1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     }
149   }
150 
151   auto *BV = dyn_cast<BuildVectorSDNode>(N);
152   if (!BV)
153     return false;
154 
155   APInt SplatUndef;
156   unsigned SplatBitSize;
157   bool HasUndefs;
158   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
159   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
160                              EltSize) &&
161          EltSize == SplatBitSize;
162 }
163 
164 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
165 // specializations of the more general isConstantSplatVector()?
166 
167 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
168   // Look through a bit convert.
169   while (N->getOpcode() == ISD::BITCAST)
170     N = N->getOperand(0).getNode();
171 
172   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
173     APInt SplatVal;
174     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue();
175   }
176 
177   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
178 
179   unsigned i = 0, e = N->getNumOperands();
180 
181   // Skip over all of the undef values.
182   while (i != e && N->getOperand(i).isUndef())
183     ++i;
184 
185   // Do not accept an all-undef vector.
186   if (i == e) return false;
187 
188   // Do not accept build_vectors that aren't all constants or which have non-~0
189   // elements. We have to be a bit careful here, as the type of the constant
190   // may not be the same as the type of the vector elements due to type
191   // legalization (the elements are promoted to a legal type for the target and
192   // a vector of a type may be legal when the base element type is not).
193   // We only want to check enough bits to cover the vector elements, because
194   // we care if the resultant vector is all ones, not whether the individual
195   // constants are.
196   SDValue NotZero = N->getOperand(i);
197   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
198   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
199     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
200       return false;
201   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
202     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
203       return false;
204   } else
205     return false;
206 
207   // Okay, we have at least one ~0 value, check to see if the rest match or are
208   // undefs. Even with the above element type twiddling, this should be OK, as
209   // the same type legalization should have applied to all the elements.
210   for (++i; i != e; ++i)
211     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
212       return false;
213   return true;
214 }
215 
216 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
217   // Look through a bit convert.
218   while (N->getOpcode() == ISD::BITCAST)
219     N = N->getOperand(0).getNode();
220 
221   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
222     APInt SplatVal;
223     return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue();
224   }
225 
226   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
227 
228   bool IsAllUndef = true;
229   for (const SDValue &Op : N->op_values()) {
230     if (Op.isUndef())
231       continue;
232     IsAllUndef = false;
233     // Do not accept build_vectors that aren't all constants or which have non-0
234     // elements. We have to be a bit careful here, as the type of the constant
235     // may not be the same as the type of the vector elements due to type
236     // legalization (the elements are promoted to a legal type for the target
237     // and a vector of a type may be legal when the base element type is not).
238     // We only want to check enough bits to cover the vector elements, because
239     // we care if the resultant vector is all zeros, not whether the individual
240     // constants are.
241     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
242     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
243       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
244         return false;
245     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
246       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
247         return false;
248     } else
249       return false;
250   }
251 
252   // Do not accept an all-undef vector.
253   if (IsAllUndef)
254     return false;
255   return true;
256 }
257 
258 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
259   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
260 }
261 
262 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
263   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
264 }
265 
266 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
267   if (N->getOpcode() != ISD::BUILD_VECTOR)
268     return false;
269 
270   for (const SDValue &Op : N->op_values()) {
271     if (Op.isUndef())
272       continue;
273     if (!isa<ConstantSDNode>(Op))
274       return false;
275   }
276   return true;
277 }
278 
279 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
280   if (N->getOpcode() != ISD::BUILD_VECTOR)
281     return false;
282 
283   for (const SDValue &Op : N->op_values()) {
284     if (Op.isUndef())
285       continue;
286     if (!isa<ConstantFPSDNode>(Op))
287       return false;
288   }
289   return true;
290 }
291 
292 bool ISD::allOperandsUndef(const SDNode *N) {
293   // Return false if the node has no operands.
294   // This is "logically inconsistent" with the definition of "all" but
295   // is probably the desired behavior.
296   if (N->getNumOperands() == 0)
297     return false;
298   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
299 }
300 
301 bool ISD::matchUnaryPredicate(SDValue Op,
302                               std::function<bool(ConstantSDNode *)> Match,
303                               bool AllowUndefs) {
304   // FIXME: Add support for scalar UNDEF cases?
305   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
306     return Match(Cst);
307 
308   // FIXME: Add support for vector UNDEF cases?
309   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
310       ISD::SPLAT_VECTOR != Op.getOpcode())
311     return false;
312 
313   EVT SVT = Op.getValueType().getScalarType();
314   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
315     if (AllowUndefs && Op.getOperand(i).isUndef()) {
316       if (!Match(nullptr))
317         return false;
318       continue;
319     }
320 
321     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
322     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
323       return false;
324   }
325   return true;
326 }
327 
328 bool ISD::matchBinaryPredicate(
329     SDValue LHS, SDValue RHS,
330     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
331     bool AllowUndefs, bool AllowTypeMismatch) {
332   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
333     return false;
334 
335   // TODO: Add support for scalar UNDEF cases?
336   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
337     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
338       return Match(LHSCst, RHSCst);
339 
340   // TODO: Add support for vector UNDEF cases?
341   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
342       ISD::BUILD_VECTOR != RHS.getOpcode())
343     return false;
344 
345   EVT SVT = LHS.getValueType().getScalarType();
346   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
347     SDValue LHSOp = LHS.getOperand(i);
348     SDValue RHSOp = RHS.getOperand(i);
349     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
350     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
351     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
352     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
353     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
354       return false;
355     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
356                                LHSOp.getValueType() != RHSOp.getValueType()))
357       return false;
358     if (!Match(LHSCst, RHSCst))
359       return false;
360   }
361   return true;
362 }
363 
364 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
365   switch (VecReduceOpcode) {
366   default:
367     llvm_unreachable("Expected VECREDUCE opcode");
368   case ISD::VECREDUCE_FADD:
369   case ISD::VECREDUCE_SEQ_FADD:
370     return ISD::FADD;
371   case ISD::VECREDUCE_FMUL:
372   case ISD::VECREDUCE_SEQ_FMUL:
373     return ISD::FMUL;
374   case ISD::VECREDUCE_ADD:
375     return ISD::ADD;
376   case ISD::VECREDUCE_MUL:
377     return ISD::MUL;
378   case ISD::VECREDUCE_AND:
379     return ISD::AND;
380   case ISD::VECREDUCE_OR:
381     return ISD::OR;
382   case ISD::VECREDUCE_XOR:
383     return ISD::XOR;
384   case ISD::VECREDUCE_SMAX:
385     return ISD::SMAX;
386   case ISD::VECREDUCE_SMIN:
387     return ISD::SMIN;
388   case ISD::VECREDUCE_UMAX:
389     return ISD::UMAX;
390   case ISD::VECREDUCE_UMIN:
391     return ISD::UMIN;
392   case ISD::VECREDUCE_FMAX:
393     return ISD::FMAXNUM;
394   case ISD::VECREDUCE_FMIN:
395     return ISD::FMINNUM;
396   }
397 }
398 
399 bool ISD::isVPOpcode(unsigned Opcode) {
400   switch (Opcode) {
401   default:
402     return false;
403 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
404   case ISD::SDOPC:                                                             \
405     return true;
406 #include "llvm/IR/VPIntrinsics.def"
407   }
408 }
409 
410 /// The operand position of the vector mask.
411 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
412   switch (Opcode) {
413   default:
414     return None;
415 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...)        \
416   case ISD::SDOPC:                                                             \
417     return MASKPOS;
418 #include "llvm/IR/VPIntrinsics.def"
419   }
420 }
421 
422 /// The operand position of the explicit vector length parameter.
423 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
424   switch (Opcode) {
425   default:
426     return None;
427 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS)     \
428   case ISD::SDOPC:                                                             \
429     return EVLPOS;
430 #include "llvm/IR/VPIntrinsics.def"
431   }
432 }
433 
434 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
435   switch (ExtType) {
436   case ISD::EXTLOAD:
437     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
438   case ISD::SEXTLOAD:
439     return ISD::SIGN_EXTEND;
440   case ISD::ZEXTLOAD:
441     return ISD::ZERO_EXTEND;
442   default:
443     break;
444   }
445 
446   llvm_unreachable("Invalid LoadExtType");
447 }
448 
449 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
450   // To perform this operation, we just need to swap the L and G bits of the
451   // operation.
452   unsigned OldL = (Operation >> 2) & 1;
453   unsigned OldG = (Operation >> 1) & 1;
454   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
455                        (OldL << 1) |       // New G bit
456                        (OldG << 2));       // New L bit.
457 }
458 
459 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
460   unsigned Operation = Op;
461   if (isIntegerLike)
462     Operation ^= 7;   // Flip L, G, E bits, but not U.
463   else
464     Operation ^= 15;  // Flip all of the condition bits.
465 
466   if (Operation > ISD::SETTRUE2)
467     Operation &= ~8;  // Don't let N and U bits get set.
468 
469   return ISD::CondCode(Operation);
470 }
471 
472 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
473   return getSetCCInverseImpl(Op, Type.isInteger());
474 }
475 
476 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
477                                                bool isIntegerLike) {
478   return getSetCCInverseImpl(Op, isIntegerLike);
479 }
480 
481 /// For an integer comparison, return 1 if the comparison is a signed operation
482 /// and 2 if the result is an unsigned comparison. Return zero if the operation
483 /// does not depend on the sign of the input (setne and seteq).
484 static int isSignedOp(ISD::CondCode Opcode) {
485   switch (Opcode) {
486   default: llvm_unreachable("Illegal integer setcc operation!");
487   case ISD::SETEQ:
488   case ISD::SETNE: return 0;
489   case ISD::SETLT:
490   case ISD::SETLE:
491   case ISD::SETGT:
492   case ISD::SETGE: return 1;
493   case ISD::SETULT:
494   case ISD::SETULE:
495   case ISD::SETUGT:
496   case ISD::SETUGE: return 2;
497   }
498 }
499 
500 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
501                                        EVT Type) {
502   bool IsInteger = Type.isInteger();
503   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
504     // Cannot fold a signed integer setcc with an unsigned integer setcc.
505     return ISD::SETCC_INVALID;
506 
507   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
508 
509   // If the N and U bits get set, then the resultant comparison DOES suddenly
510   // care about orderedness, and it is true when ordered.
511   if (Op > ISD::SETTRUE2)
512     Op &= ~16;     // Clear the U bit if the N bit is set.
513 
514   // Canonicalize illegal integer setcc's.
515   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
516     Op = ISD::SETNE;
517 
518   return ISD::CondCode(Op);
519 }
520 
521 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
522                                         EVT Type) {
523   bool IsInteger = Type.isInteger();
524   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
525     // Cannot fold a signed setcc with an unsigned setcc.
526     return ISD::SETCC_INVALID;
527 
528   // Combine all of the condition bits.
529   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
530 
531   // Canonicalize illegal integer setcc's.
532   if (IsInteger) {
533     switch (Result) {
534     default: break;
535     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
536     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
537     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
538     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
539     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
540     }
541   }
542 
543   return Result;
544 }
545 
546 //===----------------------------------------------------------------------===//
547 //                           SDNode Profile Support
548 //===----------------------------------------------------------------------===//
549 
550 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
551 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
552   ID.AddInteger(OpC);
553 }
554 
555 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
556 /// solely with their pointer.
557 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
558   ID.AddPointer(VTList.VTs);
559 }
560 
561 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
562 static void AddNodeIDOperands(FoldingSetNodeID &ID,
563                               ArrayRef<SDValue> Ops) {
564   for (auto& Op : Ops) {
565     ID.AddPointer(Op.getNode());
566     ID.AddInteger(Op.getResNo());
567   }
568 }
569 
570 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
571 static void AddNodeIDOperands(FoldingSetNodeID &ID,
572                               ArrayRef<SDUse> Ops) {
573   for (auto& Op : Ops) {
574     ID.AddPointer(Op.getNode());
575     ID.AddInteger(Op.getResNo());
576   }
577 }
578 
579 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
580                           SDVTList VTList, ArrayRef<SDValue> OpList) {
581   AddNodeIDOpcode(ID, OpC);
582   AddNodeIDValueTypes(ID, VTList);
583   AddNodeIDOperands(ID, OpList);
584 }
585 
586 /// If this is an SDNode with special info, add this info to the NodeID data.
587 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
588   switch (N->getOpcode()) {
589   case ISD::TargetExternalSymbol:
590   case ISD::ExternalSymbol:
591   case ISD::MCSymbol:
592     llvm_unreachable("Should only be used on nodes with operands");
593   default: break;  // Normal nodes don't need extra info.
594   case ISD::TargetConstant:
595   case ISD::Constant: {
596     const ConstantSDNode *C = cast<ConstantSDNode>(N);
597     ID.AddPointer(C->getConstantIntValue());
598     ID.AddBoolean(C->isOpaque());
599     break;
600   }
601   case ISD::TargetConstantFP:
602   case ISD::ConstantFP:
603     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
604     break;
605   case ISD::TargetGlobalAddress:
606   case ISD::GlobalAddress:
607   case ISD::TargetGlobalTLSAddress:
608   case ISD::GlobalTLSAddress: {
609     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
610     ID.AddPointer(GA->getGlobal());
611     ID.AddInteger(GA->getOffset());
612     ID.AddInteger(GA->getTargetFlags());
613     break;
614   }
615   case ISD::BasicBlock:
616     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
617     break;
618   case ISD::Register:
619     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
620     break;
621   case ISD::RegisterMask:
622     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
623     break;
624   case ISD::SRCVALUE:
625     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
626     break;
627   case ISD::FrameIndex:
628   case ISD::TargetFrameIndex:
629     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
630     break;
631   case ISD::LIFETIME_START:
632   case ISD::LIFETIME_END:
633     if (cast<LifetimeSDNode>(N)->hasOffset()) {
634       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
635       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
636     }
637     break;
638   case ISD::PSEUDO_PROBE:
639     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
640     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
641     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
642     break;
643   case ISD::JumpTable:
644   case ISD::TargetJumpTable:
645     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
646     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
647     break;
648   case ISD::ConstantPool:
649   case ISD::TargetConstantPool: {
650     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
651     ID.AddInteger(CP->getAlign().value());
652     ID.AddInteger(CP->getOffset());
653     if (CP->isMachineConstantPoolEntry())
654       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
655     else
656       ID.AddPointer(CP->getConstVal());
657     ID.AddInteger(CP->getTargetFlags());
658     break;
659   }
660   case ISD::TargetIndex: {
661     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
662     ID.AddInteger(TI->getIndex());
663     ID.AddInteger(TI->getOffset());
664     ID.AddInteger(TI->getTargetFlags());
665     break;
666   }
667   case ISD::LOAD: {
668     const LoadSDNode *LD = cast<LoadSDNode>(N);
669     ID.AddInteger(LD->getMemoryVT().getRawBits());
670     ID.AddInteger(LD->getRawSubclassData());
671     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
672     break;
673   }
674   case ISD::STORE: {
675     const StoreSDNode *ST = cast<StoreSDNode>(N);
676     ID.AddInteger(ST->getMemoryVT().getRawBits());
677     ID.AddInteger(ST->getRawSubclassData());
678     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
679     break;
680   }
681   case ISD::MLOAD: {
682     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
683     ID.AddInteger(MLD->getMemoryVT().getRawBits());
684     ID.AddInteger(MLD->getRawSubclassData());
685     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
686     break;
687   }
688   case ISD::MSTORE: {
689     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
690     ID.AddInteger(MST->getMemoryVT().getRawBits());
691     ID.AddInteger(MST->getRawSubclassData());
692     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
693     break;
694   }
695   case ISD::MGATHER: {
696     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
697     ID.AddInteger(MG->getMemoryVT().getRawBits());
698     ID.AddInteger(MG->getRawSubclassData());
699     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
700     break;
701   }
702   case ISD::MSCATTER: {
703     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
704     ID.AddInteger(MS->getMemoryVT().getRawBits());
705     ID.AddInteger(MS->getRawSubclassData());
706     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
707     break;
708   }
709   case ISD::ATOMIC_CMP_SWAP:
710   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
711   case ISD::ATOMIC_SWAP:
712   case ISD::ATOMIC_LOAD_ADD:
713   case ISD::ATOMIC_LOAD_SUB:
714   case ISD::ATOMIC_LOAD_AND:
715   case ISD::ATOMIC_LOAD_CLR:
716   case ISD::ATOMIC_LOAD_OR:
717   case ISD::ATOMIC_LOAD_XOR:
718   case ISD::ATOMIC_LOAD_NAND:
719   case ISD::ATOMIC_LOAD_MIN:
720   case ISD::ATOMIC_LOAD_MAX:
721   case ISD::ATOMIC_LOAD_UMIN:
722   case ISD::ATOMIC_LOAD_UMAX:
723   case ISD::ATOMIC_LOAD:
724   case ISD::ATOMIC_STORE: {
725     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
726     ID.AddInteger(AT->getMemoryVT().getRawBits());
727     ID.AddInteger(AT->getRawSubclassData());
728     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
729     break;
730   }
731   case ISD::PREFETCH: {
732     const MemSDNode *PF = cast<MemSDNode>(N);
733     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
734     break;
735   }
736   case ISD::VECTOR_SHUFFLE: {
737     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
738     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
739          i != e; ++i)
740       ID.AddInteger(SVN->getMaskElt(i));
741     break;
742   }
743   case ISD::TargetBlockAddress:
744   case ISD::BlockAddress: {
745     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
746     ID.AddPointer(BA->getBlockAddress());
747     ID.AddInteger(BA->getOffset());
748     ID.AddInteger(BA->getTargetFlags());
749     break;
750   }
751   } // end switch (N->getOpcode())
752 
753   // Target specific memory nodes could also have address spaces to check.
754   if (N->isTargetMemoryOpcode())
755     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
756 }
757 
758 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
759 /// data.
760 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
761   AddNodeIDOpcode(ID, N->getOpcode());
762   // Add the return value info.
763   AddNodeIDValueTypes(ID, N->getVTList());
764   // Add the operand info.
765   AddNodeIDOperands(ID, N->ops());
766 
767   // Handle SDNode leafs with special info.
768   AddNodeIDCustom(ID, N);
769 }
770 
771 //===----------------------------------------------------------------------===//
772 //                              SelectionDAG Class
773 //===----------------------------------------------------------------------===//
774 
775 /// doNotCSE - Return true if CSE should not be performed for this node.
776 static bool doNotCSE(SDNode *N) {
777   if (N->getValueType(0) == MVT::Glue)
778     return true; // Never CSE anything that produces a flag.
779 
780   switch (N->getOpcode()) {
781   default: break;
782   case ISD::HANDLENODE:
783   case ISD::EH_LABEL:
784     return true;   // Never CSE these nodes.
785   }
786 
787   // Check that remaining values produced are not flags.
788   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
789     if (N->getValueType(i) == MVT::Glue)
790       return true; // Never CSE anything that produces a flag.
791 
792   return false;
793 }
794 
795 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
796 /// SelectionDAG.
797 void SelectionDAG::RemoveDeadNodes() {
798   // Create a dummy node (which is not added to allnodes), that adds a reference
799   // to the root node, preventing it from being deleted.
800   HandleSDNode Dummy(getRoot());
801 
802   SmallVector<SDNode*, 128> DeadNodes;
803 
804   // Add all obviously-dead nodes to the DeadNodes worklist.
805   for (SDNode &Node : allnodes())
806     if (Node.use_empty())
807       DeadNodes.push_back(&Node);
808 
809   RemoveDeadNodes(DeadNodes);
810 
811   // If the root changed (e.g. it was a dead load, update the root).
812   setRoot(Dummy.getValue());
813 }
814 
815 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
816 /// given list, and any nodes that become unreachable as a result.
817 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
818 
819   // Process the worklist, deleting the nodes and adding their uses to the
820   // worklist.
821   while (!DeadNodes.empty()) {
822     SDNode *N = DeadNodes.pop_back_val();
823     // Skip to next node if we've already managed to delete the node. This could
824     // happen if replacing a node causes a node previously added to the node to
825     // be deleted.
826     if (N->getOpcode() == ISD::DELETED_NODE)
827       continue;
828 
829     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
830       DUL->NodeDeleted(N, nullptr);
831 
832     // Take the node out of the appropriate CSE map.
833     RemoveNodeFromCSEMaps(N);
834 
835     // Next, brutally remove the operand list.  This is safe to do, as there are
836     // no cycles in the graph.
837     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
838       SDUse &Use = *I++;
839       SDNode *Operand = Use.getNode();
840       Use.set(SDValue());
841 
842       // Now that we removed this operand, see if there are no uses of it left.
843       if (Operand->use_empty())
844         DeadNodes.push_back(Operand);
845     }
846 
847     DeallocateNode(N);
848   }
849 }
850 
851 void SelectionDAG::RemoveDeadNode(SDNode *N){
852   SmallVector<SDNode*, 16> DeadNodes(1, N);
853 
854   // Create a dummy node that adds a reference to the root node, preventing
855   // it from being deleted.  (This matters if the root is an operand of the
856   // dead node.)
857   HandleSDNode Dummy(getRoot());
858 
859   RemoveDeadNodes(DeadNodes);
860 }
861 
862 void SelectionDAG::DeleteNode(SDNode *N) {
863   // First take this out of the appropriate CSE map.
864   RemoveNodeFromCSEMaps(N);
865 
866   // Finally, remove uses due to operands of this node, remove from the
867   // AllNodes list, and delete the node.
868   DeleteNodeNotInCSEMaps(N);
869 }
870 
871 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
872   assert(N->getIterator() != AllNodes.begin() &&
873          "Cannot delete the entry node!");
874   assert(N->use_empty() && "Cannot delete a node that is not dead!");
875 
876   // Drop all of the operands and decrement used node's use counts.
877   N->DropOperands();
878 
879   DeallocateNode(N);
880 }
881 
882 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
883   assert(!(V->isVariadic() && isParameter));
884   if (isParameter)
885     ByvalParmDbgValues.push_back(V);
886   else
887     DbgValues.push_back(V);
888   for (const SDNode *Node : V->getSDNodes())
889     if (Node)
890       DbgValMap[Node].push_back(V);
891 }
892 
893 void SDDbgInfo::erase(const SDNode *Node) {
894   DbgValMapType::iterator I = DbgValMap.find(Node);
895   if (I == DbgValMap.end())
896     return;
897   for (auto &Val: I->second)
898     Val->setIsInvalidated();
899   DbgValMap.erase(I);
900 }
901 
902 void SelectionDAG::DeallocateNode(SDNode *N) {
903   // If we have operands, deallocate them.
904   removeOperands(N);
905 
906   NodeAllocator.Deallocate(AllNodes.remove(N));
907 
908   // Set the opcode to DELETED_NODE to help catch bugs when node
909   // memory is reallocated.
910   // FIXME: There are places in SDag that have grown a dependency on the opcode
911   // value in the released node.
912   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
913   N->NodeType = ISD::DELETED_NODE;
914 
915   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
916   // them and forget about that node.
917   DbgInfo->erase(N);
918 }
919 
920 #ifndef NDEBUG
921 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
922 static void VerifySDNode(SDNode *N) {
923   switch (N->getOpcode()) {
924   default:
925     break;
926   case ISD::BUILD_PAIR: {
927     EVT VT = N->getValueType(0);
928     assert(N->getNumValues() == 1 && "Too many results!");
929     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
930            "Wrong return type!");
931     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
932     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
933            "Mismatched operand types!");
934     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
935            "Wrong operand type!");
936     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
937            "Wrong return type size");
938     break;
939   }
940   case ISD::BUILD_VECTOR: {
941     assert(N->getNumValues() == 1 && "Too many results!");
942     assert(N->getValueType(0).isVector() && "Wrong return type!");
943     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
944            "Wrong number of operands!");
945     EVT EltVT = N->getValueType(0).getVectorElementType();
946     for (const SDUse &Op : N->ops()) {
947       assert((Op.getValueType() == EltVT ||
948               (EltVT.isInteger() && Op.getValueType().isInteger() &&
949                EltVT.bitsLE(Op.getValueType()))) &&
950              "Wrong operand type!");
951       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
952              "Operands must all have the same type");
953     }
954     break;
955   }
956   }
957 }
958 #endif // NDEBUG
959 
960 /// Insert a newly allocated node into the DAG.
961 ///
962 /// Handles insertion into the all nodes list and CSE map, as well as
963 /// verification and other common operations when a new node is allocated.
964 void SelectionDAG::InsertNode(SDNode *N) {
965   AllNodes.push_back(N);
966 #ifndef NDEBUG
967   N->PersistentId = NextPersistentId++;
968   VerifySDNode(N);
969 #endif
970   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
971     DUL->NodeInserted(N);
972 }
973 
974 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
975 /// correspond to it.  This is useful when we're about to delete or repurpose
976 /// the node.  We don't want future request for structurally identical nodes
977 /// to return N anymore.
978 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
979   bool Erased = false;
980   switch (N->getOpcode()) {
981   case ISD::HANDLENODE: return false;  // noop.
982   case ISD::CONDCODE:
983     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
984            "Cond code doesn't exist!");
985     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
986     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
987     break;
988   case ISD::ExternalSymbol:
989     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
990     break;
991   case ISD::TargetExternalSymbol: {
992     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
993     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
994         ESN->getSymbol(), ESN->getTargetFlags()));
995     break;
996   }
997   case ISD::MCSymbol: {
998     auto *MCSN = cast<MCSymbolSDNode>(N);
999     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1000     break;
1001   }
1002   case ISD::VALUETYPE: {
1003     EVT VT = cast<VTSDNode>(N)->getVT();
1004     if (VT.isExtended()) {
1005       Erased = ExtendedValueTypeNodes.erase(VT);
1006     } else {
1007       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1008       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1009     }
1010     break;
1011   }
1012   default:
1013     // Remove it from the CSE Map.
1014     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1015     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1016     Erased = CSEMap.RemoveNode(N);
1017     break;
1018   }
1019 #ifndef NDEBUG
1020   // Verify that the node was actually in one of the CSE maps, unless it has a
1021   // flag result (which cannot be CSE'd) or is one of the special cases that are
1022   // not subject to CSE.
1023   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1024       !N->isMachineOpcode() && !doNotCSE(N)) {
1025     N->dump(this);
1026     dbgs() << "\n";
1027     llvm_unreachable("Node is not in map!");
1028   }
1029 #endif
1030   return Erased;
1031 }
1032 
1033 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1034 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1035 /// node already exists, in which case transfer all its users to the existing
1036 /// node. This transfer can potentially trigger recursive merging.
1037 void
1038 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1039   // For node types that aren't CSE'd, just act as if no identical node
1040   // already exists.
1041   if (!doNotCSE(N)) {
1042     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1043     if (Existing != N) {
1044       // If there was already an existing matching node, use ReplaceAllUsesWith
1045       // to replace the dead one with the existing one.  This can cause
1046       // recursive merging of other unrelated nodes down the line.
1047       ReplaceAllUsesWith(N, Existing);
1048 
1049       // N is now dead. Inform the listeners and delete it.
1050       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1051         DUL->NodeDeleted(N, Existing);
1052       DeleteNodeNotInCSEMaps(N);
1053       return;
1054     }
1055   }
1056 
1057   // If the node doesn't already exist, we updated it.  Inform listeners.
1058   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1059     DUL->NodeUpdated(N);
1060 }
1061 
1062 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1063 /// were replaced with those specified.  If this node is never memoized,
1064 /// return null, otherwise return a pointer to the slot it would take.  If a
1065 /// node already exists with these operands, the slot will be non-null.
1066 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1067                                            void *&InsertPos) {
1068   if (doNotCSE(N))
1069     return nullptr;
1070 
1071   SDValue Ops[] = { Op };
1072   FoldingSetNodeID ID;
1073   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1074   AddNodeIDCustom(ID, N);
1075   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1076   if (Node)
1077     Node->intersectFlagsWith(N->getFlags());
1078   return Node;
1079 }
1080 
1081 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1082 /// were replaced with those specified.  If this node is never memoized,
1083 /// return null, otherwise return a pointer to the slot it would take.  If a
1084 /// node already exists with these operands, the slot will be non-null.
1085 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1086                                            SDValue Op1, SDValue Op2,
1087                                            void *&InsertPos) {
1088   if (doNotCSE(N))
1089     return nullptr;
1090 
1091   SDValue Ops[] = { Op1, Op2 };
1092   FoldingSetNodeID ID;
1093   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1094   AddNodeIDCustom(ID, N);
1095   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1096   if (Node)
1097     Node->intersectFlagsWith(N->getFlags());
1098   return Node;
1099 }
1100 
1101 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1102 /// were replaced with those specified.  If this node is never memoized,
1103 /// return null, otherwise return a pointer to the slot it would take.  If a
1104 /// node already exists with these operands, the slot will be non-null.
1105 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1106                                            void *&InsertPos) {
1107   if (doNotCSE(N))
1108     return nullptr;
1109 
1110   FoldingSetNodeID ID;
1111   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1112   AddNodeIDCustom(ID, N);
1113   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1114   if (Node)
1115     Node->intersectFlagsWith(N->getFlags());
1116   return Node;
1117 }
1118 
1119 Align SelectionDAG::getEVTAlign(EVT VT) const {
1120   Type *Ty = VT == MVT::iPTR ?
1121                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1122                    VT.getTypeForEVT(*getContext());
1123 
1124   return getDataLayout().getABITypeAlign(Ty);
1125 }
1126 
1127 // EntryNode could meaningfully have debug info if we can find it...
1128 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1129     : TM(tm), OptLevel(OL),
1130       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1131       Root(getEntryNode()) {
1132   InsertNode(&EntryNode);
1133   DbgInfo = new SDDbgInfo();
1134 }
1135 
1136 void SelectionDAG::init(MachineFunction &NewMF,
1137                         OptimizationRemarkEmitter &NewORE,
1138                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1139                         LegacyDivergenceAnalysis * Divergence,
1140                         ProfileSummaryInfo *PSIin,
1141                         BlockFrequencyInfo *BFIin) {
1142   MF = &NewMF;
1143   SDAGISelPass = PassPtr;
1144   ORE = &NewORE;
1145   TLI = getSubtarget().getTargetLowering();
1146   TSI = getSubtarget().getSelectionDAGInfo();
1147   LibInfo = LibraryInfo;
1148   Context = &MF->getFunction().getContext();
1149   DA = Divergence;
1150   PSI = PSIin;
1151   BFI = BFIin;
1152 }
1153 
1154 SelectionDAG::~SelectionDAG() {
1155   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1156   allnodes_clear();
1157   OperandRecycler.clear(OperandAllocator);
1158   delete DbgInfo;
1159 }
1160 
1161 bool SelectionDAG::shouldOptForSize() const {
1162   return MF->getFunction().hasOptSize() ||
1163       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1164 }
1165 
1166 void SelectionDAG::allnodes_clear() {
1167   assert(&*AllNodes.begin() == &EntryNode);
1168   AllNodes.remove(AllNodes.begin());
1169   while (!AllNodes.empty())
1170     DeallocateNode(&AllNodes.front());
1171 #ifndef NDEBUG
1172   NextPersistentId = 0;
1173 #endif
1174 }
1175 
1176 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1177                                           void *&InsertPos) {
1178   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1179   if (N) {
1180     switch (N->getOpcode()) {
1181     default: break;
1182     case ISD::Constant:
1183     case ISD::ConstantFP:
1184       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1185                        "debug location.  Use another overload.");
1186     }
1187   }
1188   return N;
1189 }
1190 
1191 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1192                                           const SDLoc &DL, void *&InsertPos) {
1193   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1194   if (N) {
1195     switch (N->getOpcode()) {
1196     case ISD::Constant:
1197     case ISD::ConstantFP:
1198       // Erase debug location from the node if the node is used at several
1199       // different places. Do not propagate one location to all uses as it
1200       // will cause a worse single stepping debugging experience.
1201       if (N->getDebugLoc() != DL.getDebugLoc())
1202         N->setDebugLoc(DebugLoc());
1203       break;
1204     default:
1205       // When the node's point of use is located earlier in the instruction
1206       // sequence than its prior point of use, update its debug info to the
1207       // earlier location.
1208       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1209         N->setDebugLoc(DL.getDebugLoc());
1210       break;
1211     }
1212   }
1213   return N;
1214 }
1215 
1216 void SelectionDAG::clear() {
1217   allnodes_clear();
1218   OperandRecycler.clear(OperandAllocator);
1219   OperandAllocator.Reset();
1220   CSEMap.clear();
1221 
1222   ExtendedValueTypeNodes.clear();
1223   ExternalSymbols.clear();
1224   TargetExternalSymbols.clear();
1225   MCSymbols.clear();
1226   SDCallSiteDbgInfo.clear();
1227   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1228             static_cast<CondCodeSDNode*>(nullptr));
1229   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1230             static_cast<SDNode*>(nullptr));
1231 
1232   EntryNode.UseList = nullptr;
1233   InsertNode(&EntryNode);
1234   Root = getEntryNode();
1235   DbgInfo->clear();
1236 }
1237 
1238 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1239   return VT.bitsGT(Op.getValueType())
1240              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1241              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1242 }
1243 
1244 std::pair<SDValue, SDValue>
1245 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1246                                        const SDLoc &DL, EVT VT) {
1247   assert(!VT.bitsEq(Op.getValueType()) &&
1248          "Strict no-op FP extend/round not allowed.");
1249   SDValue Res =
1250       VT.bitsGT(Op.getValueType())
1251           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1252           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1253                     {Chain, Op, getIntPtrConstant(0, DL)});
1254 
1255   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1256 }
1257 
1258 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1259   return VT.bitsGT(Op.getValueType()) ?
1260     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1261     getNode(ISD::TRUNCATE, DL, VT, Op);
1262 }
1263 
1264 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1265   return VT.bitsGT(Op.getValueType()) ?
1266     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1267     getNode(ISD::TRUNCATE, DL, VT, Op);
1268 }
1269 
1270 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1271   return VT.bitsGT(Op.getValueType()) ?
1272     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1273     getNode(ISD::TRUNCATE, DL, VT, Op);
1274 }
1275 
1276 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1277                                         EVT OpVT) {
1278   if (VT.bitsLE(Op.getValueType()))
1279     return getNode(ISD::TRUNCATE, SL, VT, Op);
1280 
1281   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1282   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1283 }
1284 
1285 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1286   EVT OpVT = Op.getValueType();
1287   assert(VT.isInteger() && OpVT.isInteger() &&
1288          "Cannot getZeroExtendInReg FP types");
1289   assert(VT.isVector() == OpVT.isVector() &&
1290          "getZeroExtendInReg type should be vector iff the operand "
1291          "type is vector!");
1292   assert((!VT.isVector() ||
1293           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1294          "Vector element counts must match in getZeroExtendInReg");
1295   assert(VT.bitsLE(OpVT) && "Not extending!");
1296   if (OpVT == VT)
1297     return Op;
1298   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1299                                    VT.getScalarSizeInBits());
1300   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1301 }
1302 
1303 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1304   // Only unsigned pointer semantics are supported right now. In the future this
1305   // might delegate to TLI to check pointer signedness.
1306   return getZExtOrTrunc(Op, DL, VT);
1307 }
1308 
1309 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1310   // Only unsigned pointer semantics are supported right now. In the future this
1311   // might delegate to TLI to check pointer signedness.
1312   return getZeroExtendInReg(Op, DL, VT);
1313 }
1314 
1315 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1316 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1317   EVT EltVT = VT.getScalarType();
1318   SDValue NegOne =
1319     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1320   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1321 }
1322 
1323 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1324   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1325   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1326 }
1327 
1328 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1329                                       EVT OpVT) {
1330   if (!V)
1331     return getConstant(0, DL, VT);
1332 
1333   switch (TLI->getBooleanContents(OpVT)) {
1334   case TargetLowering::ZeroOrOneBooleanContent:
1335   case TargetLowering::UndefinedBooleanContent:
1336     return getConstant(1, DL, VT);
1337   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1338     return getAllOnesConstant(DL, VT);
1339   }
1340   llvm_unreachable("Unexpected boolean content enum!");
1341 }
1342 
1343 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1344                                   bool isT, bool isO) {
1345   EVT EltVT = VT.getScalarType();
1346   assert((EltVT.getSizeInBits() >= 64 ||
1347           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1348          "getConstant with a uint64_t value that doesn't fit in the type!");
1349   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1350 }
1351 
1352 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1353                                   bool isT, bool isO) {
1354   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1355 }
1356 
1357 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1358                                   EVT VT, bool isT, bool isO) {
1359   assert(VT.isInteger() && "Cannot create FP integer constant!");
1360 
1361   EVT EltVT = VT.getScalarType();
1362   const ConstantInt *Elt = &Val;
1363 
1364   // In some cases the vector type is legal but the element type is illegal and
1365   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1366   // inserted value (the type does not need to match the vector element type).
1367   // Any extra bits introduced will be truncated away.
1368   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1369                            TargetLowering::TypePromoteInteger) {
1370     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1371     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1372     Elt = ConstantInt::get(*getContext(), NewVal);
1373   }
1374   // In other cases the element type is illegal and needs to be expanded, for
1375   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1376   // the value into n parts and use a vector type with n-times the elements.
1377   // Then bitcast to the type requested.
1378   // Legalizing constants too early makes the DAGCombiner's job harder so we
1379   // only legalize if the DAG tells us we must produce legal types.
1380   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1381            TLI->getTypeAction(*getContext(), EltVT) ==
1382                TargetLowering::TypeExpandInteger) {
1383     const APInt &NewVal = Elt->getValue();
1384     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1385     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1386 
1387     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1388     if (VT.isScalableVector()) {
1389       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1390              "Can only handle an even split!");
1391       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1392 
1393       SmallVector<SDValue, 2> ScalarParts;
1394       for (unsigned i = 0; i != Parts; ++i)
1395         ScalarParts.push_back(getConstant(
1396             NewVal.lshr(i * ViaEltSizeInBits).trunc(ViaEltSizeInBits), DL,
1397             ViaEltVT, isT, isO));
1398 
1399       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1400     }
1401 
1402     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1403     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1404 
1405     // Check the temporary vector is the correct size. If this fails then
1406     // getTypeToTransformTo() probably returned a type whose size (in bits)
1407     // isn't a power-of-2 factor of the requested type size.
1408     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1409 
1410     SmallVector<SDValue, 2> EltParts;
1411     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1412       EltParts.push_back(getConstant(
1413           NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL,
1414           ViaEltVT, isT, isO));
1415     }
1416 
1417     // EltParts is currently in little endian order. If we actually want
1418     // big-endian order then reverse it now.
1419     if (getDataLayout().isBigEndian())
1420       std::reverse(EltParts.begin(), EltParts.end());
1421 
1422     // The elements must be reversed when the element order is different
1423     // to the endianness of the elements (because the BITCAST is itself a
1424     // vector shuffle in this situation). However, we do not need any code to
1425     // perform this reversal because getConstant() is producing a vector
1426     // splat.
1427     // This situation occurs in MIPS MSA.
1428 
1429     SmallVector<SDValue, 8> Ops;
1430     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1431       llvm::append_range(Ops, EltParts);
1432 
1433     SDValue V =
1434         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1435     return V;
1436   }
1437 
1438   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1439          "APInt size does not match type size!");
1440   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1441   FoldingSetNodeID ID;
1442   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1443   ID.AddPointer(Elt);
1444   ID.AddBoolean(isO);
1445   void *IP = nullptr;
1446   SDNode *N = nullptr;
1447   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1448     if (!VT.isVector())
1449       return SDValue(N, 0);
1450 
1451   if (!N) {
1452     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1453     CSEMap.InsertNode(N, IP);
1454     InsertNode(N);
1455     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1456   }
1457 
1458   SDValue Result(N, 0);
1459   if (VT.isScalableVector())
1460     Result = getSplatVector(VT, DL, Result);
1461   else if (VT.isVector())
1462     Result = getSplatBuildVector(VT, DL, Result);
1463 
1464   return Result;
1465 }
1466 
1467 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1468                                         bool isTarget) {
1469   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1470 }
1471 
1472 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1473                                              const SDLoc &DL, bool LegalTypes) {
1474   assert(VT.isInteger() && "Shift amount is not an integer type!");
1475   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1476   return getConstant(Val, DL, ShiftVT);
1477 }
1478 
1479 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1480                                            bool isTarget) {
1481   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1482 }
1483 
1484 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1485                                     bool isTarget) {
1486   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1487 }
1488 
1489 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1490                                     EVT VT, bool isTarget) {
1491   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1492 
1493   EVT EltVT = VT.getScalarType();
1494 
1495   // Do the map lookup using the actual bit pattern for the floating point
1496   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1497   // we don't have issues with SNANs.
1498   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1499   FoldingSetNodeID ID;
1500   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1501   ID.AddPointer(&V);
1502   void *IP = nullptr;
1503   SDNode *N = nullptr;
1504   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1505     if (!VT.isVector())
1506       return SDValue(N, 0);
1507 
1508   if (!N) {
1509     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1510     CSEMap.InsertNode(N, IP);
1511     InsertNode(N);
1512   }
1513 
1514   SDValue Result(N, 0);
1515   if (VT.isScalableVector())
1516     Result = getSplatVector(VT, DL, Result);
1517   else if (VT.isVector())
1518     Result = getSplatBuildVector(VT, DL, Result);
1519   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1520   return Result;
1521 }
1522 
1523 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1524                                     bool isTarget) {
1525   EVT EltVT = VT.getScalarType();
1526   if (EltVT == MVT::f32)
1527     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1528   else if (EltVT == MVT::f64)
1529     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1530   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1531            EltVT == MVT::f16 || EltVT == MVT::bf16) {
1532     bool Ignored;
1533     APFloat APF = APFloat(Val);
1534     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1535                 &Ignored);
1536     return getConstantFP(APF, DL, VT, isTarget);
1537   } else
1538     llvm_unreachable("Unsupported type in getConstantFP");
1539 }
1540 
1541 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1542                                        EVT VT, int64_t Offset, bool isTargetGA,
1543                                        unsigned TargetFlags) {
1544   assert((TargetFlags == 0 || isTargetGA) &&
1545          "Cannot set target flags on target-independent globals");
1546 
1547   // Truncate (with sign-extension) the offset value to the pointer size.
1548   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1549   if (BitWidth < 64)
1550     Offset = SignExtend64(Offset, BitWidth);
1551 
1552   unsigned Opc;
1553   if (GV->isThreadLocal())
1554     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1555   else
1556     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1557 
1558   FoldingSetNodeID ID;
1559   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1560   ID.AddPointer(GV);
1561   ID.AddInteger(Offset);
1562   ID.AddInteger(TargetFlags);
1563   void *IP = nullptr;
1564   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1565     return SDValue(E, 0);
1566 
1567   auto *N = newSDNode<GlobalAddressSDNode>(
1568       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1569   CSEMap.InsertNode(N, IP);
1570     InsertNode(N);
1571   return SDValue(N, 0);
1572 }
1573 
1574 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1575   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1576   FoldingSetNodeID ID;
1577   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1578   ID.AddInteger(FI);
1579   void *IP = nullptr;
1580   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1581     return SDValue(E, 0);
1582 
1583   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1584   CSEMap.InsertNode(N, IP);
1585   InsertNode(N);
1586   return SDValue(N, 0);
1587 }
1588 
1589 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1590                                    unsigned TargetFlags) {
1591   assert((TargetFlags == 0 || isTarget) &&
1592          "Cannot set target flags on target-independent jump tables");
1593   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1594   FoldingSetNodeID ID;
1595   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1596   ID.AddInteger(JTI);
1597   ID.AddInteger(TargetFlags);
1598   void *IP = nullptr;
1599   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1600     return SDValue(E, 0);
1601 
1602   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1603   CSEMap.InsertNode(N, IP);
1604   InsertNode(N);
1605   return SDValue(N, 0);
1606 }
1607 
1608 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1609                                       MaybeAlign Alignment, int Offset,
1610                                       bool isTarget, unsigned TargetFlags) {
1611   assert((TargetFlags == 0 || isTarget) &&
1612          "Cannot set target flags on target-independent globals");
1613   if (!Alignment)
1614     Alignment = shouldOptForSize()
1615                     ? getDataLayout().getABITypeAlign(C->getType())
1616                     : getDataLayout().getPrefTypeAlign(C->getType());
1617   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1618   FoldingSetNodeID ID;
1619   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1620   ID.AddInteger(Alignment->value());
1621   ID.AddInteger(Offset);
1622   ID.AddPointer(C);
1623   ID.AddInteger(TargetFlags);
1624   void *IP = nullptr;
1625   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1626     return SDValue(E, 0);
1627 
1628   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1629                                           TargetFlags);
1630   CSEMap.InsertNode(N, IP);
1631   InsertNode(N);
1632   SDValue V = SDValue(N, 0);
1633   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1634   return V;
1635 }
1636 
1637 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1638                                       MaybeAlign Alignment, int Offset,
1639                                       bool isTarget, unsigned TargetFlags) {
1640   assert((TargetFlags == 0 || isTarget) &&
1641          "Cannot set target flags on target-independent globals");
1642   if (!Alignment)
1643     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1644   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1645   FoldingSetNodeID ID;
1646   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1647   ID.AddInteger(Alignment->value());
1648   ID.AddInteger(Offset);
1649   C->addSelectionDAGCSEId(ID);
1650   ID.AddInteger(TargetFlags);
1651   void *IP = nullptr;
1652   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1653     return SDValue(E, 0);
1654 
1655   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1656                                           TargetFlags);
1657   CSEMap.InsertNode(N, IP);
1658   InsertNode(N);
1659   return SDValue(N, 0);
1660 }
1661 
1662 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1663                                      unsigned TargetFlags) {
1664   FoldingSetNodeID ID;
1665   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1666   ID.AddInteger(Index);
1667   ID.AddInteger(Offset);
1668   ID.AddInteger(TargetFlags);
1669   void *IP = nullptr;
1670   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1671     return SDValue(E, 0);
1672 
1673   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1674   CSEMap.InsertNode(N, IP);
1675   InsertNode(N);
1676   return SDValue(N, 0);
1677 }
1678 
1679 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1680   FoldingSetNodeID ID;
1681   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1682   ID.AddPointer(MBB);
1683   void *IP = nullptr;
1684   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1685     return SDValue(E, 0);
1686 
1687   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1688   CSEMap.InsertNode(N, IP);
1689   InsertNode(N);
1690   return SDValue(N, 0);
1691 }
1692 
1693 SDValue SelectionDAG::getValueType(EVT VT) {
1694   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1695       ValueTypeNodes.size())
1696     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1697 
1698   SDNode *&N = VT.isExtended() ?
1699     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1700 
1701   if (N) return SDValue(N, 0);
1702   N = newSDNode<VTSDNode>(VT);
1703   InsertNode(N);
1704   return SDValue(N, 0);
1705 }
1706 
1707 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1708   SDNode *&N = ExternalSymbols[Sym];
1709   if (N) return SDValue(N, 0);
1710   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1711   InsertNode(N);
1712   return SDValue(N, 0);
1713 }
1714 
1715 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1716   SDNode *&N = MCSymbols[Sym];
1717   if (N)
1718     return SDValue(N, 0);
1719   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1720   InsertNode(N);
1721   return SDValue(N, 0);
1722 }
1723 
1724 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1725                                               unsigned TargetFlags) {
1726   SDNode *&N =
1727       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1728   if (N) return SDValue(N, 0);
1729   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1730   InsertNode(N);
1731   return SDValue(N, 0);
1732 }
1733 
1734 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1735   if ((unsigned)Cond >= CondCodeNodes.size())
1736     CondCodeNodes.resize(Cond+1);
1737 
1738   if (!CondCodeNodes[Cond]) {
1739     auto *N = newSDNode<CondCodeSDNode>(Cond);
1740     CondCodeNodes[Cond] = N;
1741     InsertNode(N);
1742   }
1743 
1744   return SDValue(CondCodeNodes[Cond], 0);
1745 }
1746 
1747 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1748 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1749 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1750   std::swap(N1, N2);
1751   ShuffleVectorSDNode::commuteMask(M);
1752 }
1753 
1754 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1755                                        SDValue N2, ArrayRef<int> Mask) {
1756   assert(VT.getVectorNumElements() == Mask.size() &&
1757            "Must have the same number of vector elements as mask elements!");
1758   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1759          "Invalid VECTOR_SHUFFLE");
1760 
1761   // Canonicalize shuffle undef, undef -> undef
1762   if (N1.isUndef() && N2.isUndef())
1763     return getUNDEF(VT);
1764 
1765   // Validate that all indices in Mask are within the range of the elements
1766   // input to the shuffle.
1767   int NElts = Mask.size();
1768   assert(llvm::all_of(Mask,
1769                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1770          "Index out of range");
1771 
1772   // Copy the mask so we can do any needed cleanup.
1773   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1774 
1775   // Canonicalize shuffle v, v -> v, undef
1776   if (N1 == N2) {
1777     N2 = getUNDEF(VT);
1778     for (int i = 0; i != NElts; ++i)
1779       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1780   }
1781 
1782   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1783   if (N1.isUndef())
1784     commuteShuffle(N1, N2, MaskVec);
1785 
1786   if (TLI->hasVectorBlend()) {
1787     // If shuffling a splat, try to blend the splat instead. We do this here so
1788     // that even when this arises during lowering we don't have to re-handle it.
1789     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1790       BitVector UndefElements;
1791       SDValue Splat = BV->getSplatValue(&UndefElements);
1792       if (!Splat)
1793         return;
1794 
1795       for (int i = 0; i < NElts; ++i) {
1796         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1797           continue;
1798 
1799         // If this input comes from undef, mark it as such.
1800         if (UndefElements[MaskVec[i] - Offset]) {
1801           MaskVec[i] = -1;
1802           continue;
1803         }
1804 
1805         // If we can blend a non-undef lane, use that instead.
1806         if (!UndefElements[i])
1807           MaskVec[i] = i + Offset;
1808       }
1809     };
1810     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1811       BlendSplat(N1BV, 0);
1812     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1813       BlendSplat(N2BV, NElts);
1814   }
1815 
1816   // Canonicalize all index into lhs, -> shuffle lhs, undef
1817   // Canonicalize all index into rhs, -> shuffle rhs, undef
1818   bool AllLHS = true, AllRHS = true;
1819   bool N2Undef = N2.isUndef();
1820   for (int i = 0; i != NElts; ++i) {
1821     if (MaskVec[i] >= NElts) {
1822       if (N2Undef)
1823         MaskVec[i] = -1;
1824       else
1825         AllLHS = false;
1826     } else if (MaskVec[i] >= 0) {
1827       AllRHS = false;
1828     }
1829   }
1830   if (AllLHS && AllRHS)
1831     return getUNDEF(VT);
1832   if (AllLHS && !N2Undef)
1833     N2 = getUNDEF(VT);
1834   if (AllRHS) {
1835     N1 = getUNDEF(VT);
1836     commuteShuffle(N1, N2, MaskVec);
1837   }
1838   // Reset our undef status after accounting for the mask.
1839   N2Undef = N2.isUndef();
1840   // Re-check whether both sides ended up undef.
1841   if (N1.isUndef() && N2Undef)
1842     return getUNDEF(VT);
1843 
1844   // If Identity shuffle return that node.
1845   bool Identity = true, AllSame = true;
1846   for (int i = 0; i != NElts; ++i) {
1847     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1848     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1849   }
1850   if (Identity && NElts)
1851     return N1;
1852 
1853   // Shuffling a constant splat doesn't change the result.
1854   if (N2Undef) {
1855     SDValue V = N1;
1856 
1857     // Look through any bitcasts. We check that these don't change the number
1858     // (and size) of elements and just changes their types.
1859     while (V.getOpcode() == ISD::BITCAST)
1860       V = V->getOperand(0);
1861 
1862     // A splat should always show up as a build vector node.
1863     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1864       BitVector UndefElements;
1865       SDValue Splat = BV->getSplatValue(&UndefElements);
1866       // If this is a splat of an undef, shuffling it is also undef.
1867       if (Splat && Splat.isUndef())
1868         return getUNDEF(VT);
1869 
1870       bool SameNumElts =
1871           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1872 
1873       // We only have a splat which can skip shuffles if there is a splatted
1874       // value and no undef lanes rearranged by the shuffle.
1875       if (Splat && UndefElements.none()) {
1876         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1877         // number of elements match or the value splatted is a zero constant.
1878         if (SameNumElts)
1879           return N1;
1880         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1881           if (C->isNullValue())
1882             return N1;
1883       }
1884 
1885       // If the shuffle itself creates a splat, build the vector directly.
1886       if (AllSame && SameNumElts) {
1887         EVT BuildVT = BV->getValueType(0);
1888         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1889         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1890 
1891         // We may have jumped through bitcasts, so the type of the
1892         // BUILD_VECTOR may not match the type of the shuffle.
1893         if (BuildVT != VT)
1894           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1895         return NewBV;
1896       }
1897     }
1898   }
1899 
1900   FoldingSetNodeID ID;
1901   SDValue Ops[2] = { N1, N2 };
1902   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1903   for (int i = 0; i != NElts; ++i)
1904     ID.AddInteger(MaskVec[i]);
1905 
1906   void* IP = nullptr;
1907   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1908     return SDValue(E, 0);
1909 
1910   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1911   // SDNode doesn't have access to it.  This memory will be "leaked" when
1912   // the node is deallocated, but recovered when the NodeAllocator is released.
1913   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1914   llvm::copy(MaskVec, MaskAlloc);
1915 
1916   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1917                                            dl.getDebugLoc(), MaskAlloc);
1918   createOperands(N, Ops);
1919 
1920   CSEMap.InsertNode(N, IP);
1921   InsertNode(N);
1922   SDValue V = SDValue(N, 0);
1923   NewSDValueDbgMsg(V, "Creating new node: ", this);
1924   return V;
1925 }
1926 
1927 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1928   EVT VT = SV.getValueType(0);
1929   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1930   ShuffleVectorSDNode::commuteMask(MaskVec);
1931 
1932   SDValue Op0 = SV.getOperand(0);
1933   SDValue Op1 = SV.getOperand(1);
1934   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1935 }
1936 
1937 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1938   FoldingSetNodeID ID;
1939   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1940   ID.AddInteger(RegNo);
1941   void *IP = nullptr;
1942   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1943     return SDValue(E, 0);
1944 
1945   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1946   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1947   CSEMap.InsertNode(N, IP);
1948   InsertNode(N);
1949   return SDValue(N, 0);
1950 }
1951 
1952 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1953   FoldingSetNodeID ID;
1954   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1955   ID.AddPointer(RegMask);
1956   void *IP = nullptr;
1957   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1958     return SDValue(E, 0);
1959 
1960   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1961   CSEMap.InsertNode(N, IP);
1962   InsertNode(N);
1963   return SDValue(N, 0);
1964 }
1965 
1966 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1967                                  MCSymbol *Label) {
1968   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1969 }
1970 
1971 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1972                                    SDValue Root, MCSymbol *Label) {
1973   FoldingSetNodeID ID;
1974   SDValue Ops[] = { Root };
1975   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1976   ID.AddPointer(Label);
1977   void *IP = nullptr;
1978   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1979     return SDValue(E, 0);
1980 
1981   auto *N =
1982       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1983   createOperands(N, Ops);
1984 
1985   CSEMap.InsertNode(N, IP);
1986   InsertNode(N);
1987   return SDValue(N, 0);
1988 }
1989 
1990 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1991                                       int64_t Offset, bool isTarget,
1992                                       unsigned TargetFlags) {
1993   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1994 
1995   FoldingSetNodeID ID;
1996   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1997   ID.AddPointer(BA);
1998   ID.AddInteger(Offset);
1999   ID.AddInteger(TargetFlags);
2000   void *IP = nullptr;
2001   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2002     return SDValue(E, 0);
2003 
2004   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2005   CSEMap.InsertNode(N, IP);
2006   InsertNode(N);
2007   return SDValue(N, 0);
2008 }
2009 
2010 SDValue SelectionDAG::getSrcValue(const Value *V) {
2011   FoldingSetNodeID ID;
2012   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2013   ID.AddPointer(V);
2014 
2015   void *IP = nullptr;
2016   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2017     return SDValue(E, 0);
2018 
2019   auto *N = newSDNode<SrcValueSDNode>(V);
2020   CSEMap.InsertNode(N, IP);
2021   InsertNode(N);
2022   return SDValue(N, 0);
2023 }
2024 
2025 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2026   FoldingSetNodeID ID;
2027   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2028   ID.AddPointer(MD);
2029 
2030   void *IP = nullptr;
2031   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2032     return SDValue(E, 0);
2033 
2034   auto *N = newSDNode<MDNodeSDNode>(MD);
2035   CSEMap.InsertNode(N, IP);
2036   InsertNode(N);
2037   return SDValue(N, 0);
2038 }
2039 
2040 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2041   if (VT == V.getValueType())
2042     return V;
2043 
2044   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2045 }
2046 
2047 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2048                                        unsigned SrcAS, unsigned DestAS) {
2049   SDValue Ops[] = {Ptr};
2050   FoldingSetNodeID ID;
2051   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2052   ID.AddInteger(SrcAS);
2053   ID.AddInteger(DestAS);
2054 
2055   void *IP = nullptr;
2056   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2057     return SDValue(E, 0);
2058 
2059   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2060                                            VT, SrcAS, DestAS);
2061   createOperands(N, Ops);
2062 
2063   CSEMap.InsertNode(N, IP);
2064   InsertNode(N);
2065   return SDValue(N, 0);
2066 }
2067 
2068 SDValue SelectionDAG::getFreeze(SDValue V) {
2069   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2070 }
2071 
2072 /// getShiftAmountOperand - Return the specified value casted to
2073 /// the target's desired shift amount type.
2074 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2075   EVT OpTy = Op.getValueType();
2076   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2077   if (OpTy == ShTy || OpTy.isVector()) return Op;
2078 
2079   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2080 }
2081 
2082 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2083   SDLoc dl(Node);
2084   const TargetLowering &TLI = getTargetLoweringInfo();
2085   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2086   EVT VT = Node->getValueType(0);
2087   SDValue Tmp1 = Node->getOperand(0);
2088   SDValue Tmp2 = Node->getOperand(1);
2089   const MaybeAlign MA(Node->getConstantOperandVal(3));
2090 
2091   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2092                                Tmp2, MachinePointerInfo(V));
2093   SDValue VAList = VAListLoad;
2094 
2095   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2096     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2097                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2098 
2099     VAList =
2100         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2101                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2102   }
2103 
2104   // Increment the pointer, VAList, to the next vaarg
2105   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2106                  getConstant(getDataLayout().getTypeAllocSize(
2107                                                VT.getTypeForEVT(*getContext())),
2108                              dl, VAList.getValueType()));
2109   // Store the incremented VAList to the legalized pointer
2110   Tmp1 =
2111       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2112   // Load the actual argument out of the pointer VAList
2113   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2114 }
2115 
2116 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2117   SDLoc dl(Node);
2118   const TargetLowering &TLI = getTargetLoweringInfo();
2119   // This defaults to loading a pointer from the input and storing it to the
2120   // output, returning the chain.
2121   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2122   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2123   SDValue Tmp1 =
2124       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2125               Node->getOperand(2), MachinePointerInfo(VS));
2126   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2127                   MachinePointerInfo(VD));
2128 }
2129 
2130 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2131   const DataLayout &DL = getDataLayout();
2132   Type *Ty = VT.getTypeForEVT(*getContext());
2133   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2134 
2135   if (TLI->isTypeLegal(VT) || !VT.isVector())
2136     return RedAlign;
2137 
2138   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2139   const Align StackAlign = TFI->getStackAlign();
2140 
2141   // See if we can choose a smaller ABI alignment in cases where it's an
2142   // illegal vector type that will get broken down.
2143   if (RedAlign > StackAlign) {
2144     EVT IntermediateVT;
2145     MVT RegisterVT;
2146     unsigned NumIntermediates;
2147     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2148                                 NumIntermediates, RegisterVT);
2149     Ty = IntermediateVT.getTypeForEVT(*getContext());
2150     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2151     if (RedAlign2 < RedAlign)
2152       RedAlign = RedAlign2;
2153   }
2154 
2155   return RedAlign;
2156 }
2157 
2158 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2159   MachineFrameInfo &MFI = MF->getFrameInfo();
2160   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2161   int StackID = 0;
2162   if (Bytes.isScalable())
2163     StackID = TFI->getStackIDForScalableVectors();
2164   // The stack id gives an indication of whether the object is scalable or
2165   // not, so it's safe to pass in the minimum size here.
2166   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2167                                        false, nullptr, StackID);
2168   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2169 }
2170 
2171 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2172   Type *Ty = VT.getTypeForEVT(*getContext());
2173   Align StackAlign =
2174       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2175   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2176 }
2177 
2178 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2179   TypeSize VT1Size = VT1.getStoreSize();
2180   TypeSize VT2Size = VT2.getStoreSize();
2181   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2182          "Don't know how to choose the maximum size when creating a stack "
2183          "temporary");
2184   TypeSize Bytes =
2185       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2186 
2187   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2188   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2189   const DataLayout &DL = getDataLayout();
2190   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2191   return CreateStackTemporary(Bytes, Align);
2192 }
2193 
2194 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2195                                 ISD::CondCode Cond, const SDLoc &dl) {
2196   EVT OpVT = N1.getValueType();
2197 
2198   // These setcc operations always fold.
2199   switch (Cond) {
2200   default: break;
2201   case ISD::SETFALSE:
2202   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2203   case ISD::SETTRUE:
2204   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2205 
2206   case ISD::SETOEQ:
2207   case ISD::SETOGT:
2208   case ISD::SETOGE:
2209   case ISD::SETOLT:
2210   case ISD::SETOLE:
2211   case ISD::SETONE:
2212   case ISD::SETO:
2213   case ISD::SETUO:
2214   case ISD::SETUEQ:
2215   case ISD::SETUNE:
2216     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2217     break;
2218   }
2219 
2220   if (OpVT.isInteger()) {
2221     // For EQ and NE, we can always pick a value for the undef to make the
2222     // predicate pass or fail, so we can return undef.
2223     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2224     // icmp eq/ne X, undef -> undef.
2225     if ((N1.isUndef() || N2.isUndef()) &&
2226         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2227       return getUNDEF(VT);
2228 
2229     // If both operands are undef, we can return undef for int comparison.
2230     // icmp undef, undef -> undef.
2231     if (N1.isUndef() && N2.isUndef())
2232       return getUNDEF(VT);
2233 
2234     // icmp X, X -> true/false
2235     // icmp X, undef -> true/false because undef could be X.
2236     if (N1 == N2)
2237       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2238   }
2239 
2240   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2241     const APInt &C2 = N2C->getAPIntValue();
2242     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2243       const APInt &C1 = N1C->getAPIntValue();
2244 
2245       switch (Cond) {
2246       default: llvm_unreachable("Unknown integer setcc!");
2247       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2248       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2249       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2250       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2251       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2252       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2253       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2254       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2255       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2256       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2257       }
2258     }
2259   }
2260 
2261   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2262   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2263 
2264   if (N1CFP && N2CFP) {
2265     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2266     switch (Cond) {
2267     default: break;
2268     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2269                         return getUNDEF(VT);
2270                       LLVM_FALLTHROUGH;
2271     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2272                                              OpVT);
2273     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2274                         return getUNDEF(VT);
2275                       LLVM_FALLTHROUGH;
2276     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2277                                              R==APFloat::cmpLessThan, dl, VT,
2278                                              OpVT);
2279     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2280                         return getUNDEF(VT);
2281                       LLVM_FALLTHROUGH;
2282     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2283                                              OpVT);
2284     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2285                         return getUNDEF(VT);
2286                       LLVM_FALLTHROUGH;
2287     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2288                                              VT, OpVT);
2289     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2290                         return getUNDEF(VT);
2291                       LLVM_FALLTHROUGH;
2292     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2293                                              R==APFloat::cmpEqual, dl, VT,
2294                                              OpVT);
2295     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2296                         return getUNDEF(VT);
2297                       LLVM_FALLTHROUGH;
2298     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2299                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2300     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2301                                              OpVT);
2302     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2303                                              OpVT);
2304     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2305                                              R==APFloat::cmpEqual, dl, VT,
2306                                              OpVT);
2307     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2308                                              OpVT);
2309     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2310                                              R==APFloat::cmpLessThan, dl, VT,
2311                                              OpVT);
2312     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2313                                              R==APFloat::cmpUnordered, dl, VT,
2314                                              OpVT);
2315     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2316                                              VT, OpVT);
2317     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2318                                              OpVT);
2319     }
2320   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2321     // Ensure that the constant occurs on the RHS.
2322     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2323     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2324       return SDValue();
2325     return getSetCC(dl, VT, N2, N1, SwappedCond);
2326   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2327              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2328     // If an operand is known to be a nan (or undef that could be a nan), we can
2329     // fold it.
2330     // Choosing NaN for the undef will always make unordered comparison succeed
2331     // and ordered comparison fails.
2332     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2333     switch (ISD::getUnorderedFlavor(Cond)) {
2334     default:
2335       llvm_unreachable("Unknown flavor!");
2336     case 0: // Known false.
2337       return getBoolConstant(false, dl, VT, OpVT);
2338     case 1: // Known true.
2339       return getBoolConstant(true, dl, VT, OpVT);
2340     case 2: // Undefined.
2341       return getUNDEF(VT);
2342     }
2343   }
2344 
2345   // Could not fold it.
2346   return SDValue();
2347 }
2348 
2349 /// See if the specified operand can be simplified with the knowledge that only
2350 /// the bits specified by DemandedBits are used.
2351 /// TODO: really we should be making this into the DAG equivalent of
2352 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2353 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2354   EVT VT = V.getValueType();
2355 
2356   if (VT.isScalableVector())
2357     return SDValue();
2358 
2359   APInt DemandedElts = VT.isVector()
2360                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2361                            : APInt(1, 1);
2362   return GetDemandedBits(V, DemandedBits, DemandedElts);
2363 }
2364 
2365 /// See if the specified operand can be simplified with the knowledge that only
2366 /// the bits specified by DemandedBits are used in the elements specified by
2367 /// DemandedElts.
2368 /// TODO: really we should be making this into the DAG equivalent of
2369 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2370 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2371                                       const APInt &DemandedElts) {
2372   switch (V.getOpcode()) {
2373   default:
2374     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2375                                                 *this, 0);
2376   case ISD::Constant: {
2377     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2378     APInt NewVal = CVal & DemandedBits;
2379     if (NewVal != CVal)
2380       return getConstant(NewVal, SDLoc(V), V.getValueType());
2381     break;
2382   }
2383   case ISD::SRL:
2384     // Only look at single-use SRLs.
2385     if (!V.getNode()->hasOneUse())
2386       break;
2387     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2388       // See if we can recursively simplify the LHS.
2389       unsigned Amt = RHSC->getZExtValue();
2390 
2391       // Watch out for shift count overflow though.
2392       if (Amt >= DemandedBits.getBitWidth())
2393         break;
2394       APInt SrcDemandedBits = DemandedBits << Amt;
2395       if (SDValue SimplifyLHS =
2396               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2397         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2398                        V.getOperand(1));
2399     }
2400     break;
2401   }
2402   return SDValue();
2403 }
2404 
2405 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2406 /// use this predicate to simplify operations downstream.
2407 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2408   unsigned BitWidth = Op.getScalarValueSizeInBits();
2409   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2410 }
2411 
2412 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2413 /// this predicate to simplify operations downstream.  Mask is known to be zero
2414 /// for bits that V cannot have.
2415 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2416                                      unsigned Depth) const {
2417   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2418 }
2419 
2420 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2421 /// DemandedElts.  We use this predicate to simplify operations downstream.
2422 /// Mask is known to be zero for bits that V cannot have.
2423 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2424                                      const APInt &DemandedElts,
2425                                      unsigned Depth) const {
2426   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2427 }
2428 
2429 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2430 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2431                                         unsigned Depth) const {
2432   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2433 }
2434 
2435 /// isSplatValue - Return true if the vector V has the same value
2436 /// across all DemandedElts. For scalable vectors it does not make
2437 /// sense to specify which elements are demanded or undefined, therefore
2438 /// they are simply ignored.
2439 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2440                                 APInt &UndefElts, unsigned Depth) {
2441   EVT VT = V.getValueType();
2442   assert(VT.isVector() && "Vector type expected");
2443 
2444   if (!VT.isScalableVector() && !DemandedElts)
2445     return false; // No demanded elts, better to assume we don't know anything.
2446 
2447   if (Depth >= MaxRecursionDepth)
2448     return false; // Limit search depth.
2449 
2450   // Deal with some common cases here that work for both fixed and scalable
2451   // vector types.
2452   switch (V.getOpcode()) {
2453   case ISD::SPLAT_VECTOR:
2454     UndefElts = V.getOperand(0).isUndef()
2455                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2456                     : APInt(DemandedElts.getBitWidth(), 0);
2457     return true;
2458   case ISD::ADD:
2459   case ISD::SUB:
2460   case ISD::AND:
2461   case ISD::XOR:
2462   case ISD::OR: {
2463     APInt UndefLHS, UndefRHS;
2464     SDValue LHS = V.getOperand(0);
2465     SDValue RHS = V.getOperand(1);
2466     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2467         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2468       UndefElts = UndefLHS | UndefRHS;
2469       return true;
2470     }
2471     break;
2472   }
2473   case ISD::TRUNCATE:
2474   case ISD::SIGN_EXTEND:
2475   case ISD::ZERO_EXTEND:
2476     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2477   }
2478 
2479   // We don't support other cases than those above for scalable vectors at
2480   // the moment.
2481   if (VT.isScalableVector())
2482     return false;
2483 
2484   unsigned NumElts = VT.getVectorNumElements();
2485   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2486   UndefElts = APInt::getNullValue(NumElts);
2487 
2488   switch (V.getOpcode()) {
2489   case ISD::BUILD_VECTOR: {
2490     SDValue Scl;
2491     for (unsigned i = 0; i != NumElts; ++i) {
2492       SDValue Op = V.getOperand(i);
2493       if (Op.isUndef()) {
2494         UndefElts.setBit(i);
2495         continue;
2496       }
2497       if (!DemandedElts[i])
2498         continue;
2499       if (Scl && Scl != Op)
2500         return false;
2501       Scl = Op;
2502     }
2503     return true;
2504   }
2505   case ISD::VECTOR_SHUFFLE: {
2506     // Check if this is a shuffle node doing a splat.
2507     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2508     int SplatIndex = -1;
2509     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2510     for (int i = 0; i != (int)NumElts; ++i) {
2511       int M = Mask[i];
2512       if (M < 0) {
2513         UndefElts.setBit(i);
2514         continue;
2515       }
2516       if (!DemandedElts[i])
2517         continue;
2518       if (0 <= SplatIndex && SplatIndex != M)
2519         return false;
2520       SplatIndex = M;
2521     }
2522     return true;
2523   }
2524   case ISD::EXTRACT_SUBVECTOR: {
2525     // Offset the demanded elts by the subvector index.
2526     SDValue Src = V.getOperand(0);
2527     uint64_t Idx = V.getConstantOperandVal(1);
2528     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2529     APInt UndefSrcElts;
2530     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2531     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2532       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2533       return true;
2534     }
2535     break;
2536   }
2537   }
2538 
2539   return false;
2540 }
2541 
2542 /// Helper wrapper to main isSplatValue function.
2543 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2544   EVT VT = V.getValueType();
2545   assert(VT.isVector() && "Vector type expected");
2546 
2547   APInt UndefElts;
2548   APInt DemandedElts;
2549 
2550   // For now we don't support this with scalable vectors.
2551   if (!VT.isScalableVector())
2552     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2553   return isSplatValue(V, DemandedElts, UndefElts) &&
2554          (AllowUndefs || !UndefElts);
2555 }
2556 
2557 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2558   V = peekThroughExtractSubvectors(V);
2559 
2560   EVT VT = V.getValueType();
2561   unsigned Opcode = V.getOpcode();
2562   switch (Opcode) {
2563   default: {
2564     APInt UndefElts;
2565     APInt DemandedElts;
2566 
2567     if (!VT.isScalableVector())
2568       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2569 
2570     if (isSplatValue(V, DemandedElts, UndefElts)) {
2571       if (VT.isScalableVector()) {
2572         // DemandedElts and UndefElts are ignored for scalable vectors, since
2573         // the only supported cases are SPLAT_VECTOR nodes.
2574         SplatIdx = 0;
2575       } else {
2576         // Handle case where all demanded elements are UNDEF.
2577         if (DemandedElts.isSubsetOf(UndefElts)) {
2578           SplatIdx = 0;
2579           return getUNDEF(VT);
2580         }
2581         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2582       }
2583       return V;
2584     }
2585     break;
2586   }
2587   case ISD::SPLAT_VECTOR:
2588     SplatIdx = 0;
2589     return V;
2590   case ISD::VECTOR_SHUFFLE: {
2591     if (VT.isScalableVector())
2592       return SDValue();
2593 
2594     // Check if this is a shuffle node doing a splat.
2595     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2596     // getTargetVShiftNode currently struggles without the splat source.
2597     auto *SVN = cast<ShuffleVectorSDNode>(V);
2598     if (!SVN->isSplat())
2599       break;
2600     int Idx = SVN->getSplatIndex();
2601     int NumElts = V.getValueType().getVectorNumElements();
2602     SplatIdx = Idx % NumElts;
2603     return V.getOperand(Idx / NumElts);
2604   }
2605   }
2606 
2607   return SDValue();
2608 }
2609 
2610 SDValue SelectionDAG::getSplatValue(SDValue V) {
2611   int SplatIdx;
2612   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2613     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2614                    SrcVector.getValueType().getScalarType(), SrcVector,
2615                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2616   return SDValue();
2617 }
2618 
2619 const APInt *
2620 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2621                                           const APInt &DemandedElts) const {
2622   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2623           V.getOpcode() == ISD::SRA) &&
2624          "Unknown shift node");
2625   unsigned BitWidth = V.getScalarValueSizeInBits();
2626   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2627     // Shifting more than the bitwidth is not valid.
2628     const APInt &ShAmt = SA->getAPIntValue();
2629     if (ShAmt.ult(BitWidth))
2630       return &ShAmt;
2631   }
2632   return nullptr;
2633 }
2634 
2635 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2636     SDValue V, const APInt &DemandedElts) const {
2637   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2638           V.getOpcode() == ISD::SRA) &&
2639          "Unknown shift node");
2640   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2641     return ValidAmt;
2642   unsigned BitWidth = V.getScalarValueSizeInBits();
2643   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2644   if (!BV)
2645     return nullptr;
2646   const APInt *MinShAmt = nullptr;
2647   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2648     if (!DemandedElts[i])
2649       continue;
2650     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2651     if (!SA)
2652       return nullptr;
2653     // Shifting more than the bitwidth is not valid.
2654     const APInt &ShAmt = SA->getAPIntValue();
2655     if (ShAmt.uge(BitWidth))
2656       return nullptr;
2657     if (MinShAmt && MinShAmt->ule(ShAmt))
2658       continue;
2659     MinShAmt = &ShAmt;
2660   }
2661   return MinShAmt;
2662 }
2663 
2664 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2665     SDValue V, const APInt &DemandedElts) const {
2666   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2667           V.getOpcode() == ISD::SRA) &&
2668          "Unknown shift node");
2669   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2670     return ValidAmt;
2671   unsigned BitWidth = V.getScalarValueSizeInBits();
2672   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2673   if (!BV)
2674     return nullptr;
2675   const APInt *MaxShAmt = nullptr;
2676   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2677     if (!DemandedElts[i])
2678       continue;
2679     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2680     if (!SA)
2681       return nullptr;
2682     // Shifting more than the bitwidth is not valid.
2683     const APInt &ShAmt = SA->getAPIntValue();
2684     if (ShAmt.uge(BitWidth))
2685       return nullptr;
2686     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2687       continue;
2688     MaxShAmt = &ShAmt;
2689   }
2690   return MaxShAmt;
2691 }
2692 
2693 /// Determine which bits of Op are known to be either zero or one and return
2694 /// them in Known. For vectors, the known bits are those that are shared by
2695 /// every vector element.
2696 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2697   EVT VT = Op.getValueType();
2698 
2699   // TOOD: Until we have a plan for how to represent demanded elements for
2700   // scalable vectors, we can just bail out for now.
2701   if (Op.getValueType().isScalableVector()) {
2702     unsigned BitWidth = Op.getScalarValueSizeInBits();
2703     return KnownBits(BitWidth);
2704   }
2705 
2706   APInt DemandedElts = VT.isVector()
2707                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2708                            : APInt(1, 1);
2709   return computeKnownBits(Op, DemandedElts, Depth);
2710 }
2711 
2712 /// Determine which bits of Op are known to be either zero or one and return
2713 /// them in Known. The DemandedElts argument allows us to only collect the known
2714 /// bits that are shared by the requested vector elements.
2715 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2716                                          unsigned Depth) const {
2717   unsigned BitWidth = Op.getScalarValueSizeInBits();
2718 
2719   KnownBits Known(BitWidth);   // Don't know anything.
2720 
2721   // TOOD: Until we have a plan for how to represent demanded elements for
2722   // scalable vectors, we can just bail out for now.
2723   if (Op.getValueType().isScalableVector())
2724     return Known;
2725 
2726   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2727     // We know all of the bits for a constant!
2728     return KnownBits::makeConstant(C->getAPIntValue());
2729   }
2730   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2731     // We know all of the bits for a constant fp!
2732     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2733   }
2734 
2735   if (Depth >= MaxRecursionDepth)
2736     return Known;  // Limit search depth.
2737 
2738   KnownBits Known2;
2739   unsigned NumElts = DemandedElts.getBitWidth();
2740   assert((!Op.getValueType().isVector() ||
2741           NumElts == Op.getValueType().getVectorNumElements()) &&
2742          "Unexpected vector size");
2743 
2744   if (!DemandedElts)
2745     return Known;  // No demanded elts, better to assume we don't know anything.
2746 
2747   unsigned Opcode = Op.getOpcode();
2748   switch (Opcode) {
2749   case ISD::BUILD_VECTOR:
2750     // Collect the known bits that are shared by every demanded vector element.
2751     Known.Zero.setAllBits(); Known.One.setAllBits();
2752     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2753       if (!DemandedElts[i])
2754         continue;
2755 
2756       SDValue SrcOp = Op.getOperand(i);
2757       Known2 = computeKnownBits(SrcOp, Depth + 1);
2758 
2759       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2760       if (SrcOp.getValueSizeInBits() != BitWidth) {
2761         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2762                "Expected BUILD_VECTOR implicit truncation");
2763         Known2 = Known2.trunc(BitWidth);
2764       }
2765 
2766       // Known bits are the values that are shared by every demanded element.
2767       Known = KnownBits::commonBits(Known, Known2);
2768 
2769       // If we don't know any bits, early out.
2770       if (Known.isUnknown())
2771         break;
2772     }
2773     break;
2774   case ISD::VECTOR_SHUFFLE: {
2775     // Collect the known bits that are shared by every vector element referenced
2776     // by the shuffle.
2777     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2778     Known.Zero.setAllBits(); Known.One.setAllBits();
2779     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2780     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2781     for (unsigned i = 0; i != NumElts; ++i) {
2782       if (!DemandedElts[i])
2783         continue;
2784 
2785       int M = SVN->getMaskElt(i);
2786       if (M < 0) {
2787         // For UNDEF elements, we don't know anything about the common state of
2788         // the shuffle result.
2789         Known.resetAll();
2790         DemandedLHS.clearAllBits();
2791         DemandedRHS.clearAllBits();
2792         break;
2793       }
2794 
2795       if ((unsigned)M < NumElts)
2796         DemandedLHS.setBit((unsigned)M % NumElts);
2797       else
2798         DemandedRHS.setBit((unsigned)M % NumElts);
2799     }
2800     // Known bits are the values that are shared by every demanded element.
2801     if (!!DemandedLHS) {
2802       SDValue LHS = Op.getOperand(0);
2803       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2804       Known = KnownBits::commonBits(Known, Known2);
2805     }
2806     // If we don't know any bits, early out.
2807     if (Known.isUnknown())
2808       break;
2809     if (!!DemandedRHS) {
2810       SDValue RHS = Op.getOperand(1);
2811       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2812       Known = KnownBits::commonBits(Known, Known2);
2813     }
2814     break;
2815   }
2816   case ISD::CONCAT_VECTORS: {
2817     // Split DemandedElts and test each of the demanded subvectors.
2818     Known.Zero.setAllBits(); Known.One.setAllBits();
2819     EVT SubVectorVT = Op.getOperand(0).getValueType();
2820     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2821     unsigned NumSubVectors = Op.getNumOperands();
2822     for (unsigned i = 0; i != NumSubVectors; ++i) {
2823       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2824       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2825       if (!!DemandedSub) {
2826         SDValue Sub = Op.getOperand(i);
2827         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2828         Known = KnownBits::commonBits(Known, Known2);
2829       }
2830       // If we don't know any bits, early out.
2831       if (Known.isUnknown())
2832         break;
2833     }
2834     break;
2835   }
2836   case ISD::INSERT_SUBVECTOR: {
2837     // Demand any elements from the subvector and the remainder from the src its
2838     // inserted into.
2839     SDValue Src = Op.getOperand(0);
2840     SDValue Sub = Op.getOperand(1);
2841     uint64_t Idx = Op.getConstantOperandVal(2);
2842     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2843     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2844     APInt DemandedSrcElts = DemandedElts;
2845     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2846 
2847     Known.One.setAllBits();
2848     Known.Zero.setAllBits();
2849     if (!!DemandedSubElts) {
2850       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2851       if (Known.isUnknown())
2852         break; // early-out.
2853     }
2854     if (!!DemandedSrcElts) {
2855       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2856       Known = KnownBits::commonBits(Known, Known2);
2857     }
2858     break;
2859   }
2860   case ISD::EXTRACT_SUBVECTOR: {
2861     // Offset the demanded elts by the subvector index.
2862     SDValue Src = Op.getOperand(0);
2863     // Bail until we can represent demanded elements for scalable vectors.
2864     if (Src.getValueType().isScalableVector())
2865       break;
2866     uint64_t Idx = Op.getConstantOperandVal(1);
2867     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2868     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2869     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2870     break;
2871   }
2872   case ISD::SCALAR_TO_VECTOR: {
2873     // We know about scalar_to_vector as much as we know about it source,
2874     // which becomes the first element of otherwise unknown vector.
2875     if (DemandedElts != 1)
2876       break;
2877 
2878     SDValue N0 = Op.getOperand(0);
2879     Known = computeKnownBits(N0, Depth + 1);
2880     if (N0.getValueSizeInBits() != BitWidth)
2881       Known = Known.trunc(BitWidth);
2882 
2883     break;
2884   }
2885   case ISD::BITCAST: {
2886     SDValue N0 = Op.getOperand(0);
2887     EVT SubVT = N0.getValueType();
2888     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2889 
2890     // Ignore bitcasts from unsupported types.
2891     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2892       break;
2893 
2894     // Fast handling of 'identity' bitcasts.
2895     if (BitWidth == SubBitWidth) {
2896       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2897       break;
2898     }
2899 
2900     bool IsLE = getDataLayout().isLittleEndian();
2901 
2902     // Bitcast 'small element' vector to 'large element' scalar/vector.
2903     if ((BitWidth % SubBitWidth) == 0) {
2904       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2905 
2906       // Collect known bits for the (larger) output by collecting the known
2907       // bits from each set of sub elements and shift these into place.
2908       // We need to separately call computeKnownBits for each set of
2909       // sub elements as the knownbits for each is likely to be different.
2910       unsigned SubScale = BitWidth / SubBitWidth;
2911       APInt SubDemandedElts(NumElts * SubScale, 0);
2912       for (unsigned i = 0; i != NumElts; ++i)
2913         if (DemandedElts[i])
2914           SubDemandedElts.setBit(i * SubScale);
2915 
2916       for (unsigned i = 0; i != SubScale; ++i) {
2917         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2918                          Depth + 1);
2919         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2920         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2921         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2922       }
2923     }
2924 
2925     // Bitcast 'large element' scalar/vector to 'small element' vector.
2926     if ((SubBitWidth % BitWidth) == 0) {
2927       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2928 
2929       // Collect known bits for the (smaller) output by collecting the known
2930       // bits from the overlapping larger input elements and extracting the
2931       // sub sections we actually care about.
2932       unsigned SubScale = SubBitWidth / BitWidth;
2933       APInt SubDemandedElts(NumElts / SubScale, 0);
2934       for (unsigned i = 0; i != NumElts; ++i)
2935         if (DemandedElts[i])
2936           SubDemandedElts.setBit(i / SubScale);
2937 
2938       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2939 
2940       Known.Zero.setAllBits(); Known.One.setAllBits();
2941       for (unsigned i = 0; i != NumElts; ++i)
2942         if (DemandedElts[i]) {
2943           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2944           unsigned Offset = (Shifts % SubScale) * BitWidth;
2945           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2946           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2947           // If we don't know any bits, early out.
2948           if (Known.isUnknown())
2949             break;
2950         }
2951     }
2952     break;
2953   }
2954   case ISD::AND:
2955     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2956     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2957 
2958     Known &= Known2;
2959     break;
2960   case ISD::OR:
2961     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2962     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2963 
2964     Known |= Known2;
2965     break;
2966   case ISD::XOR:
2967     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2968     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2969 
2970     Known ^= Known2;
2971     break;
2972   case ISD::MUL: {
2973     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2974     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2975     Known = KnownBits::computeForMul(Known, Known2);
2976     break;
2977   }
2978   case ISD::UDIV: {
2979     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2980     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2981     Known = KnownBits::udiv(Known, Known2);
2982     break;
2983   }
2984   case ISD::SELECT:
2985   case ISD::VSELECT:
2986     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2987     // If we don't know any bits, early out.
2988     if (Known.isUnknown())
2989       break;
2990     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2991 
2992     // Only known if known in both the LHS and RHS.
2993     Known = KnownBits::commonBits(Known, Known2);
2994     break;
2995   case ISD::SELECT_CC:
2996     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2997     // If we don't know any bits, early out.
2998     if (Known.isUnknown())
2999       break;
3000     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3001 
3002     // Only known if known in both the LHS and RHS.
3003     Known = KnownBits::commonBits(Known, Known2);
3004     break;
3005   case ISD::SMULO:
3006   case ISD::UMULO:
3007   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3008     if (Op.getResNo() != 1)
3009       break;
3010     // The boolean result conforms to getBooleanContents.
3011     // If we know the result of a setcc has the top bits zero, use this info.
3012     // We know that we have an integer-based boolean since these operations
3013     // are only available for integer.
3014     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3015             TargetLowering::ZeroOrOneBooleanContent &&
3016         BitWidth > 1)
3017       Known.Zero.setBitsFrom(1);
3018     break;
3019   case ISD::SETCC:
3020   case ISD::STRICT_FSETCC:
3021   case ISD::STRICT_FSETCCS: {
3022     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3023     // If we know the result of a setcc has the top bits zero, use this info.
3024     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3025             TargetLowering::ZeroOrOneBooleanContent &&
3026         BitWidth > 1)
3027       Known.Zero.setBitsFrom(1);
3028     break;
3029   }
3030   case ISD::SHL:
3031     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3032     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3033     Known = KnownBits::shl(Known, Known2);
3034 
3035     // Minimum shift low bits are known zero.
3036     if (const APInt *ShMinAmt =
3037             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3038       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3039     break;
3040   case ISD::SRL:
3041     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3042     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3043     Known = KnownBits::lshr(Known, Known2);
3044 
3045     // Minimum shift high bits are known zero.
3046     if (const APInt *ShMinAmt =
3047             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3048       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3049     break;
3050   case ISD::SRA:
3051     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3052     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3053     Known = KnownBits::ashr(Known, Known2);
3054     // TODO: Add minimum shift high known sign bits.
3055     break;
3056   case ISD::FSHL:
3057   case ISD::FSHR:
3058     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3059       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3060 
3061       // For fshl, 0-shift returns the 1st arg.
3062       // For fshr, 0-shift returns the 2nd arg.
3063       if (Amt == 0) {
3064         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3065                                  DemandedElts, Depth + 1);
3066         break;
3067       }
3068 
3069       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3070       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3071       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3072       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3073       if (Opcode == ISD::FSHL) {
3074         Known.One <<= Amt;
3075         Known.Zero <<= Amt;
3076         Known2.One.lshrInPlace(BitWidth - Amt);
3077         Known2.Zero.lshrInPlace(BitWidth - Amt);
3078       } else {
3079         Known.One <<= BitWidth - Amt;
3080         Known.Zero <<= BitWidth - Amt;
3081         Known2.One.lshrInPlace(Amt);
3082         Known2.Zero.lshrInPlace(Amt);
3083       }
3084       Known.One |= Known2.One;
3085       Known.Zero |= Known2.Zero;
3086     }
3087     break;
3088   case ISD::SIGN_EXTEND_INREG: {
3089     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3090     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3091     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3092     break;
3093   }
3094   case ISD::CTTZ:
3095   case ISD::CTTZ_ZERO_UNDEF: {
3096     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3097     // If we have a known 1, its position is our upper bound.
3098     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3099     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3100     Known.Zero.setBitsFrom(LowBits);
3101     break;
3102   }
3103   case ISD::CTLZ:
3104   case ISD::CTLZ_ZERO_UNDEF: {
3105     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3106     // If we have a known 1, its position is our upper bound.
3107     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3108     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3109     Known.Zero.setBitsFrom(LowBits);
3110     break;
3111   }
3112   case ISD::CTPOP: {
3113     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3114     // If we know some of the bits are zero, they can't be one.
3115     unsigned PossibleOnes = Known2.countMaxPopulation();
3116     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3117     break;
3118   }
3119   case ISD::PARITY: {
3120     // Parity returns 0 everywhere but the LSB.
3121     Known.Zero.setBitsFrom(1);
3122     break;
3123   }
3124   case ISD::LOAD: {
3125     LoadSDNode *LD = cast<LoadSDNode>(Op);
3126     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3127     if (ISD::isNON_EXTLoad(LD) && Cst) {
3128       // Determine any common known bits from the loaded constant pool value.
3129       Type *CstTy = Cst->getType();
3130       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3131         // If its a vector splat, then we can (quickly) reuse the scalar path.
3132         // NOTE: We assume all elements match and none are UNDEF.
3133         if (CstTy->isVectorTy()) {
3134           if (const Constant *Splat = Cst->getSplatValue()) {
3135             Cst = Splat;
3136             CstTy = Cst->getType();
3137           }
3138         }
3139         // TODO - do we need to handle different bitwidths?
3140         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3141           // Iterate across all vector elements finding common known bits.
3142           Known.One.setAllBits();
3143           Known.Zero.setAllBits();
3144           for (unsigned i = 0; i != NumElts; ++i) {
3145             if (!DemandedElts[i])
3146               continue;
3147             if (Constant *Elt = Cst->getAggregateElement(i)) {
3148               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3149                 const APInt &Value = CInt->getValue();
3150                 Known.One &= Value;
3151                 Known.Zero &= ~Value;
3152                 continue;
3153               }
3154               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3155                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3156                 Known.One &= Value;
3157                 Known.Zero &= ~Value;
3158                 continue;
3159               }
3160             }
3161             Known.One.clearAllBits();
3162             Known.Zero.clearAllBits();
3163             break;
3164           }
3165         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3166           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3167             Known = KnownBits::makeConstant(CInt->getValue());
3168           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3169             Known =
3170                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3171           }
3172         }
3173       }
3174     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3175       // If this is a ZEXTLoad and we are looking at the loaded value.
3176       EVT VT = LD->getMemoryVT();
3177       unsigned MemBits = VT.getScalarSizeInBits();
3178       Known.Zero.setBitsFrom(MemBits);
3179     } else if (const MDNode *Ranges = LD->getRanges()) {
3180       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3181         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3182     }
3183     break;
3184   }
3185   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3186     EVT InVT = Op.getOperand(0).getValueType();
3187     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3188     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3189     Known = Known.zext(BitWidth);
3190     break;
3191   }
3192   case ISD::ZERO_EXTEND: {
3193     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3194     Known = Known.zext(BitWidth);
3195     break;
3196   }
3197   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3198     EVT InVT = Op.getOperand(0).getValueType();
3199     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3200     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3201     // If the sign bit is known to be zero or one, then sext will extend
3202     // it to the top bits, else it will just zext.
3203     Known = Known.sext(BitWidth);
3204     break;
3205   }
3206   case ISD::SIGN_EXTEND: {
3207     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3208     // If the sign bit is known to be zero or one, then sext will extend
3209     // it to the top bits, else it will just zext.
3210     Known = Known.sext(BitWidth);
3211     break;
3212   }
3213   case ISD::ANY_EXTEND_VECTOR_INREG: {
3214     EVT InVT = Op.getOperand(0).getValueType();
3215     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3216     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3217     Known = Known.anyext(BitWidth);
3218     break;
3219   }
3220   case ISD::ANY_EXTEND: {
3221     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3222     Known = Known.anyext(BitWidth);
3223     break;
3224   }
3225   case ISD::TRUNCATE: {
3226     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3227     Known = Known.trunc(BitWidth);
3228     break;
3229   }
3230   case ISD::AssertZext: {
3231     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3232     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3233     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3234     Known.Zero |= (~InMask);
3235     Known.One  &= (~Known.Zero);
3236     break;
3237   }
3238   case ISD::AssertAlign: {
3239     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3240     assert(LogOfAlign != 0);
3241     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3242     // well as clearing one bits.
3243     Known.Zero.setLowBits(LogOfAlign);
3244     Known.One.clearLowBits(LogOfAlign);
3245     break;
3246   }
3247   case ISD::FGETSIGN:
3248     // All bits are zero except the low bit.
3249     Known.Zero.setBitsFrom(1);
3250     break;
3251   case ISD::USUBO:
3252   case ISD::SSUBO:
3253     if (Op.getResNo() == 1) {
3254       // If we know the result of a setcc has the top bits zero, use this info.
3255       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3256               TargetLowering::ZeroOrOneBooleanContent &&
3257           BitWidth > 1)
3258         Known.Zero.setBitsFrom(1);
3259       break;
3260     }
3261     LLVM_FALLTHROUGH;
3262   case ISD::SUB:
3263   case ISD::SUBC: {
3264     assert(Op.getResNo() == 0 &&
3265            "We only compute knownbits for the difference here.");
3266 
3267     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3268     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3269     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3270                                         Known, Known2);
3271     break;
3272   }
3273   case ISD::UADDO:
3274   case ISD::SADDO:
3275   case ISD::ADDCARRY:
3276     if (Op.getResNo() == 1) {
3277       // If we know the result of a setcc has the top bits zero, use this info.
3278       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3279               TargetLowering::ZeroOrOneBooleanContent &&
3280           BitWidth > 1)
3281         Known.Zero.setBitsFrom(1);
3282       break;
3283     }
3284     LLVM_FALLTHROUGH;
3285   case ISD::ADD:
3286   case ISD::ADDC:
3287   case ISD::ADDE: {
3288     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3289 
3290     // With ADDE and ADDCARRY, a carry bit may be added in.
3291     KnownBits Carry(1);
3292     if (Opcode == ISD::ADDE)
3293       // Can't track carry from glue, set carry to unknown.
3294       Carry.resetAll();
3295     else if (Opcode == ISD::ADDCARRY)
3296       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3297       // the trouble (how often will we find a known carry bit). And I haven't
3298       // tested this very much yet, but something like this might work:
3299       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3300       //   Carry = Carry.zextOrTrunc(1, false);
3301       Carry.resetAll();
3302     else
3303       Carry.setAllZero();
3304 
3305     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3306     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3307     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3308     break;
3309   }
3310   case ISD::SREM: {
3311     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3312     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3313     Known = KnownBits::srem(Known, Known2);
3314     break;
3315   }
3316   case ISD::UREM: {
3317     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3318     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3319     Known = KnownBits::urem(Known, Known2);
3320     break;
3321   }
3322   case ISD::EXTRACT_ELEMENT: {
3323     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3324     const unsigned Index = Op.getConstantOperandVal(1);
3325     const unsigned EltBitWidth = Op.getValueSizeInBits();
3326 
3327     // Remove low part of known bits mask
3328     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3329     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3330 
3331     // Remove high part of known bit mask
3332     Known = Known.trunc(EltBitWidth);
3333     break;
3334   }
3335   case ISD::EXTRACT_VECTOR_ELT: {
3336     SDValue InVec = Op.getOperand(0);
3337     SDValue EltNo = Op.getOperand(1);
3338     EVT VecVT = InVec.getValueType();
3339     // computeKnownBits not yet implemented for scalable vectors.
3340     if (VecVT.isScalableVector())
3341       break;
3342     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3343     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3344 
3345     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3346     // anything about the extended bits.
3347     if (BitWidth > EltBitWidth)
3348       Known = Known.trunc(EltBitWidth);
3349 
3350     // If we know the element index, just demand that vector element, else for
3351     // an unknown element index, ignore DemandedElts and demand them all.
3352     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3353     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3354     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3355       DemandedSrcElts =
3356           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3357 
3358     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3359     if (BitWidth > EltBitWidth)
3360       Known = Known.anyext(BitWidth);
3361     break;
3362   }
3363   case ISD::INSERT_VECTOR_ELT: {
3364     // If we know the element index, split the demand between the
3365     // source vector and the inserted element, otherwise assume we need
3366     // the original demanded vector elements and the value.
3367     SDValue InVec = Op.getOperand(0);
3368     SDValue InVal = Op.getOperand(1);
3369     SDValue EltNo = Op.getOperand(2);
3370     bool DemandedVal = true;
3371     APInt DemandedVecElts = DemandedElts;
3372     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3373     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3374       unsigned EltIdx = CEltNo->getZExtValue();
3375       DemandedVal = !!DemandedElts[EltIdx];
3376       DemandedVecElts.clearBit(EltIdx);
3377     }
3378     Known.One.setAllBits();
3379     Known.Zero.setAllBits();
3380     if (DemandedVal) {
3381       Known2 = computeKnownBits(InVal, Depth + 1);
3382       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3383     }
3384     if (!!DemandedVecElts) {
3385       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3386       Known = KnownBits::commonBits(Known, Known2);
3387     }
3388     break;
3389   }
3390   case ISD::BITREVERSE: {
3391     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3392     Known = Known2.reverseBits();
3393     break;
3394   }
3395   case ISD::BSWAP: {
3396     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3397     Known = Known2.byteSwap();
3398     break;
3399   }
3400   case ISD::ABS: {
3401     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3402     Known = Known2.abs();
3403     break;
3404   }
3405   case ISD::USUBSAT: {
3406     // The result of usubsat will never be larger than the LHS.
3407     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3408     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3409     break;
3410   }
3411   case ISD::UMIN: {
3412     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3413     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3414     Known = KnownBits::umin(Known, Known2);
3415     break;
3416   }
3417   case ISD::UMAX: {
3418     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3419     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3420     Known = KnownBits::umax(Known, Known2);
3421     break;
3422   }
3423   case ISD::SMIN:
3424   case ISD::SMAX: {
3425     // If we have a clamp pattern, we know that the number of sign bits will be
3426     // the minimum of the clamp min/max range.
3427     bool IsMax = (Opcode == ISD::SMAX);
3428     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3429     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3430       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3431         CstHigh =
3432             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3433     if (CstLow && CstHigh) {
3434       if (!IsMax)
3435         std::swap(CstLow, CstHigh);
3436 
3437       const APInt &ValueLow = CstLow->getAPIntValue();
3438       const APInt &ValueHigh = CstHigh->getAPIntValue();
3439       if (ValueLow.sle(ValueHigh)) {
3440         unsigned LowSignBits = ValueLow.getNumSignBits();
3441         unsigned HighSignBits = ValueHigh.getNumSignBits();
3442         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3443         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3444           Known.One.setHighBits(MinSignBits);
3445           break;
3446         }
3447         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3448           Known.Zero.setHighBits(MinSignBits);
3449           break;
3450         }
3451       }
3452     }
3453 
3454     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3455     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3456     if (IsMax)
3457       Known = KnownBits::smax(Known, Known2);
3458     else
3459       Known = KnownBits::smin(Known, Known2);
3460     break;
3461   }
3462   case ISD::FrameIndex:
3463   case ISD::TargetFrameIndex:
3464     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3465                                        Known, getMachineFunction());
3466     break;
3467 
3468   default:
3469     if (Opcode < ISD::BUILTIN_OP_END)
3470       break;
3471     LLVM_FALLTHROUGH;
3472   case ISD::INTRINSIC_WO_CHAIN:
3473   case ISD::INTRINSIC_W_CHAIN:
3474   case ISD::INTRINSIC_VOID:
3475     // Allow the target to implement this method for its nodes.
3476     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3477     break;
3478   }
3479 
3480   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3481   return Known;
3482 }
3483 
3484 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3485                                                              SDValue N1) const {
3486   // X + 0 never overflow
3487   if (isNullConstant(N1))
3488     return OFK_Never;
3489 
3490   KnownBits N1Known = computeKnownBits(N1);
3491   if (N1Known.Zero.getBoolValue()) {
3492     KnownBits N0Known = computeKnownBits(N0);
3493 
3494     bool overflow;
3495     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3496     if (!overflow)
3497       return OFK_Never;
3498   }
3499 
3500   // mulhi + 1 never overflow
3501   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3502       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3503     return OFK_Never;
3504 
3505   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3506     KnownBits N0Known = computeKnownBits(N0);
3507 
3508     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3509       return OFK_Never;
3510   }
3511 
3512   return OFK_Sometime;
3513 }
3514 
3515 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3516   EVT OpVT = Val.getValueType();
3517   unsigned BitWidth = OpVT.getScalarSizeInBits();
3518 
3519   // Is the constant a known power of 2?
3520   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3521     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3522 
3523   // A left-shift of a constant one will have exactly one bit set because
3524   // shifting the bit off the end is undefined.
3525   if (Val.getOpcode() == ISD::SHL) {
3526     auto *C = isConstOrConstSplat(Val.getOperand(0));
3527     if (C && C->getAPIntValue() == 1)
3528       return true;
3529   }
3530 
3531   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3532   // one bit set.
3533   if (Val.getOpcode() == ISD::SRL) {
3534     auto *C = isConstOrConstSplat(Val.getOperand(0));
3535     if (C && C->getAPIntValue().isSignMask())
3536       return true;
3537   }
3538 
3539   // Are all operands of a build vector constant powers of two?
3540   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3541     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3542           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3543             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3544           return false;
3545         }))
3546       return true;
3547 
3548   // More could be done here, though the above checks are enough
3549   // to handle some common cases.
3550 
3551   // Fall back to computeKnownBits to catch other known cases.
3552   KnownBits Known = computeKnownBits(Val);
3553   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3554 }
3555 
3556 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3557   EVT VT = Op.getValueType();
3558 
3559   // TODO: Assume we don't know anything for now.
3560   if (VT.isScalableVector())
3561     return 1;
3562 
3563   APInt DemandedElts = VT.isVector()
3564                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3565                            : APInt(1, 1);
3566   return ComputeNumSignBits(Op, DemandedElts, Depth);
3567 }
3568 
3569 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3570                                           unsigned Depth) const {
3571   EVT VT = Op.getValueType();
3572   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3573   unsigned VTBits = VT.getScalarSizeInBits();
3574   unsigned NumElts = DemandedElts.getBitWidth();
3575   unsigned Tmp, Tmp2;
3576   unsigned FirstAnswer = 1;
3577 
3578   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3579     const APInt &Val = C->getAPIntValue();
3580     return Val.getNumSignBits();
3581   }
3582 
3583   if (Depth >= MaxRecursionDepth)
3584     return 1;  // Limit search depth.
3585 
3586   if (!DemandedElts || VT.isScalableVector())
3587     return 1;  // No demanded elts, better to assume we don't know anything.
3588 
3589   unsigned Opcode = Op.getOpcode();
3590   switch (Opcode) {
3591   default: break;
3592   case ISD::AssertSext:
3593     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3594     return VTBits-Tmp+1;
3595   case ISD::AssertZext:
3596     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3597     return VTBits-Tmp;
3598 
3599   case ISD::BUILD_VECTOR:
3600     Tmp = VTBits;
3601     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3602       if (!DemandedElts[i])
3603         continue;
3604 
3605       SDValue SrcOp = Op.getOperand(i);
3606       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3607 
3608       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3609       if (SrcOp.getValueSizeInBits() != VTBits) {
3610         assert(SrcOp.getValueSizeInBits() > VTBits &&
3611                "Expected BUILD_VECTOR implicit truncation");
3612         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3613         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3614       }
3615       Tmp = std::min(Tmp, Tmp2);
3616     }
3617     return Tmp;
3618 
3619   case ISD::VECTOR_SHUFFLE: {
3620     // Collect the minimum number of sign bits that are shared by every vector
3621     // element referenced by the shuffle.
3622     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3623     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3624     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3625     for (unsigned i = 0; i != NumElts; ++i) {
3626       int M = SVN->getMaskElt(i);
3627       if (!DemandedElts[i])
3628         continue;
3629       // For UNDEF elements, we don't know anything about the common state of
3630       // the shuffle result.
3631       if (M < 0)
3632         return 1;
3633       if ((unsigned)M < NumElts)
3634         DemandedLHS.setBit((unsigned)M % NumElts);
3635       else
3636         DemandedRHS.setBit((unsigned)M % NumElts);
3637     }
3638     Tmp = std::numeric_limits<unsigned>::max();
3639     if (!!DemandedLHS)
3640       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3641     if (!!DemandedRHS) {
3642       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3643       Tmp = std::min(Tmp, Tmp2);
3644     }
3645     // If we don't know anything, early out and try computeKnownBits fall-back.
3646     if (Tmp == 1)
3647       break;
3648     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3649     return Tmp;
3650   }
3651 
3652   case ISD::BITCAST: {
3653     SDValue N0 = Op.getOperand(0);
3654     EVT SrcVT = N0.getValueType();
3655     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3656 
3657     // Ignore bitcasts from unsupported types..
3658     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3659       break;
3660 
3661     // Fast handling of 'identity' bitcasts.
3662     if (VTBits == SrcBits)
3663       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3664 
3665     bool IsLE = getDataLayout().isLittleEndian();
3666 
3667     // Bitcast 'large element' scalar/vector to 'small element' vector.
3668     if ((SrcBits % VTBits) == 0) {
3669       assert(VT.isVector() && "Expected bitcast to vector");
3670 
3671       unsigned Scale = SrcBits / VTBits;
3672       APInt SrcDemandedElts(NumElts / Scale, 0);
3673       for (unsigned i = 0; i != NumElts; ++i)
3674         if (DemandedElts[i])
3675           SrcDemandedElts.setBit(i / Scale);
3676 
3677       // Fast case - sign splat can be simply split across the small elements.
3678       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3679       if (Tmp == SrcBits)
3680         return VTBits;
3681 
3682       // Slow case - determine how far the sign extends into each sub-element.
3683       Tmp2 = VTBits;
3684       for (unsigned i = 0; i != NumElts; ++i)
3685         if (DemandedElts[i]) {
3686           unsigned SubOffset = i % Scale;
3687           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3688           SubOffset = SubOffset * VTBits;
3689           if (Tmp <= SubOffset)
3690             return 1;
3691           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3692         }
3693       return Tmp2;
3694     }
3695     break;
3696   }
3697 
3698   case ISD::SIGN_EXTEND:
3699     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3700     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3701   case ISD::SIGN_EXTEND_INREG:
3702     // Max of the input and what this extends.
3703     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3704     Tmp = VTBits-Tmp+1;
3705     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3706     return std::max(Tmp, Tmp2);
3707   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3708     SDValue Src = Op.getOperand(0);
3709     EVT SrcVT = Src.getValueType();
3710     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3711     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3712     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3713   }
3714   case ISD::SRA:
3715     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3716     // SRA X, C -> adds C sign bits.
3717     if (const APInt *ShAmt =
3718             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3719       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3720     return Tmp;
3721   case ISD::SHL:
3722     if (const APInt *ShAmt =
3723             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3724       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3725       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3726       if (ShAmt->ult(Tmp))
3727         return Tmp - ShAmt->getZExtValue();
3728     }
3729     break;
3730   case ISD::AND:
3731   case ISD::OR:
3732   case ISD::XOR:    // NOT is handled here.
3733     // Logical binary ops preserve the number of sign bits at the worst.
3734     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3735     if (Tmp != 1) {
3736       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3737       FirstAnswer = std::min(Tmp, Tmp2);
3738       // We computed what we know about the sign bits as our first
3739       // answer. Now proceed to the generic code that uses
3740       // computeKnownBits, and pick whichever answer is better.
3741     }
3742     break;
3743 
3744   case ISD::SELECT:
3745   case ISD::VSELECT:
3746     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3747     if (Tmp == 1) return 1;  // Early out.
3748     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3749     return std::min(Tmp, Tmp2);
3750   case ISD::SELECT_CC:
3751     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3752     if (Tmp == 1) return 1;  // Early out.
3753     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3754     return std::min(Tmp, Tmp2);
3755 
3756   case ISD::SMIN:
3757   case ISD::SMAX: {
3758     // If we have a clamp pattern, we know that the number of sign bits will be
3759     // the minimum of the clamp min/max range.
3760     bool IsMax = (Opcode == ISD::SMAX);
3761     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3762     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3763       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3764         CstHigh =
3765             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3766     if (CstLow && CstHigh) {
3767       if (!IsMax)
3768         std::swap(CstLow, CstHigh);
3769       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3770         Tmp = CstLow->getAPIntValue().getNumSignBits();
3771         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3772         return std::min(Tmp, Tmp2);
3773       }
3774     }
3775 
3776     // Fallback - just get the minimum number of sign bits of the operands.
3777     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3778     if (Tmp == 1)
3779       return 1;  // Early out.
3780     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3781     return std::min(Tmp, Tmp2);
3782   }
3783   case ISD::UMIN:
3784   case ISD::UMAX:
3785     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3786     if (Tmp == 1)
3787       return 1;  // Early out.
3788     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3789     return std::min(Tmp, Tmp2);
3790   case ISD::SADDO:
3791   case ISD::UADDO:
3792   case ISD::SSUBO:
3793   case ISD::USUBO:
3794   case ISD::SMULO:
3795   case ISD::UMULO:
3796     if (Op.getResNo() != 1)
3797       break;
3798     // The boolean result conforms to getBooleanContents.  Fall through.
3799     // If setcc returns 0/-1, all bits are sign bits.
3800     // We know that we have an integer-based boolean since these operations
3801     // are only available for integer.
3802     if (TLI->getBooleanContents(VT.isVector(), false) ==
3803         TargetLowering::ZeroOrNegativeOneBooleanContent)
3804       return VTBits;
3805     break;
3806   case ISD::SETCC:
3807   case ISD::STRICT_FSETCC:
3808   case ISD::STRICT_FSETCCS: {
3809     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3810     // If setcc returns 0/-1, all bits are sign bits.
3811     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3812         TargetLowering::ZeroOrNegativeOneBooleanContent)
3813       return VTBits;
3814     break;
3815   }
3816   case ISD::ROTL:
3817   case ISD::ROTR:
3818     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3819 
3820     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3821     if (Tmp == VTBits)
3822       return VTBits;
3823 
3824     if (ConstantSDNode *C =
3825             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3826       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3827 
3828       // Handle rotate right by N like a rotate left by 32-N.
3829       if (Opcode == ISD::ROTR)
3830         RotAmt = (VTBits - RotAmt) % VTBits;
3831 
3832       // If we aren't rotating out all of the known-in sign bits, return the
3833       // number that are left.  This handles rotl(sext(x), 1) for example.
3834       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3835     }
3836     break;
3837   case ISD::ADD:
3838   case ISD::ADDC:
3839     // Add can have at most one carry bit.  Thus we know that the output
3840     // is, at worst, one more bit than the inputs.
3841     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3842     if (Tmp == 1) return 1; // Early out.
3843 
3844     // Special case decrementing a value (ADD X, -1):
3845     if (ConstantSDNode *CRHS =
3846             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3847       if (CRHS->isAllOnesValue()) {
3848         KnownBits Known =
3849             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3850 
3851         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3852         // sign bits set.
3853         if ((Known.Zero | 1).isAllOnesValue())
3854           return VTBits;
3855 
3856         // If we are subtracting one from a positive number, there is no carry
3857         // out of the result.
3858         if (Known.isNonNegative())
3859           return Tmp;
3860       }
3861 
3862     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3863     if (Tmp2 == 1) return 1; // Early out.
3864     return std::min(Tmp, Tmp2) - 1;
3865   case ISD::SUB:
3866     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3867     if (Tmp2 == 1) return 1; // Early out.
3868 
3869     // Handle NEG.
3870     if (ConstantSDNode *CLHS =
3871             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3872       if (CLHS->isNullValue()) {
3873         KnownBits Known =
3874             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3875         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3876         // sign bits set.
3877         if ((Known.Zero | 1).isAllOnesValue())
3878           return VTBits;
3879 
3880         // If the input is known to be positive (the sign bit is known clear),
3881         // the output of the NEG has the same number of sign bits as the input.
3882         if (Known.isNonNegative())
3883           return Tmp2;
3884 
3885         // Otherwise, we treat this like a SUB.
3886       }
3887 
3888     // Sub can have at most one carry bit.  Thus we know that the output
3889     // is, at worst, one more bit than the inputs.
3890     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3891     if (Tmp == 1) return 1; // Early out.
3892     return std::min(Tmp, Tmp2) - 1;
3893   case ISD::MUL: {
3894     // The output of the Mul can be at most twice the valid bits in the inputs.
3895     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3896     if (SignBitsOp0 == 1)
3897       break;
3898     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3899     if (SignBitsOp1 == 1)
3900       break;
3901     unsigned OutValidBits =
3902         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3903     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3904   }
3905   case ISD::SREM:
3906     // The sign bit is the LHS's sign bit, except when the result of the
3907     // remainder is zero. The magnitude of the result should be less than or
3908     // equal to the magnitude of the LHS. Therefore, the result should have
3909     // at least as many sign bits as the left hand side.
3910     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3911   case ISD::TRUNCATE: {
3912     // Check if the sign bits of source go down as far as the truncated value.
3913     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3914     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3915     if (NumSrcSignBits > (NumSrcBits - VTBits))
3916       return NumSrcSignBits - (NumSrcBits - VTBits);
3917     break;
3918   }
3919   case ISD::EXTRACT_ELEMENT: {
3920     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3921     const int BitWidth = Op.getValueSizeInBits();
3922     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3923 
3924     // Get reverse index (starting from 1), Op1 value indexes elements from
3925     // little end. Sign starts at big end.
3926     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3927 
3928     // If the sign portion ends in our element the subtraction gives correct
3929     // result. Otherwise it gives either negative or > bitwidth result
3930     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3931   }
3932   case ISD::INSERT_VECTOR_ELT: {
3933     // If we know the element index, split the demand between the
3934     // source vector and the inserted element, otherwise assume we need
3935     // the original demanded vector elements and the value.
3936     SDValue InVec = Op.getOperand(0);
3937     SDValue InVal = Op.getOperand(1);
3938     SDValue EltNo = Op.getOperand(2);
3939     bool DemandedVal = true;
3940     APInt DemandedVecElts = DemandedElts;
3941     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3942     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3943       unsigned EltIdx = CEltNo->getZExtValue();
3944       DemandedVal = !!DemandedElts[EltIdx];
3945       DemandedVecElts.clearBit(EltIdx);
3946     }
3947     Tmp = std::numeric_limits<unsigned>::max();
3948     if (DemandedVal) {
3949       // TODO - handle implicit truncation of inserted elements.
3950       if (InVal.getScalarValueSizeInBits() != VTBits)
3951         break;
3952       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3953       Tmp = std::min(Tmp, Tmp2);
3954     }
3955     if (!!DemandedVecElts) {
3956       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3957       Tmp = std::min(Tmp, Tmp2);
3958     }
3959     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3960     return Tmp;
3961   }
3962   case ISD::EXTRACT_VECTOR_ELT: {
3963     SDValue InVec = Op.getOperand(0);
3964     SDValue EltNo = Op.getOperand(1);
3965     EVT VecVT = InVec.getValueType();
3966     // ComputeNumSignBits not yet implemented for scalable vectors.
3967     if (VecVT.isScalableVector())
3968       break;
3969     const unsigned BitWidth = Op.getValueSizeInBits();
3970     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3971     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3972 
3973     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3974     // anything about sign bits. But if the sizes match we can derive knowledge
3975     // about sign bits from the vector operand.
3976     if (BitWidth != EltBitWidth)
3977       break;
3978 
3979     // If we know the element index, just demand that vector element, else for
3980     // an unknown element index, ignore DemandedElts and demand them all.
3981     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3982     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3983     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3984       DemandedSrcElts =
3985           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3986 
3987     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3988   }
3989   case ISD::EXTRACT_SUBVECTOR: {
3990     // Offset the demanded elts by the subvector index.
3991     SDValue Src = Op.getOperand(0);
3992     // Bail until we can represent demanded elements for scalable vectors.
3993     if (Src.getValueType().isScalableVector())
3994       break;
3995     uint64_t Idx = Op.getConstantOperandVal(1);
3996     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3997     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3998     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3999   }
4000   case ISD::CONCAT_VECTORS: {
4001     // Determine the minimum number of sign bits across all demanded
4002     // elts of the input vectors. Early out if the result is already 1.
4003     Tmp = std::numeric_limits<unsigned>::max();
4004     EVT SubVectorVT = Op.getOperand(0).getValueType();
4005     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4006     unsigned NumSubVectors = Op.getNumOperands();
4007     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4008       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
4009       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
4010       if (!DemandedSub)
4011         continue;
4012       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4013       Tmp = std::min(Tmp, Tmp2);
4014     }
4015     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4016     return Tmp;
4017   }
4018   case ISD::INSERT_SUBVECTOR: {
4019     // Demand any elements from the subvector and the remainder from the src its
4020     // inserted into.
4021     SDValue Src = Op.getOperand(0);
4022     SDValue Sub = Op.getOperand(1);
4023     uint64_t Idx = Op.getConstantOperandVal(2);
4024     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4025     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4026     APInt DemandedSrcElts = DemandedElts;
4027     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4028 
4029     Tmp = std::numeric_limits<unsigned>::max();
4030     if (!!DemandedSubElts) {
4031       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4032       if (Tmp == 1)
4033         return 1; // early-out
4034     }
4035     if (!!DemandedSrcElts) {
4036       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4037       Tmp = std::min(Tmp, Tmp2);
4038     }
4039     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4040     return Tmp;
4041   }
4042   }
4043 
4044   // If we are looking at the loaded value of the SDNode.
4045   if (Op.getResNo() == 0) {
4046     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4047     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4048       unsigned ExtType = LD->getExtensionType();
4049       switch (ExtType) {
4050       default: break;
4051       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4052         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4053         return VTBits - Tmp + 1;
4054       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4055         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4056         return VTBits - Tmp;
4057       case ISD::NON_EXTLOAD:
4058         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4059           // We only need to handle vectors - computeKnownBits should handle
4060           // scalar cases.
4061           Type *CstTy = Cst->getType();
4062           if (CstTy->isVectorTy() &&
4063               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4064             Tmp = VTBits;
4065             for (unsigned i = 0; i != NumElts; ++i) {
4066               if (!DemandedElts[i])
4067                 continue;
4068               if (Constant *Elt = Cst->getAggregateElement(i)) {
4069                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4070                   const APInt &Value = CInt->getValue();
4071                   Tmp = std::min(Tmp, Value.getNumSignBits());
4072                   continue;
4073                 }
4074                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4075                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4076                   Tmp = std::min(Tmp, Value.getNumSignBits());
4077                   continue;
4078                 }
4079               }
4080               // Unknown type. Conservatively assume no bits match sign bit.
4081               return 1;
4082             }
4083             return Tmp;
4084           }
4085         }
4086         break;
4087       }
4088     }
4089   }
4090 
4091   // Allow the target to implement this method for its nodes.
4092   if (Opcode >= ISD::BUILTIN_OP_END ||
4093       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4094       Opcode == ISD::INTRINSIC_W_CHAIN ||
4095       Opcode == ISD::INTRINSIC_VOID) {
4096     unsigned NumBits =
4097         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4098     if (NumBits > 1)
4099       FirstAnswer = std::max(FirstAnswer, NumBits);
4100   }
4101 
4102   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4103   // use this information.
4104   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4105 
4106   APInt Mask;
4107   if (Known.isNonNegative()) {        // sign bit is 0
4108     Mask = Known.Zero;
4109   } else if (Known.isNegative()) {  // sign bit is 1;
4110     Mask = Known.One;
4111   } else {
4112     // Nothing known.
4113     return FirstAnswer;
4114   }
4115 
4116   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4117   // the number of identical bits in the top of the input value.
4118   Mask <<= Mask.getBitWidth()-VTBits;
4119   return std::max(FirstAnswer, Mask.countLeadingOnes());
4120 }
4121 
4122 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4123   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4124       !isa<ConstantSDNode>(Op.getOperand(1)))
4125     return false;
4126 
4127   if (Op.getOpcode() == ISD::OR &&
4128       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4129     return false;
4130 
4131   return true;
4132 }
4133 
4134 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4135   // If we're told that NaNs won't happen, assume they won't.
4136   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4137     return true;
4138 
4139   if (Depth >= MaxRecursionDepth)
4140     return false; // Limit search depth.
4141 
4142   // TODO: Handle vectors.
4143   // If the value is a constant, we can obviously see if it is a NaN or not.
4144   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4145     return !C->getValueAPF().isNaN() ||
4146            (SNaN && !C->getValueAPF().isSignaling());
4147   }
4148 
4149   unsigned Opcode = Op.getOpcode();
4150   switch (Opcode) {
4151   case ISD::FADD:
4152   case ISD::FSUB:
4153   case ISD::FMUL:
4154   case ISD::FDIV:
4155   case ISD::FREM:
4156   case ISD::FSIN:
4157   case ISD::FCOS: {
4158     if (SNaN)
4159       return true;
4160     // TODO: Need isKnownNeverInfinity
4161     return false;
4162   }
4163   case ISD::FCANONICALIZE:
4164   case ISD::FEXP:
4165   case ISD::FEXP2:
4166   case ISD::FTRUNC:
4167   case ISD::FFLOOR:
4168   case ISD::FCEIL:
4169   case ISD::FROUND:
4170   case ISD::FROUNDEVEN:
4171   case ISD::FRINT:
4172   case ISD::FNEARBYINT: {
4173     if (SNaN)
4174       return true;
4175     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4176   }
4177   case ISD::FABS:
4178   case ISD::FNEG:
4179   case ISD::FCOPYSIGN: {
4180     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4181   }
4182   case ISD::SELECT:
4183     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4184            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4185   case ISD::FP_EXTEND:
4186   case ISD::FP_ROUND: {
4187     if (SNaN)
4188       return true;
4189     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4190   }
4191   case ISD::SINT_TO_FP:
4192   case ISD::UINT_TO_FP:
4193     return true;
4194   case ISD::FMA:
4195   case ISD::FMAD: {
4196     if (SNaN)
4197       return true;
4198     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4199            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4200            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4201   }
4202   case ISD::FSQRT: // Need is known positive
4203   case ISD::FLOG:
4204   case ISD::FLOG2:
4205   case ISD::FLOG10:
4206   case ISD::FPOWI:
4207   case ISD::FPOW: {
4208     if (SNaN)
4209       return true;
4210     // TODO: Refine on operand
4211     return false;
4212   }
4213   case ISD::FMINNUM:
4214   case ISD::FMAXNUM: {
4215     // Only one needs to be known not-nan, since it will be returned if the
4216     // other ends up being one.
4217     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4218            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4219   }
4220   case ISD::FMINNUM_IEEE:
4221   case ISD::FMAXNUM_IEEE: {
4222     if (SNaN)
4223       return true;
4224     // This can return a NaN if either operand is an sNaN, or if both operands
4225     // are NaN.
4226     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4227             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4228            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4229             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4230   }
4231   case ISD::FMINIMUM:
4232   case ISD::FMAXIMUM: {
4233     // TODO: Does this quiet or return the origina NaN as-is?
4234     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4235            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4236   }
4237   case ISD::EXTRACT_VECTOR_ELT: {
4238     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4239   }
4240   default:
4241     if (Opcode >= ISD::BUILTIN_OP_END ||
4242         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4243         Opcode == ISD::INTRINSIC_W_CHAIN ||
4244         Opcode == ISD::INTRINSIC_VOID) {
4245       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4246     }
4247 
4248     return false;
4249   }
4250 }
4251 
4252 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4253   assert(Op.getValueType().isFloatingPoint() &&
4254          "Floating point type expected");
4255 
4256   // If the value is a constant, we can obviously see if it is a zero or not.
4257   // TODO: Add BuildVector support.
4258   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4259     return !C->isZero();
4260   return false;
4261 }
4262 
4263 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4264   assert(!Op.getValueType().isFloatingPoint() &&
4265          "Floating point types unsupported - use isKnownNeverZeroFloat");
4266 
4267   // If the value is a constant, we can obviously see if it is a zero or not.
4268   if (ISD::matchUnaryPredicate(
4269           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4270     return true;
4271 
4272   // TODO: Recognize more cases here.
4273   switch (Op.getOpcode()) {
4274   default: break;
4275   case ISD::OR:
4276     if (isKnownNeverZero(Op.getOperand(1)) ||
4277         isKnownNeverZero(Op.getOperand(0)))
4278       return true;
4279     break;
4280   }
4281 
4282   return false;
4283 }
4284 
4285 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4286   // Check the obvious case.
4287   if (A == B) return true;
4288 
4289   // For for negative and positive zero.
4290   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4291     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4292       if (CA->isZero() && CB->isZero()) return true;
4293 
4294   // Otherwise they may not be equal.
4295   return false;
4296 }
4297 
4298 // FIXME: unify with llvm::haveNoCommonBitsSet.
4299 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4300 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4301   assert(A.getValueType() == B.getValueType() &&
4302          "Values must have the same type");
4303   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4304 }
4305 
4306 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4307                                 ArrayRef<SDValue> Ops,
4308                                 SelectionDAG &DAG) {
4309   int NumOps = Ops.size();
4310   assert(NumOps != 0 && "Can't build an empty vector!");
4311   assert(!VT.isScalableVector() &&
4312          "BUILD_VECTOR cannot be used with scalable types");
4313   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4314          "Incorrect element count in BUILD_VECTOR!");
4315 
4316   // BUILD_VECTOR of UNDEFs is UNDEF.
4317   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4318     return DAG.getUNDEF(VT);
4319 
4320   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4321   SDValue IdentitySrc;
4322   bool IsIdentity = true;
4323   for (int i = 0; i != NumOps; ++i) {
4324     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4325         Ops[i].getOperand(0).getValueType() != VT ||
4326         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4327         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4328         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4329       IsIdentity = false;
4330       break;
4331     }
4332     IdentitySrc = Ops[i].getOperand(0);
4333   }
4334   if (IsIdentity)
4335     return IdentitySrc;
4336 
4337   return SDValue();
4338 }
4339 
4340 /// Try to simplify vector concatenation to an input value, undef, or build
4341 /// vector.
4342 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4343                                   ArrayRef<SDValue> Ops,
4344                                   SelectionDAG &DAG) {
4345   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4346   assert(llvm::all_of(Ops,
4347                       [Ops](SDValue Op) {
4348                         return Ops[0].getValueType() == Op.getValueType();
4349                       }) &&
4350          "Concatenation of vectors with inconsistent value types!");
4351   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4352              VT.getVectorElementCount() &&
4353          "Incorrect element count in vector concatenation!");
4354 
4355   if (Ops.size() == 1)
4356     return Ops[0];
4357 
4358   // Concat of UNDEFs is UNDEF.
4359   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4360     return DAG.getUNDEF(VT);
4361 
4362   // Scan the operands and look for extract operations from a single source
4363   // that correspond to insertion at the same location via this concatenation:
4364   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4365   SDValue IdentitySrc;
4366   bool IsIdentity = true;
4367   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4368     SDValue Op = Ops[i];
4369     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4370     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4371         Op.getOperand(0).getValueType() != VT ||
4372         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4373         Op.getConstantOperandVal(1) != IdentityIndex) {
4374       IsIdentity = false;
4375       break;
4376     }
4377     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4378            "Unexpected identity source vector for concat of extracts");
4379     IdentitySrc = Op.getOperand(0);
4380   }
4381   if (IsIdentity) {
4382     assert(IdentitySrc && "Failed to set source vector of extracts");
4383     return IdentitySrc;
4384   }
4385 
4386   // The code below this point is only designed to work for fixed width
4387   // vectors, so we bail out for now.
4388   if (VT.isScalableVector())
4389     return SDValue();
4390 
4391   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4392   // simplified to one big BUILD_VECTOR.
4393   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4394   EVT SVT = VT.getScalarType();
4395   SmallVector<SDValue, 16> Elts;
4396   for (SDValue Op : Ops) {
4397     EVT OpVT = Op.getValueType();
4398     if (Op.isUndef())
4399       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4400     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4401       Elts.append(Op->op_begin(), Op->op_end());
4402     else
4403       return SDValue();
4404   }
4405 
4406   // BUILD_VECTOR requires all inputs to be of the same type, find the
4407   // maximum type and extend them all.
4408   for (SDValue Op : Elts)
4409     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4410 
4411   if (SVT.bitsGT(VT.getScalarType())) {
4412     for (SDValue &Op : Elts) {
4413       if (Op.isUndef())
4414         Op = DAG.getUNDEF(SVT);
4415       else
4416         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4417                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4418                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4419     }
4420   }
4421 
4422   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4423   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4424   return V;
4425 }
4426 
4427 /// Gets or creates the specified node.
4428 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4429   FoldingSetNodeID ID;
4430   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4431   void *IP = nullptr;
4432   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4433     return SDValue(E, 0);
4434 
4435   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4436                               getVTList(VT));
4437   CSEMap.InsertNode(N, IP);
4438 
4439   InsertNode(N);
4440   SDValue V = SDValue(N, 0);
4441   NewSDValueDbgMsg(V, "Creating new node: ", this);
4442   return V;
4443 }
4444 
4445 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4446                               SDValue Operand) {
4447   SDNodeFlags Flags;
4448   if (Inserter)
4449     Flags = Inserter->getFlags();
4450   return getNode(Opcode, DL, VT, Operand, Flags);
4451 }
4452 
4453 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4454                               SDValue Operand, const SDNodeFlags Flags) {
4455   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4456          "Operand is DELETED_NODE!");
4457   // Constant fold unary operations with an integer constant operand. Even
4458   // opaque constant will be folded, because the folding of unary operations
4459   // doesn't create new constants with different values. Nevertheless, the
4460   // opaque flag is preserved during folding to prevent future folding with
4461   // other constants.
4462   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4463     const APInt &Val = C->getAPIntValue();
4464     switch (Opcode) {
4465     default: break;
4466     case ISD::SIGN_EXTEND:
4467       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4468                          C->isTargetOpcode(), C->isOpaque());
4469     case ISD::TRUNCATE:
4470       if (C->isOpaque())
4471         break;
4472       LLVM_FALLTHROUGH;
4473     case ISD::ANY_EXTEND:
4474     case ISD::ZERO_EXTEND:
4475       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4476                          C->isTargetOpcode(), C->isOpaque());
4477     case ISD::UINT_TO_FP:
4478     case ISD::SINT_TO_FP: {
4479       APFloat apf(EVTToAPFloatSemantics(VT),
4480                   APInt::getNullValue(VT.getSizeInBits()));
4481       (void)apf.convertFromAPInt(Val,
4482                                  Opcode==ISD::SINT_TO_FP,
4483                                  APFloat::rmNearestTiesToEven);
4484       return getConstantFP(apf, DL, VT);
4485     }
4486     case ISD::BITCAST:
4487       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4488         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4489       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4490         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4491       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4492         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4493       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4494         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4495       break;
4496     case ISD::ABS:
4497       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4498                          C->isOpaque());
4499     case ISD::BITREVERSE:
4500       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4501                          C->isOpaque());
4502     case ISD::BSWAP:
4503       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4504                          C->isOpaque());
4505     case ISD::CTPOP:
4506       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4507                          C->isOpaque());
4508     case ISD::CTLZ:
4509     case ISD::CTLZ_ZERO_UNDEF:
4510       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4511                          C->isOpaque());
4512     case ISD::CTTZ:
4513     case ISD::CTTZ_ZERO_UNDEF:
4514       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4515                          C->isOpaque());
4516     case ISD::FP16_TO_FP: {
4517       bool Ignored;
4518       APFloat FPV(APFloat::IEEEhalf(),
4519                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4520 
4521       // This can return overflow, underflow, or inexact; we don't care.
4522       // FIXME need to be more flexible about rounding mode.
4523       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4524                         APFloat::rmNearestTiesToEven, &Ignored);
4525       return getConstantFP(FPV, DL, VT);
4526     }
4527     }
4528   }
4529 
4530   // Constant fold unary operations with a floating point constant operand.
4531   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4532     APFloat V = C->getValueAPF();    // make copy
4533     switch (Opcode) {
4534     case ISD::FNEG:
4535       V.changeSign();
4536       return getConstantFP(V, DL, VT);
4537     case ISD::FABS:
4538       V.clearSign();
4539       return getConstantFP(V, DL, VT);
4540     case ISD::FCEIL: {
4541       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4542       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4543         return getConstantFP(V, DL, VT);
4544       break;
4545     }
4546     case ISD::FTRUNC: {
4547       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4548       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4549         return getConstantFP(V, DL, VT);
4550       break;
4551     }
4552     case ISD::FFLOOR: {
4553       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4554       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4555         return getConstantFP(V, DL, VT);
4556       break;
4557     }
4558     case ISD::FP_EXTEND: {
4559       bool ignored;
4560       // This can return overflow, underflow, or inexact; we don't care.
4561       // FIXME need to be more flexible about rounding mode.
4562       (void)V.convert(EVTToAPFloatSemantics(VT),
4563                       APFloat::rmNearestTiesToEven, &ignored);
4564       return getConstantFP(V, DL, VT);
4565     }
4566     case ISD::FP_TO_SINT:
4567     case ISD::FP_TO_UINT: {
4568       bool ignored;
4569       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4570       // FIXME need to be more flexible about rounding mode.
4571       APFloat::opStatus s =
4572           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4573       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4574         break;
4575       return getConstant(IntVal, DL, VT);
4576     }
4577     case ISD::BITCAST:
4578       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4579         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4580       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4581         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4582       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4583         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4584       break;
4585     case ISD::FP_TO_FP16: {
4586       bool Ignored;
4587       // This can return overflow, underflow, or inexact; we don't care.
4588       // FIXME need to be more flexible about rounding mode.
4589       (void)V.convert(APFloat::IEEEhalf(),
4590                       APFloat::rmNearestTiesToEven, &Ignored);
4591       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4592     }
4593     }
4594   }
4595 
4596   // Constant fold unary operations with a vector integer or float operand.
4597   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4598     if (BV->isConstant()) {
4599       switch (Opcode) {
4600       default:
4601         // FIXME: Entirely reasonable to perform folding of other unary
4602         // operations here as the need arises.
4603         break;
4604       case ISD::FNEG:
4605       case ISD::FABS:
4606       case ISD::FCEIL:
4607       case ISD::FTRUNC:
4608       case ISD::FFLOOR:
4609       case ISD::FP_EXTEND:
4610       case ISD::FP_TO_SINT:
4611       case ISD::FP_TO_UINT:
4612       case ISD::TRUNCATE:
4613       case ISD::ANY_EXTEND:
4614       case ISD::ZERO_EXTEND:
4615       case ISD::SIGN_EXTEND:
4616       case ISD::UINT_TO_FP:
4617       case ISD::SINT_TO_FP:
4618       case ISD::ABS:
4619       case ISD::BITREVERSE:
4620       case ISD::BSWAP:
4621       case ISD::CTLZ:
4622       case ISD::CTLZ_ZERO_UNDEF:
4623       case ISD::CTTZ:
4624       case ISD::CTTZ_ZERO_UNDEF:
4625       case ISD::CTPOP: {
4626         SDValue Ops = { Operand };
4627         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4628           return Fold;
4629       }
4630       }
4631     }
4632   }
4633 
4634   unsigned OpOpcode = Operand.getNode()->getOpcode();
4635   switch (Opcode) {
4636   case ISD::FREEZE:
4637     assert(VT == Operand.getValueType() && "Unexpected VT!");
4638     break;
4639   case ISD::TokenFactor:
4640   case ISD::MERGE_VALUES:
4641   case ISD::CONCAT_VECTORS:
4642     return Operand;         // Factor, merge or concat of one node?  No need.
4643   case ISD::BUILD_VECTOR: {
4644     // Attempt to simplify BUILD_VECTOR.
4645     SDValue Ops[] = {Operand};
4646     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4647       return V;
4648     break;
4649   }
4650   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4651   case ISD::FP_EXTEND:
4652     assert(VT.isFloatingPoint() &&
4653            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4654     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4655     assert((!VT.isVector() ||
4656             VT.getVectorElementCount() ==
4657             Operand.getValueType().getVectorElementCount()) &&
4658            "Vector element count mismatch!");
4659     assert(Operand.getValueType().bitsLT(VT) &&
4660            "Invalid fpext node, dst < src!");
4661     if (Operand.isUndef())
4662       return getUNDEF(VT);
4663     break;
4664   case ISD::FP_TO_SINT:
4665   case ISD::FP_TO_UINT:
4666     if (Operand.isUndef())
4667       return getUNDEF(VT);
4668     break;
4669   case ISD::SINT_TO_FP:
4670   case ISD::UINT_TO_FP:
4671     // [us]itofp(undef) = 0, because the result value is bounded.
4672     if (Operand.isUndef())
4673       return getConstantFP(0.0, DL, VT);
4674     break;
4675   case ISD::SIGN_EXTEND:
4676     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4677            "Invalid SIGN_EXTEND!");
4678     assert(VT.isVector() == Operand.getValueType().isVector() &&
4679            "SIGN_EXTEND result type type should be vector iff the operand "
4680            "type is vector!");
4681     if (Operand.getValueType() == VT) return Operand;   // noop extension
4682     assert((!VT.isVector() ||
4683             VT.getVectorElementCount() ==
4684                 Operand.getValueType().getVectorElementCount()) &&
4685            "Vector element count mismatch!");
4686     assert(Operand.getValueType().bitsLT(VT) &&
4687            "Invalid sext node, dst < src!");
4688     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4689       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4690     else if (OpOpcode == ISD::UNDEF)
4691       // sext(undef) = 0, because the top bits will all be the same.
4692       return getConstant(0, DL, VT);
4693     break;
4694   case ISD::ZERO_EXTEND:
4695     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4696            "Invalid ZERO_EXTEND!");
4697     assert(VT.isVector() == Operand.getValueType().isVector() &&
4698            "ZERO_EXTEND result type type should be vector iff the operand "
4699            "type is vector!");
4700     if (Operand.getValueType() == VT) return Operand;   // noop extension
4701     assert((!VT.isVector() ||
4702             VT.getVectorElementCount() ==
4703                 Operand.getValueType().getVectorElementCount()) &&
4704            "Vector element count mismatch!");
4705     assert(Operand.getValueType().bitsLT(VT) &&
4706            "Invalid zext node, dst < src!");
4707     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4708       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4709     else if (OpOpcode == ISD::UNDEF)
4710       // zext(undef) = 0, because the top bits will be zero.
4711       return getConstant(0, DL, VT);
4712     break;
4713   case ISD::ANY_EXTEND:
4714     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4715            "Invalid ANY_EXTEND!");
4716     assert(VT.isVector() == Operand.getValueType().isVector() &&
4717            "ANY_EXTEND result type type should be vector iff the operand "
4718            "type is vector!");
4719     if (Operand.getValueType() == VT) return Operand;   // noop extension
4720     assert((!VT.isVector() ||
4721             VT.getVectorElementCount() ==
4722                 Operand.getValueType().getVectorElementCount()) &&
4723            "Vector element count mismatch!");
4724     assert(Operand.getValueType().bitsLT(VT) &&
4725            "Invalid anyext node, dst < src!");
4726 
4727     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4728         OpOpcode == ISD::ANY_EXTEND)
4729       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4730       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4731     else if (OpOpcode == ISD::UNDEF)
4732       return getUNDEF(VT);
4733 
4734     // (ext (trunc x)) -> x
4735     if (OpOpcode == ISD::TRUNCATE) {
4736       SDValue OpOp = Operand.getOperand(0);
4737       if (OpOp.getValueType() == VT) {
4738         transferDbgValues(Operand, OpOp);
4739         return OpOp;
4740       }
4741     }
4742     break;
4743   case ISD::TRUNCATE:
4744     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4745            "Invalid TRUNCATE!");
4746     assert(VT.isVector() == Operand.getValueType().isVector() &&
4747            "TRUNCATE result type type should be vector iff the operand "
4748            "type is vector!");
4749     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4750     assert((!VT.isVector() ||
4751             VT.getVectorElementCount() ==
4752                 Operand.getValueType().getVectorElementCount()) &&
4753            "Vector element count mismatch!");
4754     assert(Operand.getValueType().bitsGT(VT) &&
4755            "Invalid truncate node, src < dst!");
4756     if (OpOpcode == ISD::TRUNCATE)
4757       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4758     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4759         OpOpcode == ISD::ANY_EXTEND) {
4760       // If the source is smaller than the dest, we still need an extend.
4761       if (Operand.getOperand(0).getValueType().getScalarType()
4762             .bitsLT(VT.getScalarType()))
4763         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4764       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4765         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4766       return Operand.getOperand(0);
4767     }
4768     if (OpOpcode == ISD::UNDEF)
4769       return getUNDEF(VT);
4770     break;
4771   case ISD::ANY_EXTEND_VECTOR_INREG:
4772   case ISD::ZERO_EXTEND_VECTOR_INREG:
4773   case ISD::SIGN_EXTEND_VECTOR_INREG:
4774     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4775     assert(Operand.getValueType().bitsLE(VT) &&
4776            "The input must be the same size or smaller than the result.");
4777     assert(VT.getVectorNumElements() <
4778              Operand.getValueType().getVectorNumElements() &&
4779            "The destination vector type must have fewer lanes than the input.");
4780     break;
4781   case ISD::ABS:
4782     assert(VT.isInteger() && VT == Operand.getValueType() &&
4783            "Invalid ABS!");
4784     if (OpOpcode == ISD::UNDEF)
4785       return getUNDEF(VT);
4786     break;
4787   case ISD::BSWAP:
4788     assert(VT.isInteger() && VT == Operand.getValueType() &&
4789            "Invalid BSWAP!");
4790     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4791            "BSWAP types must be a multiple of 16 bits!");
4792     if (OpOpcode == ISD::UNDEF)
4793       return getUNDEF(VT);
4794     break;
4795   case ISD::BITREVERSE:
4796     assert(VT.isInteger() && VT == Operand.getValueType() &&
4797            "Invalid BITREVERSE!");
4798     if (OpOpcode == ISD::UNDEF)
4799       return getUNDEF(VT);
4800     break;
4801   case ISD::BITCAST:
4802     // Basic sanity checking.
4803     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4804            "Cannot BITCAST between types of different sizes!");
4805     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4806     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4807       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4808     if (OpOpcode == ISD::UNDEF)
4809       return getUNDEF(VT);
4810     break;
4811   case ISD::SCALAR_TO_VECTOR:
4812     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4813            (VT.getVectorElementType() == Operand.getValueType() ||
4814             (VT.getVectorElementType().isInteger() &&
4815              Operand.getValueType().isInteger() &&
4816              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4817            "Illegal SCALAR_TO_VECTOR node!");
4818     if (OpOpcode == ISD::UNDEF)
4819       return getUNDEF(VT);
4820     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4821     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4822         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4823         Operand.getConstantOperandVal(1) == 0 &&
4824         Operand.getOperand(0).getValueType() == VT)
4825       return Operand.getOperand(0);
4826     break;
4827   case ISD::FNEG:
4828     // Negation of an unknown bag of bits is still completely undefined.
4829     if (OpOpcode == ISD::UNDEF)
4830       return getUNDEF(VT);
4831 
4832     if (OpOpcode == ISD::FNEG)  // --X -> X
4833       return Operand.getOperand(0);
4834     break;
4835   case ISD::FABS:
4836     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4837       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4838     break;
4839   case ISD::VSCALE:
4840     assert(VT == Operand.getValueType() && "Unexpected VT!");
4841     break;
4842   case ISD::CTPOP:
4843     if (Operand.getValueType().getScalarType() == MVT::i1)
4844       return Operand;
4845     break;
4846   case ISD::CTLZ:
4847   case ISD::CTTZ:
4848     if (Operand.getValueType().getScalarType() == MVT::i1)
4849       return getNOT(DL, Operand, Operand.getValueType());
4850     break;
4851   case ISD::VECREDUCE_SMIN:
4852   case ISD::VECREDUCE_UMAX:
4853     if (Operand.getValueType().getScalarType() == MVT::i1)
4854       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
4855     break;
4856   case ISD::VECREDUCE_SMAX:
4857   case ISD::VECREDUCE_UMIN:
4858     if (Operand.getValueType().getScalarType() == MVT::i1)
4859       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
4860     break;
4861   }
4862 
4863   SDNode *N;
4864   SDVTList VTs = getVTList(VT);
4865   SDValue Ops[] = {Operand};
4866   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4867     FoldingSetNodeID ID;
4868     AddNodeIDNode(ID, Opcode, VTs, Ops);
4869     void *IP = nullptr;
4870     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4871       E->intersectFlagsWith(Flags);
4872       return SDValue(E, 0);
4873     }
4874 
4875     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4876     N->setFlags(Flags);
4877     createOperands(N, Ops);
4878     CSEMap.InsertNode(N, IP);
4879   } else {
4880     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4881     createOperands(N, Ops);
4882   }
4883 
4884   InsertNode(N);
4885   SDValue V = SDValue(N, 0);
4886   NewSDValueDbgMsg(V, "Creating new node: ", this);
4887   return V;
4888 }
4889 
4890 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4891                                        const APInt &C2) {
4892   switch (Opcode) {
4893   case ISD::ADD:  return C1 + C2;
4894   case ISD::SUB:  return C1 - C2;
4895   case ISD::MUL:  return C1 * C2;
4896   case ISD::AND:  return C1 & C2;
4897   case ISD::OR:   return C1 | C2;
4898   case ISD::XOR:  return C1 ^ C2;
4899   case ISD::SHL:  return C1 << C2;
4900   case ISD::SRL:  return C1.lshr(C2);
4901   case ISD::SRA:  return C1.ashr(C2);
4902   case ISD::ROTL: return C1.rotl(C2);
4903   case ISD::ROTR: return C1.rotr(C2);
4904   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4905   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4906   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4907   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4908   case ISD::SADDSAT: return C1.sadd_sat(C2);
4909   case ISD::UADDSAT: return C1.uadd_sat(C2);
4910   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4911   case ISD::USUBSAT: return C1.usub_sat(C2);
4912   case ISD::UDIV:
4913     if (!C2.getBoolValue())
4914       break;
4915     return C1.udiv(C2);
4916   case ISD::UREM:
4917     if (!C2.getBoolValue())
4918       break;
4919     return C1.urem(C2);
4920   case ISD::SDIV:
4921     if (!C2.getBoolValue())
4922       break;
4923     return C1.sdiv(C2);
4924   case ISD::SREM:
4925     if (!C2.getBoolValue())
4926       break;
4927     return C1.srem(C2);
4928   }
4929   return llvm::None;
4930 }
4931 
4932 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4933                                        const GlobalAddressSDNode *GA,
4934                                        const SDNode *N2) {
4935   if (GA->getOpcode() != ISD::GlobalAddress)
4936     return SDValue();
4937   if (!TLI->isOffsetFoldingLegal(GA))
4938     return SDValue();
4939   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4940   if (!C2)
4941     return SDValue();
4942   int64_t Offset = C2->getSExtValue();
4943   switch (Opcode) {
4944   case ISD::ADD: break;
4945   case ISD::SUB: Offset = -uint64_t(Offset); break;
4946   default: return SDValue();
4947   }
4948   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4949                           GA->getOffset() + uint64_t(Offset));
4950 }
4951 
4952 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4953   switch (Opcode) {
4954   case ISD::SDIV:
4955   case ISD::UDIV:
4956   case ISD::SREM:
4957   case ISD::UREM: {
4958     // If a divisor is zero/undef or any element of a divisor vector is
4959     // zero/undef, the whole op is undef.
4960     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4961     SDValue Divisor = Ops[1];
4962     if (Divisor.isUndef() || isNullConstant(Divisor))
4963       return true;
4964 
4965     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4966            llvm::any_of(Divisor->op_values(),
4967                         [](SDValue V) { return V.isUndef() ||
4968                                         isNullConstant(V); });
4969     // TODO: Handle signed overflow.
4970   }
4971   // TODO: Handle oversized shifts.
4972   default:
4973     return false;
4974   }
4975 }
4976 
4977 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4978                                              EVT VT, ArrayRef<SDValue> Ops) {
4979   // If the opcode is a target-specific ISD node, there's nothing we can
4980   // do here and the operand rules may not line up with the below, so
4981   // bail early.
4982   if (Opcode >= ISD::BUILTIN_OP_END)
4983     return SDValue();
4984 
4985   // For now, the array Ops should only contain two values.
4986   // This enforcement will be removed once this function is merged with
4987   // FoldConstantVectorArithmetic
4988   if (Ops.size() != 2)
4989     return SDValue();
4990 
4991   if (isUndef(Opcode, Ops))
4992     return getUNDEF(VT);
4993 
4994   SDNode *N1 = Ops[0].getNode();
4995   SDNode *N2 = Ops[1].getNode();
4996 
4997   // Handle the case of two scalars.
4998   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4999     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
5000       if (C1->isOpaque() || C2->isOpaque())
5001         return SDValue();
5002 
5003       Optional<APInt> FoldAttempt =
5004           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5005       if (!FoldAttempt)
5006         return SDValue();
5007 
5008       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5009       assert((!Folded || !VT.isVector()) &&
5010              "Can't fold vectors ops with scalar operands");
5011       return Folded;
5012     }
5013   }
5014 
5015   // fold (add Sym, c) -> Sym+c
5016   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
5017     return FoldSymbolOffset(Opcode, VT, GA, N2);
5018   if (TLI->isCommutativeBinOp(Opcode))
5019     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
5020       return FoldSymbolOffset(Opcode, VT, GA, N1);
5021 
5022   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5023   // vector width, however we should be able to do constant folds involving
5024   // splat vector nodes too.
5025   if (VT.isScalableVector())
5026     return SDValue();
5027 
5028   // For fixed width vectors, extract each constant element and fold them
5029   // individually. Either input may be an undef value.
5030   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5031   if (!BV1 && !N1->isUndef())
5032     return SDValue();
5033   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5034   if (!BV2 && !N2->isUndef())
5035     return SDValue();
5036   // If both operands are undef, that's handled the same way as scalars.
5037   if (!BV1 && !BV2)
5038     return SDValue();
5039 
5040   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
5041          "Vector binop with different number of elements in operands?");
5042 
5043   EVT SVT = VT.getScalarType();
5044   EVT LegalSVT = SVT;
5045   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5046     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5047     if (LegalSVT.bitsLT(SVT))
5048       return SDValue();
5049   }
5050   SmallVector<SDValue, 4> Outputs;
5051   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
5052   for (unsigned I = 0; I != NumOps; ++I) {
5053     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
5054     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
5055     if (SVT.isInteger()) {
5056       if (V1->getValueType(0).bitsGT(SVT))
5057         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5058       if (V2->getValueType(0).bitsGT(SVT))
5059         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5060     }
5061 
5062     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
5063       return SDValue();
5064 
5065     // Fold one vector element.
5066     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5067     if (LegalSVT != SVT)
5068       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5069 
5070     // Scalar folding only succeeded if the result is a constant or UNDEF.
5071     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5072         ScalarResult.getOpcode() != ISD::ConstantFP)
5073       return SDValue();
5074     Outputs.push_back(ScalarResult);
5075   }
5076 
5077   assert(VT.getVectorNumElements() == Outputs.size() &&
5078          "Vector size mismatch!");
5079 
5080   // We may have a vector type but a scalar result. Create a splat.
5081   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
5082 
5083   // Build a big vector out of the scalar elements we generated.
5084   return getBuildVector(VT, SDLoc(), Outputs);
5085 }
5086 
5087 // TODO: Merge with FoldConstantArithmetic
5088 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5089                                                    const SDLoc &DL, EVT VT,
5090                                                    ArrayRef<SDValue> Ops,
5091                                                    const SDNodeFlags Flags) {
5092   // If the opcode is a target-specific ISD node, there's nothing we can
5093   // do here and the operand rules may not line up with the below, so
5094   // bail early.
5095   if (Opcode >= ISD::BUILTIN_OP_END)
5096     return SDValue();
5097 
5098   if (isUndef(Opcode, Ops))
5099     return getUNDEF(VT);
5100 
5101   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5102   if (!VT.isVector())
5103     return SDValue();
5104 
5105   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5106   // vector width, however we should be able to do constant folds involving
5107   // splat vector nodes too.
5108   if (VT.isScalableVector())
5109     return SDValue();
5110 
5111   // From this point onwards all vectors are assumed to be fixed width.
5112   unsigned NumElts = VT.getVectorNumElements();
5113 
5114   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5115     return !Op.getValueType().isVector() ||
5116            Op.getValueType().getVectorNumElements() == NumElts;
5117   };
5118 
5119   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5120     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5121     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5122            (BV && BV->isConstant());
5123   };
5124 
5125   // All operands must be vector types with the same number of elements as
5126   // the result type and must be either UNDEF or a build vector of constant
5127   // or UNDEF scalars.
5128   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5129       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5130     return SDValue();
5131 
5132   // If we are comparing vectors, then the result needs to be a i1 boolean
5133   // that is then sign-extended back to the legal result type.
5134   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5135 
5136   // Find legal integer scalar type for constant promotion and
5137   // ensure that its scalar size is at least as large as source.
5138   EVT LegalSVT = VT.getScalarType();
5139   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5140     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5141     if (LegalSVT.bitsLT(VT.getScalarType()))
5142       return SDValue();
5143   }
5144 
5145   // Constant fold each scalar lane separately.
5146   SmallVector<SDValue, 4> ScalarResults;
5147   for (unsigned i = 0; i != NumElts; i++) {
5148     SmallVector<SDValue, 4> ScalarOps;
5149     for (SDValue Op : Ops) {
5150       EVT InSVT = Op.getValueType().getScalarType();
5151       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5152       if (!InBV) {
5153         // We've checked that this is UNDEF or a constant of some kind.
5154         if (Op.isUndef())
5155           ScalarOps.push_back(getUNDEF(InSVT));
5156         else
5157           ScalarOps.push_back(Op);
5158         continue;
5159       }
5160 
5161       SDValue ScalarOp = InBV->getOperand(i);
5162       EVT ScalarVT = ScalarOp.getValueType();
5163 
5164       // Build vector (integer) scalar operands may need implicit
5165       // truncation - do this before constant folding.
5166       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5167         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5168 
5169       ScalarOps.push_back(ScalarOp);
5170     }
5171 
5172     // Constant fold the scalar operands.
5173     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5174 
5175     // Legalize the (integer) scalar constant if necessary.
5176     if (LegalSVT != SVT)
5177       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5178 
5179     // Scalar folding only succeeded if the result is a constant or UNDEF.
5180     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5181         ScalarResult.getOpcode() != ISD::ConstantFP)
5182       return SDValue();
5183     ScalarResults.push_back(ScalarResult);
5184   }
5185 
5186   SDValue V = getBuildVector(VT, DL, ScalarResults);
5187   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5188   return V;
5189 }
5190 
5191 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5192                                          EVT VT, SDValue N1, SDValue N2) {
5193   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5194   //       should. That will require dealing with a potentially non-default
5195   //       rounding mode, checking the "opStatus" return value from the APFloat
5196   //       math calculations, and possibly other variations.
5197   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5198   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5199   if (N1CFP && N2CFP) {
5200     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5201     switch (Opcode) {
5202     case ISD::FADD:
5203       C1.add(C2, APFloat::rmNearestTiesToEven);
5204       return getConstantFP(C1, DL, VT);
5205     case ISD::FSUB:
5206       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5207       return getConstantFP(C1, DL, VT);
5208     case ISD::FMUL:
5209       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5210       return getConstantFP(C1, DL, VT);
5211     case ISD::FDIV:
5212       C1.divide(C2, APFloat::rmNearestTiesToEven);
5213       return getConstantFP(C1, DL, VT);
5214     case ISD::FREM:
5215       C1.mod(C2);
5216       return getConstantFP(C1, DL, VT);
5217     case ISD::FCOPYSIGN:
5218       C1.copySign(C2);
5219       return getConstantFP(C1, DL, VT);
5220     default: break;
5221     }
5222   }
5223   if (N1CFP && Opcode == ISD::FP_ROUND) {
5224     APFloat C1 = N1CFP->getValueAPF();    // make copy
5225     bool Unused;
5226     // This can return overflow, underflow, or inexact; we don't care.
5227     // FIXME need to be more flexible about rounding mode.
5228     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5229                       &Unused);
5230     return getConstantFP(C1, DL, VT);
5231   }
5232 
5233   switch (Opcode) {
5234   case ISD::FSUB:
5235     // -0.0 - undef --> undef (consistent with "fneg undef")
5236     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5237       return getUNDEF(VT);
5238     LLVM_FALLTHROUGH;
5239 
5240   case ISD::FADD:
5241   case ISD::FMUL:
5242   case ISD::FDIV:
5243   case ISD::FREM:
5244     // If both operands are undef, the result is undef. If 1 operand is undef,
5245     // the result is NaN. This should match the behavior of the IR optimizer.
5246     if (N1.isUndef() && N2.isUndef())
5247       return getUNDEF(VT);
5248     if (N1.isUndef() || N2.isUndef())
5249       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5250   }
5251   return SDValue();
5252 }
5253 
5254 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5255   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5256 
5257   // There's no need to assert on a byte-aligned pointer. All pointers are at
5258   // least byte aligned.
5259   if (A == Align(1))
5260     return Val;
5261 
5262   FoldingSetNodeID ID;
5263   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5264   ID.AddInteger(A.value());
5265 
5266   void *IP = nullptr;
5267   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5268     return SDValue(E, 0);
5269 
5270   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5271                                          Val.getValueType(), A);
5272   createOperands(N, {Val});
5273 
5274   CSEMap.InsertNode(N, IP);
5275   InsertNode(N);
5276 
5277   SDValue V(N, 0);
5278   NewSDValueDbgMsg(V, "Creating new node: ", this);
5279   return V;
5280 }
5281 
5282 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5283                               SDValue N1, SDValue N2) {
5284   SDNodeFlags Flags;
5285   if (Inserter)
5286     Flags = Inserter->getFlags();
5287   return getNode(Opcode, DL, VT, N1, N2, Flags);
5288 }
5289 
5290 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5291                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5292   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5293          N2.getOpcode() != ISD::DELETED_NODE &&
5294          "Operand is DELETED_NODE!");
5295   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5296   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5297   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5298   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5299 
5300   // Canonicalize constant to RHS if commutative.
5301   if (TLI->isCommutativeBinOp(Opcode)) {
5302     if (N1C && !N2C) {
5303       std::swap(N1C, N2C);
5304       std::swap(N1, N2);
5305     } else if (N1CFP && !N2CFP) {
5306       std::swap(N1CFP, N2CFP);
5307       std::swap(N1, N2);
5308     }
5309   }
5310 
5311   switch (Opcode) {
5312   default: break;
5313   case ISD::TokenFactor:
5314     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5315            N2.getValueType() == MVT::Other && "Invalid token factor!");
5316     // Fold trivial token factors.
5317     if (N1.getOpcode() == ISD::EntryToken) return N2;
5318     if (N2.getOpcode() == ISD::EntryToken) return N1;
5319     if (N1 == N2) return N1;
5320     break;
5321   case ISD::BUILD_VECTOR: {
5322     // Attempt to simplify BUILD_VECTOR.
5323     SDValue Ops[] = {N1, N2};
5324     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5325       return V;
5326     break;
5327   }
5328   case ISD::CONCAT_VECTORS: {
5329     SDValue Ops[] = {N1, N2};
5330     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5331       return V;
5332     break;
5333   }
5334   case ISD::AND:
5335     assert(VT.isInteger() && "This operator does not apply to FP types!");
5336     assert(N1.getValueType() == N2.getValueType() &&
5337            N1.getValueType() == VT && "Binary operator types must match!");
5338     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5339     // worth handling here.
5340     if (N2C && N2C->isNullValue())
5341       return N2;
5342     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5343       return N1;
5344     break;
5345   case ISD::OR:
5346   case ISD::XOR:
5347   case ISD::ADD:
5348   case ISD::SUB:
5349     assert(VT.isInteger() && "This operator does not apply to FP types!");
5350     assert(N1.getValueType() == N2.getValueType() &&
5351            N1.getValueType() == VT && "Binary operator types must match!");
5352     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5353     // it's worth handling here.
5354     if (N2C && N2C->isNullValue())
5355       return N1;
5356     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5357         VT.getVectorElementType() == MVT::i1)
5358       return getNode(ISD::XOR, DL, VT, N1, N2);
5359     break;
5360   case ISD::MUL:
5361     assert(VT.isInteger() && "This operator does not apply to FP types!");
5362     assert(N1.getValueType() == N2.getValueType() &&
5363            N1.getValueType() == VT && "Binary operator types must match!");
5364     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5365       return getNode(ISD::AND, DL, VT, N1, N2);
5366     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5367       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5368       const APInt &N2CImm = N2C->getAPIntValue();
5369       return getVScale(DL, VT, MulImm * N2CImm);
5370     }
5371     break;
5372   case ISD::UDIV:
5373   case ISD::UREM:
5374   case ISD::MULHU:
5375   case ISD::MULHS:
5376   case ISD::SDIV:
5377   case ISD::SREM:
5378   case ISD::SADDSAT:
5379   case ISD::SSUBSAT:
5380   case ISD::UADDSAT:
5381   case ISD::USUBSAT:
5382     assert(VT.isInteger() && "This operator does not apply to FP types!");
5383     assert(N1.getValueType() == N2.getValueType() &&
5384            N1.getValueType() == VT && "Binary operator types must match!");
5385     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5386       // fold (add_sat x, y) -> (or x, y) for bool types.
5387       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5388         return getNode(ISD::OR, DL, VT, N1, N2);
5389       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5390       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5391         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5392     }
5393     break;
5394   case ISD::SMIN:
5395   case ISD::UMAX:
5396     assert(VT.isInteger() && "This operator does not apply to FP types!");
5397     assert(N1.getValueType() == N2.getValueType() &&
5398            N1.getValueType() == VT && "Binary operator types must match!");
5399     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5400       return getNode(ISD::OR, DL, VT, N1, N2);
5401     break;
5402   case ISD::SMAX:
5403   case ISD::UMIN:
5404     assert(VT.isInteger() && "This operator does not apply to FP types!");
5405     assert(N1.getValueType() == N2.getValueType() &&
5406            N1.getValueType() == VT && "Binary operator types must match!");
5407     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5408       return getNode(ISD::AND, DL, VT, N1, N2);
5409     break;
5410   case ISD::FADD:
5411   case ISD::FSUB:
5412   case ISD::FMUL:
5413   case ISD::FDIV:
5414   case ISD::FREM:
5415     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5416     assert(N1.getValueType() == N2.getValueType() &&
5417            N1.getValueType() == VT && "Binary operator types must match!");
5418     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5419       return V;
5420     break;
5421   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5422     assert(N1.getValueType() == VT &&
5423            N1.getValueType().isFloatingPoint() &&
5424            N2.getValueType().isFloatingPoint() &&
5425            "Invalid FCOPYSIGN!");
5426     break;
5427   case ISD::SHL:
5428     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5429       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5430       const APInt &ShiftImm = N2C->getAPIntValue();
5431       return getVScale(DL, VT, MulImm << ShiftImm);
5432     }
5433     LLVM_FALLTHROUGH;
5434   case ISD::SRA:
5435   case ISD::SRL:
5436     if (SDValue V = simplifyShift(N1, N2))
5437       return V;
5438     LLVM_FALLTHROUGH;
5439   case ISD::ROTL:
5440   case ISD::ROTR:
5441     assert(VT == N1.getValueType() &&
5442            "Shift operators return type must be the same as their first arg");
5443     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5444            "Shifts only work on integers");
5445     assert((!VT.isVector() || VT == N2.getValueType()) &&
5446            "Vector shift amounts must be in the same as their first arg");
5447     // Verify that the shift amount VT is big enough to hold valid shift
5448     // amounts.  This catches things like trying to shift an i1024 value by an
5449     // i8, which is easy to fall into in generic code that uses
5450     // TLI.getShiftAmount().
5451     assert(N2.getValueType().getScalarSizeInBits() >=
5452                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5453            "Invalid use of small shift amount with oversized value!");
5454 
5455     // Always fold shifts of i1 values so the code generator doesn't need to
5456     // handle them.  Since we know the size of the shift has to be less than the
5457     // size of the value, the shift/rotate count is guaranteed to be zero.
5458     if (VT == MVT::i1)
5459       return N1;
5460     if (N2C && N2C->isNullValue())
5461       return N1;
5462     break;
5463   case ISD::FP_ROUND:
5464     assert(VT.isFloatingPoint() &&
5465            N1.getValueType().isFloatingPoint() &&
5466            VT.bitsLE(N1.getValueType()) &&
5467            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5468            "Invalid FP_ROUND!");
5469     if (N1.getValueType() == VT) return N1;  // noop conversion.
5470     break;
5471   case ISD::AssertSext:
5472   case ISD::AssertZext: {
5473     EVT EVT = cast<VTSDNode>(N2)->getVT();
5474     assert(VT == N1.getValueType() && "Not an inreg extend!");
5475     assert(VT.isInteger() && EVT.isInteger() &&
5476            "Cannot *_EXTEND_INREG FP types");
5477     assert(!EVT.isVector() &&
5478            "AssertSExt/AssertZExt type should be the vector element type "
5479            "rather than the vector type!");
5480     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5481     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5482     break;
5483   }
5484   case ISD::SIGN_EXTEND_INREG: {
5485     EVT EVT = cast<VTSDNode>(N2)->getVT();
5486     assert(VT == N1.getValueType() && "Not an inreg extend!");
5487     assert(VT.isInteger() && EVT.isInteger() &&
5488            "Cannot *_EXTEND_INREG FP types");
5489     assert(EVT.isVector() == VT.isVector() &&
5490            "SIGN_EXTEND_INREG type should be vector iff the operand "
5491            "type is vector!");
5492     assert((!EVT.isVector() ||
5493             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5494            "Vector element counts must match in SIGN_EXTEND_INREG");
5495     assert(EVT.bitsLE(VT) && "Not extending!");
5496     if (EVT == VT) return N1;  // Not actually extending
5497 
5498     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5499       unsigned FromBits = EVT.getScalarSizeInBits();
5500       Val <<= Val.getBitWidth() - FromBits;
5501       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5502       return getConstant(Val, DL, ConstantVT);
5503     };
5504 
5505     if (N1C) {
5506       const APInt &Val = N1C->getAPIntValue();
5507       return SignExtendInReg(Val, VT);
5508     }
5509     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5510       SmallVector<SDValue, 8> Ops;
5511       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5512       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5513         SDValue Op = N1.getOperand(i);
5514         if (Op.isUndef()) {
5515           Ops.push_back(getUNDEF(OpVT));
5516           continue;
5517         }
5518         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5519         APInt Val = C->getAPIntValue();
5520         Ops.push_back(SignExtendInReg(Val, OpVT));
5521       }
5522       return getBuildVector(VT, DL, Ops);
5523     }
5524     break;
5525   }
5526   case ISD::EXTRACT_VECTOR_ELT:
5527     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5528            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5529              element type of the vector.");
5530 
5531     // Extract from an undefined value or using an undefined index is undefined.
5532     if (N1.isUndef() || N2.isUndef())
5533       return getUNDEF(VT);
5534 
5535     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5536     // vectors. For scalable vectors we will provide appropriate support for
5537     // dealing with arbitrary indices.
5538     if (N2C && N1.getValueType().isFixedLengthVector() &&
5539         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5540       return getUNDEF(VT);
5541 
5542     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5543     // expanding copies of large vectors from registers. This only works for
5544     // fixed length vectors, since we need to know the exact number of
5545     // elements.
5546     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5547         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5548       unsigned Factor =
5549         N1.getOperand(0).getValueType().getVectorNumElements();
5550       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5551                      N1.getOperand(N2C->getZExtValue() / Factor),
5552                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5553     }
5554 
5555     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5556     // lowering is expanding large vector constants.
5557     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5558                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5559       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5560               N1.getValueType().isFixedLengthVector()) &&
5561              "BUILD_VECTOR used for scalable vectors");
5562       unsigned Index =
5563           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5564       SDValue Elt = N1.getOperand(Index);
5565 
5566       if (VT != Elt.getValueType())
5567         // If the vector element type is not legal, the BUILD_VECTOR operands
5568         // are promoted and implicitly truncated, and the result implicitly
5569         // extended. Make that explicit here.
5570         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5571 
5572       return Elt;
5573     }
5574 
5575     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5576     // operations are lowered to scalars.
5577     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5578       // If the indices are the same, return the inserted element else
5579       // if the indices are known different, extract the element from
5580       // the original vector.
5581       SDValue N1Op2 = N1.getOperand(2);
5582       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5583 
5584       if (N1Op2C && N2C) {
5585         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5586           if (VT == N1.getOperand(1).getValueType())
5587             return N1.getOperand(1);
5588           else
5589             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5590         }
5591 
5592         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5593       }
5594     }
5595 
5596     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5597     // when vector types are scalarized and v1iX is legal.
5598     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5599     // Here we are completely ignoring the extract element index (N2),
5600     // which is fine for fixed width vectors, since any index other than 0
5601     // is undefined anyway. However, this cannot be ignored for scalable
5602     // vectors - in theory we could support this, but we don't want to do this
5603     // without a profitability check.
5604     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5605         N1.getValueType().isFixedLengthVector() &&
5606         N1.getValueType().getVectorNumElements() == 1) {
5607       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5608                      N1.getOperand(1));
5609     }
5610     break;
5611   case ISD::EXTRACT_ELEMENT:
5612     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5613     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5614            (N1.getValueType().isInteger() == VT.isInteger()) &&
5615            N1.getValueType() != VT &&
5616            "Wrong types for EXTRACT_ELEMENT!");
5617 
5618     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5619     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5620     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5621     if (N1.getOpcode() == ISD::BUILD_PAIR)
5622       return N1.getOperand(N2C->getZExtValue());
5623 
5624     // EXTRACT_ELEMENT of a constant int is also very common.
5625     if (N1C) {
5626       unsigned ElementSize = VT.getSizeInBits();
5627       unsigned Shift = ElementSize * N2C->getZExtValue();
5628       const APInt &Val = N1C->getAPIntValue();
5629       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5630     }
5631     break;
5632   case ISD::EXTRACT_SUBVECTOR:
5633     EVT N1VT = N1.getValueType();
5634     assert(VT.isVector() && N1VT.isVector() &&
5635            "Extract subvector VTs must be vectors!");
5636     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5637            "Extract subvector VTs must have the same element type!");
5638     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5639            "Cannot extract a scalable vector from a fixed length vector!");
5640     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5641             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5642            "Extract subvector must be from larger vector to smaller vector!");
5643     assert(N2C && "Extract subvector index must be a constant");
5644     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5645             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5646                 N1VT.getVectorMinNumElements()) &&
5647            "Extract subvector overflow!");
5648     assert(N2C->getAPIntValue().getBitWidth() ==
5649                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5650            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5651 
5652     // Trivial extraction.
5653     if (VT == N1VT)
5654       return N1;
5655 
5656     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5657     if (N1.isUndef())
5658       return getUNDEF(VT);
5659 
5660     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5661     // the concat have the same type as the extract.
5662     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5663         VT == N1.getOperand(0).getValueType()) {
5664       unsigned Factor = VT.getVectorMinNumElements();
5665       return N1.getOperand(N2C->getZExtValue() / Factor);
5666     }
5667 
5668     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5669     // during shuffle legalization.
5670     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5671         VT == N1.getOperand(1).getValueType())
5672       return N1.getOperand(1);
5673     break;
5674   }
5675 
5676   // Perform trivial constant folding.
5677   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5678     return SV;
5679 
5680   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5681     return V;
5682 
5683   // Canonicalize an UNDEF to the RHS, even over a constant.
5684   if (N1.isUndef()) {
5685     if (TLI->isCommutativeBinOp(Opcode)) {
5686       std::swap(N1, N2);
5687     } else {
5688       switch (Opcode) {
5689       case ISD::SIGN_EXTEND_INREG:
5690       case ISD::SUB:
5691         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5692       case ISD::UDIV:
5693       case ISD::SDIV:
5694       case ISD::UREM:
5695       case ISD::SREM:
5696       case ISD::SSUBSAT:
5697       case ISD::USUBSAT:
5698         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5699       }
5700     }
5701   }
5702 
5703   // Fold a bunch of operators when the RHS is undef.
5704   if (N2.isUndef()) {
5705     switch (Opcode) {
5706     case ISD::XOR:
5707       if (N1.isUndef())
5708         // Handle undef ^ undef -> 0 special case. This is a common
5709         // idiom (misuse).
5710         return getConstant(0, DL, VT);
5711       LLVM_FALLTHROUGH;
5712     case ISD::ADD:
5713     case ISD::SUB:
5714     case ISD::UDIV:
5715     case ISD::SDIV:
5716     case ISD::UREM:
5717     case ISD::SREM:
5718       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5719     case ISD::MUL:
5720     case ISD::AND:
5721     case ISD::SSUBSAT:
5722     case ISD::USUBSAT:
5723       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5724     case ISD::OR:
5725     case ISD::SADDSAT:
5726     case ISD::UADDSAT:
5727       return getAllOnesConstant(DL, VT);
5728     }
5729   }
5730 
5731   // Memoize this node if possible.
5732   SDNode *N;
5733   SDVTList VTs = getVTList(VT);
5734   SDValue Ops[] = {N1, N2};
5735   if (VT != MVT::Glue) {
5736     FoldingSetNodeID ID;
5737     AddNodeIDNode(ID, Opcode, VTs, Ops);
5738     void *IP = nullptr;
5739     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5740       E->intersectFlagsWith(Flags);
5741       return SDValue(E, 0);
5742     }
5743 
5744     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5745     N->setFlags(Flags);
5746     createOperands(N, Ops);
5747     CSEMap.InsertNode(N, IP);
5748   } else {
5749     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5750     createOperands(N, Ops);
5751   }
5752 
5753   InsertNode(N);
5754   SDValue V = SDValue(N, 0);
5755   NewSDValueDbgMsg(V, "Creating new node: ", this);
5756   return V;
5757 }
5758 
5759 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5760                               SDValue N1, SDValue N2, SDValue N3) {
5761   SDNodeFlags Flags;
5762   if (Inserter)
5763     Flags = Inserter->getFlags();
5764   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
5765 }
5766 
5767 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5768                               SDValue N1, SDValue N2, SDValue N3,
5769                               const SDNodeFlags Flags) {
5770   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5771          N2.getOpcode() != ISD::DELETED_NODE &&
5772          N3.getOpcode() != ISD::DELETED_NODE &&
5773          "Operand is DELETED_NODE!");
5774   // Perform various simplifications.
5775   switch (Opcode) {
5776   case ISD::FMA: {
5777     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5778     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5779            N3.getValueType() == VT && "FMA types must match!");
5780     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5781     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5782     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5783     if (N1CFP && N2CFP && N3CFP) {
5784       APFloat  V1 = N1CFP->getValueAPF();
5785       const APFloat &V2 = N2CFP->getValueAPF();
5786       const APFloat &V3 = N3CFP->getValueAPF();
5787       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5788       return getConstantFP(V1, DL, VT);
5789     }
5790     break;
5791   }
5792   case ISD::BUILD_VECTOR: {
5793     // Attempt to simplify BUILD_VECTOR.
5794     SDValue Ops[] = {N1, N2, N3};
5795     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5796       return V;
5797     break;
5798   }
5799   case ISD::CONCAT_VECTORS: {
5800     SDValue Ops[] = {N1, N2, N3};
5801     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5802       return V;
5803     break;
5804   }
5805   case ISD::SETCC: {
5806     assert(VT.isInteger() && "SETCC result type must be an integer!");
5807     assert(N1.getValueType() == N2.getValueType() &&
5808            "SETCC operands must have the same type!");
5809     assert(VT.isVector() == N1.getValueType().isVector() &&
5810            "SETCC type should be vector iff the operand type is vector!");
5811     assert((!VT.isVector() || VT.getVectorElementCount() ==
5812                                   N1.getValueType().getVectorElementCount()) &&
5813            "SETCC vector element counts must match!");
5814     // Use FoldSetCC to simplify SETCC's.
5815     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5816       return V;
5817     // Vector constant folding.
5818     SDValue Ops[] = {N1, N2, N3};
5819     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5820       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5821       return V;
5822     }
5823     break;
5824   }
5825   case ISD::SELECT:
5826   case ISD::VSELECT:
5827     if (SDValue V = simplifySelect(N1, N2, N3))
5828       return V;
5829     break;
5830   case ISD::VECTOR_SHUFFLE:
5831     llvm_unreachable("should use getVectorShuffle constructor!");
5832   case ISD::INSERT_VECTOR_ELT: {
5833     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5834     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5835     // for scalable vectors where we will generate appropriate code to
5836     // deal with out-of-bounds cases correctly.
5837     if (N3C && N1.getValueType().isFixedLengthVector() &&
5838         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5839       return getUNDEF(VT);
5840 
5841     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5842     if (N3.isUndef())
5843       return getUNDEF(VT);
5844 
5845     // If the inserted element is an UNDEF, just use the input vector.
5846     if (N2.isUndef())
5847       return N1;
5848 
5849     break;
5850   }
5851   case ISD::INSERT_SUBVECTOR: {
5852     // Inserting undef into undef is still undef.
5853     if (N1.isUndef() && N2.isUndef())
5854       return getUNDEF(VT);
5855 
5856     EVT N2VT = N2.getValueType();
5857     assert(VT == N1.getValueType() &&
5858            "Dest and insert subvector source types must match!");
5859     assert(VT.isVector() && N2VT.isVector() &&
5860            "Insert subvector VTs must be vectors!");
5861     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5862            "Cannot insert a scalable vector into a fixed length vector!");
5863     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5864             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5865            "Insert subvector must be from smaller vector to larger vector!");
5866     assert(isa<ConstantSDNode>(N3) &&
5867            "Insert subvector index must be constant");
5868     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5869             (N2VT.getVectorMinNumElements() +
5870              cast<ConstantSDNode>(N3)->getZExtValue()) <=
5871                 VT.getVectorMinNumElements()) &&
5872            "Insert subvector overflow!");
5873     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
5874                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5875            "Constant index for INSERT_SUBVECTOR has an invalid size");
5876 
5877     // Trivial insertion.
5878     if (VT == N2VT)
5879       return N2;
5880 
5881     // If this is an insert of an extracted vector into an undef vector, we
5882     // can just use the input to the extract.
5883     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5884         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5885       return N2.getOperand(0);
5886     break;
5887   }
5888   case ISD::BITCAST:
5889     // Fold bit_convert nodes from a type to themselves.
5890     if (N1.getValueType() == VT)
5891       return N1;
5892     break;
5893   }
5894 
5895   // Memoize node if it doesn't produce a flag.
5896   SDNode *N;
5897   SDVTList VTs = getVTList(VT);
5898   SDValue Ops[] = {N1, N2, N3};
5899   if (VT != MVT::Glue) {
5900     FoldingSetNodeID ID;
5901     AddNodeIDNode(ID, Opcode, VTs, Ops);
5902     void *IP = nullptr;
5903     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5904       E->intersectFlagsWith(Flags);
5905       return SDValue(E, 0);
5906     }
5907 
5908     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5909     N->setFlags(Flags);
5910     createOperands(N, Ops);
5911     CSEMap.InsertNode(N, IP);
5912   } else {
5913     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5914     createOperands(N, Ops);
5915   }
5916 
5917   InsertNode(N);
5918   SDValue V = SDValue(N, 0);
5919   NewSDValueDbgMsg(V, "Creating new node: ", this);
5920   return V;
5921 }
5922 
5923 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5924                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5925   SDValue Ops[] = { N1, N2, N3, N4 };
5926   return getNode(Opcode, DL, VT, Ops);
5927 }
5928 
5929 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5930                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5931                               SDValue N5) {
5932   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5933   return getNode(Opcode, DL, VT, Ops);
5934 }
5935 
5936 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5937 /// the incoming stack arguments to be loaded from the stack.
5938 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5939   SmallVector<SDValue, 8> ArgChains;
5940 
5941   // Include the original chain at the beginning of the list. When this is
5942   // used by target LowerCall hooks, this helps legalize find the
5943   // CALLSEQ_BEGIN node.
5944   ArgChains.push_back(Chain);
5945 
5946   // Add a chain value for each stack argument.
5947   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5948        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5949     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5950       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5951         if (FI->getIndex() < 0)
5952           ArgChains.push_back(SDValue(L, 1));
5953 
5954   // Build a tokenfactor for all the chains.
5955   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5956 }
5957 
5958 /// getMemsetValue - Vectorized representation of the memset value
5959 /// operand.
5960 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5961                               const SDLoc &dl) {
5962   assert(!Value.isUndef());
5963 
5964   unsigned NumBits = VT.getScalarSizeInBits();
5965   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5966     assert(C->getAPIntValue().getBitWidth() == 8);
5967     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5968     if (VT.isInteger()) {
5969       bool IsOpaque = VT.getSizeInBits() > 64 ||
5970           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5971       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5972     }
5973     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5974                              VT);
5975   }
5976 
5977   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5978   EVT IntVT = VT.getScalarType();
5979   if (!IntVT.isInteger())
5980     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5981 
5982   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5983   if (NumBits > 8) {
5984     // Use a multiplication with 0x010101... to extend the input to the
5985     // required length.
5986     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5987     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5988                         DAG.getConstant(Magic, dl, IntVT));
5989   }
5990 
5991   if (VT != Value.getValueType() && !VT.isInteger())
5992     Value = DAG.getBitcast(VT.getScalarType(), Value);
5993   if (VT != Value.getValueType())
5994     Value = DAG.getSplatBuildVector(VT, dl, Value);
5995 
5996   return Value;
5997 }
5998 
5999 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6000 /// used when a memcpy is turned into a memset when the source is a constant
6001 /// string ptr.
6002 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6003                                   const TargetLowering &TLI,
6004                                   const ConstantDataArraySlice &Slice) {
6005   // Handle vector with all elements zero.
6006   if (Slice.Array == nullptr) {
6007     if (VT.isInteger())
6008       return DAG.getConstant(0, dl, VT);
6009     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6010       return DAG.getConstantFP(0.0, dl, VT);
6011     else if (VT.isVector()) {
6012       unsigned NumElts = VT.getVectorNumElements();
6013       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6014       return DAG.getNode(ISD::BITCAST, dl, VT,
6015                          DAG.getConstant(0, dl,
6016                                          EVT::getVectorVT(*DAG.getContext(),
6017                                                           EltVT, NumElts)));
6018     } else
6019       llvm_unreachable("Expected type!");
6020   }
6021 
6022   assert(!VT.isVector() && "Can't handle vector type here!");
6023   unsigned NumVTBits = VT.getSizeInBits();
6024   unsigned NumVTBytes = NumVTBits / 8;
6025   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6026 
6027   APInt Val(NumVTBits, 0);
6028   if (DAG.getDataLayout().isLittleEndian()) {
6029     for (unsigned i = 0; i != NumBytes; ++i)
6030       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6031   } else {
6032     for (unsigned i = 0; i != NumBytes; ++i)
6033       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6034   }
6035 
6036   // If the "cost" of materializing the integer immediate is less than the cost
6037   // of a load, then it is cost effective to turn the load into the immediate.
6038   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6039   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6040     return DAG.getConstant(Val, dl, VT);
6041   return SDValue(nullptr, 0);
6042 }
6043 
6044 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6045                                            const SDLoc &DL,
6046                                            const SDNodeFlags Flags) {
6047   EVT VT = Base.getValueType();
6048   SDValue Index;
6049 
6050   if (Offset.isScalable())
6051     Index = getVScale(DL, Base.getValueType(),
6052                       APInt(Base.getValueSizeInBits().getFixedSize(),
6053                             Offset.getKnownMinSize()));
6054   else
6055     Index = getConstant(Offset.getFixedSize(), DL, VT);
6056 
6057   return getMemBasePlusOffset(Base, Index, DL, Flags);
6058 }
6059 
6060 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6061                                            const SDLoc &DL,
6062                                            const SDNodeFlags Flags) {
6063   assert(Offset.getValueType().isInteger());
6064   EVT BasePtrVT = Ptr.getValueType();
6065   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6066 }
6067 
6068 /// Returns true if memcpy source is constant data.
6069 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6070   uint64_t SrcDelta = 0;
6071   GlobalAddressSDNode *G = nullptr;
6072   if (Src.getOpcode() == ISD::GlobalAddress)
6073     G = cast<GlobalAddressSDNode>(Src);
6074   else if (Src.getOpcode() == ISD::ADD &&
6075            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6076            Src.getOperand(1).getOpcode() == ISD::Constant) {
6077     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6078     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6079   }
6080   if (!G)
6081     return false;
6082 
6083   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6084                                   SrcDelta + G->getOffset());
6085 }
6086 
6087 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6088                                       SelectionDAG &DAG) {
6089   // On Darwin, -Os means optimize for size without hurting performance, so
6090   // only really optimize for size when -Oz (MinSize) is used.
6091   if (MF.getTarget().getTargetTriple().isOSDarwin())
6092     return MF.getFunction().hasMinSize();
6093   return DAG.shouldOptForSize();
6094 }
6095 
6096 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6097                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6098                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6099                           SmallVector<SDValue, 16> &OutStoreChains) {
6100   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6101   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6102   SmallVector<SDValue, 16> GluedLoadChains;
6103   for (unsigned i = From; i < To; ++i) {
6104     OutChains.push_back(OutLoadChains[i]);
6105     GluedLoadChains.push_back(OutLoadChains[i]);
6106   }
6107 
6108   // Chain for all loads.
6109   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6110                                   GluedLoadChains);
6111 
6112   for (unsigned i = From; i < To; ++i) {
6113     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6114     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6115                                   ST->getBasePtr(), ST->getMemoryVT(),
6116                                   ST->getMemOperand());
6117     OutChains.push_back(NewStore);
6118   }
6119 }
6120 
6121 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6122                                        SDValue Chain, SDValue Dst, SDValue Src,
6123                                        uint64_t Size, Align Alignment,
6124                                        bool isVol, bool AlwaysInline,
6125                                        MachinePointerInfo DstPtrInfo,
6126                                        MachinePointerInfo SrcPtrInfo) {
6127   // Turn a memcpy of undef to nop.
6128   // FIXME: We need to honor volatile even is Src is undef.
6129   if (Src.isUndef())
6130     return Chain;
6131 
6132   // Expand memcpy to a series of load and store ops if the size operand falls
6133   // below a certain threshold.
6134   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6135   // rather than maybe a humongous number of loads and stores.
6136   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6137   const DataLayout &DL = DAG.getDataLayout();
6138   LLVMContext &C = *DAG.getContext();
6139   std::vector<EVT> MemOps;
6140   bool DstAlignCanChange = false;
6141   MachineFunction &MF = DAG.getMachineFunction();
6142   MachineFrameInfo &MFI = MF.getFrameInfo();
6143   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6144   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6145   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6146     DstAlignCanChange = true;
6147   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6148   if (!SrcAlign || Alignment > *SrcAlign)
6149     SrcAlign = Alignment;
6150   assert(SrcAlign && "SrcAlign must be set");
6151   ConstantDataArraySlice Slice;
6152   // If marked as volatile, perform a copy even when marked as constant.
6153   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6154   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6155   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6156   const MemOp Op = isZeroConstant
6157                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6158                                     /*IsZeroMemset*/ true, isVol)
6159                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6160                                      *SrcAlign, isVol, CopyFromConstant);
6161   if (!TLI.findOptimalMemOpLowering(
6162           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6163           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6164     return SDValue();
6165 
6166   if (DstAlignCanChange) {
6167     Type *Ty = MemOps[0].getTypeForEVT(C);
6168     Align NewAlign = DL.getABITypeAlign(Ty);
6169 
6170     // Don't promote to an alignment that would require dynamic stack
6171     // realignment.
6172     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6173     if (!TRI->needsStackRealignment(MF))
6174       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6175         NewAlign = NewAlign / 2;
6176 
6177     if (NewAlign > Alignment) {
6178       // Give the stack frame object a larger alignment if needed.
6179       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6180         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6181       Alignment = NewAlign;
6182     }
6183   }
6184 
6185   MachineMemOperand::Flags MMOFlags =
6186       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6187   SmallVector<SDValue, 16> OutLoadChains;
6188   SmallVector<SDValue, 16> OutStoreChains;
6189   SmallVector<SDValue, 32> OutChains;
6190   unsigned NumMemOps = MemOps.size();
6191   uint64_t SrcOff = 0, DstOff = 0;
6192   for (unsigned i = 0; i != NumMemOps; ++i) {
6193     EVT VT = MemOps[i];
6194     unsigned VTSize = VT.getSizeInBits() / 8;
6195     SDValue Value, Store;
6196 
6197     if (VTSize > Size) {
6198       // Issuing an unaligned load / store pair  that overlaps with the previous
6199       // pair. Adjust the offset accordingly.
6200       assert(i == NumMemOps-1 && i != 0);
6201       SrcOff -= VTSize - Size;
6202       DstOff -= VTSize - Size;
6203     }
6204 
6205     if (CopyFromConstant &&
6206         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6207       // It's unlikely a store of a vector immediate can be done in a single
6208       // instruction. It would require a load from a constantpool first.
6209       // We only handle zero vectors here.
6210       // FIXME: Handle other cases where store of vector immediate is done in
6211       // a single instruction.
6212       ConstantDataArraySlice SubSlice;
6213       if (SrcOff < Slice.Length) {
6214         SubSlice = Slice;
6215         SubSlice.move(SrcOff);
6216       } else {
6217         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6218         SubSlice.Array = nullptr;
6219         SubSlice.Offset = 0;
6220         SubSlice.Length = VTSize;
6221       }
6222       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6223       if (Value.getNode()) {
6224         Store = DAG.getStore(
6225             Chain, dl, Value,
6226             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6227             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6228         OutChains.push_back(Store);
6229       }
6230     }
6231 
6232     if (!Store.getNode()) {
6233       // The type might not be legal for the target.  This should only happen
6234       // if the type is smaller than a legal type, as on PPC, so the right
6235       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6236       // to Load/Store if NVT==VT.
6237       // FIXME does the case above also need this?
6238       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6239       assert(NVT.bitsGE(VT));
6240 
6241       bool isDereferenceable =
6242         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6243       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6244       if (isDereferenceable)
6245         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6246 
6247       Value = DAG.getExtLoad(
6248           ISD::EXTLOAD, dl, NVT, Chain,
6249           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6250           SrcPtrInfo.getWithOffset(SrcOff), VT,
6251           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags);
6252       OutLoadChains.push_back(Value.getValue(1));
6253 
6254       Store = DAG.getTruncStore(
6255           Chain, dl, Value,
6256           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6257           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6258       OutStoreChains.push_back(Store);
6259     }
6260     SrcOff += VTSize;
6261     DstOff += VTSize;
6262     Size -= VTSize;
6263   }
6264 
6265   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6266                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6267   unsigned NumLdStInMemcpy = OutStoreChains.size();
6268 
6269   if (NumLdStInMemcpy) {
6270     // It may be that memcpy might be converted to memset if it's memcpy
6271     // of constants. In such a case, we won't have loads and stores, but
6272     // just stores. In the absence of loads, there is nothing to gang up.
6273     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6274       // If target does not care, just leave as it.
6275       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6276         OutChains.push_back(OutLoadChains[i]);
6277         OutChains.push_back(OutStoreChains[i]);
6278       }
6279     } else {
6280       // Ld/St less than/equal limit set by target.
6281       if (NumLdStInMemcpy <= GluedLdStLimit) {
6282           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6283                                         NumLdStInMemcpy, OutLoadChains,
6284                                         OutStoreChains);
6285       } else {
6286         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6287         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6288         unsigned GlueIter = 0;
6289 
6290         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6291           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6292           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6293 
6294           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6295                                        OutLoadChains, OutStoreChains);
6296           GlueIter += GluedLdStLimit;
6297         }
6298 
6299         // Residual ld/st.
6300         if (RemainingLdStInMemcpy) {
6301           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6302                                         RemainingLdStInMemcpy, OutLoadChains,
6303                                         OutStoreChains);
6304         }
6305       }
6306     }
6307   }
6308   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6309 }
6310 
6311 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6312                                         SDValue Chain, SDValue Dst, SDValue Src,
6313                                         uint64_t Size, Align Alignment,
6314                                         bool isVol, bool AlwaysInline,
6315                                         MachinePointerInfo DstPtrInfo,
6316                                         MachinePointerInfo SrcPtrInfo) {
6317   // Turn a memmove of undef to nop.
6318   // FIXME: We need to honor volatile even is Src is undef.
6319   if (Src.isUndef())
6320     return Chain;
6321 
6322   // Expand memmove to a series of load and store ops if the size operand falls
6323   // below a certain threshold.
6324   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6325   const DataLayout &DL = DAG.getDataLayout();
6326   LLVMContext &C = *DAG.getContext();
6327   std::vector<EVT> MemOps;
6328   bool DstAlignCanChange = false;
6329   MachineFunction &MF = DAG.getMachineFunction();
6330   MachineFrameInfo &MFI = MF.getFrameInfo();
6331   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6332   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6333   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6334     DstAlignCanChange = true;
6335   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6336   if (!SrcAlign || Alignment > *SrcAlign)
6337     SrcAlign = Alignment;
6338   assert(SrcAlign && "SrcAlign must be set");
6339   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6340   if (!TLI.findOptimalMemOpLowering(
6341           MemOps, Limit,
6342           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6343                       /*IsVolatile*/ true),
6344           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6345           MF.getFunction().getAttributes()))
6346     return SDValue();
6347 
6348   if (DstAlignCanChange) {
6349     Type *Ty = MemOps[0].getTypeForEVT(C);
6350     Align NewAlign = DL.getABITypeAlign(Ty);
6351     if (NewAlign > Alignment) {
6352       // Give the stack frame object a larger alignment if needed.
6353       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6354         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6355       Alignment = NewAlign;
6356     }
6357   }
6358 
6359   MachineMemOperand::Flags MMOFlags =
6360       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6361   uint64_t SrcOff = 0, DstOff = 0;
6362   SmallVector<SDValue, 8> LoadValues;
6363   SmallVector<SDValue, 8> LoadChains;
6364   SmallVector<SDValue, 8> OutChains;
6365   unsigned NumMemOps = MemOps.size();
6366   for (unsigned i = 0; i < NumMemOps; i++) {
6367     EVT VT = MemOps[i];
6368     unsigned VTSize = VT.getSizeInBits() / 8;
6369     SDValue Value;
6370 
6371     bool isDereferenceable =
6372       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6373     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6374     if (isDereferenceable)
6375       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6376 
6377     Value =
6378         DAG.getLoad(VT, dl, Chain,
6379                     DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6380                     SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags);
6381     LoadValues.push_back(Value);
6382     LoadChains.push_back(Value.getValue(1));
6383     SrcOff += VTSize;
6384   }
6385   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6386   OutChains.clear();
6387   for (unsigned i = 0; i < NumMemOps; i++) {
6388     EVT VT = MemOps[i];
6389     unsigned VTSize = VT.getSizeInBits() / 8;
6390     SDValue Store;
6391 
6392     Store =
6393         DAG.getStore(Chain, dl, LoadValues[i],
6394                      DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6395                      DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6396     OutChains.push_back(Store);
6397     DstOff += VTSize;
6398   }
6399 
6400   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6401 }
6402 
6403 /// Lower the call to 'memset' intrinsic function into a series of store
6404 /// operations.
6405 ///
6406 /// \param DAG Selection DAG where lowered code is placed.
6407 /// \param dl Link to corresponding IR location.
6408 /// \param Chain Control flow dependency.
6409 /// \param Dst Pointer to destination memory location.
6410 /// \param Src Value of byte to write into the memory.
6411 /// \param Size Number of bytes to write.
6412 /// \param Alignment Alignment of the destination in bytes.
6413 /// \param isVol True if destination is volatile.
6414 /// \param DstPtrInfo IR information on the memory pointer.
6415 /// \returns New head in the control flow, if lowering was successful, empty
6416 /// SDValue otherwise.
6417 ///
6418 /// The function tries to replace 'llvm.memset' intrinsic with several store
6419 /// operations and value calculation code. This is usually profitable for small
6420 /// memory size.
6421 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6422                                SDValue Chain, SDValue Dst, SDValue Src,
6423                                uint64_t Size, Align Alignment, bool isVol,
6424                                MachinePointerInfo DstPtrInfo) {
6425   // Turn a memset of undef to nop.
6426   // FIXME: We need to honor volatile even is Src is undef.
6427   if (Src.isUndef())
6428     return Chain;
6429 
6430   // Expand memset to a series of load/store ops if the size operand
6431   // falls below a certain threshold.
6432   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6433   std::vector<EVT> MemOps;
6434   bool DstAlignCanChange = false;
6435   MachineFunction &MF = DAG.getMachineFunction();
6436   MachineFrameInfo &MFI = MF.getFrameInfo();
6437   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6438   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6439   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6440     DstAlignCanChange = true;
6441   bool IsZeroVal =
6442     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6443   if (!TLI.findOptimalMemOpLowering(
6444           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6445           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6446           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6447     return SDValue();
6448 
6449   if (DstAlignCanChange) {
6450     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6451     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6452     if (NewAlign > Alignment) {
6453       // Give the stack frame object a larger alignment if needed.
6454       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6455         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6456       Alignment = NewAlign;
6457     }
6458   }
6459 
6460   SmallVector<SDValue, 8> OutChains;
6461   uint64_t DstOff = 0;
6462   unsigned NumMemOps = MemOps.size();
6463 
6464   // Find the largest store and generate the bit pattern for it.
6465   EVT LargestVT = MemOps[0];
6466   for (unsigned i = 1; i < NumMemOps; i++)
6467     if (MemOps[i].bitsGT(LargestVT))
6468       LargestVT = MemOps[i];
6469   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6470 
6471   for (unsigned i = 0; i < NumMemOps; i++) {
6472     EVT VT = MemOps[i];
6473     unsigned VTSize = VT.getSizeInBits() / 8;
6474     if (VTSize > Size) {
6475       // Issuing an unaligned load / store pair  that overlaps with the previous
6476       // pair. Adjust the offset accordingly.
6477       assert(i == NumMemOps-1 && i != 0);
6478       DstOff -= VTSize - Size;
6479     }
6480 
6481     // If this store is smaller than the largest store see whether we can get
6482     // the smaller value for free with a truncate.
6483     SDValue Value = MemSetValue;
6484     if (VT.bitsLT(LargestVT)) {
6485       if (!LargestVT.isVector() && !VT.isVector() &&
6486           TLI.isTruncateFree(LargestVT, VT))
6487         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6488       else
6489         Value = getMemsetValue(Src, VT, DAG, dl);
6490     }
6491     assert(Value.getValueType() == VT && "Value with wrong type.");
6492     SDValue Store = DAG.getStore(
6493         Chain, dl, Value,
6494         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6495         DstPtrInfo.getWithOffset(DstOff), Alignment,
6496         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6497     OutChains.push_back(Store);
6498     DstOff += VT.getSizeInBits() / 8;
6499     Size -= VTSize;
6500   }
6501 
6502   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6503 }
6504 
6505 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6506                                             unsigned AS) {
6507   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6508   // pointer operands can be losslessly bitcasted to pointers of address space 0
6509   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6510     report_fatal_error("cannot lower memory intrinsic in address space " +
6511                        Twine(AS));
6512   }
6513 }
6514 
6515 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6516                                 SDValue Src, SDValue Size, Align Alignment,
6517                                 bool isVol, bool AlwaysInline, bool isTailCall,
6518                                 MachinePointerInfo DstPtrInfo,
6519                                 MachinePointerInfo SrcPtrInfo) {
6520   // Check to see if we should lower the memcpy to loads and stores first.
6521   // For cases within the target-specified limits, this is the best choice.
6522   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6523   if (ConstantSize) {
6524     // Memcpy with size zero? Just return the original chain.
6525     if (ConstantSize->isNullValue())
6526       return Chain;
6527 
6528     SDValue Result = getMemcpyLoadsAndStores(
6529         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6530         isVol, false, DstPtrInfo, SrcPtrInfo);
6531     if (Result.getNode())
6532       return Result;
6533   }
6534 
6535   // Then check to see if we should lower the memcpy with target-specific
6536   // code. If the target chooses to do this, this is the next best.
6537   if (TSI) {
6538     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6539         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6540         DstPtrInfo, SrcPtrInfo);
6541     if (Result.getNode())
6542       return Result;
6543   }
6544 
6545   // If we really need inline code and the target declined to provide it,
6546   // use a (potentially long) sequence of loads and stores.
6547   if (AlwaysInline) {
6548     assert(ConstantSize && "AlwaysInline requires a constant size!");
6549     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6550                                    ConstantSize->getZExtValue(), Alignment,
6551                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6552   }
6553 
6554   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6555   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6556 
6557   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6558   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6559   // respect volatile, so they may do things like read or write memory
6560   // beyond the given memory regions. But fixing this isn't easy, and most
6561   // people don't care.
6562 
6563   // Emit a library call.
6564   TargetLowering::ArgListTy Args;
6565   TargetLowering::ArgListEntry Entry;
6566   Entry.Ty = Type::getInt8PtrTy(*getContext());
6567   Entry.Node = Dst; Args.push_back(Entry);
6568   Entry.Node = Src; Args.push_back(Entry);
6569 
6570   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6571   Entry.Node = Size; Args.push_back(Entry);
6572   // FIXME: pass in SDLoc
6573   TargetLowering::CallLoweringInfo CLI(*this);
6574   CLI.setDebugLoc(dl)
6575       .setChain(Chain)
6576       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6577                     Dst.getValueType().getTypeForEVT(*getContext()),
6578                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6579                                       TLI->getPointerTy(getDataLayout())),
6580                     std::move(Args))
6581       .setDiscardResult()
6582       .setTailCall(isTailCall);
6583 
6584   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6585   return CallResult.second;
6586 }
6587 
6588 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6589                                       SDValue Dst, unsigned DstAlign,
6590                                       SDValue Src, unsigned SrcAlign,
6591                                       SDValue Size, Type *SizeTy,
6592                                       unsigned ElemSz, bool isTailCall,
6593                                       MachinePointerInfo DstPtrInfo,
6594                                       MachinePointerInfo SrcPtrInfo) {
6595   // Emit a library call.
6596   TargetLowering::ArgListTy Args;
6597   TargetLowering::ArgListEntry Entry;
6598   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6599   Entry.Node = Dst;
6600   Args.push_back(Entry);
6601 
6602   Entry.Node = Src;
6603   Args.push_back(Entry);
6604 
6605   Entry.Ty = SizeTy;
6606   Entry.Node = Size;
6607   Args.push_back(Entry);
6608 
6609   RTLIB::Libcall LibraryCall =
6610       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6611   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6612     report_fatal_error("Unsupported element size");
6613 
6614   TargetLowering::CallLoweringInfo CLI(*this);
6615   CLI.setDebugLoc(dl)
6616       .setChain(Chain)
6617       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6618                     Type::getVoidTy(*getContext()),
6619                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6620                                       TLI->getPointerTy(getDataLayout())),
6621                     std::move(Args))
6622       .setDiscardResult()
6623       .setTailCall(isTailCall);
6624 
6625   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6626   return CallResult.second;
6627 }
6628 
6629 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6630                                  SDValue Src, SDValue Size, Align Alignment,
6631                                  bool isVol, bool isTailCall,
6632                                  MachinePointerInfo DstPtrInfo,
6633                                  MachinePointerInfo SrcPtrInfo) {
6634   // Check to see if we should lower the memmove to loads and stores first.
6635   // For cases within the target-specified limits, this is the best choice.
6636   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6637   if (ConstantSize) {
6638     // Memmove with size zero? Just return the original chain.
6639     if (ConstantSize->isNullValue())
6640       return Chain;
6641 
6642     SDValue Result = getMemmoveLoadsAndStores(
6643         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6644         isVol, false, DstPtrInfo, SrcPtrInfo);
6645     if (Result.getNode())
6646       return Result;
6647   }
6648 
6649   // Then check to see if we should lower the memmove with target-specific
6650   // code. If the target chooses to do this, this is the next best.
6651   if (TSI) {
6652     SDValue Result =
6653         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6654                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6655     if (Result.getNode())
6656       return Result;
6657   }
6658 
6659   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6660   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6661 
6662   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6663   // not be safe.  See memcpy above for more details.
6664 
6665   // Emit a library call.
6666   TargetLowering::ArgListTy Args;
6667   TargetLowering::ArgListEntry Entry;
6668   Entry.Ty = Type::getInt8PtrTy(*getContext());
6669   Entry.Node = Dst; Args.push_back(Entry);
6670   Entry.Node = Src; Args.push_back(Entry);
6671 
6672   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6673   Entry.Node = Size; Args.push_back(Entry);
6674   // FIXME:  pass in SDLoc
6675   TargetLowering::CallLoweringInfo CLI(*this);
6676   CLI.setDebugLoc(dl)
6677       .setChain(Chain)
6678       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6679                     Dst.getValueType().getTypeForEVT(*getContext()),
6680                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6681                                       TLI->getPointerTy(getDataLayout())),
6682                     std::move(Args))
6683       .setDiscardResult()
6684       .setTailCall(isTailCall);
6685 
6686   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6687   return CallResult.second;
6688 }
6689 
6690 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6691                                        SDValue Dst, unsigned DstAlign,
6692                                        SDValue Src, unsigned SrcAlign,
6693                                        SDValue Size, Type *SizeTy,
6694                                        unsigned ElemSz, bool isTailCall,
6695                                        MachinePointerInfo DstPtrInfo,
6696                                        MachinePointerInfo SrcPtrInfo) {
6697   // Emit a library call.
6698   TargetLowering::ArgListTy Args;
6699   TargetLowering::ArgListEntry Entry;
6700   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6701   Entry.Node = Dst;
6702   Args.push_back(Entry);
6703 
6704   Entry.Node = Src;
6705   Args.push_back(Entry);
6706 
6707   Entry.Ty = SizeTy;
6708   Entry.Node = Size;
6709   Args.push_back(Entry);
6710 
6711   RTLIB::Libcall LibraryCall =
6712       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6713   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6714     report_fatal_error("Unsupported element size");
6715 
6716   TargetLowering::CallLoweringInfo CLI(*this);
6717   CLI.setDebugLoc(dl)
6718       .setChain(Chain)
6719       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6720                     Type::getVoidTy(*getContext()),
6721                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6722                                       TLI->getPointerTy(getDataLayout())),
6723                     std::move(Args))
6724       .setDiscardResult()
6725       .setTailCall(isTailCall);
6726 
6727   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6728   return CallResult.second;
6729 }
6730 
6731 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6732                                 SDValue Src, SDValue Size, Align Alignment,
6733                                 bool isVol, bool isTailCall,
6734                                 MachinePointerInfo DstPtrInfo) {
6735   // Check to see if we should lower the memset to stores first.
6736   // For cases within the target-specified limits, this is the best choice.
6737   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6738   if (ConstantSize) {
6739     // Memset with size zero? Just return the original chain.
6740     if (ConstantSize->isNullValue())
6741       return Chain;
6742 
6743     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6744                                      ConstantSize->getZExtValue(), Alignment,
6745                                      isVol, DstPtrInfo);
6746 
6747     if (Result.getNode())
6748       return Result;
6749   }
6750 
6751   // Then check to see if we should lower the memset with target-specific
6752   // code. If the target chooses to do this, this is the next best.
6753   if (TSI) {
6754     SDValue Result = TSI->EmitTargetCodeForMemset(
6755         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6756     if (Result.getNode())
6757       return Result;
6758   }
6759 
6760   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6761 
6762   // Emit a library call.
6763   TargetLowering::ArgListTy Args;
6764   TargetLowering::ArgListEntry Entry;
6765   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6766   Args.push_back(Entry);
6767   Entry.Node = Src;
6768   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6769   Args.push_back(Entry);
6770   Entry.Node = Size;
6771   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6772   Args.push_back(Entry);
6773 
6774   // FIXME: pass in SDLoc
6775   TargetLowering::CallLoweringInfo CLI(*this);
6776   CLI.setDebugLoc(dl)
6777       .setChain(Chain)
6778       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6779                     Dst.getValueType().getTypeForEVT(*getContext()),
6780                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6781                                       TLI->getPointerTy(getDataLayout())),
6782                     std::move(Args))
6783       .setDiscardResult()
6784       .setTailCall(isTailCall);
6785 
6786   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6787   return CallResult.second;
6788 }
6789 
6790 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6791                                       SDValue Dst, unsigned DstAlign,
6792                                       SDValue Value, SDValue Size, Type *SizeTy,
6793                                       unsigned ElemSz, bool isTailCall,
6794                                       MachinePointerInfo DstPtrInfo) {
6795   // Emit a library call.
6796   TargetLowering::ArgListTy Args;
6797   TargetLowering::ArgListEntry Entry;
6798   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6799   Entry.Node = Dst;
6800   Args.push_back(Entry);
6801 
6802   Entry.Ty = Type::getInt8Ty(*getContext());
6803   Entry.Node = Value;
6804   Args.push_back(Entry);
6805 
6806   Entry.Ty = SizeTy;
6807   Entry.Node = Size;
6808   Args.push_back(Entry);
6809 
6810   RTLIB::Libcall LibraryCall =
6811       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6812   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6813     report_fatal_error("Unsupported element size");
6814 
6815   TargetLowering::CallLoweringInfo CLI(*this);
6816   CLI.setDebugLoc(dl)
6817       .setChain(Chain)
6818       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6819                     Type::getVoidTy(*getContext()),
6820                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6821                                       TLI->getPointerTy(getDataLayout())),
6822                     std::move(Args))
6823       .setDiscardResult()
6824       .setTailCall(isTailCall);
6825 
6826   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6827   return CallResult.second;
6828 }
6829 
6830 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6831                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6832                                 MachineMemOperand *MMO) {
6833   FoldingSetNodeID ID;
6834   ID.AddInteger(MemVT.getRawBits());
6835   AddNodeIDNode(ID, Opcode, VTList, Ops);
6836   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6837   void* IP = nullptr;
6838   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6839     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6840     return SDValue(E, 0);
6841   }
6842 
6843   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6844                                     VTList, MemVT, MMO);
6845   createOperands(N, Ops);
6846 
6847   CSEMap.InsertNode(N, IP);
6848   InsertNode(N);
6849   return SDValue(N, 0);
6850 }
6851 
6852 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6853                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6854                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6855                                        MachineMemOperand *MMO) {
6856   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6857          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6858   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6859 
6860   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6861   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6862 }
6863 
6864 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6865                                 SDValue Chain, SDValue Ptr, SDValue Val,
6866                                 MachineMemOperand *MMO) {
6867   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6868           Opcode == ISD::ATOMIC_LOAD_SUB ||
6869           Opcode == ISD::ATOMIC_LOAD_AND ||
6870           Opcode == ISD::ATOMIC_LOAD_CLR ||
6871           Opcode == ISD::ATOMIC_LOAD_OR ||
6872           Opcode == ISD::ATOMIC_LOAD_XOR ||
6873           Opcode == ISD::ATOMIC_LOAD_NAND ||
6874           Opcode == ISD::ATOMIC_LOAD_MIN ||
6875           Opcode == ISD::ATOMIC_LOAD_MAX ||
6876           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6877           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6878           Opcode == ISD::ATOMIC_LOAD_FADD ||
6879           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6880           Opcode == ISD::ATOMIC_SWAP ||
6881           Opcode == ISD::ATOMIC_STORE) &&
6882          "Invalid Atomic Op");
6883 
6884   EVT VT = Val.getValueType();
6885 
6886   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6887                                                getVTList(VT, MVT::Other);
6888   SDValue Ops[] = {Chain, Ptr, Val};
6889   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6890 }
6891 
6892 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6893                                 EVT VT, SDValue Chain, SDValue Ptr,
6894                                 MachineMemOperand *MMO) {
6895   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6896 
6897   SDVTList VTs = getVTList(VT, MVT::Other);
6898   SDValue Ops[] = {Chain, Ptr};
6899   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6900 }
6901 
6902 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6903 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6904   if (Ops.size() == 1)
6905     return Ops[0];
6906 
6907   SmallVector<EVT, 4> VTs;
6908   VTs.reserve(Ops.size());
6909   for (const SDValue &Op : Ops)
6910     VTs.push_back(Op.getValueType());
6911   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6912 }
6913 
6914 SDValue SelectionDAG::getMemIntrinsicNode(
6915     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6916     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
6917     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6918   if (!Size && MemVT.isScalableVector())
6919     Size = MemoryLocation::UnknownSize;
6920   else if (!Size)
6921     Size = MemVT.getStoreSize();
6922 
6923   MachineFunction &MF = getMachineFunction();
6924   MachineMemOperand *MMO =
6925       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
6926 
6927   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6928 }
6929 
6930 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6931                                           SDVTList VTList,
6932                                           ArrayRef<SDValue> Ops, EVT MemVT,
6933                                           MachineMemOperand *MMO) {
6934   assert((Opcode == ISD::INTRINSIC_VOID ||
6935           Opcode == ISD::INTRINSIC_W_CHAIN ||
6936           Opcode == ISD::PREFETCH ||
6937           ((int)Opcode <= std::numeric_limits<int>::max() &&
6938            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6939          "Opcode is not a memory-accessing opcode!");
6940 
6941   // Memoize the node unless it returns a flag.
6942   MemIntrinsicSDNode *N;
6943   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6944     FoldingSetNodeID ID;
6945     AddNodeIDNode(ID, Opcode, VTList, Ops);
6946     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6947         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6948     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6949     void *IP = nullptr;
6950     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6951       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6952       return SDValue(E, 0);
6953     }
6954 
6955     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6956                                       VTList, MemVT, MMO);
6957     createOperands(N, Ops);
6958 
6959   CSEMap.InsertNode(N, IP);
6960   } else {
6961     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6962                                       VTList, MemVT, MMO);
6963     createOperands(N, Ops);
6964   }
6965   InsertNode(N);
6966   SDValue V(N, 0);
6967   NewSDValueDbgMsg(V, "Creating new node: ", this);
6968   return V;
6969 }
6970 
6971 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6972                                       SDValue Chain, int FrameIndex,
6973                                       int64_t Size, int64_t Offset) {
6974   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6975   const auto VTs = getVTList(MVT::Other);
6976   SDValue Ops[2] = {
6977       Chain,
6978       getFrameIndex(FrameIndex,
6979                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6980                     true)};
6981 
6982   FoldingSetNodeID ID;
6983   AddNodeIDNode(ID, Opcode, VTs, Ops);
6984   ID.AddInteger(FrameIndex);
6985   ID.AddInteger(Size);
6986   ID.AddInteger(Offset);
6987   void *IP = nullptr;
6988   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6989     return SDValue(E, 0);
6990 
6991   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6992       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6993   createOperands(N, Ops);
6994   CSEMap.InsertNode(N, IP);
6995   InsertNode(N);
6996   SDValue V(N, 0);
6997   NewSDValueDbgMsg(V, "Creating new node: ", this);
6998   return V;
6999 }
7000 
7001 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7002                                          uint64_t Guid, uint64_t Index,
7003                                          uint32_t Attr) {
7004   const unsigned Opcode = ISD::PSEUDO_PROBE;
7005   const auto VTs = getVTList(MVT::Other);
7006   SDValue Ops[] = {Chain};
7007   FoldingSetNodeID ID;
7008   AddNodeIDNode(ID, Opcode, VTs, Ops);
7009   ID.AddInteger(Guid);
7010   ID.AddInteger(Index);
7011   void *IP = nullptr;
7012   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7013     return SDValue(E, 0);
7014 
7015   auto *N = newSDNode<PseudoProbeSDNode>(
7016       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7017   createOperands(N, Ops);
7018   CSEMap.InsertNode(N, IP);
7019   InsertNode(N);
7020   SDValue V(N, 0);
7021   NewSDValueDbgMsg(V, "Creating new node: ", this);
7022   return V;
7023 }
7024 
7025 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7026 /// MachinePointerInfo record from it.  This is particularly useful because the
7027 /// code generator has many cases where it doesn't bother passing in a
7028 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7029 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7030                                            SelectionDAG &DAG, SDValue Ptr,
7031                                            int64_t Offset = 0) {
7032   // If this is FI+Offset, we can model it.
7033   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7034     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7035                                              FI->getIndex(), Offset);
7036 
7037   // If this is (FI+Offset1)+Offset2, we can model it.
7038   if (Ptr.getOpcode() != ISD::ADD ||
7039       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7040       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7041     return Info;
7042 
7043   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7044   return MachinePointerInfo::getFixedStack(
7045       DAG.getMachineFunction(), FI,
7046       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7047 }
7048 
7049 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7050 /// MachinePointerInfo record from it.  This is particularly useful because the
7051 /// code generator has many cases where it doesn't bother passing in a
7052 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7053 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7054                                            SelectionDAG &DAG, SDValue Ptr,
7055                                            SDValue OffsetOp) {
7056   // If the 'Offset' value isn't a constant, we can't handle this.
7057   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7058     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7059   if (OffsetOp.isUndef())
7060     return InferPointerInfo(Info, DAG, Ptr);
7061   return Info;
7062 }
7063 
7064 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7065                               EVT VT, const SDLoc &dl, SDValue Chain,
7066                               SDValue Ptr, SDValue Offset,
7067                               MachinePointerInfo PtrInfo, EVT MemVT,
7068                               Align Alignment,
7069                               MachineMemOperand::Flags MMOFlags,
7070                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7071   assert(Chain.getValueType() == MVT::Other &&
7072         "Invalid chain type");
7073 
7074   MMOFlags |= MachineMemOperand::MOLoad;
7075   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7076   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7077   // clients.
7078   if (PtrInfo.V.isNull())
7079     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7080 
7081   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7082   MachineFunction &MF = getMachineFunction();
7083   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7084                                                    Alignment, AAInfo, Ranges);
7085   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7086 }
7087 
7088 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7089                               EVT VT, const SDLoc &dl, SDValue Chain,
7090                               SDValue Ptr, SDValue Offset, EVT MemVT,
7091                               MachineMemOperand *MMO) {
7092   if (VT == MemVT) {
7093     ExtType = ISD::NON_EXTLOAD;
7094   } else if (ExtType == ISD::NON_EXTLOAD) {
7095     assert(VT == MemVT && "Non-extending load from different memory type!");
7096   } else {
7097     // Extending load.
7098     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7099            "Should only be an extending load, not truncating!");
7100     assert(VT.isInteger() == MemVT.isInteger() &&
7101            "Cannot convert from FP to Int or Int -> FP!");
7102     assert(VT.isVector() == MemVT.isVector() &&
7103            "Cannot use an ext load to convert to or from a vector!");
7104     assert((!VT.isVector() ||
7105             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7106            "Cannot use an ext load to change the number of vector elements!");
7107   }
7108 
7109   bool Indexed = AM != ISD::UNINDEXED;
7110   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7111 
7112   SDVTList VTs = Indexed ?
7113     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7114   SDValue Ops[] = { Chain, Ptr, Offset };
7115   FoldingSetNodeID ID;
7116   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7117   ID.AddInteger(MemVT.getRawBits());
7118   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7119       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7120   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7121   void *IP = nullptr;
7122   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7123     cast<LoadSDNode>(E)->refineAlignment(MMO);
7124     return SDValue(E, 0);
7125   }
7126   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7127                                   ExtType, MemVT, MMO);
7128   createOperands(N, Ops);
7129 
7130   CSEMap.InsertNode(N, IP);
7131   InsertNode(N);
7132   SDValue V(N, 0);
7133   NewSDValueDbgMsg(V, "Creating new node: ", this);
7134   return V;
7135 }
7136 
7137 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7138                               SDValue Ptr, MachinePointerInfo PtrInfo,
7139                               MaybeAlign Alignment,
7140                               MachineMemOperand::Flags MMOFlags,
7141                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7142   SDValue Undef = getUNDEF(Ptr.getValueType());
7143   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7144                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7145 }
7146 
7147 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7148                               SDValue Ptr, MachineMemOperand *MMO) {
7149   SDValue Undef = getUNDEF(Ptr.getValueType());
7150   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7151                  VT, MMO);
7152 }
7153 
7154 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7155                                  EVT VT, SDValue Chain, SDValue Ptr,
7156                                  MachinePointerInfo PtrInfo, EVT MemVT,
7157                                  MaybeAlign Alignment,
7158                                  MachineMemOperand::Flags MMOFlags,
7159                                  const AAMDNodes &AAInfo) {
7160   SDValue Undef = getUNDEF(Ptr.getValueType());
7161   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7162                  MemVT, Alignment, MMOFlags, AAInfo);
7163 }
7164 
7165 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7166                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7167                                  MachineMemOperand *MMO) {
7168   SDValue Undef = getUNDEF(Ptr.getValueType());
7169   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7170                  MemVT, MMO);
7171 }
7172 
7173 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7174                                      SDValue Base, SDValue Offset,
7175                                      ISD::MemIndexedMode AM) {
7176   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7177   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7178   // Don't propagate the invariant or dereferenceable flags.
7179   auto MMOFlags =
7180       LD->getMemOperand()->getFlags() &
7181       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7182   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7183                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7184                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7185 }
7186 
7187 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7188                                SDValue Ptr, MachinePointerInfo PtrInfo,
7189                                Align Alignment,
7190                                MachineMemOperand::Flags MMOFlags,
7191                                const AAMDNodes &AAInfo) {
7192   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7193 
7194   MMOFlags |= MachineMemOperand::MOStore;
7195   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7196 
7197   if (PtrInfo.V.isNull())
7198     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7199 
7200   MachineFunction &MF = getMachineFunction();
7201   uint64_t Size =
7202       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7203   MachineMemOperand *MMO =
7204       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7205   return getStore(Chain, dl, Val, Ptr, MMO);
7206 }
7207 
7208 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7209                                SDValue Ptr, MachineMemOperand *MMO) {
7210   assert(Chain.getValueType() == MVT::Other &&
7211         "Invalid chain type");
7212   EVT VT = Val.getValueType();
7213   SDVTList VTs = getVTList(MVT::Other);
7214   SDValue Undef = getUNDEF(Ptr.getValueType());
7215   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7216   FoldingSetNodeID ID;
7217   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7218   ID.AddInteger(VT.getRawBits());
7219   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7220       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7221   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7222   void *IP = nullptr;
7223   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7224     cast<StoreSDNode>(E)->refineAlignment(MMO);
7225     return SDValue(E, 0);
7226   }
7227   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7228                                    ISD::UNINDEXED, false, VT, MMO);
7229   createOperands(N, Ops);
7230 
7231   CSEMap.InsertNode(N, IP);
7232   InsertNode(N);
7233   SDValue V(N, 0);
7234   NewSDValueDbgMsg(V, "Creating new node: ", this);
7235   return V;
7236 }
7237 
7238 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7239                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7240                                     EVT SVT, Align Alignment,
7241                                     MachineMemOperand::Flags MMOFlags,
7242                                     const AAMDNodes &AAInfo) {
7243   assert(Chain.getValueType() == MVT::Other &&
7244         "Invalid chain type");
7245 
7246   MMOFlags |= MachineMemOperand::MOStore;
7247   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7248 
7249   if (PtrInfo.V.isNull())
7250     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7251 
7252   MachineFunction &MF = getMachineFunction();
7253   MachineMemOperand *MMO = MF.getMachineMemOperand(
7254       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7255       Alignment, AAInfo);
7256   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7257 }
7258 
7259 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7260                                     SDValue Ptr, EVT SVT,
7261                                     MachineMemOperand *MMO) {
7262   EVT VT = Val.getValueType();
7263 
7264   assert(Chain.getValueType() == MVT::Other &&
7265         "Invalid chain type");
7266   if (VT == SVT)
7267     return getStore(Chain, dl, Val, Ptr, MMO);
7268 
7269   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7270          "Should only be a truncating store, not extending!");
7271   assert(VT.isInteger() == SVT.isInteger() &&
7272          "Can't do FP-INT conversion!");
7273   assert(VT.isVector() == SVT.isVector() &&
7274          "Cannot use trunc store to convert to or from a vector!");
7275   assert((!VT.isVector() ||
7276           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7277          "Cannot use trunc store to change the number of vector elements!");
7278 
7279   SDVTList VTs = getVTList(MVT::Other);
7280   SDValue Undef = getUNDEF(Ptr.getValueType());
7281   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7282   FoldingSetNodeID ID;
7283   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7284   ID.AddInteger(SVT.getRawBits());
7285   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7286       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7287   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7288   void *IP = nullptr;
7289   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7290     cast<StoreSDNode>(E)->refineAlignment(MMO);
7291     return SDValue(E, 0);
7292   }
7293   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7294                                    ISD::UNINDEXED, true, SVT, MMO);
7295   createOperands(N, Ops);
7296 
7297   CSEMap.InsertNode(N, IP);
7298   InsertNode(N);
7299   SDValue V(N, 0);
7300   NewSDValueDbgMsg(V, "Creating new node: ", this);
7301   return V;
7302 }
7303 
7304 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7305                                       SDValue Base, SDValue Offset,
7306                                       ISD::MemIndexedMode AM) {
7307   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7308   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7309   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7310   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7311   FoldingSetNodeID ID;
7312   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7313   ID.AddInteger(ST->getMemoryVT().getRawBits());
7314   ID.AddInteger(ST->getRawSubclassData());
7315   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7316   void *IP = nullptr;
7317   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7318     return SDValue(E, 0);
7319 
7320   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7321                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7322                                    ST->getMemOperand());
7323   createOperands(N, Ops);
7324 
7325   CSEMap.InsertNode(N, IP);
7326   InsertNode(N);
7327   SDValue V(N, 0);
7328   NewSDValueDbgMsg(V, "Creating new node: ", this);
7329   return V;
7330 }
7331 
7332 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7333                                     SDValue Base, SDValue Offset, SDValue Mask,
7334                                     SDValue PassThru, EVT MemVT,
7335                                     MachineMemOperand *MMO,
7336                                     ISD::MemIndexedMode AM,
7337                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7338   bool Indexed = AM != ISD::UNINDEXED;
7339   assert((Indexed || Offset.isUndef()) &&
7340          "Unindexed masked load with an offset!");
7341   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7342                          : getVTList(VT, MVT::Other);
7343   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7344   FoldingSetNodeID ID;
7345   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7346   ID.AddInteger(MemVT.getRawBits());
7347   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7348       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7349   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7350   void *IP = nullptr;
7351   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7352     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7353     return SDValue(E, 0);
7354   }
7355   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7356                                         AM, ExtTy, isExpanding, MemVT, MMO);
7357   createOperands(N, Ops);
7358 
7359   CSEMap.InsertNode(N, IP);
7360   InsertNode(N);
7361   SDValue V(N, 0);
7362   NewSDValueDbgMsg(V, "Creating new node: ", this);
7363   return V;
7364 }
7365 
7366 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7367                                            SDValue Base, SDValue Offset,
7368                                            ISD::MemIndexedMode AM) {
7369   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7370   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7371   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7372                        Offset, LD->getMask(), LD->getPassThru(),
7373                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7374                        LD->getExtensionType(), LD->isExpandingLoad());
7375 }
7376 
7377 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7378                                      SDValue Val, SDValue Base, SDValue Offset,
7379                                      SDValue Mask, EVT MemVT,
7380                                      MachineMemOperand *MMO,
7381                                      ISD::MemIndexedMode AM, bool IsTruncating,
7382                                      bool IsCompressing) {
7383   assert(Chain.getValueType() == MVT::Other &&
7384         "Invalid chain type");
7385   bool Indexed = AM != ISD::UNINDEXED;
7386   assert((Indexed || Offset.isUndef()) &&
7387          "Unindexed masked store with an offset!");
7388   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7389                          : getVTList(MVT::Other);
7390   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7391   FoldingSetNodeID ID;
7392   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7393   ID.AddInteger(MemVT.getRawBits());
7394   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7395       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7396   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7397   void *IP = nullptr;
7398   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7399     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7400     return SDValue(E, 0);
7401   }
7402   auto *N =
7403       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7404                                    IsTruncating, IsCompressing, MemVT, MMO);
7405   createOperands(N, Ops);
7406 
7407   CSEMap.InsertNode(N, IP);
7408   InsertNode(N);
7409   SDValue V(N, 0);
7410   NewSDValueDbgMsg(V, "Creating new node: ", this);
7411   return V;
7412 }
7413 
7414 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7415                                             SDValue Base, SDValue Offset,
7416                                             ISD::MemIndexedMode AM) {
7417   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7418   assert(ST->getOffset().isUndef() &&
7419          "Masked store is already a indexed store!");
7420   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7421                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7422                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7423 }
7424 
7425 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7426                                       ArrayRef<SDValue> Ops,
7427                                       MachineMemOperand *MMO,
7428                                       ISD::MemIndexType IndexType,
7429                                       ISD::LoadExtType ExtTy) {
7430   assert(Ops.size() == 6 && "Incompatible number of operands");
7431 
7432   FoldingSetNodeID ID;
7433   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7434   ID.AddInteger(VT.getRawBits());
7435   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7436       dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy));
7437   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7438   void *IP = nullptr;
7439   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7440     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7441     return SDValue(E, 0);
7442   }
7443 
7444   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7445   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7446                                           VTs, VT, MMO, IndexType, ExtTy);
7447   createOperands(N, Ops);
7448 
7449   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7450          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7451   assert(N->getMask().getValueType().getVectorElementCount() ==
7452              N->getValueType(0).getVectorElementCount() &&
7453          "Vector width mismatch between mask and data");
7454   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7455              N->getValueType(0).getVectorElementCount().isScalable() &&
7456          "Scalable flags of index and data do not match");
7457   assert(ElementCount::isKnownGE(
7458              N->getIndex().getValueType().getVectorElementCount(),
7459              N->getValueType(0).getVectorElementCount()) &&
7460          "Vector width mismatch between index and data");
7461   assert(isa<ConstantSDNode>(N->getScale()) &&
7462          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7463          "Scale should be a constant power of 2");
7464 
7465   CSEMap.InsertNode(N, IP);
7466   InsertNode(N);
7467   SDValue V(N, 0);
7468   NewSDValueDbgMsg(V, "Creating new node: ", this);
7469   return V;
7470 }
7471 
7472 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7473                                        ArrayRef<SDValue> Ops,
7474                                        MachineMemOperand *MMO,
7475                                        ISD::MemIndexType IndexType,
7476                                        bool IsTrunc) {
7477   assert(Ops.size() == 6 && "Incompatible number of operands");
7478 
7479   FoldingSetNodeID ID;
7480   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7481   ID.AddInteger(VT.getRawBits());
7482   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7483       dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc));
7484   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7485   void *IP = nullptr;
7486   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7487     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7488     return SDValue(E, 0);
7489   }
7490 
7491   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7492   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7493                                            VTs, VT, MMO, IndexType, IsTrunc);
7494   createOperands(N, Ops);
7495 
7496   assert(N->getMask().getValueType().getVectorElementCount() ==
7497              N->getValue().getValueType().getVectorElementCount() &&
7498          "Vector width mismatch between mask and data");
7499   assert(
7500       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7501           N->getValue().getValueType().getVectorElementCount().isScalable() &&
7502       "Scalable flags of index and data do not match");
7503   assert(ElementCount::isKnownGE(
7504              N->getIndex().getValueType().getVectorElementCount(),
7505              N->getValue().getValueType().getVectorElementCount()) &&
7506          "Vector width mismatch between index and data");
7507   assert(isa<ConstantSDNode>(N->getScale()) &&
7508          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7509          "Scale should be a constant power of 2");
7510 
7511   CSEMap.InsertNode(N, IP);
7512   InsertNode(N);
7513   SDValue V(N, 0);
7514   NewSDValueDbgMsg(V, "Creating new node: ", this);
7515   return V;
7516 }
7517 
7518 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7519   // select undef, T, F --> T (if T is a constant), otherwise F
7520   // select, ?, undef, F --> F
7521   // select, ?, T, undef --> T
7522   if (Cond.isUndef())
7523     return isConstantValueOfAnyType(T) ? T : F;
7524   if (T.isUndef())
7525     return F;
7526   if (F.isUndef())
7527     return T;
7528 
7529   // select true, T, F --> T
7530   // select false, T, F --> F
7531   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7532     return CondC->isNullValue() ? F : T;
7533 
7534   // TODO: This should simplify VSELECT with constant condition using something
7535   // like this (but check boolean contents to be complete?):
7536   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7537   //    return T;
7538   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7539   //    return F;
7540 
7541   // select ?, T, T --> T
7542   if (T == F)
7543     return T;
7544 
7545   return SDValue();
7546 }
7547 
7548 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7549   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7550   if (X.isUndef())
7551     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7552   // shift X, undef --> undef (because it may shift by the bitwidth)
7553   if (Y.isUndef())
7554     return getUNDEF(X.getValueType());
7555 
7556   // shift 0, Y --> 0
7557   // shift X, 0 --> X
7558   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7559     return X;
7560 
7561   // shift X, C >= bitwidth(X) --> undef
7562   // All vector elements must be too big (or undef) to avoid partial undefs.
7563   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7564     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7565   };
7566   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7567     return getUNDEF(X.getValueType());
7568 
7569   return SDValue();
7570 }
7571 
7572 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7573                                       SDNodeFlags Flags) {
7574   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7575   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7576   // operation is poison. That result can be relaxed to undef.
7577   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7578   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7579   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7580                 (YC && YC->getValueAPF().isNaN());
7581   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7582                 (YC && YC->getValueAPF().isInfinity());
7583 
7584   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7585     return getUNDEF(X.getValueType());
7586 
7587   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7588     return getUNDEF(X.getValueType());
7589 
7590   if (!YC)
7591     return SDValue();
7592 
7593   // X + -0.0 --> X
7594   if (Opcode == ISD::FADD)
7595     if (YC->getValueAPF().isNegZero())
7596       return X;
7597 
7598   // X - +0.0 --> X
7599   if (Opcode == ISD::FSUB)
7600     if (YC->getValueAPF().isPosZero())
7601       return X;
7602 
7603   // X * 1.0 --> X
7604   // X / 1.0 --> X
7605   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7606     if (YC->getValueAPF().isExactlyValue(1.0))
7607       return X;
7608 
7609   // X * 0.0 --> 0.0
7610   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7611     if (YC->getValueAPF().isZero())
7612       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7613 
7614   return SDValue();
7615 }
7616 
7617 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7618                                SDValue Ptr, SDValue SV, unsigned Align) {
7619   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7620   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7621 }
7622 
7623 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7624                               ArrayRef<SDUse> Ops) {
7625   switch (Ops.size()) {
7626   case 0: return getNode(Opcode, DL, VT);
7627   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7628   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7629   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7630   default: break;
7631   }
7632 
7633   // Copy from an SDUse array into an SDValue array for use with
7634   // the regular getNode logic.
7635   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7636   return getNode(Opcode, DL, VT, NewOps);
7637 }
7638 
7639 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7640                               ArrayRef<SDValue> Ops) {
7641   SDNodeFlags Flags;
7642   if (Inserter)
7643     Flags = Inserter->getFlags();
7644   return getNode(Opcode, DL, VT, Ops, Flags);
7645 }
7646 
7647 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7648                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7649   unsigned NumOps = Ops.size();
7650   switch (NumOps) {
7651   case 0: return getNode(Opcode, DL, VT);
7652   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7653   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7654   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7655   default: break;
7656   }
7657 
7658 #ifndef NDEBUG
7659   for (auto &Op : Ops)
7660     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7661            "Operand is DELETED_NODE!");
7662 #endif
7663 
7664   switch (Opcode) {
7665   default: break;
7666   case ISD::BUILD_VECTOR:
7667     // Attempt to simplify BUILD_VECTOR.
7668     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7669       return V;
7670     break;
7671   case ISD::CONCAT_VECTORS:
7672     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7673       return V;
7674     break;
7675   case ISD::SELECT_CC:
7676     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7677     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7678            "LHS and RHS of condition must have same type!");
7679     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7680            "True and False arms of SelectCC must have same type!");
7681     assert(Ops[2].getValueType() == VT &&
7682            "select_cc node must be of same type as true and false value!");
7683     break;
7684   case ISD::BR_CC:
7685     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7686     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7687            "LHS/RHS of comparison should match types!");
7688     break;
7689   }
7690 
7691   // Memoize nodes.
7692   SDNode *N;
7693   SDVTList VTs = getVTList(VT);
7694 
7695   if (VT != MVT::Glue) {
7696     FoldingSetNodeID ID;
7697     AddNodeIDNode(ID, Opcode, VTs, Ops);
7698     void *IP = nullptr;
7699 
7700     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7701       return SDValue(E, 0);
7702 
7703     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7704     createOperands(N, Ops);
7705 
7706     CSEMap.InsertNode(N, IP);
7707   } else {
7708     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7709     createOperands(N, Ops);
7710   }
7711 
7712   N->setFlags(Flags);
7713   InsertNode(N);
7714   SDValue V(N, 0);
7715   NewSDValueDbgMsg(V, "Creating new node: ", this);
7716   return V;
7717 }
7718 
7719 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7720                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7721   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7722 }
7723 
7724 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7725                               ArrayRef<SDValue> Ops) {
7726   SDNodeFlags Flags;
7727   if (Inserter)
7728     Flags = Inserter->getFlags();
7729   return getNode(Opcode, DL, VTList, Ops, Flags);
7730 }
7731 
7732 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7733                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7734   if (VTList.NumVTs == 1)
7735     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7736 
7737 #ifndef NDEBUG
7738   for (auto &Op : Ops)
7739     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7740            "Operand is DELETED_NODE!");
7741 #endif
7742 
7743   switch (Opcode) {
7744   case ISD::STRICT_FP_EXTEND:
7745     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7746            "Invalid STRICT_FP_EXTEND!");
7747     assert(VTList.VTs[0].isFloatingPoint() &&
7748            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7749     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7750            "STRICT_FP_EXTEND result type should be vector iff the operand "
7751            "type is vector!");
7752     assert((!VTList.VTs[0].isVector() ||
7753             VTList.VTs[0].getVectorNumElements() ==
7754             Ops[1].getValueType().getVectorNumElements()) &&
7755            "Vector element count mismatch!");
7756     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7757            "Invalid fpext node, dst <= src!");
7758     break;
7759   case ISD::STRICT_FP_ROUND:
7760     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7761     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7762            "STRICT_FP_ROUND result type should be vector iff the operand "
7763            "type is vector!");
7764     assert((!VTList.VTs[0].isVector() ||
7765             VTList.VTs[0].getVectorNumElements() ==
7766             Ops[1].getValueType().getVectorNumElements()) &&
7767            "Vector element count mismatch!");
7768     assert(VTList.VTs[0].isFloatingPoint() &&
7769            Ops[1].getValueType().isFloatingPoint() &&
7770            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7771            isa<ConstantSDNode>(Ops[2]) &&
7772            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7773             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7774            "Invalid STRICT_FP_ROUND!");
7775     break;
7776 #if 0
7777   // FIXME: figure out how to safely handle things like
7778   // int foo(int x) { return 1 << (x & 255); }
7779   // int bar() { return foo(256); }
7780   case ISD::SRA_PARTS:
7781   case ISD::SRL_PARTS:
7782   case ISD::SHL_PARTS:
7783     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7784         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7785       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7786     else if (N3.getOpcode() == ISD::AND)
7787       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7788         // If the and is only masking out bits that cannot effect the shift,
7789         // eliminate the and.
7790         unsigned NumBits = VT.getScalarSizeInBits()*2;
7791         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7792           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7793       }
7794     break;
7795 #endif
7796   }
7797 
7798   // Memoize the node unless it returns a flag.
7799   SDNode *N;
7800   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7801     FoldingSetNodeID ID;
7802     AddNodeIDNode(ID, Opcode, VTList, Ops);
7803     void *IP = nullptr;
7804     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7805       return SDValue(E, 0);
7806 
7807     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7808     createOperands(N, Ops);
7809     CSEMap.InsertNode(N, IP);
7810   } else {
7811     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7812     createOperands(N, Ops);
7813   }
7814 
7815   N->setFlags(Flags);
7816   InsertNode(N);
7817   SDValue V(N, 0);
7818   NewSDValueDbgMsg(V, "Creating new node: ", this);
7819   return V;
7820 }
7821 
7822 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7823                               SDVTList VTList) {
7824   return getNode(Opcode, DL, VTList, None);
7825 }
7826 
7827 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7828                               SDValue N1) {
7829   SDValue Ops[] = { N1 };
7830   return getNode(Opcode, DL, VTList, Ops);
7831 }
7832 
7833 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7834                               SDValue N1, SDValue N2) {
7835   SDValue Ops[] = { N1, N2 };
7836   return getNode(Opcode, DL, VTList, Ops);
7837 }
7838 
7839 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7840                               SDValue N1, SDValue N2, SDValue N3) {
7841   SDValue Ops[] = { N1, N2, N3 };
7842   return getNode(Opcode, DL, VTList, Ops);
7843 }
7844 
7845 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7846                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7847   SDValue Ops[] = { N1, N2, N3, N4 };
7848   return getNode(Opcode, DL, VTList, Ops);
7849 }
7850 
7851 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7852                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7853                               SDValue N5) {
7854   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7855   return getNode(Opcode, DL, VTList, Ops);
7856 }
7857 
7858 SDVTList SelectionDAG::getVTList(EVT VT) {
7859   return makeVTList(SDNode::getValueTypeList(VT), 1);
7860 }
7861 
7862 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7863   FoldingSetNodeID ID;
7864   ID.AddInteger(2U);
7865   ID.AddInteger(VT1.getRawBits());
7866   ID.AddInteger(VT2.getRawBits());
7867 
7868   void *IP = nullptr;
7869   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7870   if (!Result) {
7871     EVT *Array = Allocator.Allocate<EVT>(2);
7872     Array[0] = VT1;
7873     Array[1] = VT2;
7874     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7875     VTListMap.InsertNode(Result, IP);
7876   }
7877   return Result->getSDVTList();
7878 }
7879 
7880 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7881   FoldingSetNodeID ID;
7882   ID.AddInteger(3U);
7883   ID.AddInteger(VT1.getRawBits());
7884   ID.AddInteger(VT2.getRawBits());
7885   ID.AddInteger(VT3.getRawBits());
7886 
7887   void *IP = nullptr;
7888   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7889   if (!Result) {
7890     EVT *Array = Allocator.Allocate<EVT>(3);
7891     Array[0] = VT1;
7892     Array[1] = VT2;
7893     Array[2] = VT3;
7894     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7895     VTListMap.InsertNode(Result, IP);
7896   }
7897   return Result->getSDVTList();
7898 }
7899 
7900 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7901   FoldingSetNodeID ID;
7902   ID.AddInteger(4U);
7903   ID.AddInteger(VT1.getRawBits());
7904   ID.AddInteger(VT2.getRawBits());
7905   ID.AddInteger(VT3.getRawBits());
7906   ID.AddInteger(VT4.getRawBits());
7907 
7908   void *IP = nullptr;
7909   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7910   if (!Result) {
7911     EVT *Array = Allocator.Allocate<EVT>(4);
7912     Array[0] = VT1;
7913     Array[1] = VT2;
7914     Array[2] = VT3;
7915     Array[3] = VT4;
7916     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7917     VTListMap.InsertNode(Result, IP);
7918   }
7919   return Result->getSDVTList();
7920 }
7921 
7922 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7923   unsigned NumVTs = VTs.size();
7924   FoldingSetNodeID ID;
7925   ID.AddInteger(NumVTs);
7926   for (unsigned index = 0; index < NumVTs; index++) {
7927     ID.AddInteger(VTs[index].getRawBits());
7928   }
7929 
7930   void *IP = nullptr;
7931   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7932   if (!Result) {
7933     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7934     llvm::copy(VTs, Array);
7935     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7936     VTListMap.InsertNode(Result, IP);
7937   }
7938   return Result->getSDVTList();
7939 }
7940 
7941 
7942 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7943 /// specified operands.  If the resultant node already exists in the DAG,
7944 /// this does not modify the specified node, instead it returns the node that
7945 /// already exists.  If the resultant node does not exist in the DAG, the
7946 /// input node is returned.  As a degenerate case, if you specify the same
7947 /// input operands as the node already has, the input node is returned.
7948 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7949   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7950 
7951   // Check to see if there is no change.
7952   if (Op == N->getOperand(0)) return N;
7953 
7954   // See if the modified node already exists.
7955   void *InsertPos = nullptr;
7956   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7957     return Existing;
7958 
7959   // Nope it doesn't.  Remove the node from its current place in the maps.
7960   if (InsertPos)
7961     if (!RemoveNodeFromCSEMaps(N))
7962       InsertPos = nullptr;
7963 
7964   // Now we update the operands.
7965   N->OperandList[0].set(Op);
7966 
7967   updateDivergence(N);
7968   // If this gets put into a CSE map, add it.
7969   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7970   return N;
7971 }
7972 
7973 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7974   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7975 
7976   // Check to see if there is no change.
7977   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7978     return N;   // No operands changed, just return the input node.
7979 
7980   // See if the modified node already exists.
7981   void *InsertPos = nullptr;
7982   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7983     return Existing;
7984 
7985   // Nope it doesn't.  Remove the node from its current place in the maps.
7986   if (InsertPos)
7987     if (!RemoveNodeFromCSEMaps(N))
7988       InsertPos = nullptr;
7989 
7990   // Now we update the operands.
7991   if (N->OperandList[0] != Op1)
7992     N->OperandList[0].set(Op1);
7993   if (N->OperandList[1] != Op2)
7994     N->OperandList[1].set(Op2);
7995 
7996   updateDivergence(N);
7997   // If this gets put into a CSE map, add it.
7998   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7999   return N;
8000 }
8001 
8002 SDNode *SelectionDAG::
8003 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8004   SDValue Ops[] = { Op1, Op2, Op3 };
8005   return UpdateNodeOperands(N, Ops);
8006 }
8007 
8008 SDNode *SelectionDAG::
8009 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8010                    SDValue Op3, SDValue Op4) {
8011   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8012   return UpdateNodeOperands(N, Ops);
8013 }
8014 
8015 SDNode *SelectionDAG::
8016 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8017                    SDValue Op3, SDValue Op4, SDValue Op5) {
8018   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8019   return UpdateNodeOperands(N, Ops);
8020 }
8021 
8022 SDNode *SelectionDAG::
8023 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8024   unsigned NumOps = Ops.size();
8025   assert(N->getNumOperands() == NumOps &&
8026          "Update with wrong number of operands");
8027 
8028   // If no operands changed just return the input node.
8029   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8030     return N;
8031 
8032   // See if the modified node already exists.
8033   void *InsertPos = nullptr;
8034   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8035     return Existing;
8036 
8037   // Nope it doesn't.  Remove the node from its current place in the maps.
8038   if (InsertPos)
8039     if (!RemoveNodeFromCSEMaps(N))
8040       InsertPos = nullptr;
8041 
8042   // Now we update the operands.
8043   for (unsigned i = 0; i != NumOps; ++i)
8044     if (N->OperandList[i] != Ops[i])
8045       N->OperandList[i].set(Ops[i]);
8046 
8047   updateDivergence(N);
8048   // If this gets put into a CSE map, add it.
8049   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8050   return N;
8051 }
8052 
8053 /// DropOperands - Release the operands and set this node to have
8054 /// zero operands.
8055 void SDNode::DropOperands() {
8056   // Unlike the code in MorphNodeTo that does this, we don't need to
8057   // watch for dead nodes here.
8058   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8059     SDUse &Use = *I++;
8060     Use.set(SDValue());
8061   }
8062 }
8063 
8064 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8065                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8066   if (NewMemRefs.empty()) {
8067     N->clearMemRefs();
8068     return;
8069   }
8070 
8071   // Check if we can avoid allocating by storing a single reference directly.
8072   if (NewMemRefs.size() == 1) {
8073     N->MemRefs = NewMemRefs[0];
8074     N->NumMemRefs = 1;
8075     return;
8076   }
8077 
8078   MachineMemOperand **MemRefsBuffer =
8079       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8080   llvm::copy(NewMemRefs, MemRefsBuffer);
8081   N->MemRefs = MemRefsBuffer;
8082   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8083 }
8084 
8085 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8086 /// machine opcode.
8087 ///
8088 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8089                                    EVT VT) {
8090   SDVTList VTs = getVTList(VT);
8091   return SelectNodeTo(N, MachineOpc, VTs, None);
8092 }
8093 
8094 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8095                                    EVT VT, SDValue Op1) {
8096   SDVTList VTs = getVTList(VT);
8097   SDValue Ops[] = { Op1 };
8098   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8099 }
8100 
8101 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8102                                    EVT VT, SDValue Op1,
8103                                    SDValue Op2) {
8104   SDVTList VTs = getVTList(VT);
8105   SDValue Ops[] = { Op1, Op2 };
8106   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8107 }
8108 
8109 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8110                                    EVT VT, SDValue Op1,
8111                                    SDValue Op2, SDValue Op3) {
8112   SDVTList VTs = getVTList(VT);
8113   SDValue Ops[] = { Op1, Op2, Op3 };
8114   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8115 }
8116 
8117 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8118                                    EVT VT, ArrayRef<SDValue> Ops) {
8119   SDVTList VTs = getVTList(VT);
8120   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8121 }
8122 
8123 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8124                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8125   SDVTList VTs = getVTList(VT1, VT2);
8126   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8127 }
8128 
8129 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8130                                    EVT VT1, EVT VT2) {
8131   SDVTList VTs = getVTList(VT1, VT2);
8132   return SelectNodeTo(N, MachineOpc, VTs, None);
8133 }
8134 
8135 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8136                                    EVT VT1, EVT VT2, EVT VT3,
8137                                    ArrayRef<SDValue> Ops) {
8138   SDVTList VTs = getVTList(VT1, VT2, VT3);
8139   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8140 }
8141 
8142 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8143                                    EVT VT1, EVT VT2,
8144                                    SDValue Op1, SDValue Op2) {
8145   SDVTList VTs = getVTList(VT1, VT2);
8146   SDValue Ops[] = { Op1, Op2 };
8147   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8148 }
8149 
8150 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8151                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8152   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8153   // Reset the NodeID to -1.
8154   New->setNodeId(-1);
8155   if (New != N) {
8156     ReplaceAllUsesWith(N, New);
8157     RemoveDeadNode(N);
8158   }
8159   return New;
8160 }
8161 
8162 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8163 /// the line number information on the merged node since it is not possible to
8164 /// preserve the information that operation is associated with multiple lines.
8165 /// This will make the debugger working better at -O0, were there is a higher
8166 /// probability having other instructions associated with that line.
8167 ///
8168 /// For IROrder, we keep the smaller of the two
8169 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8170   DebugLoc NLoc = N->getDebugLoc();
8171   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8172     N->setDebugLoc(DebugLoc());
8173   }
8174   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8175   N->setIROrder(Order);
8176   return N;
8177 }
8178 
8179 /// MorphNodeTo - This *mutates* the specified node to have the specified
8180 /// return type, opcode, and operands.
8181 ///
8182 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8183 /// node of the specified opcode and operands, it returns that node instead of
8184 /// the current one.  Note that the SDLoc need not be the same.
8185 ///
8186 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8187 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8188 /// node, and because it doesn't require CSE recalculation for any of
8189 /// the node's users.
8190 ///
8191 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8192 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8193 /// the legalizer which maintain worklists that would need to be updated when
8194 /// deleting things.
8195 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8196                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8197   // If an identical node already exists, use it.
8198   void *IP = nullptr;
8199   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8200     FoldingSetNodeID ID;
8201     AddNodeIDNode(ID, Opc, VTs, Ops);
8202     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8203       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8204   }
8205 
8206   if (!RemoveNodeFromCSEMaps(N))
8207     IP = nullptr;
8208 
8209   // Start the morphing.
8210   N->NodeType = Opc;
8211   N->ValueList = VTs.VTs;
8212   N->NumValues = VTs.NumVTs;
8213 
8214   // Clear the operands list, updating used nodes to remove this from their
8215   // use list.  Keep track of any operands that become dead as a result.
8216   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8217   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8218     SDUse &Use = *I++;
8219     SDNode *Used = Use.getNode();
8220     Use.set(SDValue());
8221     if (Used->use_empty())
8222       DeadNodeSet.insert(Used);
8223   }
8224 
8225   // For MachineNode, initialize the memory references information.
8226   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8227     MN->clearMemRefs();
8228 
8229   // Swap for an appropriately sized array from the recycler.
8230   removeOperands(N);
8231   createOperands(N, Ops);
8232 
8233   // Delete any nodes that are still dead after adding the uses for the
8234   // new operands.
8235   if (!DeadNodeSet.empty()) {
8236     SmallVector<SDNode *, 16> DeadNodes;
8237     for (SDNode *N : DeadNodeSet)
8238       if (N->use_empty())
8239         DeadNodes.push_back(N);
8240     RemoveDeadNodes(DeadNodes);
8241   }
8242 
8243   if (IP)
8244     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8245   return N;
8246 }
8247 
8248 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8249   unsigned OrigOpc = Node->getOpcode();
8250   unsigned NewOpc;
8251   switch (OrigOpc) {
8252   default:
8253     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8254 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8255   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8256 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8257   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8258 #include "llvm/IR/ConstrainedOps.def"
8259   }
8260 
8261   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8262 
8263   // We're taking this node out of the chain, so we need to re-link things.
8264   SDValue InputChain = Node->getOperand(0);
8265   SDValue OutputChain = SDValue(Node, 1);
8266   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8267 
8268   SmallVector<SDValue, 3> Ops;
8269   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8270     Ops.push_back(Node->getOperand(i));
8271 
8272   SDVTList VTs = getVTList(Node->getValueType(0));
8273   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8274 
8275   // MorphNodeTo can operate in two ways: if an existing node with the
8276   // specified operands exists, it can just return it.  Otherwise, it
8277   // updates the node in place to have the requested operands.
8278   if (Res == Node) {
8279     // If we updated the node in place, reset the node ID.  To the isel,
8280     // this should be just like a newly allocated machine node.
8281     Res->setNodeId(-1);
8282   } else {
8283     ReplaceAllUsesWith(Node, Res);
8284     RemoveDeadNode(Node);
8285   }
8286 
8287   return Res;
8288 }
8289 
8290 /// getMachineNode - These are used for target selectors to create a new node
8291 /// with specified return type(s), MachineInstr opcode, and operands.
8292 ///
8293 /// Note that getMachineNode returns the resultant node.  If there is already a
8294 /// node of the specified opcode and operands, it returns that node instead of
8295 /// the current one.
8296 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8297                                             EVT VT) {
8298   SDVTList VTs = getVTList(VT);
8299   return getMachineNode(Opcode, dl, VTs, None);
8300 }
8301 
8302 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8303                                             EVT VT, SDValue Op1) {
8304   SDVTList VTs = getVTList(VT);
8305   SDValue Ops[] = { Op1 };
8306   return getMachineNode(Opcode, dl, VTs, Ops);
8307 }
8308 
8309 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8310                                             EVT VT, SDValue Op1, SDValue Op2) {
8311   SDVTList VTs = getVTList(VT);
8312   SDValue Ops[] = { Op1, Op2 };
8313   return getMachineNode(Opcode, dl, VTs, Ops);
8314 }
8315 
8316 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8317                                             EVT VT, SDValue Op1, SDValue Op2,
8318                                             SDValue Op3) {
8319   SDVTList VTs = getVTList(VT);
8320   SDValue Ops[] = { Op1, Op2, Op3 };
8321   return getMachineNode(Opcode, dl, VTs, Ops);
8322 }
8323 
8324 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8325                                             EVT VT, ArrayRef<SDValue> Ops) {
8326   SDVTList VTs = getVTList(VT);
8327   return getMachineNode(Opcode, dl, VTs, Ops);
8328 }
8329 
8330 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8331                                             EVT VT1, EVT VT2, SDValue Op1,
8332                                             SDValue Op2) {
8333   SDVTList VTs = getVTList(VT1, VT2);
8334   SDValue Ops[] = { Op1, Op2 };
8335   return getMachineNode(Opcode, dl, VTs, Ops);
8336 }
8337 
8338 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8339                                             EVT VT1, EVT VT2, SDValue Op1,
8340                                             SDValue Op2, SDValue Op3) {
8341   SDVTList VTs = getVTList(VT1, VT2);
8342   SDValue Ops[] = { Op1, Op2, Op3 };
8343   return getMachineNode(Opcode, dl, VTs, Ops);
8344 }
8345 
8346 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8347                                             EVT VT1, EVT VT2,
8348                                             ArrayRef<SDValue> Ops) {
8349   SDVTList VTs = getVTList(VT1, VT2);
8350   return getMachineNode(Opcode, dl, VTs, Ops);
8351 }
8352 
8353 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8354                                             EVT VT1, EVT VT2, EVT VT3,
8355                                             SDValue Op1, SDValue Op2) {
8356   SDVTList VTs = getVTList(VT1, VT2, VT3);
8357   SDValue Ops[] = { Op1, Op2 };
8358   return getMachineNode(Opcode, dl, VTs, Ops);
8359 }
8360 
8361 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8362                                             EVT VT1, EVT VT2, EVT VT3,
8363                                             SDValue Op1, SDValue Op2,
8364                                             SDValue Op3) {
8365   SDVTList VTs = getVTList(VT1, VT2, VT3);
8366   SDValue Ops[] = { Op1, Op2, Op3 };
8367   return getMachineNode(Opcode, dl, VTs, Ops);
8368 }
8369 
8370 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8371                                             EVT VT1, EVT VT2, EVT VT3,
8372                                             ArrayRef<SDValue> Ops) {
8373   SDVTList VTs = getVTList(VT1, VT2, VT3);
8374   return getMachineNode(Opcode, dl, VTs, Ops);
8375 }
8376 
8377 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8378                                             ArrayRef<EVT> ResultTys,
8379                                             ArrayRef<SDValue> Ops) {
8380   SDVTList VTs = getVTList(ResultTys);
8381   return getMachineNode(Opcode, dl, VTs, Ops);
8382 }
8383 
8384 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8385                                             SDVTList VTs,
8386                                             ArrayRef<SDValue> Ops) {
8387   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8388   MachineSDNode *N;
8389   void *IP = nullptr;
8390 
8391   if (DoCSE) {
8392     FoldingSetNodeID ID;
8393     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8394     IP = nullptr;
8395     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8396       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8397     }
8398   }
8399 
8400   // Allocate a new MachineSDNode.
8401   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8402   createOperands(N, Ops);
8403 
8404   if (DoCSE)
8405     CSEMap.InsertNode(N, IP);
8406 
8407   InsertNode(N);
8408   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8409   return N;
8410 }
8411 
8412 /// getTargetExtractSubreg - A convenience function for creating
8413 /// TargetOpcode::EXTRACT_SUBREG nodes.
8414 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8415                                              SDValue Operand) {
8416   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8417   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8418                                   VT, Operand, SRIdxVal);
8419   return SDValue(Subreg, 0);
8420 }
8421 
8422 /// getTargetInsertSubreg - A convenience function for creating
8423 /// TargetOpcode::INSERT_SUBREG nodes.
8424 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8425                                             SDValue Operand, SDValue Subreg) {
8426   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8427   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8428                                   VT, Operand, Subreg, SRIdxVal);
8429   return SDValue(Result, 0);
8430 }
8431 
8432 /// getNodeIfExists - Get the specified node if it's already available, or
8433 /// else return NULL.
8434 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8435                                       ArrayRef<SDValue> Ops) {
8436   SDNodeFlags Flags;
8437   if (Inserter)
8438     Flags = Inserter->getFlags();
8439   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8440 }
8441 
8442 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8443                                       ArrayRef<SDValue> Ops,
8444                                       const SDNodeFlags Flags) {
8445   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8446     FoldingSetNodeID ID;
8447     AddNodeIDNode(ID, Opcode, VTList, Ops);
8448     void *IP = nullptr;
8449     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8450       E->intersectFlagsWith(Flags);
8451       return E;
8452     }
8453   }
8454   return nullptr;
8455 }
8456 
8457 /// doesNodeExist - Check if a node exists without modifying its flags.
8458 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
8459                                  ArrayRef<SDValue> Ops) {
8460   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8461     FoldingSetNodeID ID;
8462     AddNodeIDNode(ID, Opcode, VTList, Ops);
8463     void *IP = nullptr;
8464     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
8465       return true;
8466   }
8467   return false;
8468 }
8469 
8470 /// getDbgValue - Creates a SDDbgValue node.
8471 ///
8472 /// SDNode
8473 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8474                                       SDNode *N, unsigned R, bool IsIndirect,
8475                                       const DebugLoc &DL, unsigned O) {
8476   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8477          "Expected inlined-at fields to agree");
8478   return new (DbgInfo->getAlloc())
8479       SDDbgValue(Var, Expr, SDDbgOperand::fromNode(N, R), N, IsIndirect, DL, O,
8480                  /*IsVariadic=*/false);
8481 }
8482 
8483 /// Constant
8484 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8485                                               DIExpression *Expr,
8486                                               const Value *C,
8487                                               const DebugLoc &DL, unsigned O) {
8488   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8489          "Expected inlined-at fields to agree");
8490   return new (DbgInfo->getAlloc()) SDDbgValue(
8491       Var, Expr, SDDbgOperand::fromConst(C), {}, /*IsIndirect=*/false, DL, O,
8492       /*IsVariadic=*/false);
8493 }
8494 
8495 /// FrameIndex
8496 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8497                                                 DIExpression *Expr, unsigned FI,
8498                                                 bool IsIndirect,
8499                                                 const DebugLoc &DL,
8500                                                 unsigned O) {
8501   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8502          "Expected inlined-at fields to agree");
8503   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
8504 }
8505 
8506 /// FrameIndex with dependencies
8507 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8508                                                 DIExpression *Expr, unsigned FI,
8509                                                 ArrayRef<SDNode *> Dependencies,
8510                                                 bool IsIndirect,
8511                                                 const DebugLoc &DL,
8512                                                 unsigned O) {
8513   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8514          "Expected inlined-at fields to agree");
8515   return new (DbgInfo->getAlloc())
8516       SDDbgValue(Var, Expr, SDDbgOperand::fromFrameIdx(FI), Dependencies,
8517                  IsIndirect, DL, O,
8518                  /*IsVariadic=*/false);
8519 }
8520 
8521 /// VReg
8522 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
8523                                           unsigned VReg, bool IsIndirect,
8524                                           const DebugLoc &DL, unsigned O) {
8525   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8526          "Expected inlined-at fields to agree");
8527   return new (DbgInfo->getAlloc())
8528       SDDbgValue(Var, Expr, SDDbgOperand::fromVReg(VReg), {}, IsIndirect, DL, O,
8529                  /*IsVariadic=*/false);
8530 }
8531 
8532 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
8533                                           ArrayRef<SDDbgOperand> Locs,
8534                                           ArrayRef<SDNode *> Dependencies,
8535                                           bool IsIndirect, const DebugLoc &DL,
8536                                           unsigned O, bool IsVariadic) {
8537   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8538          "Expected inlined-at fields to agree");
8539   return new (DbgInfo->getAlloc())
8540       SDDbgValue(Var, Expr, Locs, Dependencies, IsIndirect, DL, O, IsVariadic);
8541 }
8542 
8543 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8544                                      unsigned OffsetInBits, unsigned SizeInBits,
8545                                      bool InvalidateDbg) {
8546   SDNode *FromNode = From.getNode();
8547   SDNode *ToNode = To.getNode();
8548   assert(FromNode && ToNode && "Can't modify dbg values");
8549 
8550   // PR35338
8551   // TODO: assert(From != To && "Redundant dbg value transfer");
8552   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8553   if (From == To || FromNode == ToNode)
8554     return;
8555 
8556   if (!FromNode->getHasDebugValue())
8557     return;
8558 
8559   SDDbgOperand FromLocOp =
8560       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
8561   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
8562 
8563   SmallVector<SDDbgValue *, 2> ClonedDVs;
8564   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8565     if (Dbg->isInvalidated())
8566       continue;
8567 
8568     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8569 
8570     // Create a new location ops vector that is equal to the old vector, but
8571     // with each instance of FromLocOp replaced with ToLocOp.
8572     bool Changed = false;
8573     auto NewLocOps = Dbg->copyLocationOps();
8574     std::replace_if(
8575         NewLocOps.begin(), NewLocOps.end(),
8576         [&Changed, FromLocOp](const SDDbgOperand &Op) {
8577           bool Match = Op == FromLocOp;
8578           Changed |= Match;
8579           return Match;
8580         },
8581         ToLocOp);
8582     // Ignore this SDDbgValue if we didn't find a matching location.
8583     if (!Changed)
8584       continue;
8585 
8586     DIVariable *Var = Dbg->getVariable();
8587     auto *Expr = Dbg->getExpression();
8588     // If a fragment is requested, update the expression.
8589     if (SizeInBits) {
8590       // When splitting a larger (e.g., sign-extended) value whose
8591       // lower bits are described with an SDDbgValue, do not attempt
8592       // to transfer the SDDbgValue to the upper bits.
8593       if (auto FI = Expr->getFragmentInfo())
8594         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8595           continue;
8596       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8597                                                              SizeInBits);
8598       if (!Fragment)
8599         continue;
8600       Expr = *Fragment;
8601     }
8602 
8603     auto NewDependencies = Dbg->copySDNodes();
8604     std::replace(NewDependencies.begin(), NewDependencies.end(), FromNode,
8605                  ToNode);
8606     // Clone the SDDbgValue and move it to To.
8607     SDDbgValue *Clone = getDbgValueList(
8608         Var, Expr, NewLocOps, NewDependencies, Dbg->isIndirect(),
8609         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
8610         Dbg->isVariadic());
8611     ClonedDVs.push_back(Clone);
8612 
8613     if (InvalidateDbg) {
8614       // Invalidate value and indicate the SDDbgValue should not be emitted.
8615       Dbg->setIsInvalidated();
8616       Dbg->setIsEmitted();
8617     }
8618   }
8619 
8620   for (SDDbgValue *Dbg : ClonedDVs) {
8621     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
8622            "Transferred DbgValues should depend on the new SDNode");
8623     AddDbgValue(Dbg, false);
8624   }
8625 }
8626 
8627 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8628   if (!N.getHasDebugValue())
8629     return;
8630 
8631   SmallVector<SDDbgValue *, 2> ClonedDVs;
8632   for (auto DV : GetDbgValues(&N)) {
8633     if (DV->isInvalidated())
8634       continue;
8635     switch (N.getOpcode()) {
8636     default:
8637       break;
8638     case ISD::ADD:
8639       SDValue N0 = N.getOperand(0);
8640       SDValue N1 = N.getOperand(1);
8641       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8642           isConstantIntBuildVectorOrConstantInt(N1)) {
8643         uint64_t Offset = N.getConstantOperandVal(1);
8644 
8645         // Rewrite an ADD constant node into a DIExpression. Since we are
8646         // performing arithmetic to compute the variable's *value* in the
8647         // DIExpression, we need to mark the expression with a
8648         // DW_OP_stack_value.
8649         auto *DIExpr = DV->getExpression();
8650         auto NewLocOps = DV->copyLocationOps();
8651         bool Changed = false;
8652         for (size_t i = 0; i < NewLocOps.size(); ++i) {
8653           // We're not given a ResNo to compare against because the whole
8654           // node is going away. We know that any ISD::ADD only has one
8655           // result, so we can assume any node match is using the result.
8656           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
8657               NewLocOps[i].getSDNode() != &N)
8658             continue;
8659           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
8660           SmallVector<uint64_t, 3> ExprOps;
8661           DIExpression::appendOffset(ExprOps, Offset);
8662           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
8663           Changed = true;
8664         }
8665         (void)Changed;
8666         assert(Changed && "Salvage target doesn't use N");
8667 
8668         auto NewDependencies = DV->copySDNodes();
8669         std::replace(NewDependencies.begin(), NewDependencies.end(), &N,
8670                      N0.getNode());
8671         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
8672                                             NewLocOps, NewDependencies,
8673                                             DV->isIndirect(), DV->getDebugLoc(),
8674                                             DV->getOrder(), DV->isVariadic());
8675         ClonedDVs.push_back(Clone);
8676         DV->setIsInvalidated();
8677         DV->setIsEmitted();
8678         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8679                    N0.getNode()->dumprFull(this);
8680                    dbgs() << " into " << *DIExpr << '\n');
8681       }
8682     }
8683   }
8684 
8685   for (SDDbgValue *Dbg : ClonedDVs) {
8686     assert(!Dbg->getSDNodes().empty() &&
8687            "Salvaged DbgValue should depend on a new SDNode");
8688     AddDbgValue(Dbg, false);
8689   }
8690 }
8691 
8692 /// Creates a SDDbgLabel node.
8693 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8694                                       const DebugLoc &DL, unsigned O) {
8695   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8696          "Expected inlined-at fields to agree");
8697   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8698 }
8699 
8700 namespace {
8701 
8702 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8703 /// pointed to by a use iterator is deleted, increment the use iterator
8704 /// so that it doesn't dangle.
8705 ///
8706 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8707   SDNode::use_iterator &UI;
8708   SDNode::use_iterator &UE;
8709 
8710   void NodeDeleted(SDNode *N, SDNode *E) override {
8711     // Increment the iterator as needed.
8712     while (UI != UE && N == *UI)
8713       ++UI;
8714   }
8715 
8716 public:
8717   RAUWUpdateListener(SelectionDAG &d,
8718                      SDNode::use_iterator &ui,
8719                      SDNode::use_iterator &ue)
8720     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8721 };
8722 
8723 } // end anonymous namespace
8724 
8725 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8726 /// This can cause recursive merging of nodes in the DAG.
8727 ///
8728 /// This version assumes From has a single result value.
8729 ///
8730 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8731   SDNode *From = FromN.getNode();
8732   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8733          "Cannot replace with this method!");
8734   assert(From != To.getNode() && "Cannot replace uses of with self");
8735 
8736   // Preserve Debug Values
8737   transferDbgValues(FromN, To);
8738 
8739   // Iterate over all the existing uses of From. New uses will be added
8740   // to the beginning of the use list, which we avoid visiting.
8741   // This specifically avoids visiting uses of From that arise while the
8742   // replacement is happening, because any such uses would be the result
8743   // of CSE: If an existing node looks like From after one of its operands
8744   // is replaced by To, we don't want to replace of all its users with To
8745   // too. See PR3018 for more info.
8746   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8747   RAUWUpdateListener Listener(*this, UI, UE);
8748   while (UI != UE) {
8749     SDNode *User = *UI;
8750 
8751     // This node is about to morph, remove its old self from the CSE maps.
8752     RemoveNodeFromCSEMaps(User);
8753 
8754     // A user can appear in a use list multiple times, and when this
8755     // happens the uses are usually next to each other in the list.
8756     // To help reduce the number of CSE recomputations, process all
8757     // the uses of this user that we can find this way.
8758     do {
8759       SDUse &Use = UI.getUse();
8760       ++UI;
8761       Use.set(To);
8762       if (To->isDivergent() != From->isDivergent())
8763         updateDivergence(User);
8764     } while (UI != UE && *UI == User);
8765     // Now that we have modified User, add it back to the CSE maps.  If it
8766     // already exists there, recursively merge the results together.
8767     AddModifiedNodeToCSEMaps(User);
8768   }
8769 
8770   // If we just RAUW'd the root, take note.
8771   if (FromN == getRoot())
8772     setRoot(To);
8773 }
8774 
8775 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8776 /// This can cause recursive merging of nodes in the DAG.
8777 ///
8778 /// This version assumes that for each value of From, there is a
8779 /// corresponding value in To in the same position with the same type.
8780 ///
8781 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8782 #ifndef NDEBUG
8783   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8784     assert((!From->hasAnyUseOfValue(i) ||
8785             From->getValueType(i) == To->getValueType(i)) &&
8786            "Cannot use this version of ReplaceAllUsesWith!");
8787 #endif
8788 
8789   // Handle the trivial case.
8790   if (From == To)
8791     return;
8792 
8793   // Preserve Debug Info. Only do this if there's a use.
8794   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8795     if (From->hasAnyUseOfValue(i)) {
8796       assert((i < To->getNumValues()) && "Invalid To location");
8797       transferDbgValues(SDValue(From, i), SDValue(To, i));
8798     }
8799 
8800   // Iterate over just the existing users of From. See the comments in
8801   // the ReplaceAllUsesWith above.
8802   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8803   RAUWUpdateListener Listener(*this, UI, UE);
8804   while (UI != UE) {
8805     SDNode *User = *UI;
8806 
8807     // This node is about to morph, remove its old self from the CSE maps.
8808     RemoveNodeFromCSEMaps(User);
8809 
8810     // A user can appear in a use list multiple times, and when this
8811     // happens the uses are usually next to each other in the list.
8812     // To help reduce the number of CSE recomputations, process all
8813     // the uses of this user that we can find this way.
8814     do {
8815       SDUse &Use = UI.getUse();
8816       ++UI;
8817       Use.setNode(To);
8818       if (To->isDivergent() != From->isDivergent())
8819         updateDivergence(User);
8820     } while (UI != UE && *UI == User);
8821 
8822     // Now that we have modified User, add it back to the CSE maps.  If it
8823     // already exists there, recursively merge the results together.
8824     AddModifiedNodeToCSEMaps(User);
8825   }
8826 
8827   // If we just RAUW'd the root, take note.
8828   if (From == getRoot().getNode())
8829     setRoot(SDValue(To, getRoot().getResNo()));
8830 }
8831 
8832 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8833 /// This can cause recursive merging of nodes in the DAG.
8834 ///
8835 /// This version can replace From with any result values.  To must match the
8836 /// number and types of values returned by From.
8837 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8838   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8839     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8840 
8841   // Preserve Debug Info.
8842   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8843     transferDbgValues(SDValue(From, i), To[i]);
8844 
8845   // Iterate over just the existing users of From. See the comments in
8846   // the ReplaceAllUsesWith above.
8847   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8848   RAUWUpdateListener Listener(*this, UI, UE);
8849   while (UI != UE) {
8850     SDNode *User = *UI;
8851 
8852     // This node is about to morph, remove its old self from the CSE maps.
8853     RemoveNodeFromCSEMaps(User);
8854 
8855     // A user can appear in a use list multiple times, and when this happens the
8856     // uses are usually next to each other in the list.  To help reduce the
8857     // number of CSE and divergence recomputations, process all the uses of this
8858     // user that we can find this way.
8859     bool To_IsDivergent = false;
8860     do {
8861       SDUse &Use = UI.getUse();
8862       const SDValue &ToOp = To[Use.getResNo()];
8863       ++UI;
8864       Use.set(ToOp);
8865       To_IsDivergent |= ToOp->isDivergent();
8866     } while (UI != UE && *UI == User);
8867 
8868     if (To_IsDivergent != From->isDivergent())
8869       updateDivergence(User);
8870 
8871     // Now that we have modified User, add it back to the CSE maps.  If it
8872     // already exists there, recursively merge the results together.
8873     AddModifiedNodeToCSEMaps(User);
8874   }
8875 
8876   // If we just RAUW'd the root, take note.
8877   if (From == getRoot().getNode())
8878     setRoot(SDValue(To[getRoot().getResNo()]));
8879 }
8880 
8881 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8882 /// uses of other values produced by From.getNode() alone.  The Deleted
8883 /// vector is handled the same way as for ReplaceAllUsesWith.
8884 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8885   // Handle the really simple, really trivial case efficiently.
8886   if (From == To) return;
8887 
8888   // Handle the simple, trivial, case efficiently.
8889   if (From.getNode()->getNumValues() == 1) {
8890     ReplaceAllUsesWith(From, To);
8891     return;
8892   }
8893 
8894   // Preserve Debug Info.
8895   transferDbgValues(From, To);
8896 
8897   // Iterate over just the existing users of From. See the comments in
8898   // the ReplaceAllUsesWith above.
8899   SDNode::use_iterator UI = From.getNode()->use_begin(),
8900                        UE = From.getNode()->use_end();
8901   RAUWUpdateListener Listener(*this, UI, UE);
8902   while (UI != UE) {
8903     SDNode *User = *UI;
8904     bool UserRemovedFromCSEMaps = false;
8905 
8906     // A user can appear in a use list multiple times, and when this
8907     // happens the uses are usually next to each other in the list.
8908     // To help reduce the number of CSE recomputations, process all
8909     // the uses of this user that we can find this way.
8910     do {
8911       SDUse &Use = UI.getUse();
8912 
8913       // Skip uses of different values from the same node.
8914       if (Use.getResNo() != From.getResNo()) {
8915         ++UI;
8916         continue;
8917       }
8918 
8919       // If this node hasn't been modified yet, it's still in the CSE maps,
8920       // so remove its old self from the CSE maps.
8921       if (!UserRemovedFromCSEMaps) {
8922         RemoveNodeFromCSEMaps(User);
8923         UserRemovedFromCSEMaps = true;
8924       }
8925 
8926       ++UI;
8927       Use.set(To);
8928       if (To->isDivergent() != From->isDivergent())
8929         updateDivergence(User);
8930     } while (UI != UE && *UI == User);
8931     // We are iterating over all uses of the From node, so if a use
8932     // doesn't use the specific value, no changes are made.
8933     if (!UserRemovedFromCSEMaps)
8934       continue;
8935 
8936     // Now that we have modified User, add it back to the CSE maps.  If it
8937     // already exists there, recursively merge the results together.
8938     AddModifiedNodeToCSEMaps(User);
8939   }
8940 
8941   // If we just RAUW'd the root, take note.
8942   if (From == getRoot())
8943     setRoot(To);
8944 }
8945 
8946 namespace {
8947 
8948   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8949   /// to record information about a use.
8950   struct UseMemo {
8951     SDNode *User;
8952     unsigned Index;
8953     SDUse *Use;
8954   };
8955 
8956   /// operator< - Sort Memos by User.
8957   bool operator<(const UseMemo &L, const UseMemo &R) {
8958     return (intptr_t)L.User < (intptr_t)R.User;
8959   }
8960 
8961 } // end anonymous namespace
8962 
8963 bool SelectionDAG::calculateDivergence(SDNode *N) {
8964   if (TLI->isSDNodeAlwaysUniform(N)) {
8965     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
8966            "Conflicting divergence information!");
8967     return false;
8968   }
8969   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
8970     return true;
8971   for (auto &Op : N->ops()) {
8972     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
8973       return true;
8974   }
8975   return false;
8976 }
8977 
8978 void SelectionDAG::updateDivergence(SDNode *N) {
8979   SmallVector<SDNode *, 16> Worklist(1, N);
8980   do {
8981     N = Worklist.pop_back_val();
8982     bool IsDivergent = calculateDivergence(N);
8983     if (N->SDNodeBits.IsDivergent != IsDivergent) {
8984       N->SDNodeBits.IsDivergent = IsDivergent;
8985       llvm::append_range(Worklist, N->uses());
8986     }
8987   } while (!Worklist.empty());
8988 }
8989 
8990 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8991   DenseMap<SDNode *, unsigned> Degree;
8992   Order.reserve(AllNodes.size());
8993   for (auto &N : allnodes()) {
8994     unsigned NOps = N.getNumOperands();
8995     Degree[&N] = NOps;
8996     if (0 == NOps)
8997       Order.push_back(&N);
8998   }
8999   for (size_t I = 0; I != Order.size(); ++I) {
9000     SDNode *N = Order[I];
9001     for (auto U : N->uses()) {
9002       unsigned &UnsortedOps = Degree[U];
9003       if (0 == --UnsortedOps)
9004         Order.push_back(U);
9005     }
9006   }
9007 }
9008 
9009 #ifndef NDEBUG
9010 void SelectionDAG::VerifyDAGDiverence() {
9011   std::vector<SDNode *> TopoOrder;
9012   CreateTopologicalOrder(TopoOrder);
9013   for (auto *N : TopoOrder) {
9014     assert(calculateDivergence(N) == N->isDivergent() &&
9015            "Divergence bit inconsistency detected");
9016   }
9017 }
9018 #endif
9019 
9020 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9021 /// uses of other values produced by From.getNode() alone.  The same value
9022 /// may appear in both the From and To list.  The Deleted vector is
9023 /// handled the same way as for ReplaceAllUsesWith.
9024 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9025                                               const SDValue *To,
9026                                               unsigned Num){
9027   // Handle the simple, trivial case efficiently.
9028   if (Num == 1)
9029     return ReplaceAllUsesOfValueWith(*From, *To);
9030 
9031   transferDbgValues(*From, *To);
9032 
9033   // Read up all the uses and make records of them. This helps
9034   // processing new uses that are introduced during the
9035   // replacement process.
9036   SmallVector<UseMemo, 4> Uses;
9037   for (unsigned i = 0; i != Num; ++i) {
9038     unsigned FromResNo = From[i].getResNo();
9039     SDNode *FromNode = From[i].getNode();
9040     for (SDNode::use_iterator UI = FromNode->use_begin(),
9041          E = FromNode->use_end(); UI != E; ++UI) {
9042       SDUse &Use = UI.getUse();
9043       if (Use.getResNo() == FromResNo) {
9044         UseMemo Memo = { *UI, i, &Use };
9045         Uses.push_back(Memo);
9046       }
9047     }
9048   }
9049 
9050   // Sort the uses, so that all the uses from a given User are together.
9051   llvm::sort(Uses);
9052 
9053   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9054        UseIndex != UseIndexEnd; ) {
9055     // We know that this user uses some value of From.  If it is the right
9056     // value, update it.
9057     SDNode *User = Uses[UseIndex].User;
9058 
9059     // This node is about to morph, remove its old self from the CSE maps.
9060     RemoveNodeFromCSEMaps(User);
9061 
9062     // The Uses array is sorted, so all the uses for a given User
9063     // are next to each other in the list.
9064     // To help reduce the number of CSE recomputations, process all
9065     // the uses of this user that we can find this way.
9066     do {
9067       unsigned i = Uses[UseIndex].Index;
9068       SDUse &Use = *Uses[UseIndex].Use;
9069       ++UseIndex;
9070 
9071       Use.set(To[i]);
9072     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9073 
9074     // Now that we have modified User, add it back to the CSE maps.  If it
9075     // already exists there, recursively merge the results together.
9076     AddModifiedNodeToCSEMaps(User);
9077   }
9078 }
9079 
9080 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9081 /// based on their topological order. It returns the maximum id and a vector
9082 /// of the SDNodes* in assigned order by reference.
9083 unsigned SelectionDAG::AssignTopologicalOrder() {
9084   unsigned DAGSize = 0;
9085 
9086   // SortedPos tracks the progress of the algorithm. Nodes before it are
9087   // sorted, nodes after it are unsorted. When the algorithm completes
9088   // it is at the end of the list.
9089   allnodes_iterator SortedPos = allnodes_begin();
9090 
9091   // Visit all the nodes. Move nodes with no operands to the front of
9092   // the list immediately. Annotate nodes that do have operands with their
9093   // operand count. Before we do this, the Node Id fields of the nodes
9094   // may contain arbitrary values. After, the Node Id fields for nodes
9095   // before SortedPos will contain the topological sort index, and the
9096   // Node Id fields for nodes At SortedPos and after will contain the
9097   // count of outstanding operands.
9098   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
9099     SDNode *N = &*I++;
9100     checkForCycles(N, this);
9101     unsigned Degree = N->getNumOperands();
9102     if (Degree == 0) {
9103       // A node with no uses, add it to the result array immediately.
9104       N->setNodeId(DAGSize++);
9105       allnodes_iterator Q(N);
9106       if (Q != SortedPos)
9107         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9108       assert(SortedPos != AllNodes.end() && "Overran node list");
9109       ++SortedPos;
9110     } else {
9111       // Temporarily use the Node Id as scratch space for the degree count.
9112       N->setNodeId(Degree);
9113     }
9114   }
9115 
9116   // Visit all the nodes. As we iterate, move nodes into sorted order,
9117   // such that by the time the end is reached all nodes will be sorted.
9118   for (SDNode &Node : allnodes()) {
9119     SDNode *N = &Node;
9120     checkForCycles(N, this);
9121     // N is in sorted position, so all its uses have one less operand
9122     // that needs to be sorted.
9123     for (SDNode *P : N->uses()) {
9124       unsigned Degree = P->getNodeId();
9125       assert(Degree != 0 && "Invalid node degree");
9126       --Degree;
9127       if (Degree == 0) {
9128         // All of P's operands are sorted, so P may sorted now.
9129         P->setNodeId(DAGSize++);
9130         if (P->getIterator() != SortedPos)
9131           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9132         assert(SortedPos != AllNodes.end() && "Overran node list");
9133         ++SortedPos;
9134       } else {
9135         // Update P's outstanding operand count.
9136         P->setNodeId(Degree);
9137       }
9138     }
9139     if (Node.getIterator() == SortedPos) {
9140 #ifndef NDEBUG
9141       allnodes_iterator I(N);
9142       SDNode *S = &*++I;
9143       dbgs() << "Overran sorted position:\n";
9144       S->dumprFull(this); dbgs() << "\n";
9145       dbgs() << "Checking if this is due to cycles\n";
9146       checkForCycles(this, true);
9147 #endif
9148       llvm_unreachable(nullptr);
9149     }
9150   }
9151 
9152   assert(SortedPos == AllNodes.end() &&
9153          "Topological sort incomplete!");
9154   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9155          "First node in topological sort is not the entry token!");
9156   assert(AllNodes.front().getNodeId() == 0 &&
9157          "First node in topological sort has non-zero id!");
9158   assert(AllNodes.front().getNumOperands() == 0 &&
9159          "First node in topological sort has operands!");
9160   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9161          "Last node in topologic sort has unexpected id!");
9162   assert(AllNodes.back().use_empty() &&
9163          "Last node in topologic sort has users!");
9164   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9165   return DAGSize;
9166 }
9167 
9168 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9169 /// value is produced by SD.
9170 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9171   for (SDNode *SD : DB->getSDNodes()) {
9172     if (!SD)
9173       continue;
9174     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9175     SD->setHasDebugValue(true);
9176   }
9177   DbgInfo->add(DB, isParameter);
9178 }
9179 
9180 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9181 
9182 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9183                                                    SDValue NewMemOpChain) {
9184   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9185   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9186   // The new memory operation must have the same position as the old load in
9187   // terms of memory dependency. Create a TokenFactor for the old load and new
9188   // memory operation and update uses of the old load's output chain to use that
9189   // TokenFactor.
9190   if (OldChain == NewMemOpChain || OldChain.use_empty())
9191     return NewMemOpChain;
9192 
9193   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9194                                 OldChain, NewMemOpChain);
9195   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9196   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9197   return TokenFactor;
9198 }
9199 
9200 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9201                                                    SDValue NewMemOp) {
9202   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9203   SDValue OldChain = SDValue(OldLoad, 1);
9204   SDValue NewMemOpChain = NewMemOp.getValue(1);
9205   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9206 }
9207 
9208 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9209                                                      Function **OutFunction) {
9210   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9211 
9212   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9213   auto *Module = MF->getFunction().getParent();
9214   auto *Function = Module->getFunction(Symbol);
9215 
9216   if (OutFunction != nullptr)
9217       *OutFunction = Function;
9218 
9219   if (Function != nullptr) {
9220     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9221     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9222   }
9223 
9224   std::string ErrorStr;
9225   raw_string_ostream ErrorFormatter(ErrorStr);
9226 
9227   ErrorFormatter << "Undefined external symbol ";
9228   ErrorFormatter << '"' << Symbol << '"';
9229   ErrorFormatter.flush();
9230 
9231   report_fatal_error(ErrorStr);
9232 }
9233 
9234 //===----------------------------------------------------------------------===//
9235 //                              SDNode Class
9236 //===----------------------------------------------------------------------===//
9237 
9238 bool llvm::isNullConstant(SDValue V) {
9239   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9240   return Const != nullptr && Const->isNullValue();
9241 }
9242 
9243 bool llvm::isNullFPConstant(SDValue V) {
9244   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9245   return Const != nullptr && Const->isZero() && !Const->isNegative();
9246 }
9247 
9248 bool llvm::isAllOnesConstant(SDValue V) {
9249   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9250   return Const != nullptr && Const->isAllOnesValue();
9251 }
9252 
9253 bool llvm::isOneConstant(SDValue V) {
9254   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9255   return Const != nullptr && Const->isOne();
9256 }
9257 
9258 SDValue llvm::peekThroughBitcasts(SDValue V) {
9259   while (V.getOpcode() == ISD::BITCAST)
9260     V = V.getOperand(0);
9261   return V;
9262 }
9263 
9264 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9265   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9266     V = V.getOperand(0);
9267   return V;
9268 }
9269 
9270 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9271   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9272     V = V.getOperand(0);
9273   return V;
9274 }
9275 
9276 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9277   if (V.getOpcode() != ISD::XOR)
9278     return false;
9279   V = peekThroughBitcasts(V.getOperand(1));
9280   unsigned NumBits = V.getScalarValueSizeInBits();
9281   ConstantSDNode *C =
9282       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9283   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9284 }
9285 
9286 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9287                                           bool AllowTruncation) {
9288   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9289     return CN;
9290 
9291   // SplatVectors can truncate their operands. Ignore that case here unless
9292   // AllowTruncation is set.
9293   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9294     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9295     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9296       EVT CVT = CN->getValueType(0);
9297       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
9298       if (AllowTruncation || CVT == VecEltVT)
9299         return CN;
9300     }
9301   }
9302 
9303   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9304     BitVector UndefElements;
9305     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9306 
9307     // BuildVectors can truncate their operands. Ignore that case here unless
9308     // AllowTruncation is set.
9309     if (CN && (UndefElements.none() || AllowUndefs)) {
9310       EVT CVT = CN->getValueType(0);
9311       EVT NSVT = N.getValueType().getScalarType();
9312       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9313       if (AllowTruncation || (CVT == NSVT))
9314         return CN;
9315     }
9316   }
9317 
9318   return nullptr;
9319 }
9320 
9321 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9322                                           bool AllowUndefs,
9323                                           bool AllowTruncation) {
9324   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9325     return CN;
9326 
9327   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9328     BitVector UndefElements;
9329     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9330 
9331     // BuildVectors can truncate their operands. Ignore that case here unless
9332     // AllowTruncation is set.
9333     if (CN && (UndefElements.none() || AllowUndefs)) {
9334       EVT CVT = CN->getValueType(0);
9335       EVT NSVT = N.getValueType().getScalarType();
9336       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9337       if (AllowTruncation || (CVT == NSVT))
9338         return CN;
9339     }
9340   }
9341 
9342   return nullptr;
9343 }
9344 
9345 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9346   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9347     return CN;
9348 
9349   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9350     BitVector UndefElements;
9351     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9352     if (CN && (UndefElements.none() || AllowUndefs))
9353       return CN;
9354   }
9355 
9356   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9357     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9358       return CN;
9359 
9360   return nullptr;
9361 }
9362 
9363 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9364                                               const APInt &DemandedElts,
9365                                               bool AllowUndefs) {
9366   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9367     return CN;
9368 
9369   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9370     BitVector UndefElements;
9371     ConstantFPSDNode *CN =
9372         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9373     if (CN && (UndefElements.none() || AllowUndefs))
9374       return CN;
9375   }
9376 
9377   return nullptr;
9378 }
9379 
9380 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9381   // TODO: may want to use peekThroughBitcast() here.
9382   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9383   return C && C->isNullValue();
9384 }
9385 
9386 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
9387   // TODO: may want to use peekThroughBitcast() here.
9388   unsigned BitWidth = N.getScalarValueSizeInBits();
9389   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9390   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9391 }
9392 
9393 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
9394   N = peekThroughBitcasts(N);
9395   unsigned BitWidth = N.getScalarValueSizeInBits();
9396   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9397   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9398 }
9399 
9400 HandleSDNode::~HandleSDNode() {
9401   DropOperands();
9402 }
9403 
9404 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9405                                          const DebugLoc &DL,
9406                                          const GlobalValue *GA, EVT VT,
9407                                          int64_t o, unsigned TF)
9408     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9409   TheGlobal = GA;
9410 }
9411 
9412 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9413                                          EVT VT, unsigned SrcAS,
9414                                          unsigned DestAS)
9415     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9416       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9417 
9418 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9419                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9420     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9421   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9422   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9423   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9424   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9425 
9426   // We check here that the size of the memory operand fits within the size of
9427   // the MMO. This is because the MMO might indicate only a possible address
9428   // range instead of specifying the affected memory addresses precisely.
9429   // TODO: Make MachineMemOperands aware of scalable vectors.
9430   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9431          "Size mismatch!");
9432 }
9433 
9434 /// Profile - Gather unique data for the node.
9435 ///
9436 void SDNode::Profile(FoldingSetNodeID &ID) const {
9437   AddNodeIDNode(ID, this);
9438 }
9439 
9440 namespace {
9441 
9442   struct EVTArray {
9443     std::vector<EVT> VTs;
9444 
9445     EVTArray() {
9446       VTs.reserve(MVT::LAST_VALUETYPE);
9447       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9448         VTs.push_back(MVT((MVT::SimpleValueType)i));
9449     }
9450   };
9451 
9452 } // end anonymous namespace
9453 
9454 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9455 static ManagedStatic<EVTArray> SimpleVTArray;
9456 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9457 
9458 /// getValueTypeList - Return a pointer to the specified value type.
9459 ///
9460 const EVT *SDNode::getValueTypeList(EVT VT) {
9461   if (VT.isExtended()) {
9462     sys::SmartScopedLock<true> Lock(*VTMutex);
9463     return &(*EVTs->insert(VT).first);
9464   } else {
9465     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9466            "Value type out of range!");
9467     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9468   }
9469 }
9470 
9471 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9472 /// indicated value.  This method ignores uses of other values defined by this
9473 /// operation.
9474 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9475   assert(Value < getNumValues() && "Bad value!");
9476 
9477   // TODO: Only iterate over uses of a given value of the node
9478   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9479     if (UI.getUse().getResNo() == Value) {
9480       if (NUses == 0)
9481         return false;
9482       --NUses;
9483     }
9484   }
9485 
9486   // Found exactly the right number of uses?
9487   return NUses == 0;
9488 }
9489 
9490 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9491 /// value. This method ignores uses of other values defined by this operation.
9492 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9493   assert(Value < getNumValues() && "Bad value!");
9494 
9495   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9496     if (UI.getUse().getResNo() == Value)
9497       return true;
9498 
9499   return false;
9500 }
9501 
9502 /// isOnlyUserOf - Return true if this node is the only use of N.
9503 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9504   bool Seen = false;
9505   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9506     SDNode *User = *I;
9507     if (User == this)
9508       Seen = true;
9509     else
9510       return false;
9511   }
9512 
9513   return Seen;
9514 }
9515 
9516 /// Return true if the only users of N are contained in Nodes.
9517 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9518   bool Seen = false;
9519   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9520     SDNode *User = *I;
9521     if (llvm::is_contained(Nodes, User))
9522       Seen = true;
9523     else
9524       return false;
9525   }
9526 
9527   return Seen;
9528 }
9529 
9530 /// isOperand - Return true if this node is an operand of N.
9531 bool SDValue::isOperandOf(const SDNode *N) const {
9532   return is_contained(N->op_values(), *this);
9533 }
9534 
9535 bool SDNode::isOperandOf(const SDNode *N) const {
9536   return any_of(N->op_values(),
9537                 [this](SDValue Op) { return this == Op.getNode(); });
9538 }
9539 
9540 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9541 /// be a chain) reaches the specified operand without crossing any
9542 /// side-effecting instructions on any chain path.  In practice, this looks
9543 /// through token factors and non-volatile loads.  In order to remain efficient,
9544 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9545 ///
9546 /// Note that we only need to examine chains when we're searching for
9547 /// side-effects; SelectionDAG requires that all side-effects are represented
9548 /// by chains, even if another operand would force a specific ordering. This
9549 /// constraint is necessary to allow transformations like splitting loads.
9550 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9551                                              unsigned Depth) const {
9552   if (*this == Dest) return true;
9553 
9554   // Don't search too deeply, we just want to be able to see through
9555   // TokenFactor's etc.
9556   if (Depth == 0) return false;
9557 
9558   // If this is a token factor, all inputs to the TF happen in parallel.
9559   if (getOpcode() == ISD::TokenFactor) {
9560     // First, try a shallow search.
9561     if (is_contained((*this)->ops(), Dest)) {
9562       // We found the chain we want as an operand of this TokenFactor.
9563       // Essentially, we reach the chain without side-effects if we could
9564       // serialize the TokenFactor into a simple chain of operations with
9565       // Dest as the last operation. This is automatically true if the
9566       // chain has one use: there are no other ordering constraints.
9567       // If the chain has more than one use, we give up: some other
9568       // use of Dest might force a side-effect between Dest and the current
9569       // node.
9570       if (Dest.hasOneUse())
9571         return true;
9572     }
9573     // Next, try a deep search: check whether every operand of the TokenFactor
9574     // reaches Dest.
9575     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9576       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9577     });
9578   }
9579 
9580   // Loads don't have side effects, look through them.
9581   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9582     if (Ld->isUnordered())
9583       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9584   }
9585   return false;
9586 }
9587 
9588 bool SDNode::hasPredecessor(const SDNode *N) const {
9589   SmallPtrSet<const SDNode *, 32> Visited;
9590   SmallVector<const SDNode *, 16> Worklist;
9591   Worklist.push_back(this);
9592   return hasPredecessorHelper(N, Visited, Worklist);
9593 }
9594 
9595 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9596   this->Flags.intersectWith(Flags);
9597 }
9598 
9599 SDValue
9600 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9601                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9602                                   bool AllowPartials) {
9603   // The pattern must end in an extract from index 0.
9604   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9605       !isNullConstant(Extract->getOperand(1)))
9606     return SDValue();
9607 
9608   // Match against one of the candidate binary ops.
9609   SDValue Op = Extract->getOperand(0);
9610   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9611         return Op.getOpcode() == unsigned(BinOp);
9612       }))
9613     return SDValue();
9614 
9615   // Floating-point reductions may require relaxed constraints on the final step
9616   // of the reduction because they may reorder intermediate operations.
9617   unsigned CandidateBinOp = Op.getOpcode();
9618   if (Op.getValueType().isFloatingPoint()) {
9619     SDNodeFlags Flags = Op->getFlags();
9620     switch (CandidateBinOp) {
9621     case ISD::FADD:
9622       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9623         return SDValue();
9624       break;
9625     default:
9626       llvm_unreachable("Unhandled FP opcode for binop reduction");
9627     }
9628   }
9629 
9630   // Matching failed - attempt to see if we did enough stages that a partial
9631   // reduction from a subvector is possible.
9632   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9633     if (!AllowPartials || !Op)
9634       return SDValue();
9635     EVT OpVT = Op.getValueType();
9636     EVT OpSVT = OpVT.getScalarType();
9637     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9638     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9639       return SDValue();
9640     BinOp = (ISD::NodeType)CandidateBinOp;
9641     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9642                    getVectorIdxConstant(0, SDLoc(Op)));
9643   };
9644 
9645   // At each stage, we're looking for something that looks like:
9646   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9647   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9648   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9649   // %a = binop <8 x i32> %op, %s
9650   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9651   // we expect something like:
9652   // <4,5,6,7,u,u,u,u>
9653   // <2,3,u,u,u,u,u,u>
9654   // <1,u,u,u,u,u,u,u>
9655   // While a partial reduction match would be:
9656   // <2,3,u,u,u,u,u,u>
9657   // <1,u,u,u,u,u,u,u>
9658   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9659   SDValue PrevOp;
9660   for (unsigned i = 0; i < Stages; ++i) {
9661     unsigned MaskEnd = (1 << i);
9662 
9663     if (Op.getOpcode() != CandidateBinOp)
9664       return PartialReduction(PrevOp, MaskEnd);
9665 
9666     SDValue Op0 = Op.getOperand(0);
9667     SDValue Op1 = Op.getOperand(1);
9668 
9669     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9670     if (Shuffle) {
9671       Op = Op1;
9672     } else {
9673       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9674       Op = Op0;
9675     }
9676 
9677     // The first operand of the shuffle should be the same as the other operand
9678     // of the binop.
9679     if (!Shuffle || Shuffle->getOperand(0) != Op)
9680       return PartialReduction(PrevOp, MaskEnd);
9681 
9682     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9683     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9684       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9685         return PartialReduction(PrevOp, MaskEnd);
9686 
9687     PrevOp = Op;
9688   }
9689 
9690   // Handle subvector reductions, which tend to appear after the shuffle
9691   // reduction stages.
9692   while (Op.getOpcode() == CandidateBinOp) {
9693     unsigned NumElts = Op.getValueType().getVectorNumElements();
9694     SDValue Op0 = Op.getOperand(0);
9695     SDValue Op1 = Op.getOperand(1);
9696     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9697         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9698         Op0.getOperand(0) != Op1.getOperand(0))
9699       break;
9700     SDValue Src = Op0.getOperand(0);
9701     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9702     if (NumSrcElts != (2 * NumElts))
9703       break;
9704     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9705           Op1.getConstantOperandAPInt(1) == NumElts) &&
9706         !(Op1.getConstantOperandAPInt(1) == 0 &&
9707           Op0.getConstantOperandAPInt(1) == NumElts))
9708       break;
9709     Op = Src;
9710   }
9711 
9712   BinOp = (ISD::NodeType)CandidateBinOp;
9713   return Op;
9714 }
9715 
9716 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9717   assert(N->getNumValues() == 1 &&
9718          "Can't unroll a vector with multiple results!");
9719 
9720   EVT VT = N->getValueType(0);
9721   unsigned NE = VT.getVectorNumElements();
9722   EVT EltVT = VT.getVectorElementType();
9723   SDLoc dl(N);
9724 
9725   SmallVector<SDValue, 8> Scalars;
9726   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9727 
9728   // If ResNE is 0, fully unroll the vector op.
9729   if (ResNE == 0)
9730     ResNE = NE;
9731   else if (NE > ResNE)
9732     NE = ResNE;
9733 
9734   unsigned i;
9735   for (i= 0; i != NE; ++i) {
9736     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9737       SDValue Operand = N->getOperand(j);
9738       EVT OperandVT = Operand.getValueType();
9739       if (OperandVT.isVector()) {
9740         // A vector operand; extract a single element.
9741         EVT OperandEltVT = OperandVT.getVectorElementType();
9742         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9743                               Operand, getVectorIdxConstant(i, dl));
9744       } else {
9745         // A scalar operand; just use it as is.
9746         Operands[j] = Operand;
9747       }
9748     }
9749 
9750     switch (N->getOpcode()) {
9751     default: {
9752       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9753                                 N->getFlags()));
9754       break;
9755     }
9756     case ISD::VSELECT:
9757       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9758       break;
9759     case ISD::SHL:
9760     case ISD::SRA:
9761     case ISD::SRL:
9762     case ISD::ROTL:
9763     case ISD::ROTR:
9764       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9765                                getShiftAmountOperand(Operands[0].getValueType(),
9766                                                      Operands[1])));
9767       break;
9768     case ISD::SIGN_EXTEND_INREG: {
9769       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9770       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9771                                 Operands[0],
9772                                 getValueType(ExtVT)));
9773     }
9774     }
9775   }
9776 
9777   for (; i < ResNE; ++i)
9778     Scalars.push_back(getUNDEF(EltVT));
9779 
9780   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9781   return getBuildVector(VecVT, dl, Scalars);
9782 }
9783 
9784 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9785     SDNode *N, unsigned ResNE) {
9786   unsigned Opcode = N->getOpcode();
9787   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9788           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9789           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9790          "Expected an overflow opcode");
9791 
9792   EVT ResVT = N->getValueType(0);
9793   EVT OvVT = N->getValueType(1);
9794   EVT ResEltVT = ResVT.getVectorElementType();
9795   EVT OvEltVT = OvVT.getVectorElementType();
9796   SDLoc dl(N);
9797 
9798   // If ResNE is 0, fully unroll the vector op.
9799   unsigned NE = ResVT.getVectorNumElements();
9800   if (ResNE == 0)
9801     ResNE = NE;
9802   else if (NE > ResNE)
9803     NE = ResNE;
9804 
9805   SmallVector<SDValue, 8> LHSScalars;
9806   SmallVector<SDValue, 8> RHSScalars;
9807   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9808   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9809 
9810   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9811   SDVTList VTs = getVTList(ResEltVT, SVT);
9812   SmallVector<SDValue, 8> ResScalars;
9813   SmallVector<SDValue, 8> OvScalars;
9814   for (unsigned i = 0; i < NE; ++i) {
9815     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9816     SDValue Ov =
9817         getSelect(dl, OvEltVT, Res.getValue(1),
9818                   getBoolConstant(true, dl, OvEltVT, ResVT),
9819                   getConstant(0, dl, OvEltVT));
9820 
9821     ResScalars.push_back(Res);
9822     OvScalars.push_back(Ov);
9823   }
9824 
9825   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9826   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9827 
9828   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9829   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9830   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9831                         getBuildVector(NewOvVT, dl, OvScalars));
9832 }
9833 
9834 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9835                                                   LoadSDNode *Base,
9836                                                   unsigned Bytes,
9837                                                   int Dist) const {
9838   if (LD->isVolatile() || Base->isVolatile())
9839     return false;
9840   // TODO: probably too restrictive for atomics, revisit
9841   if (!LD->isSimple())
9842     return false;
9843   if (LD->isIndexed() || Base->isIndexed())
9844     return false;
9845   if (LD->getChain() != Base->getChain())
9846     return false;
9847   EVT VT = LD->getValueType(0);
9848   if (VT.getSizeInBits() / 8 != Bytes)
9849     return false;
9850 
9851   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9852   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9853 
9854   int64_t Offset = 0;
9855   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9856     return (Dist * Bytes == Offset);
9857   return false;
9858 }
9859 
9860 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9861 /// if it cannot be inferred.
9862 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9863   // If this is a GlobalAddress + cst, return the alignment.
9864   const GlobalValue *GV = nullptr;
9865   int64_t GVOffset = 0;
9866   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9867     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9868     KnownBits Known(PtrWidth);
9869     llvm::computeKnownBits(GV, Known, getDataLayout());
9870     unsigned AlignBits = Known.countMinTrailingZeros();
9871     if (AlignBits)
9872       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9873   }
9874 
9875   // If this is a direct reference to a stack slot, use information about the
9876   // stack slot's alignment.
9877   int FrameIdx = INT_MIN;
9878   int64_t FrameOffset = 0;
9879   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9880     FrameIdx = FI->getIndex();
9881   } else if (isBaseWithConstantOffset(Ptr) &&
9882              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9883     // Handle FI+Cst
9884     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9885     FrameOffset = Ptr.getConstantOperandVal(1);
9886   }
9887 
9888   if (FrameIdx != INT_MIN) {
9889     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9890     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
9891   }
9892 
9893   return None;
9894 }
9895 
9896 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9897 /// which is split (or expanded) into two not necessarily identical pieces.
9898 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9899   // Currently all types are split in half.
9900   EVT LoVT, HiVT;
9901   if (!VT.isVector())
9902     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9903   else
9904     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9905 
9906   return std::make_pair(LoVT, HiVT);
9907 }
9908 
9909 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
9910 /// type, dependent on an enveloping VT that has been split into two identical
9911 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
9912 std::pair<EVT, EVT>
9913 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
9914                                        bool *HiIsEmpty) const {
9915   EVT EltTp = VT.getVectorElementType();
9916   // Examples:
9917   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
9918   //   custom VL=9  with enveloping VL=8/8 yields 8/1
9919   //   custom VL=10 with enveloping VL=8/8 yields 8/2
9920   //   etc.
9921   ElementCount VTNumElts = VT.getVectorElementCount();
9922   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
9923   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
9924          "Mixing fixed width and scalable vectors when enveloping a type");
9925   EVT LoVT, HiVT;
9926   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
9927     LoVT = EnvVT;
9928     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
9929     *HiIsEmpty = false;
9930   } else {
9931     // Flag that hi type has zero storage size, but return split envelop type
9932     // (this would be easier if vector types with zero elements were allowed).
9933     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
9934     HiVT = EnvVT;
9935     *HiIsEmpty = true;
9936   }
9937   return std::make_pair(LoVT, HiVT);
9938 }
9939 
9940 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9941 /// low/high part.
9942 std::pair<SDValue, SDValue>
9943 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9944                           const EVT &HiVT) {
9945   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
9946          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
9947          "Splitting vector with an invalid mixture of fixed and scalable "
9948          "vector types");
9949   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
9950              N.getValueType().getVectorMinNumElements() &&
9951          "More vector elements requested than available!");
9952   SDValue Lo, Hi;
9953   Lo =
9954       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9955   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
9956   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
9957   // IDX with the runtime scaling factor of the result vector type. For
9958   // fixed-width result vectors, that runtime scaling factor is 1.
9959   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9960                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
9961   return std::make_pair(Lo, Hi);
9962 }
9963 
9964 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9965 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9966   EVT VT = N.getValueType();
9967   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9968                                 NextPowerOf2(VT.getVectorNumElements()));
9969   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9970                  getVectorIdxConstant(0, DL));
9971 }
9972 
9973 void SelectionDAG::ExtractVectorElements(SDValue Op,
9974                                          SmallVectorImpl<SDValue> &Args,
9975                                          unsigned Start, unsigned Count,
9976                                          EVT EltVT) {
9977   EVT VT = Op.getValueType();
9978   if (Count == 0)
9979     Count = VT.getVectorNumElements();
9980   if (EltVT == EVT())
9981     EltVT = VT.getVectorElementType();
9982   SDLoc SL(Op);
9983   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9984     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9985                            getVectorIdxConstant(i, SL)));
9986   }
9987 }
9988 
9989 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9990 unsigned GlobalAddressSDNode::getAddressSpace() const {
9991   return getGlobal()->getType()->getAddressSpace();
9992 }
9993 
9994 Type *ConstantPoolSDNode::getType() const {
9995   if (isMachineConstantPoolEntry())
9996     return Val.MachineCPVal->getType();
9997   return Val.ConstVal->getType();
9998 }
9999 
10000 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10001                                         unsigned &SplatBitSize,
10002                                         bool &HasAnyUndefs,
10003                                         unsigned MinSplatBits,
10004                                         bool IsBigEndian) const {
10005   EVT VT = getValueType(0);
10006   assert(VT.isVector() && "Expected a vector type");
10007   unsigned VecWidth = VT.getSizeInBits();
10008   if (MinSplatBits > VecWidth)
10009     return false;
10010 
10011   // FIXME: The widths are based on this node's type, but build vectors can
10012   // truncate their operands.
10013   SplatValue = APInt(VecWidth, 0);
10014   SplatUndef = APInt(VecWidth, 0);
10015 
10016   // Get the bits. Bits with undefined values (when the corresponding element
10017   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10018   // in SplatValue. If any of the values are not constant, give up and return
10019   // false.
10020   unsigned int NumOps = getNumOperands();
10021   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10022   unsigned EltWidth = VT.getScalarSizeInBits();
10023 
10024   for (unsigned j = 0; j < NumOps; ++j) {
10025     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10026     SDValue OpVal = getOperand(i);
10027     unsigned BitPos = j * EltWidth;
10028 
10029     if (OpVal.isUndef())
10030       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10031     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10032       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10033     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10034       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10035     else
10036       return false;
10037   }
10038 
10039   // The build_vector is all constants or undefs. Find the smallest element
10040   // size that splats the vector.
10041   HasAnyUndefs = (SplatUndef != 0);
10042 
10043   // FIXME: This does not work for vectors with elements less than 8 bits.
10044   while (VecWidth > 8) {
10045     unsigned HalfSize = VecWidth / 2;
10046     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
10047     APInt LowValue = SplatValue.trunc(HalfSize);
10048     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
10049     APInt LowUndef = SplatUndef.trunc(HalfSize);
10050 
10051     // If the two halves do not match (ignoring undef bits), stop here.
10052     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10053         MinSplatBits > HalfSize)
10054       break;
10055 
10056     SplatValue = HighValue | LowValue;
10057     SplatUndef = HighUndef & LowUndef;
10058 
10059     VecWidth = HalfSize;
10060   }
10061 
10062   SplatBitSize = VecWidth;
10063   return true;
10064 }
10065 
10066 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10067                                          BitVector *UndefElements) const {
10068   unsigned NumOps = getNumOperands();
10069   if (UndefElements) {
10070     UndefElements->clear();
10071     UndefElements->resize(NumOps);
10072   }
10073   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10074   if (!DemandedElts)
10075     return SDValue();
10076   SDValue Splatted;
10077   for (unsigned i = 0; i != NumOps; ++i) {
10078     if (!DemandedElts[i])
10079       continue;
10080     SDValue Op = getOperand(i);
10081     if (Op.isUndef()) {
10082       if (UndefElements)
10083         (*UndefElements)[i] = true;
10084     } else if (!Splatted) {
10085       Splatted = Op;
10086     } else if (Splatted != Op) {
10087       return SDValue();
10088     }
10089   }
10090 
10091   if (!Splatted) {
10092     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10093     assert(getOperand(FirstDemandedIdx).isUndef() &&
10094            "Can only have a splat without a constant for all undefs.");
10095     return getOperand(FirstDemandedIdx);
10096   }
10097 
10098   return Splatted;
10099 }
10100 
10101 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10102   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10103   return getSplatValue(DemandedElts, UndefElements);
10104 }
10105 
10106 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10107                                             SmallVectorImpl<SDValue> &Sequence,
10108                                             BitVector *UndefElements) const {
10109   unsigned NumOps = getNumOperands();
10110   Sequence.clear();
10111   if (UndefElements) {
10112     UndefElements->clear();
10113     UndefElements->resize(NumOps);
10114   }
10115   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10116   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10117     return false;
10118 
10119   // Set the undefs even if we don't find a sequence (like getSplatValue).
10120   if (UndefElements)
10121     for (unsigned I = 0; I != NumOps; ++I)
10122       if (DemandedElts[I] && getOperand(I).isUndef())
10123         (*UndefElements)[I] = true;
10124 
10125   // Iteratively widen the sequence length looking for repetitions.
10126   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10127     Sequence.append(SeqLen, SDValue());
10128     for (unsigned I = 0; I != NumOps; ++I) {
10129       if (!DemandedElts[I])
10130         continue;
10131       SDValue &SeqOp = Sequence[I % SeqLen];
10132       SDValue Op = getOperand(I);
10133       if (Op.isUndef()) {
10134         if (!SeqOp)
10135           SeqOp = Op;
10136         continue;
10137       }
10138       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10139         Sequence.clear();
10140         break;
10141       }
10142       SeqOp = Op;
10143     }
10144     if (!Sequence.empty())
10145       return true;
10146   }
10147 
10148   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10149   return false;
10150 }
10151 
10152 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10153                                             BitVector *UndefElements) const {
10154   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10155   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10156 }
10157 
10158 ConstantSDNode *
10159 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10160                                         BitVector *UndefElements) const {
10161   return dyn_cast_or_null<ConstantSDNode>(
10162       getSplatValue(DemandedElts, UndefElements));
10163 }
10164 
10165 ConstantSDNode *
10166 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10167   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10168 }
10169 
10170 ConstantFPSDNode *
10171 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10172                                           BitVector *UndefElements) const {
10173   return dyn_cast_or_null<ConstantFPSDNode>(
10174       getSplatValue(DemandedElts, UndefElements));
10175 }
10176 
10177 ConstantFPSDNode *
10178 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10179   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10180 }
10181 
10182 int32_t
10183 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10184                                                    uint32_t BitWidth) const {
10185   if (ConstantFPSDNode *CN =
10186           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10187     bool IsExact;
10188     APSInt IntVal(BitWidth);
10189     const APFloat &APF = CN->getValueAPF();
10190     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10191             APFloat::opOK ||
10192         !IsExact)
10193       return -1;
10194 
10195     return IntVal.exactLogBase2();
10196   }
10197   return -1;
10198 }
10199 
10200 bool BuildVectorSDNode::isConstant() const {
10201   for (const SDValue &Op : op_values()) {
10202     unsigned Opc = Op.getOpcode();
10203     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10204       return false;
10205   }
10206   return true;
10207 }
10208 
10209 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10210   // Find the first non-undef value in the shuffle mask.
10211   unsigned i, e;
10212   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10213     /* search */;
10214 
10215   // If all elements are undefined, this shuffle can be considered a splat
10216   // (although it should eventually get simplified away completely).
10217   if (i == e)
10218     return true;
10219 
10220   // Make sure all remaining elements are either undef or the same as the first
10221   // non-undef value.
10222   for (int Idx = Mask[i]; i != e; ++i)
10223     if (Mask[i] >= 0 && Mask[i] != Idx)
10224       return false;
10225   return true;
10226 }
10227 
10228 // Returns the SDNode if it is a constant integer BuildVector
10229 // or constant integer.
10230 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
10231   if (isa<ConstantSDNode>(N))
10232     return N.getNode();
10233   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10234     return N.getNode();
10235   // Treat a GlobalAddress supporting constant offset folding as a
10236   // constant integer.
10237   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10238     if (GA->getOpcode() == ISD::GlobalAddress &&
10239         TLI->isOffsetFoldingLegal(GA))
10240       return GA;
10241   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10242       isa<ConstantSDNode>(N.getOperand(0)))
10243     return N.getNode();
10244   return nullptr;
10245 }
10246 
10247 // Returns the SDNode if it is a constant float BuildVector
10248 // or constant float.
10249 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
10250   if (isa<ConstantFPSDNode>(N))
10251     return N.getNode();
10252 
10253   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10254     return N.getNode();
10255 
10256   return nullptr;
10257 }
10258 
10259 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10260   assert(!Node->OperandList && "Node already has operands");
10261   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10262          "too many operands to fit into SDNode");
10263   SDUse *Ops = OperandRecycler.allocate(
10264       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10265 
10266   bool IsDivergent = false;
10267   for (unsigned I = 0; I != Vals.size(); ++I) {
10268     Ops[I].setUser(Node);
10269     Ops[I].setInitial(Vals[I]);
10270     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10271       IsDivergent |= Ops[I].getNode()->isDivergent();
10272   }
10273   Node->NumOperands = Vals.size();
10274   Node->OperandList = Ops;
10275   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10276     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10277     Node->SDNodeBits.IsDivergent = IsDivergent;
10278   }
10279   checkForCycles(Node);
10280 }
10281 
10282 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10283                                      SmallVectorImpl<SDValue> &Vals) {
10284   size_t Limit = SDNode::getMaxNumOperands();
10285   while (Vals.size() > Limit) {
10286     unsigned SliceIdx = Vals.size() - Limit;
10287     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10288     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10289     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10290     Vals.emplace_back(NewTF);
10291   }
10292   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10293 }
10294 
10295 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10296                                         EVT VT, SDNodeFlags Flags) {
10297   switch (Opcode) {
10298   default:
10299     return SDValue();
10300   case ISD::ADD:
10301   case ISD::OR:
10302   case ISD::XOR:
10303   case ISD::UMAX:
10304     return getConstant(0, DL, VT);
10305   case ISD::MUL:
10306     return getConstant(1, DL, VT);
10307   case ISD::AND:
10308   case ISD::UMIN:
10309     return getAllOnesConstant(DL, VT);
10310   case ISD::SMAX:
10311     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
10312   case ISD::SMIN:
10313     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
10314   case ISD::FADD:
10315     return getConstantFP(-0.0, DL, VT);
10316   case ISD::FMUL:
10317     return getConstantFP(1.0, DL, VT);
10318   case ISD::FMINNUM:
10319   case ISD::FMAXNUM: {
10320     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
10321     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
10322     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
10323                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
10324                         APFloat::getLargest(Semantics);
10325     if (Opcode == ISD::FMAXNUM)
10326       NeutralAF.changeSign();
10327 
10328     return getConstantFP(NeutralAF, DL, VT);
10329   }
10330   }
10331 }
10332 
10333 #ifndef NDEBUG
10334 static void checkForCyclesHelper(const SDNode *N,
10335                                  SmallPtrSetImpl<const SDNode*> &Visited,
10336                                  SmallPtrSetImpl<const SDNode*> &Checked,
10337                                  const llvm::SelectionDAG *DAG) {
10338   // If this node has already been checked, don't check it again.
10339   if (Checked.count(N))
10340     return;
10341 
10342   // If a node has already been visited on this depth-first walk, reject it as
10343   // a cycle.
10344   if (!Visited.insert(N).second) {
10345     errs() << "Detected cycle in SelectionDAG\n";
10346     dbgs() << "Offending node:\n";
10347     N->dumprFull(DAG); dbgs() << "\n";
10348     abort();
10349   }
10350 
10351   for (const SDValue &Op : N->op_values())
10352     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10353 
10354   Checked.insert(N);
10355   Visited.erase(N);
10356 }
10357 #endif
10358 
10359 void llvm::checkForCycles(const llvm::SDNode *N,
10360                           const llvm::SelectionDAG *DAG,
10361                           bool force) {
10362 #ifndef NDEBUG
10363   bool check = force;
10364 #ifdef EXPENSIVE_CHECKS
10365   check = true;
10366 #endif  // EXPENSIVE_CHECKS
10367   if (check) {
10368     assert(N && "Checking nonexistent SDNode");
10369     SmallPtrSet<const SDNode*, 32> visited;
10370     SmallPtrSet<const SDNode*, 32> checked;
10371     checkForCyclesHelper(N, visited, checked, DAG);
10372   }
10373 #endif  // !NDEBUG
10374 }
10375 
10376 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10377   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10378 }
10379