorVT = Op.getOperand(0).getValueType();
2436     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2437     unsigned NumSubVectors = Op.getNumOperands();
2438     for (unsigned i = 0; i != NumSubVectors; ++i) {
2439       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2440       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2441       if (!!DemandedSub) {
2442         SDValue Sub = Op.getOperand(i);
2443         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2444         Known.One &= Known2.One;
2445         Known.Zero &= Known2.Zero;
2446       }
2447       // If we don't know any bits, early out.
2448       if (Known.isUnknown())
2449         break;
2450     }
2451     break;
2452   }
2453   case ISD::INSERT_SUBVECTOR: {
2454     // If we know the element index, demand any elements from the subvector and
2455     // the remainder from the src its inserted into, otherwise demand them all.
2456     SDValue Src = Op.getOperand(0);
2457     SDValue Sub = Op.getOperand(1);
2458     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2459     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2460     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2461       Known.One.setAllBits();
2462       Known.Zero.setAllBits();
2463       uint64_t Idx = SubIdx->getZExtValue();
2464       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2465       if (!!DemandedSubElts) {
2466         Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2467         if (Known.isUnknown())
2468           break; // early-out.
2469       }
2470       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2471       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2472       if (!!DemandedSrcElts) {
2473         Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2474         Known.One &= Known2.One;
2475         Known.Zero &= Known2.Zero;
2476       }
2477     } else {
2478       Known = computeKnownBits(Sub, Depth + 1);
2479       if (Known.isUnknown())
2480         break; // early-out.
2481       Known2 = computeKnownBits(Src, Depth + 1);
2482       Known.One &= Known2.One;
2483       Known.Zero &= Known2.Zero;
2484     }
2485     break;
2486   }
2487   case ISD::EXTRACT_SUBVECTOR: {
2488     // If we know the element index, just demand that subvector elements,
2489     // otherwise demand them all.
2490     SDValue Src = Op.getOperand(0);
2491     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2492     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2493     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2494       // Offset the demanded elts by the subvector index.
2495       uint64_t Idx = SubIdx->getZExtValue();
2496       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2497       Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2498     } else {
2499       Known = computeKnownBits(Src, Depth + 1);
2500     }
2501     break;
2502   }
2503   case ISD::SCALAR_TO_VECTOR: {
2504     // We know about scalar_to_vector as much as we know about it source,
2505     // which becomes the first element of otherwise unknown vector.
2506     if (DemandedElts != 1)
2507       break;
2508 
2509     SDValue N0 = Op.getOperand(0);
2510     Known = computeKnownBits(N0, Depth + 1);
2511     if (N0.getValueSizeInBits() != BitWidth)
2512       Known = Known.trunc(BitWidth);
2513 
2514     break;
2515   }
2516   case ISD::BITCAST: {
2517     SDValue N0 = Op.getOperand(0);
2518     EVT SubVT = N0.getValueType();
2519     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2520 
2521     // Ignore bitcasts from unsupported types.
2522     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2523       break;
2524 
2525     // Fast handling of 'identity' bitcasts.
2526     if (BitWidth == SubBitWidth) {
2527       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2528       break;
2529     }
2530 
2531     bool IsLE = getDataLayout().isLittleEndian();
2532 
2533     // Bitcast 'small element' vector to 'large element' scalar/vector.
2534     if ((BitWidth % SubBitWidth) == 0) {
2535       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2536 
2537       // Collect known bits for the (larger) output by collecting the known
2538       // bits from each set of sub elements and shift these into place.
2539       // We need to separately call computeKnownBits for each set of
2540       // sub elements as the knownbits for each is likely to be different.
2541       unsigned SubScale = BitWidth / SubBitWidth;
2542       APInt SubDemandedElts(NumElts * SubScale, 0);
2543       for (unsigned i = 0; i != NumElts; ++i)
2544         if (DemandedElts[i])
2545           SubDemandedElts.setBit(i * SubScale);
2546 
2547       for (unsigned i = 0; i != SubScale; ++i) {
2548         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2549                          Depth + 1);
2550         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2551         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2552         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2553       }
2554     }
2555 
2556     // Bitcast 'large element' scalar/vector to 'small element' vector.
2557     if ((SubBitWidth % BitWidth) == 0) {
2558       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2559 
2560       // Collect known bits for the (smaller) output by collecting the known
2561       // bits from the overlapping larger input elements and extracting the
2562       // sub sections we actually care about.
2563       unsigned SubScale = SubBitWidth / BitWidth;
2564       APInt SubDemandedElts(NumElts / SubScale, 0);
2565       for (unsigned i = 0; i != NumElts; ++i)
2566         if (DemandedElts[i])
2567           SubDemandedElts.setBit(i / SubScale);
2568 
2569       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2570 
2571       Known.Zero.setAllBits(); Known.One.setAllBits();
2572       for (unsigned i = 0; i != NumElts; ++i)
2573         if (DemandedElts[i]) {
2574           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2575           unsigned Offset = (Shifts % SubScale) * BitWidth;
2576           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2577           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2578           // If we don't know any bits, early out.
2579           if (Known.isUnknown())
2580             break;
2581         }
2582     }
2583     break;
2584   }
2585   case ISD::AND:
2586     // If either the LHS or the RHS are Zero, the result is zero.
2587     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2588     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2589 
2590     // Output known-1 bits are only known if set in both the LHS & RHS.
2591     Known.One &= Known2.One;
2592     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2593     Known.Zero |= Known2.Zero;
2594     break;
2595   case ISD::OR:
2596     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2597     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2598 
2599     // Output known-0 bits are only known if clear in both the LHS & RHS.
2600     Known.Zero &= Known2.Zero;
2601     // Output known-1 are known to be set if set in either the LHS | RHS.
2602     Known.One |= Known2.One;
2603     break;
2604   case ISD::XOR: {
2605     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2606     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2607 
2608     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2609     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2610     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2611     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2612     Known.Zero = KnownZeroOut;
2613     break;
2614   }
2615   case ISD::MUL: {
2616     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2617     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2618 
2619     // If low bits are zero in either operand, output low known-0 bits.
2620     // Also compute a conservative estimate for high known-0 bits.
2621     // More trickiness is possible, but this is sufficient for the
2622     // interesting case of alignment computation.
2623     unsigned TrailZ = Known.countMinTrailingZeros() +
2624                       Known2.countMinTrailingZeros();
2625     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2626                                Known2.countMinLeadingZeros(),
2627                                BitWidth) - BitWidth;
2628 
2629     Known.resetAll();
2630     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2631     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2632     break;
2633   }
2634   case ISD::UDIV: {
2635     // For the purposes of computing leading zeros we can conservatively
2636     // treat a udiv as a logical right shift by the power of 2 known to
2637     // be less than the denominator.
2638     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2639     unsigned LeadZ = Known2.countMinLeadingZeros();
2640 
2641     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2642     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2643     if (RHSMaxLeadingZeros != BitWidth)
2644       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2645 
2646     Known.Zero.setHighBits(LeadZ);
2647     break;
2648   }
2649   case ISD::SELECT:
2650   case ISD::VSELECT:
2651     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2652     // If we don't know any bits, early out.
2653     if (Known.isUnknown())
2654       break;
2655     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2656 
2657     // Only known if known in both the LHS and RHS.
2658     Known.One &= Known2.One;
2659     Known.Zero &= Known2.Zero;
2660     break;
2661   case ISD::SELECT_CC:
2662     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2663     // If we don't know any bits, early out.
2664     if (Known.isUnknown())
2665       break;
2666     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2667 
2668     // Only known if known in both the LHS and RHS.
2669     Known.One &= Known2.One;
2670     Known.Zero &= Known2.Zero;
2671     break;
2672   case ISD::SMULO:
2673   case ISD::UMULO:
2674   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2675     if (Op.getResNo() != 1)
2676       break;
2677     // The boolean result conforms to getBooleanContents.
2678     // If we know the result of a setcc has the top bits zero, use this info.
2679     // We know that we have an integer-based boolean since these operations
2680     // are only available for integer.
2681     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2682             TargetLowering::ZeroOrOneBooleanContent &&
2683         BitWidth > 1)
2684       Known.Zero.setBitsFrom(1);
2685     break;
2686   case ISD::SETCC:
2687     // If we know the result of a setcc has the top bits zero, use this info.
2688     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2689             TargetLowering::ZeroOrOneBooleanContent &&
2690         BitWidth > 1)
2691       Known.Zero.setBitsFrom(1);
2692     break;
2693   case ISD::SHL:
2694     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2695       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2696       unsigned Shift = ShAmt->getZExtValue();
2697       Known.Zero <<= Shift;
2698       Known.One <<= Shift;
2699       // Low bits are known zero.
2700       Known.Zero.setLowBits(Shift);
2701     }
2702     break;
2703   case ISD::SRL:
2704     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2705       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2706       unsigned Shift = ShAmt->getZExtValue();
2707       Known.Zero.lshrInPlace(Shift);
2708       Known.One.lshrInPlace(Shift);
2709       // High bits are known zero.
2710       Known.Zero.setHighBits(Shift);
2711     } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
2712       // If the shift amount is a vector of constants see if we can bound
2713       // the number of upper zero bits.
2714       unsigned ShiftAmountMin = BitWidth;
2715       for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
2716         if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
2717           const APInt &ShAmt = C->getAPIntValue();
2718           if (ShAmt.ult(BitWidth)) {
2719             ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
2720                                                 ShAmt.getZExtValue());
2721             continue;
2722           }
2723         }
2724         // Don't know anything.
2725         ShiftAmountMin = 0;
2726         break;
2727       }
2728 
2729       Known.Zero.setHighBits(ShiftAmountMin);
2730     }
2731     break;
2732   case ISD::SRA:
2733     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2734       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2735       unsigned Shift = ShAmt->getZExtValue();
2736       // Sign extend known zero/one bit (else is unknown).
2737       Known.Zero.ashrInPlace(Shift);
2738       Known.One.ashrInPlace(Shift);
2739     }
2740     break;
2741   case ISD::FSHL:
2742   case ISD::FSHR:
2743     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2744       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2745 
2746       // For fshl, 0-shift returns the 1st arg.
2747       // For fshr, 0-shift returns the 2nd arg.
2748       if (Amt == 0) {
2749         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2750                                  DemandedElts, Depth + 1);
2751         break;
2752       }
2753 
2754       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2755       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2756       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2757       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2758       if (Opcode == ISD::FSHL) {
2759         Known.One <<= Amt;
2760         Known.Zero <<= Amt;
2761         Known2.One.lshrInPlace(BitWidth - Amt);
2762         Known2.Zero.lshrInPlace(BitWidth - Amt);
2763       } else {
2764         Known.One <<= BitWidth - Amt;
2765         Known.Zero <<= BitWidth - Amt;
2766         Known2.One.lshrInPlace(Amt);
2767         Known2.Zero.lshrInPlace(Amt);
2768       }
2769       Known.One |= Known2.One;
2770       Known.Zero |= Known2.Zero;
2771     }
2772     break;
2773   case ISD::SIGN_EXTEND_INREG: {
2774     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2775     unsigned EBits = EVT.getScalarSizeInBits();
2776 
2777     // Sign extension.  Compute the demanded bits in the result that are not
2778     // present in the input.
2779     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2780 
2781     APInt InSignMask = APInt::getSignMask(EBits);
2782     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2783 
2784     // If the sign extended bits are demanded, we know that the sign
2785     // bit is demanded.
2786     InSignMask = InSignMask.zext(BitWidth);
2787     if (NewBits.getBoolValue())
2788       InputDemandedBits |= InSignMask;
2789 
2790     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2791     Known.One &= InputDemandedBits;
2792     Known.Zero &= InputDemandedBits;
2793 
2794     // If the sign bit of the input is known set or clear, then we know the
2795     // top bits of the result.
2796     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2797       Known.Zero |= NewBits;
2798       Known.One  &= ~NewBits;
2799     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2800       Known.One  |= NewBits;
2801       Known.Zero &= ~NewBits;
2802     } else {                              // Input sign bit unknown
2803       Known.Zero &= ~NewBits;
2804       Known.One  &= ~NewBits;
2805     }
2806     break;
2807   }
2808   case ISD::CTTZ:
2809   case ISD::CTTZ_ZERO_UNDEF: {
2810     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2811     // If we have a known 1, its position is our upper bound.
2812     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2813     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2814     Known.Zero.setBitsFrom(LowBits);
2815     break;
2816   }
2817   case ISD::CTLZ:
2818   case ISD::CTLZ_ZERO_UNDEF: {
2819     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2820     // If we have a known 1, its position is our upper bound.
2821     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2822     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2823     Known.Zero.setBitsFrom(LowBits);
2824     break;
2825   }
2826   case ISD::CTPOP: {
2827     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2828     // If we know some of the bits are zero, they can't be one.
2829     unsigned PossibleOnes = Known2.countMaxPopulation();
2830     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2831     break;
2832   }
2833   case ISD::LOAD: {
2834     LoadSDNode *LD = cast<LoadSDNode>(Op);
2835     // If this is a ZEXTLoad and we are looking at the loaded value.
2836     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2837       EVT VT = LD->getMemoryVT();
2838       unsigned MemBits = VT.getScalarSizeInBits();
2839       Known.Zero.setBitsFrom(MemBits);
2840     } else if (const MDNode *Ranges = LD->getRanges()) {
2841       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2842         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2843     }
2844     break;
2845   }
2846   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2847     EVT InVT = Op.getOperand(0).getValueType();
2848     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2849     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2850     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2851     break;
2852   }
2853   case ISD::ZERO_EXTEND: {
2854     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2855     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2856     break;
2857   }
2858   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2859     EVT InVT = Op.getOperand(0).getValueType();
2860     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2861     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2862     // If the sign bit is known to be zero or one, then sext will extend
2863     // it to the top bits, else it will just zext.
2864     Known = Known.sext(BitWidth);
2865     break;
2866   }
2867   case ISD::SIGN_EXTEND: {
2868     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2869     // If the sign bit is known to be zero or one, then sext will extend
2870     // it to the top bits, else it will just zext.
2871     Known = Known.sext(BitWidth);
2872     break;
2873   }
2874   case ISD::ANY_EXTEND: {
2875     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2876     Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
2877     break;
2878   }
2879   case ISD::TRUNCATE: {
2880     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2881     Known = Known.trunc(BitWidth);
2882     break;
2883   }
2884   case ISD::AssertZext: {
2885     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2886     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2887     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2888     Known.Zero |= (~InMask);
2889     Known.One  &= (~Known.Zero);
2890     break;
2891   }
2892   case ISD::FGETSIGN:
2893     // All bits are zero except the low bit.
2894     Known.Zero.setBitsFrom(1);
2895     break;
2896   case ISD::USUBO:
2897   case ISD::SSUBO:
2898     if (Op.getResNo() == 1) {
2899       // If we know the result of a setcc has the top bits zero, use this info.
2900       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2901               TargetLowering::ZeroOrOneBooleanContent &&
2902           BitWidth > 1)
2903         Known.Zero.setBitsFrom(1);
2904       break;
2905     }
2906     LLVM_FALLTHROUGH;
2907   case ISD::SUB:
2908   case ISD::SUBC: {
2909     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
2910       // We know that the top bits of C-X are clear if X contains less bits
2911       // than C (i.e. no wrap-around can happen).  For example, 20-X is
2912       // positive if we can prove that X is >= 0 and < 16.
2913       if (CLHS->getAPIntValue().isNonNegative()) {
2914         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2915         // NLZ can't be BitWidth with no sign bit
2916         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2917         Known2 = computeKnownBits(Op.getOperand(1), DemandedElts,
2918                          Depth + 1);
2919 
2920         // If all of the MaskV bits are known to be zero, then we know the
2921         // output top bits are zero, because we now know that the output is
2922         // from [0-C].
2923         if ((Known2.Zero & MaskV) == MaskV) {
2924           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2925           // Top bits known zero.
2926           Known.Zero.setHighBits(NLZ2);
2927         }
2928       }
2929     }
2930 
2931     // If low bits are know to be zero in both operands, then we know they are
2932     // going to be 0 in the result. Both addition and complement operations
2933     // preserve the low zero bits.
2934     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2935     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2936     if (KnownZeroLow == 0)
2937       break;
2938 
2939     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2940     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2941     Known.Zero.setLowBits(KnownZeroLow);
2942     break;
2943   }
2944   case ISD::UADDO:
2945   case ISD::SADDO:
2946   case ISD::ADDCARRY:
2947     if (Op.getResNo() == 1) {
2948       // If we know the result of a setcc has the top bits zero, use this info.
2949       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2950               TargetLowering::ZeroOrOneBooleanContent &&
2951           BitWidth > 1)
2952         Known.Zero.setBitsFrom(1);
2953       break;
2954     }
2955     LLVM_FALLTHROUGH;
2956   case ISD::ADD:
2957   case ISD::ADDC:
2958   case ISD::ADDE: {
2959     // Output known-0 bits are known if clear or set in both the low clear bits
2960     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2961     // low 3 bits clear.
2962     // Output known-0 bits are also known if the top bits of each input are
2963     // known to be clear. For example, if one input has the top 10 bits clear
2964     // and the other has the top 8 bits clear, we know the top 7 bits of the
2965     // output must be clear.
2966     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2967     unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
2968     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2969 
2970     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2971     KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
2972     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2973 
2974     if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) {
2975       // With ADDE and ADDCARRY, a carry bit may be added in, so we can only
2976       // use this information if we know (at least) that the low two bits are
2977       // clear. We then return to the caller that the low bit is unknown but
2978       // that other bits are known zero.
2979       if (KnownZeroLow >= 2)
2980         Known.Zero.setBits(1, KnownZeroLow);
2981       break;
2982     }
2983 
2984     Known.Zero.setLowBits(KnownZeroLow);
2985     if (KnownZeroHigh > 1)
2986       Known.Zero.setHighBits(KnownZeroHigh - 1);
2987     break;
2988   }
2989   case ISD::SREM:
2990     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2991       const APInt &RA = Rem->getAPIntValue().abs();
2992       if (RA.isPowerOf2()) {
2993         APInt LowBits = RA - 1;
2994         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2995 
2996         // The low bits of the first operand are unchanged by the srem.
2997         Known.Zero = Known2.Zero & LowBits;
2998         Known.One = Known2.One & LowBits;
2999 
3000         // If the first operand is non-negative or has all low bits zero, then
3001         // the upper bits are all zero.
3002         if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
3003           Known.Zero |= ~LowBits;
3004 
3005         // If the first operand is negative and not all low bits are zero, then
3006         // the upper bits are all one.
3007         if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
3008           Known.One |= ~LowBits;
3009         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3010       }
3011     }
3012     break;
3013   case ISD::UREM: {
3014     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3015       const APInt &RA = Rem->getAPIntValue();
3016       if (RA.isPowerOf2()) {
3017         APInt LowBits = (RA - 1);
3018         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3019 
3020         // The upper bits are all zero, the lower ones are unchanged.
3021         Known.Zero = Known2.Zero | ~LowBits;
3022         Known.One = Known2.One & LowBits;
3023         break;
3024       }
3025     }
3026 
3027     // Since the result is less than or equal to either operand, any leading
3028     // zero bits in either operand must also exist in the result.
3029     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3030     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3031 
3032     uint32_t Leaders =
3033         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3034     Known.resetAll();
3035     Known.Zero.setHighBits(Leaders);
3036     break;
3037   }
3038   case ISD::EXTRACT_ELEMENT: {
3039     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3040     const unsigned Index = Op.getConstantOperandVal(1);
3041     const unsigned BitWidth = Op.getValueSizeInBits();
3042 
3043     // Remove low part of known bits mask
3044     Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth);
3045     Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth);
3046 
3047     // Remove high part of known bit mask
3048     Known = Known.trunc(BitWidth);
3049     break;
3050   }
3051   case ISD::EXTRACT_VECTOR_ELT: {
3052     SDValue InVec = Op.getOperand(0);
3053     SDValue EltNo = Op.getOperand(1);
3054     EVT VecVT = InVec.getValueType();
3055     const unsigned BitWidth = Op.getValueSizeInBits();
3056     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3057     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3058     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3059     // anything about the extended bits.
3060     if (BitWidth > EltBitWidth)
3061       Known = Known.trunc(EltBitWidth);
3062     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3063     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
3064       // If we know the element index, just demand that vector element.
3065       unsigned Idx = ConstEltNo->getZExtValue();
3066       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
3067       Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
3068     } else {
3069       // Unknown element index, so ignore DemandedElts and demand them all.
3070       Known = computeKnownBits(InVec, Depth + 1);
3071     }
3072     if (BitWidth > EltBitWidth)
3073       Known = Known.zext(BitWidth, false /* => any extend */);
3074     break;
3075   }
3076   case ISD::INSERT_VECTOR_ELT: {
3077     SDValue InVec = Op.getOperand(0);
3078     SDValue InVal = Op.getOperand(1);
3079     SDValue EltNo = Op.getOperand(2);
3080 
3081     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3082     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3083       // If we know the element index, split the demand between the
3084       // source vector and the inserted element.
3085       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
3086       unsigned EltIdx = CEltNo->getZExtValue();
3087 
3088       // If we demand the inserted element then add its common known bits.
3089       if (DemandedElts[EltIdx]) {
3090         Known2 = computeKnownBits(InVal, Depth + 1);
3091         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3092         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3093       }
3094 
3095       // If we demand the source vector then add its common known bits, ensuring
3096       // that we don't demand the inserted element.
3097       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
3098       if (!!VectorElts) {
3099         Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
3100         Known.One &= Known2.One;
3101         Known.Zero &= Known2.Zero;
3102       }
3103     } else {
3104       // Unknown element index, so ignore DemandedElts and demand them all.
3105       Known = computeKnownBits(InVec, Depth + 1);
3106       Known2 = computeKnownBits(InVal, Depth + 1);
3107       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3108       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3109     }
3110     break;
3111   }
3112   case ISD::BITREVERSE: {
3113     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3114     Known.Zero = Known2.Zero.reverseBits();
3115     Known.One = Known2.One.reverseBits();
3116     break;
3117   }
3118   case ISD::BSWAP: {
3119     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3120     Known.Zero = Known2.Zero.byteSwap();
3121     Known.One = Known2.One.byteSwap();
3122     break;
3123   }
3124   case ISD::ABS: {
3125     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3126 
3127     // If the source's MSB is zero then we know the rest of the bits already.
3128     if (Known2.isNonNegative()) {
3129       Known.Zero = Known2.Zero;
3130       Known.One = Known2.One;
3131       break;
3132     }
3133 
3134     // We only know that the absolute values's MSB will be zero iff there is
3135     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3136     Known2.One.clearSignBit();
3137     if (Known2.One.getBoolValue()) {
3138       Known.Zero = APInt::getSignMask(BitWidth);
3139       break;
3140     }
3141     break;
3142   }
3143   case ISD::UMIN: {
3144     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3145     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3146 
3147     // UMIN - we know that the result will have the maximum of the
3148     // known zero leading bits of the inputs.
3149     unsigned LeadZero = Known.countMinLeadingZeros();
3150     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3151 
3152     Known.Zero &= Known2.Zero;
3153     Known.One &= Known2.One;
3154     Known.Zero.setHighBits(LeadZero);
3155     break;
3156   }
3157   case ISD::UMAX: {
3158     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3159     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3160 
3161     // UMAX - we know that the result will have the maximum of the
3162     // known one leading bits of the inputs.
3163     unsigned LeadOne = Known.countMinLeadingOnes();
3164     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3165 
3166     Known.Zero &= Known2.Zero;
3167     Known.One &= Known2.One;
3168     Known.One.setHighBits(LeadOne);
3169     break;
3170   }
3171   case ISD::SMIN:
3172   case ISD::SMAX: {
3173     // If we have a clamp pattern, we know that the number of sign bits will be
3174     // the minimum of the clamp min/max range.
3175     bool IsMax = (Opcode == ISD::SMAX);
3176     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3177     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3178       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3179         CstHigh =
3180             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3181     if (CstLow && CstHigh) {
3182       if (!IsMax)
3183         std::swap(CstLow, CstHigh);
3184 
3185       const APInt &ValueLow = CstLow->getAPIntValue();
3186       const APInt &ValueHigh = CstHigh->getAPIntValue();
3187       if (ValueLow.sle(ValueHigh)) {
3188         unsigned LowSignBits = ValueLow.getNumSignBits();
3189         unsigned HighSignBits = ValueHigh.getNumSignBits();
3190         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3191         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3192           Known.One.setHighBits(MinSignBits);
3193           break;
3194         }
3195         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3196           Known.Zero.setHighBits(MinSignBits);
3197           break;
3198         }
3199       }
3200     }
3201 
3202     // Fallback - just get the shared known bits of the operands.
3203     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3204     if (Known.isUnknown()) break; // Early-out
3205     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3206     Known.Zero &= Known2.Zero;
3207     Known.One &= Known2.One;
3208     break;
3209   }
3210   case ISD::FrameIndex:
3211   case ISD::TargetFrameIndex:
3212     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3213     break;
3214 
3215   default:
3216     if (Opcode < ISD::BUILTIN_OP_END)
3217       break;
3218     LLVM_FALLTHROUGH;
3219   case ISD::INTRINSIC_WO_CHAIN:
3220   case ISD::INTRINSIC_W_CHAIN:
3221   case ISD::INTRINSIC_VOID:
3222     // Allow the target to implement this method for its nodes.
3223     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3224     break;
3225   }
3226 
3227   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3228   return Known;
3229 }
3230 
3231 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3232                                                              SDValue N1) const {
3233   // X + 0 never overflow
3234   if (isNullConstant(N1))
3235     return OFK_Never;
3236 
3237   KnownBits N1Known = computeKnownBits(N1);
3238   if (N1Known.Zero.getBoolValue()) {
3239     KnownBits N0Known = computeKnownBits(N0);
3240 
3241     bool overflow;
3242     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
3243     if (!overflow)
3244       return OFK_Never;
3245   }
3246 
3247   // mulhi + 1 never overflow
3248   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3249       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
3250     return OFK_Never;
3251 
3252   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3253     KnownBits N0Known = computeKnownBits(N0);
3254 
3255     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
3256       return OFK_Never;
3257   }
3258 
3259   return OFK_Sometime;
3260 }
3261 
3262 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3263   EVT OpVT = Val.getValueType();
3264   unsigned BitWidth = OpVT.getScalarSizeInBits();
3265 
3266   // Is the constant a known power of 2?
3267   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3268     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3269 
3270   // A left-shift of a constant one will have exactly one bit set because
3271   // shifting the bit off the end is undefined.
3272   if (Val.getOpcode() == ISD::SHL) {
3273     auto *C = isConstOrConstSplat(Val.getOperand(0));
3274     if (C && C->getAPIntValue() == 1)
3275       return true;
3276   }
3277 
3278   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3279   // one bit set.
3280   if (Val.getOpcode() == ISD::SRL) {
3281     auto *C = isConstOrConstSplat(Val.getOperand(0));
3282     if (C && C->getAPIntValue().isSignMask())
3283       return true;
3284   }
3285 
3286   // Are all operands of a build vector constant powers of two?
3287   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3288     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3289           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3290             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3291           return false;
3292         }))
3293       return true;
3294 
3295   // More could be done here, though the above checks are enough
3296   // to handle some common cases.
3297 
3298   // Fall back to computeKnownBits to catch other known cases.
3299   KnownBits Known = computeKnownBits(Val);
3300   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3301 }
3302 
3303 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3304   EVT VT = Op.getValueType();
3305   APInt DemandedElts = VT.isVector()
3306                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3307                            : APInt(1, 1);
3308   return ComputeNumSignBits(Op, DemandedElts, Depth);
3309 }
3310 
3311 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3312                                           unsigned Depth) const {
3313   EVT VT = Op.getValueType();
3314   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3315   unsigned VTBits = VT.getScalarSizeInBits();
3316   unsigned NumElts = DemandedElts.getBitWidth();
3317   unsigned Tmp, Tmp2;
3318   unsigned FirstAnswer = 1;
3319 
3320   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3321     const APInt &Val = C->getAPIntValue();
3322     return Val.getNumSignBits();
3323   }
3324 
3325   if (Depth == 6)
3326     return 1;  // Limit search depth.
3327 
3328   if (!DemandedElts)
3329     return 1;  // No demanded elts, better to assume we don't know anything.
3330 
3331   unsigned Opcode = Op.getOpcode();
3332   switch (Opcode) {
3333   default: break;
3334   case ISD::AssertSext:
3335     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3336     return VTBits-Tmp+1;
3337   case ISD::AssertZext:
3338     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3339     return VTBits-Tmp;
3340 
3341   case ISD::BUILD_VECTOR:
3342     Tmp = VTBits;
3343     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3344       if (!DemandedElts[i])
3345         continue;
3346 
3347       SDValue SrcOp = Op.getOperand(i);
3348       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3349 
3350       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3351       if (SrcOp.getValueSizeInBits() != VTBits) {
3352         assert(SrcOp.getValueSizeInBits() > VTBits &&
3353                "Expected BUILD_VECTOR implicit truncation");
3354         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3355         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3356       }
3357       Tmp = std::min(Tmp, Tmp2);
3358     }
3359     return Tmp;
3360 
3361   case ISD::VECTOR_SHUFFLE: {
3362     // Collect the minimum number of sign bits that are shared by every vector
3363     // element referenced by the shuffle.
3364     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3365     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3366     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3367     for (unsigned i = 0; i != NumElts; ++i) {
3368       int M = SVN->getMaskElt(i);
3369       if (!DemandedElts[i])
3370         continue;
3371       // For UNDEF elements, we don't know anything about the common state of
3372       // the shuffle result.
3373       if (M < 0)
3374         return 1;
3375       if ((unsigned)M < NumElts)
3376         DemandedLHS.setBit((unsigned)M % NumElts);
3377       else
3378         DemandedRHS.setBit((unsigned)M % NumElts);
3379     }
3380     Tmp = std::numeric_limits<unsigned>::max();
3381     if (!!DemandedLHS)
3382       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3383     if (!!DemandedRHS) {
3384       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3385       Tmp = std::min(Tmp, Tmp2);
3386     }
3387     // If we don't know anything, early out and try computeKnownBits fall-back.
3388     if (Tmp == 1)
3389       break;
3390     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3391     return Tmp;
3392   }
3393 
3394   case ISD::BITCAST: {
3395     SDValue N0 = Op.getOperand(0);
3396     EVT SrcVT = N0.getValueType();
3397     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3398 
3399     // Ignore bitcasts from unsupported types..
3400     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3401       break;
3402 
3403     // Fast handling of 'identity' bitcasts.
3404     if (VTBits == SrcBits)
3405       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3406 
3407     bool IsLE = getDataLayout().isLittleEndian();
3408 
3409     // Bitcast 'large element' scalar/vector to 'small element' vector.
3410     if ((SrcBits % VTBits) == 0) {
3411       assert(VT.isVector() && "Expected bitcast to vector");
3412 
3413       unsigned Scale = SrcBits / VTBits;
3414       APInt SrcDemandedElts(NumElts / Scale, 0);
3415       for (unsigned i = 0; i != NumElts; ++i)
3416         if (DemandedElts[i])
3417           SrcDemandedElts.setBit(i / Scale);
3418 
3419       // Fast case - sign splat can be simply split across the small elements.
3420       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3421       if (Tmp == SrcBits)
3422         return VTBits;
3423 
3424       // Slow case - determine how far the sign extends into each sub-element.
3425       Tmp2 = VTBits;
3426       for (unsigned i = 0; i != NumElts; ++i)
3427         if (DemandedElts[i]) {
3428           unsigned SubOffset = i % Scale;
3429           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3430           SubOffset = SubOffset * VTBits;
3431           if (Tmp <= SubOffset)
3432             return 1;
3433           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3434         }
3435       return Tmp2;
3436     }
3437     break;
3438   }
3439 
3440   case ISD::SIGN_EXTEND:
3441     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3442     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3443   case ISD::SIGN_EXTEND_INREG:
3444     // Max of the input and what this extends.
3445     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3446     Tmp = VTBits-Tmp+1;
3447     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3448     return std::max(Tmp, Tmp2);
3449   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3450     SDValue Src = Op.getOperand(0);
3451     EVT SrcVT = Src.getValueType();
3452     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3453     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3454     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3455   }
3456 
3457   case ISD::SRA:
3458     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3459     // SRA X, C   -> adds C sign bits.
3460     if (ConstantSDNode *C =
3461             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3462       APInt ShiftVal = C->getAPIntValue();
3463       ShiftVal += Tmp;
3464       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3465     }
3466     return Tmp;
3467   case ISD::SHL:
3468     if (ConstantSDNode *C =
3469             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3470       // shl destroys sign bits.
3471       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3472       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3473           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3474       return Tmp - C->getZExtValue();
3475     }
3476     break;
3477   case ISD::AND:
3478   case ISD::OR:
3479   case ISD::XOR:    // NOT is handled here.
3480     // Logical binary ops preserve the number of sign bits at the worst.
3481     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3482     if (Tmp != 1) {
3483       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3484       FirstAnswer = std::min(Tmp, Tmp2);
3485       // We computed what we know about the sign bits as our first
3486       // answer. Now proceed to the generic code that uses
3487       // computeKnownBits, and pick whichever answer is better.
3488     }
3489     break;
3490 
3491   case ISD::SELECT:
3492   case ISD::VSELECT:
3493     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3494     if (Tmp == 1) return 1;  // Early out.
3495     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3496     return std::min(Tmp, Tmp2);
3497   case ISD::SELECT_CC:
3498     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3499     if (Tmp == 1) return 1;  // Early out.
3500     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3501     return std::min(Tmp, Tmp2);
3502 
3503   case ISD::SMIN:
3504   case ISD::SMAX: {
3505     // If we have a clamp pattern, we know that the number of sign bits will be
3506     // the minimum of the clamp min/max range.
3507     bool IsMax = (Opcode == ISD::SMAX);
3508     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3509     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3510       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3511         CstHigh =
3512             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3513     if (CstLow && CstHigh) {
3514       if (!IsMax)
3515         std::swap(CstLow, CstHigh);
3516       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3517         Tmp = CstLow->getAPIntValue().getNumSignBits();
3518         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3519         return std::min(Tmp, Tmp2);
3520       }
3521     }
3522 
3523     // Fallback - just get the minimum number of sign bits of the operands.
3524     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3525     if (Tmp == 1)
3526       return 1;  // Early out.
3527     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3528     return std::min(Tmp, Tmp2);
3529   }
3530   case ISD::UMIN:
3531   case ISD::UMAX:
3532     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3533     if (Tmp == 1)
3534       return 1;  // Early out.
3535     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3536     return std::min(Tmp, Tmp2);
3537   case ISD::SADDO:
3538   case ISD::UADDO:
3539   case ISD::SSUBO:
3540   case ISD::USUBO:
3541   case ISD::SMULO:
3542   case ISD::UMULO:
3543     if (Op.getResNo() != 1)
3544       break;
3545     // The boolean result conforms to getBooleanContents.  Fall through.
3546     // If setcc returns 0/-1, all bits are sign bits.
3547     // We know that we have an integer-based boolean since these operations
3548     // are only available for integer.
3549     if (TLI->getBooleanContents(VT.isVector(), false) ==
3550         TargetLowering::ZeroOrNegativeOneBooleanContent)
3551       return VTBits;
3552     break;
3553   case ISD::SETCC:
3554     // If setcc returns 0/-1, all bits are sign bits.
3555     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3556         TargetLowering::ZeroOrNegativeOneBooleanContent)
3557       return VTBits;
3558     break;
3559   case ISD::ROTL:
3560   case ISD::ROTR:
3561     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3562       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3563 
3564       // Handle rotate right by N like a rotate left by 32-N.
3565       if (Opcode == ISD::ROTR)
3566         RotAmt = (VTBits - RotAmt) % VTBits;
3567 
3568       // If we aren't rotating out all of the known-in sign bits, return the
3569       // number that are left.  This handles rotl(sext(x), 1) for example.
3570       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3571       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3572     }
3573     break;
3574   case ISD::ADD:
3575   case ISD::ADDC:
3576     // Add can have at most one carry bit.  Thus we know that the output
3577     // is, at worst, one more bit than the inputs.
3578     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3579     if (Tmp == 1) return 1;  // Early out.
3580 
3581     // Special case decrementing a value (ADD X, -1):
3582     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3583       if (CRHS->isAllOnesValue()) {
3584         KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3585 
3586         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3587         // sign bits set.
3588         if ((Known.Zero | 1).isAllOnesValue())
3589           return VTBits;
3590 
3591         // If we are subtracting one from a positive number, there is no carry
3592         // out of the result.
3593         if (Known.isNonNegative())
3594           return Tmp;
3595       }
3596 
3597     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3598     if (Tmp2 == 1) return 1;
3599     return std::min(Tmp, Tmp2)-1;
3600 
3601   case ISD::SUB:
3602     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3603     if (Tmp2 == 1) return 1;
3604 
3605     // Handle NEG.
3606     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3607       if (CLHS->isNullValue()) {
3608         KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3609         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3610         // sign bits set.
3611         if ((Known.Zero | 1).isAllOnesValue())
3612           return VTBits;
3613 
3614         // If the input is known to be positive (the sign bit is known clear),
3615         // the output of the NEG has the same number of sign bits as the input.
3616         if (Known.isNonNegative())
3617           return Tmp2;
3618 
3619         // Otherwise, we treat this like a SUB.
3620       }
3621 
3622     // Sub can have at most one carry bit.  Thus we know that the output
3623     // is, at worst, one more bit than the inputs.
3624     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3625     if (Tmp == 1) return 1;  // Early out.
3626     return std::min(Tmp, Tmp2)-1;
3627   case ISD::TRUNCATE: {
3628     // Check if the sign bits of source go down as far as the truncated value.
3629     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3630     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3631     if (NumSrcSignBits > (NumSrcBits - VTBits))
3632       return NumSrcSignBits - (NumSrcBits - VTBits);
3633     break;
3634   }
3635   case ISD::EXTRACT_ELEMENT: {
3636     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3637     const int BitWidth = Op.getValueSizeInBits();
3638     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3639 
3640     // Get reverse index (starting from 1), Op1 value indexes elements from
3641     // little end. Sign starts at big end.
3642     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3643 
3644     // If the sign portion ends in our element the subtraction gives correct
3645     // result. Otherwise it gives either negative or > bitwidth result
3646     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3647   }
3648   case ISD::INSERT_VECTOR_ELT: {
3649     SDValue InVec = Op.getOperand(0);
3650     SDValue InVal = Op.getOperand(1);
3651     SDValue EltNo = Op.getOperand(2);
3652     unsigned NumElts = InVec.getValueType().getVectorNumElements();
3653 
3654     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3655     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3656       // If we know the element index, split the demand between the
3657       // source vector and the inserted element.
3658       unsigned EltIdx = CEltNo->getZExtValue();
3659 
3660       // If we demand the inserted element then get its sign bits.
3661       Tmp = std::numeric_limits<unsigned>::max();
3662       if (DemandedElts[EltIdx]) {
3663         // TODO - handle implicit truncation of inserted elements.
3664         if (InVal.getScalarValueSizeInBits() != VTBits)
3665           break;
3666         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3667       }
3668 
3669       // If we demand the source vector then get its sign bits, and determine
3670       // the minimum.
3671       APInt VectorElts = DemandedElts;
3672       VectorElts.clearBit(EltIdx);
3673       if (!!VectorElts) {
3674         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3675         Tmp = std::min(Tmp, Tmp2);
3676       }
3677     } else {
3678       // Unknown element index, so ignore DemandedElts and demand them all.
3679       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3680       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3681       Tmp = std::min(Tmp, Tmp2);
3682     }
3683     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3684     return Tmp;
3685   }
3686   case ISD::EXTRACT_VECTOR_ELT: {
3687     SDValue InVec = Op.getOperand(0);
3688     SDValue EltNo = Op.getOperand(1);
3689     EVT VecVT = InVec.getValueType();
3690     const unsigned BitWidth = Op.getValueSizeInBits();
3691     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3692     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3693 
3694     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3695     // anything about sign bits. But if the sizes match we can derive knowledge
3696     // about sign bits from the vector operand.
3697     if (BitWidth != EltBitWidth)
3698       break;
3699 
3700     // If we know the element index, just demand that vector element, else for
3701     // an unknown element index, ignore DemandedElts and demand them all.
3702     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3703     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3704     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3705       DemandedSrcElts =
3706           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3707 
3708     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3709   }
3710   case ISD::EXTRACT_SUBVECTOR: {
3711     // If we know the element index, just demand that subvector elements,
3712     // otherwise demand them all.
3713     SDValue Src = Op.getOperand(0);
3714     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3715     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3716     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3717       // Offset the demanded elts by the subvector index.
3718       uint64_t Idx = SubIdx->getZExtValue();
3719       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3720       return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3721     }
3722     return ComputeNumSignBits(Src, Depth + 1);
3723   }
3724   case ISD::CONCAT_VECTORS: {
3725     // Determine the minimum number of sign bits across all demanded
3726     // elts of the input vectors. Early out if the result is already 1.
3727     Tmp = std::numeric_limits<unsigned>::max();
3728     EVT SubVectorVT = Op.getOperand(0).getValueType();
3729     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3730     unsigned NumSubVectors = Op.getNumOperands();
3731     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3732       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3733       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3734       if (!DemandedSub)
3735         continue;
3736       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3737       Tmp = std::min(Tmp, Tmp2);
3738     }
3739     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3740     return Tmp;
3741   }
3742   case ISD::INSERT_SUBVECTOR: {
3743     // If we know the element index, demand any elements from the subvector and
3744     // the remainder from the src its inserted into, otherwise demand them all.
3745     SDValue Src = Op.getOperand(0);
3746     SDValue Sub = Op.getOperand(1);
3747     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3748     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3749     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3750       Tmp = std::numeric_limits<unsigned>::max();
3751       uint64_t Idx = SubIdx->getZExtValue();
3752       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3753       if (!!DemandedSubElts) {
3754         Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3755         if (Tmp == 1) return 1; // early-out
3756       }
3757       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
3758       APInt DemandedSrcElts = DemandedElts & ~SubMask;
3759       if (!!DemandedSrcElts) {
3760         Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3761         Tmp = std::min(Tmp, Tmp2);
3762       }
3763       assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3764       return Tmp;
3765     }
3766 
3767     // Not able to determine the index so just assume worst case.
3768     Tmp = ComputeNumSignBits(Sub, Depth + 1);
3769     if (Tmp == 1) return 1; // early-out
3770     Tmp2 = ComputeNumSignBits(Src, Depth + 1);
3771     Tmp = std::min(Tmp, Tmp2);
3772     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3773     return Tmp;
3774   }
3775   }
3776 
3777   // If we are looking at the loaded value of the SDNode.
3778   if (Op.getResNo() == 0) {
3779     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3780     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3781       unsigned ExtType = LD->getExtensionType();
3782       switch (ExtType) {
3783         default: break;
3784         case ISD::SEXTLOAD:    // '17' bits known
3785           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3786           return VTBits-Tmp+1;
3787         case ISD::ZEXTLOAD:    // '16' bits known
3788           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3789           return VTBits-Tmp;
3790       }
3791     }
3792   }
3793 
3794   // Allow the target to implement this method for its nodes.
3795   if (Opcode >= ISD::BUILTIN_OP_END ||
3796       Opcode == ISD::INTRINSIC_WO_CHAIN ||
3797       Opcode == ISD::INTRINSIC_W_CHAIN ||
3798       Opcode == ISD::INTRINSIC_VOID) {
3799     unsigned NumBits =
3800         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3801     if (NumBits > 1)
3802       FirstAnswer = std::max(FirstAnswer, NumBits);
3803   }
3804 
3805   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3806   // use this information.
3807   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
3808 
3809   APInt Mask;
3810   if (Known.isNonNegative()) {        // sign bit is 0
3811     Mask = Known.Zero;
3812   } else if (Known.isNegative()) {  // sign bit is 1;
3813     Mask = Known.One;
3814   } else {
3815     // Nothing known.
3816     return FirstAnswer;
3817   }
3818 
3819   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3820   // the number of identical bits in the top of the input value.
3821   Mask = ~Mask;
3822   Mask <<= Mask.getBitWidth()-VTBits;
3823   // Return # leading zeros.  We use 'min' here in case Val was zero before
3824   // shifting.  We don't want to return '64' as for an i32 "0".
3825   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3826 }
3827 
3828 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3829   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3830       !isa<ConstantSDNode>(Op.getOperand(1)))
3831     return false;
3832 
3833   if (Op.getOpcode() == ISD::OR &&
3834       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
3835     return false;
3836 
3837   return true;
3838 }
3839 
3840 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
3841   // If we're told that NaNs won't happen, assume they won't.
3842   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
3843     return true;
3844 
3845   if (Depth == 6)
3846     return false; // Limit search depth.
3847 
3848   // TODO: Handle vectors.
3849   // If the value is a constant, we can obviously see if it is a NaN or not.
3850   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
3851     return !C->getValueAPF().isNaN() ||
3852            (SNaN && !C->getValueAPF().isSignaling());
3853   }
3854 
3855   unsigned Opcode = Op.getOpcode();
3856   switch (Opcode) {
3857   case ISD::FADD:
3858   case ISD::FSUB:
3859   case ISD::FMUL:
3860   case ISD::FDIV:
3861   case ISD::FREM:
3862   case ISD::FSIN:
3863   case ISD::FCOS: {
3864     if (SNaN)
3865       return true;
3866     // TODO: Need isKnownNeverInfinity
3867     return false;
3868   }
3869   case ISD::FCANONICALIZE:
3870   case ISD::FEXP:
3871   case ISD::FEXP2:
3872   case ISD::FTRUNC:
3873   case ISD::FFLOOR:
3874   case ISD::FCEIL:
3875   case ISD::FROUND:
3876   case ISD::FRINT:
3877   case ISD::FNEARBYINT: {
3878     if (SNaN)
3879       return true;
3880     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3881   }
3882   case ISD::FABS:
3883   case ISD::FNEG:
3884   case ISD::FCOPYSIGN: {
3885     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3886   }
3887   case ISD::SELECT:
3888     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
3889            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
3890   case ISD::FP_EXTEND:
3891   case ISD::FP_ROUND: {
3892     if (SNaN)
3893       return true;
3894     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3895   }
3896   case ISD::SINT_TO_FP:
3897   case ISD::UINT_TO_FP:
3898     return true;
3899   case ISD::FMA:
3900   case ISD::FMAD: {
3901     if (SNaN)
3902       return true;
3903     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
3904            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
3905            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
3906   }
3907   case ISD::FSQRT: // Need is known positive
3908   case ISD::FLOG:
3909   case ISD::FLOG2:
3910   case ISD::FLOG10:
3911   case ISD::FPOWI:
3912   case ISD::FPOW: {
3913     if (SNaN)
3914       return true;
3915     // TODO: Refine on operand
3916     return false;
3917   }
3918   case ISD::FMINNUM:
3919   case ISD::FMAXNUM: {
3920     // Only one needs to be known not-nan, since it will be returned if the
3921     // other ends up being one.
3922     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
3923            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
3924   }
3925   case ISD::FMINNUM_IEEE:
3926   case ISD::FMAXNUM_IEEE: {
3927     if (SNaN)
3928       return true;
3929     // This can return a NaN if either operand is an sNaN, or if both operands
3930     // are NaN.
3931     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
3932             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
3933            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
3934             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
3935   }
3936   case ISD::FMINIMUM:
3937   case ISD::FMAXIMUM: {
3938     // TODO: Does this quiet or return the origina NaN as-is?
3939     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
3940            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
3941   }
3942   case ISD::EXTRACT_VECTOR_ELT: {
3943     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3944   }
3945   default:
3946     if (Opcode >= ISD::BUILTIN_OP_END ||
3947         Opcode == ISD::INTRINSIC_WO_CHAIN ||
3948         Opcode == ISD::INTRINSIC_W_CHAIN ||
3949         Opcode == ISD::INTRINSIC_VOID) {
3950       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
3951     }
3952 
3953     return false;
3954   }
3955 }
3956 
3957 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
3958   assert(Op.getValueType().isFloatingPoint() &&
3959          "Floating point type expected");
3960 
3961   // If the value is a constant, we can obviously see if it is a zero or not.
3962   // TODO: Add BuildVector support.
3963   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3964     return !C->isZero();
3965   return false;
3966 }
3967 
3968 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
3969   assert(!Op.getValueType().isFloatingPoint() &&
3970          "Floating point types unsupported - use isKnownNeverZeroFloat");
3971 
3972   // If the value is a constant, we can obviously see if it is a zero or not.
3973   if (ISD::matchUnaryPredicate(
3974           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
3975     return true;
3976 
3977   // TODO: Recognize more cases here.
3978   switch (Op.getOpcode()) {
3979   default: break;
3980   case ISD::OR:
3981     if (isKnownNeverZero(Op.getOperand(1)) ||
3982         isKnownNeverZero(Op.getOperand(0)))
3983       return true;
3984     break;
3985   }
3986 
3987   return false;
3988 }
3989 
3990 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
3991   // Check the obvious case.
3992   if (A == B) return true;
3993 
3994   // For for negative and positive zero.
3995   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
3996     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
3997       if (CA->isZero() && CB->isZero()) return true;
3998 
3999   // Otherwise they may not be equal.
4000   return false;
4001 }
4002 
4003 // FIXME: unify with llvm::haveNoCommonBitsSet.
4004 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4005 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4006   assert(A.getValueType() == B.getValueType() &&
4007          "Values must have the same type");
4008   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4009 }
4010 
4011 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4012                                 ArrayRef<SDValue> Ops,
4013                                 SelectionDAG &DAG) {
4014   int NumOps = Ops.size();
4015   assert(NumOps != 0 && "Can't build an empty vector!");
4016   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4017          "Incorrect element count in BUILD_VECTOR!");
4018 
4019   // BUILD_VECTOR of UNDEFs is UNDEF.
4020   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4021     return DAG.getUNDEF(VT);
4022 
4023   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4024   SDValue IdentitySrc;
4025   bool IsIdentity = true;
4026   for (int i = 0; i != NumOps; ++i) {
4027     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4028         Ops[i].getOperand(0).getValueType() != VT ||
4029         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4030         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4031         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4032       IsIdentity = false;
4033       break;
4034     }
4035     IdentitySrc = Ops[i].getOperand(0);
4036   }
4037   if (IsIdentity)
4038     return IdentitySrc;
4039 
4040   return SDValue();
4041 }
4042 
4043 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4044                                   ArrayRef<SDValue> Ops,
4045                                   SelectionDAG &DAG) {
4046   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4047   assert(llvm::all_of(Ops,
4048                       [Ops](SDValue Op) {
4049                         return Ops[0].getValueType() == Op.getValueType();
4050                       }) &&
4051          "Concatenation of vectors with inconsistent value types!");
4052   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4053              VT.getVectorNumElements() &&
4054          "Incorrect element count in vector concatenation!");
4055 
4056   if (Ops.size() == 1)
4057     return Ops[0];
4058 
4059   // Concat of UNDEFs is UNDEF.
4060   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4061     return DAG.getUNDEF(VT);
4062 
4063   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4064   // simplified to one big BUILD_VECTOR.
4065   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4066   EVT SVT = VT.getScalarType();
4067   SmallVector<SDValue, 16> Elts;
4068   for (SDValue Op : Ops) {
4069     EVT OpVT = Op.getValueType();
4070     if (Op.isUndef())
4071       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4072     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4073       Elts.append(Op->op_begin(), Op->op_end());
4074     else
4075       return SDValue();
4076   }
4077 
4078   // BUILD_VECTOR requires all inputs to be of the same type, find the
4079   // maximum type and extend them all.
4080   for (SDValue Op : Elts)
4081     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4082 
4083   if (SVT.bitsGT(VT.getScalarType()))
4084     for (SDValue &Op : Elts)
4085       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4086                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4087                : DAG.getSExtOrTrunc(Op, DL, SVT);
4088 
4089   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4090   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4091   return V;
4092 }
4093 
4094 /// Gets or creates the specified node.
4095 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4096   FoldingSetNodeID ID;
4097   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4098   void *IP = nullptr;
4099   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4100     return SDValue(E, 0);
4101 
4102   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4103                               getVTList(VT));
4104   CSEMap.InsertNode(N, IP);
4105 
4106   InsertNode(N);
4107   SDValue V = SDValue(N, 0);
4108   NewSDValueDbgMsg(V, "Creating new node: ", this);
4109   return V;
4110 }
4111 
4112 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4113                               SDValue Operand, const SDNodeFlags Flags) {
4114   // Constant fold unary operations with an integer constant operand. Even
4115   // opaque constant will be folded, because the folding of unary operations
4116   // doesn't create new constants with different values. Nevertheless, the
4117   // opaque flag is preserved during folding to prevent future folding with
4118   // other constants.
4119   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4120     const APInt &Val = C->getAPIntValue();
4121     switch (Opcode) {
4122     default: break;
4123     case ISD::SIGN_EXTEND:
4124       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4125                          C->isTargetOpcode(), C->isOpaque());
4126     case ISD::TRUNCATE:
4127       if (C->isOpaque())
4128         break;
4129       LLVM_FALLTHROUGH;
4130     case ISD::ANY_EXTEND:
4131     case ISD::ZERO_EXTEND:
4132       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4133                          C->isTargetOpcode(), C->isOpaque());
4134     case ISD::UINT_TO_FP:
4135     case ISD::SINT_TO_FP: {
4136       APFloat apf(EVTToAPFloatSemantics(VT),
4137                   APInt::getNullValue(VT.getSizeInBits()));
4138       (void)apf.convertFromAPInt(Val,
4139                                  Opcode==ISD::SINT_TO_FP,
4140                                  APFloat::rmNearestTiesToEven);
4141       return getConstantFP(apf, DL, VT);
4142     }
4143     case ISD::BITCAST:
4144       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4145         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4146       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4147         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4148       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4149         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4150       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4151         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4152       break;
4153     case ISD::ABS:
4154       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4155                          C->isOpaque());
4156     case ISD::BITREVERSE:
4157       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4158                          C->isOpaque());
4159     case ISD::BSWAP:
4160       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4161                          C->isOpaque());
4162     case ISD::CTPOP:
4163       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4164                          C->isOpaque());
4165     case ISD::CTLZ:
4166     case ISD::CTLZ_ZERO_UNDEF:
4167       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4168                          C->isOpaque());
4169     case ISD::CTTZ:
4170     case ISD::CTTZ_ZERO_UNDEF:
4171       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4172                          C->isOpaque());
4173     case ISD::FP16_TO_FP: {
4174       bool Ignored;
4175       APFloat FPV(APFloat::IEEEhalf(),
4176                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4177 
4178       // This can return overflow, underflow, or inexact; we don't care.
4179       // FIXME need to be more flexible about rounding mode.
4180       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4181                         APFloat::rmNearestTiesToEven, &Ignored);
4182       return getConstantFP(FPV, DL, VT);
4183     }
4184     }
4185   }
4186 
4187   // Constant fold unary operations with a floating point constant operand.
4188   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4189     APFloat V = C->getValueAPF();    // make copy
4190     switch (Opcode) {
4191     case ISD::FNEG:
4192       V.changeSign();
4193       return getConstantFP(V, DL, VT);
4194     case ISD::FABS:
4195       V.clearSign();
4196       return getConstantFP(V, DL, VT);
4197     case ISD::FCEIL: {
4198       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4199       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4200         return getConstantFP(V, DL, VT);
4201       break;
4202     }
4203     case ISD::FTRUNC: {
4204       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4205       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4206         return getConstantFP(V, DL, VT);
4207       break;
4208     }
4209     case ISD::FFLOOR: {
4210       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4211       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4212         return getConstantFP(V, DL, VT);
4213       break;
4214     }
4215     case ISD::FP_EXTEND: {
4216       bool ignored;
4217       // This can return overflow, underflow, or inexact; we don't care.
4218       // FIXME need to be more flexible about rounding mode.
4219       (void)V.convert(EVTToAPFloatSemantics(VT),
4220                       APFloat::rmNearestTiesToEven, &ignored);
4221       return getConstantFP(V, DL, VT);
4222     }
4223     case ISD::FP_TO_SINT:
4224     case ISD::FP_TO_UINT: {
4225       bool ignored;
4226       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4227       // FIXME need to be more flexible about rounding mode.
4228       APFloat::opStatus s =
4229           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4230       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4231         break;
4232       return getConstant(IntVal, DL, VT);
4233     }
4234     case ISD::BITCAST:
4235       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4236         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4237       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4238         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4239       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4240         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4241       break;
4242     case ISD::FP_TO_FP16: {
4243       bool Ignored;
4244       // This can return overflow, underflow, or inexact; we don't care.
4245       // FIXME need to be more flexible about rounding mode.
4246       (void)V.convert(APFloat::IEEEhalf(),
4247                       APFloat::rmNearestTiesToEven, &Ignored);
4248       return getConstant(V.bitcastToAPInt(), DL, VT);
4249     }
4250     }
4251   }
4252 
4253   // Constant fold unary operations with a vector integer or float operand.
4254   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4255     if (BV->isConstant()) {
4256       switch (Opcode) {
4257       default:
4258         // FIXME: Entirely reasonable to perform folding of other unary
4259         // operations here as the need arises.
4260         break;
4261       case ISD::FNEG:
4262       case ISD::FABS:
4263       case ISD::FCEIL:
4264       case ISD::FTRUNC:
4265       case ISD::FFLOOR:
4266       case ISD::FP_EXTEND:
4267       case ISD::FP_TO_SINT:
4268       case ISD::FP_TO_UINT:
4269       case ISD::TRUNCATE:
4270       case ISD::ANY_EXTEND:
4271       case ISD::ZERO_EXTEND:
4272       case ISD::SIGN_EXTEND:
4273       case ISD::UINT_TO_FP:
4274       case ISD::SINT_TO_FP:
4275       case ISD::ABS:
4276       case ISD::BITREVERSE:
4277       case ISD::BSWAP:
4278       case ISD::CTLZ:
4279       case ISD::CTLZ_ZERO_UNDEF:
4280       case ISD::CTTZ:
4281       case ISD::CTTZ_ZERO_UNDEF:
4282       case ISD::CTPOP: {
4283         SDValue Ops = { Operand };
4284         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4285           return Fold;
4286       }
4287       }
4288     }
4289   }
4290 
4291   unsigned OpOpcode = Operand.getNode()->getOpcode();
4292   switch (Opcode) {
4293   case ISD::TokenFactor:
4294   case ISD::MERGE_VALUES:
4295   case ISD::CONCAT_VECTORS:
4296     return Operand;         // Factor, merge or concat of one node?  No need.
4297   case ISD::BUILD_VECTOR: {
4298     // Attempt to simplify BUILD_VECTOR.
4299     SDValue Ops[] = {Operand};
4300     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4301       return V;
4302     break;
4303   }
4304   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4305   case ISD::FP_EXTEND:
4306     assert(VT.isFloatingPoint() &&
4307            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4308     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4309     assert((!VT.isVector() ||
4310             VT.getVectorNumElements() ==
4311             Operand.getValueType().getVectorNumElements()) &&
4312            "Vector element count mismatch!");
4313     assert(Operand.getValueType().bitsLT(VT) &&
4314            "Invalid fpext node, dst < src!");
4315     if (Operand.isUndef())
4316       return getUNDEF(VT);
4317     break;
4318   case ISD::SIGN_EXTEND:
4319     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4320            "Invalid SIGN_EXTEND!");
4321     if (Operand.getValueType() == VT) return Operand;   // noop extension
4322     assert((!VT.isVector() ||
4323             VT.getVectorNumElements() ==
4324             Operand.getValueType().getVectorNumElements()) &&
4325            "Vector element count mismatch!");
4326     assert(Operand.getValueType().bitsLT(VT) &&
4327            "Invalid sext node, dst < src!");
4328     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4329       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4330     else if (OpOpcode == ISD::UNDEF)
4331       // sext(undef) = 0, because the top bits will all be the same.
4332       return getConstant(0, DL, VT);
4333     break;
4334   case ISD::ZERO_EXTEND:
4335     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4336            "Invalid ZERO_EXTEND!");
4337     if (Operand.getValueType() == VT) return Operand;   // noop extension
4338     assert((!VT.isVector() ||
4339             VT.getVectorNumElements() ==
4340             Operand.getValueType().getVectorNumElements()) &&
4341            "Vector element count mismatch!");
4342     assert(Operand.getValueType().bitsLT(VT) &&
4343            "Invalid zext node, dst < src!");
4344     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4345       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4346     else if (OpOpcode == ISD::UNDEF)
4347       // zext(undef) = 0, because the top bits will be zero.
4348       return getConstant(0, DL, VT);
4349     break;
4350   case ISD::ANY_EXTEND:
4351     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4352            "Invalid ANY_EXTEND!");
4353     if (Operand.getValueType() == VT) return Operand;   // noop extension
4354     assert((!VT.isVector() ||
4355             VT.getVectorNumElements() ==
4356             Operand.getValueType().getVectorNumElements()) &&
4357            "Vector element count mismatch!");
4358     assert(Operand.getValueType().bitsLT(VT) &&
4359            "Invalid anyext node, dst < src!");
4360 
4361     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4362         OpOpcode == ISD::ANY_EXTEND)
4363       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4364       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4365     else if (OpOpcode == ISD::UNDEF)
4366       return getUNDEF(VT);
4367 
4368     // (ext (trunc x)) -> x
4369     if (OpOpcode == ISD::TRUNCATE) {
4370       SDValue OpOp = Operand.getOperand(0);
4371       if (OpOp.getValueType() == VT) {
4372         transferDbgValues(Operand, OpOp);
4373         return OpOp;
4374       }
4375     }
4376     break;
4377   case ISD::TRUNCATE:
4378     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4379            "Invalid TRUNCATE!");
4380     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4381     assert((!VT.isVector() ||
4382             VT.getVectorNumElements() ==
4383             Operand.getValueType().getVectorNumElements()) &&
4384            "Vector element count mismatch!");
4385     assert(Operand.getValueType().bitsGT(VT) &&
4386            "Invalid truncate node, src < dst!");
4387     if (OpOpcode == ISD::TRUNCATE)
4388       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4389     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4390         OpOpcode == ISD::ANY_EXTEND) {
4391       // If the source is smaller than the dest, we still need an extend.
4392       if (Operand.getOperand(0).getValueType().getScalarType()
4393             .bitsLT(VT.getScalarType()))
4394         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4395       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4396         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4397       return Operand.getOperand(0);
4398     }
4399     if (OpOpcode == ISD::UNDEF)
4400       return getUNDEF(VT);
4401     break;
4402   case ISD::ANY_EXTEND_VECTOR_INREG:
4403   case ISD::ZERO_EXTEND_VECTOR_INREG:
4404   case ISD::SIGN_EXTEND_VECTOR_INREG:
4405     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4406     assert(Operand.getValueType().bitsLE(VT) &&
4407            "The input must be the same size or smaller than the result.");
4408     assert(VT.getVectorNumElements() <
4409              Operand.getValueType().getVectorNumElements() &&
4410            "The destination vector type must have fewer lanes than the input.");
4411     break;
4412   case ISD::ABS:
4413     assert(VT.isInteger() && VT == Operand.getValueType() &&
4414            "Invalid ABS!");
4415     if (OpOpcode == ISD::UNDEF)
4416       return getUNDEF(VT);
4417     break;
4418   case ISD::BSWAP:
4419     assert(VT.isInteger() && VT == Operand.getValueType() &&
4420            "Invalid BSWAP!");
4421     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4422            "BSWAP types must be a multiple of 16 bits!");
4423     if (OpOpcode == ISD::UNDEF)
4424       return getUNDEF(VT);
4425     break;
4426   case ISD::BITREVERSE:
4427     assert(VT.isInteger() && VT == Operand.getValueType() &&
4428            "Invalid BITREVERSE!");
4429     if (OpOpcode == ISD::UNDEF)
4430       return getUNDEF(VT);
4431     break;
4432   case ISD::BITCAST:
4433     // Basic sanity checking.
4434     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4435            "Cannot BITCAST between types of different sizes!");
4436     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4437     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4438       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4439     if (OpOpcode == ISD::UNDEF)
4440       return getUNDEF(VT);
4441     break;
4442   case ISD::SCALAR_TO_VECTOR:
4443     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4444            (VT.getVectorElementType() == Operand.getValueType() ||
4445             (VT.getVectorElementType().isInteger() &&
4446              Operand.getValueType().isInteger() &&
4447              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4448            "Illegal SCALAR_TO_VECTOR node!");
4449     if (OpOpcode == ISD::UNDEF)
4450       return getUNDEF(VT);
4451     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4452     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4453         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4454         Operand.getConstantOperandVal(1) == 0 &&
4455         Operand.getOperand(0).getValueType() == VT)
4456       return Operand.getOperand(0);
4457     break;
4458   case ISD::FNEG:
4459     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4460     if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) &&
4461         OpOpcode == ISD::FSUB)
4462       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
4463                      Operand.getOperand(0), Flags);
4464     if (OpOpcode == ISD::FNEG)  // --X -> X
4465       return Operand.getOperand(0);
4466     break;
4467   case ISD::FABS:
4468     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4469       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4470     break;
4471   }
4472 
4473   SDNode *N;
4474   SDVTList VTs = getVTList(VT);
4475   SDValue Ops[] = {Operand};
4476   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4477     FoldingSetNodeID ID;
4478     AddNodeIDNode(ID, Opcode, VTs, Ops);
4479     void *IP = nullptr;
4480     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4481       E->intersectFlagsWith(Flags);
4482       return SDValue(E, 0);
4483     }
4484 
4485     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4486     N->setFlags(Flags);
4487     createOperands(N, Ops);
4488     CSEMap.InsertNode(N, IP);
4489   } else {
4490     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4491     createOperands(N, Ops);
4492   }
4493 
4494   InsertNode(N);
4495   SDValue V = SDValue(N, 0);
4496   NewSDValueDbgMsg(V, "Creating new node: ", this);
4497   return V;
4498 }
4499 
4500 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
4501                                         const APInt &C2) {
4502   switch (Opcode) {
4503   case ISD::ADD:  return std::make_pair(C1 + C2, true);
4504   case ISD::SUB:  return std::make_pair(C1 - C2, true);
4505   case ISD::MUL:  return std::make_pair(C1 * C2, true);
4506   case ISD::AND:  return std::make_pair(C1 & C2, true);
4507   case ISD::OR:   return std::make_pair(C1 | C2, true);
4508   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
4509   case ISD::SHL:  return std::make_pair(C1 << C2, true);
4510   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
4511   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
4512   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
4513   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
4514   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
4515   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
4516   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
4517   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
4518   case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true);
4519   case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true);
4520   case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true);
4521   case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true);
4522   case ISD::UDIV:
4523     if (!C2.getBoolValue())
4524       break;
4525     return std::make_pair(C1.udiv(C2), true);
4526   case ISD::UREM:
4527     if (!C2.getBoolValue())
4528       break;
4529     return std::make_pair(C1.urem(C2), true);
4530   case ISD::SDIV:
4531     if (!C2.getBoolValue())
4532       break;
4533     return std::make_pair(C1.sdiv(C2), true);
4534   case ISD::SREM:
4535     if (!C2.getBoolValue())
4536       break;
4537     return std::make_pair(C1.srem(C2), true);
4538   }
4539   return std::make_pair(APInt(1, 0), false);
4540 }
4541 
4542 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4543                                              EVT VT, const ConstantSDNode *C1,
4544                                              const ConstantSDNode *C2) {
4545   if (C1->isOpaque() || C2->isOpaque())
4546     return SDValue();
4547 
4548   std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(),
4549                                             C2->getAPIntValue());
4550   if (!Folded.second)
4551     return SDValue();
4552   return getConstant(Folded.first, DL, VT);
4553 }
4554 
4555 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4556                                        const GlobalAddressSDNode *GA,
4557                                        const SDNode *N2) {
4558   if (GA->getOpcode() != ISD::GlobalAddress)
4559     return SDValue();
4560   if (!TLI->isOffsetFoldingLegal(GA))
4561     return SDValue();
4562   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4563   if (!C2)
4564     return SDValue();
4565   int64_t Offset = C2->getSExtValue();
4566   switch (Opcode) {
4567   case ISD::ADD: break;
4568   case ISD::SUB: Offset = -uint64_t(Offset); break;
4569   default: return SDValue();
4570   }
4571   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4572                           GA->getOffset() + uint64_t(Offset));
4573 }
4574 
4575 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4576   switch (Opcode) {
4577   case ISD::SDIV:
4578   case ISD::UDIV:
4579   case ISD::SREM:
4580   case ISD::UREM: {
4581     // If a divisor is zero/undef or any element of a divisor vector is
4582     // zero/undef, the whole op is undef.
4583     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4584     SDValue Divisor = Ops[1];
4585     if (Divisor.isUndef() || isNullConstant(Divisor))
4586       return true;
4587 
4588     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4589            llvm::any_of(Divisor->op_values(),
4590                         [](SDValue V) { return V.isUndef() ||
4591                                         isNullConstant(V); });
4592     // TODO: Handle signed overflow.
4593   }
4594   // TODO: Handle oversized shifts.
4595   default:
4596     return false;
4597   }
4598 }
4599 
4600 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4601                                              EVT VT, SDNode *N1, SDNode *N2) {
4602   // If the opcode is a target-specific ISD node, there's nothing we can
4603   // do here and the operand rules may not line up with the below, so
4604   // bail early.
4605   if (Opcode >= ISD::BUILTIN_OP_END)
4606     return SDValue();
4607 
4608   if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)}))
4609     return getUNDEF(VT);
4610 
4611   // Handle the case of two scalars.
4612   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4613     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4614       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
4615       assert((!Folded || !VT.isVector()) &&
4616              "Can't fold vectors ops with scalar operands");
4617       return Folded;
4618     }
4619   }
4620 
4621   // fold (add Sym, c) -> Sym+c
4622   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4623     return FoldSymbolOffset(Opcode, VT, GA, N2);
4624   if (TLI->isCommutativeBinOp(Opcode))
4625     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4626       return FoldSymbolOffset(Opcode, VT, GA, N1);
4627 
4628   // For vectors, extract each constant element and fold them individually.
4629   // Either input may be an undef value.
4630   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4631   if (!BV1 && !N1->isUndef())
4632     return SDValue();
4633   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4634   if (!BV2 && !N2->isUndef())
4635     return SDValue();
4636   // If both operands are undef, that's handled the same way as scalars.
4637   if (!BV1 && !BV2)
4638     return SDValue();
4639 
4640   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4641          "Vector binop with different number of elements in operands?");
4642 
4643   EVT SVT = VT.getScalarType();
4644   EVT LegalSVT = SVT;
4645   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4646     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4647     if (LegalSVT.bitsLT(SVT))
4648       return SDValue();
4649   }
4650   SmallVector<SDValue, 4> Outputs;
4651   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4652   for (unsigned I = 0; I != NumOps; ++I) {
4653     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4654     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4655     if (SVT.isInteger()) {
4656       if (V1->getValueType(0).bitsGT(SVT))
4657         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4658       if (V2->getValueType(0).bitsGT(SVT))
4659         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4660     }
4661 
4662     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4663       return SDValue();
4664 
4665     // Fold one vector element.
4666     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4667     if (LegalSVT != SVT)
4668       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4669 
4670     // Scalar folding only succeeded if the result is a constant or UNDEF.
4671     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4672         ScalarResult.getOpcode() != ISD::ConstantFP)
4673       return SDValue();
4674     Outputs.push_back(ScalarResult);
4675   }
4676 
4677   assert(VT.getVectorNumElements() == Outputs.size() &&
4678          "Vector size mismatch!");
4679 
4680   // We may have a vector type but a scalar result. Create a splat.
4681   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4682 
4683   // Build a big vector out of the scalar elements we generated.
4684   return getBuildVector(VT, SDLoc(), Outputs);
4685 }
4686 
4687 // TODO: Merge with FoldConstantArithmetic
4688 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4689                                                    const SDLoc &DL, EVT VT,
4690                                                    ArrayRef<SDValue> Ops,
4691                                                    const SDNodeFlags Flags) {
4692   // If the opcode is a target-specific ISD node, there's nothing we can
4693   // do here and the operand rules may not line up with the below, so
4694   // bail early.
4695   if (Opcode >= ISD::BUILTIN_OP_END)
4696     return SDValue();
4697 
4698   if (isUndef(Opcode, Ops))
4699     return getUNDEF(VT);
4700 
4701   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4702   if (!VT.isVector())
4703     return SDValue();
4704 
4705   unsigned NumElts = VT.getVectorNumElements();
4706 
4707   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4708     return !Op.getValueType().isVector() ||
4709            Op.getValueType().getVectorNumElements() == NumElts;
4710   };
4711 
4712   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4713     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4714     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4715            (BV && BV->isConstant());
4716   };
4717 
4718   // All operands must be vector types with the same number of elements as
4719   // the result type and must be either UNDEF or a build vector of constant
4720   // or UNDEF scalars.
4721   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4722       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4723     return SDValue();
4724 
4725   // If we are comparing vectors, then the result needs to be a i1 boolean
4726   // that is then sign-extended back to the legal result type.
4727   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4728 
4729   // Find legal integer scalar type for constant promotion and
4730   // ensure that its scalar size is at least as large as source.
4731   EVT LegalSVT = VT.getScalarType();
4732   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4733     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4734     if (LegalSVT.bitsLT(VT.getScalarType()))
4735       return SDValue();
4736   }
4737 
4738   // Constant fold each scalar lane separately.
4739   SmallVector<SDValue, 4> ScalarResults;
4740   for (unsigned i = 0; i != NumElts; i++) {
4741     SmallVector<SDValue, 4> ScalarOps;
4742     for (SDValue Op : Ops) {
4743       EVT InSVT = Op.getValueType().getScalarType();
4744       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4745       if (!InBV) {
4746         // We've checked that this is UNDEF or a constant of some kind.
4747         if (Op.isUndef())
4748           ScalarOps.push_back(getUNDEF(InSVT));
4749         else
4750           ScalarOps.push_back(Op);
4751         continue;
4752       }
4753 
4754       SDValue ScalarOp = InBV->getOperand(i);
4755       EVT ScalarVT = ScalarOp.getValueType();
4756 
4757       // Build vector (integer) scalar operands may need implicit
4758       // truncation - do this before constant folding.
4759       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4760         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4761 
4762       ScalarOps.push_back(ScalarOp);
4763     }
4764 
4765     // Constant fold the scalar operands.
4766     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4767 
4768     // Legalize the (integer) scalar constant if necessary.
4769     if (LegalSVT != SVT)
4770       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4771 
4772     // Scalar folding only succeeded if the result is a constant or UNDEF.
4773     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4774         ScalarResult.getOpcode() != ISD::ConstantFP)
4775       return SDValue();
4776     ScalarResults.push_back(ScalarResult);
4777   }
4778 
4779   SDValue V = getBuildVector(VT, DL, ScalarResults);
4780   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4781   return V;
4782 }
4783 
4784 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
4785                                          EVT VT, SDValue N1, SDValue N2) {
4786   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
4787   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
4788   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
4789   if (N1CFP && N2CFP) {
4790     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
4791     APFloat::opStatus Status;
4792     switch (Opcode) {
4793     case ISD::FADD:
4794       Status = C1.add(C2, APFloat::rmNearestTiesToEven);
4795       if (!HasFPExceptions || Status != APFloat::opInvalidOp)
4796         return getConstantFP(C1, DL, VT);
4797       break;
4798     case ISD::FSUB:
4799       Status = C1.subtract(C2, APFloat::rmNearestTiesToEven);
4800       if (!HasFPExceptions || Status != APFloat::opInvalidOp)
4801         return getConstantFP(C1, DL, VT);
4802       break;
4803     case ISD::FMUL:
4804       Status = C1.multiply(C2, APFloat::rmNearestTiesToEven);
4805       if (!HasFPExceptions || Status != APFloat::opInvalidOp)
4806         return getConstantFP(C1, DL, VT);
4807       break;
4808     case ISD::FDIV:
4809       Status = C1.divide(C2, APFloat::rmNearestTiesToEven);
4810       if (!HasFPExceptions || (Status != APFloat::opInvalidOp &&
4811                                Status != APFloat::opDivByZero)) {
4812         return getConstantFP(C1, DL, VT);
4813       }
4814       break;
4815     case ISD::FREM:
4816       Status = C1.mod(C2);
4817       if (!HasFPExceptions || (Status != APFloat::opInvalidOp &&
4818                                Status != APFloat::opDivByZero)) {
4819         return getConstantFP(C1, DL, VT);
4820       }
4821       break;
4822     case ISD::FCOPYSIGN:
4823       C1.copySign(C2);
4824       return getConstantFP(C1, DL, VT);
4825     default: break;
4826     }
4827   }
4828   if (N1CFP && Opcode == ISD::FP_ROUND) {
4829     APFloat C1 = N1CFP->getValueAPF();    // make copy
4830     bool Unused;
4831     // This can return overflow, underflow, or inexact; we don't care.
4832     // FIXME need to be more flexible about rounding mode.
4833     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
4834                      &Unused);
4835     return getConstantFP(C1, DL, VT);
4836   }
4837 
4838   switch (Opcode) {
4839   case ISD::FADD:
4840   case ISD::FSUB:
4841   case ISD::FMUL:
4842   case ISD::FDIV:
4843   case ISD::FREM:
4844     // If both operands are undef, the result is undef. If 1 operand is undef,
4845     // the result is NaN. This should match the behavior of the IR optimizer.
4846     if (N1.isUndef() && N2.isUndef())
4847       return getUNDEF(VT);
4848     if (N1.isUndef() || N2.isUndef())
4849       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
4850   }
4851   return SDValue();
4852 }
4853 
4854 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4855                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
4856   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4857   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4858   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4859   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4860 
4861   // Canonicalize constant to RHS if commutative.
4862   if (TLI->isCommutativeBinOp(Opcode)) {
4863     if (N1C && !N2C) {
4864       std::swap(N1C, N2C);
4865       std::swap(N1, N2);
4866     } else if (N1CFP && !N2CFP) {
4867       std::swap(N1CFP, N2CFP);
4868       std::swap(N1, N2);
4869     }
4870   }
4871 
4872   switch (Opcode) {
4873   default: break;
4874   case ISD::TokenFactor:
4875     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
4876            N2.getValueType() == MVT::Other && "Invalid token factor!");
4877     // Fold trivial token factors.
4878     if (N1.getOpcode() == ISD::EntryToken) return N2;
4879     if (N2.getOpcode() == ISD::EntryToken) return N1;
4880     if (N1 == N2) return N1;
4881     break;
4882   case ISD::BUILD_VECTOR: {
4883     // Attempt to simplify BUILD_VECTOR.
4884     SDValue Ops[] = {N1, N2};
4885     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4886       return V;
4887     break;
4888   }
4889   case ISD::CONCAT_VECTORS: {
4890     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4891     SDValue Ops[] = {N1, N2};
4892     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4893       return V;
4894     break;
4895   }
4896   case ISD::AND:
4897     assert(VT.isInteger() && "This operator does not apply to FP types!");
4898     assert(N1.getValueType() == N2.getValueType() &&
4899            N1.getValueType() == VT && "Binary operator types must match!");
4900     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
4901     // worth handling here.
4902     if (N2C && N2C->isNullValue())
4903       return N2;
4904     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
4905       return N1;
4906     break;
4907   case ISD::OR:
4908   case ISD::XOR:
4909   case ISD::ADD:
4910   case ISD::SUB:
4911     assert(VT.isInteger() && "This operator does not apply to FP types!");
4912     assert(N1.getValueType() == N2.getValueType() &&
4913            N1.getValueType() == VT && "Binary operator types must match!");
4914     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
4915     // it's worth handling here.
4916     if (N2C && N2C->isNullValue())
4917       return N1;
4918     break;
4919   case ISD::UDIV:
4920   case ISD::UREM:
4921   case ISD::MULHU:
4922   case ISD::MULHS:
4923   case ISD::MUL:
4924   case ISD::SDIV:
4925   case ISD::SREM:
4926   case ISD::SMIN:
4927   case ISD::SMAX:
4928   case ISD::UMIN:
4929   case ISD::UMAX:
4930   case ISD::SADDSAT:
4931   case ISD::SSUBSAT:
4932   case ISD::UADDSAT:
4933   case ISD::USUBSAT:
4934     assert(VT.isInteger() && "This operator does not apply to FP types!");
4935     assert(N1.getValueType() == N2.getValueType() &&
4936            N1.getValueType() == VT && "Binary operator types must match!");
4937     break;
4938   case ISD::FADD:
4939   case ISD::FSUB:
4940   case ISD::FMUL:
4941   case ISD::FDIV:
4942   case ISD::FREM:
4943     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4944     assert(N1.getValueType() == N2.getValueType() &&
4945            N1.getValueType() == VT && "Binary operator types must match!");
4946     if (SDValue V = simplifyFPBinop(Opcode, N1, N2))
4947       return V;
4948     break;
4949   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
4950     assert(N1.getValueType() == VT &&
4951            N1.getValueType().isFloatingPoint() &&
4952            N2.getValueType().isFloatingPoint() &&
4953            "Invalid FCOPYSIGN!");
4954     break;
4955   case ISD::SHL:
4956   case ISD::SRA:
4957   case ISD::SRL:
4958     if (SDValue V = simplifyShift(N1, N2))
4959       return V;
4960     LLVM_FALLTHROUGH;
4961   case ISD::ROTL:
4962   case ISD::ROTR:
4963     assert(VT == N1.getValueType() &&
4964            "Shift operators return type must be the same as their first arg");
4965     assert(VT.isInteger() && N2.getValueType().isInteger() &&
4966            "Shifts only work on integers");
4967     assert((!VT.isVector() || VT == N2.getValueType()) &&
4968            "Vector shift amounts must be in the same as their first arg");
4969     // Verify that the shift amount VT is big enough to hold valid shift
4970     // amounts.  This catches things like trying to shift an i1024 value by an
4971     // i8, which is easy to fall into in generic code that uses
4972     // TLI.getShiftAmount().
4973     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
4974            "Invalid use of small shift amount with oversized value!");
4975 
4976     // Always fold shifts of i1 values so the code generator doesn't need to
4977     // handle them.  Since we know the size of the shift has to be less than the
4978     // size of the value, the shift/rotate count is guaranteed to be zero.
4979     if (VT == MVT::i1)
4980       return N1;
4981     if (N2C && N2C->isNullValue())
4982       return N1;
4983     break;
4984   case ISD::FP_ROUND_INREG: {
4985     EVT EVT = cast<VTSDNode>(N2)->getVT();
4986     assert(VT == N1.getValueType() && "Not an inreg round!");
4987     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
4988            "Cannot FP_ROUND_INREG integer types");
4989     assert(EVT.isVector() == VT.isVector() &&
4990            "FP_ROUND_INREG type should be vector iff the operand "
4991            "type is vector!");
4992     assert((!EVT.isVector() ||
4993             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4994            "Vector element counts must match in FP_ROUND_INREG");
4995     assert(EVT.bitsLE(VT) && "Not rounding down!");
4996     (void)EVT;
4997     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
4998     break;
4999   }
5000   case ISD::FP_ROUND:
5001     assert(VT.isFloatingPoint() &&
5002            N1.getValueType().isFloatingPoint() &&
5003            VT.bitsLE(N1.getValueType()) &&
5004            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5005            "Invalid FP_ROUND!");
5006     if (N1.getValueType() == VT) return N1;  // noop conversion.
5007     break;
5008   case ISD::AssertSext:
5009   case ISD::AssertZext: {
5010     EVT EVT = cast<VTSDNode>(N2)->getVT();
5011     assert(VT == N1.getValueType() && "Not an inreg extend!");
5012     assert(VT.isInteger() && EVT.isInteger() &&
5013            "Cannot *_EXTEND_INREG FP types");
5014     assert(!EVT.isVector() &&
5015            "AssertSExt/AssertZExt type should be the vector element type "
5016            "rather than the vector type!");
5017     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5018     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5019     break;
5020   }
5021   case ISD::SIGN_EXTEND_INREG: {
5022     EVT EVT = cast<VTSDNode>(N2)->getVT();
5023     assert(VT == N1.getValueType() && "Not an inreg extend!");
5024     assert(VT.isInteger() && EVT.isInteger() &&
5025            "Cannot *_EXTEND_INREG FP types");
5026     assert(EVT.isVector() == VT.isVector() &&
5027            "SIGN_EXTEND_INREG type should be vector iff the operand "
5028            "type is vector!");
5029     assert((!EVT.isVector() ||
5030             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5031            "Vector element counts must match in SIGN_EXTEND_INREG");
5032     assert(EVT.bitsLE(VT) && "Not extending!");
5033     if (EVT == VT) return N1;  // Not actually extending
5034 
5035     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5036       unsigned FromBits = EVT.getScalarSizeInBits();
5037       Val <<= Val.getBitWidth() - FromBits;
5038       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5039       return getConstant(Val, DL, ConstantVT);
5040     };
5041 
5042     if (N1C) {
5043       const APInt &Val = N1C->getAPIntValue();
5044       return SignExtendInReg(Val, VT);
5045     }
5046     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5047       SmallVector<SDValue, 8> Ops;
5048       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5049       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5050         SDValue Op = N1.getOperand(i);
5051         if (Op.isUndef()) {
5052           Ops.push_back(getUNDEF(OpVT));
5053           continue;
5054         }
5055         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5056         APInt Val = C->getAPIntValue();
5057         Ops.push_back(SignExtendInReg(Val, OpVT));
5058       }
5059       return getBuildVector(VT, DL, Ops);
5060     }
5061     break;
5062   }
5063   case ISD::EXTRACT_VECTOR_ELT:
5064     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5065            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5066              element type of the vector.");
5067 
5068     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
5069     if (N1.isUndef())
5070       return getUNDEF(VT);
5071 
5072     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5073     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5074       return getUNDEF(VT);
5075 
5076     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5077     // expanding copies of large vectors from registers.
5078     if (N2C &&
5079         N1.getOpcode() == ISD::CONCAT_VECTORS &&
5080         N1.getNumOperands() > 0) {
5081       unsigned Factor =
5082         N1.getOperand(0).getValueType().getVectorNumElements();
5083       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5084                      N1.getOperand(N2C->getZExtValue() / Factor),
5085                      getConstant(N2C->getZExtValue() % Factor, DL,
5086                                  N2.getValueType()));
5087     }
5088 
5089     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5090     // expanding large vector constants.
5091     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5092       SDValue Elt = N1.getOperand(N2C->getZExtValue());
5093 
5094       if (VT != Elt.getValueType())
5095         // If the vector element type is not legal, the BUILD_VECTOR operands
5096         // are promoted and implicitly truncated, and the result implicitly
5097         // extended. Make that explicit here.
5098         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5099 
5100       return Elt;
5101     }
5102 
5103     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5104     // operations are lowered to scalars.
5105     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5106       // If the indices are the same, return the inserted element else
5107       // if the indices are known different, extract the element from
5108       // the original vector.
5109       SDValue N1Op2 = N1.getOperand(2);
5110       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5111 
5112       if (N1Op2C && N2C) {
5113         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5114           if (VT == N1.getOperand(1).getValueType())
5115             return N1.getOperand(1);
5116           else
5117             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5118         }
5119 
5120         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5121       }
5122     }
5123 
5124     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5125     // when vector types are scalarized and v1iX is legal.
5126     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5127     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5128         N1.getValueType().getVectorNumElements() == 1) {
5129       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5130                      N1.getOperand(1));
5131     }
5132     break;
5133   case ISD::EXTRACT_ELEMENT:
5134     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5135     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5136            (N1.getValueType().isInteger() == VT.isInteger()) &&
5137            N1.getValueType() != VT &&
5138            "Wrong types for EXTRACT_ELEMENT!");
5139 
5140     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5141     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5142     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5143     if (N1.getOpcode() == ISD::BUILD_PAIR)
5144       return N1.getOperand(N2C->getZExtValue());
5145 
5146     // EXTRACT_ELEMENT of a constant int is also very common.
5147     if (N1C) {
5148       unsigned ElementSize = VT.getSizeInBits();
5149       unsigned Shift = ElementSize * N2C->getZExtValue();
5150       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5151       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5152     }
5153     break;
5154   case ISD::EXTRACT_SUBVECTOR:
5155     if (VT.isSimple() && N1.getValueType().isSimple()) {
5156       assert(VT.isVector() && N1.getValueType().isVector() &&
5157              "Extract subvector VTs must be a vectors!");
5158       assert(VT.getVectorElementType() ==
5159              N1.getValueType().getVectorElementType() &&
5160              "Extract subvector VTs must have the same element type!");
5161       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5162              "Extract subvector must be from larger vector to smaller vector!");
5163 
5164       if (N2C) {
5165         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5166                 <= N1.getValueType().getVectorNumElements())
5167                && "Extract subvector overflow!");
5168       }
5169 
5170       // Trivial extraction.
5171       if (VT.getSimpleVT() == N1.getSimpleValueType())
5172         return N1;
5173 
5174       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5175       if (N1.isUndef())
5176         return getUNDEF(VT);
5177 
5178       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5179       // the concat have the same type as the extract.
5180       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5181           N1.getNumOperands() > 0 &&
5182           VT == N1.getOperand(0).getValueType()) {
5183         unsigned Factor = VT.getVectorNumElements();
5184         return N1.getOperand(N2C->getZExtValue() / Factor);
5185       }
5186 
5187       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5188       // during shuffle legalization.
5189       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5190           VT == N1.getOperand(1).getValueType())
5191         return N1.getOperand(1);
5192     }
5193     break;
5194   }
5195 
5196   // Perform trivial constant folding.
5197   if (SDValue SV =
5198           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
5199     return SV;
5200 
5201   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5202     return V;
5203 
5204   // Canonicalize an UNDEF to the RHS, even over a constant.
5205   if (N1.isUndef()) {
5206     if (TLI->isCommutativeBinOp(Opcode)) {
5207       std::swap(N1, N2);
5208     } else {
5209       switch (Opcode) {
5210       case ISD::FP_ROUND_INREG:
5211       case ISD::SIGN_EXTEND_INREG:
5212       case ISD::SUB:
5213         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5214       case ISD::UDIV:
5215       case ISD::SDIV:
5216       case ISD::UREM:
5217       case ISD::SREM:
5218       case ISD::SSUBSAT:
5219       case ISD::USUBSAT:
5220         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5221       }
5222     }
5223   }
5224 
5225   // Fold a bunch of operators when the RHS is undef.
5226   if (N2.isUndef()) {
5227     switch (Opcode) {
5228     case ISD::XOR:
5229       if (N1.isUndef())
5230         // Handle undef ^ undef -> 0 special case. This is a common
5231         // idiom (misuse).
5232         return getConstant(0, DL, VT);
5233       LLVM_FALLTHROUGH;
5234     case ISD::ADD:
5235     case ISD::SUB:
5236     case ISD::UDIV:
5237     case ISD::SDIV:
5238     case ISD::UREM:
5239     case ISD::SREM:
5240       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5241     case ISD::MUL:
5242     case ISD::AND:
5243     case ISD::SSUBSAT:
5244     case ISD::USUBSAT:
5245       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5246     case ISD::OR:
5247     case ISD::SADDSAT:
5248     case ISD::UADDSAT:
5249       return getAllOnesConstant(DL, VT);
5250     }
5251   }
5252 
5253   // Memoize this node if possible.
5254   SDNode *N;
5255   SDVTList VTs = getVTList(VT);
5256   SDValue Ops[] = {N1, N2};
5257   if (VT != MVT::Glue) {
5258     FoldingSetNodeID ID;
5259     AddNodeIDNode(ID, Opcode, VTs, Ops);
5260     void *IP = nullptr;
5261     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5262       E->intersectFlagsWith(Flags);
5263       return SDValue(E, 0);
5264     }
5265 
5266     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5267     N->setFlags(Flags);
5268     createOperands(N, Ops);
5269     CSEMap.InsertNode(N, IP);
5270   } else {
5271     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5272     createOperands(N, Ops);
5273   }
5274 
5275   InsertNode(N);
5276   SDValue V = SDValue(N, 0);
5277   NewSDValueDbgMsg(V, "Creating new node: ", this);
5278   return V;
5279 }
5280 
5281 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5282                               SDValue N1, SDValue N2, SDValue N3,
5283                               const SDNodeFlags Flags) {
5284   // Perform various simplifications.
5285   switch (Opcode) {
5286   case ISD::FMA: {
5287     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5288     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5289            N3.getValueType() == VT && "FMA types must match!");
5290     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5291     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5292     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5293     if (N1CFP && N2CFP && N3CFP) {
5294       APFloat  V1 = N1CFP->getValueAPF();
5295       const APFloat &V2 = N2CFP->getValueAPF();
5296       const APFloat &V3 = N3CFP->getValueAPF();
5297       APFloat::opStatus s =
5298         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5299       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
5300         return getConstantFP(V1, DL, VT);
5301     }
5302     break;
5303   }
5304   case ISD::BUILD_VECTOR: {
5305     // Attempt to simplify BUILD_VECTOR.
5306     SDValue Ops[] = {N1, N2, N3};
5307     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5308       return V;
5309     break;
5310   }
5311   case ISD::CONCAT_VECTORS: {
5312     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
5313     SDValue Ops[] = {N1, N2, N3};
5314     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
5315       return V;
5316     break;
5317   }
5318   case ISD::SETCC: {
5319     assert(VT.isInteger() && "SETCC result type must be an integer!");
5320     assert(N1.getValueType() == N2.getValueType() &&
5321            "SETCC operands must have the same type!");
5322     assert(VT.isVector() == N1.getValueType().isVector() &&
5323            "SETCC type should be vector iff the operand type is vector!");
5324     assert((!VT.isVector() ||
5325             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5326            "SETCC vector element counts must match!");
5327     // Use FoldSetCC to simplify SETCC's.
5328     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5329       return V;
5330     // Vector constant folding.
5331     SDValue Ops[] = {N1, N2, N3};
5332     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5333       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5334       return V;
5335     }
5336     break;
5337   }
5338   case ISD::SELECT:
5339   case ISD::VSELECT:
5340     if (SDValue V = simplifySelect(N1, N2, N3))
5341       return V;
5342     break;
5343   case ISD::VECTOR_SHUFFLE:
5344     llvm_unreachable("should use getVectorShuffle constructor!");
5345   case ISD::INSERT_VECTOR_ELT: {
5346     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5347     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5348     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5349       return getUNDEF(VT);
5350     break;
5351   }
5352   case ISD::INSERT_SUBVECTOR: {
5353     SDValue Index = N3;
5354     if (VT.isSimple() && N1.getValueType().isSimple()
5355         && N2.getValueType().isSimple()) {
5356       assert(VT.isVector() && N1.getValueType().isVector() &&
5357              N2.getValueType().isVector() &&
5358              "Insert subvector VTs must be a vectors");
5359       assert(VT == N1.getValueType() &&
5360              "Dest and insert subvector source types must match!");
5361       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5362              "Insert subvector must be from smaller vector to larger vector!");
5363       if (isa<ConstantSDNode>(Index)) {
5364         assert((N2.getValueType().getVectorNumElements() +
5365                 cast<ConstantSDNode>(Index)->getZExtValue()
5366                 <= VT.getVectorNumElements())
5367                && "Insert subvector overflow!");
5368       }
5369 
5370       // Trivial insertion.
5371       if (VT.getSimpleVT() == N2.getSimpleValueType())
5372         return N2;
5373     }
5374     break;
5375   }
5376   case ISD::BITCAST:
5377     // Fold bit_convert nodes from a type to themselves.
5378     if (N1.getValueType() == VT)
5379       return N1;
5380     break;
5381   }
5382 
5383   // Memoize node if it doesn't produce a flag.
5384   SDNode *N;
5385   SDVTList VTs = getVTList(VT);
5386   SDValue Ops[] = {N1, N2, N3};
5387   if (VT != MVT::Glue) {
5388     FoldingSetNodeID ID;
5389     AddNodeIDNode(ID, Opcode, VTs, Ops);
5390     void *IP = nullptr;
5391     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5392       E->intersectFlagsWith(Flags);
5393       return SDValue(E, 0);
5394     }
5395 
5396     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5397     N->setFlags(Flags);
5398     createOperands(N, Ops);
5399     CSEMap.InsertNode(N, IP);
5400   } else {
5401     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5402     createOperands(N, Ops);
5403   }
5404 
5405   InsertNode(N);
5406   SDValue V = SDValue(N, 0);
5407   NewSDValueDbgMsg(V, "Creating new node: ", this);
5408   return V;
5409 }
5410 
5411 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5412                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5413   SDValue Ops[] = { N1, N2, N3, N4 };
5414   return getNode(Opcode, DL, VT, Ops);
5415 }
5416 
5417 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5418                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5419                               SDValue N5) {
5420   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5421   return getNode(Opcode, DL, VT, Ops);
5422 }
5423 
5424 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5425 /// the incoming stack arguments to be loaded from the stack.
5426 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5427   SmallVector<SDValue, 8> ArgChains;
5428 
5429   // Include the original chain at the beginning of the list. When this is
5430   // used by target LowerCall hooks, this helps legalize find the
5431   // CALLSEQ_BEGIN node.
5432   ArgChains.push_back(Chain);
5433 
5434   // Add a chain value for each stack argument.
5435   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5436        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5437     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5438       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5439         if (FI->getIndex() < 0)
5440           ArgChains.push_back(SDValue(L, 1));
5441 
5442   // Build a tokenfactor for all the chains.
5443   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5444 }
5445 
5446 /// getMemsetValue - Vectorized representation of the memset value
5447 /// operand.
5448 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5449                               const SDLoc &dl) {
5450   assert(!Value.isUndef());
5451 
5452   unsigned NumBits = VT.getScalarSizeInBits();
5453   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5454     assert(C->getAPIntValue().getBitWidth() == 8);
5455     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5456     if (VT.isInteger()) {
5457       bool IsOpaque = VT.getSizeInBits() > 64 ||
5458           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5459       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5460     }
5461     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5462                              VT);
5463   }
5464 
5465   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5466   EVT IntVT = VT.getScalarType();
5467   if (!IntVT.isInteger())
5468     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5469 
5470   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5471   if (NumBits > 8) {
5472     // Use a multiplication with 0x010101... to extend the input to the
5473     // required length.
5474     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5475     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5476                         DAG.getConstant(Magic, dl, IntVT));
5477   }
5478 
5479   if (VT != Value.getValueType() && !VT.isInteger())
5480     Value = DAG.getBitcast(VT.getScalarType(), Value);
5481   if (VT != Value.getValueType())
5482     Value = DAG.getSplatBuildVector(VT, dl, Value);
5483 
5484   return Value;
5485 }
5486 
5487 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5488 /// used when a memcpy is turned into a memset when the source is a constant
5489 /// string ptr.
5490 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5491                                   const TargetLowering &TLI,
5492                                   const ConstantDataArraySlice &Slice) {
5493   // Handle vector with all elements zero.
5494   if (Slice.Array == nullptr) {
5495     if (VT.isInteger())
5496       return DAG.getConstant(0, dl, VT);
5497     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5498       return DAG.getConstantFP(0.0, dl, VT);
5499     else if (VT.isVector()) {
5500       unsigned NumElts = VT.getVectorNumElements();
5501       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5502       return DAG.getNode(ISD::BITCAST, dl, VT,
5503                          DAG.getConstant(0, dl,
5504                                          EVT::getVectorVT(*DAG.getContext(),
5505                                                           EltVT, NumElts)));
5506     } else
5507       llvm_unreachable("Expected type!");
5508   }
5509 
5510   assert(!VT.isVector() && "Can't handle vector type here!");
5511   unsigned NumVTBits = VT.getSizeInBits();
5512   unsigned NumVTBytes = NumVTBits / 8;
5513   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5514 
5515   APInt Val(NumVTBits, 0);
5516   if (DAG.getDataLayout().isLittleEndian()) {
5517     for (unsigned i = 0; i != NumBytes; ++i)
5518       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5519   } else {
5520     for (unsigned i = 0; i != NumBytes; ++i)
5521       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5522   }
5523 
5524   // If the "cost" of materializing the integer immediate is less than the cost
5525   // of a load, then it is cost effective to turn the load into the immediate.
5526   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5527   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5528     return DAG.getConstant(Val, dl, VT);
5529   return SDValue(nullptr, 0);
5530 }
5531 
5532 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
5533                                            const SDLoc &DL) {
5534   EVT VT = Base.getValueType();
5535   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
5536 }
5537 
5538 /// Returns true if memcpy source is constant data.
5539 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5540   uint64_t SrcDelta = 0;
5541   GlobalAddressSDNode *G = nullptr;
5542   if (Src.getOpcode() == ISD::GlobalAddress)
5543     G = cast<GlobalAddressSDNode>(Src);
5544   else if (Src.getOpcode() == ISD::ADD &&
5545            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5546            Src.getOperand(1).getOpcode() == ISD::Constant) {
5547     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5548     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5549   }
5550   if (!G)
5551     return false;
5552 
5553   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5554                                   SrcDelta + G->getOffset());
5555 }
5556 
5557 /// Determines the optimal series of memory ops to replace the memset / memcpy.
5558 /// Return true if the number of memory ops is below the threshold (Limit).
5559 /// It returns the types of the sequence of memory ops to perform
5560 /// memset / memcpy by reference.
5561 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
5562                                      unsigned Limit, uint64_t Size,
5563                                      unsigned DstAlign, unsigned SrcAlign,
5564                                      bool IsMemset,
5565                                      bool ZeroMemset,
5566                                      bool MemcpyStrSrc,
5567                                      bool AllowOverlap,
5568                                      unsigned DstAS, unsigned SrcAS,
5569                                      SelectionDAG &DAG,
5570                                      const TargetLowering &TLI) {
5571   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
5572          "Expecting memcpy / memset source to meet alignment requirement!");
5573   // If 'SrcAlign' is zero, that means the memory operation does not need to
5574   // load the value, i.e. memset or memcpy from constant string. Otherwise,
5575   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
5576   // is the specified alignment of the memory operation. If it is zero, that
5577   // means it's possible to change the alignment of the destination.
5578   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
5579   // not need to be loaded.
5580   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
5581                                    IsMemset, ZeroMemset, MemcpyStrSrc,
5582                                    DAG.getMachineFunction());
5583 
5584   if (VT == MVT::Other) {
5585     // Use the largest integer type whose alignment constraints are satisfied.
5586     // We only need to check DstAlign here as SrcAlign is always greater or
5587     // equal to DstAlign (or zero).
5588     VT = MVT::i64;
5589     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
5590            !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
5591       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
5592     assert(VT.isInteger());
5593 
5594     // Find the largest legal integer type.
5595     MVT LVT = MVT::i64;
5596     while (!TLI.isTypeLegal(LVT))
5597       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
5598     assert(LVT.isInteger());
5599 
5600     // If the type we've chosen is larger than the largest legal integer type
5601     // then use that instead.
5602     if (VT.bitsGT(LVT))
5603       VT = LVT;
5604   }
5605 
5606   unsigned NumMemOps = 0;
5607   while (Size != 0) {
5608     unsigned VTSize = VT.getSizeInBits() / 8;
5609     while (VTSize > Size) {
5610       // For now, only use non-vector load / store's for the left-over pieces.
5611       EVT NewVT = VT;
5612       unsigned NewVTSize;
5613 
5614       bool Found = false;
5615       if (VT.isVector() || VT.isFloatingPoint()) {
5616         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
5617         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
5618             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
5619           Found = true;
5620         else if (NewVT == MVT::i64 &&
5621                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
5622                  TLI.isSafeMemOpType(MVT::f64)) {
5623           // i64 is usually not legal on 32-bit targets, but f64 may be.
5624           NewVT = MVT::f64;
5625           Found = true;
5626         }
5627       }
5628 
5629       if (!Found) {
5630         do {
5631           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
5632           if (NewVT == MVT::i8)
5633             break;
5634         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
5635       }
5636       NewVTSize = NewVT.getSizeInBits() / 8;
5637 
5638       // If the new VT cannot cover all of the remaining bits, then consider
5639       // issuing a (or a pair of) unaligned and overlapping load / store.
5640       bool Fast;
5641       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
5642           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) &&
5643           Fast)
5644         VTSize = Size;
5645       else {
5646         VT = NewVT;
5647         VTSize = NewVTSize;
5648       }
5649     }
5650 
5651     if (++NumMemOps > Limit)
5652       return false;
5653 
5654     MemOps.push_back(VT);
5655     Size -= VTSize;
5656   }
5657 
5658   return true;
5659 }
5660 
5661 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5662   // On Darwin, -Os means optimize for size without hurting performance, so
5663   // only really optimize for size when -Oz (MinSize) is used.
5664   if (MF.getTarget().getTargetTriple().isOSDarwin())
5665     return MF.getFunction().hasMinSize();
5666   return MF.getFunction().hasOptSize();
5667 }
5668 
5669 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5670                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5671                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5672                           SmallVector<SDValue, 16> &OutStoreChains) {
5673   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5674   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5675   SmallVector<SDValue, 16> GluedLoadChains;
5676   for (unsigned i = From; i < To; ++i) {
5677     OutChains.push_back(OutLoadChains[i]);
5678     GluedLoadChains.push_back(OutLoadChains[i]);
5679   }
5680 
5681   // Chain for all loads.
5682   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5683                                   GluedLoadChains);
5684 
5685   for (unsigned i = From; i < To; ++i) {
5686     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5687     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5688                                   ST->getBasePtr(), ST->getMemoryVT(),
5689                                   ST->getMemOperand());
5690     OutChains.push_back(NewStore);
5691   }
5692 }
5693 
5694 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5695                                        SDValue Chain, SDValue Dst, SDValue Src,
5696                                        uint64_t Size, unsigned Align,
5697                                        bool isVol, bool AlwaysInline,
5698                                        MachinePointerInfo DstPtrInfo,
5699                                        MachinePointerInfo SrcPtrInfo) {
5700   // Turn a memcpy of undef to nop.
5701   if (Src.isUndef())
5702     return Chain;
5703 
5704   // Expand memcpy to a series of load and store ops if the size operand falls
5705   // below a certain threshold.
5706   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5707   // rather than maybe a humongous number of loads and stores.
5708   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5709   const DataLayout &DL = DAG.getDataLayout();
5710   LLVMContext &C = *DAG.getContext();
5711   std::vector<EVT> MemOps;
5712   bool DstAlignCanChange = false;
5713   MachineFunction &MF = DAG.getMachineFunction();
5714   MachineFrameInfo &MFI = MF.getFrameInfo();
5715   bool OptSize = shouldLowerMemFuncForSize(MF);
5716   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5717   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5718     DstAlignCanChange = true;
5719   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5720   if (Align > SrcAlign)
5721     SrcAlign = Align;
5722   ConstantDataArraySlice Slice;
5723   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5724   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5725   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5726 
5727   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5728                                 (DstAlignCanChange ? 0 : Align),
5729                                 (isZeroConstant ? 0 : SrcAlign),
5730                                 false, false, CopyFromConstant, true,
5731                                 DstPtrInfo.getAddrSpace(),
5732                                 SrcPtrInfo.getAddrSpace(),
5733                                 DAG, TLI))
5734     return SDValue();
5735 
5736   if (DstAlignCanChange) {
5737     Type *Ty = MemOps[0].getTypeForEVT(C);
5738     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5739 
5740     // Don't promote to an alignment that would require dynamic stack
5741     // realignment.
5742     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5743     if (!TRI->needsStackRealignment(MF))
5744       while (NewAlign > Align &&
5745              DL.exceedsNaturalStackAlignment(NewAlign))
5746           NewAlign /= 2;
5747 
5748     if (NewAlign > Align) {
5749       // Give the stack frame object a larger alignment if needed.
5750       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5751         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5752       Align = NewAlign;
5753     }
5754   }
5755 
5756   MachineMemOperand::Flags MMOFlags =
5757       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5758   SmallVector<SDValue, 16> OutLoadChains;
5759   SmallVector<SDValue, 16> OutStoreChains;
5760   SmallVector<SDValue, 32> OutChains;
5761   unsigned NumMemOps = MemOps.size();
5762   uint64_t SrcOff = 0, DstOff = 0;
5763   for (unsigned i = 0; i != NumMemOps; ++i) {
5764     EVT VT = MemOps[i];
5765     unsigned VTSize = VT.getSizeInBits() / 8;
5766     SDValue Value, Store;
5767 
5768     if (VTSize > Size) {
5769       // Issuing an unaligned load / store pair  that overlaps with the previous
5770       // pair. Adjust the offset accordingly.
5771       assert(i == NumMemOps-1 && i != 0);
5772       SrcOff -= VTSize - Size;
5773       DstOff -= VTSize - Size;
5774     }
5775 
5776     if (CopyFromConstant &&
5777         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5778       // It's unlikely a store of a vector immediate can be done in a single
5779       // instruction. It would require a load from a constantpool first.
5780       // We only handle zero vectors here.
5781       // FIXME: Handle other cases where store of vector immediate is done in
5782       // a single instruction.
5783       ConstantDataArraySlice SubSlice;
5784       if (SrcOff < Slice.Length) {
5785         SubSlice = Slice;
5786         SubSlice.move(SrcOff);
5787       } else {
5788         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5789         SubSlice.Array = nullptr;
5790         SubSlice.Offset = 0;
5791         SubSlice.Length = VTSize;
5792       }
5793       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5794       if (Value.getNode()) {
5795         Store = DAG.getStore(Chain, dl, Value,
5796                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5797                              DstPtrInfo.getWithOffset(DstOff), Align,
5798                              MMOFlags);
5799         OutChains.push_back(Store);
5800       }
5801     }
5802 
5803     if (!Store.getNode()) {
5804       // The type might not be legal for the target.  This should only happen
5805       // if the type is smaller than a legal type, as on PPC, so the right
5806       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5807       // to Load/Store if NVT==VT.
5808       // FIXME does the case above also need this?
5809       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5810       assert(NVT.bitsGE(VT));
5811 
5812       bool isDereferenceable =
5813         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5814       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5815       if (isDereferenceable)
5816         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5817 
5818       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5819                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5820                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5821                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5822       OutLoadChains.push_back(Value.getValue(1));
5823 
5824       Store = DAG.getTruncStore(
5825           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5826           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5827       OutStoreChains.push_back(Store);
5828     }
5829     SrcOff += VTSize;
5830     DstOff += VTSize;
5831     Size -= VTSize;
5832   }
5833 
5834   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
5835                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
5836   unsigned NumLdStInMemcpy = OutStoreChains.size();
5837 
5838   if (NumLdStInMemcpy) {
5839     // It may be that memcpy might be converted to memset if it's memcpy
5840     // of constants. In such a case, we won't have loads and stores, but
5841     // just stores. In the absence of loads, there is nothing to gang up.
5842     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
5843       // If target does not care, just leave as it.
5844       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
5845         OutChains.push_back(OutLoadChains[i]);
5846         OutChains.push_back(OutStoreChains[i]);
5847       }
5848     } else {
5849       // Ld/St less than/equal limit set by target.
5850       if (NumLdStInMemcpy <= GluedLdStLimit) {
5851           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5852                                         NumLdStInMemcpy, OutLoadChains,
5853                                         OutStoreChains);
5854       } else {
5855         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
5856         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
5857         unsigned GlueIter = 0;
5858 
5859         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
5860           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
5861           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
5862 
5863           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
5864                                        OutLoadChains, OutStoreChains);
5865           GlueIter += GluedLdStLimit;
5866         }
5867 
5868         // Residual ld/st.
5869         if (RemainingLdStInMemcpy) {
5870           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5871                                         RemainingLdStInMemcpy, OutLoadChains,
5872                                         OutStoreChains);
5873         }
5874       }
5875     }
5876   }
5877   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5878 }
5879 
5880 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5881                                         SDValue Chain, SDValue Dst, SDValue Src,
5882                                         uint64_t Size, unsigned Align,
5883                                         bool isVol, bool AlwaysInline,
5884                                         MachinePointerInfo DstPtrInfo,
5885                                         MachinePointerInfo SrcPtrInfo) {
5886   // Turn a memmove of undef to nop.
5887   if (Src.isUndef())
5888     return Chain;
5889 
5890   // Expand memmove to a series of load and store ops if the size operand falls
5891   // below a certain threshold.
5892   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5893   const DataLayout &DL = DAG.getDataLayout();
5894   LLVMContext &C = *DAG.getContext();
5895   std::vector<EVT> MemOps;
5896   bool DstAlignCanChange = false;
5897   MachineFunction &MF = DAG.getMachineFunction();
5898   MachineFrameInfo &MFI = MF.getFrameInfo();
5899   bool OptSize = shouldLowerMemFuncForSize(MF);
5900   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5901   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5902     DstAlignCanChange = true;
5903   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5904   if (Align > SrcAlign)
5905     SrcAlign = Align;
5906   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5907 
5908   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5909                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
5910                                 false, false, false, false,
5911                                 DstPtrInfo.getAddrSpace(),
5912                                 SrcPtrInfo.getAddrSpace(),
5913                                 DAG, TLI))
5914     return SDValue();
5915 
5916   if (DstAlignCanChange) {
5917     Type *Ty = MemOps[0].getTypeForEVT(C);
5918     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5919     if (NewAlign > Align) {
5920       // Give the stack frame object a larger alignment if needed.
5921       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5922         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5923       Align = NewAlign;
5924     }
5925   }
5926 
5927   MachineMemOperand::Flags MMOFlags =
5928       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5929   uint64_t SrcOff = 0, DstOff = 0;
5930   SmallVector<SDValue, 8> LoadValues;
5931   SmallVector<SDValue, 8> LoadChains;
5932   SmallVector<SDValue, 8> OutChains;
5933   unsigned NumMemOps = MemOps.size();
5934   for (unsigned i = 0; i < NumMemOps; i++) {
5935     EVT VT = MemOps[i];
5936     unsigned VTSize = VT.getSizeInBits() / 8;
5937     SDValue Value;
5938 
5939     bool isDereferenceable =
5940       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5941     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5942     if (isDereferenceable)
5943       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5944 
5945     Value =
5946         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5947                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
5948     LoadValues.push_back(Value);
5949     LoadChains.push_back(Value.getValue(1));
5950     SrcOff += VTSize;
5951   }
5952   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
5953   OutChains.clear();
5954   for (unsigned i = 0; i < NumMemOps; i++) {
5955     EVT VT = MemOps[i];
5956     unsigned VTSize = VT.getSizeInBits() / 8;
5957     SDValue Store;
5958 
5959     Store = DAG.getStore(Chain, dl, LoadValues[i],
5960                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5961                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
5962     OutChains.push_back(Store);
5963     DstOff += VTSize;
5964   }
5965 
5966   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5967 }
5968 
5969 /// Lower the call to 'memset' intrinsic function into a series of store
5970 /// operations.
5971 ///
5972 /// \param DAG Selection DAG where lowered code is placed.
5973 /// \param dl Link to corresponding IR location.
5974 /// \param Chain Control flow dependency.
5975 /// \param Dst Pointer to destination memory location.
5976 /// \param Src Value of byte to write into the memory.
5977 /// \param Size Number of bytes to write.
5978 /// \param Align Alignment of the destination in bytes.
5979 /// \param isVol True if destination is volatile.
5980 /// \param DstPtrInfo IR information on the memory pointer.
5981 /// \returns New head in the control flow, if lowering was successful, empty
5982 /// SDValue otherwise.
5983 ///
5984 /// The function tries to replace 'llvm.memset' intrinsic with several store
5985 /// operations and value calculation code. This is usually profitable for small
5986 /// memory size.
5987 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
5988                                SDValue Chain, SDValue Dst, SDValue Src,
5989                                uint64_t Size, unsigned Align, bool isVol,
5990                                MachinePointerInfo DstPtrInfo) {
5991   // Turn a memset of undef to nop.
5992   if (Src.isUndef())
5993     return Chain;
5994 
5995   // Expand memset to a series of load/store ops if the size operand
5996   // falls below a certain threshold.
5997   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5998   std::vector<EVT> MemOps;
5999   bool DstAlignCanChange = false;
6000   MachineFunction &MF = DAG.getMachineFunction();
6001   MachineFrameInfo &MFI = MF.getFrameInfo();
6002   bool OptSize = shouldLowerMemFuncForSize(MF);
6003   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6004   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6005     DstAlignCanChange = true;
6006   bool IsZeroVal =
6007     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6008   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
6009                                 Size, (DstAlignCanChange ? 0 : Align), 0,
6010                                 true, IsZeroVal, false, true,
6011                                 DstPtrInfo.getAddrSpace(), ~0u,
6012                                 DAG, TLI))
6013     return SDValue();
6014 
6015   if (DstAlignCanChange) {
6016     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6017     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
6018     if (NewAlign > Align) {
6019       // Give the stack frame object a larger alignment if needed.
6020       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
6021         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6022       Align = NewAlign;
6023     }
6024   }
6025 
6026   SmallVector<SDValue, 8> OutChains;
6027   uint64_t DstOff = 0;
6028   unsigned NumMemOps = MemOps.size();
6029 
6030   // Find the largest store and generate the bit pattern for it.
6031   EVT LargestVT = MemOps[0];
6032   for (unsigned i = 1; i < NumMemOps; i++)
6033     if (MemOps[i].bitsGT(LargestVT))
6034       LargestVT = MemOps[i];
6035   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6036 
6037   for (unsigned i = 0; i < NumMemOps; i++) {
6038     EVT VT = MemOps[i];
6039     unsigned VTSize = VT.getSizeInBits() / 8;
6040     if (VTSize > Size) {
6041       // Issuing an unaligned load / store pair  that overlaps with the previous
6042       // pair. Adjust the offset accordingly.
6043       assert(i == NumMemOps-1 && i != 0);
6044       DstOff -= VTSize - Size;
6045     }
6046 
6047     // If this store is smaller than the largest store see whether we can get
6048     // the smaller value for free with a truncate.
6049     SDValue Value = MemSetValue;
6050     if (VT.bitsLT(LargestVT)) {
6051       if (!LargestVT.isVector() && !VT.isVector() &&
6052           TLI.isTruncateFree(LargestVT, VT))
6053         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6054       else
6055         Value = getMemsetValue(Src, VT, DAG, dl);
6056     }
6057     assert(Value.getValueType() == VT && "Value with wrong type.");
6058     SDValue Store = DAG.getStore(
6059         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6060         DstPtrInfo.getWithOffset(DstOff), Align,
6061         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6062     OutChains.push_back(Store);
6063     DstOff += VT.getSizeInBits() / 8;
6064     Size -= VTSize;
6065   }
6066 
6067   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6068 }
6069 
6070 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6071                                             unsigned AS) {
6072   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6073   // pointer operands can be losslessly bitcasted to pointers of address space 0
6074   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6075     report_fatal_error("cannot lower memory intrinsic in address space " +
6076                        Twine(AS));
6077   }
6078 }
6079 
6080 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6081                                 SDValue Src, SDValue Size, unsigned Align,
6082                                 bool isVol, bool AlwaysInline, bool isTailCall,
6083                                 MachinePointerInfo DstPtrInfo,
6084                                 MachinePointerInfo SrcPtrInfo) {
6085   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6086 
6087   // Check to see if we should lower the memcpy to loads and stores first.
6088   // For cases within the target-specified limits, this is the best choice.
6089   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6090   if (ConstantSize) {
6091     // Memcpy with size zero? Just return the original chain.
6092     if (ConstantSize->isNullValue())
6093       return Chain;
6094 
6095     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6096                                              ConstantSize->getZExtValue(),Align,
6097                                 isVol, false, DstPtrInfo, SrcPtrInfo);
6098     if (Result.getNode())
6099       return Result;
6100   }
6101 
6102   // Then check to see if we should lower the memcpy with target-specific
6103   // code. If the target chooses to do this, this is the next best.
6104   if (TSI) {
6105     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6106         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
6107         DstPtrInfo, SrcPtrInfo);
6108     if (Result.getNode())
6109       return Result;
6110   }
6111 
6112   // If we really need inline code and the target declined to provide it,
6113   // use a (potentially long) sequence of loads and stores.
6114   if (AlwaysInline) {
6115     assert(ConstantSize && "AlwaysInline requires a constant size!");
6116     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6117                                    ConstantSize->getZExtValue(), Align, isVol,
6118                                    true, DstPtrInfo, SrcPtrInfo);
6119   }
6120 
6121   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6122   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6123 
6124   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6125   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6126   // respect volatile, so they may do things like read or write memory
6127   // beyond the given memory regions. But fixing this isn't easy, and most
6128   // people don't care.
6129 
6130   // Emit a library call.
6131   TargetLowering::ArgListTy Args;
6132   TargetLowering::ArgListEntry Entry;
6133   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6134   Entry.Node = Dst; Args.push_back(Entry);
6135   Entry.Node = Src; Args.push_back(Entry);
6136   Entry.Node = Size; Args.push_back(Entry);
6137   // FIXME: pass in SDLoc
6138   TargetLowering::CallLoweringInfo CLI(*this);
6139   CLI.setDebugLoc(dl)
6140       .setChain(Chain)
6141       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6142                     Dst.getValueType().getTypeForEVT(*getContext()),
6143                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6144                                       TLI->getPointerTy(getDataLayout())),
6145                     std::move(Args))
6146       .setDiscardResult()
6147       .setTailCall(isTailCall);
6148 
6149   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6150   return CallResult.second;
6151 }
6152 
6153 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6154                                       SDValue Dst, unsigned DstAlign,
6155                                       SDValue Src, unsigned SrcAlign,
6156                                       SDValue Size, Type *SizeTy,
6157                                       unsigned ElemSz, bool isTailCall,
6158                                       MachinePointerInfo DstPtrInfo,
6159                                       MachinePointerInfo SrcPtrInfo) {
6160   // Emit a library call.
6161   TargetLowering::ArgListTy Args;
6162   TargetLowering::ArgListEntry Entry;
6163   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6164   Entry.Node = Dst;
6165   Args.push_back(Entry);
6166 
6167   Entry.Node = Src;
6168   Args.push_back(Entry);
6169 
6170   Entry.Ty = SizeTy;
6171   Entry.Node = Size;
6172   Args.push_back(Entry);
6173 
6174   RTLIB::Libcall LibraryCall =
6175       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6176   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6177     report_fatal_error("Unsupported element size");
6178 
6179   TargetLowering::CallLoweringInfo CLI(*this);
6180   CLI.setDebugLoc(dl)
6181       .setChain(Chain)
6182       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6183                     Type::getVoidTy(*getContext()),
6184                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6185                                       TLI->getPointerTy(getDataLayout())),
6186                     std::move(Args))
6187       .setDiscardResult()
6188       .setTailCall(isTailCall);
6189 
6190   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6191   return CallResult.second;
6192 }
6193 
6194 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6195                                  SDValue Src, SDValue Size, unsigned Align,
6196                                  bool isVol, bool isTailCall,
6197                                  MachinePointerInfo DstPtrInfo,
6198                                  MachinePointerInfo SrcPtrInfo) {
6199   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6200 
6201   // Check to see if we should lower the memmove to loads and stores first.
6202   // For cases within the target-specified limits, this is the best choice.
6203   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6204   if (ConstantSize) {
6205     // Memmove with size zero? Just return the original chain.
6206     if (ConstantSize->isNullValue())
6207       return Chain;
6208 
6209     SDValue Result =
6210       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
6211                                ConstantSize->getZExtValue(), Align, isVol,
6212                                false, DstPtrInfo, SrcPtrInfo);
6213     if (Result.getNode())
6214       return Result;
6215   }
6216 
6217   // Then check to see if we should lower the memmove with target-specific
6218   // code. If the target chooses to do this, this is the next best.
6219   if (TSI) {
6220     SDValue Result = TSI->EmitTargetCodeForMemmove(
6221         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
6222     if (Result.getNode())
6223       return Result;
6224   }
6225 
6226   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6227   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6228 
6229   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6230   // not be safe.  See memcpy above for more details.
6231 
6232   // Emit a library call.
6233   TargetLowering::ArgListTy Args;
6234   TargetLowering::ArgListEntry Entry;
6235   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6236   Entry.Node = Dst; Args.push_back(Entry);
6237   Entry.Node = Src; Args.push_back(Entry);
6238   Entry.Node = Size; Args.push_back(Entry);
6239   // FIXME:  pass in SDLoc
6240   TargetLowering::CallLoweringInfo CLI(*this);
6241   CLI.setDebugLoc(dl)
6242       .setChain(Chain)
6243       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6244                     Dst.getValueType().getTypeForEVT(*getContext()),
6245                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6246                                       TLI->getPointerTy(getDataLayout())),
6247                     std::move(Args))
6248       .setDiscardResult()
6249       .setTailCall(isTailCall);
6250 
6251   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6252   return CallResult.second;
6253 }
6254 
6255 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6256                                        SDValue Dst, unsigned DstAlign,
6257                                        SDValue Src, unsigned SrcAlign,
6258                                        SDValue Size, Type *SizeTy,
6259                                        unsigned ElemSz, bool isTailCall,
6260                                        MachinePointerInfo DstPtrInfo,
6261                                        MachinePointerInfo SrcPtrInfo) {
6262   // Emit a library call.
6263   TargetLowering::ArgListTy Args;
6264   TargetLowering::ArgListEntry Entry;
6265   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6266   Entry.Node = Dst;
6267   Args.push_back(Entry);
6268 
6269   Entry.Node = Src;
6270   Args.push_back(Entry);
6271 
6272   Entry.Ty = SizeTy;
6273   Entry.Node = Size;
6274   Args.push_back(Entry);
6275 
6276   RTLIB::Libcall LibraryCall =
6277       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6278   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6279     report_fatal_error("Unsupported element size");
6280 
6281   TargetLowering::CallLoweringInfo CLI(*this);
6282   CLI.setDebugLoc(dl)
6283       .setChain(Chain)
6284       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6285                     Type::getVoidTy(*getContext()),
6286                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6287                                       TLI->getPointerTy(getDataLayout())),
6288                     std::move(Args))
6289       .setDiscardResult()
6290       .setTailCall(isTailCall);
6291 
6292   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6293   return CallResult.second;
6294 }
6295 
6296 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6297                                 SDValue Src, SDValue Size, unsigned Align,
6298                                 bool isVol, bool isTailCall,
6299                                 MachinePointerInfo DstPtrInfo) {
6300   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6301 
6302   // Check to see if we should lower the memset to stores first.
6303   // For cases within the target-specified limits, this is the best choice.
6304   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6305   if (ConstantSize) {
6306     // Memset with size zero? Just return the original chain.
6307     if (ConstantSize->isNullValue())
6308       return Chain;
6309 
6310     SDValue Result =
6311       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6312                       Align, isVol, DstPtrInfo);
6313 
6314     if (Result.getNode())
6315       return Result;
6316   }
6317 
6318   // Then check to see if we should lower the memset with target-specific
6319   // code. If the target chooses to do this, this is the next best.
6320   if (TSI) {
6321     SDValue Result = TSI->EmitTargetCodeForMemset(
6322         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6323     if (Result.getNode())
6324       return Result;
6325   }
6326 
6327   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6328 
6329   // Emit a library call.
6330   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
6331   TargetLowering::ArgListTy Args;
6332   TargetLowering::ArgListEntry Entry;
6333   Entry.Node = Dst; Entry.Ty = IntPtrTy;
6334   Args.push_back(Entry);
6335   Entry.Node = Src;
6336   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6337   Args.push_back(Entry);
6338   Entry.Node = Size;
6339   Entry.Ty = IntPtrTy;
6340   Args.push_back(Entry);
6341 
6342   // FIXME: pass in SDLoc
6343   TargetLowering::CallLoweringInfo CLI(*this);
6344   CLI.setDebugLoc(dl)
6345       .setChain(Chain)
6346       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6347                     Dst.getValueType().getTypeForEVT(*getContext()),
6348                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6349                                       TLI->getPointerTy(getDataLayout())),
6350                     std::move(Args))
6351       .setDiscardResult()
6352       .setTailCall(isTailCall);
6353 
6354   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6355   return CallResult.second;
6356 }
6357 
6358 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6359                                       SDValue Dst, unsigned DstAlign,
6360                                       SDValue Value, SDValue Size, Type *SizeTy,
6361                                       unsigned ElemSz, bool isTailCall,
6362                                       MachinePointerInfo DstPtrInfo) {
6363   // Emit a library call.
6364   TargetLowering::ArgListTy Args;
6365   TargetLowering::ArgListEntry Entry;
6366   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6367   Entry.Node = Dst;
6368   Args.push_back(Entry);
6369 
6370   Entry.Ty = Type::getInt8Ty(*getContext());
6371   Entry.Node = Value;
6372   Args.push_back(Entry);
6373 
6374   Entry.Ty = SizeTy;
6375   Entry.Node = Size;
6376   Args.push_back(Entry);
6377 
6378   RTLIB::Libcall LibraryCall =
6379       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6380   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6381     report_fatal_error("Unsupported element size");
6382 
6383   TargetLowering::CallLoweringInfo CLI(*this);
6384   CLI.setDebugLoc(dl)
6385       .setChain(Chain)
6386       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6387                     Type::getVoidTy(*getContext()),
6388                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6389                                       TLI->getPointerTy(getDataLayout())),
6390                     std::move(Args))
6391       .setDiscardResult()
6392       .setTailCall(isTailCall);
6393 
6394   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6395   return CallResult.second;
6396 }
6397 
6398 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6399                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6400                                 MachineMemOperand *MMO) {
6401   FoldingSetNodeID ID;
6402   ID.AddInteger(MemVT.getRawBits());
6403   AddNodeIDNode(ID, Opcode, VTList, Ops);
6404   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6405   void* IP = nullptr;
6406   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6407     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6408     return SDValue(E, 0);
6409   }
6410 
6411   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6412                                     VTList, MemVT, MMO);
6413   createOperands(N, Ops);
6414 
6415   CSEMap.InsertNode(N, IP);
6416   InsertNode(N);
6417   return SDValue(N, 0);
6418 }
6419 
6420 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6421                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6422                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6423                                        MachineMemOperand *MMO) {
6424   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6425          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6426   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6427 
6428   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6429   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6430 }
6431 
6432 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6433                                 SDValue Chain, SDValue Ptr, SDValue Val,
6434                                 MachineMemOperand *MMO) {
6435   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6436           Opcode == ISD::ATOMIC_LOAD_SUB ||
6437           Opcode == ISD::ATOMIC_LOAD_AND ||
6438           Opcode == ISD::ATOMIC_LOAD_CLR ||
6439           Opcode == ISD::ATOMIC_LOAD_OR ||
6440           Opcode == ISD::ATOMIC_LOAD_XOR ||
6441           Opcode == ISD::ATOMIC_LOAD_NAND ||
6442           Opcode == ISD::ATOMIC_LOAD_MIN ||
6443           Opcode == ISD::ATOMIC_LOAD_MAX ||
6444           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6445           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6446           Opcode == ISD::ATOMIC_LOAD_FADD ||
6447           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6448           Opcode == ISD::ATOMIC_SWAP ||
6449           Opcode == ISD::ATOMIC_STORE) &&
6450          "Invalid Atomic Op");
6451 
6452   EVT VT = Val.getValueType();
6453 
6454   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6455                                                getVTList(VT, MVT::Other);
6456   SDValue Ops[] = {Chain, Ptr, Val};
6457   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6458 }
6459 
6460 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6461                                 EVT VT, SDValue Chain, SDValue Ptr,
6462                                 MachineMemOperand *MMO) {
6463   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6464 
6465   SDVTList VTs = getVTList(VT, MVT::Other);
6466   SDValue Ops[] = {Chain, Ptr};
6467   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6468 }
6469 
6470 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6471 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6472   if (Ops.size() == 1)
6473     return Ops[0];
6474 
6475   SmallVector<EVT, 4> VTs;
6476   VTs.reserve(Ops.size());
6477   for (unsigned i = 0; i < Ops.size(); ++i)
6478     VTs.push_back(Ops[i].getValueType());
6479   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6480 }
6481 
6482 SDValue SelectionDAG::getMemIntrinsicNode(
6483     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6484     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6485     MachineMemOperand::Flags Flags, unsigned Size) {
6486   if (Align == 0)  // Ensure that codegen never sees alignment 0
6487     Align = getEVTAlignment(MemVT);
6488 
6489   if (!Size)
6490     Size = MemVT.getStoreSize();
6491 
6492   MachineFunction &MF = getMachineFunction();
6493   MachineMemOperand *MMO =
6494     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
6495 
6496   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6497 }
6498 
6499 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6500                                           SDVTList VTList,
6501                                           ArrayRef<SDValue> Ops, EVT MemVT,
6502                                           MachineMemOperand *MMO) {
6503   assert((Opcode == ISD::INTRINSIC_VOID ||
6504           Opcode == ISD::INTRINSIC_W_CHAIN ||
6505           Opcode == ISD::PREFETCH ||
6506           Opcode == ISD::LIFETIME_START ||
6507           Opcode == ISD::LIFETIME_END ||
6508           ((int)Opcode <= std::numeric_limits<int>::max() &&
6509            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6510          "Opcode is not a memory-accessing opcode!");
6511 
6512   // Memoize the node unless it returns a flag.
6513   MemIntrinsicSDNode *N;
6514   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6515     FoldingSetNodeID ID;
6516     AddNodeIDNode(ID, Opcode, VTList, Ops);
6517     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6518         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6519     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6520     void *IP = nullptr;
6521     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6522       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6523       return SDValue(E, 0);
6524     }
6525 
6526     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6527                                       VTList, MemVT, MMO);
6528     createOperands(N, Ops);
6529 
6530   CSEMap.InsertNode(N, IP);
6531   } else {
6532     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6533                                       VTList, MemVT, MMO);
6534     createOperands(N, Ops);
6535   }
6536   InsertNode(N);
6537   return SDValue(N, 0);
6538 }
6539 
6540 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6541                                       SDValue Chain, int FrameIndex,
6542                                       int64_t Size, int64_t Offset) {
6543   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6544   const auto VTs = getVTList(MVT::Other);
6545   SDValue Ops[2] = {
6546       Chain,
6547       getFrameIndex(FrameIndex,
6548                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6549                     true)};
6550 
6551   FoldingSetNodeID ID;
6552   AddNodeIDNode(ID, Opcode, VTs, Ops);
6553   ID.AddInteger(FrameIndex);
6554   ID.AddInteger(Size);
6555   ID.AddInteger(Offset);
6556   void *IP = nullptr;
6557   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6558     return SDValue(E, 0);
6559 
6560   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6561       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6562   createOperands(N, Ops);
6563   CSEMap.InsertNode(N, IP);
6564   InsertNode(N);
6565   SDValue V(N, 0);
6566   NewSDValueDbgMsg(V, "Creating new node: ", this);
6567   return V;
6568 }
6569 
6570 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6571 /// MachinePointerInfo record from it.  This is particularly useful because the
6572 /// code generator has many cases where it doesn't bother passing in a
6573 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6574 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6575                                            SelectionDAG &DAG, SDValue Ptr,
6576                                            int64_t Offset = 0) {
6577   // If this is FI+Offset, we can model it.
6578   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6579     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6580                                              FI->getIndex(), Offset);
6581 
6582   // If this is (FI+Offset1)+Offset2, we can model it.
6583   if (Ptr.getOpcode() != ISD::ADD ||
6584       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6585       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6586     return Info;
6587 
6588   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6589   return MachinePointerInfo::getFixedStack(
6590       DAG.getMachineFunction(), FI,
6591       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6592 }
6593 
6594 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6595 /// MachinePointerInfo record from it.  This is particularly useful because the
6596 /// code generator has many cases where it doesn't bother passing in a
6597 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6598 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6599                                            SelectionDAG &DAG, SDValue Ptr,
6600                                            SDValue OffsetOp) {
6601   // If the 'Offset' value isn't a constant, we can't handle this.
6602   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6603     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6604   if (OffsetOp.isUndef())
6605     return InferPointerInfo(Info, DAG, Ptr);
6606   return Info;
6607 }
6608 
6609 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6610                               EVT VT, const SDLoc &dl, SDValue Chain,
6611                               SDValue Ptr, SDValue Offset,
6612                               MachinePointerInfo PtrInfo, EVT MemVT,
6613                               unsigned Alignment,
6614                               MachineMemOperand::Flags MMOFlags,
6615                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6616   assert(Chain.getValueType() == MVT::Other &&
6617         "Invalid chain type");
6618   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6619     Alignment = getEVTAlignment(MemVT);
6620 
6621   MMOFlags |= MachineMemOperand::MOLoad;
6622   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6623   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6624   // clients.
6625   if (PtrInfo.V.isNull())
6626     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6627 
6628   MachineFunction &MF = getMachineFunction();
6629   MachineMemOperand *MMO = MF.getMachineMemOperand(
6630       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6631   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6632 }
6633 
6634 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6635                               EVT VT, const SDLoc &dl, SDValue Chain,
6636                               SDValue Ptr, SDValue Offset, EVT MemVT,
6637                               MachineMemOperand *MMO) {
6638   if (VT == MemVT) {
6639     ExtType = ISD::NON_EXTLOAD;
6640   } else if (ExtType == ISD::NON_EXTLOAD) {
6641     assert(VT == MemVT && "Non-extending load from different memory type!");
6642   } else {
6643     // Extending load.
6644     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6645            "Should only be an extending load, not truncating!");
6646     assert(VT.isInteger() == MemVT.isInteger() &&
6647            "Cannot convert from FP to Int or Int -> FP!");
6648     assert(VT.isVector() == MemVT.isVector() &&
6649            "Cannot use an ext load to convert to or from a vector!");
6650     assert((!VT.isVector() ||
6651             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6652            "Cannot use an ext load to change the number of vector elements!");
6653   }
6654 
6655   bool Indexed = AM != ISD::UNINDEXED;
6656   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6657 
6658   SDVTList VTs = Indexed ?
6659     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6660   SDValue Ops[] = { Chain, Ptr, Offset };
6661   FoldingSetNodeID ID;
6662   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6663   ID.AddInteger(MemVT.getRawBits());
6664   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6665       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6666   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6667   void *IP = nullptr;
6668   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6669     cast<LoadSDNode>(E)->refineAlignment(MMO);
6670     return SDValue(E, 0);
6671   }
6672   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6673                                   ExtType, MemVT, MMO);
6674   createOperands(N, Ops);
6675 
6676   CSEMap.InsertNode(N, IP);
6677   InsertNode(N);
6678   SDValue V(N, 0);
6679   NewSDValueDbgMsg(V, "Creating new node: ", this);
6680   return V;
6681 }
6682 
6683 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6684                               SDValue Ptr, MachinePointerInfo PtrInfo,
6685                               unsigned Alignment,
6686                               MachineMemOperand::Flags MMOFlags,
6687                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6688   SDValue Undef = getUNDEF(Ptr.getValueType());
6689   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6690                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6691 }
6692 
6693 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6694                               SDValue Ptr, MachineMemOperand *MMO) {
6695   SDValue Undef = getUNDEF(Ptr.getValueType());
6696   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6697                  VT, MMO);
6698 }
6699 
6700 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6701                                  EVT VT, SDValue Chain, SDValue Ptr,
6702                                  MachinePointerInfo PtrInfo, EVT MemVT,
6703                                  unsigned Alignment,
6704                                  MachineMemOperand::Flags MMOFlags,
6705                                  const AAMDNodes &AAInfo) {
6706   SDValue Undef = getUNDEF(Ptr.getValueType());
6707   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6708                  MemVT, Alignment, MMOFlags, AAInfo);
6709 }
6710 
6711 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6712                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6713                                  MachineMemOperand *MMO) {
6714   SDValue Undef = getUNDEF(Ptr.getValueType());
6715   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6716                  MemVT, MMO);
6717 }
6718 
6719 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6720                                      SDValue Base, SDValue Offset,
6721                                      ISD::MemIndexedMode AM) {
6722   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6723   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6724   // Don't propagate the invariant or dereferenceable flags.
6725   auto MMOFlags =
6726       LD->getMemOperand()->getFlags() &
6727       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6728   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6729                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6730                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6731                  LD->getAAInfo());
6732 }
6733 
6734 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6735                                SDValue Ptr, MachinePointerInfo PtrInfo,
6736                                unsigned Alignment,
6737                                MachineMemOperand::Flags MMOFlags,
6738                                const AAMDNodes &AAInfo) {
6739   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6740   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6741     Alignment = getEVTAlignment(Val.getValueType());
6742 
6743   MMOFlags |= MachineMemOperand::MOStore;
6744   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6745 
6746   if (PtrInfo.V.isNull())
6747     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6748 
6749   MachineFunction &MF = getMachineFunction();
6750   MachineMemOperand *MMO = MF.getMachineMemOperand(
6751       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6752   return getStore(Chain, dl, Val, Ptr, MMO);
6753 }
6754 
6755 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6756                                SDValue Ptr, MachineMemOperand *MMO) {
6757   assert(Chain.getValueType() == MVT::Other &&
6758         "Invalid chain type");
6759   EVT VT = Val.getValueType();
6760   SDVTList VTs = getVTList(MVT::Other);
6761   SDValue Undef = getUNDEF(Ptr.getValueType());
6762   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6763   FoldingSetNodeID ID;
6764   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6765   ID.AddInteger(VT.getRawBits());
6766   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6767       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6768   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6769   void *IP = nullptr;
6770   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6771     cast<StoreSDNode>(E)->refineAlignment(MMO);
6772     return SDValue(E, 0);
6773   }
6774   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6775                                    ISD::UNINDEXED, false, VT, MMO);
6776   createOperands(N, Ops);
6777 
6778   CSEMap.InsertNode(N, IP);
6779   InsertNode(N);
6780   SDValue V(N, 0);
6781   NewSDValueDbgMsg(V, "Creating new node: ", this);
6782   return V;
6783 }
6784 
6785 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6786                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6787                                     EVT SVT, unsigned Alignment,
6788                                     MachineMemOperand::Flags MMOFlags,
6789                                     const AAMDNodes &AAInfo) {
6790   assert(Chain.getValueType() == MVT::Other &&
6791         "Invalid chain type");
6792   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6793     Alignment = getEVTAlignment(SVT);
6794 
6795   MMOFlags |= MachineMemOperand::MOStore;
6796   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6797 
6798   if (PtrInfo.V.isNull())
6799     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6800 
6801   MachineFunction &MF = getMachineFunction();
6802   MachineMemOperand *MMO = MF.getMachineMemOperand(
6803       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6804   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6805 }
6806 
6807 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6808                                     SDValue Ptr, EVT SVT,
6809                                     MachineMemOperand *MMO) {
6810   EVT VT = Val.getValueType();
6811 
6812   assert(Chain.getValueType() == MVT::Other &&
6813         "Invalid chain type");
6814   if (VT == SVT)
6815     return getStore(Chain, dl, Val, Ptr, MMO);
6816 
6817   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6818          "Should only be a truncating store, not extending!");
6819   assert(VT.isInteger() == SVT.isInteger() &&
6820          "Can't do FP-INT conversion!");
6821   assert(VT.isVector() == SVT.isVector() &&
6822          "Cannot use trunc store to convert to or from a vector!");
6823   assert((!VT.isVector() ||
6824           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6825          "Cannot use trunc store to change the number of vector elements!");
6826 
6827   SDVTList VTs = getVTList(MVT::Other);
6828   SDValue Undef = getUNDEF(Ptr.getValueType());
6829   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6830   FoldingSetNodeID ID;
6831   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6832   ID.AddInteger(SVT.getRawBits());
6833   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6834       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6835   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6836   void *IP = nullptr;
6837   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6838     cast<StoreSDNode>(E)->refineAlignment(MMO);
6839     return SDValue(E, 0);
6840   }
6841   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6842                                    ISD::UNINDEXED, true, SVT, MMO);
6843   createOperands(N, Ops);
6844 
6845   CSEMap.InsertNode(N, IP);
6846   InsertNode(N);
6847   SDValue V(N, 0);
6848   NewSDValueDbgMsg(V, "Creating new node: ", this);
6849   return V;
6850 }
6851 
6852 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6853                                       SDValue Base, SDValue Offset,
6854                                       ISD::MemIndexedMode AM) {
6855   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6856   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6857   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6858   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6859   FoldingSetNodeID ID;
6860   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6861   ID.AddInteger(ST->getMemoryVT().getRawBits());
6862   ID.AddInteger(ST->getRawSubclassData());
6863   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6864   void *IP = nullptr;
6865   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6866     return SDValue(E, 0);
6867 
6868   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6869                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6870                                    ST->getMemOperand());
6871   createOperands(N, Ops);
6872 
6873   CSEMap.InsertNode(N, IP);
6874   InsertNode(N);
6875   SDValue V(N, 0);
6876   NewSDValueDbgMsg(V, "Creating new node: ", this);
6877   return V;
6878 }
6879 
6880 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6881                                     SDValue Ptr, SDValue Mask, SDValue PassThru,
6882                                     EVT MemVT, MachineMemOperand *MMO,
6883                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6884   SDVTList VTs = getVTList(VT, MVT::Other);
6885   SDValue Ops[] = { Chain, Ptr, Mask, PassThru };
6886   FoldingSetNodeID ID;
6887   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6888   ID.AddInteger(VT.getRawBits());
6889   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6890       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6891   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6892   void *IP = nullptr;
6893   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6894     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6895     return SDValue(E, 0);
6896   }
6897   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6898                                         ExtTy, isExpanding, MemVT, MMO);
6899   createOperands(N, Ops);
6900 
6901   CSEMap.InsertNode(N, IP);
6902   InsertNode(N);
6903   SDValue V(N, 0);
6904   NewSDValueDbgMsg(V, "Creating new node: ", this);
6905   return V;
6906 }
6907 
6908 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6909                                      SDValue Val, SDValue Ptr, SDValue Mask,
6910                                      EVT MemVT, MachineMemOperand *MMO,
6911                                      bool IsTruncating, bool IsCompressing) {
6912   assert(Chain.getValueType() == MVT::Other &&
6913         "Invalid chain type");
6914   EVT VT = Val.getValueType();
6915   SDVTList VTs = getVTList(MVT::Other);
6916   SDValue Ops[] = { Chain, Val, Ptr, Mask };
6917   FoldingSetNodeID ID;
6918   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6919   ID.AddInteger(VT.getRawBits());
6920   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6921       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6922   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6923   void *IP = nullptr;
6924   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6925     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6926     return SDValue(E, 0);
6927   }
6928   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6929                                          IsTruncating, IsCompressing, MemVT, MMO);
6930   createOperands(N, Ops);
6931 
6932   CSEMap.InsertNode(N, IP);
6933   InsertNode(N);
6934   SDValue V(N, 0);
6935   NewSDValueDbgMsg(V, "Creating new node: ", this);
6936   return V;
6937 }
6938 
6939 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
6940                                       ArrayRef<SDValue> Ops,
6941                                       MachineMemOperand *MMO) {
6942   assert(Ops.size() == 6 && "Incompatible number of operands");
6943 
6944   FoldingSetNodeID ID;
6945   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
6946   ID.AddInteger(VT.getRawBits());
6947   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
6948       dl.getIROrder(), VTs, VT, MMO));
6949   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6950   void *IP = nullptr;
6951   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6952     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
6953     return SDValue(E, 0);
6954   }
6955 
6956   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6957                                           VTs, VT, MMO);
6958   createOperands(N, Ops);
6959 
6960   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
6961          "Incompatible type of the PassThru value in MaskedGatherSDNode");
6962   assert(N->getMask().getValueType().getVectorNumElements() ==
6963              N->getValueType(0).getVectorNumElements() &&
6964          "Vector width mismatch between mask and data");
6965   assert(N->getIndex().getValueType().getVectorNumElements() >=
6966              N->getValueType(0).getVectorNumElements() &&
6967          "Vector width mismatch between index and data");
6968   assert(isa<ConstantSDNode>(N->getScale()) &&
6969          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6970          "Scale should be a constant power of 2");
6971 
6972   CSEMap.InsertNode(N, IP);
6973   InsertNode(N);
6974   SDValue V(N, 0);
6975   NewSDValueDbgMsg(V, "Creating new node: ", this);
6976   return V;
6977 }
6978 
6979 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
6980                                        ArrayRef<SDValue> Ops,
6981                                        MachineMemOperand *MMO) {
6982   assert(Ops.size() == 6 && "Incompatible number of operands");
6983 
6984   FoldingSetNodeID ID;
6985   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
6986   ID.AddInteger(VT.getRawBits());
6987   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
6988       dl.getIROrder(), VTs, VT, MMO));
6989   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6990   void *IP = nullptr;
6991   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6992     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
6993     return SDValue(E, 0);
6994   }
6995   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6996                                            VTs, VT, MMO);
6997   createOperands(N, Ops);
6998 
6999   assert(N->getMask().getValueType().getVectorNumElements() ==
7000              N->getValue().getValueType().getVectorNumElements() &&
7001          "Vector width mismatch between mask and data");
7002   assert(N->getIndex().getValueType().getVectorNumElements() >=
7003              N->getValue().getValueType().getVectorNumElements() &&
7004          "Vector width mismatch between index and data");
7005   assert(isa<ConstantSDNode>(N->getScale()) &&
7006          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7007          "Scale should be a constant power of 2");
7008 
7009   CSEMap.InsertNode(N, IP);
7010   InsertNode(N);
7011   SDValue V(N, 0);
7012   NewSDValueDbgMsg(V, "Creating new node: ", this);
7013   return V;
7014 }
7015 
7016 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7017   // select undef, T, F --> T (if T is a constant), otherwise F
7018   // select, ?, undef, F --> F
7019   // select, ?, T, undef --> T
7020   if (Cond.isUndef())
7021     return isConstantValueOfAnyType(T) ? T : F;
7022   if (T.isUndef())
7023     return F;
7024   if (F.isUndef())
7025     return T;
7026 
7027   // select true, T, F --> T
7028   // select false, T, F --> F
7029   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7030     return CondC->isNullValue() ? F : T;
7031 
7032   // TODO: This should simplify VSELECT with constant condition using something
7033   // like this (but check boolean contents to be complete?):
7034   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7035   //    return T;
7036   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7037   //    return F;
7038 
7039   // select ?, T, T --> T
7040   if (T == F)
7041     return T;
7042 
7043   return SDValue();
7044 }
7045 
7046 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7047   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7048   if (X.isUndef())
7049     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7050   // shift X, undef --> undef (because it may shift by the bitwidth)
7051   if (Y.isUndef())
7052     return getUNDEF(X.getValueType());
7053 
7054   // shift 0, Y --> 0
7055   // shift X, 0 --> X
7056   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7057     return X;
7058 
7059   // shift X, C >= bitwidth(X) --> undef
7060   // All vector elements must be too big (or undef) to avoid partial undefs.
7061   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7062     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7063   };
7064   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7065     return getUNDEF(X.getValueType());
7066 
7067   return SDValue();
7068 }
7069 
7070 // TODO: Use fast-math-flags to enable more simplifications.
7071 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) {
7072   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7073   if (!YC)
7074     return SDValue();
7075 
7076   // X + -0.0 --> X
7077   if (Opcode == ISD::FADD)
7078     if (YC->getValueAPF().isNegZero())
7079       return X;
7080 
7081   // X - +0.0 --> X
7082   if (Opcode == ISD::FSUB)
7083     if (YC->getValueAPF().isPosZero())
7084       return X;
7085 
7086   // X * 1.0 --> X
7087   // X / 1.0 --> X
7088   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7089     if (YC->getValueAPF().isExactlyValue(1.0))
7090       return X;
7091 
7092   return SDValue();
7093 }
7094 
7095 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7096                                SDValue Ptr, SDValue SV, unsigned Align) {
7097   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7098   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7099 }
7100 
7101 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7102                               ArrayRef<SDUse> Ops) {
7103   switch (Ops.size()) {
7104   case 0: return getNode(Opcode, DL, VT);
7105   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7106   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7107   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7108   default: break;
7109   }
7110 
7111   // Copy from an SDUse array into an SDValue array for use with
7112   // the regular getNode logic.
7113   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7114   return getNode(Opcode, DL, VT, NewOps);
7115 }
7116 
7117 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7118                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7119   unsigned NumOps = Ops.size();
7120   switch (NumOps) {
7121   case 0: return getNode(Opcode, DL, VT);
7122   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7123   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7124   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7125   default: break;
7126   }
7127 
7128   switch (Opcode) {
7129   default: break;
7130   case ISD::BUILD_VECTOR:
7131     // Attempt to simplify BUILD_VECTOR.
7132     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7133       return V;
7134     break;
7135   case ISD::CONCAT_VECTORS:
7136     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
7137     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
7138       return V;
7139     break;
7140   case ISD::SELECT_CC:
7141     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7142     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7143            "LHS and RHS of condition must have same type!");
7144     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7145            "True and False arms of SelectCC must have same type!");
7146     assert(Ops[2].getValueType() == VT &&
7147            "select_cc node must be of same type as true and false value!");
7148     break;
7149   case ISD::BR_CC:
7150     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7151     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7152            "LHS/RHS of comparison should match types!");
7153     break;
7154   }
7155 
7156   // Memoize nodes.
7157   SDNode *N;
7158   SDVTList VTs = getVTList(VT);
7159 
7160   if (VT != MVT::Glue) {
7161     FoldingSetNodeID ID;
7162     AddNodeIDNode(ID, Opcode, VTs, Ops);
7163     void *IP = nullptr;
7164 
7165     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7166       return SDValue(E, 0);
7167 
7168     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7169     createOperands(N, Ops);
7170 
7171     CSEMap.InsertNode(N, IP);
7172   } else {
7173     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7174     createOperands(N, Ops);
7175   }
7176 
7177   InsertNode(N);
7178   SDValue V(N, 0);
7179   NewSDValueDbgMsg(V, "Creating new node: ", this);
7180   return V;
7181 }
7182 
7183 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7184                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7185   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7186 }
7187 
7188 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7189                               ArrayRef<SDValue> Ops) {
7190   if (VTList.NumVTs == 1)
7191     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7192 
7193 #if 0
7194   switch (Opcode) {
7195   // FIXME: figure out how to safely handle things like
7196   // int foo(int x) { return 1 << (x & 255); }
7197   // int bar() { return foo(256); }
7198   case ISD::SRA_PARTS:
7199   case ISD::SRL_PARTS:
7200   case ISD::SHL_PARTS:
7201     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7202         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7203       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7204     else if (N3.getOpcode() == ISD::AND)
7205       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7206         // If the and is only masking out bits that cannot effect the shift,
7207         // eliminate the and.
7208         unsigned NumBits = VT.getScalarSizeInBits()*2;
7209         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7210           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7211       }
7212     break;
7213   }
7214 #endif
7215 
7216   // Memoize the node unless it returns a flag.
7217   SDNode *N;
7218   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7219     FoldingSetNodeID ID;
7220     AddNodeIDNode(ID, Opcode, VTList, Ops);
7221     void *IP = nullptr;
7222     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7223       return SDValue(E, 0);
7224 
7225     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7226     createOperands(N, Ops);
7227     CSEMap.InsertNode(N, IP);
7228   } else {
7229     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7230     createOperands(N, Ops);
7231   }
7232   InsertNode(N);
7233   SDValue V(N, 0);
7234   NewSDValueDbgMsg(V, "Creating new node: ", this);
7235   return V;
7236 }
7237 
7238 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7239                               SDVTList VTList) {
7240   return getNode(Opcode, DL, VTList, None);
7241 }
7242 
7243 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7244                               SDValue N1) {
7245   SDValue Ops[] = { N1 };
7246   return getNode(Opcode, DL, VTList, Ops);
7247 }
7248 
7249 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7250                               SDValue N1, SDValue N2) {
7251   SDValue Ops[] = { N1, N2 };
7252   return getNode(Opcode, DL, VTList, Ops);
7253 }
7254 
7255 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7256                               SDValue N1, SDValue N2, SDValue N3) {
7257   SDValue Ops[] = { N1, N2, N3 };
7258   return getNode(Opcode, DL, VTList, Ops);
7259 }
7260 
7261 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7262                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7263   SDValue Ops[] = { N1, N2, N3, N4 };
7264   return getNode(Opcode, DL, VTList, Ops);
7265 }
7266 
7267 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7268                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7269                               SDValue N5) {
7270   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7271   return getNode(Opcode, DL, VTList, Ops);
7272 }
7273 
7274 SDVTList SelectionDAG::getVTList(EVT VT) {
7275   return makeVTList(SDNode::getValueTypeList(VT), 1);
7276 }
7277 
7278 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7279   FoldingSetNodeID ID;
7280   ID.AddInteger(2U);
7281   ID.AddInteger(VT1.getRawBits());
7282   ID.AddInteger(VT2.getRawBits());
7283 
7284   void *IP = nullptr;
7285   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7286   if (!Result) {
7287     EVT *Array = Allocator.Allocate<EVT>(2);
7288     Array[0] = VT1;
7289     Array[1] = VT2;
7290     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7291     VTListMap.InsertNode(Result, IP);
7292   }
7293   return Result->getSDVTList();
7294 }
7295 
7296 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7297   FoldingSetNodeID ID;
7298   ID.AddInteger(3U);
7299   ID.AddInteger(VT1.getRawBits());
7300   ID.AddInteger(VT2.getRawBits());
7301   ID.AddInteger(VT3.getRawBits());
7302 
7303   void *IP = nullptr;
7304   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7305   if (!Result) {
7306     EVT *Array = Allocator.Allocate<EVT>(3);
7307     Array[0] = VT1;
7308     Array[1] = VT2;
7309     Array[2] = VT3;
7310     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7311     VTListMap.InsertNode(Result, IP);
7312   }
7313   return Result->getSDVTList();
7314 }
7315 
7316 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7317   FoldingSetNodeID ID;
7318   ID.AddInteger(4U);
7319   ID.AddInteger(VT1.getRawBits());
7320   ID.AddInteger(VT2.getRawBits());
7321   ID.AddInteger(VT3.getRawBits());
7322   ID.AddInteger(VT4.getRawBits());
7323 
7324   void *IP = nullptr;
7325   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7326   if (!Result) {
7327     EVT *Array = Allocator.Allocate<EVT>(4);
7328     Array[0] = VT1;
7329     Array[1] = VT2;
7330     Array[2] = VT3;
7331     Array[3] = VT4;
7332     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7333     VTListMap.InsertNode(Result, IP);
7334   }
7335   return Result->getSDVTList();
7336 }
7337 
7338 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7339   unsigned NumVTs = VTs.size();
7340   FoldingSetNodeID ID;
7341   ID.AddInteger(NumVTs);
7342   for (unsigned index = 0; index < NumVTs; index++) {
7343     ID.AddInteger(VTs[index].getRawBits());
7344   }
7345 
7346   void *IP = nullptr;
7347   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7348   if (!Result) {
7349     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7350     llvm::copy(VTs, Array);
7351     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7352     VTListMap.InsertNode(Result, IP);
7353   }
7354   return Result->getSDVTList();
7355 }
7356 
7357 
7358 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7359 /// specified operands.  If the resultant node already exists in the DAG,
7360 /// this does not modify the specified node, instead it returns the node that
7361 /// already exists.  If the resultant node does not exist in the DAG, the
7362 /// input node is returned.  As a degenerate case, if you specify the same
7363 /// input operands as the node already has, the input node is returned.
7364 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7365   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7366 
7367   // Check to see if there is no change.
7368   if (Op == N->getOperand(0)) return N;
7369 
7370   // See if the modified node already exists.
7371   void *InsertPos = nullptr;
7372   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7373     return Existing;
7374 
7375   // Nope it doesn't.  Remove the node from its current place in the maps.
7376   if (InsertPos)
7377     if (!RemoveNodeFromCSEMaps(N))
7378       InsertPos = nullptr;
7379 
7380   // Now we update the operands.
7381   N->OperandList[0].set(Op);
7382 
7383   updateDivergence(N);
7384   // If this gets put into a CSE map, add it.
7385   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7386   return N;
7387 }
7388 
7389 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7390   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7391 
7392   // Check to see if there is no change.
7393   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7394     return N;   // No operands changed, just return the input node.
7395 
7396   // See if the modified node already exists.
7397   void *InsertPos = nullptr;
7398   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7399     return Existing;
7400 
7401   // Nope it doesn't.  Remove the node from its current place in the maps.
7402   if (InsertPos)
7403     if (!RemoveNodeFromCSEMaps(N))
7404       InsertPos = nullptr;
7405 
7406   // Now we update the operands.
7407   if (N->OperandList[0] != Op1)
7408     N->OperandList[0].set(Op1);
7409   if (N->OperandList[1] != Op2)
7410     N->OperandList[1].set(Op2);
7411 
7412   updateDivergence(N);
7413   // If this gets put into a CSE map, add it.
7414   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7415   return N;
7416 }
7417 
7418 SDNode *SelectionDAG::
7419 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7420   SDValue Ops[] = { Op1, Op2, Op3 };
7421   return UpdateNodeOperands(N, Ops);
7422 }
7423 
7424 SDNode *SelectionDAG::
7425 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7426                    SDValue Op3, SDValue Op4) {
7427   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7428   return UpdateNodeOperands(N, Ops);
7429 }
7430 
7431 SDNode *SelectionDAG::
7432 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7433                    SDValue Op3, SDValue Op4, SDValue Op5) {
7434   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7435   return UpdateNodeOperands(N, Ops);
7436 }
7437 
7438 SDNode *SelectionDAG::
7439 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7440   unsigned NumOps = Ops.size();
7441   assert(N->getNumOperands() == NumOps &&
7442          "Update with wrong number of operands");
7443 
7444   // If no operands changed just return the input node.
7445   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7446     return N;
7447 
7448   // See if the modified node already exists.
7449   void *InsertPos = nullptr;
7450   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7451     return Existing;
7452 
7453   // Nope it doesn't.  Remove the node from its current place in the maps.
7454   if (InsertPos)
7455     if (!RemoveNodeFromCSEMaps(N))
7456       InsertPos = nullptr;
7457 
7458   // Now we update the operands.
7459   for (unsigned i = 0; i != NumOps; ++i)
7460     if (N->OperandList[i] != Ops[i])
7461       N->OperandList[i].set(Ops[i]);
7462 
7463   updateDivergence(N);
7464   // If this gets put into a CSE map, add it.
7465   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7466   return N;
7467 }
7468 
7469 /// DropOperands - Release the operands and set this node to have
7470 /// zero operands.
7471 void SDNode::DropOperands() {
7472   // Unlike the code in MorphNodeTo that does this, we don't need to
7473   // watch for dead nodes here.
7474   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7475     SDUse &Use = *I++;
7476     Use.set(SDValue());
7477   }
7478 }
7479 
7480 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7481                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7482   if (NewMemRefs.empty()) {
7483     N->clearMemRefs();
7484     return;
7485   }
7486 
7487   // Check if we can avoid allocating by storing a single reference directly.
7488   if (NewMemRefs.size() == 1) {
7489     N->MemRefs = NewMemRefs[0];
7490     N->NumMemRefs = 1;
7491     return;
7492   }
7493 
7494   MachineMemOperand **MemRefsBuffer =
7495       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7496   llvm::copy(NewMemRefs, MemRefsBuffer);
7497   N->MemRefs = MemRefsBuffer;
7498   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7499 }
7500 
7501 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7502 /// machine opcode.
7503 ///
7504 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7505                                    EVT VT) {
7506   SDVTList VTs = getVTList(VT);
7507   return SelectNodeTo(N, MachineOpc, VTs, None);
7508 }
7509 
7510 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7511                                    EVT VT, SDValue Op1) {
7512   SDVTList VTs = getVTList(VT);
7513   SDValue Ops[] = { Op1 };
7514   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7515 }
7516 
7517 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7518                                    EVT VT, SDValue Op1,
7519                                    SDValue Op2) {
7520   SDVTList VTs = getVTList(VT);
7521   SDValue Ops[] = { Op1, Op2 };
7522   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7523 }
7524 
7525 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7526                                    EVT VT, SDValue Op1,
7527                                    SDValue Op2, SDValue Op3) {
7528   SDVTList VTs = getVTList(VT);
7529   SDValue Ops[] = { Op1, Op2, Op3 };
7530   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7531 }
7532 
7533 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7534                                    EVT VT, ArrayRef<SDValue> Ops) {
7535   SDVTList VTs = getVTList(VT);
7536   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7537 }
7538 
7539 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7540                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7541   SDVTList VTs = getVTList(VT1, VT2);
7542   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7543 }
7544 
7545 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7546                                    EVT VT1, EVT VT2) {
7547   SDVTList VTs = getVTList(VT1, VT2);
7548   return SelectNodeTo(N, MachineOpc, VTs, None);
7549 }
7550 
7551 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7552                                    EVT VT1, EVT VT2, EVT VT3,
7553                                    ArrayRef<SDValue> Ops) {
7554   SDVTList VTs = getVTList(VT1, VT2, VT3);
7555   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7556 }
7557 
7558 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7559                                    EVT VT1, EVT VT2,
7560                                    SDValue Op1, SDValue Op2) {
7561   SDVTList VTs = getVTList(VT1, VT2);
7562   SDValue Ops[] = { Op1, Op2 };
7563   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7564 }
7565 
7566 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7567                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7568   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7569   // Reset the NodeID to -1.
7570   New->setNodeId(-1);
7571   if (New != N) {
7572     ReplaceAllUsesWith(N, New);
7573     RemoveDeadNode(N);
7574   }
7575   return New;
7576 }
7577 
7578 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7579 /// the line number information on the merged node since it is not possible to
7580 /// preserve the information that operation is associated with multiple lines.
7581 /// This will make the debugger working better at -O0, were there is a higher
7582 /// probability having other instructions associated with that line.
7583 ///
7584 /// For IROrder, we keep the smaller of the two
7585 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7586   DebugLoc NLoc = N->getDebugLoc();
7587   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7588     N->setDebugLoc(DebugLoc());
7589   }
7590   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7591   N->setIROrder(Order);
7592   return N;
7593 }
7594 
7595 /// MorphNodeTo - This *mutates* the specified node to have the specified
7596 /// return type, opcode, and operands.
7597 ///
7598 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7599 /// node of the specified opcode and operands, it returns that node instead of
7600 /// the current one.  Note that the SDLoc need not be the same.
7601 ///
7602 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7603 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7604 /// node, and because it doesn't require CSE recalculation for any of
7605 /// the node's users.
7606 ///
7607 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7608 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7609 /// the legalizer which maintain worklists that would need to be updated when
7610 /// deleting things.
7611 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7612                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7613   // If an identical node already exists, use it.
7614   void *IP = nullptr;
7615   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7616     FoldingSetNodeID ID;
7617     AddNodeIDNode(ID, Opc, VTs, Ops);
7618     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7619       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7620   }
7621 
7622   if (!RemoveNodeFromCSEMaps(N))
7623     IP = nullptr;
7624 
7625   // Start the morphing.
7626   N->NodeType = Opc;
7627   N->ValueList = VTs.VTs;
7628   N->NumValues = VTs.NumVTs;
7629 
7630   // Clear the operands list, updating used nodes to remove this from their
7631   // use list.  Keep track of any operands that become dead as a result.
7632   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7633   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7634     SDUse &Use = *I++;
7635     SDNode *Used = Use.getNode();
7636     Use.set(SDValue());
7637     if (Used->use_empty())
7638       DeadNodeSet.insert(Used);
7639   }
7640 
7641   // For MachineNode, initialize the memory references information.
7642   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7643     MN->clearMemRefs();
7644 
7645   // Swap for an appropriately sized array from the recycler.
7646   removeOperands(N);
7647   createOperands(N, Ops);
7648 
7649   // Delete any nodes that are still dead after adding the uses for the
7650   // new operands.
7651   if (!DeadNodeSet.empty()) {
7652     SmallVector<SDNode *, 16> DeadNodes;
7653     for (SDNode *N : DeadNodeSet)
7654       if (N->use_empty())
7655         DeadNodes.push_back(N);
7656     RemoveDeadNodes(DeadNodes);
7657   }
7658 
7659   if (IP)
7660     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7661   return N;
7662 }
7663 
7664 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7665   unsigned OrigOpc = Node->getOpcode();
7666   unsigned NewOpc;
7667   bool IsUnary = false;
7668   bool IsTernary = false;
7669   switch (OrigOpc) {
7670   default:
7671     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7672   case ISD::STRICT_FADD: NewOpc = ISD::FADD; break;
7673   case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break;
7674   case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break;
7675   case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break;
7676   case ISD::STRICT_FREM: NewOpc = ISD::FREM; break;
7677   case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break;
7678   case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break;
7679   case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break;
7680   case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break;
7681   case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break;
7682   case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break;
7683   case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break;
7684   case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break;
7685   case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break;
7686   case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break;
7687   case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break;
7688   case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break;
7689   case ISD::STRICT_FNEARBYINT:
7690     NewOpc = ISD::FNEARBYINT;
7691     IsUnary = true;
7692     break;
7693   case ISD::STRICT_FMAXNUM: NewOpc = ISD::FMAXNUM; break;
7694   case ISD::STRICT_FMINNUM: NewOpc = ISD::FMINNUM; break;
7695   case ISD::STRICT_FCEIL: NewOpc = ISD::FCEIL; IsUnary = true; break;
7696   case ISD::STRICT_FFLOOR: NewOpc = ISD::FFLOOR; IsUnary = true; break;
7697   case ISD::STRICT_FROUND: NewOpc = ISD::FROUND; IsUnary = true; break;
7698   case ISD::STRICT_FTRUNC: NewOpc = ISD::FTRUNC; IsUnary = true; break;
7699   }
7700 
7701   // We're taking this node out of the chain, so we need to re-link things.
7702   SDValue InputChain = Node->getOperand(0);
7703   SDValue OutputChain = SDValue(Node, 1);
7704   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7705 
7706   SDVTList VTs = getVTList(Node->getOperand(1).getValueType());
7707   SDNode *Res = nullptr;
7708   if (IsUnary)
7709     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) });
7710   else if (IsTernary)
7711     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7712                                            Node->getOperand(2),
7713                                            Node->getOperand(3)});
7714   else
7715     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7716                                            Node->getOperand(2) });
7717 
7718   // MorphNodeTo can operate in two ways: if an existing node with the
7719   // specified operands exists, it can just return it.  Otherwise, it
7720   // updates the node in place to have the requested operands.
7721   if (Res == Node) {
7722     // If we updated the node in place, reset the node ID.  To the isel,
7723     // this should be just like a newly allocated machine node.
7724     Res->setNodeId(-1);
7725   } else {
7726     ReplaceAllUsesWith(Node, Res);
7727     RemoveDeadNode(Node);
7728   }
7729 
7730   return Res;
7731 }
7732 
7733 /// getMachineNode - These are used for target selectors to create a new node
7734 /// with specified return type(s), MachineInstr opcode, and operands.
7735 ///
7736 /// Note that getMachineNode returns the resultant node.  If there is already a
7737 /// node of the specified opcode and operands, it returns that node instead of
7738 /// the current one.
7739 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7740                                             EVT VT) {
7741   SDVTList VTs = getVTList(VT);
7742   return getMachineNode(Opcode, dl, VTs, None);
7743 }
7744 
7745 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7746                                             EVT VT, SDValue Op1) {
7747   SDVTList VTs = getVTList(VT);
7748   SDValue Ops[] = { Op1 };
7749   return getMachineNode(Opcode, dl, VTs, Ops);
7750 }
7751 
7752 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7753                                             EVT VT, SDValue Op1, SDValue Op2) {
7754   SDVTList VTs = getVTList(VT);
7755   SDValue Ops[] = { Op1, Op2 };
7756   return getMachineNode(Opcode, dl, VTs, Ops);
7757 }
7758 
7759 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7760                                             EVT VT, SDValue Op1, SDValue Op2,
7761                                             SDValue Op3) {
7762   SDVTList VTs = getVTList(VT);
7763   SDValue Ops[] = { Op1, Op2, Op3 };
7764   return getMachineNode(Opcode, dl, VTs, Ops);
7765 }
7766 
7767 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7768                                             EVT VT, ArrayRef<SDValue> Ops) {
7769   SDVTList VTs = getVTList(VT);
7770   return getMachineNode(Opcode, dl, VTs, Ops);
7771 }
7772 
7773 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7774                                             EVT VT1, EVT VT2, SDValue Op1,
7775                                             SDValue Op2) {
7776   SDVTList VTs = getVTList(VT1, VT2);
7777   SDValue Ops[] = { Op1, Op2 };
7778   return getMachineNode(Opcode, dl, VTs, Ops);
7779 }
7780 
7781 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7782                                             EVT VT1, EVT VT2, SDValue Op1,
7783                                             SDValue Op2, SDValue Op3) {
7784   SDVTList VTs = getVTList(VT1, VT2);
7785   SDValue Ops[] = { Op1, Op2, Op3 };
7786   return getMachineNode(Opcode, dl, VTs, Ops);
7787 }
7788 
7789 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7790                                             EVT VT1, EVT VT2,
7791                                             ArrayRef<SDValue> Ops) {
7792   SDVTList VTs = getVTList(VT1, VT2);
7793   return getMachineNode(Opcode, dl, VTs, Ops);
7794 }
7795 
7796 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7797                                             EVT VT1, EVT VT2, EVT VT3,
7798                                             SDValue Op1, SDValue Op2) {
7799   SDVTList VTs = getVTList(VT1, VT2, VT3);
7800   SDValue Ops[] = { Op1, Op2 };
7801   return getMachineNode(Opcode, dl, VTs, Ops);
7802 }
7803 
7804 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7805                                             EVT VT1, EVT VT2, EVT VT3,
7806                                             SDValue Op1, SDValue Op2,
7807                                             SDValue Op3) {
7808   SDVTList VTs = getVTList(VT1, VT2, VT3);
7809   SDValue Ops[] = { Op1, Op2, Op3 };
7810   return getMachineNode(Opcode, dl, VTs, Ops);
7811 }
7812 
7813 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7814                                             EVT VT1, EVT VT2, EVT VT3,
7815                                             ArrayRef<SDValue> Ops) {
7816   SDVTList VTs = getVTList(VT1, VT2, VT3);
7817   return getMachineNode(Opcode, dl, VTs, Ops);
7818 }
7819 
7820 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7821                                             ArrayRef<EVT> ResultTys,
7822                                             ArrayRef<SDValue> Ops) {
7823   SDVTList VTs = getVTList(ResultTys);
7824   return getMachineNode(Opcode, dl, VTs, Ops);
7825 }
7826 
7827 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
7828                                             SDVTList VTs,
7829                                             ArrayRef<SDValue> Ops) {
7830   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
7831   MachineSDNode *N;
7832   void *IP = nullptr;
7833 
7834   if (DoCSE) {
7835     FoldingSetNodeID ID;
7836     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
7837     IP = nullptr;
7838     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7839       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
7840     }
7841   }
7842 
7843   // Allocate a new MachineSDNode.
7844   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7845   createOperands(N, Ops);
7846 
7847   if (DoCSE)
7848     CSEMap.InsertNode(N, IP);
7849 
7850   InsertNode(N);
7851   return N;
7852 }
7853 
7854 /// getTargetExtractSubreg - A convenience function for creating
7855 /// TargetOpcode::EXTRACT_SUBREG nodes.
7856 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7857                                              SDValue Operand) {
7858   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7859   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7860                                   VT, Operand, SRIdxVal);
7861   return SDValue(Subreg, 0);
7862 }
7863 
7864 /// getTargetInsertSubreg - A convenience function for creating
7865 /// TargetOpcode::INSERT_SUBREG nodes.
7866 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7867                                             SDValue Operand, SDValue Subreg) {
7868   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7869   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7870                                   VT, Operand, Subreg, SRIdxVal);
7871   return SDValue(Result, 0);
7872 }
7873 
7874 /// getNodeIfExists - Get the specified node if it's already available, or
7875 /// else return NULL.
7876 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7877                                       ArrayRef<SDValue> Ops,
7878                                       const SDNodeFlags Flags) {
7879   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7880     FoldingSetNodeID ID;
7881     AddNodeIDNode(ID, Opcode, VTList, Ops);
7882     void *IP = nullptr;
7883     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7884       E->intersectFlagsWith(Flags);
7885       return E;
7886     }
7887   }
7888   return nullptr;
7889 }
7890 
7891 /// getDbgValue - Creates a SDDbgValue node.
7892 ///
7893 /// SDNode
7894 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7895                                       SDNode *N, unsigned R, bool IsIndirect,
7896                                       const DebugLoc &DL, unsigned O) {
7897   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7898          "Expected inlined-at fields to agree");
7899   return new (DbgInfo->getAlloc())
7900       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7901 }
7902 
7903 /// Constant
7904 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7905                                               DIExpression *Expr,
7906                                               const Value *C,
7907                                               const DebugLoc &DL, unsigned O) {
7908   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7909          "Expected inlined-at fields to agree");
7910   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7911 }
7912 
7913 /// FrameIndex
7914 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7915                                                 DIExpression *Expr, unsigned FI,
7916                                                 bool IsIndirect,
7917                                                 const DebugLoc &DL,
7918                                                 unsigned O) {
7919   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7920          "Expected inlined-at fields to agree");
7921   return new (DbgInfo->getAlloc())
7922       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
7923 }
7924 
7925 /// VReg
7926 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
7927                                           DIExpression *Expr,
7928                                           unsigned VReg, bool IsIndirect,
7929                                           const DebugLoc &DL, unsigned O) {
7930   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7931          "Expected inlined-at fields to agree");
7932   return new (DbgInfo->getAlloc())
7933       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
7934 }
7935 
7936 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
7937                                      unsigned OffsetInBits, unsigned SizeInBits,
7938                                      bool InvalidateDbg) {
7939   SDNode *FromNode = From.getNode();
7940   SDNode *ToNode = To.getNode();
7941   assert(FromNode && ToNode && "Can't modify dbg values");
7942 
7943   // PR35338
7944   // TODO: assert(From != To && "Redundant dbg value transfer");
7945   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
7946   if (From == To || FromNode == ToNode)
7947     return;
7948 
7949   if (!FromNode->getHasDebugValue())
7950     return;
7951 
7952   SmallVector<SDDbgValue *, 2> ClonedDVs;
7953   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
7954     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
7955       continue;
7956 
7957     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
7958 
7959     // Just transfer the dbg value attached to From.
7960     if (Dbg->getResNo() != From.getResNo())
7961       continue;
7962 
7963     DIVariable *Var = Dbg->getVariable();
7964     auto *Expr = Dbg->getExpression();
7965     // If a fragment is requested, update the expression.
7966     if (SizeInBits) {
7967       // When splitting a larger (e.g., sign-extended) value whose
7968       // lower bits are described with an SDDbgValue, do not attempt
7969       // to transfer the SDDbgValue to the upper bits.
7970       if (auto FI = Expr->getFragmentInfo())
7971         if (OffsetInBits + SizeInBits > FI->SizeInBits)
7972           continue;
7973       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
7974                                                              SizeInBits);
7975       if (!Fragment)
7976         continue;
7977       Expr = *Fragment;
7978     }
7979     // Clone the SDDbgValue and move it to To.
7980     SDDbgValue *Clone =
7981         getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
7982                     Dbg->getDebugLoc(), Dbg->getOrder());
7983     ClonedDVs.push_back(Clone);
7984 
7985     if (InvalidateDbg) {
7986       // Invalidate value and indicate the SDDbgValue should not be emitted.
7987       Dbg->setIsInvalidated();
7988       Dbg->setIsEmitted();
7989     }
7990   }
7991 
7992   for (SDDbgValue *Dbg : ClonedDVs)
7993     AddDbgValue(Dbg, ToNode, false);
7994 }
7995 
7996 void SelectionDAG::salvageDebugInfo(SDNode &N) {
7997   if (!N.getHasDebugValue())
7998     return;
7999 
8000   SmallVector<SDDbgValue *, 2> ClonedDVs;
8001   for (auto DV : GetDbgValues(&N)) {
8002     if (DV->isInvalidated())
8003       continue;
8004     switch (N.getOpcode()) {
8005     default:
8006       break;
8007     case ISD::ADD:
8008       SDValue N0 = N.getOperand(0);
8009       SDValue N1 = N.getOperand(1);
8010       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8011           isConstantIntBuildVectorOrConstantInt(N1)) {
8012         uint64_t Offset = N.getConstantOperandVal(1);
8013         // Rewrite an ADD constant node into a DIExpression. Since we are
8014         // performing arithmetic to compute the variable's *value* in the
8015         // DIExpression, we need to mark the expression with a
8016         // DW_OP_stack_value.
8017         auto *DIExpr = DV->getExpression();
8018         DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset,
8019                                        DIExpression::NoDeref,
8020                                        DIExpression::WithStackValue);
8021         SDDbgValue *Clone =
8022             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8023                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8024         ClonedDVs.push_back(Clone);
8025         DV->setIsInvalidated();
8026         DV->setIsEmitted();
8027         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8028                    N0.getNode()->dumprFull(this);
8029                    dbgs() << " into " << *DIExpr << '\n');
8030       }
8031     }
8032   }
8033 
8034   for (SDDbgValue *Dbg : ClonedDVs)
8035     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8036 }
8037 
8038 /// Creates a SDDbgLabel node.
8039 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8040                                       const DebugLoc &DL, unsigned O) {
8041   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8042          "Expected inlined-at fields to agree");
8043   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8044 }
8045 
8046 namespace {
8047 
8048 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8049 /// pointed to by a use iterator is deleted, increment the use iterator
8050 /// so that it doesn't dangle.
8051 ///
8052 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8053   SDNode::use_iterator &UI;
8054   SDNode::use_iterator &UE;
8055 
8056   void NodeDeleted(SDNode *N, SDNode *E) override {
8057     // Increment the iterator as needed.
8058     while (UI != UE && N == *UI)
8059       ++UI;
8060   }
8061 
8062 public:
8063   RAUWUpdateListener(SelectionDAG &d,
8064                      SDNode::use_iterator &ui,
8065                      SDNode::use_iterator &ue)
8066     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8067 };
8068 
8069 } // end anonymous namespace
8070 
8071 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8072 /// This can cause recursive merging of nodes in the DAG.
8073 ///
8074 /// This version assumes From has a single result value.
8075 ///
8076 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8077   SDNode *From = FromN.getNode();
8078   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8079          "Cannot replace with this method!");
8080   assert(From != To.getNode() && "Cannot replace uses of with self");
8081 
8082   // Preserve Debug Values
8083   transferDbgValues(FromN, To);
8084 
8085   // Iterate over all the existing uses of From. New uses will be added
8086   // to the beginning of the use list, which we avoid visiting.
8087   // This specifically avoids visiting uses of From that arise while the
8088   // replacement is happening, because any such uses would be the result
8089   // of CSE: If an existing node looks like From after one of its operands
8090   // is replaced by To, we don't want to replace of all its users with To
8091   // too. See PR3018 for more info.
8092   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8093   RAUWUpdateListener Listener(*this, UI, UE);
8094   while (UI != UE) {
8095     SDNode *User = *UI;
8096 
8097     // This node is about to morph, remove its old self from the CSE maps.
8098     RemoveNodeFromCSEMaps(User);
8099 
8100     // A user can appear in a use list multiple times, and when this
8101     // happens the uses are usually next to each other in the list.
8102     // To help reduce the number of CSE recomputations, process all
8103     // the uses of this user that we can find this way.
8104     do {
8105       SDUse &Use = UI.getUse();
8106       ++UI;
8107       Use.set(To);
8108       if (To->isDivergent() != From->isDivergent())
8109         updateDivergence(User);
8110     } while (UI != UE && *UI == User);
8111     // Now that we have modified User, add it back to the CSE maps.  If it
8112     // already exists there, recursively merge the results together.
8113     AddModifiedNodeToCSEMaps(User);
8114   }
8115 
8116   // If we just RAUW'd the root, take note.
8117   if (FromN == getRoot())
8118     setRoot(To);
8119 }
8120 
8121 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8122 /// This can cause recursive merging of nodes in the DAG.
8123 ///
8124 /// This version assumes that for each value of From, there is a
8125 /// corresponding value in To in the same position with the same type.
8126 ///
8127 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8128 #ifndef NDEBUG
8129   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8130     assert((!From->hasAnyUseOfValue(i) ||
8131             From->getValueType(i) == To->getValueType(i)) &&
8132            "Cannot use this version of ReplaceAllUsesWith!");
8133 #endif
8134 
8135   // Handle the trivial case.
8136   if (From == To)
8137     return;
8138 
8139   // Preserve Debug Info. Only do this if there's a use.
8140   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8141     if (From->hasAnyUseOfValue(i)) {
8142       assert((i < To->getNumValues()) && "Invalid To location");
8143       transferDbgValues(SDValue(From, i), SDValue(To, i));
8144     }
8145 
8146   // Iterate over just the existing users of From. See the comments in
8147   // the ReplaceAllUsesWith above.
8148   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8149   RAUWUpdateListener Listener(*this, UI, UE);
8150   while (UI != UE) {
8151     SDNode *User = *UI;
8152 
8153     // This node is about to morph, remove its old self from the CSE maps.
8154     RemoveNodeFromCSEMaps(User);
8155 
8156     // A user can appear in a use list multiple times, and when this
8157     // happens the uses are usually next to each other in the list.
8158     // To help reduce the number of CSE recomputations, process all
8159     // the uses of this user that we can find this way.
8160     do {
8161       SDUse &Use = UI.getUse();
8162       ++UI;
8163       Use.setNode(To);
8164       if (To->isDivergent() != From->isDivergent())
8165         updateDivergence(User);
8166     } while (UI != UE && *UI == User);
8167 
8168     // Now that we have modified User, add it back to the CSE maps.  If it
8169     // already exists there, recursively merge the results together.
8170     AddModifiedNodeToCSEMaps(User);
8171   }
8172 
8173   // If we just RAUW'd the root, take note.
8174   if (From == getRoot().getNode())
8175     setRoot(SDValue(To, getRoot().getResNo()));
8176 }
8177 
8178 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8179 /// This can cause recursive merging of nodes in the DAG.
8180 ///
8181 /// This version can replace From with any result values.  To must match the
8182 /// number and types of values returned by From.
8183 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8184   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8185     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8186 
8187   // Preserve Debug Info.
8188   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8189     transferDbgValues(SDValue(From, i), To[i]);
8190 
8191   // Iterate over just the existing users of From. See the comments in
8192   // the ReplaceAllUsesWith above.
8193   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8194   RAUWUpdateListener Listener(*this, UI, UE);
8195   while (UI != UE) {
8196     SDNode *User = *UI;
8197 
8198     // This node is about to morph, remove its old self from the CSE maps.
8199     RemoveNodeFromCSEMaps(User);
8200 
8201     // A user can appear in a use list multiple times, and when this happens the
8202     // uses are usually next to each other in the list.  To help reduce the
8203     // number of CSE and divergence recomputations, process all the uses of this
8204     // user that we can find this way.
8205     bool To_IsDivergent = false;
8206     do {
8207       SDUse &Use = UI.getUse();
8208       const SDValue &ToOp = To[Use.getResNo()];
8209       ++UI;
8210       Use.set(ToOp);
8211       To_IsDivergent |= ToOp->isDivergent();
8212     } while (UI != UE && *UI == User);
8213 
8214     if (To_IsDivergent != From->isDivergent())
8215       updateDivergence(User);
8216 
8217     // Now that we have modified User, add it back to the CSE maps.  If it
8218     // already exists there, recursively merge the results together.
8219     AddModifiedNodeToCSEMaps(User);
8220   }
8221 
8222   // If we just RAUW'd the root, take note.
8223   if (From == getRoot().getNode())
8224     setRoot(SDValue(To[getRoot().getResNo()]));
8225 }
8226 
8227 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8228 /// uses of other values produced by From.getNode() alone.  The Deleted
8229 /// vector is handled the same way as for ReplaceAllUsesWith.
8230 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8231   // Handle the really simple, really trivial case efficiently.
8232   if (From == To) return;
8233 
8234   // Handle the simple, trivial, case efficiently.
8235   if (From.getNode()->getNumValues() == 1) {
8236     ReplaceAllUsesWith(From, To);
8237     return;
8238   }
8239 
8240   // Preserve Debug Info.
8241   transferDbgValues(From, To);
8242 
8243   // Iterate over just the existing users of From. See the comments in
8244   // the ReplaceAllUsesWith above.
8245   SDNode::use_iterator UI = From.getNode()->use_begin(),
8246                        UE = From.getNode()->use_end();
8247   RAUWUpdateListener Listener(*this, UI, UE);
8248   while (UI != UE) {
8249     SDNode *User = *UI;
8250     bool UserRemovedFromCSEMaps = false;
8251 
8252     // A user can appear in a use list multiple times, and when this
8253     // happens the uses are usually next to each other in the list.
8254     // To help reduce the number of CSE recomputations, process all
8255     // the uses of this user that we can find this way.
8256     do {
8257       SDUse &Use = UI.getUse();
8258 
8259       // Skip uses of different values from the same node.
8260       if (Use.getResNo() != From.getResNo()) {
8261         ++UI;
8262         continue;
8263       }
8264 
8265       // If this node hasn't been modified yet, it's still in the CSE maps,
8266       // so remove its old self from the CSE maps.
8267       if (!UserRemovedFromCSEMaps) {
8268         RemoveNodeFromCSEMaps(User);
8269         UserRemovedFromCSEMaps = true;
8270       }
8271 
8272       ++UI;
8273       Use.set(To);
8274       if (To->isDivergent() != From->isDivergent())
8275         updateDivergence(User);
8276     } while (UI != UE && *UI == User);
8277     // We are iterating over all uses of the From node, so if a use
8278     // doesn't use the specific value, no changes are made.
8279     if (!UserRemovedFromCSEMaps)
8280       continue;
8281 
8282     // Now that we have modified User, add it back to the CSE maps.  If it
8283     // already exists there, recursively merge the results together.
8284     AddModifiedNodeToCSEMaps(User);
8285   }
8286 
8287   // If we just RAUW'd the root, take note.
8288   if (From == getRoot())
8289     setRoot(To);
8290 }
8291 
8292 namespace {
8293 
8294   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8295   /// to record information about a use.
8296   struct UseMemo {
8297     SDNode *User;
8298     unsigned Index;
8299     SDUse *Use;
8300   };
8301 
8302   /// operator< - Sort Memos by User.
8303   bool operator<(const UseMemo &L, const UseMemo &R) {
8304     return (intptr_t)L.User < (intptr_t)R.User;
8305   }
8306 
8307 } // end anonymous namespace
8308 
8309 void SelectionDAG::updateDivergence(SDNode * N)
8310 {
8311   if (TLI->isSDNodeAlwaysUniform(N))
8312     return;
8313   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8314   for (auto &Op : N->ops()) {
8315     if (Op.Val.getValueType() != MVT::Other)
8316       IsDivergent |= Op.getNode()->isDivergent();
8317   }
8318   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8319     N->SDNodeBits.IsDivergent = IsDivergent;
8320     for (auto U : N->uses()) {
8321       updateDivergence(U);
8322     }
8323   }
8324 }
8325 
8326 
8327 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode*>& Order) {
8328   DenseMap<SDNode *, unsigned> Degree;
8329   Order.reserve(AllNodes.size());
8330   for (auto & N : allnodes()) {
8331     unsigned NOps = N.getNumOperands();
8332     Degree[&N] = NOps;
8333     if (0 == NOps)
8334       Order.push_back(&N);
8335   }
8336   for (std::vector<SDNode *>::iterator I = Order.begin();
8337   I!=Order.end();++I) {
8338     SDNode * N = *I;
8339     for (auto U : N->uses()) {
8340       unsigned &UnsortedOps = Degree[U];
8341       if (0 == --UnsortedOps)
8342         Order.push_back(U);
8343     }
8344   }
8345 }
8346 
8347 #ifndef NDEBUG
8348 void SelectionDAG::VerifyDAGDiverence()
8349 {
8350   std::vector<SDNode*> TopoOrder;
8351   CreateTopologicalOrder(TopoOrder);
8352   const TargetLowering &TLI = getTargetLoweringInfo();
8353   DenseMap<const SDNode *, bool> DivergenceMap;
8354   for (auto &N : allnodes()) {
8355     DivergenceMap[&N] = false;
8356   }
8357   for (auto N : TopoOrder) {
8358     bool IsDivergent = DivergenceMap[N];
8359     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8360     for (auto &Op : N->ops()) {
8361       if (Op.Val.getValueType() != MVT::Other)
8362         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8363     }
8364     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8365       DivergenceMap[N] = true;
8366     }
8367   }
8368   for (auto &N : allnodes()) {
8369     (void)N;
8370     assert(DivergenceMap[&N] == N.isDivergent() &&
8371            "Divergence bit inconsistency detected\n");
8372   }
8373 }
8374 #endif
8375 
8376 
8377 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8378 /// uses of other values produced by From.getNode() alone.  The same value
8379 /// may appear in both the From and To list.  The Deleted vector is
8380 /// handled the same way as for ReplaceAllUsesWith.
8381 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8382                                               const SDValue *To,
8383                                               unsigned Num){
8384   // Handle the simple, trivial case efficiently.
8385   if (Num == 1)
8386     return ReplaceAllUsesOfValueWith(*From, *To);
8387 
8388   transferDbgValues(*From, *To);
8389 
8390   // Read up all the uses and make records of them. This helps
8391   // processing new uses that are introduced during the
8392   // replacement process.
8393   SmallVector<UseMemo, 4> Uses;
8394   for (unsigned i = 0; i != Num; ++i) {
8395     unsigned FromResNo = From[i].getResNo();
8396     SDNode *FromNode = From[i].getNode();
8397     for (SDNode::use_iterator UI = FromNode->use_begin(),
8398          E = FromNode->use_end(); UI != E; ++UI) {
8399       SDUse &Use = UI.getUse();
8400       if (Use.getResNo() == FromResNo) {
8401         UseMemo Memo = { *UI, i, &Use };
8402         Uses.push_back(Memo);
8403       }
8404     }
8405   }
8406 
8407   // Sort the uses, so that all the uses from a given User are together.
8408   llvm::sort(Uses);
8409 
8410   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8411        UseIndex != UseIndexEnd; ) {
8412     // We know that this user uses some value of From.  If it is the right
8413     // value, update it.
8414     SDNode *User = Uses[UseIndex].User;
8415 
8416     // This node is about to morph, remove its old self from the CSE maps.
8417     RemoveNodeFromCSEMaps(User);
8418 
8419     // The Uses array is sorted, so all the uses for a given User
8420     // are next to each other in the list.
8421     // To help reduce the number of CSE recomputations, process all
8422     // the uses of this user that we can find this way.
8423     do {
8424       unsigned i = Uses[UseIndex].Index;
8425       SDUse &Use = *Uses[UseIndex].Use;
8426       ++UseIndex;
8427 
8428       Use.set(To[i]);
8429     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8430 
8431     // Now that we have modified User, add it back to the CSE maps.  If it
8432     // already exists there, recursively merge the results together.
8433     AddModifiedNodeToCSEMaps(User);
8434   }
8435 }
8436 
8437 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8438 /// based on their topological order. It returns the maximum id and a vector
8439 /// of the SDNodes* in assigned order by reference.
8440 unsigned SelectionDAG::AssignTopologicalOrder() {
8441   unsigned DAGSize = 0;
8442 
8443   // SortedPos tracks the progress of the algorithm. Nodes before it are
8444   // sorted, nodes after it are unsorted. When the algorithm completes
8445   // it is at the end of the list.
8446   allnodes_iterator SortedPos = allnodes_begin();
8447 
8448   // Visit all the nodes. Move nodes with no operands to the front of
8449   // the list immediately. Annotate nodes that do have operands with their
8450   // operand count. Before we do this, the Node Id fields of the nodes
8451   // may contain arbitrary values. After, the Node Id fields for nodes
8452   // before SortedPos will contain the topological sort index, and the
8453   // Node Id fields for nodes At SortedPos and after will contain the
8454   // count of outstanding operands.
8455   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8456     SDNode *N = &*I++;
8457     checkForCycles(N, this);
8458     unsigned Degree = N->getNumOperands();
8459     if (Degree == 0) {
8460       // A node with no uses, add it to the result array immediately.
8461       N->setNodeId(DAGSize++);
8462       allnodes_iterator Q(N);
8463       if (Q != SortedPos)
8464         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8465       assert(SortedPos != AllNodes.end() && "Overran node list");
8466       ++SortedPos;
8467     } else {
8468       // Temporarily use the Node Id as scratch space for the degree count.
8469       N->setNodeId(Degree);
8470     }
8471   }
8472 
8473   // Visit all the nodes. As we iterate, move nodes into sorted order,
8474   // such that by the time the end is reached all nodes will be sorted.
8475   for (SDNode &Node : allnodes()) {
8476     SDNode *N = &Node;
8477     checkForCycles(N, this);
8478     // N is in sorted position, so all its uses have one less operand
8479     // that needs to be sorted.
8480     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8481          UI != UE; ++UI) {
8482       SDNode *P = *UI;
8483       unsigned Degree = P->getNodeId();
8484       assert(Degree != 0 && "Invalid node degree");
8485       --Degree;
8486       if (Degree == 0) {
8487         // All of P's operands are sorted, so P may sorted now.
8488         P->setNodeId(DAGSize++);
8489         if (P->getIterator() != SortedPos)
8490           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8491         assert(SortedPos != AllNodes.end() && "Overran node list");
8492         ++SortedPos;
8493       } else {
8494         // Update P's outstanding operand count.
8495         P->setNodeId(Degree);
8496       }
8497     }
8498     if (Node.getIterator() == SortedPos) {
8499 #ifndef NDEBUG
8500       allnodes_iterator I(N);
8501       SDNode *S = &*++I;
8502       dbgs() << "Overran sorted position:\n";
8503       S->dumprFull(this); dbgs() << "\n";
8504       dbgs() << "Checking if this is due to cycles\n";
8505       checkForCycles(this, true);
8506 #endif
8507       llvm_unreachable(nullptr);
8508     }
8509   }
8510 
8511   assert(SortedPos == AllNodes.end() &&
8512          "Topological sort incomplete!");
8513   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8514          "First node in topological sort is not the entry token!");
8515   assert(AllNodes.front().getNodeId() == 0 &&
8516          "First node in topological sort has non-zero id!");
8517   assert(AllNodes.front().getNumOperands() == 0 &&
8518          "First node in topological sort has operands!");
8519   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8520          "Last node in topologic sort has unexpected id!");
8521   assert(AllNodes.back().use_empty() &&
8522          "Last node in topologic sort has users!");
8523   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8524   return DAGSize;
8525 }
8526 
8527 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8528 /// value is produced by SD.
8529 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8530   if (SD) {
8531     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8532     SD->setHasDebugValue(true);
8533   }
8534   DbgInfo->add(DB, SD, isParameter);
8535 }
8536 
8537 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8538   DbgInfo->add(DB);
8539 }
8540 
8541 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8542                                                    SDValue NewMemOp) {
8543   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8544   // The new memory operation must have the same position as the old load in
8545   // terms of memory dependency. Create a TokenFactor for the old load and new
8546   // memory operation and update uses of the old load's output chain to use that
8547   // TokenFactor.
8548   SDValue OldChain = SDValue(OldLoad, 1);
8549   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8550   if (!OldLoad->hasAnyUseOfValue(1))
8551     return NewChain;
8552 
8553   SDValue TokenFactor =
8554       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8555   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8556   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8557   return TokenFactor;
8558 }
8559 
8560 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8561                                                      Function **OutFunction) {
8562   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8563 
8564   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8565   auto *Module = MF->getFunction().getParent();
8566   auto *Function = Module->getFunction(Symbol);
8567 
8568   if (OutFunction != nullptr)
8569       *OutFunction = Function;
8570 
8571   if (Function != nullptr) {
8572     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8573     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8574   }
8575 
8576   std::string ErrorStr;
8577   raw_string_ostream ErrorFormatter(ErrorStr);
8578 
8579   ErrorFormatter << "Undefined external symbol ";
8580   ErrorFormatter << '"' << Symbol << '"';
8581   ErrorFormatter.flush();
8582 
8583   report_fatal_error(ErrorStr);
8584 }
8585 
8586 //===----------------------------------------------------------------------===//
8587 //                              SDNode Class
8588 //===----------------------------------------------------------------------===//
8589 
8590 bool llvm::isNullConstant(SDValue V) {
8591   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8592   return Const != nullptr && Const->isNullValue();
8593 }
8594 
8595 bool llvm::isNullFPConstant(SDValue V) {
8596   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8597   return Const != nullptr && Const->isZero() && !Const->isNegative();
8598 }
8599 
8600 bool llvm::isAllOnesConstant(SDValue V) {
8601   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8602   return Const != nullptr && Const->isAllOnesValue();
8603 }
8604 
8605 bool llvm::isOneConstant(SDValue V) {
8606   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8607   return Const != nullptr && Const->isOne();
8608 }
8609 
8610 SDValue llvm::peekThroughBitcasts(SDValue V) {
8611   while (V.getOpcode() == ISD::BITCAST)
8612     V = V.getOperand(0);
8613   return V;
8614 }
8615 
8616 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8617   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8618     V = V.getOperand(0);
8619   return V;
8620 }
8621 
8622 bool llvm::isBitwiseNot(SDValue V) {
8623   if (V.getOpcode() != ISD::XOR)
8624     return false;
8625   ConstantSDNode *C = isConstOrConstSplat(peekThroughBitcasts(V.getOperand(1)));
8626   return C && C->isAllOnesValue();
8627 }
8628 
8629 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs) {
8630   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8631     return CN;
8632 
8633   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8634     BitVector UndefElements;
8635     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8636 
8637     // BuildVectors can truncate their operands. Ignore that case here.
8638     if (CN && (UndefElements.none() || AllowUndefs) &&
8639         CN->getValueType(0) == N.getValueType().getScalarType())
8640       return CN;
8641   }
8642 
8643   return nullptr;
8644 }
8645 
8646 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8647                                           bool AllowUndefs) {
8648   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8649     return CN;
8650 
8651   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8652     BitVector UndefElements;
8653     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8654 
8655     // BuildVectors can truncate their operands. Ignore that case here.
8656     if (CN && (UndefElements.none() || AllowUndefs) &&
8657         CN->getValueType(0) == N.getValueType().getScalarType())
8658       return CN;
8659   }
8660 
8661   return nullptr;
8662 }
8663 
8664 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8665   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8666     return CN;
8667 
8668   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8669     BitVector UndefElements;
8670     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8671     if (CN && (UndefElements.none() || AllowUndefs))
8672       return CN;
8673   }
8674 
8675   return nullptr;
8676 }
8677 
8678 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8679                                               const APInt &DemandedElts,
8680                                               bool AllowUndefs) {
8681   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8682     return CN;
8683 
8684   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8685     BitVector UndefElements;
8686     ConstantFPSDNode *CN =
8687         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8688     if (CN && (UndefElements.none() || AllowUndefs))
8689       return CN;
8690   }
8691 
8692   return nullptr;
8693 }
8694 
8695 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8696   // TODO: may want to use peekThroughBitcast() here.
8697   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8698   return C && C->isNullValue();
8699 }
8700 
8701 bool llvm::isOneOrOneSplat(SDValue N) {
8702   // TODO: may want to use peekThroughBitcast() here.
8703   unsigned BitWidth = N.getScalarValueSizeInBits();
8704   ConstantSDNode *C = isConstOrConstSplat(N);
8705   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8706 }
8707 
8708 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8709   N = peekThroughBitcasts(N);
8710   unsigned BitWidth = N.getScalarValueSizeInBits();
8711   ConstantSDNode *C = isConstOrConstSplat(N);
8712   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8713 }
8714 
8715 HandleSDNode::~HandleSDNode() {
8716   DropOperands();
8717 }
8718 
8719 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8720                                          const DebugLoc &DL,
8721                                          const GlobalValue *GA, EVT VT,
8722                                          int64_t o, unsigned char TF)
8723     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8724   TheGlobal = GA;
8725 }
8726 
8727 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8728                                          EVT VT, unsigned SrcAS,
8729                                          unsigned DestAS)
8730     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8731       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8732 
8733 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8734                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8735     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8736   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8737   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8738   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8739   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8740 
8741   // We check here that the size of the memory operand fits within the size of
8742   // the MMO. This is because the MMO might indicate only a possible address
8743   // range instead of specifying the affected memory addresses precisely.
8744   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
8745 }
8746 
8747 /// Profile - Gather unique data for the node.
8748 ///
8749 void SDNode::Profile(FoldingSetNodeID &ID) const {
8750   AddNodeIDNode(ID, this);
8751 }
8752 
8753 namespace {
8754 
8755   struct EVTArray {
8756     std::vector<EVT> VTs;
8757 
8758     EVTArray() {
8759       VTs.reserve(MVT::LAST_VALUETYPE);
8760       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
8761         VTs.push_back(MVT((MVT::SimpleValueType)i));
8762     }
8763   };
8764 
8765 } // end anonymous namespace
8766 
8767 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
8768 static ManagedStatic<EVTArray> SimpleVTArray;
8769 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
8770 
8771 /// getValueTypeList - Return a pointer to the specified value type.
8772 ///
8773 const EVT *SDNode::getValueTypeList(EVT VT) {
8774   if (VT.isExtended()) {
8775     sys::SmartScopedLock<true> Lock(*VTMutex);
8776     return &(*EVTs->insert(VT).first);
8777   } else {
8778     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
8779            "Value type out of range!");
8780     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
8781   }
8782 }
8783 
8784 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8785 /// indicated value.  This method ignores uses of other values defined by this
8786 /// operation.
8787 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
8788   assert(Value < getNumValues() && "Bad value!");
8789 
8790   // TODO: Only iterate over uses of a given value of the node
8791   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
8792     if (UI.getUse().getResNo() == Value) {
8793       if (NUses == 0)
8794         return false;
8795       --NUses;
8796     }
8797   }
8798 
8799   // Found exactly the right number of uses?
8800   return NUses == 0;
8801 }
8802 
8803 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8804 /// value. This method ignores uses of other values defined by this operation.
8805 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
8806   assert(Value < getNumValues() && "Bad value!");
8807 
8808   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
8809     if (UI.getUse().getResNo() == Value)
8810       return true;
8811 
8812   return false;
8813 }
8814 
8815 /// isOnlyUserOf - Return true if this node is the only use of N.
8816 bool SDNode::isOnlyUserOf(const SDNode *N) const {
8817   bool Seen = false;
8818   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8819     SDNode *User = *I;
8820     if (User == this)
8821       Seen = true;
8822     else
8823       return false;
8824   }
8825 
8826   return Seen;
8827 }
8828 
8829 /// Return true if the only users of N are contained in Nodes.
8830 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
8831   bool Seen = false;
8832   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8833     SDNode *User = *I;
8834     if (llvm::any_of(Nodes,
8835                      [&User](const SDNode *Node) { return User == Node; }))
8836       Seen = true;
8837     else
8838       return false;
8839   }
8840 
8841   return Seen;
8842 }
8843 
8844 /// isOperand - Return true if this node is an operand of N.
8845 bool SDValue::isOperandOf(const SDNode *N) const {
8846   for (const SDValue &Op : N->op_values())
8847     if (*this == Op)
8848       return true;
8849   return false;
8850 }
8851 
8852 bool SDNode::isOperandOf(const SDNode *N) const {
8853   for (const SDValue &Op : N->op_values())
8854     if (this == Op.getNode())
8855       return true;
8856   return false;
8857 }
8858 
8859 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8860 /// be a chain) reaches the specified operand without crossing any
8861 /// side-effecting instructions on any chain path.  In practice, this looks
8862 /// through token factors and non-volatile loads.  In order to remain efficient,
8863 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8864 ///
8865 /// Note that we only need to examine chains when we're searching for
8866 /// side-effects; SelectionDAG requires that all side-effects are represented
8867 /// by chains, even if another operand would force a specific ordering. This
8868 /// constraint is necessary to allow transformations like splitting loads.
8869 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
8870                                              unsigned Depth) const {
8871   if (*this == Dest) return true;
8872 
8873   // Don't search too deeply, we just want to be able to see through
8874   // TokenFactor's etc.
8875   if (Depth == 0) return false;
8876 
8877   // If this is a token factor, all inputs to the TF happen in parallel.
8878   if (getOpcode() == ISD::TokenFactor) {
8879     // First, try a shallow search.
8880     if (is_contained((*this)->ops(), Dest)) {
8881       // We found the chain we want as an operand of this TokenFactor.
8882       // Essentially, we reach the chain without side-effects if we could
8883       // serialize the TokenFactor into a simple chain of operations with
8884       // Dest as the last operation. This is automatically true if the
8885       // chain has one use: there are no other ordering constraints.
8886       // If the chain has more than one use, we give up: some other
8887       // use of Dest might force a side-effect between Dest and the current
8888       // node.
8889       if (Dest.hasOneUse())
8890         return true;
8891     }
8892     // Next, try a deep search: check whether every operand of the TokenFactor
8893     // reaches Dest.
8894     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
8895       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
8896     });
8897   }
8898 
8899   // Loads don't have side effects, look through them.
8900   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
8901     if (!Ld->isVolatile())
8902       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
8903   }
8904   return false;
8905 }
8906 
8907 bool SDNode::hasPredecessor(const SDNode *N) const {
8908   SmallPtrSet<const SDNode *, 32> Visited;
8909   SmallVector<const SDNode *, 16> Worklist;
8910   Worklist.push_back(this);
8911   return hasPredecessorHelper(N, Visited, Worklist);
8912 }
8913 
8914 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
8915   this->Flags.intersectWith(Flags);
8916 }
8917 
8918 SDValue
8919 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
8920                                   ArrayRef<ISD::NodeType> CandidateBinOps) {
8921   // The pattern must end in an extract from index 0.
8922   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8923       !isNullConstant(Extract->getOperand(1)))
8924     return SDValue();
8925 
8926   SDValue Op = Extract->getOperand(0);
8927   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
8928 
8929   // Match against one of the candidate binary ops.
8930   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
8931         return Op.getOpcode() == unsigned(BinOp);
8932       }))
8933     return SDValue();
8934 
8935   // At each stage, we're looking for something that looks like:
8936   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
8937   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
8938   //                               i32 undef, i32 undef, i32 undef, i32 undef>
8939   // %a = binop <8 x i32> %op, %s
8940   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
8941   // we expect something like:
8942   // <4,5,6,7,u,u,u,u>
8943   // <2,3,u,u,u,u,u,u>
8944   // <1,u,u,u,u,u,u,u>
8945   unsigned CandidateBinOp = Op.getOpcode();
8946   for (unsigned i = 0; i < Stages; ++i) {
8947     if (Op.getOpcode() != CandidateBinOp)
8948       return SDValue();
8949 
8950     SDValue Op0 = Op.getOperand(0);
8951     SDValue Op1 = Op.getOperand(1);
8952 
8953     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
8954     if (Shuffle) {
8955       Op = Op1;
8956     } else {
8957       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
8958       Op = Op0;
8959     }
8960 
8961     // The first operand of the shuffle should be the same as the other operand
8962     // of the binop.
8963     if (!Shuffle || Shuffle->getOperand(0) != Op)
8964       return SDValue();
8965 
8966     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
8967     for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index)
8968       if (Shuffle->getMaskElt(Index) != MaskEnd + Index)
8969         return SDValue();
8970   }
8971 
8972   BinOp = (ISD::NodeType)CandidateBinOp;
8973   return Op;
8974 }
8975 
8976 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
8977   assert(N->getNumValues() == 1 &&
8978          "Can't unroll a vector with multiple results!");
8979 
8980   EVT VT = N->getValueType(0);
8981   unsigned NE = VT.getVectorNumElements();
8982   EVT EltVT = VT.getVectorElementType();
8983   SDLoc dl(N);
8984 
8985   SmallVector<SDValue, 8> Scalars;
8986   SmallVector<SDValue, 4> Operands(N->getNumOperands());
8987 
8988   // If ResNE is 0, fully unroll the vector op.
8989   if (ResNE == 0)
8990     ResNE = NE;
8991   else if (NE > ResNE)
8992     NE = ResNE;
8993 
8994   unsigned i;
8995   for (i= 0; i != NE; ++i) {
8996     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
8997       SDValue Operand = N->getOperand(j);
8998       EVT OperandVT = Operand.getValueType();
8999       if (OperandVT.isVector()) {
9000         // A vector operand; extract a single element.
9001         EVT OperandEltVT = OperandVT.getVectorElementType();
9002         Operands[j] =
9003             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
9004                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
9005       } else {
9006         // A scalar operand; just use it as is.
9007         Operands[j] = Operand;
9008       }
9009     }
9010 
9011     switch (N->getOpcode()) {
9012     default: {
9013       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9014                                 N->getFlags()));
9015       break;
9016     }
9017     case ISD::VSELECT:
9018       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9019       break;
9020     case ISD::SHL:
9021     case ISD::SRA:
9022     case ISD::SRL:
9023     case ISD::ROTL:
9024     case ISD::ROTR:
9025       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9026                                getShiftAmountOperand(Operands[0].getValueType(),
9027                                                      Operands[1])));
9028       break;
9029     case ISD::SIGN_EXTEND_INREG:
9030     case ISD::FP_ROUND_INREG: {
9031       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9032       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9033                                 Operands[0],
9034                                 getValueType(ExtVT)));
9035     }
9036     }
9037   }
9038 
9039   for (; i < ResNE; ++i)
9040     Scalars.push_back(getUNDEF(EltVT));
9041 
9042   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9043   return getBuildVector(VecVT, dl, Scalars);
9044 }
9045 
9046 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9047     SDNode *N, unsigned ResNE) {
9048   unsigned Opcode = N->getOpcode();
9049   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9050           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9051           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9052          "Expected an overflow opcode");
9053 
9054   EVT ResVT = N->getValueType(0);
9055   EVT OvVT = N->getValueType(1);
9056   EVT ResEltVT = ResVT.getVectorElementType();
9057   EVT OvEltVT = OvVT.getVectorElementType();
9058   SDLoc dl(N);
9059 
9060   // If ResNE is 0, fully unroll the vector op.
9061   unsigned NE = ResVT.getVectorNumElements();
9062   if (ResNE == 0)
9063     ResNE = NE;
9064   else if (NE > ResNE)
9065     NE = ResNE;
9066 
9067   SmallVector<SDValue, 8> LHSScalars;
9068   SmallVector<SDValue, 8> RHSScalars;
9069   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9070   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9071 
9072   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9073   SDVTList VTs = getVTList(ResEltVT, SVT);
9074   SmallVector<SDValue, 8> ResScalars;
9075   SmallVector<SDValue, 8> OvScalars;
9076   for (unsigned i = 0; i < NE; ++i) {
9077     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9078     SDValue Ov =
9079         getSelect(dl, OvEltVT, Res.getValue(1),
9080                   getBoolConstant(true, dl, OvEltVT, ResVT),
9081                   getConstant(0, dl, OvEltVT));
9082 
9083     ResScalars.push_back(Res);
9084     OvScalars.push_back(Ov);
9085   }
9086 
9087   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9088   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9089 
9090   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9091   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9092   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9093                         getBuildVector(NewOvVT, dl, OvScalars));
9094 }
9095 
9096 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9097                                                   LoadSDNode *Base,
9098                                                   unsigned Bytes,
9099                                                   int Dist) const {
9100   if (LD->isVolatile() || Base->isVolatile())
9101     return false;
9102   if (LD->isIndexed() || Base->isIndexed())
9103     return false;
9104   if (LD->getChain() != Base->getChain())
9105     return false;
9106   EVT VT = LD->getValueType(0);
9107   if (VT.getSizeInBits() / 8 != Bytes)
9108     return false;
9109 
9110   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9111   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9112 
9113   int64_t Offset = 0;
9114   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9115     return (Dist * Bytes == Offset);
9116   return false;
9117 }
9118 
9119 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9120 /// it cannot be inferred.
9121 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9122   // If this is a GlobalAddress + cst, return the alignment.
9123   const GlobalValue *GV;
9124   int64_t GVOffset = 0;
9125   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9126     unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
9127     KnownBits Known(IdxWidth);
9128     llvm::computeKnownBits(GV, Known, getDataLayout());
9129     unsigned AlignBits = Known.countMinTrailingZeros();
9130     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9131     if (Align)
9132       return MinAlign(Align, GVOffset);
9133   }
9134 
9135   // If this is a direct reference to a stack slot, use information about the
9136   // stack slot's alignment.
9137   int FrameIdx = 1 << 31;
9138   int64_t FrameOffset = 0;
9139   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9140     FrameIdx = FI->getIndex();
9141   } else if (isBaseWithConstantOffset(Ptr) &&
9142              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9143     // Handle FI+Cst
9144     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9145     FrameOffset = Ptr.getConstantOperandVal(1);
9146   }
9147 
9148   if (FrameIdx != (1 << 31)) {
9149     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9150     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9151                                     FrameOffset);
9152     return FIInfoAlign;
9153   }
9154 
9155   return 0;
9156 }
9157 
9158 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9159 /// which is split (or expanded) into two not necessarily identical pieces.
9160 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9161   // Currently all types are split in half.
9162   EVT LoVT, HiVT;
9163   if (!VT.isVector())
9164     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9165   else
9166     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9167 
9168   return std::make_pair(LoVT, HiVT);
9169 }
9170 
9171 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9172 /// low/high part.
9173 std::pair<SDValue, SDValue>
9174 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9175                           const EVT &HiVT) {
9176   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9177          N.getValueType().getVectorNumElements() &&
9178          "More vector elements requested than available!");
9179   SDValue Lo, Hi;
9180   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
9181                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9182   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9183                getConstant(LoVT.getVectorNumElements(), DL,
9184                            TLI->getVectorIdxTy(getDataLayout())));
9185   return std::make_pair(Lo, Hi);
9186 }
9187 
9188 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9189 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9190   EVT VT = N.getValueType();
9191   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9192                                 NextPowerOf2(VT.getVectorNumElements()));
9193   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9194                  getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9195 }
9196 
9197 void SelectionDAG::ExtractVectorElements(SDValue Op,
9198                                          SmallVectorImpl<SDValue> &Args,
9199                                          unsigned Start, unsigned Count) {
9200   EVT VT = Op.getValueType();
9201   if (Count == 0)
9202     Count = VT.getVectorNumElements();
9203 
9204   EVT EltVT = VT.getVectorElementType();
9205   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
9206   SDLoc SL(Op);
9207   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9208     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9209                            Op, getConstant(i, SL, IdxTy)));
9210   }
9211 }
9212 
9213 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9214 unsigned GlobalAddressSDNode::getAddressSpace() const {
9215   return getGlobal()->getType()->getAddressSpace();
9216 }
9217 
9218 Type *ConstantPoolSDNode::getType() const {
9219   if (isMachineConstantPoolEntry())
9220     return Val.MachineCPVal->getType();
9221   return Val.ConstVal->getType();
9222 }
9223 
9224 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9225                                         unsigned &SplatBitSize,
9226                                         bool &HasAnyUndefs,
9227                                         unsigned MinSplatBits,
9228                                         bool IsBigEndian) const {
9229   EVT VT = getValueType(0);
9230   assert(VT.isVector() && "Expected a vector type");
9231   unsigned VecWidth = VT.getSizeInBits();
9232   if (MinSplatBits > VecWidth)
9233     return false;
9234 
9235   // FIXME: The widths are based on this node's type, but build vectors can
9236   // truncate their operands.
9237   SplatValue = APInt(VecWidth, 0);
9238   SplatUndef = APInt(VecWidth, 0);
9239 
9240   // Get the bits. Bits with undefined values (when the corresponding element
9241   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9242   // in SplatValue. If any of the values are not constant, give up and return
9243   // false.
9244   unsigned int NumOps = getNumOperands();
9245   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9246   unsigned EltWidth = VT.getScalarSizeInBits();
9247 
9248   for (unsigned j = 0; j < NumOps; ++j) {
9249     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9250     SDValue OpVal = getOperand(i);
9251     unsigned BitPos = j * EltWidth;
9252 
9253     if (OpVal.isUndef())
9254       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9255     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9256       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9257     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9258       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9259     else
9260       return false;
9261   }
9262 
9263   // The build_vector is all constants or undefs. Find the smallest element
9264   // size that splats the vector.
9265   HasAnyUndefs = (SplatUndef != 0);
9266 
9267   // FIXME: This does not work for vectors with elements less than 8 bits.
9268   while (VecWidth > 8) {
9269     unsigned HalfSize = VecWidth / 2;
9270     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9271     APInt LowValue = SplatValue.trunc(HalfSize);
9272     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9273     APInt LowUndef = SplatUndef.trunc(HalfSize);
9274 
9275     // If the two halves do not match (ignoring undef bits), stop here.
9276     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9277         MinSplatBits > HalfSize)
9278       break;
9279 
9280     SplatValue = HighValue | LowValue;
9281     SplatUndef = HighUndef & LowUndef;
9282 
9283     VecWidth = HalfSize;
9284   }
9285 
9286   SplatBitSize = VecWidth;
9287   return true;
9288 }
9289 
9290 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9291                                          BitVector *UndefElements) const {
9292   if (UndefElements) {
9293     UndefElements->clear();
9294     UndefElements->resize(getNumOperands());
9295   }
9296   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9297          "Unexpected vector size");
9298   if (!DemandedElts)
9299     return SDValue();
9300   SDValue Splatted;
9301   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9302     if (!DemandedElts[i])
9303       continue;
9304     SDValue Op = getOperand(i);
9305     if (Op.isUndef()) {
9306       if (UndefElements)
9307         (*UndefElements)[i] = true;
9308     } else if (!Splatted) {
9309       Splatted = Op;
9310     } else if (Splatted != Op) {
9311       return SDValue();
9312     }
9313   }
9314 
9315   if (!Splatted) {
9316     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9317     assert(getOperand(FirstDemandedIdx).isUndef() &&
9318            "Can only have a splat without a constant for all undefs.");
9319     return getOperand(FirstDemandedIdx);
9320   }
9321 
9322   return Splatted;
9323 }
9324 
9325 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9326   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9327   return getSplatValue(DemandedElts, UndefElements);
9328 }
9329 
9330 ConstantSDNode *
9331 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9332                                         BitVector *UndefElements) const {
9333   return dyn_cast_or_null<ConstantSDNode>(
9334       getSplatValue(DemandedElts, UndefElements));
9335 }
9336 
9337 ConstantSDNode *
9338 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9339   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9340 }
9341 
9342 ConstantFPSDNode *
9343 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9344                                           BitVector *UndefElements) const {
9345   return dyn_cast_or_null<ConstantFPSDNode>(
9346       getSplatValue(DemandedElts, UndefElements));
9347 }
9348 
9349 ConstantFPSDNode *
9350 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9351   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9352 }
9353 
9354 int32_t
9355 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9356                                                    uint32_t BitWidth) const {
9357   if (ConstantFPSDNode *CN =
9358           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9359     bool IsExact;
9360     APSInt IntVal(BitWidth);
9361     const APFloat &APF = CN->getValueAPF();
9362     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9363             APFloat::opOK ||
9364         !IsExact)
9365       return -1;
9366 
9367     return IntVal.exactLogBase2();
9368   }
9369   return -1;
9370 }
9371 
9372 bool BuildVectorSDNode::isConstant() const {
9373   for (const SDValue &Op : op_values()) {
9374     unsigned Opc = Op.getOpcode();
9375     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9376       return false;
9377   }
9378   return true;
9379 }
9380 
9381 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9382   // Find the first non-undef value in the shuffle mask.
9383   unsigned i, e;
9384   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9385     /* search */;
9386 
9387   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
9388 
9389   // Make sure all remaining elements are either undef or the same as the first
9390   // non-undef value.
9391   for (int Idx = Mask[i]; i != e; ++i)
9392     if (Mask[i] >= 0 && Mask[i] != Idx)
9393       return false;
9394   return true;
9395 }
9396 
9397 // Returns the SDNode if it is a constant integer BuildVector
9398 // or constant integer.
9399 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9400   if (isa<ConstantSDNode>(N))
9401     return N.getNode();
9402   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9403     return N.getNode();
9404   // Treat a GlobalAddress supporting constant offset folding as a
9405   // constant integer.
9406   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9407     if (GA->getOpcode() == ISD::GlobalAddress &&
9408         TLI->isOffsetFoldingLegal(GA))
9409       return GA;
9410   return nullptr;
9411 }
9412 
9413 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9414   if (isa<ConstantFPSDNode>(N))
9415     return N.getNode();
9416 
9417   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9418     return N.getNode();
9419 
9420   return nullptr;
9421 }
9422 
9423 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9424   assert(!Node->OperandList && "Node already has operands");
9425   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9426          "too many operands to fit into SDNode");
9427   SDUse *Ops = OperandRecycler.allocate(
9428       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9429 
9430   bool IsDivergent = false;
9431   for (unsigned I = 0; I != Vals.size(); ++I) {
9432     Ops[I].setUser(Node);
9433     Ops[I].setInitial(Vals[I]);
9434     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9435       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9436   }
9437   Node->NumOperands = Vals.size();
9438   Node->OperandList = Ops;
9439   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9440   if (!TLI->isSDNodeAlwaysUniform(Node))
9441     Node->SDNodeBits.IsDivergent = IsDivergent;
9442   checkForCycles(Node);
9443 }
9444 
9445 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9446                                      SmallVectorImpl<SDValue> &Vals) {
9447   size_t Limit = SDNode::getMaxNumOperands();
9448   while (Vals.size() > Limit) {
9449     unsigned SliceIdx = Vals.size() - Limit;
9450     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9451     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9452     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9453     Vals.emplace_back(NewTF);
9454   }
9455   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9456 }
9457 
9458 #ifndef NDEBUG
9459 static void checkForCyclesHelper(const SDNode *N,
9460                                  SmallPtrSetImpl<const SDNode*> &Visited,
9461                                  SmallPtrSetImpl<const SDNode*> &Checked,
9462                                  const llvm::SelectionDAG *DAG) {
9463   // If this node has already been checked, don't check it again.
9464   if (Checked.count(N))
9465     return;
9466 
9467   // If a node has already been visited on this depth-first walk, reject it as
9468   // a cycle.
9469   if (!Visited.insert(N).second) {
9470     errs() << "Detected cycle in SelectionDAG\n";
9471     dbgs() << "Offending node:\n";
9472     N->dumprFull(DAG); dbgs() << "\n";
9473     abort();
9474   }
9475 
9476   for (const SDValue &Op : N->op_values())
9477     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9478 
9479   Checked.insert(N);
9480   Visited.erase(N);
9481 }
9482 #endif
9483 
9484 void llvm::checkForCycles(const llvm::SDNode *N,
9485                           const llvm::SelectionDAG *DAG,
9486                           bool force) {
9487 #ifndef NDEBUG
9488   bool check = force;
9489 #ifdef EXPENSIVE_CHECKS
9490   check = true;
9491 #endif  // EXPENSIVE_CHECKS
9492   if (check) {
9493     assert(N && "Checking nonexistent SDNode");
9494     SmallPtrSet<const SDNode*, 32> visited;
9495     SmallPtrSet<const SDNode*, 32> checked;
9496     checkForCyclesHelper(N, visited, checked, DAG);
9497   }
9498 #endif  // !NDEBUG
9499 }
9500 
9501 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9502   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9503 }
9504