1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/CodeGen/ISDOpcodes.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/RuntimeLibcalls.h"
35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CodeGen.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/KnownBits.h"
59 #include "llvm/Support/MachineValueType.h"
60 #include "llvm/Support/ManagedStatic.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/Mutex.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <cstdlib>
70 #include <limits>
71 #include <set>
72 #include <string>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 
78 /// makeVTList - Return an instance of the SDVTList struct initialized with the
79 /// specified members.
80 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
81   SDVTList Res = {VTs, NumVTs};
82   return Res;
83 }
84 
85 // Default null implementations of the callbacks.
86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
88 
89 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
90 
91 #define DEBUG_TYPE "selectiondag"
92 
93 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
94        cl::Hidden, cl::init(true),
95        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
96 
97 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
98        cl::desc("Number limit for gluing ld/st of memcpy."),
99        cl::Hidden, cl::init(0));
100 
101 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
102   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
103 }
104 
105 //===----------------------------------------------------------------------===//
106 //                              ConstantFPSDNode Class
107 //===----------------------------------------------------------------------===//
108 
109 /// isExactlyValue - We don't rely on operator== working on double values, as
110 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
111 /// As such, this method can be used to do an exact bit-for-bit comparison of
112 /// two floating point values.
113 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
114   return getValueAPF().bitwiseIsEqual(V);
115 }
116 
117 bool ConstantFPSDNode::isValueValidForType(EVT VT,
118                                            const APFloat& Val) {
119   assert(VT.isFloatingPoint() && "Can only convert between FP types");
120 
121   // convert modifies in place, so make a copy.
122   APFloat Val2 = APFloat(Val);
123   bool losesInfo;
124   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
125                       APFloat::rmNearestTiesToEven,
126                       &losesInfo);
127   return !losesInfo;
128 }
129 
130 //===----------------------------------------------------------------------===//
131 //                              ISD Namespace
132 //===----------------------------------------------------------------------===//
133 
134 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
135   auto *BV = dyn_cast<BuildVectorSDNode>(N);
136   if (!BV)
137     return false;
138 
139   APInt SplatUndef;
140   unsigned SplatBitSize;
141   bool HasUndefs;
142   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
143   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
144                              EltSize) &&
145          EltSize == SplatBitSize;
146 }
147 
148 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
149 // specializations of the more general isConstantSplatVector()?
150 
151 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
152   // Look through a bit convert.
153   while (N->getOpcode() == ISD::BITCAST)
154     N = N->getOperand(0).getNode();
155 
156   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157 
158   unsigned i = 0, e = N->getNumOperands();
159 
160   // Skip over all of the undef values.
161   while (i != e && N->getOperand(i).isUndef())
162     ++i;
163 
164   // Do not accept an all-undef vector.
165   if (i == e) return false;
166 
167   // Do not accept build_vectors that aren't all constants or which have non-~0
168   // elements. We have to be a bit careful here, as the type of the constant
169   // may not be the same as the type of the vector elements due to type
170   // legalization (the elements are promoted to a legal type for the target and
171   // a vector of a type may be legal when the base element type is not).
172   // We only want to check enough bits to cover the vector elements, because
173   // we care if the resultant vector is all ones, not whether the individual
174   // constants are.
175   SDValue NotZero = N->getOperand(i);
176   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
177   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
178     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
179       return false;
180   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
181     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
182       return false;
183   } else
184     return false;
185 
186   // Okay, we have at least one ~0 value, check to see if the rest match or are
187   // undefs. Even with the above element type twiddling, this should be OK, as
188   // the same type legalization should have applied to all the elements.
189   for (++i; i != e; ++i)
190     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
191       return false;
192   return true;
193 }
194 
195 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
196   // Look through a bit convert.
197   while (N->getOpcode() == ISD::BITCAST)
198     N = N->getOperand(0).getNode();
199 
200   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
201 
202   bool IsAllUndef = true;
203   for (const SDValue &Op : N->op_values()) {
204     if (Op.isUndef())
205       continue;
206     IsAllUndef = false;
207     // Do not accept build_vectors that aren't all constants or which have non-0
208     // elements. We have to be a bit careful here, as the type of the constant
209     // may not be the same as the type of the vector elements due to type
210     // legalization (the elements are promoted to a legal type for the target
211     // and a vector of a type may be legal when the base element type is not).
212     // We only want to check enough bits to cover the vector elements, because
213     // we care if the resultant vector is all zeros, not whether the individual
214     // constants are.
215     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
216     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
217       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
218         return false;
219     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
220       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
221         return false;
222     } else
223       return false;
224   }
225 
226   // Do not accept an all-undef vector.
227   if (IsAllUndef)
228     return false;
229   return true;
230 }
231 
232 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
233   if (N->getOpcode() != ISD::BUILD_VECTOR)
234     return false;
235 
236   for (const SDValue &Op : N->op_values()) {
237     if (Op.isUndef())
238       continue;
239     if (!isa<ConstantSDNode>(Op))
240       return false;
241   }
242   return true;
243 }
244 
245 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
246   if (N->getOpcode() != ISD::BUILD_VECTOR)
247     return false;
248 
249   for (const SDValue &Op : N->op_values()) {
250     if (Op.isUndef())
251       continue;
252     if (!isa<ConstantFPSDNode>(Op))
253       return false;
254   }
255   return true;
256 }
257 
258 bool ISD::allOperandsUndef(const SDNode *N) {
259   // Return false if the node has no operands.
260   // This is "logically inconsistent" with the definition of "all" but
261   // is probably the desired behavior.
262   if (N->getNumOperands() == 0)
263     return false;
264 
265   for (const SDValue &Op : N->op_values())
266     if (!Op.isUndef())
267       return false;
268 
269   return true;
270 }
271 
272 bool ISD::matchUnaryPredicate(SDValue Op,
273                               std::function<bool(ConstantSDNode *)> Match,
274                               bool AllowUndefs) {
275   // FIXME: Add support for scalar UNDEF cases?
276   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
277     return Match(Cst);
278 
279   // FIXME: Add support for vector UNDEF cases?
280   if (ISD::BUILD_VECTOR != Op.getOpcode())
281     return false;
282 
283   EVT SVT = Op.getValueType().getScalarType();
284   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
285     if (AllowUndefs && Op.getOperand(i).isUndef()) {
286       if (!Match(nullptr))
287         return false;
288       continue;
289     }
290 
291     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
292     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
293       return false;
294   }
295   return true;
296 }
297 
298 bool ISD::matchBinaryPredicate(
299     SDValue LHS, SDValue RHS,
300     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
301     bool AllowUndefs) {
302   if (LHS.getValueType() != RHS.getValueType())
303     return false;
304 
305   // TODO: Add support for scalar UNDEF cases?
306   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
307     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
308       return Match(LHSCst, RHSCst);
309 
310   // TODO: Add support for vector UNDEF cases?
311   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
312       ISD::BUILD_VECTOR != RHS.getOpcode())
313     return false;
314 
315   EVT SVT = LHS.getValueType().getScalarType();
316   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
317     SDValue LHSOp = LHS.getOperand(i);
318     SDValue RHSOp = RHS.getOperand(i);
319     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
320     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
321     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
322     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
323     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
324       return false;
325     if (LHSOp.getValueType() != SVT ||
326         LHSOp.getValueType() != RHSOp.getValueType())
327       return false;
328     if (!Match(LHSCst, RHSCst))
329       return false;
330   }
331   return true;
332 }
333 
334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
335   switch (ExtType) {
336   case ISD::EXTLOAD:
337     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
338   case ISD::SEXTLOAD:
339     return ISD::SIGN_EXTEND;
340   case ISD::ZEXTLOAD:
341     return ISD::ZERO_EXTEND;
342   default:
343     break;
344   }
345 
346   llvm_unreachable("Invalid LoadExtType");
347 }
348 
349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
350   // To perform this operation, we just need to swap the L and G bits of the
351   // operation.
352   unsigned OldL = (Operation >> 2) & 1;
353   unsigned OldG = (Operation >> 1) & 1;
354   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
355                        (OldL << 1) |       // New G bit
356                        (OldG << 2));       // New L bit.
357 }
358 
359 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
360   unsigned Operation = Op;
361   if (isInteger)
362     Operation ^= 7;   // Flip L, G, E bits, but not U.
363   else
364     Operation ^= 15;  // Flip all of the condition bits.
365 
366   if (Operation > ISD::SETTRUE2)
367     Operation &= ~8;  // Don't let N and U bits get set.
368 
369   return ISD::CondCode(Operation);
370 }
371 
372 /// For an integer comparison, return 1 if the comparison is a signed operation
373 /// and 2 if the result is an unsigned comparison. Return zero if the operation
374 /// does not depend on the sign of the input (setne and seteq).
375 static int isSignedOp(ISD::CondCode Opcode) {
376   switch (Opcode) {
377   default: llvm_unreachable("Illegal integer setcc operation!");
378   case ISD::SETEQ:
379   case ISD::SETNE: return 0;
380   case ISD::SETLT:
381   case ISD::SETLE:
382   case ISD::SETGT:
383   case ISD::SETGE: return 1;
384   case ISD::SETULT:
385   case ISD::SETULE:
386   case ISD::SETUGT:
387   case ISD::SETUGE: return 2;
388   }
389 }
390 
391 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
392                                        bool IsInteger) {
393   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
394     // Cannot fold a signed integer setcc with an unsigned integer setcc.
395     return ISD::SETCC_INVALID;
396 
397   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
398 
399   // If the N and U bits get set, then the resultant comparison DOES suddenly
400   // care about orderedness, and it is true when ordered.
401   if (Op > ISD::SETTRUE2)
402     Op &= ~16;     // Clear the U bit if the N bit is set.
403 
404   // Canonicalize illegal integer setcc's.
405   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
406     Op = ISD::SETNE;
407 
408   return ISD::CondCode(Op);
409 }
410 
411 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
412                                         bool IsInteger) {
413   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
414     // Cannot fold a signed setcc with an unsigned setcc.
415     return ISD::SETCC_INVALID;
416 
417   // Combine all of the condition bits.
418   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
419 
420   // Canonicalize illegal integer setcc's.
421   if (IsInteger) {
422     switch (Result) {
423     default: break;
424     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
425     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
426     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
427     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
428     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
429     }
430   }
431 
432   return Result;
433 }
434 
435 //===----------------------------------------------------------------------===//
436 //                           SDNode Profile Support
437 //===----------------------------------------------------------------------===//
438 
439 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
440 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
441   ID.AddInteger(OpC);
442 }
443 
444 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
445 /// solely with their pointer.
446 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
447   ID.AddPointer(VTList.VTs);
448 }
449 
450 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
451 static void AddNodeIDOperands(FoldingSetNodeID &ID,
452                               ArrayRef<SDValue> Ops) {
453   for (auto& Op : Ops) {
454     ID.AddPointer(Op.getNode());
455     ID.AddInteger(Op.getResNo());
456   }
457 }
458 
459 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
460 static void AddNodeIDOperands(FoldingSetNodeID &ID,
461                               ArrayRef<SDUse> Ops) {
462   for (auto& Op : Ops) {
463     ID.AddPointer(Op.getNode());
464     ID.AddInteger(Op.getResNo());
465   }
466 }
467 
468 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
469                           SDVTList VTList, ArrayRef<SDValue> OpList) {
470   AddNodeIDOpcode(ID, OpC);
471   AddNodeIDValueTypes(ID, VTList);
472   AddNodeIDOperands(ID, OpList);
473 }
474 
475 /// If this is an SDNode with special info, add this info to the NodeID data.
476 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
477   switch (N->getOpcode()) {
478   case ISD::TargetExternalSymbol:
479   case ISD::ExternalSymbol:
480   case ISD::MCSymbol:
481     llvm_unreachable("Should only be used on nodes with operands");
482   default: break;  // Normal nodes don't need extra info.
483   case ISD::TargetConstant:
484   case ISD::Constant: {
485     const ConstantSDNode *C = cast<ConstantSDNode>(N);
486     ID.AddPointer(C->getConstantIntValue());
487     ID.AddBoolean(C->isOpaque());
488     break;
489   }
490   case ISD::TargetConstantFP:
491   case ISD::ConstantFP:
492     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
493     break;
494   case ISD::TargetGlobalAddress:
495   case ISD::GlobalAddress:
496   case ISD::TargetGlobalTLSAddress:
497   case ISD::GlobalTLSAddress: {
498     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
499     ID.AddPointer(GA->getGlobal());
500     ID.AddInteger(GA->getOffset());
501     ID.AddInteger(GA->getTargetFlags());
502     break;
503   }
504   case ISD::BasicBlock:
505     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
506     break;
507   case ISD::Register:
508     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
509     break;
510   case ISD::RegisterMask:
511     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
512     break;
513   case ISD::SRCVALUE:
514     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
515     break;
516   case ISD::FrameIndex:
517   case ISD::TargetFrameIndex:
518     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
519     break;
520   case ISD::JumpTable:
521   case ISD::TargetJumpTable:
522     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
523     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
524     break;
525   case ISD::ConstantPool:
526   case ISD::TargetConstantPool: {
527     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
528     ID.AddInteger(CP->getAlignment());
529     ID.AddInteger(CP->getOffset());
530     if (CP->isMachineConstantPoolEntry())
531       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
532     else
533       ID.AddPointer(CP->getConstVal());
534     ID.AddInteger(CP->getTargetFlags());
535     break;
536   }
537   case ISD::TargetIndex: {
538     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
539     ID.AddInteger(TI->getIndex());
540     ID.AddInteger(TI->getOffset());
541     ID.AddInteger(TI->getTargetFlags());
542     break;
543   }
544   case ISD::LOAD: {
545     const LoadSDNode *LD = cast<LoadSDNode>(N);
546     ID.AddInteger(LD->getMemoryVT().getRawBits());
547     ID.AddInteger(LD->getRawSubclassData());
548     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
549     break;
550   }
551   case ISD::STORE: {
552     const StoreSDNode *ST = cast<StoreSDNode>(N);
553     ID.AddInteger(ST->getMemoryVT().getRawBits());
554     ID.AddInteger(ST->getRawSubclassData());
555     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
556     break;
557   }
558   case ISD::MLOAD: {
559     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
560     ID.AddInteger(MLD->getMemoryVT().getRawBits());
561     ID.AddInteger(MLD->getRawSubclassData());
562     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
563     break;
564   }
565   case ISD::MSTORE: {
566     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
567     ID.AddInteger(MST->getMemoryVT().getRawBits());
568     ID.AddInteger(MST->getRawSubclassData());
569     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
570     break;
571   }
572   case ISD::MGATHER: {
573     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
574     ID.AddInteger(MG->getMemoryVT().getRawBits());
575     ID.AddInteger(MG->getRawSubclassData());
576     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
577     break;
578   }
579   case ISD::MSCATTER: {
580     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
581     ID.AddInteger(MS->getMemoryVT().getRawBits());
582     ID.AddInteger(MS->getRawSubclassData());
583     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
584     break;
585   }
586   case ISD::ATOMIC_CMP_SWAP:
587   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
588   case ISD::ATOMIC_SWAP:
589   case ISD::ATOMIC_LOAD_ADD:
590   case ISD::ATOMIC_LOAD_SUB:
591   case ISD::ATOMIC_LOAD_AND:
592   case ISD::ATOMIC_LOAD_CLR:
593   case ISD::ATOMIC_LOAD_OR:
594   case ISD::ATOMIC_LOAD_XOR:
595   case ISD::ATOMIC_LOAD_NAND:
596   case ISD::ATOMIC_LOAD_MIN:
597   case ISD::ATOMIC_LOAD_MAX:
598   case ISD::ATOMIC_LOAD_UMIN:
599   case ISD::ATOMIC_LOAD_UMAX:
600   case ISD::ATOMIC_LOAD:
601   case ISD::ATOMIC_STORE: {
602     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
603     ID.AddInteger(AT->getMemoryVT().getRawBits());
604     ID.AddInteger(AT->getRawSubclassData());
605     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
606     break;
607   }
608   case ISD::PREFETCH: {
609     const MemSDNode *PF = cast<MemSDNode>(N);
610     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
611     break;
612   }
613   case ISD::VECTOR_SHUFFLE: {
614     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
615     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
616          i != e; ++i)
617       ID.AddInteger(SVN->getMaskElt(i));
618     break;
619   }
620   case ISD::TargetBlockAddress:
621   case ISD::BlockAddress: {
622     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
623     ID.AddPointer(BA->getBlockAddress());
624     ID.AddInteger(BA->getOffset());
625     ID.AddInteger(BA->getTargetFlags());
626     break;
627   }
628   } // end switch (N->getOpcode())
629 
630   // Target specific memory nodes could also have address spaces to check.
631   if (N->isTargetMemoryOpcode())
632     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
633 }
634 
635 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
636 /// data.
637 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
638   AddNodeIDOpcode(ID, N->getOpcode());
639   // Add the return value info.
640   AddNodeIDValueTypes(ID, N->getVTList());
641   // Add the operand info.
642   AddNodeIDOperands(ID, N->ops());
643 
644   // Handle SDNode leafs with special info.
645   AddNodeIDCustom(ID, N);
646 }
647 
648 //===----------------------------------------------------------------------===//
649 //                              SelectionDAG Class
650 //===----------------------------------------------------------------------===//
651 
652 /// doNotCSE - Return true if CSE should not be performed for this node.
653 static bool doNotCSE(SDNode *N) {
654   if (N->getValueType(0) == MVT::Glue)
655     return true; // Never CSE anything that produces a flag.
656 
657   switch (N->getOpcode()) {
658   default: break;
659   case ISD::HANDLENODE:
660   case ISD::EH_LABEL:
661     return true;   // Never CSE these nodes.
662   }
663 
664   // Check that remaining values produced are not flags.
665   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
666     if (N->getValueType(i) == MVT::Glue)
667       return true; // Never CSE anything that produces a flag.
668 
669   return false;
670 }
671 
672 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
673 /// SelectionDAG.
674 void SelectionDAG::RemoveDeadNodes() {
675   // Create a dummy node (which is not added to allnodes), that adds a reference
676   // to the root node, preventing it from being deleted.
677   HandleSDNode Dummy(getRoot());
678 
679   SmallVector<SDNode*, 128> DeadNodes;
680 
681   // Add all obviously-dead nodes to the DeadNodes worklist.
682   for (SDNode &Node : allnodes())
683     if (Node.use_empty())
684       DeadNodes.push_back(&Node);
685 
686   RemoveDeadNodes(DeadNodes);
687 
688   // If the root changed (e.g. it was a dead load, update the root).
689   setRoot(Dummy.getValue());
690 }
691 
692 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
693 /// given list, and any nodes that become unreachable as a result.
694 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
695 
696   // Process the worklist, deleting the nodes and adding their uses to the
697   // worklist.
698   while (!DeadNodes.empty()) {
699     SDNode *N = DeadNodes.pop_back_val();
700     // Skip to next node if we've already managed to delete the node. This could
701     // happen if replacing a node causes a node previously added to the node to
702     // be deleted.
703     if (N->getOpcode() == ISD::DELETED_NODE)
704       continue;
705 
706     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
707       DUL->NodeDeleted(N, nullptr);
708 
709     // Take the node out of the appropriate CSE map.
710     RemoveNodeFromCSEMaps(N);
711 
712     // Next, brutally remove the operand list.  This is safe to do, as there are
713     // no cycles in the graph.
714     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
715       SDUse &Use = *I++;
716       SDNode *Operand = Use.getNode();
717       Use.set(SDValue());
718 
719       // Now that we removed this operand, see if there are no uses of it left.
720       if (Operand->use_empty())
721         DeadNodes.push_back(Operand);
722     }
723 
724     DeallocateNode(N);
725   }
726 }
727 
728 void SelectionDAG::RemoveDeadNode(SDNode *N){
729   SmallVector<SDNode*, 16> DeadNodes(1, N);
730 
731   // Create a dummy node that adds a reference to the root node, preventing
732   // it from being deleted.  (This matters if the root is an operand of the
733   // dead node.)
734   HandleSDNode Dummy(getRoot());
735 
736   RemoveDeadNodes(DeadNodes);
737 }
738 
739 void SelectionDAG::DeleteNode(SDNode *N) {
740   // First take this out of the appropriate CSE map.
741   RemoveNodeFromCSEMaps(N);
742 
743   // Finally, remove uses due to operands of this node, remove from the
744   // AllNodes list, and delete the node.
745   DeleteNodeNotInCSEMaps(N);
746 }
747 
748 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
749   assert(N->getIterator() != AllNodes.begin() &&
750          "Cannot delete the entry node!");
751   assert(N->use_empty() && "Cannot delete a node that is not dead!");
752 
753   // Drop all of the operands and decrement used node's use counts.
754   N->DropOperands();
755 
756   DeallocateNode(N);
757 }
758 
759 void SDDbgInfo::erase(const SDNode *Node) {
760   DbgValMapType::iterator I = DbgValMap.find(Node);
761   if (I == DbgValMap.end())
762     return;
763   for (auto &Val: I->second)
764     Val->setIsInvalidated();
765   DbgValMap.erase(I);
766 }
767 
768 void SelectionDAG::DeallocateNode(SDNode *N) {
769   // If we have operands, deallocate them.
770   removeOperands(N);
771 
772   NodeAllocator.Deallocate(AllNodes.remove(N));
773 
774   // Set the opcode to DELETED_NODE to help catch bugs when node
775   // memory is reallocated.
776   // FIXME: There are places in SDag that have grown a dependency on the opcode
777   // value in the released node.
778   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
779   N->NodeType = ISD::DELETED_NODE;
780 
781   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
782   // them and forget about that node.
783   DbgInfo->erase(N);
784 }
785 
786 #ifndef NDEBUG
787 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
788 static void VerifySDNode(SDNode *N) {
789   switch (N->getOpcode()) {
790   default:
791     break;
792   case ISD::BUILD_PAIR: {
793     EVT VT = N->getValueType(0);
794     assert(N->getNumValues() == 1 && "Too many results!");
795     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
796            "Wrong return type!");
797     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
798     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
799            "Mismatched operand types!");
800     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
801            "Wrong operand type!");
802     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
803            "Wrong return type size");
804     break;
805   }
806   case ISD::BUILD_VECTOR: {
807     assert(N->getNumValues() == 1 && "Too many results!");
808     assert(N->getValueType(0).isVector() && "Wrong return type!");
809     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
810            "Wrong number of operands!");
811     EVT EltVT = N->getValueType(0).getVectorElementType();
812     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
813       assert((I->getValueType() == EltVT ||
814              (EltVT.isInteger() && I->getValueType().isInteger() &&
815               EltVT.bitsLE(I->getValueType()))) &&
816             "Wrong operand type!");
817       assert(I->getValueType() == N->getOperand(0).getValueType() &&
818              "Operands must all have the same type");
819     }
820     break;
821   }
822   }
823 }
824 #endif // NDEBUG
825 
826 /// Insert a newly allocated node into the DAG.
827 ///
828 /// Handles insertion into the all nodes list and CSE map, as well as
829 /// verification and other common operations when a new node is allocated.
830 void SelectionDAG::InsertNode(SDNode *N) {
831   AllNodes.push_back(N);
832 #ifndef NDEBUG
833   N->PersistentId = NextPersistentId++;
834   VerifySDNode(N);
835 #endif
836 }
837 
838 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
839 /// correspond to it.  This is useful when we're about to delete or repurpose
840 /// the node.  We don't want future request for structurally identical nodes
841 /// to return N anymore.
842 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
843   bool Erased = false;
844   switch (N->getOpcode()) {
845   case ISD::HANDLENODE: return false;  // noop.
846   case ISD::CONDCODE:
847     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
848            "Cond code doesn't exist!");
849     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
850     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
851     break;
852   case ISD::ExternalSymbol:
853     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
854     break;
855   case ISD::TargetExternalSymbol: {
856     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
857     Erased = TargetExternalSymbols.erase(
858                std::pair<std::string,unsigned char>(ESN->getSymbol(),
859                                                     ESN->getTargetFlags()));
860     break;
861   }
862   case ISD::MCSymbol: {
863     auto *MCSN = cast<MCSymbolSDNode>(N);
864     Erased = MCSymbols.erase(MCSN->getMCSymbol());
865     break;
866   }
867   case ISD::VALUETYPE: {
868     EVT VT = cast<VTSDNode>(N)->getVT();
869     if (VT.isExtended()) {
870       Erased = ExtendedValueTypeNodes.erase(VT);
871     } else {
872       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
873       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
874     }
875     break;
876   }
877   default:
878     // Remove it from the CSE Map.
879     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
880     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
881     Erased = CSEMap.RemoveNode(N);
882     break;
883   }
884 #ifndef NDEBUG
885   // Verify that the node was actually in one of the CSE maps, unless it has a
886   // flag result (which cannot be CSE'd) or is one of the special cases that are
887   // not subject to CSE.
888   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
889       !N->isMachineOpcode() && !doNotCSE(N)) {
890     N->dump(this);
891     dbgs() << "\n";
892     llvm_unreachable("Node is not in map!");
893   }
894 #endif
895   return Erased;
896 }
897 
898 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
899 /// maps and modified in place. Add it back to the CSE maps, unless an identical
900 /// node already exists, in which case transfer all its users to the existing
901 /// node. This transfer can potentially trigger recursive merging.
902 void
903 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
904   // For node types that aren't CSE'd, just act as if no identical node
905   // already exists.
906   if (!doNotCSE(N)) {
907     SDNode *Existing = CSEMap.GetOrInsertNode(N);
908     if (Existing != N) {
909       // If there was already an existing matching node, use ReplaceAllUsesWith
910       // to replace the dead one with the existing one.  This can cause
911       // recursive merging of other unrelated nodes down the line.
912       ReplaceAllUsesWith(N, Existing);
913 
914       // N is now dead. Inform the listeners and delete it.
915       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
916         DUL->NodeDeleted(N, Existing);
917       DeleteNodeNotInCSEMaps(N);
918       return;
919     }
920   }
921 
922   // If the node doesn't already exist, we updated it.  Inform listeners.
923   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
924     DUL->NodeUpdated(N);
925 }
926 
927 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
928 /// were replaced with those specified.  If this node is never memoized,
929 /// return null, otherwise return a pointer to the slot it would take.  If a
930 /// node already exists with these operands, the slot will be non-null.
931 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
932                                            void *&InsertPos) {
933   if (doNotCSE(N))
934     return nullptr;
935 
936   SDValue Ops[] = { Op };
937   FoldingSetNodeID ID;
938   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
939   AddNodeIDCustom(ID, N);
940   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
941   if (Node)
942     Node->intersectFlagsWith(N->getFlags());
943   return Node;
944 }
945 
946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
947 /// were replaced with those specified.  If this node is never memoized,
948 /// return null, otherwise return a pointer to the slot it would take.  If a
949 /// node already exists with these operands, the slot will be non-null.
950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
951                                            SDValue Op1, SDValue Op2,
952                                            void *&InsertPos) {
953   if (doNotCSE(N))
954     return nullptr;
955 
956   SDValue Ops[] = { Op1, Op2 };
957   FoldingSetNodeID ID;
958   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
959   AddNodeIDCustom(ID, N);
960   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
961   if (Node)
962     Node->intersectFlagsWith(N->getFlags());
963   return Node;
964 }
965 
966 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
967 /// were replaced with those specified.  If this node is never memoized,
968 /// return null, otherwise return a pointer to the slot it would take.  If a
969 /// node already exists with these operands, the slot will be non-null.
970 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
971                                            void *&InsertPos) {
972   if (doNotCSE(N))
973     return nullptr;
974 
975   FoldingSetNodeID ID;
976   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
977   AddNodeIDCustom(ID, N);
978   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
979   if (Node)
980     Node->intersectFlagsWith(N->getFlags());
981   return Node;
982 }
983 
984 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
985   Type *Ty = VT == MVT::iPTR ?
986                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
987                    VT.getTypeForEVT(*getContext());
988 
989   return getDataLayout().getABITypeAlignment(Ty);
990 }
991 
992 // EntryNode could meaningfully have debug info if we can find it...
993 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
994     : TM(tm), OptLevel(OL),
995       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
996       Root(getEntryNode()) {
997   InsertNode(&EntryNode);
998   DbgInfo = new SDDbgInfo();
999 }
1000 
1001 void SelectionDAG::init(MachineFunction &NewMF,
1002                         OptimizationRemarkEmitter &NewORE,
1003                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1004                         LegacyDivergenceAnalysis * Divergence) {
1005   MF = &NewMF;
1006   SDAGISelPass = PassPtr;
1007   ORE = &NewORE;
1008   TLI = getSubtarget().getTargetLowering();
1009   TSI = getSubtarget().getSelectionDAGInfo();
1010   LibInfo = LibraryInfo;
1011   Context = &MF->getFunction().getContext();
1012   DA = Divergence;
1013 }
1014 
1015 SelectionDAG::~SelectionDAG() {
1016   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1017   allnodes_clear();
1018   OperandRecycler.clear(OperandAllocator);
1019   delete DbgInfo;
1020 }
1021 
1022 void SelectionDAG::allnodes_clear() {
1023   assert(&*AllNodes.begin() == &EntryNode);
1024   AllNodes.remove(AllNodes.begin());
1025   while (!AllNodes.empty())
1026     DeallocateNode(&AllNodes.front());
1027 #ifndef NDEBUG
1028   NextPersistentId = 0;
1029 #endif
1030 }
1031 
1032 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1033                                           void *&InsertPos) {
1034   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1035   if (N) {
1036     switch (N->getOpcode()) {
1037     default: break;
1038     case ISD::Constant:
1039     case ISD::ConstantFP:
1040       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1041                        "debug location.  Use another overload.");
1042     }
1043   }
1044   return N;
1045 }
1046 
1047 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1048                                           const SDLoc &DL, void *&InsertPos) {
1049   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1050   if (N) {
1051     switch (N->getOpcode()) {
1052     case ISD::Constant:
1053     case ISD::ConstantFP:
1054       // Erase debug location from the node if the node is used at several
1055       // different places. Do not propagate one location to all uses as it
1056       // will cause a worse single stepping debugging experience.
1057       if (N->getDebugLoc() != DL.getDebugLoc())
1058         N->setDebugLoc(DebugLoc());
1059       break;
1060     default:
1061       // When the node's point of use is located earlier in the instruction
1062       // sequence than its prior point of use, update its debug info to the
1063       // earlier location.
1064       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1065         N->setDebugLoc(DL.getDebugLoc());
1066       break;
1067     }
1068   }
1069   return N;
1070 }
1071 
1072 void SelectionDAG::clear() {
1073   allnodes_clear();
1074   OperandRecycler.clear(OperandAllocator);
1075   OperandAllocator.Reset();
1076   CSEMap.clear();
1077 
1078   ExtendedValueTypeNodes.clear();
1079   ExternalSymbols.clear();
1080   TargetExternalSymbols.clear();
1081   MCSymbols.clear();
1082   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1083             static_cast<CondCodeSDNode*>(nullptr));
1084   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1085             static_cast<SDNode*>(nullptr));
1086 
1087   EntryNode.UseList = nullptr;
1088   InsertNode(&EntryNode);
1089   Root = getEntryNode();
1090   DbgInfo->clear();
1091 }
1092 
1093 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1094   return VT.bitsGT(Op.getValueType())
1095              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1096              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1097 }
1098 
1099 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1100   return VT.bitsGT(Op.getValueType()) ?
1101     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1102     getNode(ISD::TRUNCATE, DL, VT, Op);
1103 }
1104 
1105 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1106   return VT.bitsGT(Op.getValueType()) ?
1107     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1108     getNode(ISD::TRUNCATE, DL, VT, Op);
1109 }
1110 
1111 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1112   return VT.bitsGT(Op.getValueType()) ?
1113     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1114     getNode(ISD::TRUNCATE, DL, VT, Op);
1115 }
1116 
1117 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1118                                         EVT OpVT) {
1119   if (VT.bitsLE(Op.getValueType()))
1120     return getNode(ISD::TRUNCATE, SL, VT, Op);
1121 
1122   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1123   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1124 }
1125 
1126 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1127   assert(!VT.isVector() &&
1128          "getZeroExtendInReg should use the vector element type instead of "
1129          "the vector type!");
1130   if (Op.getValueType().getScalarType() == VT) return Op;
1131   unsigned BitWidth = Op.getScalarValueSizeInBits();
1132   APInt Imm = APInt::getLowBitsSet(BitWidth,
1133                                    VT.getSizeInBits());
1134   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1135                  getConstant(Imm, DL, Op.getValueType()));
1136 }
1137 
1138 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1139 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1140   EVT EltVT = VT.getScalarType();
1141   SDValue NegOne =
1142     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1143   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1144 }
1145 
1146 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1147   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1148   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1149 }
1150 
1151 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1152                                       EVT OpVT) {
1153   if (!V)
1154     return getConstant(0, DL, VT);
1155 
1156   switch (TLI->getBooleanContents(OpVT)) {
1157   case TargetLowering::ZeroOrOneBooleanContent:
1158   case TargetLowering::UndefinedBooleanContent:
1159     return getConstant(1, DL, VT);
1160   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1161     return getAllOnesConstant(DL, VT);
1162   }
1163   llvm_unreachable("Unexpected boolean content enum!");
1164 }
1165 
1166 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1167                                   bool isT, bool isO) {
1168   EVT EltVT = VT.getScalarType();
1169   assert((EltVT.getSizeInBits() >= 64 ||
1170          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1171          "getConstant with a uint64_t value that doesn't fit in the type!");
1172   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1173 }
1174 
1175 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1176                                   bool isT, bool isO) {
1177   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1178 }
1179 
1180 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1181                                   EVT VT, bool isT, bool isO) {
1182   assert(VT.isInteger() && "Cannot create FP integer constant!");
1183 
1184   EVT EltVT = VT.getScalarType();
1185   const ConstantInt *Elt = &Val;
1186 
1187   // In some cases the vector type is legal but the element type is illegal and
1188   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1189   // inserted value (the type does not need to match the vector element type).
1190   // Any extra bits introduced will be truncated away.
1191   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1192       TargetLowering::TypePromoteInteger) {
1193    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1194    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1195    Elt = ConstantInt::get(*getContext(), NewVal);
1196   }
1197   // In other cases the element type is illegal and needs to be expanded, for
1198   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1199   // the value into n parts and use a vector type with n-times the elements.
1200   // Then bitcast to the type requested.
1201   // Legalizing constants too early makes the DAGCombiner's job harder so we
1202   // only legalize if the DAG tells us we must produce legal types.
1203   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1204            TLI->getTypeAction(*getContext(), EltVT) ==
1205            TargetLowering::TypeExpandInteger) {
1206     const APInt &NewVal = Elt->getValue();
1207     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1208     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1209     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1210     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1211 
1212     // Check the temporary vector is the correct size. If this fails then
1213     // getTypeToTransformTo() probably returned a type whose size (in bits)
1214     // isn't a power-of-2 factor of the requested type size.
1215     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1216 
1217     SmallVector<SDValue, 2> EltParts;
1218     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1219       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1220                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1221                                      ViaEltVT, isT, isO));
1222     }
1223 
1224     // EltParts is currently in little endian order. If we actually want
1225     // big-endian order then reverse it now.
1226     if (getDataLayout().isBigEndian())
1227       std::reverse(EltParts.begin(), EltParts.end());
1228 
1229     // The elements must be reversed when the element order is different
1230     // to the endianness of the elements (because the BITCAST is itself a
1231     // vector shuffle in this situation). However, we do not need any code to
1232     // perform this reversal because getConstant() is producing a vector
1233     // splat.
1234     // This situation occurs in MIPS MSA.
1235 
1236     SmallVector<SDValue, 8> Ops;
1237     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1238       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1239 
1240     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1241     return V;
1242   }
1243 
1244   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1245          "APInt size does not match type size!");
1246   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1247   FoldingSetNodeID ID;
1248   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1249   ID.AddPointer(Elt);
1250   ID.AddBoolean(isO);
1251   void *IP = nullptr;
1252   SDNode *N = nullptr;
1253   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1254     if (!VT.isVector())
1255       return SDValue(N, 0);
1256 
1257   if (!N) {
1258     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1259     CSEMap.InsertNode(N, IP);
1260     InsertNode(N);
1261     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1262   }
1263 
1264   SDValue Result(N, 0);
1265   if (VT.isVector())
1266     Result = getSplatBuildVector(VT, DL, Result);
1267 
1268   return Result;
1269 }
1270 
1271 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1272                                         bool isTarget) {
1273   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1274 }
1275 
1276 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1277                                              const SDLoc &DL, bool LegalTypes) {
1278   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1279   return getConstant(Val, DL, ShiftVT);
1280 }
1281 
1282 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1283                                     bool isTarget) {
1284   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1285 }
1286 
1287 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1288                                     EVT VT, bool isTarget) {
1289   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1290 
1291   EVT EltVT = VT.getScalarType();
1292 
1293   // Do the map lookup using the actual bit pattern for the floating point
1294   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1295   // we don't have issues with SNANs.
1296   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1297   FoldingSetNodeID ID;
1298   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1299   ID.AddPointer(&V);
1300   void *IP = nullptr;
1301   SDNode *N = nullptr;
1302   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1303     if (!VT.isVector())
1304       return SDValue(N, 0);
1305 
1306   if (!N) {
1307     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1308     CSEMap.InsertNode(N, IP);
1309     InsertNode(N);
1310   }
1311 
1312   SDValue Result(N, 0);
1313   if (VT.isVector())
1314     Result = getSplatBuildVector(VT, DL, Result);
1315   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1316   return Result;
1317 }
1318 
1319 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1320                                     bool isTarget) {
1321   EVT EltVT = VT.getScalarType();
1322   if (EltVT == MVT::f32)
1323     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1324   else if (EltVT == MVT::f64)
1325     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1326   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1327            EltVT == MVT::f16) {
1328     bool Ignored;
1329     APFloat APF = APFloat(Val);
1330     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1331                 &Ignored);
1332     return getConstantFP(APF, DL, VT, isTarget);
1333   } else
1334     llvm_unreachable("Unsupported type in getConstantFP");
1335 }
1336 
1337 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1338                                        EVT VT, int64_t Offset, bool isTargetGA,
1339                                        unsigned char TargetFlags) {
1340   assert((TargetFlags == 0 || isTargetGA) &&
1341          "Cannot set target flags on target-independent globals");
1342 
1343   // Truncate (with sign-extension) the offset value to the pointer size.
1344   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1345   if (BitWidth < 64)
1346     Offset = SignExtend64(Offset, BitWidth);
1347 
1348   unsigned Opc;
1349   if (GV->isThreadLocal())
1350     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1351   else
1352     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1353 
1354   FoldingSetNodeID ID;
1355   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1356   ID.AddPointer(GV);
1357   ID.AddInteger(Offset);
1358   ID.AddInteger(TargetFlags);
1359   void *IP = nullptr;
1360   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1361     return SDValue(E, 0);
1362 
1363   auto *N = newSDNode<GlobalAddressSDNode>(
1364       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1365   CSEMap.InsertNode(N, IP);
1366     InsertNode(N);
1367   return SDValue(N, 0);
1368 }
1369 
1370 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1371   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1372   FoldingSetNodeID ID;
1373   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1374   ID.AddInteger(FI);
1375   void *IP = nullptr;
1376   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1377     return SDValue(E, 0);
1378 
1379   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1380   CSEMap.InsertNode(N, IP);
1381   InsertNode(N);
1382   return SDValue(N, 0);
1383 }
1384 
1385 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1386                                    unsigned char TargetFlags) {
1387   assert((TargetFlags == 0 || isTarget) &&
1388          "Cannot set target flags on target-independent jump tables");
1389   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1390   FoldingSetNodeID ID;
1391   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1392   ID.AddInteger(JTI);
1393   ID.AddInteger(TargetFlags);
1394   void *IP = nullptr;
1395   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1396     return SDValue(E, 0);
1397 
1398   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1399   CSEMap.InsertNode(N, IP);
1400   InsertNode(N);
1401   return SDValue(N, 0);
1402 }
1403 
1404 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1405                                       unsigned Alignment, int Offset,
1406                                       bool isTarget,
1407                                       unsigned char TargetFlags) {
1408   assert((TargetFlags == 0 || isTarget) &&
1409          "Cannot set target flags on target-independent globals");
1410   if (Alignment == 0)
1411     Alignment = MF->getFunction().optForSize()
1412                     ? getDataLayout().getABITypeAlignment(C->getType())
1413                     : getDataLayout().getPrefTypeAlignment(C->getType());
1414   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1415   FoldingSetNodeID ID;
1416   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1417   ID.AddInteger(Alignment);
1418   ID.AddInteger(Offset);
1419   ID.AddPointer(C);
1420   ID.AddInteger(TargetFlags);
1421   void *IP = nullptr;
1422   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1423     return SDValue(E, 0);
1424 
1425   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1426                                           TargetFlags);
1427   CSEMap.InsertNode(N, IP);
1428   InsertNode(N);
1429   return SDValue(N, 0);
1430 }
1431 
1432 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1433                                       unsigned Alignment, int Offset,
1434                                       bool isTarget,
1435                                       unsigned char TargetFlags) {
1436   assert((TargetFlags == 0 || isTarget) &&
1437          "Cannot set target flags on target-independent globals");
1438   if (Alignment == 0)
1439     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1440   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1441   FoldingSetNodeID ID;
1442   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1443   ID.AddInteger(Alignment);
1444   ID.AddInteger(Offset);
1445   C->addSelectionDAGCSEId(ID);
1446   ID.AddInteger(TargetFlags);
1447   void *IP = nullptr;
1448   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1449     return SDValue(E, 0);
1450 
1451   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1452                                           TargetFlags);
1453   CSEMap.InsertNode(N, IP);
1454   InsertNode(N);
1455   return SDValue(N, 0);
1456 }
1457 
1458 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1459                                      unsigned char TargetFlags) {
1460   FoldingSetNodeID ID;
1461   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1462   ID.AddInteger(Index);
1463   ID.AddInteger(Offset);
1464   ID.AddInteger(TargetFlags);
1465   void *IP = nullptr;
1466   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1467     return SDValue(E, 0);
1468 
1469   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1470   CSEMap.InsertNode(N, IP);
1471   InsertNode(N);
1472   return SDValue(N, 0);
1473 }
1474 
1475 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1476   FoldingSetNodeID ID;
1477   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1478   ID.AddPointer(MBB);
1479   void *IP = nullptr;
1480   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1481     return SDValue(E, 0);
1482 
1483   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1484   CSEMap.InsertNode(N, IP);
1485   InsertNode(N);
1486   return SDValue(N, 0);
1487 }
1488 
1489 SDValue SelectionDAG::getValueType(EVT VT) {
1490   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1491       ValueTypeNodes.size())
1492     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1493 
1494   SDNode *&N = VT.isExtended() ?
1495     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1496 
1497   if (N) return SDValue(N, 0);
1498   N = newSDNode<VTSDNode>(VT);
1499   InsertNode(N);
1500   return SDValue(N, 0);
1501 }
1502 
1503 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1504   SDNode *&N = ExternalSymbols[Sym];
1505   if (N) return SDValue(N, 0);
1506   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1507   InsertNode(N);
1508   return SDValue(N, 0);
1509 }
1510 
1511 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1512   SDNode *&N = MCSymbols[Sym];
1513   if (N)
1514     return SDValue(N, 0);
1515   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1516   InsertNode(N);
1517   return SDValue(N, 0);
1518 }
1519 
1520 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1521                                               unsigned char TargetFlags) {
1522   SDNode *&N =
1523     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1524                                                                TargetFlags)];
1525   if (N) return SDValue(N, 0);
1526   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1527   InsertNode(N);
1528   return SDValue(N, 0);
1529 }
1530 
1531 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1532   if ((unsigned)Cond >= CondCodeNodes.size())
1533     CondCodeNodes.resize(Cond+1);
1534 
1535   if (!CondCodeNodes[Cond]) {
1536     auto *N = newSDNode<CondCodeSDNode>(Cond);
1537     CondCodeNodes[Cond] = N;
1538     InsertNode(N);
1539   }
1540 
1541   return SDValue(CondCodeNodes[Cond], 0);
1542 }
1543 
1544 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1545 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1546 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1547   std::swap(N1, N2);
1548   ShuffleVectorSDNode::commuteMask(M);
1549 }
1550 
1551 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1552                                        SDValue N2, ArrayRef<int> Mask) {
1553   assert(VT.getVectorNumElements() == Mask.size() &&
1554            "Must have the same number of vector elements as mask elements!");
1555   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1556          "Invalid VECTOR_SHUFFLE");
1557 
1558   // Canonicalize shuffle undef, undef -> undef
1559   if (N1.isUndef() && N2.isUndef())
1560     return getUNDEF(VT);
1561 
1562   // Validate that all indices in Mask are within the range of the elements
1563   // input to the shuffle.
1564   int NElts = Mask.size();
1565   assert(llvm::all_of(Mask,
1566                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1567          "Index out of range");
1568 
1569   // Copy the mask so we can do any needed cleanup.
1570   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1571 
1572   // Canonicalize shuffle v, v -> v, undef
1573   if (N1 == N2) {
1574     N2 = getUNDEF(VT);
1575     for (int i = 0; i != NElts; ++i)
1576       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1577   }
1578 
1579   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1580   if (N1.isUndef())
1581     commuteShuffle(N1, N2, MaskVec);
1582 
1583   if (TLI->hasVectorBlend()) {
1584     // If shuffling a splat, try to blend the splat instead. We do this here so
1585     // that even when this arises during lowering we don't have to re-handle it.
1586     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1587       BitVector UndefElements;
1588       SDValue Splat = BV->getSplatValue(&UndefElements);
1589       if (!Splat)
1590         return;
1591 
1592       for (int i = 0; i < NElts; ++i) {
1593         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1594           continue;
1595 
1596         // If this input comes from undef, mark it as such.
1597         if (UndefElements[MaskVec[i] - Offset]) {
1598           MaskVec[i] = -1;
1599           continue;
1600         }
1601 
1602         // If we can blend a non-undef lane, use that instead.
1603         if (!UndefElements[i])
1604           MaskVec[i] = i + Offset;
1605       }
1606     };
1607     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1608       BlendSplat(N1BV, 0);
1609     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1610       BlendSplat(N2BV, NElts);
1611   }
1612 
1613   // Canonicalize all index into lhs, -> shuffle lhs, undef
1614   // Canonicalize all index into rhs, -> shuffle rhs, undef
1615   bool AllLHS = true, AllRHS = true;
1616   bool N2Undef = N2.isUndef();
1617   for (int i = 0; i != NElts; ++i) {
1618     if (MaskVec[i] >= NElts) {
1619       if (N2Undef)
1620         MaskVec[i] = -1;
1621       else
1622         AllLHS = false;
1623     } else if (MaskVec[i] >= 0) {
1624       AllRHS = false;
1625     }
1626   }
1627   if (AllLHS && AllRHS)
1628     return getUNDEF(VT);
1629   if (AllLHS && !N2Undef)
1630     N2 = getUNDEF(VT);
1631   if (AllRHS) {
1632     N1 = getUNDEF(VT);
1633     commuteShuffle(N1, N2, MaskVec);
1634   }
1635   // Reset our undef status after accounting for the mask.
1636   N2Undef = N2.isUndef();
1637   // Re-check whether both sides ended up undef.
1638   if (N1.isUndef() && N2Undef)
1639     return getUNDEF(VT);
1640 
1641   // If Identity shuffle return that node.
1642   bool Identity = true, AllSame = true;
1643   for (int i = 0; i != NElts; ++i) {
1644     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1645     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1646   }
1647   if (Identity && NElts)
1648     return N1;
1649 
1650   // Shuffling a constant splat doesn't change the result.
1651   if (N2Undef) {
1652     SDValue V = N1;
1653 
1654     // Look through any bitcasts. We check that these don't change the number
1655     // (and size) of elements and just changes their types.
1656     while (V.getOpcode() == ISD::BITCAST)
1657       V = V->getOperand(0);
1658 
1659     // A splat should always show up as a build vector node.
1660     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1661       BitVector UndefElements;
1662       SDValue Splat = BV->getSplatValue(&UndefElements);
1663       // If this is a splat of an undef, shuffling it is also undef.
1664       if (Splat && Splat.isUndef())
1665         return getUNDEF(VT);
1666 
1667       bool SameNumElts =
1668           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1669 
1670       // We only have a splat which can skip shuffles if there is a splatted
1671       // value and no undef lanes rearranged by the shuffle.
1672       if (Splat && UndefElements.none()) {
1673         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1674         // number of elements match or the value splatted is a zero constant.
1675         if (SameNumElts)
1676           return N1;
1677         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1678           if (C->isNullValue())
1679             return N1;
1680       }
1681 
1682       // If the shuffle itself creates a splat, build the vector directly.
1683       if (AllSame && SameNumElts) {
1684         EVT BuildVT = BV->getValueType(0);
1685         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1686         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1687 
1688         // We may have jumped through bitcasts, so the type of the
1689         // BUILD_VECTOR may not match the type of the shuffle.
1690         if (BuildVT != VT)
1691           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1692         return NewBV;
1693       }
1694     }
1695   }
1696 
1697   FoldingSetNodeID ID;
1698   SDValue Ops[2] = { N1, N2 };
1699   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1700   for (int i = 0; i != NElts; ++i)
1701     ID.AddInteger(MaskVec[i]);
1702 
1703   void* IP = nullptr;
1704   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1705     return SDValue(E, 0);
1706 
1707   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1708   // SDNode doesn't have access to it.  This memory will be "leaked" when
1709   // the node is deallocated, but recovered when the NodeAllocator is released.
1710   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1711   llvm::copy(MaskVec, MaskAlloc);
1712 
1713   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1714                                            dl.getDebugLoc(), MaskAlloc);
1715   createOperands(N, Ops);
1716 
1717   CSEMap.InsertNode(N, IP);
1718   InsertNode(N);
1719   SDValue V = SDValue(N, 0);
1720   NewSDValueDbgMsg(V, "Creating new node: ", this);
1721   return V;
1722 }
1723 
1724 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1725   EVT VT = SV.getValueType(0);
1726   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1727   ShuffleVectorSDNode::commuteMask(MaskVec);
1728 
1729   SDValue Op0 = SV.getOperand(0);
1730   SDValue Op1 = SV.getOperand(1);
1731   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1732 }
1733 
1734 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1735   FoldingSetNodeID ID;
1736   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1737   ID.AddInteger(RegNo);
1738   void *IP = nullptr;
1739   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1740     return SDValue(E, 0);
1741 
1742   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1743   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1744   CSEMap.InsertNode(N, IP);
1745   InsertNode(N);
1746   return SDValue(N, 0);
1747 }
1748 
1749 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1750   FoldingSetNodeID ID;
1751   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1752   ID.AddPointer(RegMask);
1753   void *IP = nullptr;
1754   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1755     return SDValue(E, 0);
1756 
1757   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1758   CSEMap.InsertNode(N, IP);
1759   InsertNode(N);
1760   return SDValue(N, 0);
1761 }
1762 
1763 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1764                                  MCSymbol *Label) {
1765   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1766 }
1767 
1768 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1769                                    SDValue Root, MCSymbol *Label) {
1770   FoldingSetNodeID ID;
1771   SDValue Ops[] = { Root };
1772   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1773   ID.AddPointer(Label);
1774   void *IP = nullptr;
1775   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1776     return SDValue(E, 0);
1777 
1778   auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1779   createOperands(N, Ops);
1780 
1781   CSEMap.InsertNode(N, IP);
1782   InsertNode(N);
1783   return SDValue(N, 0);
1784 }
1785 
1786 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1787                                       int64_t Offset,
1788                                       bool isTarget,
1789                                       unsigned char TargetFlags) {
1790   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1791 
1792   FoldingSetNodeID ID;
1793   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1794   ID.AddPointer(BA);
1795   ID.AddInteger(Offset);
1796   ID.AddInteger(TargetFlags);
1797   void *IP = nullptr;
1798   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1799     return SDValue(E, 0);
1800 
1801   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1802   CSEMap.InsertNode(N, IP);
1803   InsertNode(N);
1804   return SDValue(N, 0);
1805 }
1806 
1807 SDValue SelectionDAG::getSrcValue(const Value *V) {
1808   assert((!V || V->getType()->isPointerTy()) &&
1809          "SrcValue is not a pointer?");
1810 
1811   FoldingSetNodeID ID;
1812   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1813   ID.AddPointer(V);
1814 
1815   void *IP = nullptr;
1816   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1817     return SDValue(E, 0);
1818 
1819   auto *N = newSDNode<SrcValueSDNode>(V);
1820   CSEMap.InsertNode(N, IP);
1821   InsertNode(N);
1822   return SDValue(N, 0);
1823 }
1824 
1825 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1826   FoldingSetNodeID ID;
1827   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1828   ID.AddPointer(MD);
1829 
1830   void *IP = nullptr;
1831   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1832     return SDValue(E, 0);
1833 
1834   auto *N = newSDNode<MDNodeSDNode>(MD);
1835   CSEMap.InsertNode(N, IP);
1836   InsertNode(N);
1837   return SDValue(N, 0);
1838 }
1839 
1840 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1841   if (VT == V.getValueType())
1842     return V;
1843 
1844   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1845 }
1846 
1847 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1848                                        unsigned SrcAS, unsigned DestAS) {
1849   SDValue Ops[] = {Ptr};
1850   FoldingSetNodeID ID;
1851   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1852   ID.AddInteger(SrcAS);
1853   ID.AddInteger(DestAS);
1854 
1855   void *IP = nullptr;
1856   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1857     return SDValue(E, 0);
1858 
1859   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1860                                            VT, SrcAS, DestAS);
1861   createOperands(N, Ops);
1862 
1863   CSEMap.InsertNode(N, IP);
1864   InsertNode(N);
1865   return SDValue(N, 0);
1866 }
1867 
1868 /// getShiftAmountOperand - Return the specified value casted to
1869 /// the target's desired shift amount type.
1870 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1871   EVT OpTy = Op.getValueType();
1872   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1873   if (OpTy == ShTy || OpTy.isVector()) return Op;
1874 
1875   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1876 }
1877 
1878 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1879   SDLoc dl(Node);
1880   const TargetLowering &TLI = getTargetLoweringInfo();
1881   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1882   EVT VT = Node->getValueType(0);
1883   SDValue Tmp1 = Node->getOperand(0);
1884   SDValue Tmp2 = Node->getOperand(1);
1885   unsigned Align = Node->getConstantOperandVal(3);
1886 
1887   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1888                                Tmp2, MachinePointerInfo(V));
1889   SDValue VAList = VAListLoad;
1890 
1891   if (Align > TLI.getMinStackArgumentAlignment()) {
1892     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1893 
1894     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1895                      getConstant(Align - 1, dl, VAList.getValueType()));
1896 
1897     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1898                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1899   }
1900 
1901   // Increment the pointer, VAList, to the next vaarg
1902   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1903                  getConstant(getDataLayout().getTypeAllocSize(
1904                                                VT.getTypeForEVT(*getContext())),
1905                              dl, VAList.getValueType()));
1906   // Store the incremented VAList to the legalized pointer
1907   Tmp1 =
1908       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1909   // Load the actual argument out of the pointer VAList
1910   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1911 }
1912 
1913 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1914   SDLoc dl(Node);
1915   const TargetLowering &TLI = getTargetLoweringInfo();
1916   // This defaults to loading a pointer from the input and storing it to the
1917   // output, returning the chain.
1918   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1919   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1920   SDValue Tmp1 =
1921       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1922               Node->getOperand(2), MachinePointerInfo(VS));
1923   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1924                   MachinePointerInfo(VD));
1925 }
1926 
1927 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1928   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1929   unsigned ByteSize = VT.getStoreSize();
1930   Type *Ty = VT.getTypeForEVT(*getContext());
1931   unsigned StackAlign =
1932       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1933 
1934   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1935   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1936 }
1937 
1938 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1939   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1940   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1941   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1942   const DataLayout &DL = getDataLayout();
1943   unsigned Align =
1944       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1945 
1946   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1947   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1948   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1949 }
1950 
1951 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1952                                 ISD::CondCode Cond, const SDLoc &dl) {
1953   EVT OpVT = N1.getValueType();
1954 
1955   // These setcc operations always fold.
1956   switch (Cond) {
1957   default: break;
1958   case ISD::SETFALSE:
1959   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
1960   case ISD::SETTRUE:
1961   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
1962 
1963   case ISD::SETOEQ:
1964   case ISD::SETOGT:
1965   case ISD::SETOGE:
1966   case ISD::SETOLT:
1967   case ISD::SETOLE:
1968   case ISD::SETONE:
1969   case ISD::SETO:
1970   case ISD::SETUO:
1971   case ISD::SETUEQ:
1972   case ISD::SETUNE:
1973     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
1974     break;
1975   }
1976 
1977   // We can always fold X == X for integer setcc's.
1978   if (N1 == N2 && OpVT.isInteger())
1979     return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
1980 
1981   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
1982     const APInt &C2 = N2C->getAPIntValue();
1983     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
1984       const APInt &C1 = N1C->getAPIntValue();
1985 
1986       switch (Cond) {
1987       default: llvm_unreachable("Unknown integer setcc!");
1988       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
1989       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
1990       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
1991       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
1992       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
1993       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
1994       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
1995       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
1996       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
1997       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
1998       }
1999     }
2000   }
2001 
2002   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2003   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2004 
2005   if (N1CFP && N2CFP) {
2006     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2007     switch (Cond) {
2008     default: break;
2009     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2010                         return getUNDEF(VT);
2011                       LLVM_FALLTHROUGH;
2012     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2013                                              OpVT);
2014     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2015                         return getUNDEF(VT);
2016                       LLVM_FALLTHROUGH;
2017     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2018                                              R==APFloat::cmpLessThan, dl, VT,
2019                                              OpVT);
2020     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2021                         return getUNDEF(VT);
2022                       LLVM_FALLTHROUGH;
2023     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2024                                              OpVT);
2025     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2026                         return getUNDEF(VT);
2027                       LLVM_FALLTHROUGH;
2028     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2029                                              VT, OpVT);
2030     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2031                         return getUNDEF(VT);
2032                       LLVM_FALLTHROUGH;
2033     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2034                                              R==APFloat::cmpEqual, dl, VT,
2035                                              OpVT);
2036     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2037                         return getUNDEF(VT);
2038                       LLVM_FALLTHROUGH;
2039     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2040                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2041     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2042                                              OpVT);
2043     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2044                                              OpVT);
2045     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2046                                              R==APFloat::cmpEqual, dl, VT,
2047                                              OpVT);
2048     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2049                                              OpVT);
2050     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2051                                              R==APFloat::cmpLessThan, dl, VT,
2052                                              OpVT);
2053     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2054                                              R==APFloat::cmpUnordered, dl, VT,
2055                                              OpVT);
2056     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2057                                              VT, OpVT);
2058     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2059                                              OpVT);
2060     }
2061   } else if (N1CFP && OpVT.isSimple()) {
2062     // Ensure that the constant occurs on the RHS.
2063     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2064     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2065       return SDValue();
2066     return getSetCC(dl, VT, N2, N1, SwappedCond);
2067   } else if (N2CFP && N2CFP->getValueAPF().isNaN()) {
2068     // If an operand is known to be a nan, we can fold it.
2069     switch (ISD::getUnorderedFlavor(Cond)) {
2070     default:
2071       llvm_unreachable("Unknown flavor!");
2072     case 0: // Known false.
2073       return getBoolConstant(false, dl, VT, OpVT);
2074     case 1: // Known true.
2075       return getBoolConstant(true, dl, VT, OpVT);
2076     case 2: // Undefined.
2077       return getUNDEF(VT);
2078     }
2079   }
2080 
2081   // Could not fold it.
2082   return SDValue();
2083 }
2084 
2085 /// See if the specified operand can be simplified with the knowledge that only
2086 /// the bits specified by Mask are used.
2087 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) {
2088   switch (V.getOpcode()) {
2089   default:
2090     break;
2091   case ISD::Constant: {
2092     const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
2093     assert(CV && "Const value should be ConstSDNode.");
2094     const APInt &CVal = CV->getAPIntValue();
2095     APInt NewVal = CVal & Mask;
2096     if (NewVal != CVal)
2097       return getConstant(NewVal, SDLoc(V), V.getValueType());
2098     break;
2099   }
2100   case ISD::OR:
2101   case ISD::XOR:
2102     // If the LHS or RHS don't contribute bits to the or, drop them.
2103     if (MaskedValueIsZero(V.getOperand(0), Mask))
2104       return V.getOperand(1);
2105     if (MaskedValueIsZero(V.getOperand(1), Mask))
2106       return V.getOperand(0);
2107     break;
2108   case ISD::SRL:
2109     // Only look at single-use SRLs.
2110     if (!V.getNode()->hasOneUse())
2111       break;
2112     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2113       // See if we can recursively simplify the LHS.
2114       unsigned Amt = RHSC->getZExtValue();
2115 
2116       // Watch out for shift count overflow though.
2117       if (Amt >= Mask.getBitWidth())
2118         break;
2119       APInt NewMask = Mask << Amt;
2120       if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
2121         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2122                        V.getOperand(1));
2123     }
2124     break;
2125   case ISD::AND: {
2126     // X & -1 -> X (ignoring bits which aren't demanded).
2127     // Also handle the case where masked out bits in X are known to be zero.
2128     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2129       const APInt &AndVal = RHSC->getAPIntValue();
2130       if (Mask.isSubsetOf(AndVal) ||
2131           Mask.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | AndVal))
2132         return V.getOperand(0);
2133     }
2134     break;
2135   }
2136   case ISD::ANY_EXTEND: {
2137     SDValue Src = V.getOperand(0);
2138     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2139     // Being conservative here - only peek through if we only demand bits in the
2140     // non-extended source (even though the extended bits are technically undef).
2141     if (Mask.getActiveBits() > SrcBitWidth)
2142       break;
2143     APInt SrcMask = Mask.trunc(SrcBitWidth);
2144     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask))
2145       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2146     break;
2147   }
2148   case ISD::SIGN_EXTEND_INREG:
2149     EVT ExVT = cast<VTSDNode>(V.getOperand(1))->getVT();
2150     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2151 
2152     // If none of the extended bits are demanded, eliminate the sextinreg.
2153     if (Mask.getActiveBits() <= ExVTBits)
2154       return V.getOperand(0);
2155 
2156     break;
2157   }
2158   return SDValue();
2159 }
2160 
2161 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2162 /// use this predicate to simplify operations downstream.
2163 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2164   unsigned BitWidth = Op.getScalarValueSizeInBits();
2165   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2166 }
2167 
2168 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2169 /// this predicate to simplify operations downstream.  Mask is known to be zero
2170 /// for bits that V cannot have.
2171 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
2172                                      unsigned Depth) const {
2173   return Mask.isSubsetOf(computeKnownBits(Op, Depth).Zero);
2174 }
2175 
2176 /// isSplatValue - Return true if the vector V has the same value
2177 /// across all DemandedElts.
2178 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2179                                 APInt &UndefElts) {
2180   if (!DemandedElts)
2181     return false; // No demanded elts, better to assume we don't know anything.
2182 
2183   EVT VT = V.getValueType();
2184   assert(VT.isVector() && "Vector type expected");
2185 
2186   unsigned NumElts = VT.getVectorNumElements();
2187   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2188   UndefElts = APInt::getNullValue(NumElts);
2189 
2190   switch (V.getOpcode()) {
2191   case ISD::BUILD_VECTOR: {
2192     SDValue Scl;
2193     for (unsigned i = 0; i != NumElts; ++i) {
2194       SDValue Op = V.getOperand(i);
2195       if (Op.isUndef()) {
2196         UndefElts.setBit(i);
2197         continue;
2198       }
2199       if (!DemandedElts[i])
2200         continue;
2201       if (Scl && Scl != Op)
2202         return false;
2203       Scl = Op;
2204     }
2205     return true;
2206   }
2207   case ISD::VECTOR_SHUFFLE: {
2208     // Check if this is a shuffle node doing a splat.
2209     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2210     int SplatIndex = -1;
2211     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2212     for (int i = 0; i != (int)NumElts; ++i) {
2213       int M = Mask[i];
2214       if (M < 0) {
2215         UndefElts.setBit(i);
2216         continue;
2217       }
2218       if (!DemandedElts[i])
2219         continue;
2220       if (0 <= SplatIndex && SplatIndex != M)
2221         return false;
2222       SplatIndex = M;
2223     }
2224     return true;
2225   }
2226   case ISD::EXTRACT_SUBVECTOR: {
2227     SDValue Src = V.getOperand(0);
2228     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2229     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2230     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2231       // Offset the demanded elts by the subvector index.
2232       uint64_t Idx = SubIdx->getZExtValue();
2233       APInt UndefSrcElts;
2234       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2235       if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2236         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2237         return true;
2238       }
2239     }
2240     break;
2241   }
2242   case ISD::ADD:
2243   case ISD::SUB:
2244   case ISD::AND: {
2245     APInt UndefLHS, UndefRHS;
2246     SDValue LHS = V.getOperand(0);
2247     SDValue RHS = V.getOperand(1);
2248     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2249         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2250       UndefElts = UndefLHS | UndefRHS;
2251       return true;
2252     }
2253     break;
2254   }
2255   }
2256 
2257   return false;
2258 }
2259 
2260 /// Helper wrapper to main isSplatValue function.
2261 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2262   EVT VT = V.getValueType();
2263   assert(VT.isVector() && "Vector type expected");
2264   unsigned NumElts = VT.getVectorNumElements();
2265 
2266   APInt UndefElts;
2267   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2268   return isSplatValue(V, DemandedElts, UndefElts) &&
2269          (AllowUndefs || !UndefElts);
2270 }
2271 
2272 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2273 /// is less than the element bit-width of the shift node, return it.
2274 static const APInt *getValidShiftAmountConstant(SDValue V) {
2275   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2276     // Shifting more than the bitwidth is not valid.
2277     const APInt &ShAmt = SA->getAPIntValue();
2278     if (ShAmt.ult(V.getScalarValueSizeInBits()))
2279       return &ShAmt;
2280   }
2281   return nullptr;
2282 }
2283 
2284 /// Determine which bits of Op are known to be either zero or one and return
2285 /// them in Known. For vectors, the known bits are those that are shared by
2286 /// every vector element.
2287 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2288   EVT VT = Op.getValueType();
2289   APInt DemandedElts = VT.isVector()
2290                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2291                            : APInt(1, 1);
2292   return computeKnownBits(Op, DemandedElts, Depth);
2293 }
2294 
2295 /// Determine which bits of Op are known to be either zero or one and return
2296 /// them in Known. The DemandedElts argument allows us to only collect the known
2297 /// bits that are shared by the requested vector elements.
2298 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2299                                          unsigned Depth) const {
2300   unsigned BitWidth = Op.getScalarValueSizeInBits();
2301 
2302   KnownBits Known(BitWidth);   // Don't know anything.
2303 
2304   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2305     // We know all of the bits for a constant!
2306     Known.One = C->getAPIntValue();
2307     Known.Zero = ~Known.One;
2308     return Known;
2309   }
2310   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2311     // We know all of the bits for a constant fp!
2312     Known.One = C->getValueAPF().bitcastToAPInt();
2313     Known.Zero = ~Known.One;
2314     return Known;
2315   }
2316 
2317   if (Depth == 6)
2318     return Known;  // Limit search depth.
2319 
2320   KnownBits Known2;
2321   unsigned NumElts = DemandedElts.getBitWidth();
2322   assert((!Op.getValueType().isVector() ||
2323           NumElts == Op.getValueType().getVectorNumElements()) &&
2324          "Unexpected vector size");
2325 
2326   if (!DemandedElts)
2327     return Known;  // No demanded elts, better to assume we don't know anything.
2328 
2329   unsigned Opcode = Op.getOpcode();
2330   switch (Opcode) {
2331   case ISD::BUILD_VECTOR:
2332     // Collect the known bits that are shared by every demanded vector element.
2333     Known.Zero.setAllBits(); Known.One.setAllBits();
2334     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2335       if (!DemandedElts[i])
2336         continue;
2337 
2338       SDValue SrcOp = Op.getOperand(i);
2339       Known2 = computeKnownBits(SrcOp, Depth + 1);
2340 
2341       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2342       if (SrcOp.getValueSizeInBits() != BitWidth) {
2343         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2344                "Expected BUILD_VECTOR implicit truncation");
2345         Known2 = Known2.trunc(BitWidth);
2346       }
2347 
2348       // Known bits are the values that are shared by every demanded element.
2349       Known.One &= Known2.One;
2350       Known.Zero &= Known2.Zero;
2351 
2352       // If we don't know any bits, early out.
2353       if (Known.isUnknown())
2354         break;
2355     }
2356     break;
2357   case ISD::VECTOR_SHUFFLE: {
2358     // Collect the known bits that are shared by every vector element referenced
2359     // by the shuffle.
2360     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2361     Known.Zero.setAllBits(); Known.One.setAllBits();
2362     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2363     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2364     for (unsigned i = 0; i != NumElts; ++i) {
2365       if (!DemandedElts[i])
2366         continue;
2367 
2368       int M = SVN->getMaskElt(i);
2369       if (M < 0) {
2370         // For UNDEF elements, we don't know anything about the common state of
2371         // the shuffle result.
2372         Known.resetAll();
2373         DemandedLHS.clearAllBits();
2374         DemandedRHS.clearAllBits();
2375         break;
2376       }
2377 
2378       if ((unsigned)M < NumElts)
2379         DemandedLHS.setBit((unsigned)M % NumElts);
2380       else
2381         DemandedRHS.setBit((unsigned)M % NumElts);
2382     }
2383     // Known bits are the values that are shared by every demanded element.
2384     if (!!DemandedLHS) {
2385       SDValue LHS = Op.getOperand(0);
2386       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2387       Known.One &= Known2.One;
2388       Known.Zero &= Known2.Zero;
2389     }
2390     // If we don't know any bits, early out.
2391     if (Known.isUnknown())
2392       break;
2393     if (!!DemandedRHS) {
2394       SDValue RHS = Op.getOperand(1);
2395       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2396       Known.One &= Known2.One;
2397       Known.Zero &= Known2.Zero;
2398     }
2399     break;
2400   }
2401   case ISD::CONCAT_VECTORS: {
2402     // Split DemandedElts and test each of the demanded subvectors.
2403     Known.Zero.setAllBits(); Known.One.setAllBits();
2404     EVT SubVectorVT = Op.getOperand(0).getValueType();
2405     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2406     unsigned NumSubVectors = Op.getNumOperands();
2407     for (unsigned i = 0; i != NumSubVectors; ++i) {
2408       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2409       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2410       if (!!DemandedSub) {
2411         SDValue Sub = Op.getOperand(i);
2412         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2413         Known.One &= Known2.One;
2414         Known.Zero &= Known2.Zero;
2415       }
2416       // If we don't know any bits, early out.
2417       if (Known.isUnknown())
2418         break;
2419     }
2420     break;
2421   }
2422   case ISD::INSERT_SUBVECTOR: {
2423     // If we know the element index, demand any elements from the subvector and
2424     // the remainder from the src its inserted into, otherwise demand them all.
2425     SDValue Src = Op.getOperand(0);
2426     SDValue Sub = Op.getOperand(1);
2427     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2428     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2429     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2430       Known.One.setAllBits();
2431       Known.Zero.setAllBits();
2432       uint64_t Idx = SubIdx->getZExtValue();
2433       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2434       if (!!DemandedSubElts) {
2435         Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2436         if (Known.isUnknown())
2437           break; // early-out.
2438       }
2439       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2440       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2441       if (!!DemandedSrcElts) {
2442         Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2443         Known.One &= Known2.One;
2444         Known.Zero &= Known2.Zero;
2445       }
2446     } else {
2447       Known = computeKnownBits(Sub, Depth + 1);
2448       if (Known.isUnknown())
2449         break; // early-out.
2450       Known2 = computeKnownBits(Src, Depth + 1);
2451       Known.One &= Known2.One;
2452       Known.Zero &= Known2.Zero;
2453     }
2454     break;
2455   }
2456   case ISD::EXTRACT_SUBVECTOR: {
2457     // If we know the element index, just demand that subvector elements,
2458     // otherwise demand them all.
2459     SDValue Src = Op.getOperand(0);
2460     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2461     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2462     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2463       // Offset the demanded elts by the subvector index.
2464       uint64_t Idx = SubIdx->getZExtValue();
2465       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2466       Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2467     } else {
2468       Known = computeKnownBits(Src, Depth + 1);
2469     }
2470     break;
2471   }
2472   case ISD::SCALAR_TO_VECTOR: {
2473     // We know about scalar_to_vector as much as we know about it source,
2474     // which becomes the first element of otherwise unknown vector.
2475     if (DemandedElts != 1)
2476       break;
2477 
2478     SDValue N0 = Op.getOperand(0);
2479     Known = computeKnownBits(N0, Depth + 1);
2480     if (N0.getValueSizeInBits() != BitWidth)
2481       Known = Known.trunc(BitWidth);
2482 
2483     break;
2484   }
2485   case ISD::BITCAST: {
2486     SDValue N0 = Op.getOperand(0);
2487     EVT SubVT = N0.getValueType();
2488     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2489 
2490     // Ignore bitcasts from unsupported types.
2491     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2492       break;
2493 
2494     // Fast handling of 'identity' bitcasts.
2495     if (BitWidth == SubBitWidth) {
2496       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2497       break;
2498     }
2499 
2500     bool IsLE = getDataLayout().isLittleEndian();
2501 
2502     // Bitcast 'small element' vector to 'large element' scalar/vector.
2503     if ((BitWidth % SubBitWidth) == 0) {
2504       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2505 
2506       // Collect known bits for the (larger) output by collecting the known
2507       // bits from each set of sub elements and shift these into place.
2508       // We need to separately call computeKnownBits for each set of
2509       // sub elements as the knownbits for each is likely to be different.
2510       unsigned SubScale = BitWidth / SubBitWidth;
2511       APInt SubDemandedElts(NumElts * SubScale, 0);
2512       for (unsigned i = 0; i != NumElts; ++i)
2513         if (DemandedElts[i])
2514           SubDemandedElts.setBit(i * SubScale);
2515 
2516       for (unsigned i = 0; i != SubScale; ++i) {
2517         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2518                          Depth + 1);
2519         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2520         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2521         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2522       }
2523     }
2524 
2525     // Bitcast 'large element' scalar/vector to 'small element' vector.
2526     if ((SubBitWidth % BitWidth) == 0) {
2527       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2528 
2529       // Collect known bits for the (smaller) output by collecting the known
2530       // bits from the overlapping larger input elements and extracting the
2531       // sub sections we actually care about.
2532       unsigned SubScale = SubBitWidth / BitWidth;
2533       APInt SubDemandedElts(NumElts / SubScale, 0);
2534       for (unsigned i = 0; i != NumElts; ++i)
2535         if (DemandedElts[i])
2536           SubDemandedElts.setBit(i / SubScale);
2537 
2538       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2539 
2540       Known.Zero.setAllBits(); Known.One.setAllBits();
2541       for (unsigned i = 0; i != NumElts; ++i)
2542         if (DemandedElts[i]) {
2543           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2544           unsigned Offset = (Shifts % SubScale) * BitWidth;
2545           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2546           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2547           // If we don't know any bits, early out.
2548           if (Known.isUnknown())
2549             break;
2550         }
2551     }
2552     break;
2553   }
2554   case ISD::AND:
2555     // If either the LHS or the RHS are Zero, the result is zero.
2556     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2557     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2558 
2559     // Output known-1 bits are only known if set in both the LHS & RHS.
2560     Known.One &= Known2.One;
2561     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2562     Known.Zero |= Known2.Zero;
2563     break;
2564   case ISD::OR:
2565     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2566     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2567 
2568     // Output known-0 bits are only known if clear in both the LHS & RHS.
2569     Known.Zero &= Known2.Zero;
2570     // Output known-1 are known to be set if set in either the LHS | RHS.
2571     Known.One |= Known2.One;
2572     break;
2573   case ISD::XOR: {
2574     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2575     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2576 
2577     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2578     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2579     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2580     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2581     Known.Zero = KnownZeroOut;
2582     break;
2583   }
2584   case ISD::MUL: {
2585     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2586     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2587 
2588     // If low bits are zero in either operand, output low known-0 bits.
2589     // Also compute a conservative estimate for high known-0 bits.
2590     // More trickiness is possible, but this is sufficient for the
2591     // interesting case of alignment computation.
2592     unsigned TrailZ = Known.countMinTrailingZeros() +
2593                       Known2.countMinTrailingZeros();
2594     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2595                                Known2.countMinLeadingZeros(),
2596                                BitWidth) - BitWidth;
2597 
2598     Known.resetAll();
2599     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2600     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2601     break;
2602   }
2603   case ISD::UDIV: {
2604     // For the purposes of computing leading zeros we can conservatively
2605     // treat a udiv as a logical right shift by the power of 2 known to
2606     // be less than the denominator.
2607     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2608     unsigned LeadZ = Known2.countMinLeadingZeros();
2609 
2610     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2611     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2612     if (RHSMaxLeadingZeros != BitWidth)
2613       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2614 
2615     Known.Zero.setHighBits(LeadZ);
2616     break;
2617   }
2618   case ISD::SELECT:
2619   case ISD::VSELECT:
2620     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2621     // If we don't know any bits, early out.
2622     if (Known.isUnknown())
2623       break;
2624     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2625 
2626     // Only known if known in both the LHS and RHS.
2627     Known.One &= Known2.One;
2628     Known.Zero &= Known2.Zero;
2629     break;
2630   case ISD::SELECT_CC:
2631     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2632     // If we don't know any bits, early out.
2633     if (Known.isUnknown())
2634       break;
2635     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2636 
2637     // Only known if known in both the LHS and RHS.
2638     Known.One &= Known2.One;
2639     Known.Zero &= Known2.Zero;
2640     break;
2641   case ISD::SMULO:
2642   case ISD::UMULO:
2643   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2644     if (Op.getResNo() != 1)
2645       break;
2646     // The boolean result conforms to getBooleanContents.
2647     // If we know the result of a setcc has the top bits zero, use this info.
2648     // We know that we have an integer-based boolean since these operations
2649     // are only available for integer.
2650     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2651             TargetLowering::ZeroOrOneBooleanContent &&
2652         BitWidth > 1)
2653       Known.Zero.setBitsFrom(1);
2654     break;
2655   case ISD::SETCC:
2656     // If we know the result of a setcc has the top bits zero, use this info.
2657     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2658             TargetLowering::ZeroOrOneBooleanContent &&
2659         BitWidth > 1)
2660       Known.Zero.setBitsFrom(1);
2661     break;
2662   case ISD::SHL:
2663     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2664       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2665       unsigned Shift = ShAmt->getZExtValue();
2666       Known.Zero <<= Shift;
2667       Known.One <<= Shift;
2668       // Low bits are known zero.
2669       Known.Zero.setLowBits(Shift);
2670     }
2671     break;
2672   case ISD::SRL:
2673     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2674       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2675       unsigned Shift = ShAmt->getZExtValue();
2676       Known.Zero.lshrInPlace(Shift);
2677       Known.One.lshrInPlace(Shift);
2678       // High bits are known zero.
2679       Known.Zero.setHighBits(Shift);
2680     } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
2681       // If the shift amount is a vector of constants see if we can bound
2682       // the number of upper zero bits.
2683       unsigned ShiftAmountMin = BitWidth;
2684       for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
2685         if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
2686           const APInt &ShAmt = C->getAPIntValue();
2687           if (ShAmt.ult(BitWidth)) {
2688             ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
2689                                                 ShAmt.getZExtValue());
2690             continue;
2691           }
2692         }
2693         // Don't know anything.
2694         ShiftAmountMin = 0;
2695         break;
2696       }
2697 
2698       Known.Zero.setHighBits(ShiftAmountMin);
2699     }
2700     break;
2701   case ISD::SRA:
2702     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2703       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2704       unsigned Shift = ShAmt->getZExtValue();
2705       // Sign extend known zero/one bit (else is unknown).
2706       Known.Zero.ashrInPlace(Shift);
2707       Known.One.ashrInPlace(Shift);
2708     }
2709     break;
2710   case ISD::FSHL:
2711   case ISD::FSHR:
2712     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2713       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2714 
2715       // For fshl, 0-shift returns the 1st arg.
2716       // For fshr, 0-shift returns the 2nd arg.
2717       if (Amt == 0) {
2718         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2719                                  DemandedElts, Depth + 1);
2720         break;
2721       }
2722 
2723       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2724       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2725       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2726       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2727       if (Opcode == ISD::FSHL) {
2728         Known.One <<= Amt;
2729         Known.Zero <<= Amt;
2730         Known2.One.lshrInPlace(BitWidth - Amt);
2731         Known2.Zero.lshrInPlace(BitWidth - Amt);
2732       } else {
2733         Known.One <<= BitWidth - Amt;
2734         Known.Zero <<= BitWidth - Amt;
2735         Known2.One.lshrInPlace(Amt);
2736         Known2.Zero.lshrInPlace(Amt);
2737       }
2738       Known.One |= Known2.One;
2739       Known.Zero |= Known2.Zero;
2740     }
2741     break;
2742   case ISD::SIGN_EXTEND_INREG: {
2743     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2744     unsigned EBits = EVT.getScalarSizeInBits();
2745 
2746     // Sign extension.  Compute the demanded bits in the result that are not
2747     // present in the input.
2748     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2749 
2750     APInt InSignMask = APInt::getSignMask(EBits);
2751     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2752 
2753     // If the sign extended bits are demanded, we know that the sign
2754     // bit is demanded.
2755     InSignMask = InSignMask.zext(BitWidth);
2756     if (NewBits.getBoolValue())
2757       InputDemandedBits |= InSignMask;
2758 
2759     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2760     Known.One &= InputDemandedBits;
2761     Known.Zero &= InputDemandedBits;
2762 
2763     // If the sign bit of the input is known set or clear, then we know the
2764     // top bits of the result.
2765     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2766       Known.Zero |= NewBits;
2767       Known.One  &= ~NewBits;
2768     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2769       Known.One  |= NewBits;
2770       Known.Zero &= ~NewBits;
2771     } else {                              // Input sign bit unknown
2772       Known.Zero &= ~NewBits;
2773       Known.One  &= ~NewBits;
2774     }
2775     break;
2776   }
2777   case ISD::CTTZ:
2778   case ISD::CTTZ_ZERO_UNDEF: {
2779     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2780     // If we have a known 1, its position is our upper bound.
2781     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2782     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2783     Known.Zero.setBitsFrom(LowBits);
2784     break;
2785   }
2786   case ISD::CTLZ:
2787   case ISD::CTLZ_ZERO_UNDEF: {
2788     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2789     // If we have a known 1, its position is our upper bound.
2790     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2791     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2792     Known.Zero.setBitsFrom(LowBits);
2793     break;
2794   }
2795   case ISD::CTPOP: {
2796     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2797     // If we know some of the bits are zero, they can't be one.
2798     unsigned PossibleOnes = Known2.countMaxPopulation();
2799     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2800     break;
2801   }
2802   case ISD::LOAD: {
2803     LoadSDNode *LD = cast<LoadSDNode>(Op);
2804     // If this is a ZEXTLoad and we are looking at the loaded value.
2805     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2806       EVT VT = LD->getMemoryVT();
2807       unsigned MemBits = VT.getScalarSizeInBits();
2808       Known.Zero.setBitsFrom(MemBits);
2809     } else if (const MDNode *Ranges = LD->getRanges()) {
2810       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2811         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2812     }
2813     break;
2814   }
2815   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2816     EVT InVT = Op.getOperand(0).getValueType();
2817     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2818     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2819     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2820     break;
2821   }
2822   case ISD::ZERO_EXTEND: {
2823     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2824     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2825     break;
2826   }
2827   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2828     EVT InVT = Op.getOperand(0).getValueType();
2829     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2830     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2831     // If the sign bit is known to be zero or one, then sext will extend
2832     // it to the top bits, else it will just zext.
2833     Known = Known.sext(BitWidth);
2834     break;
2835   }
2836   case ISD::SIGN_EXTEND: {
2837     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2838     // If the sign bit is known to be zero or one, then sext will extend
2839     // it to the top bits, else it will just zext.
2840     Known = Known.sext(BitWidth);
2841     break;
2842   }
2843   case ISD::ANY_EXTEND: {
2844     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2845     Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
2846     break;
2847   }
2848   case ISD::TRUNCATE: {
2849     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2850     Known = Known.trunc(BitWidth);
2851     break;
2852   }
2853   case ISD::AssertZext: {
2854     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2855     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2856     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2857     Known.Zero |= (~InMask);
2858     Known.One  &= (~Known.Zero);
2859     break;
2860   }
2861   case ISD::FGETSIGN:
2862     // All bits are zero except the low bit.
2863     Known.Zero.setBitsFrom(1);
2864     break;
2865   case ISD::USUBO:
2866   case ISD::SSUBO:
2867     if (Op.getResNo() == 1) {
2868       // If we know the result of a setcc has the top bits zero, use this info.
2869       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2870               TargetLowering::ZeroOrOneBooleanContent &&
2871           BitWidth > 1)
2872         Known.Zero.setBitsFrom(1);
2873       break;
2874     }
2875     LLVM_FALLTHROUGH;
2876   case ISD::SUB:
2877   case ISD::SUBC: {
2878     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
2879       // We know that the top bits of C-X are clear if X contains less bits
2880       // than C (i.e. no wrap-around can happen).  For example, 20-X is
2881       // positive if we can prove that X is >= 0 and < 16.
2882       if (CLHS->getAPIntValue().isNonNegative()) {
2883         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2884         // NLZ can't be BitWidth with no sign bit
2885         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2886         Known2 = computeKnownBits(Op.getOperand(1), DemandedElts,
2887                          Depth + 1);
2888 
2889         // If all of the MaskV bits are known to be zero, then we know the
2890         // output top bits are zero, because we now know that the output is
2891         // from [0-C].
2892         if ((Known2.Zero & MaskV) == MaskV) {
2893           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2894           // Top bits known zero.
2895           Known.Zero.setHighBits(NLZ2);
2896         }
2897       }
2898     }
2899 
2900     // If low bits are know to be zero in both operands, then we know they are
2901     // going to be 0 in the result. Both addition and complement operations
2902     // preserve the low zero bits.
2903     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2904     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2905     if (KnownZeroLow == 0)
2906       break;
2907 
2908     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2909     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2910     Known.Zero.setLowBits(KnownZeroLow);
2911     break;
2912   }
2913   case ISD::UADDO:
2914   case ISD::SADDO:
2915   case ISD::ADDCARRY:
2916     if (Op.getResNo() == 1) {
2917       // If we know the result of a setcc has the top bits zero, use this info.
2918       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2919               TargetLowering::ZeroOrOneBooleanContent &&
2920           BitWidth > 1)
2921         Known.Zero.setBitsFrom(1);
2922       break;
2923     }
2924     LLVM_FALLTHROUGH;
2925   case ISD::ADD:
2926   case ISD::ADDC:
2927   case ISD::ADDE: {
2928     // Output known-0 bits are known if clear or set in both the low clear bits
2929     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2930     // low 3 bits clear.
2931     // Output known-0 bits are also known if the top bits of each input are
2932     // known to be clear. For example, if one input has the top 10 bits clear
2933     // and the other has the top 8 bits clear, we know the top 7 bits of the
2934     // output must be clear.
2935     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2936     unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
2937     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2938 
2939     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2940     KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
2941     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2942 
2943     if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) {
2944       // With ADDE and ADDCARRY, a carry bit may be added in, so we can only
2945       // use this information if we know (at least) that the low two bits are
2946       // clear. We then return to the caller that the low bit is unknown but
2947       // that other bits are known zero.
2948       if (KnownZeroLow >= 2)
2949         Known.Zero.setBits(1, KnownZeroLow);
2950       break;
2951     }
2952 
2953     Known.Zero.setLowBits(KnownZeroLow);
2954     if (KnownZeroHigh > 1)
2955       Known.Zero.setHighBits(KnownZeroHigh - 1);
2956     break;
2957   }
2958   case ISD::SREM:
2959     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2960       const APInt &RA = Rem->getAPIntValue().abs();
2961       if (RA.isPowerOf2()) {
2962         APInt LowBits = RA - 1;
2963         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2964 
2965         // The low bits of the first operand are unchanged by the srem.
2966         Known.Zero = Known2.Zero & LowBits;
2967         Known.One = Known2.One & LowBits;
2968 
2969         // If the first operand is non-negative or has all low bits zero, then
2970         // the upper bits are all zero.
2971         if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
2972           Known.Zero |= ~LowBits;
2973 
2974         // If the first operand is negative and not all low bits are zero, then
2975         // the upper bits are all one.
2976         if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
2977           Known.One |= ~LowBits;
2978         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
2979       }
2980     }
2981     break;
2982   case ISD::UREM: {
2983     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2984       const APInt &RA = Rem->getAPIntValue();
2985       if (RA.isPowerOf2()) {
2986         APInt LowBits = (RA - 1);
2987         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2988 
2989         // The upper bits are all zero, the lower ones are unchanged.
2990         Known.Zero = Known2.Zero | ~LowBits;
2991         Known.One = Known2.One & LowBits;
2992         break;
2993       }
2994     }
2995 
2996     // Since the result is less than or equal to either operand, any leading
2997     // zero bits in either operand must also exist in the result.
2998     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2999     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3000 
3001     uint32_t Leaders =
3002         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3003     Known.resetAll();
3004     Known.Zero.setHighBits(Leaders);
3005     break;
3006   }
3007   case ISD::EXTRACT_ELEMENT: {
3008     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3009     const unsigned Index = Op.getConstantOperandVal(1);
3010     const unsigned BitWidth = Op.getValueSizeInBits();
3011 
3012     // Remove low part of known bits mask
3013     Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth);
3014     Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth);
3015 
3016     // Remove high part of known bit mask
3017     Known = Known.trunc(BitWidth);
3018     break;
3019   }
3020   case ISD::EXTRACT_VECTOR_ELT: {
3021     SDValue InVec = Op.getOperand(0);
3022     SDValue EltNo = Op.getOperand(1);
3023     EVT VecVT = InVec.getValueType();
3024     const unsigned BitWidth = Op.getValueSizeInBits();
3025     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3026     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3027     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3028     // anything about the extended bits.
3029     if (BitWidth > EltBitWidth)
3030       Known = Known.trunc(EltBitWidth);
3031     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3032     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
3033       // If we know the element index, just demand that vector element.
3034       unsigned Idx = ConstEltNo->getZExtValue();
3035       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
3036       Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
3037     } else {
3038       // Unknown element index, so ignore DemandedElts and demand them all.
3039       Known = computeKnownBits(InVec, Depth + 1);
3040     }
3041     if (BitWidth > EltBitWidth)
3042       Known = Known.zext(BitWidth, false /* => any extend */);
3043     break;
3044   }
3045   case ISD::INSERT_VECTOR_ELT: {
3046     SDValue InVec = Op.getOperand(0);
3047     SDValue InVal = Op.getOperand(1);
3048     SDValue EltNo = Op.getOperand(2);
3049 
3050     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3051     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3052       // If we know the element index, split the demand between the
3053       // source vector and the inserted element.
3054       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
3055       unsigned EltIdx = CEltNo->getZExtValue();
3056 
3057       // If we demand the inserted element then add its common known bits.
3058       if (DemandedElts[EltIdx]) {
3059         Known2 = computeKnownBits(InVal, Depth + 1);
3060         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3061         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3062       }
3063 
3064       // If we demand the source vector then add its common known bits, ensuring
3065       // that we don't demand the inserted element.
3066       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
3067       if (!!VectorElts) {
3068         Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
3069         Known.One &= Known2.One;
3070         Known.Zero &= Known2.Zero;
3071       }
3072     } else {
3073       // Unknown element index, so ignore DemandedElts and demand them all.
3074       Known = computeKnownBits(InVec, Depth + 1);
3075       Known2 = computeKnownBits(InVal, Depth + 1);
3076       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3077       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3078     }
3079     break;
3080   }
3081   case ISD::BITREVERSE: {
3082     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3083     Known.Zero = Known2.Zero.reverseBits();
3084     Known.One = Known2.One.reverseBits();
3085     break;
3086   }
3087   case ISD::BSWAP: {
3088     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3089     Known.Zero = Known2.Zero.byteSwap();
3090     Known.One = Known2.One.byteSwap();
3091     break;
3092   }
3093   case ISD::ABS: {
3094     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3095 
3096     // If the source's MSB is zero then we know the rest of the bits already.
3097     if (Known2.isNonNegative()) {
3098       Known.Zero = Known2.Zero;
3099       Known.One = Known2.One;
3100       break;
3101     }
3102 
3103     // We only know that the absolute values's MSB will be zero iff there is
3104     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3105     Known2.One.clearSignBit();
3106     if (Known2.One.getBoolValue()) {
3107       Known.Zero = APInt::getSignMask(BitWidth);
3108       break;
3109     }
3110     break;
3111   }
3112   case ISD::UMIN: {
3113     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3114     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3115 
3116     // UMIN - we know that the result will have the maximum of the
3117     // known zero leading bits of the inputs.
3118     unsigned LeadZero = Known.countMinLeadingZeros();
3119     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3120 
3121     Known.Zero &= Known2.Zero;
3122     Known.One &= Known2.One;
3123     Known.Zero.setHighBits(LeadZero);
3124     break;
3125   }
3126   case ISD::UMAX: {
3127     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3128     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3129 
3130     // UMAX - we know that the result will have the maximum of the
3131     // known one leading bits of the inputs.
3132     unsigned LeadOne = Known.countMinLeadingOnes();
3133     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3134 
3135     Known.Zero &= Known2.Zero;
3136     Known.One &= Known2.One;
3137     Known.One.setHighBits(LeadOne);
3138     break;
3139   }
3140   case ISD::SMIN:
3141   case ISD::SMAX: {
3142     // If we have a clamp pattern, we know that the number of sign bits will be
3143     // the minimum of the clamp min/max range.
3144     bool IsMax = (Opcode == ISD::SMAX);
3145     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3146     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3147       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3148         CstHigh =
3149             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3150     if (CstLow && CstHigh) {
3151       if (!IsMax)
3152         std::swap(CstLow, CstHigh);
3153 
3154       const APInt &ValueLow = CstLow->getAPIntValue();
3155       const APInt &ValueHigh = CstHigh->getAPIntValue();
3156       if (ValueLow.sle(ValueHigh)) {
3157         unsigned LowSignBits = ValueLow.getNumSignBits();
3158         unsigned HighSignBits = ValueHigh.getNumSignBits();
3159         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3160         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3161           Known.One.setHighBits(MinSignBits);
3162           break;
3163         }
3164         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3165           Known.Zero.setHighBits(MinSignBits);
3166           break;
3167         }
3168       }
3169     }
3170 
3171     // Fallback - just get the shared known bits of the operands.
3172     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3173     if (Known.isUnknown()) break; // Early-out
3174     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3175     Known.Zero &= Known2.Zero;
3176     Known.One &= Known2.One;
3177     break;
3178   }
3179   case ISD::FrameIndex:
3180   case ISD::TargetFrameIndex:
3181     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3182     break;
3183 
3184   default:
3185     if (Opcode < ISD::BUILTIN_OP_END)
3186       break;
3187     LLVM_FALLTHROUGH;
3188   case ISD::INTRINSIC_WO_CHAIN:
3189   case ISD::INTRINSIC_W_CHAIN:
3190   case ISD::INTRINSIC_VOID:
3191     // Allow the target to implement this method for its nodes.
3192     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3193     break;
3194   }
3195 
3196   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3197   return Known;
3198 }
3199 
3200 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3201                                                              SDValue N1) const {
3202   // X + 0 never overflow
3203   if (isNullConstant(N1))
3204     return OFK_Never;
3205 
3206   KnownBits N1Known = computeKnownBits(N1);
3207   if (N1Known.Zero.getBoolValue()) {
3208     KnownBits N0Known = computeKnownBits(N0);
3209 
3210     bool overflow;
3211     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
3212     if (!overflow)
3213       return OFK_Never;
3214   }
3215 
3216   // mulhi + 1 never overflow
3217   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3218       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
3219     return OFK_Never;
3220 
3221   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3222     KnownBits N0Known = computeKnownBits(N0);
3223 
3224     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
3225       return OFK_Never;
3226   }
3227 
3228   return OFK_Sometime;
3229 }
3230 
3231 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3232   EVT OpVT = Val.getValueType();
3233   unsigned BitWidth = OpVT.getScalarSizeInBits();
3234 
3235   // Is the constant a known power of 2?
3236   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3237     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3238 
3239   // A left-shift of a constant one will have exactly one bit set because
3240   // shifting the bit off the end is undefined.
3241   if (Val.getOpcode() == ISD::SHL) {
3242     auto *C = isConstOrConstSplat(Val.getOperand(0));
3243     if (C && C->getAPIntValue() == 1)
3244       return true;
3245   }
3246 
3247   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3248   // one bit set.
3249   if (Val.getOpcode() == ISD::SRL) {
3250     auto *C = isConstOrConstSplat(Val.getOperand(0));
3251     if (C && C->getAPIntValue().isSignMask())
3252       return true;
3253   }
3254 
3255   // Are all operands of a build vector constant powers of two?
3256   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3257     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3258           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3259             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3260           return false;
3261         }))
3262       return true;
3263 
3264   // More could be done here, though the above checks are enough
3265   // to handle some common cases.
3266 
3267   // Fall back to computeKnownBits to catch other known cases.
3268   KnownBits Known = computeKnownBits(Val);
3269   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3270 }
3271 
3272 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3273   EVT VT = Op.getValueType();
3274   APInt DemandedElts = VT.isVector()
3275                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3276                            : APInt(1, 1);
3277   return ComputeNumSignBits(Op, DemandedElts, Depth);
3278 }
3279 
3280 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3281                                           unsigned Depth) const {
3282   EVT VT = Op.getValueType();
3283   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3284   unsigned VTBits = VT.getScalarSizeInBits();
3285   unsigned NumElts = DemandedElts.getBitWidth();
3286   unsigned Tmp, Tmp2;
3287   unsigned FirstAnswer = 1;
3288 
3289   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3290     const APInt &Val = C->getAPIntValue();
3291     return Val.getNumSignBits();
3292   }
3293 
3294   if (Depth == 6)
3295     return 1;  // Limit search depth.
3296 
3297   if (!DemandedElts)
3298     return 1;  // No demanded elts, better to assume we don't know anything.
3299 
3300   unsigned Opcode = Op.getOpcode();
3301   switch (Opcode) {
3302   default: break;
3303   case ISD::AssertSext:
3304     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3305     return VTBits-Tmp+1;
3306   case ISD::AssertZext:
3307     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3308     return VTBits-Tmp;
3309 
3310   case ISD::BUILD_VECTOR:
3311     Tmp = VTBits;
3312     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3313       if (!DemandedElts[i])
3314         continue;
3315 
3316       SDValue SrcOp = Op.getOperand(i);
3317       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3318 
3319       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3320       if (SrcOp.getValueSizeInBits() != VTBits) {
3321         assert(SrcOp.getValueSizeInBits() > VTBits &&
3322                "Expected BUILD_VECTOR implicit truncation");
3323         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3324         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3325       }
3326       Tmp = std::min(Tmp, Tmp2);
3327     }
3328     return Tmp;
3329 
3330   case ISD::VECTOR_SHUFFLE: {
3331     // Collect the minimum number of sign bits that are shared by every vector
3332     // element referenced by the shuffle.
3333     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3334     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3335     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3336     for (unsigned i = 0; i != NumElts; ++i) {
3337       int M = SVN->getMaskElt(i);
3338       if (!DemandedElts[i])
3339         continue;
3340       // For UNDEF elements, we don't know anything about the common state of
3341       // the shuffle result.
3342       if (M < 0)
3343         return 1;
3344       if ((unsigned)M < NumElts)
3345         DemandedLHS.setBit((unsigned)M % NumElts);
3346       else
3347         DemandedRHS.setBit((unsigned)M % NumElts);
3348     }
3349     Tmp = std::numeric_limits<unsigned>::max();
3350     if (!!DemandedLHS)
3351       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3352     if (!!DemandedRHS) {
3353       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3354       Tmp = std::min(Tmp, Tmp2);
3355     }
3356     // If we don't know anything, early out and try computeKnownBits fall-back.
3357     if (Tmp == 1)
3358       break;
3359     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3360     return Tmp;
3361   }
3362 
3363   case ISD::BITCAST: {
3364     SDValue N0 = Op.getOperand(0);
3365     EVT SrcVT = N0.getValueType();
3366     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3367 
3368     // Ignore bitcasts from unsupported types..
3369     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3370       break;
3371 
3372     // Fast handling of 'identity' bitcasts.
3373     if (VTBits == SrcBits)
3374       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3375 
3376     bool IsLE = getDataLayout().isLittleEndian();
3377 
3378     // Bitcast 'large element' scalar/vector to 'small element' vector.
3379     if ((SrcBits % VTBits) == 0) {
3380       assert(VT.isVector() && "Expected bitcast to vector");
3381 
3382       unsigned Scale = SrcBits / VTBits;
3383       APInt SrcDemandedElts(NumElts / Scale, 0);
3384       for (unsigned i = 0; i != NumElts; ++i)
3385         if (DemandedElts[i])
3386           SrcDemandedElts.setBit(i / Scale);
3387 
3388       // Fast case - sign splat can be simply split across the small elements.
3389       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3390       if (Tmp == SrcBits)
3391         return VTBits;
3392 
3393       // Slow case - determine how far the sign extends into each sub-element.
3394       Tmp2 = VTBits;
3395       for (unsigned i = 0; i != NumElts; ++i)
3396         if (DemandedElts[i]) {
3397           unsigned SubOffset = i % Scale;
3398           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3399           SubOffset = SubOffset * VTBits;
3400           if (Tmp <= SubOffset)
3401             return 1;
3402           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3403         }
3404       return Tmp2;
3405     }
3406     break;
3407   }
3408 
3409   case ISD::SIGN_EXTEND:
3410     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3411     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3412   case ISD::SIGN_EXTEND_INREG:
3413     // Max of the input and what this extends.
3414     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3415     Tmp = VTBits-Tmp+1;
3416     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3417     return std::max(Tmp, Tmp2);
3418   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3419     SDValue Src = Op.getOperand(0);
3420     EVT SrcVT = Src.getValueType();
3421     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3422     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3423     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3424   }
3425 
3426   case ISD::SRA:
3427     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3428     // SRA X, C   -> adds C sign bits.
3429     if (ConstantSDNode *C =
3430             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3431       APInt ShiftVal = C->getAPIntValue();
3432       ShiftVal += Tmp;
3433       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3434     }
3435     return Tmp;
3436   case ISD::SHL:
3437     if (ConstantSDNode *C =
3438             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3439       // shl destroys sign bits.
3440       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3441       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3442           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3443       return Tmp - C->getZExtValue();
3444     }
3445     break;
3446   case ISD::AND:
3447   case ISD::OR:
3448   case ISD::XOR:    // NOT is handled here.
3449     // Logical binary ops preserve the number of sign bits at the worst.
3450     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3451     if (Tmp != 1) {
3452       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3453       FirstAnswer = std::min(Tmp, Tmp2);
3454       // We computed what we know about the sign bits as our first
3455       // answer. Now proceed to the generic code that uses
3456       // computeKnownBits, and pick whichever answer is better.
3457     }
3458     break;
3459 
3460   case ISD::SELECT:
3461   case ISD::VSELECT:
3462     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3463     if (Tmp == 1) return 1;  // Early out.
3464     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3465     return std::min(Tmp, Tmp2);
3466   case ISD::SELECT_CC:
3467     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3468     if (Tmp == 1) return 1;  // Early out.
3469     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3470     return std::min(Tmp, Tmp2);
3471 
3472   case ISD::SMIN:
3473   case ISD::SMAX: {
3474     // If we have a clamp pattern, we know that the number of sign bits will be
3475     // the minimum of the clamp min/max range.
3476     bool IsMax = (Opcode == ISD::SMAX);
3477     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3478     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3479       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3480         CstHigh =
3481             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3482     if (CstLow && CstHigh) {
3483       if (!IsMax)
3484         std::swap(CstLow, CstHigh);
3485       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3486         Tmp = CstLow->getAPIntValue().getNumSignBits();
3487         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3488         return std::min(Tmp, Tmp2);
3489       }
3490     }
3491 
3492     // Fallback - just get the minimum number of sign bits of the operands.
3493     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3494     if (Tmp == 1)
3495       return 1;  // Early out.
3496     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3497     return std::min(Tmp, Tmp2);
3498   }
3499   case ISD::UMIN:
3500   case ISD::UMAX:
3501     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3502     if (Tmp == 1)
3503       return 1;  // Early out.
3504     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3505     return std::min(Tmp, Tmp2);
3506   case ISD::SADDO:
3507   case ISD::UADDO:
3508   case ISD::SSUBO:
3509   case ISD::USUBO:
3510   case ISD::SMULO:
3511   case ISD::UMULO:
3512     if (Op.getResNo() != 1)
3513       break;
3514     // The boolean result conforms to getBooleanContents.  Fall through.
3515     // If setcc returns 0/-1, all bits are sign bits.
3516     // We know that we have an integer-based boolean since these operations
3517     // are only available for integer.
3518     if (TLI->getBooleanContents(VT.isVector(), false) ==
3519         TargetLowering::ZeroOrNegativeOneBooleanContent)
3520       return VTBits;
3521     break;
3522   case ISD::SETCC:
3523     // If setcc returns 0/-1, all bits are sign bits.
3524     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3525         TargetLowering::ZeroOrNegativeOneBooleanContent)
3526       return VTBits;
3527     break;
3528   case ISD::ROTL:
3529   case ISD::ROTR:
3530     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3531       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3532 
3533       // Handle rotate right by N like a rotate left by 32-N.
3534       if (Opcode == ISD::ROTR)
3535         RotAmt = (VTBits - RotAmt) % VTBits;
3536 
3537       // If we aren't rotating out all of the known-in sign bits, return the
3538       // number that are left.  This handles rotl(sext(x), 1) for example.
3539       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3540       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3541     }
3542     break;
3543   case ISD::ADD:
3544   case ISD::ADDC:
3545     // Add can have at most one carry bit.  Thus we know that the output
3546     // is, at worst, one more bit than the inputs.
3547     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3548     if (Tmp == 1) return 1;  // Early out.
3549 
3550     // Special case decrementing a value (ADD X, -1):
3551     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3552       if (CRHS->isAllOnesValue()) {
3553         KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3554 
3555         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3556         // sign bits set.
3557         if ((Known.Zero | 1).isAllOnesValue())
3558           return VTBits;
3559 
3560         // If we are subtracting one from a positive number, there is no carry
3561         // out of the result.
3562         if (Known.isNonNegative())
3563           return Tmp;
3564       }
3565 
3566     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3567     if (Tmp2 == 1) return 1;
3568     return std::min(Tmp, Tmp2)-1;
3569 
3570   case ISD::SUB:
3571     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3572     if (Tmp2 == 1) return 1;
3573 
3574     // Handle NEG.
3575     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3576       if (CLHS->isNullValue()) {
3577         KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3578         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3579         // sign bits set.
3580         if ((Known.Zero | 1).isAllOnesValue())
3581           return VTBits;
3582 
3583         // If the input is known to be positive (the sign bit is known clear),
3584         // the output of the NEG has the same number of sign bits as the input.
3585         if (Known.isNonNegative())
3586           return Tmp2;
3587 
3588         // Otherwise, we treat this like a SUB.
3589       }
3590 
3591     // Sub can have at most one carry bit.  Thus we know that the output
3592     // is, at worst, one more bit than the inputs.
3593     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3594     if (Tmp == 1) return 1;  // Early out.
3595     return std::min(Tmp, Tmp2)-1;
3596   case ISD::TRUNCATE: {
3597     // Check if the sign bits of source go down as far as the truncated value.
3598     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3599     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3600     if (NumSrcSignBits > (NumSrcBits - VTBits))
3601       return NumSrcSignBits - (NumSrcBits - VTBits);
3602     break;
3603   }
3604   case ISD::EXTRACT_ELEMENT: {
3605     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3606     const int BitWidth = Op.getValueSizeInBits();
3607     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3608 
3609     // Get reverse index (starting from 1), Op1 value indexes elements from
3610     // little end. Sign starts at big end.
3611     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3612 
3613     // If the sign portion ends in our element the subtraction gives correct
3614     // result. Otherwise it gives either negative or > bitwidth result
3615     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3616   }
3617   case ISD::INSERT_VECTOR_ELT: {
3618     SDValue InVec = Op.getOperand(0);
3619     SDValue InVal = Op.getOperand(1);
3620     SDValue EltNo = Op.getOperand(2);
3621     unsigned NumElts = InVec.getValueType().getVectorNumElements();
3622 
3623     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3624     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3625       // If we know the element index, split the demand between the
3626       // source vector and the inserted element.
3627       unsigned EltIdx = CEltNo->getZExtValue();
3628 
3629       // If we demand the inserted element then get its sign bits.
3630       Tmp = std::numeric_limits<unsigned>::max();
3631       if (DemandedElts[EltIdx]) {
3632         // TODO - handle implicit truncation of inserted elements.
3633         if (InVal.getScalarValueSizeInBits() != VTBits)
3634           break;
3635         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3636       }
3637 
3638       // If we demand the source vector then get its sign bits, and determine
3639       // the minimum.
3640       APInt VectorElts = DemandedElts;
3641       VectorElts.clearBit(EltIdx);
3642       if (!!VectorElts) {
3643         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3644         Tmp = std::min(Tmp, Tmp2);
3645       }
3646     } else {
3647       // Unknown element index, so ignore DemandedElts and demand them all.
3648       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3649       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3650       Tmp = std::min(Tmp, Tmp2);
3651     }
3652     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3653     return Tmp;
3654   }
3655   case ISD::EXTRACT_VECTOR_ELT: {
3656     SDValue InVec = Op.getOperand(0);
3657     SDValue EltNo = Op.getOperand(1);
3658     EVT VecVT = InVec.getValueType();
3659     const unsigned BitWidth = Op.getValueSizeInBits();
3660     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3661     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3662 
3663     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3664     // anything about sign bits. But if the sizes match we can derive knowledge
3665     // about sign bits from the vector operand.
3666     if (BitWidth != EltBitWidth)
3667       break;
3668 
3669     // If we know the element index, just demand that vector element, else for
3670     // an unknown element index, ignore DemandedElts and demand them all.
3671     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3672     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3673     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3674       DemandedSrcElts =
3675           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3676 
3677     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3678   }
3679   case ISD::EXTRACT_SUBVECTOR: {
3680     // If we know the element index, just demand that subvector elements,
3681     // otherwise demand them all.
3682     SDValue Src = Op.getOperand(0);
3683     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3684     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3685     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3686       // Offset the demanded elts by the subvector index.
3687       uint64_t Idx = SubIdx->getZExtValue();
3688       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3689       return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3690     }
3691     return ComputeNumSignBits(Src, Depth + 1);
3692   }
3693   case ISD::CONCAT_VECTORS: {
3694     // Determine the minimum number of sign bits across all demanded
3695     // elts of the input vectors. Early out if the result is already 1.
3696     Tmp = std::numeric_limits<unsigned>::max();
3697     EVT SubVectorVT = Op.getOperand(0).getValueType();
3698     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3699     unsigned NumSubVectors = Op.getNumOperands();
3700     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3701       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3702       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3703       if (!DemandedSub)
3704         continue;
3705       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3706       Tmp = std::min(Tmp, Tmp2);
3707     }
3708     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3709     return Tmp;
3710   }
3711   case ISD::INSERT_SUBVECTOR: {
3712     // If we know the element index, demand any elements from the subvector and
3713     // the remainder from the src its inserted into, otherwise demand them all.
3714     SDValue Src = Op.getOperand(0);
3715     SDValue Sub = Op.getOperand(1);
3716     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3717     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3718     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3719       Tmp = std::numeric_limits<unsigned>::max();
3720       uint64_t Idx = SubIdx->getZExtValue();
3721       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3722       if (!!DemandedSubElts) {
3723         Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3724         if (Tmp == 1) return 1; // early-out
3725       }
3726       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
3727       APInt DemandedSrcElts = DemandedElts & ~SubMask;
3728       if (!!DemandedSrcElts) {
3729         Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3730         Tmp = std::min(Tmp, Tmp2);
3731       }
3732       assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3733       return Tmp;
3734     }
3735 
3736     // Not able to determine the index so just assume worst case.
3737     Tmp = ComputeNumSignBits(Sub, Depth + 1);
3738     if (Tmp == 1) return 1; // early-out
3739     Tmp2 = ComputeNumSignBits(Src, Depth + 1);
3740     Tmp = std::min(Tmp, Tmp2);
3741     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3742     return Tmp;
3743   }
3744   }
3745 
3746   // If we are looking at the loaded value of the SDNode.
3747   if (Op.getResNo() == 0) {
3748     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3749     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3750       unsigned ExtType = LD->getExtensionType();
3751       switch (ExtType) {
3752         default: break;
3753         case ISD::SEXTLOAD:    // '17' bits known
3754           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3755           return VTBits-Tmp+1;
3756         case ISD::ZEXTLOAD:    // '16' bits known
3757           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3758           return VTBits-Tmp;
3759       }
3760     }
3761   }
3762 
3763   // Allow the target to implement this method for its nodes.
3764   if (Opcode >= ISD::BUILTIN_OP_END ||
3765       Opcode == ISD::INTRINSIC_WO_CHAIN ||
3766       Opcode == ISD::INTRINSIC_W_CHAIN ||
3767       Opcode == ISD::INTRINSIC_VOID) {
3768     unsigned NumBits =
3769         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3770     if (NumBits > 1)
3771       FirstAnswer = std::max(FirstAnswer, NumBits);
3772   }
3773 
3774   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3775   // use this information.
3776   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
3777 
3778   APInt Mask;
3779   if (Known.isNonNegative()) {        // sign bit is 0
3780     Mask = Known.Zero;
3781   } else if (Known.isNegative()) {  // sign bit is 1;
3782     Mask = Known.One;
3783   } else {
3784     // Nothing known.
3785     return FirstAnswer;
3786   }
3787 
3788   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3789   // the number of identical bits in the top of the input value.
3790   Mask = ~Mask;
3791   Mask <<= Mask.getBitWidth()-VTBits;
3792   // Return # leading zeros.  We use 'min' here in case Val was zero before
3793   // shifting.  We don't want to return '64' as for an i32 "0".
3794   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3795 }
3796 
3797 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3798   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3799       !isa<ConstantSDNode>(Op.getOperand(1)))
3800     return false;
3801 
3802   if (Op.getOpcode() == ISD::OR &&
3803       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
3804     return false;
3805 
3806   return true;
3807 }
3808 
3809 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
3810   // If we're told that NaNs won't happen, assume they won't.
3811   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
3812     return true;
3813 
3814   if (Depth == 6)
3815     return false; // Limit search depth.
3816 
3817   // TODO: Handle vectors.
3818   // If the value is a constant, we can obviously see if it is a NaN or not.
3819   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
3820     return !C->getValueAPF().isNaN() ||
3821            (SNaN && !C->getValueAPF().isSignaling());
3822   }
3823 
3824   unsigned Opcode = Op.getOpcode();
3825   switch (Opcode) {
3826   case ISD::FADD:
3827   case ISD::FSUB:
3828   case ISD::FMUL:
3829   case ISD::FDIV:
3830   case ISD::FREM:
3831   case ISD::FSIN:
3832   case ISD::FCOS: {
3833     if (SNaN)
3834       return true;
3835     // TODO: Need isKnownNeverInfinity
3836     return false;
3837   }
3838   case ISD::FCANONICALIZE:
3839   case ISD::FEXP:
3840   case ISD::FEXP2:
3841   case ISD::FTRUNC:
3842   case ISD::FFLOOR:
3843   case ISD::FCEIL:
3844   case ISD::FROUND:
3845   case ISD::FRINT:
3846   case ISD::FNEARBYINT: {
3847     if (SNaN)
3848       return true;
3849     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3850   }
3851   case ISD::FABS:
3852   case ISD::FNEG:
3853   case ISD::FCOPYSIGN: {
3854     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3855   }
3856   case ISD::SELECT:
3857     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
3858            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
3859   case ISD::FP_EXTEND:
3860   case ISD::FP_ROUND: {
3861     if (SNaN)
3862       return true;
3863     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3864   }
3865   case ISD::SINT_TO_FP:
3866   case ISD::UINT_TO_FP:
3867     return true;
3868   case ISD::FMA:
3869   case ISD::FMAD: {
3870     if (SNaN)
3871       return true;
3872     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
3873            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
3874            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
3875   }
3876   case ISD::FSQRT: // Need is known positive
3877   case ISD::FLOG:
3878   case ISD::FLOG2:
3879   case ISD::FLOG10:
3880   case ISD::FPOWI:
3881   case ISD::FPOW: {
3882     if (SNaN)
3883       return true;
3884     // TODO: Refine on operand
3885     return false;
3886   }
3887   case ISD::FMINNUM:
3888   case ISD::FMAXNUM: {
3889     // Only one needs to be known not-nan, since it will be returned if the
3890     // other ends up being one.
3891     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
3892            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
3893   }
3894   case ISD::FMINNUM_IEEE:
3895   case ISD::FMAXNUM_IEEE: {
3896     if (SNaN)
3897       return true;
3898     // This can return a NaN if either operand is an sNaN, or if both operands
3899     // are NaN.
3900     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
3901             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
3902            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
3903             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
3904   }
3905   case ISD::FMINIMUM:
3906   case ISD::FMAXIMUM: {
3907     // TODO: Does this quiet or return the origina NaN as-is?
3908     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
3909            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
3910   }
3911   case ISD::EXTRACT_VECTOR_ELT: {
3912     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3913   }
3914   default:
3915     if (Opcode >= ISD::BUILTIN_OP_END ||
3916         Opcode == ISD::INTRINSIC_WO_CHAIN ||
3917         Opcode == ISD::INTRINSIC_W_CHAIN ||
3918         Opcode == ISD::INTRINSIC_VOID) {
3919       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
3920     }
3921 
3922     return false;
3923   }
3924 }
3925 
3926 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
3927   assert(Op.getValueType().isFloatingPoint() &&
3928          "Floating point type expected");
3929 
3930   // If the value is a constant, we can obviously see if it is a zero or not.
3931   // TODO: Add BuildVector support.
3932   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3933     return !C->isZero();
3934   return false;
3935 }
3936 
3937 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
3938   assert(!Op.getValueType().isFloatingPoint() &&
3939          "Floating point types unsupported - use isKnownNeverZeroFloat");
3940 
3941   // If the value is a constant, we can obviously see if it is a zero or not.
3942   if (ISD::matchUnaryPredicate(
3943           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
3944     return true;
3945 
3946   // TODO: Recognize more cases here.
3947   switch (Op.getOpcode()) {
3948   default: break;
3949   case ISD::OR:
3950     if (isKnownNeverZero(Op.getOperand(1)) ||
3951         isKnownNeverZero(Op.getOperand(0)))
3952       return true;
3953     break;
3954   }
3955 
3956   return false;
3957 }
3958 
3959 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
3960   // Check the obvious case.
3961   if (A == B) return true;
3962 
3963   // For for negative and positive zero.
3964   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
3965     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
3966       if (CA->isZero() && CB->isZero()) return true;
3967 
3968   // Otherwise they may not be equal.
3969   return false;
3970 }
3971 
3972 // FIXME: unify with llvm::haveNoCommonBitsSet.
3973 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
3974 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
3975   assert(A.getValueType() == B.getValueType() &&
3976          "Values must have the same type");
3977   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
3978 }
3979 
3980 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
3981                                 ArrayRef<SDValue> Ops,
3982                                 SelectionDAG &DAG) {
3983   int NumOps = Ops.size();
3984   assert(NumOps != 0 && "Can't build an empty vector!");
3985   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
3986          "Incorrect element count in BUILD_VECTOR!");
3987 
3988   // BUILD_VECTOR of UNDEFs is UNDEF.
3989   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
3990     return DAG.getUNDEF(VT);
3991 
3992   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
3993   SDValue IdentitySrc;
3994   bool IsIdentity = true;
3995   for (int i = 0; i != NumOps; ++i) {
3996     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
3997         Ops[i].getOperand(0).getValueType() != VT ||
3998         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
3999         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4000         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4001       IsIdentity = false;
4002       break;
4003     }
4004     IdentitySrc = Ops[i].getOperand(0);
4005   }
4006   if (IsIdentity)
4007     return IdentitySrc;
4008 
4009   return SDValue();
4010 }
4011 
4012 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4013                                   ArrayRef<SDValue> Ops,
4014                                   SelectionDAG &DAG) {
4015   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4016   assert(llvm::all_of(Ops,
4017                       [Ops](SDValue Op) {
4018                         return Ops[0].getValueType() == Op.getValueType();
4019                       }) &&
4020          "Concatenation of vectors with inconsistent value types!");
4021   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4022              VT.getVectorNumElements() &&
4023          "Incorrect element count in vector concatenation!");
4024 
4025   if (Ops.size() == 1)
4026     return Ops[0];
4027 
4028   // Concat of UNDEFs is UNDEF.
4029   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4030     return DAG.getUNDEF(VT);
4031 
4032   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4033   // simplified to one big BUILD_VECTOR.
4034   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4035   EVT SVT = VT.getScalarType();
4036   SmallVector<SDValue, 16> Elts;
4037   for (SDValue Op : Ops) {
4038     EVT OpVT = Op.getValueType();
4039     if (Op.isUndef())
4040       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4041     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4042       Elts.append(Op->op_begin(), Op->op_end());
4043     else
4044       return SDValue();
4045   }
4046 
4047   // BUILD_VECTOR requires all inputs to be of the same type, find the
4048   // maximum type and extend them all.
4049   for (SDValue Op : Elts)
4050     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4051 
4052   if (SVT.bitsGT(VT.getScalarType()))
4053     for (SDValue &Op : Elts)
4054       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4055                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4056                : DAG.getSExtOrTrunc(Op, DL, SVT);
4057 
4058   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4059   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4060   return V;
4061 }
4062 
4063 /// Gets or creates the specified node.
4064 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4065   FoldingSetNodeID ID;
4066   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4067   void *IP = nullptr;
4068   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4069     return SDValue(E, 0);
4070 
4071   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4072                               getVTList(VT));
4073   CSEMap.InsertNode(N, IP);
4074 
4075   InsertNode(N);
4076   SDValue V = SDValue(N, 0);
4077   NewSDValueDbgMsg(V, "Creating new node: ", this);
4078   return V;
4079 }
4080 
4081 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4082                               SDValue Operand, const SDNodeFlags Flags) {
4083   // Constant fold unary operations with an integer constant operand. Even
4084   // opaque constant will be folded, because the folding of unary operations
4085   // doesn't create new constants with different values. Nevertheless, the
4086   // opaque flag is preserved during folding to prevent future folding with
4087   // other constants.
4088   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4089     const APInt &Val = C->getAPIntValue();
4090     switch (Opcode) {
4091     default: break;
4092     case ISD::SIGN_EXTEND:
4093       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4094                          C->isTargetOpcode(), C->isOpaque());
4095     case ISD::TRUNCATE:
4096       if (C->isOpaque())
4097         break;
4098       LLVM_FALLTHROUGH;
4099     case ISD::ANY_EXTEND:
4100     case ISD::ZERO_EXTEND:
4101       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4102                          C->isTargetOpcode(), C->isOpaque());
4103     case ISD::UINT_TO_FP:
4104     case ISD::SINT_TO_FP: {
4105       APFloat apf(EVTToAPFloatSemantics(VT),
4106                   APInt::getNullValue(VT.getSizeInBits()));
4107       (void)apf.convertFromAPInt(Val,
4108                                  Opcode==ISD::SINT_TO_FP,
4109                                  APFloat::rmNearestTiesToEven);
4110       return getConstantFP(apf, DL, VT);
4111     }
4112     case ISD::BITCAST:
4113       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4114         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4115       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4116         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4117       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4118         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4119       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4120         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4121       break;
4122     case ISD::ABS:
4123       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4124                          C->isOpaque());
4125     case ISD::BITREVERSE:
4126       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4127                          C->isOpaque());
4128     case ISD::BSWAP:
4129       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4130                          C->isOpaque());
4131     case ISD::CTPOP:
4132       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4133                          C->isOpaque());
4134     case ISD::CTLZ:
4135     case ISD::CTLZ_ZERO_UNDEF:
4136       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4137                          C->isOpaque());
4138     case ISD::CTTZ:
4139     case ISD::CTTZ_ZERO_UNDEF:
4140       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4141                          C->isOpaque());
4142     case ISD::FP16_TO_FP: {
4143       bool Ignored;
4144       APFloat FPV(APFloat::IEEEhalf(),
4145                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4146 
4147       // This can return overflow, underflow, or inexact; we don't care.
4148       // FIXME need to be more flexible about rounding mode.
4149       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4150                         APFloat::rmNearestTiesToEven, &Ignored);
4151       return getConstantFP(FPV, DL, VT);
4152     }
4153     }
4154   }
4155 
4156   // Constant fold unary operations with a floating point constant operand.
4157   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4158     APFloat V = C->getValueAPF();    // make copy
4159     switch (Opcode) {
4160     case ISD::FNEG:
4161       V.changeSign();
4162       return getConstantFP(V, DL, VT);
4163     case ISD::FABS:
4164       V.clearSign();
4165       return getConstantFP(V, DL, VT);
4166     case ISD::FCEIL: {
4167       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4168       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4169         return getConstantFP(V, DL, VT);
4170       break;
4171     }
4172     case ISD::FTRUNC: {
4173       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4174       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4175         return getConstantFP(V, DL, VT);
4176       break;
4177     }
4178     case ISD::FFLOOR: {
4179       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4180       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4181         return getConstantFP(V, DL, VT);
4182       break;
4183     }
4184     case ISD::FP_EXTEND: {
4185       bool ignored;
4186       // This can return overflow, underflow, or inexact; we don't care.
4187       // FIXME need to be more flexible about rounding mode.
4188       (void)V.convert(EVTToAPFloatSemantics(VT),
4189                       APFloat::rmNearestTiesToEven, &ignored);
4190       return getConstantFP(V, DL, VT);
4191     }
4192     case ISD::FP_TO_SINT:
4193     case ISD::FP_TO_UINT: {
4194       bool ignored;
4195       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4196       // FIXME need to be more flexible about rounding mode.
4197       APFloat::opStatus s =
4198           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4199       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4200         break;
4201       return getConstant(IntVal, DL, VT);
4202     }
4203     case ISD::BITCAST:
4204       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4205         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4206       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4207         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4208       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4209         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4210       break;
4211     case ISD::FP_TO_FP16: {
4212       bool Ignored;
4213       // This can return overflow, underflow, or inexact; we don't care.
4214       // FIXME need to be more flexible about rounding mode.
4215       (void)V.convert(APFloat::IEEEhalf(),
4216                       APFloat::rmNearestTiesToEven, &Ignored);
4217       return getConstant(V.bitcastToAPInt(), DL, VT);
4218     }
4219     }
4220   }
4221 
4222   // Constant fold unary operations with a vector integer or float operand.
4223   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4224     if (BV->isConstant()) {
4225       switch (Opcode) {
4226       default:
4227         // FIXME: Entirely reasonable to perform folding of other unary
4228         // operations here as the need arises.
4229         break;
4230       case ISD::FNEG:
4231       case ISD::FABS:
4232       case ISD::FCEIL:
4233       case ISD::FTRUNC:
4234       case ISD::FFLOOR:
4235       case ISD::FP_EXTEND:
4236       case ISD::FP_TO_SINT:
4237       case ISD::FP_TO_UINT:
4238       case ISD::TRUNCATE:
4239       case ISD::ANY_EXTEND:
4240       case ISD::ZERO_EXTEND:
4241       case ISD::SIGN_EXTEND:
4242       case ISD::UINT_TO_FP:
4243       case ISD::SINT_TO_FP:
4244       case ISD::ABS:
4245       case ISD::BITREVERSE:
4246       case ISD::BSWAP:
4247       case ISD::CTLZ:
4248       case ISD::CTLZ_ZERO_UNDEF:
4249       case ISD::CTTZ:
4250       case ISD::CTTZ_ZERO_UNDEF:
4251       case ISD::CTPOP: {
4252         SDValue Ops = { Operand };
4253         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4254           return Fold;
4255       }
4256       }
4257     }
4258   }
4259 
4260   unsigned OpOpcode = Operand.getNode()->getOpcode();
4261   switch (Opcode) {
4262   case ISD::TokenFactor:
4263   case ISD::MERGE_VALUES:
4264   case ISD::CONCAT_VECTORS:
4265     return Operand;         // Factor, merge or concat of one node?  No need.
4266   case ISD::BUILD_VECTOR: {
4267     // Attempt to simplify BUILD_VECTOR.
4268     SDValue Ops[] = {Operand};
4269     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4270       return V;
4271     break;
4272   }
4273   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4274   case ISD::FP_EXTEND:
4275     assert(VT.isFloatingPoint() &&
4276            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4277     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4278     assert((!VT.isVector() ||
4279             VT.getVectorNumElements() ==
4280             Operand.getValueType().getVectorNumElements()) &&
4281            "Vector element count mismatch!");
4282     assert(Operand.getValueType().bitsLT(VT) &&
4283            "Invalid fpext node, dst < src!");
4284     if (Operand.isUndef())
4285       return getUNDEF(VT);
4286     break;
4287   case ISD::SIGN_EXTEND:
4288     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4289            "Invalid SIGN_EXTEND!");
4290     if (Operand.getValueType() == VT) return Operand;   // noop extension
4291     assert((!VT.isVector() ||
4292             VT.getVectorNumElements() ==
4293             Operand.getValueType().getVectorNumElements()) &&
4294            "Vector element count mismatch!");
4295     assert(Operand.getValueType().bitsLT(VT) &&
4296            "Invalid sext node, dst < src!");
4297     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4298       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4299     else if (OpOpcode == ISD::UNDEF)
4300       // sext(undef) = 0, because the top bits will all be the same.
4301       return getConstant(0, DL, VT);
4302     break;
4303   case ISD::ZERO_EXTEND:
4304     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4305            "Invalid ZERO_EXTEND!");
4306     if (Operand.getValueType() == VT) return Operand;   // noop extension
4307     assert((!VT.isVector() ||
4308             VT.getVectorNumElements() ==
4309             Operand.getValueType().getVectorNumElements()) &&
4310            "Vector element count mismatch!");
4311     assert(Operand.getValueType().bitsLT(VT) &&
4312            "Invalid zext node, dst < src!");
4313     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4314       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4315     else if (OpOpcode == ISD::UNDEF)
4316       // zext(undef) = 0, because the top bits will be zero.
4317       return getConstant(0, DL, VT);
4318     break;
4319   case ISD::ANY_EXTEND:
4320     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4321            "Invalid ANY_EXTEND!");
4322     if (Operand.getValueType() == VT) return Operand;   // noop extension
4323     assert((!VT.isVector() ||
4324             VT.getVectorNumElements() ==
4325             Operand.getValueType().getVectorNumElements()) &&
4326            "Vector element count mismatch!");
4327     assert(Operand.getValueType().bitsLT(VT) &&
4328            "Invalid anyext node, dst < src!");
4329 
4330     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4331         OpOpcode == ISD::ANY_EXTEND)
4332       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4333       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4334     else if (OpOpcode == ISD::UNDEF)
4335       return getUNDEF(VT);
4336 
4337     // (ext (trunc x)) -> x
4338     if (OpOpcode == ISD::TRUNCATE) {
4339       SDValue OpOp = Operand.getOperand(0);
4340       if (OpOp.getValueType() == VT) {
4341         transferDbgValues(Operand, OpOp);
4342         return OpOp;
4343       }
4344     }
4345     break;
4346   case ISD::TRUNCATE:
4347     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4348            "Invalid TRUNCATE!");
4349     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4350     assert((!VT.isVector() ||
4351             VT.getVectorNumElements() ==
4352             Operand.getValueType().getVectorNumElements()) &&
4353            "Vector element count mismatch!");
4354     assert(Operand.getValueType().bitsGT(VT) &&
4355            "Invalid truncate node, src < dst!");
4356     if (OpOpcode == ISD::TRUNCATE)
4357       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4358     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4359         OpOpcode == ISD::ANY_EXTEND) {
4360       // If the source is smaller than the dest, we still need an extend.
4361       if (Operand.getOperand(0).getValueType().getScalarType()
4362             .bitsLT(VT.getScalarType()))
4363         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4364       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4365         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4366       return Operand.getOperand(0);
4367     }
4368     if (OpOpcode == ISD::UNDEF)
4369       return getUNDEF(VT);
4370     break;
4371   case ISD::ANY_EXTEND_VECTOR_INREG:
4372   case ISD::ZERO_EXTEND_VECTOR_INREG:
4373   case ISD::SIGN_EXTEND_VECTOR_INREG:
4374     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4375     assert(Operand.getValueType().bitsLE(VT) &&
4376            "The input must be the same size or smaller than the result.");
4377     assert(VT.getVectorNumElements() <
4378              Operand.getValueType().getVectorNumElements() &&
4379            "The destination vector type must have fewer lanes than the input.");
4380     break;
4381   case ISD::ABS:
4382     assert(VT.isInteger() && VT == Operand.getValueType() &&
4383            "Invalid ABS!");
4384     if (OpOpcode == ISD::UNDEF)
4385       return getUNDEF(VT);
4386     break;
4387   case ISD::BSWAP:
4388     assert(VT.isInteger() && VT == Operand.getValueType() &&
4389            "Invalid BSWAP!");
4390     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4391            "BSWAP types must be a multiple of 16 bits!");
4392     if (OpOpcode == ISD::UNDEF)
4393       return getUNDEF(VT);
4394     break;
4395   case ISD::BITREVERSE:
4396     assert(VT.isInteger() && VT == Operand.getValueType() &&
4397            "Invalid BITREVERSE!");
4398     if (OpOpcode == ISD::UNDEF)
4399       return getUNDEF(VT);
4400     break;
4401   case ISD::BITCAST:
4402     // Basic sanity checking.
4403     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4404            "Cannot BITCAST between types of different sizes!");
4405     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4406     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4407       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4408     if (OpOpcode == ISD::UNDEF)
4409       return getUNDEF(VT);
4410     break;
4411   case ISD::SCALAR_TO_VECTOR:
4412     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4413            (VT.getVectorElementType() == Operand.getValueType() ||
4414             (VT.getVectorElementType().isInteger() &&
4415              Operand.getValueType().isInteger() &&
4416              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4417            "Illegal SCALAR_TO_VECTOR node!");
4418     if (OpOpcode == ISD::UNDEF)
4419       return getUNDEF(VT);
4420     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4421     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4422         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4423         Operand.getConstantOperandVal(1) == 0 &&
4424         Operand.getOperand(0).getValueType() == VT)
4425       return Operand.getOperand(0);
4426     break;
4427   case ISD::FNEG:
4428     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4429     if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) &&
4430         OpOpcode == ISD::FSUB)
4431       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
4432                      Operand.getOperand(0), Flags);
4433     if (OpOpcode == ISD::FNEG)  // --X -> X
4434       return Operand.getOperand(0);
4435     break;
4436   case ISD::FABS:
4437     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4438       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4439     break;
4440   }
4441 
4442   SDNode *N;
4443   SDVTList VTs = getVTList(VT);
4444   SDValue Ops[] = {Operand};
4445   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4446     FoldingSetNodeID ID;
4447     AddNodeIDNode(ID, Opcode, VTs, Ops);
4448     void *IP = nullptr;
4449     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4450       E->intersectFlagsWith(Flags);
4451       return SDValue(E, 0);
4452     }
4453 
4454     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4455     N->setFlags(Flags);
4456     createOperands(N, Ops);
4457     CSEMap.InsertNode(N, IP);
4458   } else {
4459     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4460     createOperands(N, Ops);
4461   }
4462 
4463   InsertNode(N);
4464   SDValue V = SDValue(N, 0);
4465   NewSDValueDbgMsg(V, "Creating new node: ", this);
4466   return V;
4467 }
4468 
4469 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
4470                                         const APInt &C2) {
4471   switch (Opcode) {
4472   case ISD::ADD:  return std::make_pair(C1 + C2, true);
4473   case ISD::SUB:  return std::make_pair(C1 - C2, true);
4474   case ISD::MUL:  return std::make_pair(C1 * C2, true);
4475   case ISD::AND:  return std::make_pair(C1 & C2, true);
4476   case ISD::OR:   return std::make_pair(C1 | C2, true);
4477   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
4478   case ISD::SHL:  return std::make_pair(C1 << C2, true);
4479   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
4480   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
4481   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
4482   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
4483   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
4484   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
4485   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
4486   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
4487   case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true);
4488   case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true);
4489   case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true);
4490   case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true);
4491   case ISD::UDIV:
4492     if (!C2.getBoolValue())
4493       break;
4494     return std::make_pair(C1.udiv(C2), true);
4495   case ISD::UREM:
4496     if (!C2.getBoolValue())
4497       break;
4498     return std::make_pair(C1.urem(C2), true);
4499   case ISD::SDIV:
4500     if (!C2.getBoolValue())
4501       break;
4502     return std::make_pair(C1.sdiv(C2), true);
4503   case ISD::SREM:
4504     if (!C2.getBoolValue())
4505       break;
4506     return std::make_pair(C1.srem(C2), true);
4507   }
4508   return std::make_pair(APInt(1, 0), false);
4509 }
4510 
4511 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4512                                              EVT VT, const ConstantSDNode *C1,
4513                                              const ConstantSDNode *C2) {
4514   if (C1->isOpaque() || C2->isOpaque())
4515     return SDValue();
4516 
4517   std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(),
4518                                             C2->getAPIntValue());
4519   if (!Folded.second)
4520     return SDValue();
4521   return getConstant(Folded.first, DL, VT);
4522 }
4523 
4524 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4525                                        const GlobalAddressSDNode *GA,
4526                                        const SDNode *N2) {
4527   if (GA->getOpcode() != ISD::GlobalAddress)
4528     return SDValue();
4529   if (!TLI->isOffsetFoldingLegal(GA))
4530     return SDValue();
4531   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4532   if (!C2)
4533     return SDValue();
4534   int64_t Offset = C2->getSExtValue();
4535   switch (Opcode) {
4536   case ISD::ADD: break;
4537   case ISD::SUB: Offset = -uint64_t(Offset); break;
4538   default: return SDValue();
4539   }
4540   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4541                           GA->getOffset() + uint64_t(Offset));
4542 }
4543 
4544 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4545   switch (Opcode) {
4546   case ISD::SDIV:
4547   case ISD::UDIV:
4548   case ISD::SREM:
4549   case ISD::UREM: {
4550     // If a divisor is zero/undef or any element of a divisor vector is
4551     // zero/undef, the whole op is undef.
4552     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4553     SDValue Divisor = Ops[1];
4554     if (Divisor.isUndef() || isNullConstant(Divisor))
4555       return true;
4556 
4557     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4558            llvm::any_of(Divisor->op_values(),
4559                         [](SDValue V) { return V.isUndef() ||
4560                                         isNullConstant(V); });
4561     // TODO: Handle signed overflow.
4562   }
4563   // TODO: Handle oversized shifts.
4564   default:
4565     return false;
4566   }
4567 }
4568 
4569 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4570                                              EVT VT, SDNode *N1, SDNode *N2) {
4571   // If the opcode is a target-specific ISD node, there's nothing we can
4572   // do here and the operand rules may not line up with the below, so
4573   // bail early.
4574   if (Opcode >= ISD::BUILTIN_OP_END)
4575     return SDValue();
4576 
4577   if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)}))
4578     return getUNDEF(VT);
4579 
4580   // Handle the case of two scalars.
4581   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4582     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4583       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
4584       assert((!Folded || !VT.isVector()) &&
4585              "Can't fold vectors ops with scalar operands");
4586       return Folded;
4587     }
4588   }
4589 
4590   // fold (add Sym, c) -> Sym+c
4591   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4592     return FoldSymbolOffset(Opcode, VT, GA, N2);
4593   if (TLI->isCommutativeBinOp(Opcode))
4594     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4595       return FoldSymbolOffset(Opcode, VT, GA, N1);
4596 
4597   // For vectors, extract each constant element and fold them individually.
4598   // Either input may be an undef value.
4599   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4600   if (!BV1 && !N1->isUndef())
4601     return SDValue();
4602   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4603   if (!BV2 && !N2->isUndef())
4604     return SDValue();
4605   // If both operands are undef, that's handled the same way as scalars.
4606   if (!BV1 && !BV2)
4607     return SDValue();
4608 
4609   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4610          "Vector binop with different number of elements in operands?");
4611 
4612   EVT SVT = VT.getScalarType();
4613   EVT LegalSVT = SVT;
4614   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4615     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4616     if (LegalSVT.bitsLT(SVT))
4617       return SDValue();
4618   }
4619   SmallVector<SDValue, 4> Outputs;
4620   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4621   for (unsigned I = 0; I != NumOps; ++I) {
4622     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4623     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4624     if (SVT.isInteger()) {
4625       if (V1->getValueType(0).bitsGT(SVT))
4626         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4627       if (V2->getValueType(0).bitsGT(SVT))
4628         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4629     }
4630 
4631     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4632       return SDValue();
4633 
4634     // Fold one vector element.
4635     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4636     if (LegalSVT != SVT)
4637       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4638 
4639     // Scalar folding only succeeded if the result is a constant or UNDEF.
4640     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4641         ScalarResult.getOpcode() != ISD::ConstantFP)
4642       return SDValue();
4643     Outputs.push_back(ScalarResult);
4644   }
4645 
4646   assert(VT.getVectorNumElements() == Outputs.size() &&
4647          "Vector size mismatch!");
4648 
4649   // We may have a vector type but a scalar result. Create a splat.
4650   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4651 
4652   // Build a big vector out of the scalar elements we generated.
4653   return getBuildVector(VT, SDLoc(), Outputs);
4654 }
4655 
4656 // TODO: Merge with FoldConstantArithmetic
4657 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4658                                                    const SDLoc &DL, EVT VT,
4659                                                    ArrayRef<SDValue> Ops,
4660                                                    const SDNodeFlags Flags) {
4661   // If the opcode is a target-specific ISD node, there's nothing we can
4662   // do here and the operand rules may not line up with the below, so
4663   // bail early.
4664   if (Opcode >= ISD::BUILTIN_OP_END)
4665     return SDValue();
4666 
4667   if (isUndef(Opcode, Ops))
4668     return getUNDEF(VT);
4669 
4670   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4671   if (!VT.isVector())
4672     return SDValue();
4673 
4674   unsigned NumElts = VT.getVectorNumElements();
4675 
4676   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4677     return !Op.getValueType().isVector() ||
4678            Op.getValueType().getVectorNumElements() == NumElts;
4679   };
4680 
4681   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4682     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4683     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4684            (BV && BV->isConstant());
4685   };
4686 
4687   // All operands must be vector types with the same number of elements as
4688   // the result type and must be either UNDEF or a build vector of constant
4689   // or UNDEF scalars.
4690   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4691       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4692     return SDValue();
4693 
4694   // If we are comparing vectors, then the result needs to be a i1 boolean
4695   // that is then sign-extended back to the legal result type.
4696   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4697 
4698   // Find legal integer scalar type for constant promotion and
4699   // ensure that its scalar size is at least as large as source.
4700   EVT LegalSVT = VT.getScalarType();
4701   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4702     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4703     if (LegalSVT.bitsLT(VT.getScalarType()))
4704       return SDValue();
4705   }
4706 
4707   // Constant fold each scalar lane separately.
4708   SmallVector<SDValue, 4> ScalarResults;
4709   for (unsigned i = 0; i != NumElts; i++) {
4710     SmallVector<SDValue, 4> ScalarOps;
4711     for (SDValue Op : Ops) {
4712       EVT InSVT = Op.getValueType().getScalarType();
4713       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4714       if (!InBV) {
4715         // We've checked that this is UNDEF or a constant of some kind.
4716         if (Op.isUndef())
4717           ScalarOps.push_back(getUNDEF(InSVT));
4718         else
4719           ScalarOps.push_back(Op);
4720         continue;
4721       }
4722 
4723       SDValue ScalarOp = InBV->getOperand(i);
4724       EVT ScalarVT = ScalarOp.getValueType();
4725 
4726       // Build vector (integer) scalar operands may need implicit
4727       // truncation - do this before constant folding.
4728       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4729         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4730 
4731       ScalarOps.push_back(ScalarOp);
4732     }
4733 
4734     // Constant fold the scalar operands.
4735     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4736 
4737     // Legalize the (integer) scalar constant if necessary.
4738     if (LegalSVT != SVT)
4739       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4740 
4741     // Scalar folding only succeeded if the result is a constant or UNDEF.
4742     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4743         ScalarResult.getOpcode() != ISD::ConstantFP)
4744       return SDValue();
4745     ScalarResults.push_back(ScalarResult);
4746   }
4747 
4748   SDValue V = getBuildVector(VT, DL, ScalarResults);
4749   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4750   return V;
4751 }
4752 
4753 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
4754                                          EVT VT, SDValue N1, SDValue N2) {
4755   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
4756   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
4757   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
4758   if (N1CFP && N2CFP) {
4759     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
4760     APFloat::opStatus Status;
4761     switch (Opcode) {
4762     case ISD::FADD:
4763       Status = C1.add(C2, APFloat::rmNearestTiesToEven);
4764       if (!HasFPExceptions || Status != APFloat::opInvalidOp)
4765         return getConstantFP(C1, DL, VT);
4766       break;
4767     case ISD::FSUB:
4768       Status = C1.subtract(C2, APFloat::rmNearestTiesToEven);
4769       if (!HasFPExceptions || Status != APFloat::opInvalidOp)
4770         return getConstantFP(C1, DL, VT);
4771       break;
4772     case ISD::FMUL:
4773       Status = C1.multiply(C2, APFloat::rmNearestTiesToEven);
4774       if (!HasFPExceptions || Status != APFloat::opInvalidOp)
4775         return getConstantFP(C1, DL, VT);
4776       break;
4777     case ISD::FDIV:
4778       Status = C1.divide(C2, APFloat::rmNearestTiesToEven);
4779       if (!HasFPExceptions || (Status != APFloat::opInvalidOp &&
4780                                Status != APFloat::opDivByZero)) {
4781         return getConstantFP(C1, DL, VT);
4782       }
4783       break;
4784     case ISD::FREM:
4785       Status = C1.mod(C2);
4786       if (!HasFPExceptions || (Status != APFloat::opInvalidOp &&
4787                                Status != APFloat::opDivByZero)) {
4788         return getConstantFP(C1, DL, VT);
4789       }
4790       break;
4791     case ISD::FCOPYSIGN:
4792       C1.copySign(C2);
4793       return getConstantFP(C1, DL, VT);
4794     default: break;
4795     }
4796   }
4797   if (N1CFP && Opcode == ISD::FP_ROUND) {
4798     APFloat C1 = N1CFP->getValueAPF();    // make copy
4799     bool Unused;
4800     // This can return overflow, underflow, or inexact; we don't care.
4801     // FIXME need to be more flexible about rounding mode.
4802     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
4803                      &Unused);
4804     return getConstantFP(C1, DL, VT);
4805   }
4806 
4807   switch (Opcode) {
4808   case ISD::FADD:
4809   case ISD::FSUB:
4810   case ISD::FMUL:
4811   case ISD::FDIV:
4812   case ISD::FREM:
4813     // If both operands are undef, the result is undef. If 1 operand is undef,
4814     // the result is NaN. This should match the behavior of the IR optimizer.
4815     if (N1.isUndef() && N2.isUndef())
4816       return getUNDEF(VT);
4817     if (N1.isUndef() || N2.isUndef())
4818       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
4819   }
4820   return SDValue();
4821 }
4822 
4823 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4824                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
4825   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4826   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4827   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4828   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4829 
4830   // Canonicalize constant to RHS if commutative.
4831   if (TLI->isCommutativeBinOp(Opcode)) {
4832     if (N1C && !N2C) {
4833       std::swap(N1C, N2C);
4834       std::swap(N1, N2);
4835     } else if (N1CFP && !N2CFP) {
4836       std::swap(N1CFP, N2CFP);
4837       std::swap(N1, N2);
4838     }
4839   }
4840 
4841   switch (Opcode) {
4842   default: break;
4843   case ISD::TokenFactor:
4844     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
4845            N2.getValueType() == MVT::Other && "Invalid token factor!");
4846     // Fold trivial token factors.
4847     if (N1.getOpcode() == ISD::EntryToken) return N2;
4848     if (N2.getOpcode() == ISD::EntryToken) return N1;
4849     if (N1 == N2) return N1;
4850     break;
4851   case ISD::BUILD_VECTOR: {
4852     // Attempt to simplify BUILD_VECTOR.
4853     SDValue Ops[] = {N1, N2};
4854     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4855       return V;
4856     break;
4857   }
4858   case ISD::CONCAT_VECTORS: {
4859     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4860     SDValue Ops[] = {N1, N2};
4861     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4862       return V;
4863     break;
4864   }
4865   case ISD::AND:
4866     assert(VT.isInteger() && "This operator does not apply to FP types!");
4867     assert(N1.getValueType() == N2.getValueType() &&
4868            N1.getValueType() == VT && "Binary operator types must match!");
4869     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
4870     // worth handling here.
4871     if (N2C && N2C->isNullValue())
4872       return N2;
4873     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
4874       return N1;
4875     break;
4876   case ISD::OR:
4877   case ISD::XOR:
4878   case ISD::ADD:
4879   case ISD::SUB:
4880     assert(VT.isInteger() && "This operator does not apply to FP types!");
4881     assert(N1.getValueType() == N2.getValueType() &&
4882            N1.getValueType() == VT && "Binary operator types must match!");
4883     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
4884     // it's worth handling here.
4885     if (N2C && N2C->isNullValue())
4886       return N1;
4887     break;
4888   case ISD::UDIV:
4889   case ISD::UREM:
4890   case ISD::MULHU:
4891   case ISD::MULHS:
4892   case ISD::MUL:
4893   case ISD::SDIV:
4894   case ISD::SREM:
4895   case ISD::SMIN:
4896   case ISD::SMAX:
4897   case ISD::UMIN:
4898   case ISD::UMAX:
4899   case ISD::SADDSAT:
4900   case ISD::SSUBSAT:
4901   case ISD::UADDSAT:
4902   case ISD::USUBSAT:
4903     assert(VT.isInteger() && "This operator does not apply to FP types!");
4904     assert(N1.getValueType() == N2.getValueType() &&
4905            N1.getValueType() == VT && "Binary operator types must match!");
4906     break;
4907   case ISD::FADD:
4908   case ISD::FSUB:
4909   case ISD::FMUL:
4910   case ISD::FDIV:
4911   case ISD::FREM:
4912     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4913     assert(N1.getValueType() == N2.getValueType() &&
4914            N1.getValueType() == VT && "Binary operator types must match!");
4915     break;
4916   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
4917     assert(N1.getValueType() == VT &&
4918            N1.getValueType().isFloatingPoint() &&
4919            N2.getValueType().isFloatingPoint() &&
4920            "Invalid FCOPYSIGN!");
4921     break;
4922   case ISD::SHL:
4923   case ISD::SRA:
4924   case ISD::SRL:
4925     if (SDValue V = simplifyShift(N1, N2))
4926       return V;
4927     LLVM_FALLTHROUGH;
4928   case ISD::ROTL:
4929   case ISD::ROTR:
4930     assert(VT == N1.getValueType() &&
4931            "Shift operators return type must be the same as their first arg");
4932     assert(VT.isInteger() && N2.getValueType().isInteger() &&
4933            "Shifts only work on integers");
4934     assert((!VT.isVector() || VT == N2.getValueType()) &&
4935            "Vector shift amounts must be in the same as their first arg");
4936     // Verify that the shift amount VT is big enough to hold valid shift
4937     // amounts.  This catches things like trying to shift an i1024 value by an
4938     // i8, which is easy to fall into in generic code that uses
4939     // TLI.getShiftAmount().
4940     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
4941            "Invalid use of small shift amount with oversized value!");
4942 
4943     // Always fold shifts of i1 values so the code generator doesn't need to
4944     // handle them.  Since we know the size of the shift has to be less than the
4945     // size of the value, the shift/rotate count is guaranteed to be zero.
4946     if (VT == MVT::i1)
4947       return N1;
4948     if (N2C && N2C->isNullValue())
4949       return N1;
4950     break;
4951   case ISD::FP_ROUND_INREG: {
4952     EVT EVT = cast<VTSDNode>(N2)->getVT();
4953     assert(VT == N1.getValueType() && "Not an inreg round!");
4954     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
4955            "Cannot FP_ROUND_INREG integer types");
4956     assert(EVT.isVector() == VT.isVector() &&
4957            "FP_ROUND_INREG type should be vector iff the operand "
4958            "type is vector!");
4959     assert((!EVT.isVector() ||
4960             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4961            "Vector element counts must match in FP_ROUND_INREG");
4962     assert(EVT.bitsLE(VT) && "Not rounding down!");
4963     (void)EVT;
4964     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
4965     break;
4966   }
4967   case ISD::FP_ROUND:
4968     assert(VT.isFloatingPoint() &&
4969            N1.getValueType().isFloatingPoint() &&
4970            VT.bitsLE(N1.getValueType()) &&
4971            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
4972            "Invalid FP_ROUND!");
4973     if (N1.getValueType() == VT) return N1;  // noop conversion.
4974     break;
4975   case ISD::AssertSext:
4976   case ISD::AssertZext: {
4977     EVT EVT = cast<VTSDNode>(N2)->getVT();
4978     assert(VT == N1.getValueType() && "Not an inreg extend!");
4979     assert(VT.isInteger() && EVT.isInteger() &&
4980            "Cannot *_EXTEND_INREG FP types");
4981     assert(!EVT.isVector() &&
4982            "AssertSExt/AssertZExt type should be the vector element type "
4983            "rather than the vector type!");
4984     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
4985     if (VT.getScalarType() == EVT) return N1; // noop assertion.
4986     break;
4987   }
4988   case ISD::SIGN_EXTEND_INREG: {
4989     EVT EVT = cast<VTSDNode>(N2)->getVT();
4990     assert(VT == N1.getValueType() && "Not an inreg extend!");
4991     assert(VT.isInteger() && EVT.isInteger() &&
4992            "Cannot *_EXTEND_INREG FP types");
4993     assert(EVT.isVector() == VT.isVector() &&
4994            "SIGN_EXTEND_INREG type should be vector iff the operand "
4995            "type is vector!");
4996     assert((!EVT.isVector() ||
4997             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4998            "Vector element counts must match in SIGN_EXTEND_INREG");
4999     assert(EVT.bitsLE(VT) && "Not extending!");
5000     if (EVT == VT) return N1;  // Not actually extending
5001 
5002     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5003       unsigned FromBits = EVT.getScalarSizeInBits();
5004       Val <<= Val.getBitWidth() - FromBits;
5005       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5006       return getConstant(Val, DL, ConstantVT);
5007     };
5008 
5009     if (N1C) {
5010       const APInt &Val = N1C->getAPIntValue();
5011       return SignExtendInReg(Val, VT);
5012     }
5013     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5014       SmallVector<SDValue, 8> Ops;
5015       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5016       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5017         SDValue Op = N1.getOperand(i);
5018         if (Op.isUndef()) {
5019           Ops.push_back(getUNDEF(OpVT));
5020           continue;
5021         }
5022         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5023         APInt Val = C->getAPIntValue();
5024         Ops.push_back(SignExtendInReg(Val, OpVT));
5025       }
5026       return getBuildVector(VT, DL, Ops);
5027     }
5028     break;
5029   }
5030   case ISD::EXTRACT_VECTOR_ELT:
5031     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5032            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5033              element type of the vector.");
5034 
5035     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
5036     if (N1.isUndef())
5037       return getUNDEF(VT);
5038 
5039     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5040     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5041       return getUNDEF(VT);
5042 
5043     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5044     // expanding copies of large vectors from registers.
5045     if (N2C &&
5046         N1.getOpcode() == ISD::CONCAT_VECTORS &&
5047         N1.getNumOperands() > 0) {
5048       unsigned Factor =
5049         N1.getOperand(0).getValueType().getVectorNumElements();
5050       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5051                      N1.getOperand(N2C->getZExtValue() / Factor),
5052                      getConstant(N2C->getZExtValue() % Factor, DL,
5053                                  N2.getValueType()));
5054     }
5055 
5056     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5057     // expanding large vector constants.
5058     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5059       SDValue Elt = N1.getOperand(N2C->getZExtValue());
5060 
5061       if (VT != Elt.getValueType())
5062         // If the vector element type is not legal, the BUILD_VECTOR operands
5063         // are promoted and implicitly truncated, and the result implicitly
5064         // extended. Make that explicit here.
5065         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5066 
5067       return Elt;
5068     }
5069 
5070     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5071     // operations are lowered to scalars.
5072     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5073       // If the indices are the same, return the inserted element else
5074       // if the indices are known different, extract the element from
5075       // the original vector.
5076       SDValue N1Op2 = N1.getOperand(2);
5077       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5078 
5079       if (N1Op2C && N2C) {
5080         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5081           if (VT == N1.getOperand(1).getValueType())
5082             return N1.getOperand(1);
5083           else
5084             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5085         }
5086 
5087         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5088       }
5089     }
5090 
5091     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5092     // when vector types are scalarized and v1iX is legal.
5093     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5094     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5095         N1.getValueType().getVectorNumElements() == 1) {
5096       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5097                      N1.getOperand(1));
5098     }
5099     break;
5100   case ISD::EXTRACT_ELEMENT:
5101     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5102     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5103            (N1.getValueType().isInteger() == VT.isInteger()) &&
5104            N1.getValueType() != VT &&
5105            "Wrong types for EXTRACT_ELEMENT!");
5106 
5107     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5108     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5109     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5110     if (N1.getOpcode() == ISD::BUILD_PAIR)
5111       return N1.getOperand(N2C->getZExtValue());
5112 
5113     // EXTRACT_ELEMENT of a constant int is also very common.
5114     if (N1C) {
5115       unsigned ElementSize = VT.getSizeInBits();
5116       unsigned Shift = ElementSize * N2C->getZExtValue();
5117       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5118       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5119     }
5120     break;
5121   case ISD::EXTRACT_SUBVECTOR:
5122     if (VT.isSimple() && N1.getValueType().isSimple()) {
5123       assert(VT.isVector() && N1.getValueType().isVector() &&
5124              "Extract subvector VTs must be a vectors!");
5125       assert(VT.getVectorElementType() ==
5126              N1.getValueType().getVectorElementType() &&
5127              "Extract subvector VTs must have the same element type!");
5128       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5129              "Extract subvector must be from larger vector to smaller vector!");
5130 
5131       if (N2C) {
5132         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5133                 <= N1.getValueType().getVectorNumElements())
5134                && "Extract subvector overflow!");
5135       }
5136 
5137       // Trivial extraction.
5138       if (VT.getSimpleVT() == N1.getSimpleValueType())
5139         return N1;
5140 
5141       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5142       if (N1.isUndef())
5143         return getUNDEF(VT);
5144 
5145       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5146       // the concat have the same type as the extract.
5147       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5148           N1.getNumOperands() > 0 &&
5149           VT == N1.getOperand(0).getValueType()) {
5150         unsigned Factor = VT.getVectorNumElements();
5151         return N1.getOperand(N2C->getZExtValue() / Factor);
5152       }
5153 
5154       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5155       // during shuffle legalization.
5156       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5157           VT == N1.getOperand(1).getValueType())
5158         return N1.getOperand(1);
5159     }
5160     break;
5161   }
5162 
5163   // Perform trivial constant folding.
5164   if (SDValue SV =
5165           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
5166     return SV;
5167 
5168   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5169     return V;
5170 
5171   // Canonicalize an UNDEF to the RHS, even over a constant.
5172   if (N1.isUndef()) {
5173     if (TLI->isCommutativeBinOp(Opcode)) {
5174       std::swap(N1, N2);
5175     } else {
5176       switch (Opcode) {
5177       case ISD::FP_ROUND_INREG:
5178       case ISD::SIGN_EXTEND_INREG:
5179       case ISD::SUB:
5180         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5181       case ISD::UDIV:
5182       case ISD::SDIV:
5183       case ISD::UREM:
5184       case ISD::SREM:
5185       case ISD::SSUBSAT:
5186       case ISD::USUBSAT:
5187         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5188       }
5189     }
5190   }
5191 
5192   // Fold a bunch of operators when the RHS is undef.
5193   if (N2.isUndef()) {
5194     switch (Opcode) {
5195     case ISD::XOR:
5196       if (N1.isUndef())
5197         // Handle undef ^ undef -> 0 special case. This is a common
5198         // idiom (misuse).
5199         return getConstant(0, DL, VT);
5200       LLVM_FALLTHROUGH;
5201     case ISD::ADD:
5202     case ISD::SUB:
5203     case ISD::UDIV:
5204     case ISD::SDIV:
5205     case ISD::UREM:
5206     case ISD::SREM:
5207       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5208     case ISD::MUL:
5209     case ISD::AND:
5210     case ISD::SSUBSAT:
5211     case ISD::USUBSAT:
5212       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5213     case ISD::OR:
5214     case ISD::SADDSAT:
5215     case ISD::UADDSAT:
5216       return getAllOnesConstant(DL, VT);
5217     }
5218   }
5219 
5220   // Memoize this node if possible.
5221   SDNode *N;
5222   SDVTList VTs = getVTList(VT);
5223   SDValue Ops[] = {N1, N2};
5224   if (VT != MVT::Glue) {
5225     FoldingSetNodeID ID;
5226     AddNodeIDNode(ID, Opcode, VTs, Ops);
5227     void *IP = nullptr;
5228     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5229       E->intersectFlagsWith(Flags);
5230       return SDValue(E, 0);
5231     }
5232 
5233     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5234     N->setFlags(Flags);
5235     createOperands(N, Ops);
5236     CSEMap.InsertNode(N, IP);
5237   } else {
5238     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5239     createOperands(N, Ops);
5240   }
5241 
5242   InsertNode(N);
5243   SDValue V = SDValue(N, 0);
5244   NewSDValueDbgMsg(V, "Creating new node: ", this);
5245   return V;
5246 }
5247 
5248 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5249                               SDValue N1, SDValue N2, SDValue N3,
5250                               const SDNodeFlags Flags) {
5251   // Perform various simplifications.
5252   switch (Opcode) {
5253   case ISD::FMA: {
5254     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5255     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5256            N3.getValueType() == VT && "FMA types must match!");
5257     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5258     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5259     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5260     if (N1CFP && N2CFP && N3CFP) {
5261       APFloat  V1 = N1CFP->getValueAPF();
5262       const APFloat &V2 = N2CFP->getValueAPF();
5263       const APFloat &V3 = N3CFP->getValueAPF();
5264       APFloat::opStatus s =
5265         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5266       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
5267         return getConstantFP(V1, DL, VT);
5268     }
5269     break;
5270   }
5271   case ISD::BUILD_VECTOR: {
5272     // Attempt to simplify BUILD_VECTOR.
5273     SDValue Ops[] = {N1, N2, N3};
5274     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5275       return V;
5276     break;
5277   }
5278   case ISD::CONCAT_VECTORS: {
5279     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
5280     SDValue Ops[] = {N1, N2, N3};
5281     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
5282       return V;
5283     break;
5284   }
5285   case ISD::SETCC: {
5286     assert(VT.isInteger() && "SETCC result type must be an integer!");
5287     assert(N1.getValueType() == N2.getValueType() &&
5288            "SETCC operands must have the same type!");
5289     assert(VT.isVector() == N1.getValueType().isVector() &&
5290            "SETCC type should be vector iff the operand type is vector!");
5291     assert((!VT.isVector() ||
5292             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5293            "SETCC vector element counts must match!");
5294     // Use FoldSetCC to simplify SETCC's.
5295     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5296       return V;
5297     // Vector constant folding.
5298     SDValue Ops[] = {N1, N2, N3};
5299     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5300       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5301       return V;
5302     }
5303     break;
5304   }
5305   case ISD::SELECT:
5306   case ISD::VSELECT:
5307     if (SDValue V = simplifySelect(N1, N2, N3))
5308       return V;
5309     break;
5310   case ISD::VECTOR_SHUFFLE:
5311     llvm_unreachable("should use getVectorShuffle constructor!");
5312   case ISD::INSERT_VECTOR_ELT: {
5313     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5314     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5315     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5316       return getUNDEF(VT);
5317     break;
5318   }
5319   case ISD::INSERT_SUBVECTOR: {
5320     SDValue Index = N3;
5321     if (VT.isSimple() && N1.getValueType().isSimple()
5322         && N2.getValueType().isSimple()) {
5323       assert(VT.isVector() && N1.getValueType().isVector() &&
5324              N2.getValueType().isVector() &&
5325              "Insert subvector VTs must be a vectors");
5326       assert(VT == N1.getValueType() &&
5327              "Dest and insert subvector source types must match!");
5328       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5329              "Insert subvector must be from smaller vector to larger vector!");
5330       if (isa<ConstantSDNode>(Index)) {
5331         assert((N2.getValueType().getVectorNumElements() +
5332                 cast<ConstantSDNode>(Index)->getZExtValue()
5333                 <= VT.getVectorNumElements())
5334                && "Insert subvector overflow!");
5335       }
5336 
5337       // Trivial insertion.
5338       if (VT.getSimpleVT() == N2.getSimpleValueType())
5339         return N2;
5340     }
5341     break;
5342   }
5343   case ISD::BITCAST:
5344     // Fold bit_convert nodes from a type to themselves.
5345     if (N1.getValueType() == VT)
5346       return N1;
5347     break;
5348   }
5349 
5350   // Memoize node if it doesn't produce a flag.
5351   SDNode *N;
5352   SDVTList VTs = getVTList(VT);
5353   SDValue Ops[] = {N1, N2, N3};
5354   if (VT != MVT::Glue) {
5355     FoldingSetNodeID ID;
5356     AddNodeIDNode(ID, Opcode, VTs, Ops);
5357     void *IP = nullptr;
5358     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5359       E->intersectFlagsWith(Flags);
5360       return SDValue(E, 0);
5361     }
5362 
5363     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5364     N->setFlags(Flags);
5365     createOperands(N, Ops);
5366     CSEMap.InsertNode(N, IP);
5367   } else {
5368     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5369     createOperands(N, Ops);
5370   }
5371 
5372   InsertNode(N);
5373   SDValue V = SDValue(N, 0);
5374   NewSDValueDbgMsg(V, "Creating new node: ", this);
5375   return V;
5376 }
5377 
5378 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5379                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5380   SDValue Ops[] = { N1, N2, N3, N4 };
5381   return getNode(Opcode, DL, VT, Ops);
5382 }
5383 
5384 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5385                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5386                               SDValue N5) {
5387   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5388   return getNode(Opcode, DL, VT, Ops);
5389 }
5390 
5391 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5392 /// the incoming stack arguments to be loaded from the stack.
5393 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5394   SmallVector<SDValue, 8> ArgChains;
5395 
5396   // Include the original chain at the beginning of the list. When this is
5397   // used by target LowerCall hooks, this helps legalize find the
5398   // CALLSEQ_BEGIN node.
5399   ArgChains.push_back(Chain);
5400 
5401   // Add a chain value for each stack argument.
5402   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5403        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5404     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5405       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5406         if (FI->getIndex() < 0)
5407           ArgChains.push_back(SDValue(L, 1));
5408 
5409   // Build a tokenfactor for all the chains.
5410   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5411 }
5412 
5413 /// getMemsetValue - Vectorized representation of the memset value
5414 /// operand.
5415 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5416                               const SDLoc &dl) {
5417   assert(!Value.isUndef());
5418 
5419   unsigned NumBits = VT.getScalarSizeInBits();
5420   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5421     assert(C->getAPIntValue().getBitWidth() == 8);
5422     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5423     if (VT.isInteger()) {
5424       bool IsOpaque = VT.getSizeInBits() > 64 ||
5425           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5426       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5427     }
5428     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5429                              VT);
5430   }
5431 
5432   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5433   EVT IntVT = VT.getScalarType();
5434   if (!IntVT.isInteger())
5435     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5436 
5437   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5438   if (NumBits > 8) {
5439     // Use a multiplication with 0x010101... to extend the input to the
5440     // required length.
5441     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5442     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5443                         DAG.getConstant(Magic, dl, IntVT));
5444   }
5445 
5446   if (VT != Value.getValueType() && !VT.isInteger())
5447     Value = DAG.getBitcast(VT.getScalarType(), Value);
5448   if (VT != Value.getValueType())
5449     Value = DAG.getSplatBuildVector(VT, dl, Value);
5450 
5451   return Value;
5452 }
5453 
5454 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5455 /// used when a memcpy is turned into a memset when the source is a constant
5456 /// string ptr.
5457 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5458                                   const TargetLowering &TLI,
5459                                   const ConstantDataArraySlice &Slice) {
5460   // Handle vector with all elements zero.
5461   if (Slice.Array == nullptr) {
5462     if (VT.isInteger())
5463       return DAG.getConstant(0, dl, VT);
5464     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5465       return DAG.getConstantFP(0.0, dl, VT);
5466     else if (VT.isVector()) {
5467       unsigned NumElts = VT.getVectorNumElements();
5468       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5469       return DAG.getNode(ISD::BITCAST, dl, VT,
5470                          DAG.getConstant(0, dl,
5471                                          EVT::getVectorVT(*DAG.getContext(),
5472                                                           EltVT, NumElts)));
5473     } else
5474       llvm_unreachable("Expected type!");
5475   }
5476 
5477   assert(!VT.isVector() && "Can't handle vector type here!");
5478   unsigned NumVTBits = VT.getSizeInBits();
5479   unsigned NumVTBytes = NumVTBits / 8;
5480   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5481 
5482   APInt Val(NumVTBits, 0);
5483   if (DAG.getDataLayout().isLittleEndian()) {
5484     for (unsigned i = 0; i != NumBytes; ++i)
5485       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5486   } else {
5487     for (unsigned i = 0; i != NumBytes; ++i)
5488       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5489   }
5490 
5491   // If the "cost" of materializing the integer immediate is less than the cost
5492   // of a load, then it is cost effective to turn the load into the immediate.
5493   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5494   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5495     return DAG.getConstant(Val, dl, VT);
5496   return SDValue(nullptr, 0);
5497 }
5498 
5499 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
5500                                            const SDLoc &DL) {
5501   EVT VT = Base.getValueType();
5502   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
5503 }
5504 
5505 /// Returns true if memcpy source is constant data.
5506 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5507   uint64_t SrcDelta = 0;
5508   GlobalAddressSDNode *G = nullptr;
5509   if (Src.getOpcode() == ISD::GlobalAddress)
5510     G = cast<GlobalAddressSDNode>(Src);
5511   else if (Src.getOpcode() == ISD::ADD &&
5512            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5513            Src.getOperand(1).getOpcode() == ISD::Constant) {
5514     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5515     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5516   }
5517   if (!G)
5518     return false;
5519 
5520   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5521                                   SrcDelta + G->getOffset());
5522 }
5523 
5524 /// Determines the optimal series of memory ops to replace the memset / memcpy.
5525 /// Return true if the number of memory ops is below the threshold (Limit).
5526 /// It returns the types of the sequence of memory ops to perform
5527 /// memset / memcpy by reference.
5528 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
5529                                      unsigned Limit, uint64_t Size,
5530                                      unsigned DstAlign, unsigned SrcAlign,
5531                                      bool IsMemset,
5532                                      bool ZeroMemset,
5533                                      bool MemcpyStrSrc,
5534                                      bool AllowOverlap,
5535                                      unsigned DstAS, unsigned SrcAS,
5536                                      SelectionDAG &DAG,
5537                                      const TargetLowering &TLI) {
5538   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
5539          "Expecting memcpy / memset source to meet alignment requirement!");
5540   // If 'SrcAlign' is zero, that means the memory operation does not need to
5541   // load the value, i.e. memset or memcpy from constant string. Otherwise,
5542   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
5543   // is the specified alignment of the memory operation. If it is zero, that
5544   // means it's possible to change the alignment of the destination.
5545   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
5546   // not need to be loaded.
5547   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
5548                                    IsMemset, ZeroMemset, MemcpyStrSrc,
5549                                    DAG.getMachineFunction());
5550 
5551   if (VT == MVT::Other) {
5552     // Use the largest integer type whose alignment constraints are satisfied.
5553     // We only need to check DstAlign here as SrcAlign is always greater or
5554     // equal to DstAlign (or zero).
5555     VT = MVT::i64;
5556     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
5557            !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
5558       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
5559     assert(VT.isInteger());
5560 
5561     // Find the largest legal integer type.
5562     MVT LVT = MVT::i64;
5563     while (!TLI.isTypeLegal(LVT))
5564       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
5565     assert(LVT.isInteger());
5566 
5567     // If the type we've chosen is larger than the largest legal integer type
5568     // then use that instead.
5569     if (VT.bitsGT(LVT))
5570       VT = LVT;
5571   }
5572 
5573   unsigned NumMemOps = 0;
5574   while (Size != 0) {
5575     unsigned VTSize = VT.getSizeInBits() / 8;
5576     while (VTSize > Size) {
5577       // For now, only use non-vector load / store's for the left-over pieces.
5578       EVT NewVT = VT;
5579       unsigned NewVTSize;
5580 
5581       bool Found = false;
5582       if (VT.isVector() || VT.isFloatingPoint()) {
5583         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
5584         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
5585             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
5586           Found = true;
5587         else if (NewVT == MVT::i64 &&
5588                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
5589                  TLI.isSafeMemOpType(MVT::f64)) {
5590           // i64 is usually not legal on 32-bit targets, but f64 may be.
5591           NewVT = MVT::f64;
5592           Found = true;
5593         }
5594       }
5595 
5596       if (!Found) {
5597         do {
5598           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
5599           if (NewVT == MVT::i8)
5600             break;
5601         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
5602       }
5603       NewVTSize = NewVT.getSizeInBits() / 8;
5604 
5605       // If the new VT cannot cover all of the remaining bits, then consider
5606       // issuing a (or a pair of) unaligned and overlapping load / store.
5607       bool Fast;
5608       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
5609           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) &&
5610           Fast)
5611         VTSize = Size;
5612       else {
5613         VT = NewVT;
5614         VTSize = NewVTSize;
5615       }
5616     }
5617 
5618     if (++NumMemOps > Limit)
5619       return false;
5620 
5621     MemOps.push_back(VT);
5622     Size -= VTSize;
5623   }
5624 
5625   return true;
5626 }
5627 
5628 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5629   // On Darwin, -Os means optimize for size without hurting performance, so
5630   // only really optimize for size when -Oz (MinSize) is used.
5631   if (MF.getTarget().getTargetTriple().isOSDarwin())
5632     return MF.getFunction().optForMinSize();
5633   return MF.getFunction().optForSize();
5634 }
5635 
5636 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5637                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5638                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5639                           SmallVector<SDValue, 16> &OutStoreChains) {
5640   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5641   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5642   SmallVector<SDValue, 16> GluedLoadChains;
5643   for (unsigned i = From; i < To; ++i) {
5644     OutChains.push_back(OutLoadChains[i]);
5645     GluedLoadChains.push_back(OutLoadChains[i]);
5646   }
5647 
5648   // Chain for all loads.
5649   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5650                                   GluedLoadChains);
5651 
5652   for (unsigned i = From; i < To; ++i) {
5653     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5654     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5655                                   ST->getBasePtr(), ST->getMemoryVT(),
5656                                   ST->getMemOperand());
5657     OutChains.push_back(NewStore);
5658   }
5659 }
5660 
5661 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5662                                        SDValue Chain, SDValue Dst, SDValue Src,
5663                                        uint64_t Size, unsigned Align,
5664                                        bool isVol, bool AlwaysInline,
5665                                        MachinePointerInfo DstPtrInfo,
5666                                        MachinePointerInfo SrcPtrInfo) {
5667   // Turn a memcpy of undef to nop.
5668   if (Src.isUndef())
5669     return Chain;
5670 
5671   // Expand memcpy to a series of load and store ops if the size operand falls
5672   // below a certain threshold.
5673   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5674   // rather than maybe a humongous number of loads and stores.
5675   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5676   const DataLayout &DL = DAG.getDataLayout();
5677   LLVMContext &C = *DAG.getContext();
5678   std::vector<EVT> MemOps;
5679   bool DstAlignCanChange = false;
5680   MachineFunction &MF = DAG.getMachineFunction();
5681   MachineFrameInfo &MFI = MF.getFrameInfo();
5682   bool OptSize = shouldLowerMemFuncForSize(MF);
5683   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5684   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5685     DstAlignCanChange = true;
5686   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5687   if (Align > SrcAlign)
5688     SrcAlign = Align;
5689   ConstantDataArraySlice Slice;
5690   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5691   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5692   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5693 
5694   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5695                                 (DstAlignCanChange ? 0 : Align),
5696                                 (isZeroConstant ? 0 : SrcAlign),
5697                                 false, false, CopyFromConstant, true,
5698                                 DstPtrInfo.getAddrSpace(),
5699                                 SrcPtrInfo.getAddrSpace(),
5700                                 DAG, TLI))
5701     return SDValue();
5702 
5703   if (DstAlignCanChange) {
5704     Type *Ty = MemOps[0].getTypeForEVT(C);
5705     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5706 
5707     // Don't promote to an alignment that would require dynamic stack
5708     // realignment.
5709     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5710     if (!TRI->needsStackRealignment(MF))
5711       while (NewAlign > Align &&
5712              DL.exceedsNaturalStackAlignment(NewAlign))
5713           NewAlign /= 2;
5714 
5715     if (NewAlign > Align) {
5716       // Give the stack frame object a larger alignment if needed.
5717       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5718         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5719       Align = NewAlign;
5720     }
5721   }
5722 
5723   MachineMemOperand::Flags MMOFlags =
5724       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5725   SmallVector<SDValue, 16> OutLoadChains;
5726   SmallVector<SDValue, 16> OutStoreChains;
5727   SmallVector<SDValue, 32> OutChains;
5728   unsigned NumMemOps = MemOps.size();
5729   uint64_t SrcOff = 0, DstOff = 0;
5730   for (unsigned i = 0; i != NumMemOps; ++i) {
5731     EVT VT = MemOps[i];
5732     unsigned VTSize = VT.getSizeInBits() / 8;
5733     SDValue Value, Store;
5734 
5735     if (VTSize > Size) {
5736       // Issuing an unaligned load / store pair  that overlaps with the previous
5737       // pair. Adjust the offset accordingly.
5738       assert(i == NumMemOps-1 && i != 0);
5739       SrcOff -= VTSize - Size;
5740       DstOff -= VTSize - Size;
5741     }
5742 
5743     if (CopyFromConstant &&
5744         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5745       // It's unlikely a store of a vector immediate can be done in a single
5746       // instruction. It would require a load from a constantpool first.
5747       // We only handle zero vectors here.
5748       // FIXME: Handle other cases where store of vector immediate is done in
5749       // a single instruction.
5750       ConstantDataArraySlice SubSlice;
5751       if (SrcOff < Slice.Length) {
5752         SubSlice = Slice;
5753         SubSlice.move(SrcOff);
5754       } else {
5755         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5756         SubSlice.Array = nullptr;
5757         SubSlice.Offset = 0;
5758         SubSlice.Length = VTSize;
5759       }
5760       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5761       if (Value.getNode()) {
5762         Store = DAG.getStore(Chain, dl, Value,
5763                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5764                              DstPtrInfo.getWithOffset(DstOff), Align,
5765                              MMOFlags);
5766         OutChains.push_back(Store);
5767       }
5768     }
5769 
5770     if (!Store.getNode()) {
5771       // The type might not be legal for the target.  This should only happen
5772       // if the type is smaller than a legal type, as on PPC, so the right
5773       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5774       // to Load/Store if NVT==VT.
5775       // FIXME does the case above also need this?
5776       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5777       assert(NVT.bitsGE(VT));
5778 
5779       bool isDereferenceable =
5780         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5781       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5782       if (isDereferenceable)
5783         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5784 
5785       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5786                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5787                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5788                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5789       OutLoadChains.push_back(Value.getValue(1));
5790 
5791       Store = DAG.getTruncStore(
5792           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5793           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5794       OutStoreChains.push_back(Store);
5795     }
5796     SrcOff += VTSize;
5797     DstOff += VTSize;
5798     Size -= VTSize;
5799   }
5800 
5801   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
5802                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
5803   unsigned NumLdStInMemcpy = OutStoreChains.size();
5804 
5805   if (NumLdStInMemcpy) {
5806     // It may be that memcpy might be converted to memset if it's memcpy
5807     // of constants. In such a case, we won't have loads and stores, but
5808     // just stores. In the absence of loads, there is nothing to gang up.
5809     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
5810       // If target does not care, just leave as it.
5811       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
5812         OutChains.push_back(OutLoadChains[i]);
5813         OutChains.push_back(OutStoreChains[i]);
5814       }
5815     } else {
5816       // Ld/St less than/equal limit set by target.
5817       if (NumLdStInMemcpy <= GluedLdStLimit) {
5818           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5819                                         NumLdStInMemcpy, OutLoadChains,
5820                                         OutStoreChains);
5821       } else {
5822         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
5823         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
5824         unsigned GlueIter = 0;
5825 
5826         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
5827           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
5828           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
5829 
5830           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
5831                                        OutLoadChains, OutStoreChains);
5832           GlueIter += GluedLdStLimit;
5833         }
5834 
5835         // Residual ld/st.
5836         if (RemainingLdStInMemcpy) {
5837           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5838                                         RemainingLdStInMemcpy, OutLoadChains,
5839                                         OutStoreChains);
5840         }
5841       }
5842     }
5843   }
5844   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5845 }
5846 
5847 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5848                                         SDValue Chain, SDValue Dst, SDValue Src,
5849                                         uint64_t Size, unsigned Align,
5850                                         bool isVol, bool AlwaysInline,
5851                                         MachinePointerInfo DstPtrInfo,
5852                                         MachinePointerInfo SrcPtrInfo) {
5853   // Turn a memmove of undef to nop.
5854   if (Src.isUndef())
5855     return Chain;
5856 
5857   // Expand memmove to a series of load and store ops if the size operand falls
5858   // below a certain threshold.
5859   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5860   const DataLayout &DL = DAG.getDataLayout();
5861   LLVMContext &C = *DAG.getContext();
5862   std::vector<EVT> MemOps;
5863   bool DstAlignCanChange = false;
5864   MachineFunction &MF = DAG.getMachineFunction();
5865   MachineFrameInfo &MFI = MF.getFrameInfo();
5866   bool OptSize = shouldLowerMemFuncForSize(MF);
5867   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5868   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5869     DstAlignCanChange = true;
5870   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5871   if (Align > SrcAlign)
5872     SrcAlign = Align;
5873   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5874 
5875   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5876                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
5877                                 false, false, false, false,
5878                                 DstPtrInfo.getAddrSpace(),
5879                                 SrcPtrInfo.getAddrSpace(),
5880                                 DAG, TLI))
5881     return SDValue();
5882 
5883   if (DstAlignCanChange) {
5884     Type *Ty = MemOps[0].getTypeForEVT(C);
5885     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5886     if (NewAlign > Align) {
5887       // Give the stack frame object a larger alignment if needed.
5888       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5889         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5890       Align = NewAlign;
5891     }
5892   }
5893 
5894   MachineMemOperand::Flags MMOFlags =
5895       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5896   uint64_t SrcOff = 0, DstOff = 0;
5897   SmallVector<SDValue, 8> LoadValues;
5898   SmallVector<SDValue, 8> LoadChains;
5899   SmallVector<SDValue, 8> OutChains;
5900   unsigned NumMemOps = MemOps.size();
5901   for (unsigned i = 0; i < NumMemOps; i++) {
5902     EVT VT = MemOps[i];
5903     unsigned VTSize = VT.getSizeInBits() / 8;
5904     SDValue Value;
5905 
5906     bool isDereferenceable =
5907       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5908     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5909     if (isDereferenceable)
5910       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5911 
5912     Value =
5913         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5914                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
5915     LoadValues.push_back(Value);
5916     LoadChains.push_back(Value.getValue(1));
5917     SrcOff += VTSize;
5918   }
5919   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
5920   OutChains.clear();
5921   for (unsigned i = 0; i < NumMemOps; i++) {
5922     EVT VT = MemOps[i];
5923     unsigned VTSize = VT.getSizeInBits() / 8;
5924     SDValue Store;
5925 
5926     Store = DAG.getStore(Chain, dl, LoadValues[i],
5927                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5928                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
5929     OutChains.push_back(Store);
5930     DstOff += VTSize;
5931   }
5932 
5933   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5934 }
5935 
5936 /// Lower the call to 'memset' intrinsic function into a series of store
5937 /// operations.
5938 ///
5939 /// \param DAG Selection DAG where lowered code is placed.
5940 /// \param dl Link to corresponding IR location.
5941 /// \param Chain Control flow dependency.
5942 /// \param Dst Pointer to destination memory location.
5943 /// \param Src Value of byte to write into the memory.
5944 /// \param Size Number of bytes to write.
5945 /// \param Align Alignment of the destination in bytes.
5946 /// \param isVol True if destination is volatile.
5947 /// \param DstPtrInfo IR information on the memory pointer.
5948 /// \returns New head in the control flow, if lowering was successful, empty
5949 /// SDValue otherwise.
5950 ///
5951 /// The function tries to replace 'llvm.memset' intrinsic with several store
5952 /// operations and value calculation code. This is usually profitable for small
5953 /// memory size.
5954 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
5955                                SDValue Chain, SDValue Dst, SDValue Src,
5956                                uint64_t Size, unsigned Align, bool isVol,
5957                                MachinePointerInfo DstPtrInfo) {
5958   // Turn a memset of undef to nop.
5959   if (Src.isUndef())
5960     return Chain;
5961 
5962   // Expand memset to a series of load/store ops if the size operand
5963   // falls below a certain threshold.
5964   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5965   std::vector<EVT> MemOps;
5966   bool DstAlignCanChange = false;
5967   MachineFunction &MF = DAG.getMachineFunction();
5968   MachineFrameInfo &MFI = MF.getFrameInfo();
5969   bool OptSize = shouldLowerMemFuncForSize(MF);
5970   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5971   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5972     DstAlignCanChange = true;
5973   bool IsZeroVal =
5974     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
5975   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
5976                                 Size, (DstAlignCanChange ? 0 : Align), 0,
5977                                 true, IsZeroVal, false, true,
5978                                 DstPtrInfo.getAddrSpace(), ~0u,
5979                                 DAG, TLI))
5980     return SDValue();
5981 
5982   if (DstAlignCanChange) {
5983     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
5984     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
5985     if (NewAlign > Align) {
5986       // Give the stack frame object a larger alignment if needed.
5987       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5988         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5989       Align = NewAlign;
5990     }
5991   }
5992 
5993   SmallVector<SDValue, 8> OutChains;
5994   uint64_t DstOff = 0;
5995   unsigned NumMemOps = MemOps.size();
5996 
5997   // Find the largest store and generate the bit pattern for it.
5998   EVT LargestVT = MemOps[0];
5999   for (unsigned i = 1; i < NumMemOps; i++)
6000     if (MemOps[i].bitsGT(LargestVT))
6001       LargestVT = MemOps[i];
6002   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6003 
6004   for (unsigned i = 0; i < NumMemOps; i++) {
6005     EVT VT = MemOps[i];
6006     unsigned VTSize = VT.getSizeInBits() / 8;
6007     if (VTSize > Size) {
6008       // Issuing an unaligned load / store pair  that overlaps with the previous
6009       // pair. Adjust the offset accordingly.
6010       assert(i == NumMemOps-1 && i != 0);
6011       DstOff -= VTSize - Size;
6012     }
6013 
6014     // If this store is smaller than the largest store see whether we can get
6015     // the smaller value for free with a truncate.
6016     SDValue Value = MemSetValue;
6017     if (VT.bitsLT(LargestVT)) {
6018       if (!LargestVT.isVector() && !VT.isVector() &&
6019           TLI.isTruncateFree(LargestVT, VT))
6020         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6021       else
6022         Value = getMemsetValue(Src, VT, DAG, dl);
6023     }
6024     assert(Value.getValueType() == VT && "Value with wrong type.");
6025     SDValue Store = DAG.getStore(
6026         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6027         DstPtrInfo.getWithOffset(DstOff), Align,
6028         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6029     OutChains.push_back(Store);
6030     DstOff += VT.getSizeInBits() / 8;
6031     Size -= VTSize;
6032   }
6033 
6034   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6035 }
6036 
6037 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6038                                             unsigned AS) {
6039   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6040   // pointer operands can be losslessly bitcasted to pointers of address space 0
6041   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6042     report_fatal_error("cannot lower memory intrinsic in address space " +
6043                        Twine(AS));
6044   }
6045 }
6046 
6047 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6048                                 SDValue Src, SDValue Size, unsigned Align,
6049                                 bool isVol, bool AlwaysInline, bool isTailCall,
6050                                 MachinePointerInfo DstPtrInfo,
6051                                 MachinePointerInfo SrcPtrInfo) {
6052   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6053 
6054   // Check to see if we should lower the memcpy to loads and stores first.
6055   // For cases within the target-specified limits, this is the best choice.
6056   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6057   if (ConstantSize) {
6058     // Memcpy with size zero? Just return the original chain.
6059     if (ConstantSize->isNullValue())
6060       return Chain;
6061 
6062     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6063                                              ConstantSize->getZExtValue(),Align,
6064                                 isVol, false, DstPtrInfo, SrcPtrInfo);
6065     if (Result.getNode())
6066       return Result;
6067   }
6068 
6069   // Then check to see if we should lower the memcpy with target-specific
6070   // code. If the target chooses to do this, this is the next best.
6071   if (TSI) {
6072     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6073         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
6074         DstPtrInfo, SrcPtrInfo);
6075     if (Result.getNode())
6076       return Result;
6077   }
6078 
6079   // If we really need inline code and the target declined to provide it,
6080   // use a (potentially long) sequence of loads and stores.
6081   if (AlwaysInline) {
6082     assert(ConstantSize && "AlwaysInline requires a constant size!");
6083     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6084                                    ConstantSize->getZExtValue(), Align, isVol,
6085                                    true, DstPtrInfo, SrcPtrInfo);
6086   }
6087 
6088   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6089   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6090 
6091   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6092   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6093   // respect volatile, so they may do things like read or write memory
6094   // beyond the given memory regions. But fixing this isn't easy, and most
6095   // people don't care.
6096 
6097   // Emit a library call.
6098   TargetLowering::ArgListTy Args;
6099   TargetLowering::ArgListEntry Entry;
6100   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6101   Entry.Node = Dst; Args.push_back(Entry);
6102   Entry.Node = Src; Args.push_back(Entry);
6103   Entry.Node = Size; Args.push_back(Entry);
6104   // FIXME: pass in SDLoc
6105   TargetLowering::CallLoweringInfo CLI(*this);
6106   CLI.setDebugLoc(dl)
6107       .setChain(Chain)
6108       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6109                     Dst.getValueType().getTypeForEVT(*getContext()),
6110                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6111                                       TLI->getPointerTy(getDataLayout())),
6112                     std::move(Args))
6113       .setDiscardResult()
6114       .setTailCall(isTailCall);
6115 
6116   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6117   return CallResult.second;
6118 }
6119 
6120 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6121                                       SDValue Dst, unsigned DstAlign,
6122                                       SDValue Src, unsigned SrcAlign,
6123                                       SDValue Size, Type *SizeTy,
6124                                       unsigned ElemSz, bool isTailCall,
6125                                       MachinePointerInfo DstPtrInfo,
6126                                       MachinePointerInfo SrcPtrInfo) {
6127   // Emit a library call.
6128   TargetLowering::ArgListTy Args;
6129   TargetLowering::ArgListEntry Entry;
6130   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6131   Entry.Node = Dst;
6132   Args.push_back(Entry);
6133 
6134   Entry.Node = Src;
6135   Args.push_back(Entry);
6136 
6137   Entry.Ty = SizeTy;
6138   Entry.Node = Size;
6139   Args.push_back(Entry);
6140 
6141   RTLIB::Libcall LibraryCall =
6142       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6143   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6144     report_fatal_error("Unsupported element size");
6145 
6146   TargetLowering::CallLoweringInfo CLI(*this);
6147   CLI.setDebugLoc(dl)
6148       .setChain(Chain)
6149       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6150                     Type::getVoidTy(*getContext()),
6151                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6152                                       TLI->getPointerTy(getDataLayout())),
6153                     std::move(Args))
6154       .setDiscardResult()
6155       .setTailCall(isTailCall);
6156 
6157   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6158   return CallResult.second;
6159 }
6160 
6161 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6162                                  SDValue Src, SDValue Size, unsigned Align,
6163                                  bool isVol, bool isTailCall,
6164                                  MachinePointerInfo DstPtrInfo,
6165                                  MachinePointerInfo SrcPtrInfo) {
6166   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6167 
6168   // Check to see if we should lower the memmove to loads and stores first.
6169   // For cases within the target-specified limits, this is the best choice.
6170   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6171   if (ConstantSize) {
6172     // Memmove with size zero? Just return the original chain.
6173     if (ConstantSize->isNullValue())
6174       return Chain;
6175 
6176     SDValue Result =
6177       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
6178                                ConstantSize->getZExtValue(), Align, isVol,
6179                                false, DstPtrInfo, SrcPtrInfo);
6180     if (Result.getNode())
6181       return Result;
6182   }
6183 
6184   // Then check to see if we should lower the memmove with target-specific
6185   // code. If the target chooses to do this, this is the next best.
6186   if (TSI) {
6187     SDValue Result = TSI->EmitTargetCodeForMemmove(
6188         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
6189     if (Result.getNode())
6190       return Result;
6191   }
6192 
6193   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6194   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6195 
6196   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6197   // not be safe.  See memcpy above for more details.
6198 
6199   // Emit a library call.
6200   TargetLowering::ArgListTy Args;
6201   TargetLowering::ArgListEntry Entry;
6202   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6203   Entry.Node = Dst; Args.push_back(Entry);
6204   Entry.Node = Src; Args.push_back(Entry);
6205   Entry.Node = Size; Args.push_back(Entry);
6206   // FIXME:  pass in SDLoc
6207   TargetLowering::CallLoweringInfo CLI(*this);
6208   CLI.setDebugLoc(dl)
6209       .setChain(Chain)
6210       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6211                     Dst.getValueType().getTypeForEVT(*getContext()),
6212                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6213                                       TLI->getPointerTy(getDataLayout())),
6214                     std::move(Args))
6215       .setDiscardResult()
6216       .setTailCall(isTailCall);
6217 
6218   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6219   return CallResult.second;
6220 }
6221 
6222 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6223                                        SDValue Dst, unsigned DstAlign,
6224                                        SDValue Src, unsigned SrcAlign,
6225                                        SDValue Size, Type *SizeTy,
6226                                        unsigned ElemSz, bool isTailCall,
6227                                        MachinePointerInfo DstPtrInfo,
6228                                        MachinePointerInfo SrcPtrInfo) {
6229   // Emit a library call.
6230   TargetLowering::ArgListTy Args;
6231   TargetLowering::ArgListEntry Entry;
6232   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6233   Entry.Node = Dst;
6234   Args.push_back(Entry);
6235 
6236   Entry.Node = Src;
6237   Args.push_back(Entry);
6238 
6239   Entry.Ty = SizeTy;
6240   Entry.Node = Size;
6241   Args.push_back(Entry);
6242 
6243   RTLIB::Libcall LibraryCall =
6244       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6245   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6246     report_fatal_error("Unsupported element size");
6247 
6248   TargetLowering::CallLoweringInfo CLI(*this);
6249   CLI.setDebugLoc(dl)
6250       .setChain(Chain)
6251       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6252                     Type::getVoidTy(*getContext()),
6253                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6254                                       TLI->getPointerTy(getDataLayout())),
6255                     std::move(Args))
6256       .setDiscardResult()
6257       .setTailCall(isTailCall);
6258 
6259   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6260   return CallResult.second;
6261 }
6262 
6263 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6264                                 SDValue Src, SDValue Size, unsigned Align,
6265                                 bool isVol, bool isTailCall,
6266                                 MachinePointerInfo DstPtrInfo) {
6267   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6268 
6269   // Check to see if we should lower the memset to stores first.
6270   // For cases within the target-specified limits, this is the best choice.
6271   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6272   if (ConstantSize) {
6273     // Memset with size zero? Just return the original chain.
6274     if (ConstantSize->isNullValue())
6275       return Chain;
6276 
6277     SDValue Result =
6278       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6279                       Align, isVol, DstPtrInfo);
6280 
6281     if (Result.getNode())
6282       return Result;
6283   }
6284 
6285   // Then check to see if we should lower the memset with target-specific
6286   // code. If the target chooses to do this, this is the next best.
6287   if (TSI) {
6288     SDValue Result = TSI->EmitTargetCodeForMemset(
6289         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6290     if (Result.getNode())
6291       return Result;
6292   }
6293 
6294   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6295 
6296   // Emit a library call.
6297   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
6298   TargetLowering::ArgListTy Args;
6299   TargetLowering::ArgListEntry Entry;
6300   Entry.Node = Dst; Entry.Ty = IntPtrTy;
6301   Args.push_back(Entry);
6302   Entry.Node = Src;
6303   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6304   Args.push_back(Entry);
6305   Entry.Node = Size;
6306   Entry.Ty = IntPtrTy;
6307   Args.push_back(Entry);
6308 
6309   // FIXME: pass in SDLoc
6310   TargetLowering::CallLoweringInfo CLI(*this);
6311   CLI.setDebugLoc(dl)
6312       .setChain(Chain)
6313       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6314                     Dst.getValueType().getTypeForEVT(*getContext()),
6315                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6316                                       TLI->getPointerTy(getDataLayout())),
6317                     std::move(Args))
6318       .setDiscardResult()
6319       .setTailCall(isTailCall);
6320 
6321   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6322   return CallResult.second;
6323 }
6324 
6325 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6326                                       SDValue Dst, unsigned DstAlign,
6327                                       SDValue Value, SDValue Size, Type *SizeTy,
6328                                       unsigned ElemSz, bool isTailCall,
6329                                       MachinePointerInfo DstPtrInfo) {
6330   // Emit a library call.
6331   TargetLowering::ArgListTy Args;
6332   TargetLowering::ArgListEntry Entry;
6333   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6334   Entry.Node = Dst;
6335   Args.push_back(Entry);
6336 
6337   Entry.Ty = Type::getInt8Ty(*getContext());
6338   Entry.Node = Value;
6339   Args.push_back(Entry);
6340 
6341   Entry.Ty = SizeTy;
6342   Entry.Node = Size;
6343   Args.push_back(Entry);
6344 
6345   RTLIB::Libcall LibraryCall =
6346       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6347   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6348     report_fatal_error("Unsupported element size");
6349 
6350   TargetLowering::CallLoweringInfo CLI(*this);
6351   CLI.setDebugLoc(dl)
6352       .setChain(Chain)
6353       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6354                     Type::getVoidTy(*getContext()),
6355                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6356                                       TLI->getPointerTy(getDataLayout())),
6357                     std::move(Args))
6358       .setDiscardResult()
6359       .setTailCall(isTailCall);
6360 
6361   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6362   return CallResult.second;
6363 }
6364 
6365 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6366                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6367                                 MachineMemOperand *MMO) {
6368   FoldingSetNodeID ID;
6369   ID.AddInteger(MemVT.getRawBits());
6370   AddNodeIDNode(ID, Opcode, VTList, Ops);
6371   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6372   void* IP = nullptr;
6373   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6374     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6375     return SDValue(E, 0);
6376   }
6377 
6378   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6379                                     VTList, MemVT, MMO);
6380   createOperands(N, Ops);
6381 
6382   CSEMap.InsertNode(N, IP);
6383   InsertNode(N);
6384   return SDValue(N, 0);
6385 }
6386 
6387 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6388                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6389                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6390                                        MachineMemOperand *MMO) {
6391   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6392          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6393   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6394 
6395   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6396   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6397 }
6398 
6399 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6400                                 SDValue Chain, SDValue Ptr, SDValue Val,
6401                                 MachineMemOperand *MMO) {
6402   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6403           Opcode == ISD::ATOMIC_LOAD_SUB ||
6404           Opcode == ISD::ATOMIC_LOAD_AND ||
6405           Opcode == ISD::ATOMIC_LOAD_CLR ||
6406           Opcode == ISD::ATOMIC_LOAD_OR ||
6407           Opcode == ISD::ATOMIC_LOAD_XOR ||
6408           Opcode == ISD::ATOMIC_LOAD_NAND ||
6409           Opcode == ISD::ATOMIC_LOAD_MIN ||
6410           Opcode == ISD::ATOMIC_LOAD_MAX ||
6411           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6412           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6413           Opcode == ISD::ATOMIC_LOAD_FADD ||
6414           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6415           Opcode == ISD::ATOMIC_SWAP ||
6416           Opcode == ISD::ATOMIC_STORE) &&
6417          "Invalid Atomic Op");
6418 
6419   EVT VT = Val.getValueType();
6420 
6421   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6422                                                getVTList(VT, MVT::Other);
6423   SDValue Ops[] = {Chain, Ptr, Val};
6424   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6425 }
6426 
6427 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6428                                 EVT VT, SDValue Chain, SDValue Ptr,
6429                                 MachineMemOperand *MMO) {
6430   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6431 
6432   SDVTList VTs = getVTList(VT, MVT::Other);
6433   SDValue Ops[] = {Chain, Ptr};
6434   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6435 }
6436 
6437 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6438 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6439   if (Ops.size() == 1)
6440     return Ops[0];
6441 
6442   SmallVector<EVT, 4> VTs;
6443   VTs.reserve(Ops.size());
6444   for (unsigned i = 0; i < Ops.size(); ++i)
6445     VTs.push_back(Ops[i].getValueType());
6446   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6447 }
6448 
6449 SDValue SelectionDAG::getMemIntrinsicNode(
6450     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6451     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6452     MachineMemOperand::Flags Flags, unsigned Size) {
6453   if (Align == 0)  // Ensure that codegen never sees alignment 0
6454     Align = getEVTAlignment(MemVT);
6455 
6456   if (!Size)
6457     Size = MemVT.getStoreSize();
6458 
6459   MachineFunction &MF = getMachineFunction();
6460   MachineMemOperand *MMO =
6461     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
6462 
6463   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6464 }
6465 
6466 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6467                                           SDVTList VTList,
6468                                           ArrayRef<SDValue> Ops, EVT MemVT,
6469                                           MachineMemOperand *MMO) {
6470   assert((Opcode == ISD::INTRINSIC_VOID ||
6471           Opcode == ISD::INTRINSIC_W_CHAIN ||
6472           Opcode == ISD::PREFETCH ||
6473           Opcode == ISD::LIFETIME_START ||
6474           Opcode == ISD::LIFETIME_END ||
6475           ((int)Opcode <= std::numeric_limits<int>::max() &&
6476            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6477          "Opcode is not a memory-accessing opcode!");
6478 
6479   // Memoize the node unless it returns a flag.
6480   MemIntrinsicSDNode *N;
6481   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6482     FoldingSetNodeID ID;
6483     AddNodeIDNode(ID, Opcode, VTList, Ops);
6484     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6485         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6486     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6487     void *IP = nullptr;
6488     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6489       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6490       return SDValue(E, 0);
6491     }
6492 
6493     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6494                                       VTList, MemVT, MMO);
6495     createOperands(N, Ops);
6496 
6497   CSEMap.InsertNode(N, IP);
6498   } else {
6499     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6500                                       VTList, MemVT, MMO);
6501     createOperands(N, Ops);
6502   }
6503   InsertNode(N);
6504   return SDValue(N, 0);
6505 }
6506 
6507 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6508                                       SDValue Chain, int FrameIndex,
6509                                       int64_t Size, int64_t Offset) {
6510   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6511   const auto VTs = getVTList(MVT::Other);
6512   SDValue Ops[2] = {
6513       Chain,
6514       getFrameIndex(FrameIndex,
6515                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6516                     true)};
6517 
6518   FoldingSetNodeID ID;
6519   AddNodeIDNode(ID, Opcode, VTs, Ops);
6520   ID.AddInteger(FrameIndex);
6521   ID.AddInteger(Size);
6522   ID.AddInteger(Offset);
6523   void *IP = nullptr;
6524   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6525     return SDValue(E, 0);
6526 
6527   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6528       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6529   createOperands(N, Ops);
6530   CSEMap.InsertNode(N, IP);
6531   InsertNode(N);
6532   SDValue V(N, 0);
6533   NewSDValueDbgMsg(V, "Creating new node: ", this);
6534   return V;
6535 }
6536 
6537 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6538 /// MachinePointerInfo record from it.  This is particularly useful because the
6539 /// code generator has many cases where it doesn't bother passing in a
6540 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6541 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6542                                            SelectionDAG &DAG, SDValue Ptr,
6543                                            int64_t Offset = 0) {
6544   // If this is FI+Offset, we can model it.
6545   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6546     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6547                                              FI->getIndex(), Offset);
6548 
6549   // If this is (FI+Offset1)+Offset2, we can model it.
6550   if (Ptr.getOpcode() != ISD::ADD ||
6551       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6552       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6553     return Info;
6554 
6555   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6556   return MachinePointerInfo::getFixedStack(
6557       DAG.getMachineFunction(), FI,
6558       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6559 }
6560 
6561 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6562 /// MachinePointerInfo record from it.  This is particularly useful because the
6563 /// code generator has many cases where it doesn't bother passing in a
6564 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6565 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6566                                            SelectionDAG &DAG, SDValue Ptr,
6567                                            SDValue OffsetOp) {
6568   // If the 'Offset' value isn't a constant, we can't handle this.
6569   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6570     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6571   if (OffsetOp.isUndef())
6572     return InferPointerInfo(Info, DAG, Ptr);
6573   return Info;
6574 }
6575 
6576 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6577                               EVT VT, const SDLoc &dl, SDValue Chain,
6578                               SDValue Ptr, SDValue Offset,
6579                               MachinePointerInfo PtrInfo, EVT MemVT,
6580                               unsigned Alignment,
6581                               MachineMemOperand::Flags MMOFlags,
6582                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6583   assert(Chain.getValueType() == MVT::Other &&
6584         "Invalid chain type");
6585   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6586     Alignment = getEVTAlignment(MemVT);
6587 
6588   MMOFlags |= MachineMemOperand::MOLoad;
6589   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6590   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6591   // clients.
6592   if (PtrInfo.V.isNull())
6593     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6594 
6595   MachineFunction &MF = getMachineFunction();
6596   MachineMemOperand *MMO = MF.getMachineMemOperand(
6597       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6598   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6599 }
6600 
6601 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6602                               EVT VT, const SDLoc &dl, SDValue Chain,
6603                               SDValue Ptr, SDValue Offset, EVT MemVT,
6604                               MachineMemOperand *MMO) {
6605   if (VT == MemVT) {
6606     ExtType = ISD::NON_EXTLOAD;
6607   } else if (ExtType == ISD::NON_EXTLOAD) {
6608     assert(VT == MemVT && "Non-extending load from different memory type!");
6609   } else {
6610     // Extending load.
6611     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6612            "Should only be an extending load, not truncating!");
6613     assert(VT.isInteger() == MemVT.isInteger() &&
6614            "Cannot convert from FP to Int or Int -> FP!");
6615     assert(VT.isVector() == MemVT.isVector() &&
6616            "Cannot use an ext load to convert to or from a vector!");
6617     assert((!VT.isVector() ||
6618             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6619            "Cannot use an ext load to change the number of vector elements!");
6620   }
6621 
6622   bool Indexed = AM != ISD::UNINDEXED;
6623   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6624 
6625   SDVTList VTs = Indexed ?
6626     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6627   SDValue Ops[] = { Chain, Ptr, Offset };
6628   FoldingSetNodeID ID;
6629   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6630   ID.AddInteger(MemVT.getRawBits());
6631   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6632       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6633   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6634   void *IP = nullptr;
6635   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6636     cast<LoadSDNode>(E)->refineAlignment(MMO);
6637     return SDValue(E, 0);
6638   }
6639   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6640                                   ExtType, MemVT, MMO);
6641   createOperands(N, Ops);
6642 
6643   CSEMap.InsertNode(N, IP);
6644   InsertNode(N);
6645   SDValue V(N, 0);
6646   NewSDValueDbgMsg(V, "Creating new node: ", this);
6647   return V;
6648 }
6649 
6650 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6651                               SDValue Ptr, MachinePointerInfo PtrInfo,
6652                               unsigned Alignment,
6653                               MachineMemOperand::Flags MMOFlags,
6654                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6655   SDValue Undef = getUNDEF(Ptr.getValueType());
6656   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6657                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6658 }
6659 
6660 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6661                               SDValue Ptr, MachineMemOperand *MMO) {
6662   SDValue Undef = getUNDEF(Ptr.getValueType());
6663   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6664                  VT, MMO);
6665 }
6666 
6667 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6668                                  EVT VT, SDValue Chain, SDValue Ptr,
6669                                  MachinePointerInfo PtrInfo, EVT MemVT,
6670                                  unsigned Alignment,
6671                                  MachineMemOperand::Flags MMOFlags,
6672                                  const AAMDNodes &AAInfo) {
6673   SDValue Undef = getUNDEF(Ptr.getValueType());
6674   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6675                  MemVT, Alignment, MMOFlags, AAInfo);
6676 }
6677 
6678 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6679                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6680                                  MachineMemOperand *MMO) {
6681   SDValue Undef = getUNDEF(Ptr.getValueType());
6682   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6683                  MemVT, MMO);
6684 }
6685 
6686 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6687                                      SDValue Base, SDValue Offset,
6688                                      ISD::MemIndexedMode AM) {
6689   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6690   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6691   // Don't propagate the invariant or dereferenceable flags.
6692   auto MMOFlags =
6693       LD->getMemOperand()->getFlags() &
6694       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6695   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6696                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6697                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6698                  LD->getAAInfo());
6699 }
6700 
6701 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6702                                SDValue Ptr, MachinePointerInfo PtrInfo,
6703                                unsigned Alignment,
6704                                MachineMemOperand::Flags MMOFlags,
6705                                const AAMDNodes &AAInfo) {
6706   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6707   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6708     Alignment = getEVTAlignment(Val.getValueType());
6709 
6710   MMOFlags |= MachineMemOperand::MOStore;
6711   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6712 
6713   if (PtrInfo.V.isNull())
6714     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6715 
6716   MachineFunction &MF = getMachineFunction();
6717   MachineMemOperand *MMO = MF.getMachineMemOperand(
6718       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6719   return getStore(Chain, dl, Val, Ptr, MMO);
6720 }
6721 
6722 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6723                                SDValue Ptr, MachineMemOperand *MMO) {
6724   assert(Chain.getValueType() == MVT::Other &&
6725         "Invalid chain type");
6726   EVT VT = Val.getValueType();
6727   SDVTList VTs = getVTList(MVT::Other);
6728   SDValue Undef = getUNDEF(Ptr.getValueType());
6729   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6730   FoldingSetNodeID ID;
6731   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6732   ID.AddInteger(VT.getRawBits());
6733   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6734       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6735   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6736   void *IP = nullptr;
6737   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6738     cast<StoreSDNode>(E)->refineAlignment(MMO);
6739     return SDValue(E, 0);
6740   }
6741   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6742                                    ISD::UNINDEXED, false, VT, MMO);
6743   createOperands(N, Ops);
6744 
6745   CSEMap.InsertNode(N, IP);
6746   InsertNode(N);
6747   SDValue V(N, 0);
6748   NewSDValueDbgMsg(V, "Creating new node: ", this);
6749   return V;
6750 }
6751 
6752 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6753                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6754                                     EVT SVT, unsigned Alignment,
6755                                     MachineMemOperand::Flags MMOFlags,
6756                                     const AAMDNodes &AAInfo) {
6757   assert(Chain.getValueType() == MVT::Other &&
6758         "Invalid chain type");
6759   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6760     Alignment = getEVTAlignment(SVT);
6761 
6762   MMOFlags |= MachineMemOperand::MOStore;
6763   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6764 
6765   if (PtrInfo.V.isNull())
6766     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6767 
6768   MachineFunction &MF = getMachineFunction();
6769   MachineMemOperand *MMO = MF.getMachineMemOperand(
6770       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6771   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6772 }
6773 
6774 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6775                                     SDValue Ptr, EVT SVT,
6776                                     MachineMemOperand *MMO) {
6777   EVT VT = Val.getValueType();
6778 
6779   assert(Chain.getValueType() == MVT::Other &&
6780         "Invalid chain type");
6781   if (VT == SVT)
6782     return getStore(Chain, dl, Val, Ptr, MMO);
6783 
6784   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6785          "Should only be a truncating store, not extending!");
6786   assert(VT.isInteger() == SVT.isInteger() &&
6787          "Can't do FP-INT conversion!");
6788   assert(VT.isVector() == SVT.isVector() &&
6789          "Cannot use trunc store to convert to or from a vector!");
6790   assert((!VT.isVector() ||
6791           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6792          "Cannot use trunc store to change the number of vector elements!");
6793 
6794   SDVTList VTs = getVTList(MVT::Other);
6795   SDValue Undef = getUNDEF(Ptr.getValueType());
6796   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6797   FoldingSetNodeID ID;
6798   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6799   ID.AddInteger(SVT.getRawBits());
6800   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6801       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6802   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6803   void *IP = nullptr;
6804   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6805     cast<StoreSDNode>(E)->refineAlignment(MMO);
6806     return SDValue(E, 0);
6807   }
6808   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6809                                    ISD::UNINDEXED, true, SVT, MMO);
6810   createOperands(N, Ops);
6811 
6812   CSEMap.InsertNode(N, IP);
6813   InsertNode(N);
6814   SDValue V(N, 0);
6815   NewSDValueDbgMsg(V, "Creating new node: ", this);
6816   return V;
6817 }
6818 
6819 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6820                                       SDValue Base, SDValue Offset,
6821                                       ISD::MemIndexedMode AM) {
6822   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6823   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6824   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6825   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6826   FoldingSetNodeID ID;
6827   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6828   ID.AddInteger(ST->getMemoryVT().getRawBits());
6829   ID.AddInteger(ST->getRawSubclassData());
6830   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6831   void *IP = nullptr;
6832   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6833     return SDValue(E, 0);
6834 
6835   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6836                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6837                                    ST->getMemOperand());
6838   createOperands(N, Ops);
6839 
6840   CSEMap.InsertNode(N, IP);
6841   InsertNode(N);
6842   SDValue V(N, 0);
6843   NewSDValueDbgMsg(V, "Creating new node: ", this);
6844   return V;
6845 }
6846 
6847 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6848                                     SDValue Ptr, SDValue Mask, SDValue PassThru,
6849                                     EVT MemVT, MachineMemOperand *MMO,
6850                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6851   SDVTList VTs = getVTList(VT, MVT::Other);
6852   SDValue Ops[] = { Chain, Ptr, Mask, PassThru };
6853   FoldingSetNodeID ID;
6854   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6855   ID.AddInteger(VT.getRawBits());
6856   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6857       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6858   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6859   void *IP = nullptr;
6860   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6861     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6862     return SDValue(E, 0);
6863   }
6864   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6865                                         ExtTy, isExpanding, MemVT, MMO);
6866   createOperands(N, Ops);
6867 
6868   CSEMap.InsertNode(N, IP);
6869   InsertNode(N);
6870   SDValue V(N, 0);
6871   NewSDValueDbgMsg(V, "Creating new node: ", this);
6872   return V;
6873 }
6874 
6875 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6876                                      SDValue Val, SDValue Ptr, SDValue Mask,
6877                                      EVT MemVT, MachineMemOperand *MMO,
6878                                      bool IsTruncating, bool IsCompressing) {
6879   assert(Chain.getValueType() == MVT::Other &&
6880         "Invalid chain type");
6881   EVT VT = Val.getValueType();
6882   SDVTList VTs = getVTList(MVT::Other);
6883   SDValue Ops[] = { Chain, Val, Ptr, Mask };
6884   FoldingSetNodeID ID;
6885   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6886   ID.AddInteger(VT.getRawBits());
6887   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6888       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6889   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6890   void *IP = nullptr;
6891   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6892     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6893     return SDValue(E, 0);
6894   }
6895   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6896                                          IsTruncating, IsCompressing, MemVT, MMO);
6897   createOperands(N, Ops);
6898 
6899   CSEMap.InsertNode(N, IP);
6900   InsertNode(N);
6901   SDValue V(N, 0);
6902   NewSDValueDbgMsg(V, "Creating new node: ", this);
6903   return V;
6904 }
6905 
6906 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
6907                                       ArrayRef<SDValue> Ops,
6908                                       MachineMemOperand *MMO) {
6909   assert(Ops.size() == 6 && "Incompatible number of operands");
6910 
6911   FoldingSetNodeID ID;
6912   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
6913   ID.AddInteger(VT.getRawBits());
6914   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
6915       dl.getIROrder(), VTs, VT, MMO));
6916   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6917   void *IP = nullptr;
6918   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6919     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
6920     return SDValue(E, 0);
6921   }
6922 
6923   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6924                                           VTs, VT, MMO);
6925   createOperands(N, Ops);
6926 
6927   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
6928          "Incompatible type of the PassThru value in MaskedGatherSDNode");
6929   assert(N->getMask().getValueType().getVectorNumElements() ==
6930              N->getValueType(0).getVectorNumElements() &&
6931          "Vector width mismatch between mask and data");
6932   assert(N->getIndex().getValueType().getVectorNumElements() >=
6933              N->getValueType(0).getVectorNumElements() &&
6934          "Vector width mismatch between index and data");
6935   assert(isa<ConstantSDNode>(N->getScale()) &&
6936          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6937          "Scale should be a constant power of 2");
6938 
6939   CSEMap.InsertNode(N, IP);
6940   InsertNode(N);
6941   SDValue V(N, 0);
6942   NewSDValueDbgMsg(V, "Creating new node: ", this);
6943   return V;
6944 }
6945 
6946 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
6947                                        ArrayRef<SDValue> Ops,
6948                                        MachineMemOperand *MMO) {
6949   assert(Ops.size() == 6 && "Incompatible number of operands");
6950 
6951   FoldingSetNodeID ID;
6952   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
6953   ID.AddInteger(VT.getRawBits());
6954   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
6955       dl.getIROrder(), VTs, VT, MMO));
6956   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6957   void *IP = nullptr;
6958   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6959     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
6960     return SDValue(E, 0);
6961   }
6962   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6963                                            VTs, VT, MMO);
6964   createOperands(N, Ops);
6965 
6966   assert(N->getMask().getValueType().getVectorNumElements() ==
6967              N->getValue().getValueType().getVectorNumElements() &&
6968          "Vector width mismatch between mask and data");
6969   assert(N->getIndex().getValueType().getVectorNumElements() >=
6970              N->getValue().getValueType().getVectorNumElements() &&
6971          "Vector width mismatch between index and data");
6972   assert(isa<ConstantSDNode>(N->getScale()) &&
6973          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6974          "Scale should be a constant power of 2");
6975 
6976   CSEMap.InsertNode(N, IP);
6977   InsertNode(N);
6978   SDValue V(N, 0);
6979   NewSDValueDbgMsg(V, "Creating new node: ", this);
6980   return V;
6981 }
6982 
6983 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
6984   // select undef, T, F --> T (if T is a constant), otherwise F
6985   // select, ?, undef, F --> F
6986   // select, ?, T, undef --> T
6987   if (Cond.isUndef())
6988     return isConstantValueOfAnyType(T) ? T : F;
6989   if (T.isUndef())
6990     return F;
6991   if (F.isUndef())
6992     return T;
6993 
6994   // select true, T, F --> T
6995   // select false, T, F --> F
6996   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
6997     return CondC->isNullValue() ? F : T;
6998 
6999   // TODO: This should simplify VSELECT with constant condition using something
7000   // like this (but check boolean contents to be complete?):
7001   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7002   //    return T;
7003   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7004   //    return F;
7005 
7006   // select ?, T, T --> T
7007   if (T == F)
7008     return T;
7009 
7010   return SDValue();
7011 }
7012 
7013 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7014   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7015   if (X.isUndef())
7016     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7017   // shift X, undef --> undef (because it may shift by the bitwidth)
7018   if (Y.isUndef())
7019     return getUNDEF(X.getValueType());
7020 
7021   // shift 0, Y --> 0
7022   // shift X, 0 --> X
7023   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7024     return X;
7025 
7026   // shift X, C >= bitwidth(X) --> undef
7027   // All vector elements must be too big (or undef) to avoid partial undefs.
7028   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7029     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7030   };
7031   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7032     return getUNDEF(X.getValueType());
7033 
7034   return SDValue();
7035 }
7036 
7037 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7038                                SDValue Ptr, SDValue SV, unsigned Align) {
7039   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7040   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7041 }
7042 
7043 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7044                               ArrayRef<SDUse> Ops) {
7045   switch (Ops.size()) {
7046   case 0: return getNode(Opcode, DL, VT);
7047   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7048   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7049   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7050   default: break;
7051   }
7052 
7053   // Copy from an SDUse array into an SDValue array for use with
7054   // the regular getNode logic.
7055   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7056   return getNode(Opcode, DL, VT, NewOps);
7057 }
7058 
7059 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7060                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7061   unsigned NumOps = Ops.size();
7062   switch (NumOps) {
7063   case 0: return getNode(Opcode, DL, VT);
7064   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7065   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7066   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7067   default: break;
7068   }
7069 
7070   switch (Opcode) {
7071   default: break;
7072   case ISD::BUILD_VECTOR:
7073     // Attempt to simplify BUILD_VECTOR.
7074     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7075       return V;
7076     break;
7077   case ISD::CONCAT_VECTORS:
7078     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
7079     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
7080       return V;
7081     break;
7082   case ISD::SELECT_CC:
7083     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7084     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7085            "LHS and RHS of condition must have same type!");
7086     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7087            "True and False arms of SelectCC must have same type!");
7088     assert(Ops[2].getValueType() == VT &&
7089            "select_cc node must be of same type as true and false value!");
7090     break;
7091   case ISD::BR_CC:
7092     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7093     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7094            "LHS/RHS of comparison should match types!");
7095     break;
7096   }
7097 
7098   // Memoize nodes.
7099   SDNode *N;
7100   SDVTList VTs = getVTList(VT);
7101 
7102   if (VT != MVT::Glue) {
7103     FoldingSetNodeID ID;
7104     AddNodeIDNode(ID, Opcode, VTs, Ops);
7105     void *IP = nullptr;
7106 
7107     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7108       return SDValue(E, 0);
7109 
7110     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7111     createOperands(N, Ops);
7112 
7113     CSEMap.InsertNode(N, IP);
7114   } else {
7115     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7116     createOperands(N, Ops);
7117   }
7118 
7119   InsertNode(N);
7120   SDValue V(N, 0);
7121   NewSDValueDbgMsg(V, "Creating new node: ", this);
7122   return V;
7123 }
7124 
7125 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7126                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7127   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7128 }
7129 
7130 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7131                               ArrayRef<SDValue> Ops) {
7132   if (VTList.NumVTs == 1)
7133     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7134 
7135 #if 0
7136   switch (Opcode) {
7137   // FIXME: figure out how to safely handle things like
7138   // int foo(int x) { return 1 << (x & 255); }
7139   // int bar() { return foo(256); }
7140   case ISD::SRA_PARTS:
7141   case ISD::SRL_PARTS:
7142   case ISD::SHL_PARTS:
7143     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7144         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7145       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7146     else if (N3.getOpcode() == ISD::AND)
7147       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7148         // If the and is only masking out bits that cannot effect the shift,
7149         // eliminate the and.
7150         unsigned NumBits = VT.getScalarSizeInBits()*2;
7151         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7152           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7153       }
7154     break;
7155   }
7156 #endif
7157 
7158   // Memoize the node unless it returns a flag.
7159   SDNode *N;
7160   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7161     FoldingSetNodeID ID;
7162     AddNodeIDNode(ID, Opcode, VTList, Ops);
7163     void *IP = nullptr;
7164     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7165       return SDValue(E, 0);
7166 
7167     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7168     createOperands(N, Ops);
7169     CSEMap.InsertNode(N, IP);
7170   } else {
7171     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7172     createOperands(N, Ops);
7173   }
7174   InsertNode(N);
7175   SDValue V(N, 0);
7176   NewSDValueDbgMsg(V, "Creating new node: ", this);
7177   return V;
7178 }
7179 
7180 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7181                               SDVTList VTList) {
7182   return getNode(Opcode, DL, VTList, None);
7183 }
7184 
7185 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7186                               SDValue N1) {
7187   SDValue Ops[] = { N1 };
7188   return getNode(Opcode, DL, VTList, Ops);
7189 }
7190 
7191 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7192                               SDValue N1, SDValue N2) {
7193   SDValue Ops[] = { N1, N2 };
7194   return getNode(Opcode, DL, VTList, Ops);
7195 }
7196 
7197 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7198                               SDValue N1, SDValue N2, SDValue N3) {
7199   SDValue Ops[] = { N1, N2, N3 };
7200   return getNode(Opcode, DL, VTList, Ops);
7201 }
7202 
7203 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7204                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7205   SDValue Ops[] = { N1, N2, N3, N4 };
7206   return getNode(Opcode, DL, VTList, Ops);
7207 }
7208 
7209 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7210                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7211                               SDValue N5) {
7212   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7213   return getNode(Opcode, DL, VTList, Ops);
7214 }
7215 
7216 SDVTList SelectionDAG::getVTList(EVT VT) {
7217   return makeVTList(SDNode::getValueTypeList(VT), 1);
7218 }
7219 
7220 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7221   FoldingSetNodeID ID;
7222   ID.AddInteger(2U);
7223   ID.AddInteger(VT1.getRawBits());
7224   ID.AddInteger(VT2.getRawBits());
7225 
7226   void *IP = nullptr;
7227   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7228   if (!Result) {
7229     EVT *Array = Allocator.Allocate<EVT>(2);
7230     Array[0] = VT1;
7231     Array[1] = VT2;
7232     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7233     VTListMap.InsertNode(Result, IP);
7234   }
7235   return Result->getSDVTList();
7236 }
7237 
7238 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7239   FoldingSetNodeID ID;
7240   ID.AddInteger(3U);
7241   ID.AddInteger(VT1.getRawBits());
7242   ID.AddInteger(VT2.getRawBits());
7243   ID.AddInteger(VT3.getRawBits());
7244 
7245   void *IP = nullptr;
7246   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7247   if (!Result) {
7248     EVT *Array = Allocator.Allocate<EVT>(3);
7249     Array[0] = VT1;
7250     Array[1] = VT2;
7251     Array[2] = VT3;
7252     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7253     VTListMap.InsertNode(Result, IP);
7254   }
7255   return Result->getSDVTList();
7256 }
7257 
7258 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7259   FoldingSetNodeID ID;
7260   ID.AddInteger(4U);
7261   ID.AddInteger(VT1.getRawBits());
7262   ID.AddInteger(VT2.getRawBits());
7263   ID.AddInteger(VT3.getRawBits());
7264   ID.AddInteger(VT4.getRawBits());
7265 
7266   void *IP = nullptr;
7267   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7268   if (!Result) {
7269     EVT *Array = Allocator.Allocate<EVT>(4);
7270     Array[0] = VT1;
7271     Array[1] = VT2;
7272     Array[2] = VT3;
7273     Array[3] = VT4;
7274     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7275     VTListMap.InsertNode(Result, IP);
7276   }
7277   return Result->getSDVTList();
7278 }
7279 
7280 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7281   unsigned NumVTs = VTs.size();
7282   FoldingSetNodeID ID;
7283   ID.AddInteger(NumVTs);
7284   for (unsigned index = 0; index < NumVTs; index++) {
7285     ID.AddInteger(VTs[index].getRawBits());
7286   }
7287 
7288   void *IP = nullptr;
7289   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7290   if (!Result) {
7291     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7292     llvm::copy(VTs, Array);
7293     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7294     VTListMap.InsertNode(Result, IP);
7295   }
7296   return Result->getSDVTList();
7297 }
7298 
7299 
7300 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7301 /// specified operands.  If the resultant node already exists in the DAG,
7302 /// this does not modify the specified node, instead it returns the node that
7303 /// already exists.  If the resultant node does not exist in the DAG, the
7304 /// input node is returned.  As a degenerate case, if you specify the same
7305 /// input operands as the node already has, the input node is returned.
7306 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7307   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7308 
7309   // Check to see if there is no change.
7310   if (Op == N->getOperand(0)) return N;
7311 
7312   // See if the modified node already exists.
7313   void *InsertPos = nullptr;
7314   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7315     return Existing;
7316 
7317   // Nope it doesn't.  Remove the node from its current place in the maps.
7318   if (InsertPos)
7319     if (!RemoveNodeFromCSEMaps(N))
7320       InsertPos = nullptr;
7321 
7322   // Now we update the operands.
7323   N->OperandList[0].set(Op);
7324 
7325   updateDivergence(N);
7326   // If this gets put into a CSE map, add it.
7327   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7328   return N;
7329 }
7330 
7331 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7332   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7333 
7334   // Check to see if there is no change.
7335   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7336     return N;   // No operands changed, just return the input node.
7337 
7338   // See if the modified node already exists.
7339   void *InsertPos = nullptr;
7340   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7341     return Existing;
7342 
7343   // Nope it doesn't.  Remove the node from its current place in the maps.
7344   if (InsertPos)
7345     if (!RemoveNodeFromCSEMaps(N))
7346       InsertPos = nullptr;
7347 
7348   // Now we update the operands.
7349   if (N->OperandList[0] != Op1)
7350     N->OperandList[0].set(Op1);
7351   if (N->OperandList[1] != Op2)
7352     N->OperandList[1].set(Op2);
7353 
7354   updateDivergence(N);
7355   // If this gets put into a CSE map, add it.
7356   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7357   return N;
7358 }
7359 
7360 SDNode *SelectionDAG::
7361 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7362   SDValue Ops[] = { Op1, Op2, Op3 };
7363   return UpdateNodeOperands(N, Ops);
7364 }
7365 
7366 SDNode *SelectionDAG::
7367 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7368                    SDValue Op3, SDValue Op4) {
7369   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7370   return UpdateNodeOperands(N, Ops);
7371 }
7372 
7373 SDNode *SelectionDAG::
7374 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7375                    SDValue Op3, SDValue Op4, SDValue Op5) {
7376   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7377   return UpdateNodeOperands(N, Ops);
7378 }
7379 
7380 SDNode *SelectionDAG::
7381 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7382   unsigned NumOps = Ops.size();
7383   assert(N->getNumOperands() == NumOps &&
7384          "Update with wrong number of operands");
7385 
7386   // If no operands changed just return the input node.
7387   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7388     return N;
7389 
7390   // See if the modified node already exists.
7391   void *InsertPos = nullptr;
7392   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7393     return Existing;
7394 
7395   // Nope it doesn't.  Remove the node from its current place in the maps.
7396   if (InsertPos)
7397     if (!RemoveNodeFromCSEMaps(N))
7398       InsertPos = nullptr;
7399 
7400   // Now we update the operands.
7401   for (unsigned i = 0; i != NumOps; ++i)
7402     if (N->OperandList[i] != Ops[i])
7403       N->OperandList[i].set(Ops[i]);
7404 
7405   updateDivergence(N);
7406   // If this gets put into a CSE map, add it.
7407   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7408   return N;
7409 }
7410 
7411 /// DropOperands - Release the operands and set this node to have
7412 /// zero operands.
7413 void SDNode::DropOperands() {
7414   // Unlike the code in MorphNodeTo that does this, we don't need to
7415   // watch for dead nodes here.
7416   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7417     SDUse &Use = *I++;
7418     Use.set(SDValue());
7419   }
7420 }
7421 
7422 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7423                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7424   if (NewMemRefs.empty()) {
7425     N->clearMemRefs();
7426     return;
7427   }
7428 
7429   // Check if we can avoid allocating by storing a single reference directly.
7430   if (NewMemRefs.size() == 1) {
7431     N->MemRefs = NewMemRefs[0];
7432     N->NumMemRefs = 1;
7433     return;
7434   }
7435 
7436   MachineMemOperand **MemRefsBuffer =
7437       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7438   llvm::copy(NewMemRefs, MemRefsBuffer);
7439   N->MemRefs = MemRefsBuffer;
7440   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7441 }
7442 
7443 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7444 /// machine opcode.
7445 ///
7446 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7447                                    EVT VT) {
7448   SDVTList VTs = getVTList(VT);
7449   return SelectNodeTo(N, MachineOpc, VTs, None);
7450 }
7451 
7452 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7453                                    EVT VT, SDValue Op1) {
7454   SDVTList VTs = getVTList(VT);
7455   SDValue Ops[] = { Op1 };
7456   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7457 }
7458 
7459 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7460                                    EVT VT, SDValue Op1,
7461                                    SDValue Op2) {
7462   SDVTList VTs = getVTList(VT);
7463   SDValue Ops[] = { Op1, Op2 };
7464   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7465 }
7466 
7467 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7468                                    EVT VT, SDValue Op1,
7469                                    SDValue Op2, SDValue Op3) {
7470   SDVTList VTs = getVTList(VT);
7471   SDValue Ops[] = { Op1, Op2, Op3 };
7472   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7473 }
7474 
7475 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7476                                    EVT VT, ArrayRef<SDValue> Ops) {
7477   SDVTList VTs = getVTList(VT);
7478   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7479 }
7480 
7481 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7482                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7483   SDVTList VTs = getVTList(VT1, VT2);
7484   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7485 }
7486 
7487 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7488                                    EVT VT1, EVT VT2) {
7489   SDVTList VTs = getVTList(VT1, VT2);
7490   return SelectNodeTo(N, MachineOpc, VTs, None);
7491 }
7492 
7493 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7494                                    EVT VT1, EVT VT2, EVT VT3,
7495                                    ArrayRef<SDValue> Ops) {
7496   SDVTList VTs = getVTList(VT1, VT2, VT3);
7497   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7498 }
7499 
7500 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7501                                    EVT VT1, EVT VT2,
7502                                    SDValue Op1, SDValue Op2) {
7503   SDVTList VTs = getVTList(VT1, VT2);
7504   SDValue Ops[] = { Op1, Op2 };
7505   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7506 }
7507 
7508 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7509                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7510   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7511   // Reset the NodeID to -1.
7512   New->setNodeId(-1);
7513   if (New != N) {
7514     ReplaceAllUsesWith(N, New);
7515     RemoveDeadNode(N);
7516   }
7517   return New;
7518 }
7519 
7520 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7521 /// the line number information on the merged node since it is not possible to
7522 /// preserve the information that operation is associated with multiple lines.
7523 /// This will make the debugger working better at -O0, were there is a higher
7524 /// probability having other instructions associated with that line.
7525 ///
7526 /// For IROrder, we keep the smaller of the two
7527 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7528   DebugLoc NLoc = N->getDebugLoc();
7529   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7530     N->setDebugLoc(DebugLoc());
7531   }
7532   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7533   N->setIROrder(Order);
7534   return N;
7535 }
7536 
7537 /// MorphNodeTo - This *mutates* the specified node to have the specified
7538 /// return type, opcode, and operands.
7539 ///
7540 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7541 /// node of the specified opcode and operands, it returns that node instead of
7542 /// the current one.  Note that the SDLoc need not be the same.
7543 ///
7544 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7545 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7546 /// node, and because it doesn't require CSE recalculation for any of
7547 /// the node's users.
7548 ///
7549 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7550 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7551 /// the legalizer which maintain worklists that would need to be updated when
7552 /// deleting things.
7553 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7554                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7555   // If an identical node already exists, use it.
7556   void *IP = nullptr;
7557   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7558     FoldingSetNodeID ID;
7559     AddNodeIDNode(ID, Opc, VTs, Ops);
7560     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7561       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7562   }
7563 
7564   if (!RemoveNodeFromCSEMaps(N))
7565     IP = nullptr;
7566 
7567   // Start the morphing.
7568   N->NodeType = Opc;
7569   N->ValueList = VTs.VTs;
7570   N->NumValues = VTs.NumVTs;
7571 
7572   // Clear the operands list, updating used nodes to remove this from their
7573   // use list.  Keep track of any operands that become dead as a result.
7574   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7575   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7576     SDUse &Use = *I++;
7577     SDNode *Used = Use.getNode();
7578     Use.set(SDValue());
7579     if (Used->use_empty())
7580       DeadNodeSet.insert(Used);
7581   }
7582 
7583   // For MachineNode, initialize the memory references information.
7584   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7585     MN->clearMemRefs();
7586 
7587   // Swap for an appropriately sized array from the recycler.
7588   removeOperands(N);
7589   createOperands(N, Ops);
7590 
7591   // Delete any nodes that are still dead after adding the uses for the
7592   // new operands.
7593   if (!DeadNodeSet.empty()) {
7594     SmallVector<SDNode *, 16> DeadNodes;
7595     for (SDNode *N : DeadNodeSet)
7596       if (N->use_empty())
7597         DeadNodes.push_back(N);
7598     RemoveDeadNodes(DeadNodes);
7599   }
7600 
7601   if (IP)
7602     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7603   return N;
7604 }
7605 
7606 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7607   unsigned OrigOpc = Node->getOpcode();
7608   unsigned NewOpc;
7609   bool IsUnary = false;
7610   bool IsTernary = false;
7611   switch (OrigOpc) {
7612   default:
7613     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7614   case ISD::STRICT_FADD: NewOpc = ISD::FADD; break;
7615   case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break;
7616   case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break;
7617   case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break;
7618   case ISD::STRICT_FREM: NewOpc = ISD::FREM; break;
7619   case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break;
7620   case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break;
7621   case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break;
7622   case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break;
7623   case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break;
7624   case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break;
7625   case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break;
7626   case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break;
7627   case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break;
7628   case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break;
7629   case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break;
7630   case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break;
7631   case ISD::STRICT_FNEARBYINT:
7632     NewOpc = ISD::FNEARBYINT;
7633     IsUnary = true;
7634     break;
7635   case ISD::STRICT_FMAXNUM: NewOpc = ISD::FMAXNUM; break;
7636   case ISD::STRICT_FMINNUM: NewOpc = ISD::FMINNUM; break;
7637   case ISD::STRICT_FCEIL: NewOpc = ISD::FCEIL; IsUnary = true; break;
7638   case ISD::STRICT_FFLOOR: NewOpc = ISD::FFLOOR; IsUnary = true; break;
7639   case ISD::STRICT_FROUND: NewOpc = ISD::FROUND; IsUnary = true; break;
7640   case ISD::STRICT_FTRUNC: NewOpc = ISD::FTRUNC; IsUnary = true; break;
7641   }
7642 
7643   // We're taking this node out of the chain, so we need to re-link things.
7644   SDValue InputChain = Node->getOperand(0);
7645   SDValue OutputChain = SDValue(Node, 1);
7646   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7647 
7648   SDVTList VTs = getVTList(Node->getOperand(1).getValueType());
7649   SDNode *Res = nullptr;
7650   if (IsUnary)
7651     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) });
7652   else if (IsTernary)
7653     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7654                                            Node->getOperand(2),
7655                                            Node->getOperand(3)});
7656   else
7657     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7658                                            Node->getOperand(2) });
7659 
7660   // MorphNodeTo can operate in two ways: if an existing node with the
7661   // specified operands exists, it can just return it.  Otherwise, it
7662   // updates the node in place to have the requested operands.
7663   if (Res == Node) {
7664     // If we updated the node in place, reset the node ID.  To the isel,
7665     // this should be just like a newly allocated machine node.
7666     Res->setNodeId(-1);
7667   } else {
7668     ReplaceAllUsesWith(Node, Res);
7669     RemoveDeadNode(Node);
7670   }
7671 
7672   return Res;
7673 }
7674 
7675 /// getMachineNode - These are used for target selectors to create a new node
7676 /// with specified return type(s), MachineInstr opcode, and operands.
7677 ///
7678 /// Note that getMachineNode returns the resultant node.  If there is already a
7679 /// node of the specified opcode and operands, it returns that node instead of
7680 /// the current one.
7681 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7682                                             EVT VT) {
7683   SDVTList VTs = getVTList(VT);
7684   return getMachineNode(Opcode, dl, VTs, None);
7685 }
7686 
7687 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7688                                             EVT VT, SDValue Op1) {
7689   SDVTList VTs = getVTList(VT);
7690   SDValue Ops[] = { Op1 };
7691   return getMachineNode(Opcode, dl, VTs, Ops);
7692 }
7693 
7694 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7695                                             EVT VT, SDValue Op1, SDValue Op2) {
7696   SDVTList VTs = getVTList(VT);
7697   SDValue Ops[] = { Op1, Op2 };
7698   return getMachineNode(Opcode, dl, VTs, Ops);
7699 }
7700 
7701 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7702                                             EVT VT, SDValue Op1, SDValue Op2,
7703                                             SDValue Op3) {
7704   SDVTList VTs = getVTList(VT);
7705   SDValue Ops[] = { Op1, Op2, Op3 };
7706   return getMachineNode(Opcode, dl, VTs, Ops);
7707 }
7708 
7709 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7710                                             EVT VT, ArrayRef<SDValue> Ops) {
7711   SDVTList VTs = getVTList(VT);
7712   return getMachineNode(Opcode, dl, VTs, Ops);
7713 }
7714 
7715 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7716                                             EVT VT1, EVT VT2, SDValue Op1,
7717                                             SDValue Op2) {
7718   SDVTList VTs = getVTList(VT1, VT2);
7719   SDValue Ops[] = { Op1, Op2 };
7720   return getMachineNode(Opcode, dl, VTs, Ops);
7721 }
7722 
7723 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7724                                             EVT VT1, EVT VT2, SDValue Op1,
7725                                             SDValue Op2, SDValue Op3) {
7726   SDVTList VTs = getVTList(VT1, VT2);
7727   SDValue Ops[] = { Op1, Op2, Op3 };
7728   return getMachineNode(Opcode, dl, VTs, Ops);
7729 }
7730 
7731 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7732                                             EVT VT1, EVT VT2,
7733                                             ArrayRef<SDValue> Ops) {
7734   SDVTList VTs = getVTList(VT1, VT2);
7735   return getMachineNode(Opcode, dl, VTs, Ops);
7736 }
7737 
7738 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7739                                             EVT VT1, EVT VT2, EVT VT3,
7740                                             SDValue Op1, SDValue Op2) {
7741   SDVTList VTs = getVTList(VT1, VT2, VT3);
7742   SDValue Ops[] = { Op1, Op2 };
7743   return getMachineNode(Opcode, dl, VTs, Ops);
7744 }
7745 
7746 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7747                                             EVT VT1, EVT VT2, EVT VT3,
7748                                             SDValue Op1, SDValue Op2,
7749                                             SDValue Op3) {
7750   SDVTList VTs = getVTList(VT1, VT2, VT3);
7751   SDValue Ops[] = { Op1, Op2, Op3 };
7752   return getMachineNode(Opcode, dl, VTs, Ops);
7753 }
7754 
7755 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7756                                             EVT VT1, EVT VT2, EVT VT3,
7757                                             ArrayRef<SDValue> Ops) {
7758   SDVTList VTs = getVTList(VT1, VT2, VT3);
7759   return getMachineNode(Opcode, dl, VTs, Ops);
7760 }
7761 
7762 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7763                                             ArrayRef<EVT> ResultTys,
7764                                             ArrayRef<SDValue> Ops) {
7765   SDVTList VTs = getVTList(ResultTys);
7766   return getMachineNode(Opcode, dl, VTs, Ops);
7767 }
7768 
7769 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
7770                                             SDVTList VTs,
7771                                             ArrayRef<SDValue> Ops) {
7772   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
7773   MachineSDNode *N;
7774   void *IP = nullptr;
7775 
7776   if (DoCSE) {
7777     FoldingSetNodeID ID;
7778     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
7779     IP = nullptr;
7780     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7781       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
7782     }
7783   }
7784 
7785   // Allocate a new MachineSDNode.
7786   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7787   createOperands(N, Ops);
7788 
7789   if (DoCSE)
7790     CSEMap.InsertNode(N, IP);
7791 
7792   InsertNode(N);
7793   return N;
7794 }
7795 
7796 /// getTargetExtractSubreg - A convenience function for creating
7797 /// TargetOpcode::EXTRACT_SUBREG nodes.
7798 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7799                                              SDValue Operand) {
7800   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7801   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7802                                   VT, Operand, SRIdxVal);
7803   return SDValue(Subreg, 0);
7804 }
7805 
7806 /// getTargetInsertSubreg - A convenience function for creating
7807 /// TargetOpcode::INSERT_SUBREG nodes.
7808 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7809                                             SDValue Operand, SDValue Subreg) {
7810   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7811   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7812                                   VT, Operand, Subreg, SRIdxVal);
7813   return SDValue(Result, 0);
7814 }
7815 
7816 /// getNodeIfExists - Get the specified node if it's already available, or
7817 /// else return NULL.
7818 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7819                                       ArrayRef<SDValue> Ops,
7820                                       const SDNodeFlags Flags) {
7821   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7822     FoldingSetNodeID ID;
7823     AddNodeIDNode(ID, Opcode, VTList, Ops);
7824     void *IP = nullptr;
7825     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7826       E->intersectFlagsWith(Flags);
7827       return E;
7828     }
7829   }
7830   return nullptr;
7831 }
7832 
7833 /// getDbgValue - Creates a SDDbgValue node.
7834 ///
7835 /// SDNode
7836 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7837                                       SDNode *N, unsigned R, bool IsIndirect,
7838                                       const DebugLoc &DL, unsigned O) {
7839   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7840          "Expected inlined-at fields to agree");
7841   return new (DbgInfo->getAlloc())
7842       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7843 }
7844 
7845 /// Constant
7846 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7847                                               DIExpression *Expr,
7848                                               const Value *C,
7849                                               const DebugLoc &DL, unsigned O) {
7850   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7851          "Expected inlined-at fields to agree");
7852   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7853 }
7854 
7855 /// FrameIndex
7856 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7857                                                 DIExpression *Expr, unsigned FI,
7858                                                 bool IsIndirect,
7859                                                 const DebugLoc &DL,
7860                                                 unsigned O) {
7861   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7862          "Expected inlined-at fields to agree");
7863   return new (DbgInfo->getAlloc())
7864       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
7865 }
7866 
7867 /// VReg
7868 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
7869                                           DIExpression *Expr,
7870                                           unsigned VReg, bool IsIndirect,
7871                                           const DebugLoc &DL, unsigned O) {
7872   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7873          "Expected inlined-at fields to agree");
7874   return new (DbgInfo->getAlloc())
7875       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
7876 }
7877 
7878 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
7879                                      unsigned OffsetInBits, unsigned SizeInBits,
7880                                      bool InvalidateDbg) {
7881   SDNode *FromNode = From.getNode();
7882   SDNode *ToNode = To.getNode();
7883   assert(FromNode && ToNode && "Can't modify dbg values");
7884 
7885   // PR35338
7886   // TODO: assert(From != To && "Redundant dbg value transfer");
7887   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
7888   if (From == To || FromNode == ToNode)
7889     return;
7890 
7891   if (!FromNode->getHasDebugValue())
7892     return;
7893 
7894   SmallVector<SDDbgValue *, 2> ClonedDVs;
7895   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
7896     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
7897       continue;
7898 
7899     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
7900 
7901     // Just transfer the dbg value attached to From.
7902     if (Dbg->getResNo() != From.getResNo())
7903       continue;
7904 
7905     DIVariable *Var = Dbg->getVariable();
7906     auto *Expr = Dbg->getExpression();
7907     // If a fragment is requested, update the expression.
7908     if (SizeInBits) {
7909       // When splitting a larger (e.g., sign-extended) value whose
7910       // lower bits are described with an SDDbgValue, do not attempt
7911       // to transfer the SDDbgValue to the upper bits.
7912       if (auto FI = Expr->getFragmentInfo())
7913         if (OffsetInBits + SizeInBits > FI->SizeInBits)
7914           continue;
7915       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
7916                                                              SizeInBits);
7917       if (!Fragment)
7918         continue;
7919       Expr = *Fragment;
7920     }
7921     // Clone the SDDbgValue and move it to To.
7922     SDDbgValue *Clone =
7923         getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
7924                     Dbg->getDebugLoc(), Dbg->getOrder());
7925     ClonedDVs.push_back(Clone);
7926 
7927     if (InvalidateDbg) {
7928       // Invalidate value and indicate the SDDbgValue should not be emitted.
7929       Dbg->setIsInvalidated();
7930       Dbg->setIsEmitted();
7931     }
7932   }
7933 
7934   for (SDDbgValue *Dbg : ClonedDVs)
7935     AddDbgValue(Dbg, ToNode, false);
7936 }
7937 
7938 void SelectionDAG::salvageDebugInfo(SDNode &N) {
7939   if (!N.getHasDebugValue())
7940     return;
7941 
7942   SmallVector<SDDbgValue *, 2> ClonedDVs;
7943   for (auto DV : GetDbgValues(&N)) {
7944     if (DV->isInvalidated())
7945       continue;
7946     switch (N.getOpcode()) {
7947     default:
7948       break;
7949     case ISD::ADD:
7950       SDValue N0 = N.getOperand(0);
7951       SDValue N1 = N.getOperand(1);
7952       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
7953           isConstantIntBuildVectorOrConstantInt(N1)) {
7954         uint64_t Offset = N.getConstantOperandVal(1);
7955         // Rewrite an ADD constant node into a DIExpression. Since we are
7956         // performing arithmetic to compute the variable's *value* in the
7957         // DIExpression, we need to mark the expression with a
7958         // DW_OP_stack_value.
7959         auto *DIExpr = DV->getExpression();
7960         DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset,
7961                                        DIExpression::NoDeref,
7962                                        DIExpression::WithStackValue);
7963         SDDbgValue *Clone =
7964             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
7965                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
7966         ClonedDVs.push_back(Clone);
7967         DV->setIsInvalidated();
7968         DV->setIsEmitted();
7969         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
7970                    N0.getNode()->dumprFull(this);
7971                    dbgs() << " into " << *DIExpr << '\n');
7972       }
7973     }
7974   }
7975 
7976   for (SDDbgValue *Dbg : ClonedDVs)
7977     AddDbgValue(Dbg, Dbg->getSDNode(), false);
7978 }
7979 
7980 /// Creates a SDDbgLabel node.
7981 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
7982                                       const DebugLoc &DL, unsigned O) {
7983   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
7984          "Expected inlined-at fields to agree");
7985   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
7986 }
7987 
7988 namespace {
7989 
7990 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
7991 /// pointed to by a use iterator is deleted, increment the use iterator
7992 /// so that it doesn't dangle.
7993 ///
7994 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
7995   SDNode::use_iterator &UI;
7996   SDNode::use_iterator &UE;
7997 
7998   void NodeDeleted(SDNode *N, SDNode *E) override {
7999     // Increment the iterator as needed.
8000     while (UI != UE && N == *UI)
8001       ++UI;
8002   }
8003 
8004 public:
8005   RAUWUpdateListener(SelectionDAG &d,
8006                      SDNode::use_iterator &ui,
8007                      SDNode::use_iterator &ue)
8008     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8009 };
8010 
8011 } // end anonymous namespace
8012 
8013 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8014 /// This can cause recursive merging of nodes in the DAG.
8015 ///
8016 /// This version assumes From has a single result value.
8017 ///
8018 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8019   SDNode *From = FromN.getNode();
8020   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8021          "Cannot replace with this method!");
8022   assert(From != To.getNode() && "Cannot replace uses of with self");
8023 
8024   // Preserve Debug Values
8025   transferDbgValues(FromN, To);
8026 
8027   // Iterate over all the existing uses of From. New uses will be added
8028   // to the beginning of the use list, which we avoid visiting.
8029   // This specifically avoids visiting uses of From that arise while the
8030   // replacement is happening, because any such uses would be the result
8031   // of CSE: If an existing node looks like From after one of its operands
8032   // is replaced by To, we don't want to replace of all its users with To
8033   // too. See PR3018 for more info.
8034   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8035   RAUWUpdateListener Listener(*this, UI, UE);
8036   while (UI != UE) {
8037     SDNode *User = *UI;
8038 
8039     // This node is about to morph, remove its old self from the CSE maps.
8040     RemoveNodeFromCSEMaps(User);
8041 
8042     // A user can appear in a use list multiple times, and when this
8043     // happens the uses are usually next to each other in the list.
8044     // To help reduce the number of CSE recomputations, process all
8045     // the uses of this user that we can find this way.
8046     do {
8047       SDUse &Use = UI.getUse();
8048       ++UI;
8049       Use.set(To);
8050       if (To->isDivergent() != From->isDivergent())
8051         updateDivergence(User);
8052     } while (UI != UE && *UI == User);
8053     // Now that we have modified User, add it back to the CSE maps.  If it
8054     // already exists there, recursively merge the results together.
8055     AddModifiedNodeToCSEMaps(User);
8056   }
8057 
8058   // If we just RAUW'd the root, take note.
8059   if (FromN == getRoot())
8060     setRoot(To);
8061 }
8062 
8063 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8064 /// This can cause recursive merging of nodes in the DAG.
8065 ///
8066 /// This version assumes that for each value of From, there is a
8067 /// corresponding value in To in the same position with the same type.
8068 ///
8069 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8070 #ifndef NDEBUG
8071   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8072     assert((!From->hasAnyUseOfValue(i) ||
8073             From->getValueType(i) == To->getValueType(i)) &&
8074            "Cannot use this version of ReplaceAllUsesWith!");
8075 #endif
8076 
8077   // Handle the trivial case.
8078   if (From == To)
8079     return;
8080 
8081   // Preserve Debug Info. Only do this if there's a use.
8082   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8083     if (From->hasAnyUseOfValue(i)) {
8084       assert((i < To->getNumValues()) && "Invalid To location");
8085       transferDbgValues(SDValue(From, i), SDValue(To, i));
8086     }
8087 
8088   // Iterate over just the existing users of From. See the comments in
8089   // the ReplaceAllUsesWith above.
8090   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8091   RAUWUpdateListener Listener(*this, UI, UE);
8092   while (UI != UE) {
8093     SDNode *User = *UI;
8094 
8095     // This node is about to morph, remove its old self from the CSE maps.
8096     RemoveNodeFromCSEMaps(User);
8097 
8098     // A user can appear in a use list multiple times, and when this
8099     // happens the uses are usually next to each other in the list.
8100     // To help reduce the number of CSE recomputations, process all
8101     // the uses of this user that we can find this way.
8102     do {
8103       SDUse &Use = UI.getUse();
8104       ++UI;
8105       Use.setNode(To);
8106       if (To->isDivergent() != From->isDivergent())
8107         updateDivergence(User);
8108     } while (UI != UE && *UI == User);
8109 
8110     // Now that we have modified User, add it back to the CSE maps.  If it
8111     // already exists there, recursively merge the results together.
8112     AddModifiedNodeToCSEMaps(User);
8113   }
8114 
8115   // If we just RAUW'd the root, take note.
8116   if (From == getRoot().getNode())
8117     setRoot(SDValue(To, getRoot().getResNo()));
8118 }
8119 
8120 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8121 /// This can cause recursive merging of nodes in the DAG.
8122 ///
8123 /// This version can replace From with any result values.  To must match the
8124 /// number and types of values returned by From.
8125 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8126   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8127     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8128 
8129   // Preserve Debug Info.
8130   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8131     transferDbgValues(SDValue(From, i), To[i]);
8132 
8133   // Iterate over just the existing users of From. See the comments in
8134   // the ReplaceAllUsesWith above.
8135   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8136   RAUWUpdateListener Listener(*this, UI, UE);
8137   while (UI != UE) {
8138     SDNode *User = *UI;
8139 
8140     // This node is about to morph, remove its old self from the CSE maps.
8141     RemoveNodeFromCSEMaps(User);
8142 
8143     // A user can appear in a use list multiple times, and when this happens the
8144     // uses are usually next to each other in the list.  To help reduce the
8145     // number of CSE and divergence recomputations, process all the uses of this
8146     // user that we can find this way.
8147     bool To_IsDivergent = false;
8148     do {
8149       SDUse &Use = UI.getUse();
8150       const SDValue &ToOp = To[Use.getResNo()];
8151       ++UI;
8152       Use.set(ToOp);
8153       To_IsDivergent |= ToOp->isDivergent();
8154     } while (UI != UE && *UI == User);
8155 
8156     if (To_IsDivergent != From->isDivergent())
8157       updateDivergence(User);
8158 
8159     // Now that we have modified User, add it back to the CSE maps.  If it
8160     // already exists there, recursively merge the results together.
8161     AddModifiedNodeToCSEMaps(User);
8162   }
8163 
8164   // If we just RAUW'd the root, take note.
8165   if (From == getRoot().getNode())
8166     setRoot(SDValue(To[getRoot().getResNo()]));
8167 }
8168 
8169 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8170 /// uses of other values produced by From.getNode() alone.  The Deleted
8171 /// vector is handled the same way as for ReplaceAllUsesWith.
8172 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8173   // Handle the really simple, really trivial case efficiently.
8174   if (From == To) return;
8175 
8176   // Handle the simple, trivial, case efficiently.
8177   if (From.getNode()->getNumValues() == 1) {
8178     ReplaceAllUsesWith(From, To);
8179     return;
8180   }
8181 
8182   // Preserve Debug Info.
8183   transferDbgValues(From, To);
8184 
8185   // Iterate over just the existing users of From. See the comments in
8186   // the ReplaceAllUsesWith above.
8187   SDNode::use_iterator UI = From.getNode()->use_begin(),
8188                        UE = From.getNode()->use_end();
8189   RAUWUpdateListener Listener(*this, UI, UE);
8190   while (UI != UE) {
8191     SDNode *User = *UI;
8192     bool UserRemovedFromCSEMaps = false;
8193 
8194     // A user can appear in a use list multiple times, and when this
8195     // happens the uses are usually next to each other in the list.
8196     // To help reduce the number of CSE recomputations, process all
8197     // the uses of this user that we can find this way.
8198     do {
8199       SDUse &Use = UI.getUse();
8200 
8201       // Skip uses of different values from the same node.
8202       if (Use.getResNo() != From.getResNo()) {
8203         ++UI;
8204         continue;
8205       }
8206 
8207       // If this node hasn't been modified yet, it's still in the CSE maps,
8208       // so remove its old self from the CSE maps.
8209       if (!UserRemovedFromCSEMaps) {
8210         RemoveNodeFromCSEMaps(User);
8211         UserRemovedFromCSEMaps = true;
8212       }
8213 
8214       ++UI;
8215       Use.set(To);
8216       if (To->isDivergent() != From->isDivergent())
8217         updateDivergence(User);
8218     } while (UI != UE && *UI == User);
8219     // We are iterating over all uses of the From node, so if a use
8220     // doesn't use the specific value, no changes are made.
8221     if (!UserRemovedFromCSEMaps)
8222       continue;
8223 
8224     // Now that we have modified User, add it back to the CSE maps.  If it
8225     // already exists there, recursively merge the results together.
8226     AddModifiedNodeToCSEMaps(User);
8227   }
8228 
8229   // If we just RAUW'd the root, take note.
8230   if (From == getRoot())
8231     setRoot(To);
8232 }
8233 
8234 namespace {
8235 
8236   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8237   /// to record information about a use.
8238   struct UseMemo {
8239     SDNode *User;
8240     unsigned Index;
8241     SDUse *Use;
8242   };
8243 
8244   /// operator< - Sort Memos by User.
8245   bool operator<(const UseMemo &L, const UseMemo &R) {
8246     return (intptr_t)L.User < (intptr_t)R.User;
8247   }
8248 
8249 } // end anonymous namespace
8250 
8251 void SelectionDAG::updateDivergence(SDNode * N)
8252 {
8253   if (TLI->isSDNodeAlwaysUniform(N))
8254     return;
8255   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8256   for (auto &Op : N->ops()) {
8257     if (Op.Val.getValueType() != MVT::Other)
8258       IsDivergent |= Op.getNode()->isDivergent();
8259   }
8260   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8261     N->SDNodeBits.IsDivergent = IsDivergent;
8262     for (auto U : N->uses()) {
8263       updateDivergence(U);
8264     }
8265   }
8266 }
8267 
8268 
8269 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode*>& Order) {
8270   DenseMap<SDNode *, unsigned> Degree;
8271   Order.reserve(AllNodes.size());
8272   for (auto & N : allnodes()) {
8273     unsigned NOps = N.getNumOperands();
8274     Degree[&N] = NOps;
8275     if (0 == NOps)
8276       Order.push_back(&N);
8277   }
8278   for (std::vector<SDNode *>::iterator I = Order.begin();
8279   I!=Order.end();++I) {
8280     SDNode * N = *I;
8281     for (auto U : N->uses()) {
8282       unsigned &UnsortedOps = Degree[U];
8283       if (0 == --UnsortedOps)
8284         Order.push_back(U);
8285     }
8286   }
8287 }
8288 
8289 #ifndef NDEBUG
8290 void SelectionDAG::VerifyDAGDiverence()
8291 {
8292   std::vector<SDNode*> TopoOrder;
8293   CreateTopologicalOrder(TopoOrder);
8294   const TargetLowering &TLI = getTargetLoweringInfo();
8295   DenseMap<const SDNode *, bool> DivergenceMap;
8296   for (auto &N : allnodes()) {
8297     DivergenceMap[&N] = false;
8298   }
8299   for (auto N : TopoOrder) {
8300     bool IsDivergent = DivergenceMap[N];
8301     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8302     for (auto &Op : N->ops()) {
8303       if (Op.Val.getValueType() != MVT::Other)
8304         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8305     }
8306     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8307       DivergenceMap[N] = true;
8308     }
8309   }
8310   for (auto &N : allnodes()) {
8311     (void)N;
8312     assert(DivergenceMap[&N] == N.isDivergent() &&
8313            "Divergence bit inconsistency detected\n");
8314   }
8315 }
8316 #endif
8317 
8318 
8319 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8320 /// uses of other values produced by From.getNode() alone.  The same value
8321 /// may appear in both the From and To list.  The Deleted vector is
8322 /// handled the same way as for ReplaceAllUsesWith.
8323 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8324                                               const SDValue *To,
8325                                               unsigned Num){
8326   // Handle the simple, trivial case efficiently.
8327   if (Num == 1)
8328     return ReplaceAllUsesOfValueWith(*From, *To);
8329 
8330   transferDbgValues(*From, *To);
8331 
8332   // Read up all the uses and make records of them. This helps
8333   // processing new uses that are introduced during the
8334   // replacement process.
8335   SmallVector<UseMemo, 4> Uses;
8336   for (unsigned i = 0; i != Num; ++i) {
8337     unsigned FromResNo = From[i].getResNo();
8338     SDNode *FromNode = From[i].getNode();
8339     for (SDNode::use_iterator UI = FromNode->use_begin(),
8340          E = FromNode->use_end(); UI != E; ++UI) {
8341       SDUse &Use = UI.getUse();
8342       if (Use.getResNo() == FromResNo) {
8343         UseMemo Memo = { *UI, i, &Use };
8344         Uses.push_back(Memo);
8345       }
8346     }
8347   }
8348 
8349   // Sort the uses, so that all the uses from a given User are together.
8350   llvm::sort(Uses);
8351 
8352   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8353        UseIndex != UseIndexEnd; ) {
8354     // We know that this user uses some value of From.  If it is the right
8355     // value, update it.
8356     SDNode *User = Uses[UseIndex].User;
8357 
8358     // This node is about to morph, remove its old self from the CSE maps.
8359     RemoveNodeFromCSEMaps(User);
8360 
8361     // The Uses array is sorted, so all the uses for a given User
8362     // are next to each other in the list.
8363     // To help reduce the number of CSE recomputations, process all
8364     // the uses of this user that we can find this way.
8365     do {
8366       unsigned i = Uses[UseIndex].Index;
8367       SDUse &Use = *Uses[UseIndex].Use;
8368       ++UseIndex;
8369 
8370       Use.set(To[i]);
8371     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8372 
8373     // Now that we have modified User, add it back to the CSE maps.  If it
8374     // already exists there, recursively merge the results together.
8375     AddModifiedNodeToCSEMaps(User);
8376   }
8377 }
8378 
8379 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8380 /// based on their topological order. It returns the maximum id and a vector
8381 /// of the SDNodes* in assigned order by reference.
8382 unsigned SelectionDAG::AssignTopologicalOrder() {
8383   unsigned DAGSize = 0;
8384 
8385   // SortedPos tracks the progress of the algorithm. Nodes before it are
8386   // sorted, nodes after it are unsorted. When the algorithm completes
8387   // it is at the end of the list.
8388   allnodes_iterator SortedPos = allnodes_begin();
8389 
8390   // Visit all the nodes. Move nodes with no operands to the front of
8391   // the list immediately. Annotate nodes that do have operands with their
8392   // operand count. Before we do this, the Node Id fields of the nodes
8393   // may contain arbitrary values. After, the Node Id fields for nodes
8394   // before SortedPos will contain the topological sort index, and the
8395   // Node Id fields for nodes At SortedPos and after will contain the
8396   // count of outstanding operands.
8397   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8398     SDNode *N = &*I++;
8399     checkForCycles(N, this);
8400     unsigned Degree = N->getNumOperands();
8401     if (Degree == 0) {
8402       // A node with no uses, add it to the result array immediately.
8403       N->setNodeId(DAGSize++);
8404       allnodes_iterator Q(N);
8405       if (Q != SortedPos)
8406         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8407       assert(SortedPos != AllNodes.end() && "Overran node list");
8408       ++SortedPos;
8409     } else {
8410       // Temporarily use the Node Id as scratch space for the degree count.
8411       N->setNodeId(Degree);
8412     }
8413   }
8414 
8415   // Visit all the nodes. As we iterate, move nodes into sorted order,
8416   // such that by the time the end is reached all nodes will be sorted.
8417   for (SDNode &Node : allnodes()) {
8418     SDNode *N = &Node;
8419     checkForCycles(N, this);
8420     // N is in sorted position, so all its uses have one less operand
8421     // that needs to be sorted.
8422     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8423          UI != UE; ++UI) {
8424       SDNode *P = *UI;
8425       unsigned Degree = P->getNodeId();
8426       assert(Degree != 0 && "Invalid node degree");
8427       --Degree;
8428       if (Degree == 0) {
8429         // All of P's operands are sorted, so P may sorted now.
8430         P->setNodeId(DAGSize++);
8431         if (P->getIterator() != SortedPos)
8432           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8433         assert(SortedPos != AllNodes.end() && "Overran node list");
8434         ++SortedPos;
8435       } else {
8436         // Update P's outstanding operand count.
8437         P->setNodeId(Degree);
8438       }
8439     }
8440     if (Node.getIterator() == SortedPos) {
8441 #ifndef NDEBUG
8442       allnodes_iterator I(N);
8443       SDNode *S = &*++I;
8444       dbgs() << "Overran sorted position:\n";
8445       S->dumprFull(this); dbgs() << "\n";
8446       dbgs() << "Checking if this is due to cycles\n";
8447       checkForCycles(this, true);
8448 #endif
8449       llvm_unreachable(nullptr);
8450     }
8451   }
8452 
8453   assert(SortedPos == AllNodes.end() &&
8454          "Topological sort incomplete!");
8455   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8456          "First node in topological sort is not the entry token!");
8457   assert(AllNodes.front().getNodeId() == 0 &&
8458          "First node in topological sort has non-zero id!");
8459   assert(AllNodes.front().getNumOperands() == 0 &&
8460          "First node in topological sort has operands!");
8461   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8462          "Last node in topologic sort has unexpected id!");
8463   assert(AllNodes.back().use_empty() &&
8464          "Last node in topologic sort has users!");
8465   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8466   return DAGSize;
8467 }
8468 
8469 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8470 /// value is produced by SD.
8471 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8472   if (SD) {
8473     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8474     SD->setHasDebugValue(true);
8475   }
8476   DbgInfo->add(DB, SD, isParameter);
8477 }
8478 
8479 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8480   DbgInfo->add(DB);
8481 }
8482 
8483 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8484                                                    SDValue NewMemOp) {
8485   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8486   // The new memory operation must have the same position as the old load in
8487   // terms of memory dependency. Create a TokenFactor for the old load and new
8488   // memory operation and update uses of the old load's output chain to use that
8489   // TokenFactor.
8490   SDValue OldChain = SDValue(OldLoad, 1);
8491   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8492   if (!OldLoad->hasAnyUseOfValue(1))
8493     return NewChain;
8494 
8495   SDValue TokenFactor =
8496       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8497   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8498   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8499   return TokenFactor;
8500 }
8501 
8502 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8503                                                      Function **OutFunction) {
8504   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8505 
8506   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8507   auto *Module = MF->getFunction().getParent();
8508   auto *Function = Module->getFunction(Symbol);
8509 
8510   if (OutFunction != nullptr)
8511       *OutFunction = Function;
8512 
8513   if (Function != nullptr) {
8514     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8515     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8516   }
8517 
8518   std::string ErrorStr;
8519   raw_string_ostream ErrorFormatter(ErrorStr);
8520 
8521   ErrorFormatter << "Undefined external symbol ";
8522   ErrorFormatter << '"' << Symbol << '"';
8523   ErrorFormatter.flush();
8524 
8525   report_fatal_error(ErrorStr);
8526 }
8527 
8528 //===----------------------------------------------------------------------===//
8529 //                              SDNode Class
8530 //===----------------------------------------------------------------------===//
8531 
8532 bool llvm::isNullConstant(SDValue V) {
8533   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8534   return Const != nullptr && Const->isNullValue();
8535 }
8536 
8537 bool llvm::isNullFPConstant(SDValue V) {
8538   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8539   return Const != nullptr && Const->isZero() && !Const->isNegative();
8540 }
8541 
8542 bool llvm::isAllOnesConstant(SDValue V) {
8543   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8544   return Const != nullptr && Const->isAllOnesValue();
8545 }
8546 
8547 bool llvm::isOneConstant(SDValue V) {
8548   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8549   return Const != nullptr && Const->isOne();
8550 }
8551 
8552 SDValue llvm::peekThroughBitcasts(SDValue V) {
8553   while (V.getOpcode() == ISD::BITCAST)
8554     V = V.getOperand(0);
8555   return V;
8556 }
8557 
8558 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8559   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8560     V = V.getOperand(0);
8561   return V;
8562 }
8563 
8564 bool llvm::isBitwiseNot(SDValue V) {
8565   if (V.getOpcode() != ISD::XOR)
8566     return false;
8567   ConstantSDNode *C = isConstOrConstSplat(peekThroughBitcasts(V.getOperand(1)));
8568   return C && C->isAllOnesValue();
8569 }
8570 
8571 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs) {
8572   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8573     return CN;
8574 
8575   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8576     BitVector UndefElements;
8577     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8578 
8579     // BuildVectors can truncate their operands. Ignore that case here.
8580     if (CN && (UndefElements.none() || AllowUndefs) &&
8581         CN->getValueType(0) == N.getValueType().getScalarType())
8582       return CN;
8583   }
8584 
8585   return nullptr;
8586 }
8587 
8588 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8589                                           bool AllowUndefs) {
8590   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8591     return CN;
8592 
8593   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8594     BitVector UndefElements;
8595     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8596 
8597     // BuildVectors can truncate their operands. Ignore that case here.
8598     if (CN && (UndefElements.none() || AllowUndefs) &&
8599         CN->getValueType(0) == N.getValueType().getScalarType())
8600       return CN;
8601   }
8602 
8603   return nullptr;
8604 }
8605 
8606 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8607   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8608     return CN;
8609 
8610   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8611     BitVector UndefElements;
8612     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8613     if (CN && (UndefElements.none() || AllowUndefs))
8614       return CN;
8615   }
8616 
8617   return nullptr;
8618 }
8619 
8620 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8621                                               const APInt &DemandedElts,
8622                                               bool AllowUndefs) {
8623   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8624     return CN;
8625 
8626   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8627     BitVector UndefElements;
8628     ConstantFPSDNode *CN =
8629         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8630     if (CN && (UndefElements.none() || AllowUndefs))
8631       return CN;
8632   }
8633 
8634   return nullptr;
8635 }
8636 
8637 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8638   // TODO: may want to use peekThroughBitcast() here.
8639   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8640   return C && C->isNullValue();
8641 }
8642 
8643 bool llvm::isOneOrOneSplat(SDValue N) {
8644   // TODO: may want to use peekThroughBitcast() here.
8645   unsigned BitWidth = N.getScalarValueSizeInBits();
8646   ConstantSDNode *C = isConstOrConstSplat(N);
8647   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8648 }
8649 
8650 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8651   N = peekThroughBitcasts(N);
8652   unsigned BitWidth = N.getScalarValueSizeInBits();
8653   ConstantSDNode *C = isConstOrConstSplat(N);
8654   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8655 }
8656 
8657 HandleSDNode::~HandleSDNode() {
8658   DropOperands();
8659 }
8660 
8661 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8662                                          const DebugLoc &DL,
8663                                          const GlobalValue *GA, EVT VT,
8664                                          int64_t o, unsigned char TF)
8665     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8666   TheGlobal = GA;
8667 }
8668 
8669 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8670                                          EVT VT, unsigned SrcAS,
8671                                          unsigned DestAS)
8672     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8673       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8674 
8675 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8676                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8677     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8678   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8679   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8680   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8681   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8682 
8683   // We check here that the size of the memory operand fits within the size of
8684   // the MMO. This is because the MMO might indicate only a possible address
8685   // range instead of specifying the affected memory addresses precisely.
8686   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
8687 }
8688 
8689 /// Profile - Gather unique data for the node.
8690 ///
8691 void SDNode::Profile(FoldingSetNodeID &ID) const {
8692   AddNodeIDNode(ID, this);
8693 }
8694 
8695 namespace {
8696 
8697   struct EVTArray {
8698     std::vector<EVT> VTs;
8699 
8700     EVTArray() {
8701       VTs.reserve(MVT::LAST_VALUETYPE);
8702       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
8703         VTs.push_back(MVT((MVT::SimpleValueType)i));
8704     }
8705   };
8706 
8707 } // end anonymous namespace
8708 
8709 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
8710 static ManagedStatic<EVTArray> SimpleVTArray;
8711 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
8712 
8713 /// getValueTypeList - Return a pointer to the specified value type.
8714 ///
8715 const EVT *SDNode::getValueTypeList(EVT VT) {
8716   if (VT.isExtended()) {
8717     sys::SmartScopedLock<true> Lock(*VTMutex);
8718     return &(*EVTs->insert(VT).first);
8719   } else {
8720     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
8721            "Value type out of range!");
8722     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
8723   }
8724 }
8725 
8726 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8727 /// indicated value.  This method ignores uses of other values defined by this
8728 /// operation.
8729 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
8730   assert(Value < getNumValues() && "Bad value!");
8731 
8732   // TODO: Only iterate over uses of a given value of the node
8733   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
8734     if (UI.getUse().getResNo() == Value) {
8735       if (NUses == 0)
8736         return false;
8737       --NUses;
8738     }
8739   }
8740 
8741   // Found exactly the right number of uses?
8742   return NUses == 0;
8743 }
8744 
8745 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8746 /// value. This method ignores uses of other values defined by this operation.
8747 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
8748   assert(Value < getNumValues() && "Bad value!");
8749 
8750   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
8751     if (UI.getUse().getResNo() == Value)
8752       return true;
8753 
8754   return false;
8755 }
8756 
8757 /// isOnlyUserOf - Return true if this node is the only use of N.
8758 bool SDNode::isOnlyUserOf(const SDNode *N) const {
8759   bool Seen = false;
8760   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8761     SDNode *User = *I;
8762     if (User == this)
8763       Seen = true;
8764     else
8765       return false;
8766   }
8767 
8768   return Seen;
8769 }
8770 
8771 /// Return true if the only users of N are contained in Nodes.
8772 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
8773   bool Seen = false;
8774   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8775     SDNode *User = *I;
8776     if (llvm::any_of(Nodes,
8777                      [&User](const SDNode *Node) { return User == Node; }))
8778       Seen = true;
8779     else
8780       return false;
8781   }
8782 
8783   return Seen;
8784 }
8785 
8786 /// isOperand - Return true if this node is an operand of N.
8787 bool SDValue::isOperandOf(const SDNode *N) const {
8788   for (const SDValue &Op : N->op_values())
8789     if (*this == Op)
8790       return true;
8791   return false;
8792 }
8793 
8794 bool SDNode::isOperandOf(const SDNode *N) const {
8795   for (const SDValue &Op : N->op_values())
8796     if (this == Op.getNode())
8797       return true;
8798   return false;
8799 }
8800 
8801 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8802 /// be a chain) reaches the specified operand without crossing any
8803 /// side-effecting instructions on any chain path.  In practice, this looks
8804 /// through token factors and non-volatile loads.  In order to remain efficient,
8805 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8806 ///
8807 /// Note that we only need to examine chains when we're searching for
8808 /// side-effects; SelectionDAG requires that all side-effects are represented
8809 /// by chains, even if another operand would force a specific ordering. This
8810 /// constraint is necessary to allow transformations like splitting loads.
8811 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
8812                                              unsigned Depth) const {
8813   if (*this == Dest) return true;
8814 
8815   // Don't search too deeply, we just want to be able to see through
8816   // TokenFactor's etc.
8817   if (Depth == 0) return false;
8818 
8819   // If this is a token factor, all inputs to the TF happen in parallel.
8820   if (getOpcode() == ISD::TokenFactor) {
8821     // First, try a shallow search.
8822     if (is_contained((*this)->ops(), Dest)) {
8823       // We found the chain we want as an operand of this TokenFactor.
8824       // Essentially, we reach the chain without side-effects if we could
8825       // serialize the TokenFactor into a simple chain of operations with
8826       // Dest as the last operation. This is automatically true if the
8827       // chain has one use: there are no other ordering constraints.
8828       // If the chain has more than one use, we give up: some other
8829       // use of Dest might force a side-effect between Dest and the current
8830       // node.
8831       if (Dest.hasOneUse())
8832         return true;
8833     }
8834     // Next, try a deep search: check whether every operand of the TokenFactor
8835     // reaches Dest.
8836     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
8837       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
8838     });
8839   }
8840 
8841   // Loads don't have side effects, look through them.
8842   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
8843     if (!Ld->isVolatile())
8844       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
8845   }
8846   return false;
8847 }
8848 
8849 bool SDNode::hasPredecessor(const SDNode *N) const {
8850   SmallPtrSet<const SDNode *, 32> Visited;
8851   SmallVector<const SDNode *, 16> Worklist;
8852   Worklist.push_back(this);
8853   return hasPredecessorHelper(N, Visited, Worklist);
8854 }
8855 
8856 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
8857   this->Flags.intersectWith(Flags);
8858 }
8859 
8860 SDValue
8861 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
8862                                   ArrayRef<ISD::NodeType> CandidateBinOps) {
8863   // The pattern must end in an extract from index 0.
8864   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8865       !isNullConstant(Extract->getOperand(1)))
8866     return SDValue();
8867 
8868   SDValue Op = Extract->getOperand(0);
8869   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
8870 
8871   // Match against one of the candidate binary ops.
8872   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
8873         return Op.getOpcode() == unsigned(BinOp);
8874       }))
8875     return SDValue();
8876 
8877   // At each stage, we're looking for something that looks like:
8878   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
8879   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
8880   //                               i32 undef, i32 undef, i32 undef, i32 undef>
8881   // %a = binop <8 x i32> %op, %s
8882   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
8883   // we expect something like:
8884   // <4,5,6,7,u,u,u,u>
8885   // <2,3,u,u,u,u,u,u>
8886   // <1,u,u,u,u,u,u,u>
8887   unsigned CandidateBinOp = Op.getOpcode();
8888   for (unsigned i = 0; i < Stages; ++i) {
8889     if (Op.getOpcode() != CandidateBinOp)
8890       return SDValue();
8891 
8892     SDValue Op0 = Op.getOperand(0);
8893     SDValue Op1 = Op.getOperand(1);
8894 
8895     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
8896     if (Shuffle) {
8897       Op = Op1;
8898     } else {
8899       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
8900       Op = Op0;
8901     }
8902 
8903     // The first operand of the shuffle should be the same as the other operand
8904     // of the binop.
8905     if (!Shuffle || Shuffle->getOperand(0) != Op)
8906       return SDValue();
8907 
8908     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
8909     for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index)
8910       if (Shuffle->getMaskElt(Index) != MaskEnd + Index)
8911         return SDValue();
8912   }
8913 
8914   BinOp = (ISD::NodeType)CandidateBinOp;
8915   return Op;
8916 }
8917 
8918 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
8919   assert(N->getNumValues() == 1 &&
8920          "Can't unroll a vector with multiple results!");
8921 
8922   EVT VT = N->getValueType(0);
8923   unsigned NE = VT.getVectorNumElements();
8924   EVT EltVT = VT.getVectorElementType();
8925   SDLoc dl(N);
8926 
8927   SmallVector<SDValue, 8> Scalars;
8928   SmallVector<SDValue, 4> Operands(N->getNumOperands());
8929 
8930   // If ResNE is 0, fully unroll the vector op.
8931   if (ResNE == 0)
8932     ResNE = NE;
8933   else if (NE > ResNE)
8934     NE = ResNE;
8935 
8936   unsigned i;
8937   for (i= 0; i != NE; ++i) {
8938     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
8939       SDValue Operand = N->getOperand(j);
8940       EVT OperandVT = Operand.getValueType();
8941       if (OperandVT.isVector()) {
8942         // A vector operand; extract a single element.
8943         EVT OperandEltVT = OperandVT.getVectorElementType();
8944         Operands[j] =
8945             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
8946                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
8947       } else {
8948         // A scalar operand; just use it as is.
8949         Operands[j] = Operand;
8950       }
8951     }
8952 
8953     switch (N->getOpcode()) {
8954     default: {
8955       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
8956                                 N->getFlags()));
8957       break;
8958     }
8959     case ISD::VSELECT:
8960       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
8961       break;
8962     case ISD::SHL:
8963     case ISD::SRA:
8964     case ISD::SRL:
8965     case ISD::ROTL:
8966     case ISD::ROTR:
8967       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
8968                                getShiftAmountOperand(Operands[0].getValueType(),
8969                                                      Operands[1])));
8970       break;
8971     case ISD::SIGN_EXTEND_INREG:
8972     case ISD::FP_ROUND_INREG: {
8973       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
8974       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
8975                                 Operands[0],
8976                                 getValueType(ExtVT)));
8977     }
8978     }
8979   }
8980 
8981   for (; i < ResNE; ++i)
8982     Scalars.push_back(getUNDEF(EltVT));
8983 
8984   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
8985   return getBuildVector(VecVT, dl, Scalars);
8986 }
8987 
8988 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
8989     SDNode *N, unsigned ResNE) {
8990   unsigned Opcode = N->getOpcode();
8991   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
8992           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
8993           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
8994          "Expected an overflow opcode");
8995 
8996   EVT ResVT = N->getValueType(0);
8997   EVT OvVT = N->getValueType(1);
8998   EVT ResEltVT = ResVT.getVectorElementType();
8999   EVT OvEltVT = OvVT.getVectorElementType();
9000   SDLoc dl(N);
9001 
9002   // If ResNE is 0, fully unroll the vector op.
9003   unsigned NE = ResVT.getVectorNumElements();
9004   if (ResNE == 0)
9005     ResNE = NE;
9006   else if (NE > ResNE)
9007     NE = ResNE;
9008 
9009   SmallVector<SDValue, 8> LHSScalars;
9010   SmallVector<SDValue, 8> RHSScalars;
9011   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9012   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9013 
9014   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9015   SDVTList VTs = getVTList(ResEltVT, SVT);
9016   SmallVector<SDValue, 8> ResScalars;
9017   SmallVector<SDValue, 8> OvScalars;
9018   for (unsigned i = 0; i < NE; ++i) {
9019     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9020     SDValue Ov =
9021         getSelect(dl, OvEltVT, Res.getValue(1),
9022                   getBoolConstant(true, dl, OvEltVT, ResVT),
9023                   getConstant(0, dl, OvEltVT));
9024 
9025     ResScalars.push_back(Res);
9026     OvScalars.push_back(Ov);
9027   }
9028 
9029   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9030   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9031 
9032   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9033   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9034   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9035                         getBuildVector(NewOvVT, dl, OvScalars));
9036 }
9037 
9038 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9039                                                   LoadSDNode *Base,
9040                                                   unsigned Bytes,
9041                                                   int Dist) const {
9042   if (LD->isVolatile() || Base->isVolatile())
9043     return false;
9044   if (LD->isIndexed() || Base->isIndexed())
9045     return false;
9046   if (LD->getChain() != Base->getChain())
9047     return false;
9048   EVT VT = LD->getValueType(0);
9049   if (VT.getSizeInBits() / 8 != Bytes)
9050     return false;
9051 
9052   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9053   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9054 
9055   int64_t Offset = 0;
9056   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9057     return (Dist * Bytes == Offset);
9058   return false;
9059 }
9060 
9061 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9062 /// it cannot be inferred.
9063 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9064   // If this is a GlobalAddress + cst, return the alignment.
9065   const GlobalValue *GV;
9066   int64_t GVOffset = 0;
9067   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9068     unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
9069     KnownBits Known(IdxWidth);
9070     llvm::computeKnownBits(GV, Known, getDataLayout());
9071     unsigned AlignBits = Known.countMinTrailingZeros();
9072     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9073     if (Align)
9074       return MinAlign(Align, GVOffset);
9075   }
9076 
9077   // If this is a direct reference to a stack slot, use information about the
9078   // stack slot's alignment.
9079   int FrameIdx = 1 << 31;
9080   int64_t FrameOffset = 0;
9081   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9082     FrameIdx = FI->getIndex();
9083   } else if (isBaseWithConstantOffset(Ptr) &&
9084              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9085     // Handle FI+Cst
9086     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9087     FrameOffset = Ptr.getConstantOperandVal(1);
9088   }
9089 
9090   if (FrameIdx != (1 << 31)) {
9091     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9092     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9093                                     FrameOffset);
9094     return FIInfoAlign;
9095   }
9096 
9097   return 0;
9098 }
9099 
9100 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9101 /// which is split (or expanded) into two not necessarily identical pieces.
9102 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9103   // Currently all types are split in half.
9104   EVT LoVT, HiVT;
9105   if (!VT.isVector())
9106     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9107   else
9108     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9109 
9110   return std::make_pair(LoVT, HiVT);
9111 }
9112 
9113 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9114 /// low/high part.
9115 std::pair<SDValue, SDValue>
9116 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9117                           const EVT &HiVT) {
9118   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9119          N.getValueType().getVectorNumElements() &&
9120          "More vector elements requested than available!");
9121   SDValue Lo, Hi;
9122   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
9123                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9124   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9125                getConstant(LoVT.getVectorNumElements(), DL,
9126                            TLI->getVectorIdxTy(getDataLayout())));
9127   return std::make_pair(Lo, Hi);
9128 }
9129 
9130 void SelectionDAG::ExtractVectorElements(SDValue Op,
9131                                          SmallVectorImpl<SDValue> &Args,
9132                                          unsigned Start, unsigned Count) {
9133   EVT VT = Op.getValueType();
9134   if (Count == 0)
9135     Count = VT.getVectorNumElements();
9136 
9137   EVT EltVT = VT.getVectorElementType();
9138   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
9139   SDLoc SL(Op);
9140   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9141     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9142                            Op, getConstant(i, SL, IdxTy)));
9143   }
9144 }
9145 
9146 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9147 unsigned GlobalAddressSDNode::getAddressSpace() const {
9148   return getGlobal()->getType()->getAddressSpace();
9149 }
9150 
9151 Type *ConstantPoolSDNode::getType() const {
9152   if (isMachineConstantPoolEntry())
9153     return Val.MachineCPVal->getType();
9154   return Val.ConstVal->getType();
9155 }
9156 
9157 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9158                                         unsigned &SplatBitSize,
9159                                         bool &HasAnyUndefs,
9160                                         unsigned MinSplatBits,
9161                                         bool IsBigEndian) const {
9162   EVT VT = getValueType(0);
9163   assert(VT.isVector() && "Expected a vector type");
9164   unsigned VecWidth = VT.getSizeInBits();
9165   if (MinSplatBits > VecWidth)
9166     return false;
9167 
9168   // FIXME: The widths are based on this node's type, but build vectors can
9169   // truncate their operands.
9170   SplatValue = APInt(VecWidth, 0);
9171   SplatUndef = APInt(VecWidth, 0);
9172 
9173   // Get the bits. Bits with undefined values (when the corresponding element
9174   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9175   // in SplatValue. If any of the values are not constant, give up and return
9176   // false.
9177   unsigned int NumOps = getNumOperands();
9178   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9179   unsigned EltWidth = VT.getScalarSizeInBits();
9180 
9181   for (unsigned j = 0; j < NumOps; ++j) {
9182     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9183     SDValue OpVal = getOperand(i);
9184     unsigned BitPos = j * EltWidth;
9185 
9186     if (OpVal.isUndef())
9187       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9188     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9189       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9190     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9191       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9192     else
9193       return false;
9194   }
9195 
9196   // The build_vector is all constants or undefs. Find the smallest element
9197   // size that splats the vector.
9198   HasAnyUndefs = (SplatUndef != 0);
9199 
9200   // FIXME: This does not work for vectors with elements less than 8 bits.
9201   while (VecWidth > 8) {
9202     unsigned HalfSize = VecWidth / 2;
9203     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9204     APInt LowValue = SplatValue.trunc(HalfSize);
9205     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9206     APInt LowUndef = SplatUndef.trunc(HalfSize);
9207 
9208     // If the two halves do not match (ignoring undef bits), stop here.
9209     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9210         MinSplatBits > HalfSize)
9211       break;
9212 
9213     SplatValue = HighValue | LowValue;
9214     SplatUndef = HighUndef & LowUndef;
9215 
9216     VecWidth = HalfSize;
9217   }
9218 
9219   SplatBitSize = VecWidth;
9220   return true;
9221 }
9222 
9223 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9224                                          BitVector *UndefElements) const {
9225   if (UndefElements) {
9226     UndefElements->clear();
9227     UndefElements->resize(getNumOperands());
9228   }
9229   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9230          "Unexpected vector size");
9231   if (!DemandedElts)
9232     return SDValue();
9233   SDValue Splatted;
9234   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9235     if (!DemandedElts[i])
9236       continue;
9237     SDValue Op = getOperand(i);
9238     if (Op.isUndef()) {
9239       if (UndefElements)
9240         (*UndefElements)[i] = true;
9241     } else if (!Splatted) {
9242       Splatted = Op;
9243     } else if (Splatted != Op) {
9244       return SDValue();
9245     }
9246   }
9247 
9248   if (!Splatted) {
9249     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9250     assert(getOperand(FirstDemandedIdx).isUndef() &&
9251            "Can only have a splat without a constant for all undefs.");
9252     return getOperand(FirstDemandedIdx);
9253   }
9254 
9255   return Splatted;
9256 }
9257 
9258 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9259   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9260   return getSplatValue(DemandedElts, UndefElements);
9261 }
9262 
9263 ConstantSDNode *
9264 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9265                                         BitVector *UndefElements) const {
9266   return dyn_cast_or_null<ConstantSDNode>(
9267       getSplatValue(DemandedElts, UndefElements));
9268 }
9269 
9270 ConstantSDNode *
9271 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9272   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9273 }
9274 
9275 ConstantFPSDNode *
9276 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9277                                           BitVector *UndefElements) const {
9278   return dyn_cast_or_null<ConstantFPSDNode>(
9279       getSplatValue(DemandedElts, UndefElements));
9280 }
9281 
9282 ConstantFPSDNode *
9283 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9284   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9285 }
9286 
9287 int32_t
9288 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9289                                                    uint32_t BitWidth) const {
9290   if (ConstantFPSDNode *CN =
9291           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9292     bool IsExact;
9293     APSInt IntVal(BitWidth);
9294     const APFloat &APF = CN->getValueAPF();
9295     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9296             APFloat::opOK ||
9297         !IsExact)
9298       return -1;
9299 
9300     return IntVal.exactLogBase2();
9301   }
9302   return -1;
9303 }
9304 
9305 bool BuildVectorSDNode::isConstant() const {
9306   for (const SDValue &Op : op_values()) {
9307     unsigned Opc = Op.getOpcode();
9308     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9309       return false;
9310   }
9311   return true;
9312 }
9313 
9314 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9315   // Find the first non-undef value in the shuffle mask.
9316   unsigned i, e;
9317   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9318     /* search */;
9319 
9320   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
9321 
9322   // Make sure all remaining elements are either undef or the same as the first
9323   // non-undef value.
9324   for (int Idx = Mask[i]; i != e; ++i)
9325     if (Mask[i] >= 0 && Mask[i] != Idx)
9326       return false;
9327   return true;
9328 }
9329 
9330 // Returns the SDNode if it is a constant integer BuildVector
9331 // or constant integer.
9332 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9333   if (isa<ConstantSDNode>(N))
9334     return N.getNode();
9335   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9336     return N.getNode();
9337   // Treat a GlobalAddress supporting constant offset folding as a
9338   // constant integer.
9339   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9340     if (GA->getOpcode() == ISD::GlobalAddress &&
9341         TLI->isOffsetFoldingLegal(GA))
9342       return GA;
9343   return nullptr;
9344 }
9345 
9346 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9347   if (isa<ConstantFPSDNode>(N))
9348     return N.getNode();
9349 
9350   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9351     return N.getNode();
9352 
9353   return nullptr;
9354 }
9355 
9356 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9357   assert(!Node->OperandList && "Node already has operands");
9358   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9359          "too many operands to fit into SDNode");
9360   SDUse *Ops = OperandRecycler.allocate(
9361       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9362 
9363   bool IsDivergent = false;
9364   for (unsigned I = 0; I != Vals.size(); ++I) {
9365     Ops[I].setUser(Node);
9366     Ops[I].setInitial(Vals[I]);
9367     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9368       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9369   }
9370   Node->NumOperands = Vals.size();
9371   Node->OperandList = Ops;
9372   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9373   if (!TLI->isSDNodeAlwaysUniform(Node))
9374     Node->SDNodeBits.IsDivergent = IsDivergent;
9375   checkForCycles(Node);
9376 }
9377 
9378 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9379                                      SmallVectorImpl<SDValue> &Vals) {
9380   size_t Limit = SDNode::getMaxNumOperands();
9381   while (Vals.size() > Limit) {
9382     unsigned SliceIdx = Vals.size() - Limit;
9383     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9384     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9385     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9386     Vals.emplace_back(NewTF);
9387   }
9388   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9389 }
9390 
9391 #ifndef NDEBUG
9392 static void checkForCyclesHelper(const SDNode *N,
9393                                  SmallPtrSetImpl<const SDNode*> &Visited,
9394                                  SmallPtrSetImpl<const SDNode*> &Checked,
9395                                  const llvm::SelectionDAG *DAG) {
9396   // If this node has already been checked, don't check it again.
9397   if (Checked.count(N))
9398     return;
9399 
9400   // If a node has already been visited on this depth-first walk, reject it as
9401   // a cycle.
9402   if (!Visited.insert(N).second) {
9403     errs() << "Detected cycle in SelectionDAG\n";
9404     dbgs() << "Offending node:\n";
9405     N->dumprFull(DAG); dbgs() << "\n";
9406     abort();
9407   }
9408 
9409   for (const SDValue &Op : N->op_values())
9410     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9411 
9412   Checked.insert(N);
9413   Visited.erase(N);
9414 }
9415 #endif
9416 
9417 void llvm::checkForCycles(const llvm::SDNode *N,
9418                           const llvm::SelectionDAG *DAG,
9419                           bool force) {
9420 #ifndef NDEBUG
9421   bool check = force;
9422 #ifdef EXPENSIVE_CHECKS
9423   check = true;
9424 #endif  // EXPENSIVE_CHECKS
9425   if (check) {
9426     assert(N && "Checking nonexistent SDNode");
9427     SmallPtrSet<const SDNode*, 32> visited;
9428     SmallPtrSet<const SDNode*, 32> checked;
9429     checkForCyclesHelper(N, visited, checked, DAG);
9430   }
9431 #endif  // !NDEBUG
9432 }
9433 
9434 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9435   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9436 }
9437