1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   auto *BV = dyn_cast<BuildVectorSDNode>(N);
143   if (!BV)
144     return false;
145 
146   APInt SplatUndef;
147   unsigned SplatBitSize;
148   bool HasUndefs;
149   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
150   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
151                              EltSize) &&
152          EltSize == SplatBitSize;
153 }
154 
155 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
156 // specializations of the more general isConstantSplatVector()?
157 
158 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
159   // Look through a bit convert.
160   while (N->getOpcode() == ISD::BITCAST)
161     N = N->getOperand(0).getNode();
162 
163   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
164 
165   unsigned i = 0, e = N->getNumOperands();
166 
167   // Skip over all of the undef values.
168   while (i != e && N->getOperand(i).isUndef())
169     ++i;
170 
171   // Do not accept an all-undef vector.
172   if (i == e) return false;
173 
174   // Do not accept build_vectors that aren't all constants or which have non-~0
175   // elements. We have to be a bit careful here, as the type of the constant
176   // may not be the same as the type of the vector elements due to type
177   // legalization (the elements are promoted to a legal type for the target and
178   // a vector of a type may be legal when the base element type is not).
179   // We only want to check enough bits to cover the vector elements, because
180   // we care if the resultant vector is all ones, not whether the individual
181   // constants are.
182   SDValue NotZero = N->getOperand(i);
183   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
184   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
185     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
186       return false;
187   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
188     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
189       return false;
190   } else
191     return false;
192 
193   // Okay, we have at least one ~0 value, check to see if the rest match or are
194   // undefs. Even with the above element type twiddling, this should be OK, as
195   // the same type legalization should have applied to all the elements.
196   for (++i; i != e; ++i)
197     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
198       return false;
199   return true;
200 }
201 
202 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
203   // Look through a bit convert.
204   while (N->getOpcode() == ISD::BITCAST)
205     N = N->getOperand(0).getNode();
206 
207   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
208 
209   bool IsAllUndef = true;
210   for (const SDValue &Op : N->op_values()) {
211     if (Op.isUndef())
212       continue;
213     IsAllUndef = false;
214     // Do not accept build_vectors that aren't all constants or which have non-0
215     // elements. We have to be a bit careful here, as the type of the constant
216     // may not be the same as the type of the vector elements due to type
217     // legalization (the elements are promoted to a legal type for the target
218     // and a vector of a type may be legal when the base element type is not).
219     // We only want to check enough bits to cover the vector elements, because
220     // we care if the resultant vector is all zeros, not whether the individual
221     // constants are.
222     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
223     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
224       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
225         return false;
226     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
227       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
228         return false;
229     } else
230       return false;
231   }
232 
233   // Do not accept an all-undef vector.
234   if (IsAllUndef)
235     return false;
236   return true;
237 }
238 
239 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
240   if (N->getOpcode() != ISD::BUILD_VECTOR)
241     return false;
242 
243   for (const SDValue &Op : N->op_values()) {
244     if (Op.isUndef())
245       continue;
246     if (!isa<ConstantSDNode>(Op))
247       return false;
248   }
249   return true;
250 }
251 
252 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
253   if (N->getOpcode() != ISD::BUILD_VECTOR)
254     return false;
255 
256   for (const SDValue &Op : N->op_values()) {
257     if (Op.isUndef())
258       continue;
259     if (!isa<ConstantFPSDNode>(Op))
260       return false;
261   }
262   return true;
263 }
264 
265 bool ISD::allOperandsUndef(const SDNode *N) {
266   // Return false if the node has no operands.
267   // This is "logically inconsistent" with the definition of "all" but
268   // is probably the desired behavior.
269   if (N->getNumOperands() == 0)
270     return false;
271   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
272 }
273 
274 bool ISD::matchUnaryPredicate(SDValue Op,
275                               std::function<bool(ConstantSDNode *)> Match,
276                               bool AllowUndefs) {
277   // FIXME: Add support for scalar UNDEF cases?
278   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
279     return Match(Cst);
280 
281   // FIXME: Add support for vector UNDEF cases?
282   if (ISD::BUILD_VECTOR != Op.getOpcode())
283     return false;
284 
285   EVT SVT = Op.getValueType().getScalarType();
286   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
287     if (AllowUndefs && Op.getOperand(i).isUndef()) {
288       if (!Match(nullptr))
289         return false;
290       continue;
291     }
292 
293     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
294     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
295       return false;
296   }
297   return true;
298 }
299 
300 bool ISD::matchBinaryPredicate(
301     SDValue LHS, SDValue RHS,
302     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
303     bool AllowUndefs, bool AllowTypeMismatch) {
304   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
305     return false;
306 
307   // TODO: Add support for scalar UNDEF cases?
308   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
309     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
310       return Match(LHSCst, RHSCst);
311 
312   // TODO: Add support for vector UNDEF cases?
313   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
314       ISD::BUILD_VECTOR != RHS.getOpcode())
315     return false;
316 
317   EVT SVT = LHS.getValueType().getScalarType();
318   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
319     SDValue LHSOp = LHS.getOperand(i);
320     SDValue RHSOp = RHS.getOperand(i);
321     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
322     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
323     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
324     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
325     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
326       return false;
327     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
328                                LHSOp.getValueType() != RHSOp.getValueType()))
329       return false;
330     if (!Match(LHSCst, RHSCst))
331       return false;
332   }
333   return true;
334 }
335 
336 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
337   switch (VecReduceOpcode) {
338   default:
339     llvm_unreachable("Expected VECREDUCE opcode");
340   case ISD::VECREDUCE_FADD:
341     return ISD::FADD;
342   case ISD::VECREDUCE_FMUL:
343     return ISD::FMUL;
344   case ISD::VECREDUCE_ADD:
345     return ISD::ADD;
346   case ISD::VECREDUCE_MUL:
347     return ISD::MUL;
348   case ISD::VECREDUCE_AND:
349     return ISD::AND;
350   case ISD::VECREDUCE_OR:
351     return ISD::OR;
352   case ISD::VECREDUCE_XOR:
353     return ISD::XOR;
354   case ISD::VECREDUCE_SMAX:
355     return ISD::SMAX;
356   case ISD::VECREDUCE_SMIN:
357     return ISD::SMIN;
358   case ISD::VECREDUCE_UMAX:
359     return ISD::UMAX;
360   case ISD::VECREDUCE_UMIN:
361     return ISD::UMIN;
362   case ISD::VECREDUCE_FMAX:
363     return ISD::FMAXNUM;
364   case ISD::VECREDUCE_FMIN:
365     return ISD::FMINNUM;
366   }
367 }
368 
369 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
370   switch (ExtType) {
371   case ISD::EXTLOAD:
372     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
373   case ISD::SEXTLOAD:
374     return ISD::SIGN_EXTEND;
375   case ISD::ZEXTLOAD:
376     return ISD::ZERO_EXTEND;
377   default:
378     break;
379   }
380 
381   llvm_unreachable("Invalid LoadExtType");
382 }
383 
384 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
385   // To perform this operation, we just need to swap the L and G bits of the
386   // operation.
387   unsigned OldL = (Operation >> 2) & 1;
388   unsigned OldG = (Operation >> 1) & 1;
389   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
390                        (OldL << 1) |       // New G bit
391                        (OldG << 2));       // New L bit.
392 }
393 
394 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
395   unsigned Operation = Op;
396   if (isIntegerLike)
397     Operation ^= 7;   // Flip L, G, E bits, but not U.
398   else
399     Operation ^= 15;  // Flip all of the condition bits.
400 
401   if (Operation > ISD::SETTRUE2)
402     Operation &= ~8;  // Don't let N and U bits get set.
403 
404   return ISD::CondCode(Operation);
405 }
406 
407 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
408   return getSetCCInverseImpl(Op, Type.isInteger());
409 }
410 
411 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
412                                                bool isIntegerLike) {
413   return getSetCCInverseImpl(Op, isIntegerLike);
414 }
415 
416 /// For an integer comparison, return 1 if the comparison is a signed operation
417 /// and 2 if the result is an unsigned comparison. Return zero if the operation
418 /// does not depend on the sign of the input (setne and seteq).
419 static int isSignedOp(ISD::CondCode Opcode) {
420   switch (Opcode) {
421   default: llvm_unreachable("Illegal integer setcc operation!");
422   case ISD::SETEQ:
423   case ISD::SETNE: return 0;
424   case ISD::SETLT:
425   case ISD::SETLE:
426   case ISD::SETGT:
427   case ISD::SETGE: return 1;
428   case ISD::SETULT:
429   case ISD::SETULE:
430   case ISD::SETUGT:
431   case ISD::SETUGE: return 2;
432   }
433 }
434 
435 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
436                                        EVT Type) {
437   bool IsInteger = Type.isInteger();
438   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
439     // Cannot fold a signed integer setcc with an unsigned integer setcc.
440     return ISD::SETCC_INVALID;
441 
442   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
443 
444   // If the N and U bits get set, then the resultant comparison DOES suddenly
445   // care about orderedness, and it is true when ordered.
446   if (Op > ISD::SETTRUE2)
447     Op &= ~16;     // Clear the U bit if the N bit is set.
448 
449   // Canonicalize illegal integer setcc's.
450   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
451     Op = ISD::SETNE;
452 
453   return ISD::CondCode(Op);
454 }
455 
456 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
457                                         EVT Type) {
458   bool IsInteger = Type.isInteger();
459   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
460     // Cannot fold a signed setcc with an unsigned setcc.
461     return ISD::SETCC_INVALID;
462 
463   // Combine all of the condition bits.
464   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
465 
466   // Canonicalize illegal integer setcc's.
467   if (IsInteger) {
468     switch (Result) {
469     default: break;
470     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
471     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
472     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
473     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
474     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
475     }
476   }
477 
478   return Result;
479 }
480 
481 //===----------------------------------------------------------------------===//
482 //                           SDNode Profile Support
483 //===----------------------------------------------------------------------===//
484 
485 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
486 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
487   ID.AddInteger(OpC);
488 }
489 
490 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
491 /// solely with their pointer.
492 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
493   ID.AddPointer(VTList.VTs);
494 }
495 
496 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
497 static void AddNodeIDOperands(FoldingSetNodeID &ID,
498                               ArrayRef<SDValue> Ops) {
499   for (auto& Op : Ops) {
500     ID.AddPointer(Op.getNode());
501     ID.AddInteger(Op.getResNo());
502   }
503 }
504 
505 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
506 static void AddNodeIDOperands(FoldingSetNodeID &ID,
507                               ArrayRef<SDUse> Ops) {
508   for (auto& Op : Ops) {
509     ID.AddPointer(Op.getNode());
510     ID.AddInteger(Op.getResNo());
511   }
512 }
513 
514 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
515                           SDVTList VTList, ArrayRef<SDValue> OpList) {
516   AddNodeIDOpcode(ID, OpC);
517   AddNodeIDValueTypes(ID, VTList);
518   AddNodeIDOperands(ID, OpList);
519 }
520 
521 /// If this is an SDNode with special info, add this info to the NodeID data.
522 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
523   switch (N->getOpcode()) {
524   case ISD::TargetExternalSymbol:
525   case ISD::ExternalSymbol:
526   case ISD::MCSymbol:
527     llvm_unreachable("Should only be used on nodes with operands");
528   default: break;  // Normal nodes don't need extra info.
529   case ISD::TargetConstant:
530   case ISD::Constant: {
531     const ConstantSDNode *C = cast<ConstantSDNode>(N);
532     ID.AddPointer(C->getConstantIntValue());
533     ID.AddBoolean(C->isOpaque());
534     break;
535   }
536   case ISD::TargetConstantFP:
537   case ISD::ConstantFP:
538     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
539     break;
540   case ISD::TargetGlobalAddress:
541   case ISD::GlobalAddress:
542   case ISD::TargetGlobalTLSAddress:
543   case ISD::GlobalTLSAddress: {
544     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
545     ID.AddPointer(GA->getGlobal());
546     ID.AddInteger(GA->getOffset());
547     ID.AddInteger(GA->getTargetFlags());
548     break;
549   }
550   case ISD::BasicBlock:
551     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
552     break;
553   case ISD::Register:
554     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
555     break;
556   case ISD::RegisterMask:
557     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
558     break;
559   case ISD::SRCVALUE:
560     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
561     break;
562   case ISD::FrameIndex:
563   case ISD::TargetFrameIndex:
564     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
565     break;
566   case ISD::LIFETIME_START:
567   case ISD::LIFETIME_END:
568     if (cast<LifetimeSDNode>(N)->hasOffset()) {
569       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
570       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
571     }
572     break;
573   case ISD::JumpTable:
574   case ISD::TargetJumpTable:
575     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
576     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
577     break;
578   case ISD::ConstantPool:
579   case ISD::TargetConstantPool: {
580     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
581     ID.AddInteger(CP->getAlign().value());
582     ID.AddInteger(CP->getOffset());
583     if (CP->isMachineConstantPoolEntry())
584       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
585     else
586       ID.AddPointer(CP->getConstVal());
587     ID.AddInteger(CP->getTargetFlags());
588     break;
589   }
590   case ISD::TargetIndex: {
591     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
592     ID.AddInteger(TI->getIndex());
593     ID.AddInteger(TI->getOffset());
594     ID.AddInteger(TI->getTargetFlags());
595     break;
596   }
597   case ISD::LOAD: {
598     const LoadSDNode *LD = cast<LoadSDNode>(N);
599     ID.AddInteger(LD->getMemoryVT().getRawBits());
600     ID.AddInteger(LD->getRawSubclassData());
601     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
602     break;
603   }
604   case ISD::STORE: {
605     const StoreSDNode *ST = cast<StoreSDNode>(N);
606     ID.AddInteger(ST->getMemoryVT().getRawBits());
607     ID.AddInteger(ST->getRawSubclassData());
608     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
609     break;
610   }
611   case ISD::MLOAD: {
612     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
613     ID.AddInteger(MLD->getMemoryVT().getRawBits());
614     ID.AddInteger(MLD->getRawSubclassData());
615     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
616     break;
617   }
618   case ISD::MSTORE: {
619     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
620     ID.AddInteger(MST->getMemoryVT().getRawBits());
621     ID.AddInteger(MST->getRawSubclassData());
622     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
623     break;
624   }
625   case ISD::MGATHER: {
626     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
627     ID.AddInteger(MG->getMemoryVT().getRawBits());
628     ID.AddInteger(MG->getRawSubclassData());
629     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
630     break;
631   }
632   case ISD::MSCATTER: {
633     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
634     ID.AddInteger(MS->getMemoryVT().getRawBits());
635     ID.AddInteger(MS->getRawSubclassData());
636     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
637     break;
638   }
639   case ISD::ATOMIC_CMP_SWAP:
640   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
641   case ISD::ATOMIC_SWAP:
642   case ISD::ATOMIC_LOAD_ADD:
643   case ISD::ATOMIC_LOAD_SUB:
644   case ISD::ATOMIC_LOAD_AND:
645   case ISD::ATOMIC_LOAD_CLR:
646   case ISD::ATOMIC_LOAD_OR:
647   case ISD::ATOMIC_LOAD_XOR:
648   case ISD::ATOMIC_LOAD_NAND:
649   case ISD::ATOMIC_LOAD_MIN:
650   case ISD::ATOMIC_LOAD_MAX:
651   case ISD::ATOMIC_LOAD_UMIN:
652   case ISD::ATOMIC_LOAD_UMAX:
653   case ISD::ATOMIC_LOAD:
654   case ISD::ATOMIC_STORE: {
655     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
656     ID.AddInteger(AT->getMemoryVT().getRawBits());
657     ID.AddInteger(AT->getRawSubclassData());
658     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
659     break;
660   }
661   case ISD::PREFETCH: {
662     const MemSDNode *PF = cast<MemSDNode>(N);
663     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
664     break;
665   }
666   case ISD::VECTOR_SHUFFLE: {
667     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
668     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
669          i != e; ++i)
670       ID.AddInteger(SVN->getMaskElt(i));
671     break;
672   }
673   case ISD::TargetBlockAddress:
674   case ISD::BlockAddress: {
675     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
676     ID.AddPointer(BA->getBlockAddress());
677     ID.AddInteger(BA->getOffset());
678     ID.AddInteger(BA->getTargetFlags());
679     break;
680   }
681   } // end switch (N->getOpcode())
682 
683   // Target specific memory nodes could also have address spaces to check.
684   if (N->isTargetMemoryOpcode())
685     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
686 }
687 
688 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
689 /// data.
690 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
691   AddNodeIDOpcode(ID, N->getOpcode());
692   // Add the return value info.
693   AddNodeIDValueTypes(ID, N->getVTList());
694   // Add the operand info.
695   AddNodeIDOperands(ID, N->ops());
696 
697   // Handle SDNode leafs with special info.
698   AddNodeIDCustom(ID, N);
699 }
700 
701 //===----------------------------------------------------------------------===//
702 //                              SelectionDAG Class
703 //===----------------------------------------------------------------------===//
704 
705 /// doNotCSE - Return true if CSE should not be performed for this node.
706 static bool doNotCSE(SDNode *N) {
707   if (N->getValueType(0) == MVT::Glue)
708     return true; // Never CSE anything that produces a flag.
709 
710   switch (N->getOpcode()) {
711   default: break;
712   case ISD::HANDLENODE:
713   case ISD::EH_LABEL:
714     return true;   // Never CSE these nodes.
715   }
716 
717   // Check that remaining values produced are not flags.
718   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
719     if (N->getValueType(i) == MVT::Glue)
720       return true; // Never CSE anything that produces a flag.
721 
722   return false;
723 }
724 
725 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
726 /// SelectionDAG.
727 void SelectionDAG::RemoveDeadNodes() {
728   // Create a dummy node (which is not added to allnodes), that adds a reference
729   // to the root node, preventing it from being deleted.
730   HandleSDNode Dummy(getRoot());
731 
732   SmallVector<SDNode*, 128> DeadNodes;
733 
734   // Add all obviously-dead nodes to the DeadNodes worklist.
735   for (SDNode &Node : allnodes())
736     if (Node.use_empty())
737       DeadNodes.push_back(&Node);
738 
739   RemoveDeadNodes(DeadNodes);
740 
741   // If the root changed (e.g. it was a dead load, update the root).
742   setRoot(Dummy.getValue());
743 }
744 
745 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
746 /// given list, and any nodes that become unreachable as a result.
747 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
748 
749   // Process the worklist, deleting the nodes and adding their uses to the
750   // worklist.
751   while (!DeadNodes.empty()) {
752     SDNode *N = DeadNodes.pop_back_val();
753     // Skip to next node if we've already managed to delete the node. This could
754     // happen if replacing a node causes a node previously added to the node to
755     // be deleted.
756     if (N->getOpcode() == ISD::DELETED_NODE)
757       continue;
758 
759     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
760       DUL->NodeDeleted(N, nullptr);
761 
762     // Take the node out of the appropriate CSE map.
763     RemoveNodeFromCSEMaps(N);
764 
765     // Next, brutally remove the operand list.  This is safe to do, as there are
766     // no cycles in the graph.
767     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
768       SDUse &Use = *I++;
769       SDNode *Operand = Use.getNode();
770       Use.set(SDValue());
771 
772       // Now that we removed this operand, see if there are no uses of it left.
773       if (Operand->use_empty())
774         DeadNodes.push_back(Operand);
775     }
776 
777     DeallocateNode(N);
778   }
779 }
780 
781 void SelectionDAG::RemoveDeadNode(SDNode *N){
782   SmallVector<SDNode*, 16> DeadNodes(1, N);
783 
784   // Create a dummy node that adds a reference to the root node, preventing
785   // it from being deleted.  (This matters if the root is an operand of the
786   // dead node.)
787   HandleSDNode Dummy(getRoot());
788 
789   RemoveDeadNodes(DeadNodes);
790 }
791 
792 void SelectionDAG::DeleteNode(SDNode *N) {
793   // First take this out of the appropriate CSE map.
794   RemoveNodeFromCSEMaps(N);
795 
796   // Finally, remove uses due to operands of this node, remove from the
797   // AllNodes list, and delete the node.
798   DeleteNodeNotInCSEMaps(N);
799 }
800 
801 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
802   assert(N->getIterator() != AllNodes.begin() &&
803          "Cannot delete the entry node!");
804   assert(N->use_empty() && "Cannot delete a node that is not dead!");
805 
806   // Drop all of the operands and decrement used node's use counts.
807   N->DropOperands();
808 
809   DeallocateNode(N);
810 }
811 
812 void SDDbgInfo::erase(const SDNode *Node) {
813   DbgValMapType::iterator I = DbgValMap.find(Node);
814   if (I == DbgValMap.end())
815     return;
816   for (auto &Val: I->second)
817     Val->setIsInvalidated();
818   DbgValMap.erase(I);
819 }
820 
821 void SelectionDAG::DeallocateNode(SDNode *N) {
822   // If we have operands, deallocate them.
823   removeOperands(N);
824 
825   NodeAllocator.Deallocate(AllNodes.remove(N));
826 
827   // Set the opcode to DELETED_NODE to help catch bugs when node
828   // memory is reallocated.
829   // FIXME: There are places in SDag that have grown a dependency on the opcode
830   // value in the released node.
831   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
832   N->NodeType = ISD::DELETED_NODE;
833 
834   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
835   // them and forget about that node.
836   DbgInfo->erase(N);
837 }
838 
839 #ifndef NDEBUG
840 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
841 static void VerifySDNode(SDNode *N) {
842   switch (N->getOpcode()) {
843   default:
844     break;
845   case ISD::BUILD_PAIR: {
846     EVT VT = N->getValueType(0);
847     assert(N->getNumValues() == 1 && "Too many results!");
848     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
849            "Wrong return type!");
850     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
851     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
852            "Mismatched operand types!");
853     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
854            "Wrong operand type!");
855     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
856            "Wrong return type size");
857     break;
858   }
859   case ISD::BUILD_VECTOR: {
860     assert(N->getNumValues() == 1 && "Too many results!");
861     assert(N->getValueType(0).isVector() && "Wrong return type!");
862     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
863            "Wrong number of operands!");
864     EVT EltVT = N->getValueType(0).getVectorElementType();
865     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
866       assert((I->getValueType() == EltVT ||
867              (EltVT.isInteger() && I->getValueType().isInteger() &&
868               EltVT.bitsLE(I->getValueType()))) &&
869             "Wrong operand type!");
870       assert(I->getValueType() == N->getOperand(0).getValueType() &&
871              "Operands must all have the same type");
872     }
873     break;
874   }
875   }
876 }
877 #endif // NDEBUG
878 
879 /// Insert a newly allocated node into the DAG.
880 ///
881 /// Handles insertion into the all nodes list and CSE map, as well as
882 /// verification and other common operations when a new node is allocated.
883 void SelectionDAG::InsertNode(SDNode *N) {
884   AllNodes.push_back(N);
885 #ifndef NDEBUG
886   N->PersistentId = NextPersistentId++;
887   VerifySDNode(N);
888 #endif
889   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
890     DUL->NodeInserted(N);
891 }
892 
893 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
894 /// correspond to it.  This is useful when we're about to delete or repurpose
895 /// the node.  We don't want future request for structurally identical nodes
896 /// to return N anymore.
897 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
898   bool Erased = false;
899   switch (N->getOpcode()) {
900   case ISD::HANDLENODE: return false;  // noop.
901   case ISD::CONDCODE:
902     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
903            "Cond code doesn't exist!");
904     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
905     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
906     break;
907   case ISD::ExternalSymbol:
908     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
909     break;
910   case ISD::TargetExternalSymbol: {
911     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
912     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
913         ESN->getSymbol(), ESN->getTargetFlags()));
914     break;
915   }
916   case ISD::MCSymbol: {
917     auto *MCSN = cast<MCSymbolSDNode>(N);
918     Erased = MCSymbols.erase(MCSN->getMCSymbol());
919     break;
920   }
921   case ISD::VALUETYPE: {
922     EVT VT = cast<VTSDNode>(N)->getVT();
923     if (VT.isExtended()) {
924       Erased = ExtendedValueTypeNodes.erase(VT);
925     } else {
926       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
927       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
928     }
929     break;
930   }
931   default:
932     // Remove it from the CSE Map.
933     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
934     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
935     Erased = CSEMap.RemoveNode(N);
936     break;
937   }
938 #ifndef NDEBUG
939   // Verify that the node was actually in one of the CSE maps, unless it has a
940   // flag result (which cannot be CSE'd) or is one of the special cases that are
941   // not subject to CSE.
942   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
943       !N->isMachineOpcode() && !doNotCSE(N)) {
944     N->dump(this);
945     dbgs() << "\n";
946     llvm_unreachable("Node is not in map!");
947   }
948 #endif
949   return Erased;
950 }
951 
952 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
953 /// maps and modified in place. Add it back to the CSE maps, unless an identical
954 /// node already exists, in which case transfer all its users to the existing
955 /// node. This transfer can potentially trigger recursive merging.
956 void
957 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
958   // For node types that aren't CSE'd, just act as if no identical node
959   // already exists.
960   if (!doNotCSE(N)) {
961     SDNode *Existing = CSEMap.GetOrInsertNode(N);
962     if (Existing != N) {
963       // If there was already an existing matching node, use ReplaceAllUsesWith
964       // to replace the dead one with the existing one.  This can cause
965       // recursive merging of other unrelated nodes down the line.
966       ReplaceAllUsesWith(N, Existing);
967 
968       // N is now dead. Inform the listeners and delete it.
969       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
970         DUL->NodeDeleted(N, Existing);
971       DeleteNodeNotInCSEMaps(N);
972       return;
973     }
974   }
975 
976   // If the node doesn't already exist, we updated it.  Inform listeners.
977   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
978     DUL->NodeUpdated(N);
979 }
980 
981 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
982 /// were replaced with those specified.  If this node is never memoized,
983 /// return null, otherwise return a pointer to the slot it would take.  If a
984 /// node already exists with these operands, the slot will be non-null.
985 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
986                                            void *&InsertPos) {
987   if (doNotCSE(N))
988     return nullptr;
989 
990   SDValue Ops[] = { Op };
991   FoldingSetNodeID ID;
992   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
993   AddNodeIDCustom(ID, N);
994   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
995   if (Node)
996     Node->intersectFlagsWith(N->getFlags());
997   return Node;
998 }
999 
1000 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1001 /// were replaced with those specified.  If this node is never memoized,
1002 /// return null, otherwise return a pointer to the slot it would take.  If a
1003 /// node already exists with these operands, the slot will be non-null.
1004 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1005                                            SDValue Op1, SDValue Op2,
1006                                            void *&InsertPos) {
1007   if (doNotCSE(N))
1008     return nullptr;
1009 
1010   SDValue Ops[] = { Op1, Op2 };
1011   FoldingSetNodeID ID;
1012   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1013   AddNodeIDCustom(ID, N);
1014   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1015   if (Node)
1016     Node->intersectFlagsWith(N->getFlags());
1017   return Node;
1018 }
1019 
1020 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1021 /// were replaced with those specified.  If this node is never memoized,
1022 /// return null, otherwise return a pointer to the slot it would take.  If a
1023 /// node already exists with these operands, the slot will be non-null.
1024 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1025                                            void *&InsertPos) {
1026   if (doNotCSE(N))
1027     return nullptr;
1028 
1029   FoldingSetNodeID ID;
1030   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1031   AddNodeIDCustom(ID, N);
1032   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1033   if (Node)
1034     Node->intersectFlagsWith(N->getFlags());
1035   return Node;
1036 }
1037 
1038 Align SelectionDAG::getEVTAlign(EVT VT) const {
1039   Type *Ty = VT == MVT::iPTR ?
1040                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1041                    VT.getTypeForEVT(*getContext());
1042 
1043   return getDataLayout().getABITypeAlign(Ty);
1044 }
1045 
1046 // EntryNode could meaningfully have debug info if we can find it...
1047 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1048     : TM(tm), OptLevel(OL),
1049       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1050       Root(getEntryNode()) {
1051   InsertNode(&EntryNode);
1052   DbgInfo = new SDDbgInfo();
1053 }
1054 
1055 void SelectionDAG::init(MachineFunction &NewMF,
1056                         OptimizationRemarkEmitter &NewORE,
1057                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1058                         LegacyDivergenceAnalysis * Divergence,
1059                         ProfileSummaryInfo *PSIin,
1060                         BlockFrequencyInfo *BFIin) {
1061   MF = &NewMF;
1062   SDAGISelPass = PassPtr;
1063   ORE = &NewORE;
1064   TLI = getSubtarget().getTargetLowering();
1065   TSI = getSubtarget().getSelectionDAGInfo();
1066   LibInfo = LibraryInfo;
1067   Context = &MF->getFunction().getContext();
1068   DA = Divergence;
1069   PSI = PSIin;
1070   BFI = BFIin;
1071 }
1072 
1073 SelectionDAG::~SelectionDAG() {
1074   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1075   allnodes_clear();
1076   OperandRecycler.clear(OperandAllocator);
1077   delete DbgInfo;
1078 }
1079 
1080 bool SelectionDAG::shouldOptForSize() const {
1081   return MF->getFunction().hasOptSize() ||
1082       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1083 }
1084 
1085 void SelectionDAG::allnodes_clear() {
1086   assert(&*AllNodes.begin() == &EntryNode);
1087   AllNodes.remove(AllNodes.begin());
1088   while (!AllNodes.empty())
1089     DeallocateNode(&AllNodes.front());
1090 #ifndef NDEBUG
1091   NextPersistentId = 0;
1092 #endif
1093 }
1094 
1095 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1096                                           void *&InsertPos) {
1097   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1098   if (N) {
1099     switch (N->getOpcode()) {
1100     default: break;
1101     case ISD::Constant:
1102     case ISD::ConstantFP:
1103       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1104                        "debug location.  Use another overload.");
1105     }
1106   }
1107   return N;
1108 }
1109 
1110 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1111                                           const SDLoc &DL, void *&InsertPos) {
1112   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1113   if (N) {
1114     switch (N->getOpcode()) {
1115     case ISD::Constant:
1116     case ISD::ConstantFP:
1117       // Erase debug location from the node if the node is used at several
1118       // different places. Do not propagate one location to all uses as it
1119       // will cause a worse single stepping debugging experience.
1120       if (N->getDebugLoc() != DL.getDebugLoc())
1121         N->setDebugLoc(DebugLoc());
1122       break;
1123     default:
1124       // When the node's point of use is located earlier in the instruction
1125       // sequence than its prior point of use, update its debug info to the
1126       // earlier location.
1127       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1128         N->setDebugLoc(DL.getDebugLoc());
1129       break;
1130     }
1131   }
1132   return N;
1133 }
1134 
1135 void SelectionDAG::clear() {
1136   allnodes_clear();
1137   OperandRecycler.clear(OperandAllocator);
1138   OperandAllocator.Reset();
1139   CSEMap.clear();
1140 
1141   ExtendedValueTypeNodes.clear();
1142   ExternalSymbols.clear();
1143   TargetExternalSymbols.clear();
1144   MCSymbols.clear();
1145   SDCallSiteDbgInfo.clear();
1146   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1147             static_cast<CondCodeSDNode*>(nullptr));
1148   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1149             static_cast<SDNode*>(nullptr));
1150 
1151   EntryNode.UseList = nullptr;
1152   InsertNode(&EntryNode);
1153   Root = getEntryNode();
1154   DbgInfo->clear();
1155 }
1156 
1157 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1158   return VT.bitsGT(Op.getValueType())
1159              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1160              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1161 }
1162 
1163 std::pair<SDValue, SDValue>
1164 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1165                                        const SDLoc &DL, EVT VT) {
1166   assert(!VT.bitsEq(Op.getValueType()) &&
1167          "Strict no-op FP extend/round not allowed.");
1168   SDValue Res =
1169       VT.bitsGT(Op.getValueType())
1170           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1171           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1172                     {Chain, Op, getIntPtrConstant(0, DL)});
1173 
1174   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1175 }
1176 
1177 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1178   return VT.bitsGT(Op.getValueType()) ?
1179     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1180     getNode(ISD::TRUNCATE, DL, VT, Op);
1181 }
1182 
1183 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1184   return VT.bitsGT(Op.getValueType()) ?
1185     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1186     getNode(ISD::TRUNCATE, DL, VT, Op);
1187 }
1188 
1189 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1190   return VT.bitsGT(Op.getValueType()) ?
1191     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1192     getNode(ISD::TRUNCATE, DL, VT, Op);
1193 }
1194 
1195 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1196                                         EVT OpVT) {
1197   if (VT.bitsLE(Op.getValueType()))
1198     return getNode(ISD::TRUNCATE, SL, VT, Op);
1199 
1200   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1201   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1202 }
1203 
1204 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1205   EVT OpVT = Op.getValueType();
1206   assert(VT.isInteger() && OpVT.isInteger() &&
1207          "Cannot getZeroExtendInReg FP types");
1208   assert(VT.isVector() == OpVT.isVector() &&
1209          "getZeroExtendInReg type should be vector iff the operand "
1210          "type is vector!");
1211   assert((!VT.isVector() ||
1212           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1213          "Vector element counts must match in getZeroExtendInReg");
1214   assert(VT.bitsLE(OpVT) && "Not extending!");
1215   if (OpVT == VT)
1216     return Op;
1217   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1218                                    VT.getScalarSizeInBits());
1219   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1220 }
1221 
1222 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1223   // Only unsigned pointer semantics are supported right now. In the future this
1224   // might delegate to TLI to check pointer signedness.
1225   return getZExtOrTrunc(Op, DL, VT);
1226 }
1227 
1228 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1229   // Only unsigned pointer semantics are supported right now. In the future this
1230   // might delegate to TLI to check pointer signedness.
1231   return getZeroExtendInReg(Op, DL, VT);
1232 }
1233 
1234 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1235 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1236   EVT EltVT = VT.getScalarType();
1237   SDValue NegOne =
1238     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1239   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1240 }
1241 
1242 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1243   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1244   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1245 }
1246 
1247 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1248                                       EVT OpVT) {
1249   if (!V)
1250     return getConstant(0, DL, VT);
1251 
1252   switch (TLI->getBooleanContents(OpVT)) {
1253   case TargetLowering::ZeroOrOneBooleanContent:
1254   case TargetLowering::UndefinedBooleanContent:
1255     return getConstant(1, DL, VT);
1256   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1257     return getAllOnesConstant(DL, VT);
1258   }
1259   llvm_unreachable("Unexpected boolean content enum!");
1260 }
1261 
1262 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1263                                   bool isT, bool isO) {
1264   EVT EltVT = VT.getScalarType();
1265   assert((EltVT.getSizeInBits() >= 64 ||
1266          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1267          "getConstant with a uint64_t value that doesn't fit in the type!");
1268   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1269 }
1270 
1271 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1272                                   bool isT, bool isO) {
1273   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1274 }
1275 
1276 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1277                                   EVT VT, bool isT, bool isO) {
1278   assert(VT.isInteger() && "Cannot create FP integer constant!");
1279 
1280   EVT EltVT = VT.getScalarType();
1281   const ConstantInt *Elt = &Val;
1282 
1283   // In some cases the vector type is legal but the element type is illegal and
1284   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1285   // inserted value (the type does not need to match the vector element type).
1286   // Any extra bits introduced will be truncated away.
1287   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1288       TargetLowering::TypePromoteInteger) {
1289    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1290    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1291    Elt = ConstantInt::get(*getContext(), NewVal);
1292   }
1293   // In other cases the element type is illegal and needs to be expanded, for
1294   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1295   // the value into n parts and use a vector type with n-times the elements.
1296   // Then bitcast to the type requested.
1297   // Legalizing constants too early makes the DAGCombiner's job harder so we
1298   // only legalize if the DAG tells us we must produce legal types.
1299   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1300            TLI->getTypeAction(*getContext(), EltVT) ==
1301            TargetLowering::TypeExpandInteger) {
1302     const APInt &NewVal = Elt->getValue();
1303     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1304     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1305     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1306     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1307 
1308     // Check the temporary vector is the correct size. If this fails then
1309     // getTypeToTransformTo() probably returned a type whose size (in bits)
1310     // isn't a power-of-2 factor of the requested type size.
1311     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1312 
1313     SmallVector<SDValue, 2> EltParts;
1314     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1315       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1316                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1317                                      ViaEltVT, isT, isO));
1318     }
1319 
1320     // EltParts is currently in little endian order. If we actually want
1321     // big-endian order then reverse it now.
1322     if (getDataLayout().isBigEndian())
1323       std::reverse(EltParts.begin(), EltParts.end());
1324 
1325     // The elements must be reversed when the element order is different
1326     // to the endianness of the elements (because the BITCAST is itself a
1327     // vector shuffle in this situation). However, we do not need any code to
1328     // perform this reversal because getConstant() is producing a vector
1329     // splat.
1330     // This situation occurs in MIPS MSA.
1331 
1332     SmallVector<SDValue, 8> Ops;
1333     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1334       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1335 
1336     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1337     return V;
1338   }
1339 
1340   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1341          "APInt size does not match type size!");
1342   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1343   FoldingSetNodeID ID;
1344   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1345   ID.AddPointer(Elt);
1346   ID.AddBoolean(isO);
1347   void *IP = nullptr;
1348   SDNode *N = nullptr;
1349   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1350     if (!VT.isVector())
1351       return SDValue(N, 0);
1352 
1353   if (!N) {
1354     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1355     CSEMap.InsertNode(N, IP);
1356     InsertNode(N);
1357     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1358   }
1359 
1360   SDValue Result(N, 0);
1361   if (VT.isScalableVector())
1362     Result = getSplatVector(VT, DL, Result);
1363   else if (VT.isVector())
1364     Result = getSplatBuildVector(VT, DL, Result);
1365 
1366   return Result;
1367 }
1368 
1369 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1370                                         bool isTarget) {
1371   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1372 }
1373 
1374 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1375                                              const SDLoc &DL, bool LegalTypes) {
1376   assert(VT.isInteger() && "Shift amount is not an integer type!");
1377   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1378   return getConstant(Val, DL, ShiftVT);
1379 }
1380 
1381 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1382                                            bool isTarget) {
1383   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1384 }
1385 
1386 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1387                                     bool isTarget) {
1388   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1389 }
1390 
1391 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1392                                     EVT VT, bool isTarget) {
1393   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1394 
1395   EVT EltVT = VT.getScalarType();
1396 
1397   // Do the map lookup using the actual bit pattern for the floating point
1398   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1399   // we don't have issues with SNANs.
1400   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1401   FoldingSetNodeID ID;
1402   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1403   ID.AddPointer(&V);
1404   void *IP = nullptr;
1405   SDNode *N = nullptr;
1406   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1407     if (!VT.isVector())
1408       return SDValue(N, 0);
1409 
1410   if (!N) {
1411     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1412     CSEMap.InsertNode(N, IP);
1413     InsertNode(N);
1414   }
1415 
1416   SDValue Result(N, 0);
1417   if (VT.isScalableVector())
1418     Result = getSplatVector(VT, DL, Result);
1419   else if (VT.isVector())
1420     Result = getSplatBuildVector(VT, DL, Result);
1421   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1422   return Result;
1423 }
1424 
1425 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1426                                     bool isTarget) {
1427   EVT EltVT = VT.getScalarType();
1428   if (EltVT == MVT::f32)
1429     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1430   else if (EltVT == MVT::f64)
1431     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1432   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1433            EltVT == MVT::f16 || EltVT == MVT::bf16) {
1434     bool Ignored;
1435     APFloat APF = APFloat(Val);
1436     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1437                 &Ignored);
1438     return getConstantFP(APF, DL, VT, isTarget);
1439   } else
1440     llvm_unreachable("Unsupported type in getConstantFP");
1441 }
1442 
1443 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1444                                        EVT VT, int64_t Offset, bool isTargetGA,
1445                                        unsigned TargetFlags) {
1446   assert((TargetFlags == 0 || isTargetGA) &&
1447          "Cannot set target flags on target-independent globals");
1448 
1449   // Truncate (with sign-extension) the offset value to the pointer size.
1450   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1451   if (BitWidth < 64)
1452     Offset = SignExtend64(Offset, BitWidth);
1453 
1454   unsigned Opc;
1455   if (GV->isThreadLocal())
1456     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1457   else
1458     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1459 
1460   FoldingSetNodeID ID;
1461   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1462   ID.AddPointer(GV);
1463   ID.AddInteger(Offset);
1464   ID.AddInteger(TargetFlags);
1465   void *IP = nullptr;
1466   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1467     return SDValue(E, 0);
1468 
1469   auto *N = newSDNode<GlobalAddressSDNode>(
1470       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1471   CSEMap.InsertNode(N, IP);
1472     InsertNode(N);
1473   return SDValue(N, 0);
1474 }
1475 
1476 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1477   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1478   FoldingSetNodeID ID;
1479   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1480   ID.AddInteger(FI);
1481   void *IP = nullptr;
1482   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1483     return SDValue(E, 0);
1484 
1485   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1486   CSEMap.InsertNode(N, IP);
1487   InsertNode(N);
1488   return SDValue(N, 0);
1489 }
1490 
1491 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1492                                    unsigned TargetFlags) {
1493   assert((TargetFlags == 0 || isTarget) &&
1494          "Cannot set target flags on target-independent jump tables");
1495   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1496   FoldingSetNodeID ID;
1497   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1498   ID.AddInteger(JTI);
1499   ID.AddInteger(TargetFlags);
1500   void *IP = nullptr;
1501   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1502     return SDValue(E, 0);
1503 
1504   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1505   CSEMap.InsertNode(N, IP);
1506   InsertNode(N);
1507   return SDValue(N, 0);
1508 }
1509 
1510 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1511                                       MaybeAlign Alignment, int Offset,
1512                                       bool isTarget, unsigned TargetFlags) {
1513   assert((TargetFlags == 0 || isTarget) &&
1514          "Cannot set target flags on target-independent globals");
1515   if (!Alignment)
1516     Alignment = shouldOptForSize()
1517                     ? getDataLayout().getABITypeAlign(C->getType())
1518                     : getDataLayout().getPrefTypeAlign(C->getType());
1519   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1520   FoldingSetNodeID ID;
1521   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1522   ID.AddInteger(Alignment->value());
1523   ID.AddInteger(Offset);
1524   ID.AddPointer(C);
1525   ID.AddInteger(TargetFlags);
1526   void *IP = nullptr;
1527   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1528     return SDValue(E, 0);
1529 
1530   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1531                                           TargetFlags);
1532   CSEMap.InsertNode(N, IP);
1533   InsertNode(N);
1534   SDValue V = SDValue(N, 0);
1535   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1536   return V;
1537 }
1538 
1539 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1540                                       MaybeAlign Alignment, int Offset,
1541                                       bool isTarget, unsigned TargetFlags) {
1542   assert((TargetFlags == 0 || isTarget) &&
1543          "Cannot set target flags on target-independent globals");
1544   if (!Alignment)
1545     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1546   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1547   FoldingSetNodeID ID;
1548   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1549   ID.AddInteger(Alignment->value());
1550   ID.AddInteger(Offset);
1551   C->addSelectionDAGCSEId(ID);
1552   ID.AddInteger(TargetFlags);
1553   void *IP = nullptr;
1554   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1555     return SDValue(E, 0);
1556 
1557   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1558                                           TargetFlags);
1559   CSEMap.InsertNode(N, IP);
1560   InsertNode(N);
1561   return SDValue(N, 0);
1562 }
1563 
1564 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1565                                      unsigned TargetFlags) {
1566   FoldingSetNodeID ID;
1567   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1568   ID.AddInteger(Index);
1569   ID.AddInteger(Offset);
1570   ID.AddInteger(TargetFlags);
1571   void *IP = nullptr;
1572   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1573     return SDValue(E, 0);
1574 
1575   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1576   CSEMap.InsertNode(N, IP);
1577   InsertNode(N);
1578   return SDValue(N, 0);
1579 }
1580 
1581 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1582   FoldingSetNodeID ID;
1583   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1584   ID.AddPointer(MBB);
1585   void *IP = nullptr;
1586   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1587     return SDValue(E, 0);
1588 
1589   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1590   CSEMap.InsertNode(N, IP);
1591   InsertNode(N);
1592   return SDValue(N, 0);
1593 }
1594 
1595 SDValue SelectionDAG::getValueType(EVT VT) {
1596   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1597       ValueTypeNodes.size())
1598     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1599 
1600   SDNode *&N = VT.isExtended() ?
1601     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1602 
1603   if (N) return SDValue(N, 0);
1604   N = newSDNode<VTSDNode>(VT);
1605   InsertNode(N);
1606   return SDValue(N, 0);
1607 }
1608 
1609 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1610   SDNode *&N = ExternalSymbols[Sym];
1611   if (N) return SDValue(N, 0);
1612   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1613   InsertNode(N);
1614   return SDValue(N, 0);
1615 }
1616 
1617 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1618   SDNode *&N = MCSymbols[Sym];
1619   if (N)
1620     return SDValue(N, 0);
1621   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1622   InsertNode(N);
1623   return SDValue(N, 0);
1624 }
1625 
1626 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1627                                               unsigned TargetFlags) {
1628   SDNode *&N =
1629       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1630   if (N) return SDValue(N, 0);
1631   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1632   InsertNode(N);
1633   return SDValue(N, 0);
1634 }
1635 
1636 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1637   if ((unsigned)Cond >= CondCodeNodes.size())
1638     CondCodeNodes.resize(Cond+1);
1639 
1640   if (!CondCodeNodes[Cond]) {
1641     auto *N = newSDNode<CondCodeSDNode>(Cond);
1642     CondCodeNodes[Cond] = N;
1643     InsertNode(N);
1644   }
1645 
1646   return SDValue(CondCodeNodes[Cond], 0);
1647 }
1648 
1649 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1650 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1651 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1652   std::swap(N1, N2);
1653   ShuffleVectorSDNode::commuteMask(M);
1654 }
1655 
1656 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1657                                        SDValue N2, ArrayRef<int> Mask) {
1658   assert(VT.getVectorNumElements() == Mask.size() &&
1659            "Must have the same number of vector elements as mask elements!");
1660   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1661          "Invalid VECTOR_SHUFFLE");
1662 
1663   // Canonicalize shuffle undef, undef -> undef
1664   if (N1.isUndef() && N2.isUndef())
1665     return getUNDEF(VT);
1666 
1667   // Validate that all indices in Mask are within the range of the elements
1668   // input to the shuffle.
1669   int NElts = Mask.size();
1670   assert(llvm::all_of(Mask,
1671                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1672          "Index out of range");
1673 
1674   // Copy the mask so we can do any needed cleanup.
1675   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1676 
1677   // Canonicalize shuffle v, v -> v, undef
1678   if (N1 == N2) {
1679     N2 = getUNDEF(VT);
1680     for (int i = 0; i != NElts; ++i)
1681       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1682   }
1683 
1684   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1685   if (N1.isUndef())
1686     commuteShuffle(N1, N2, MaskVec);
1687 
1688   if (TLI->hasVectorBlend()) {
1689     // If shuffling a splat, try to blend the splat instead. We do this here so
1690     // that even when this arises during lowering we don't have to re-handle it.
1691     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1692       BitVector UndefElements;
1693       SDValue Splat = BV->getSplatValue(&UndefElements);
1694       if (!Splat)
1695         return;
1696 
1697       for (int i = 0; i < NElts; ++i) {
1698         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1699           continue;
1700 
1701         // If this input comes from undef, mark it as such.
1702         if (UndefElements[MaskVec[i] - Offset]) {
1703           MaskVec[i] = -1;
1704           continue;
1705         }
1706 
1707         // If we can blend a non-undef lane, use that instead.
1708         if (!UndefElements[i])
1709           MaskVec[i] = i + Offset;
1710       }
1711     };
1712     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1713       BlendSplat(N1BV, 0);
1714     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1715       BlendSplat(N2BV, NElts);
1716   }
1717 
1718   // Canonicalize all index into lhs, -> shuffle lhs, undef
1719   // Canonicalize all index into rhs, -> shuffle rhs, undef
1720   bool AllLHS = true, AllRHS = true;
1721   bool N2Undef = N2.isUndef();
1722   for (int i = 0; i != NElts; ++i) {
1723     if (MaskVec[i] >= NElts) {
1724       if (N2Undef)
1725         MaskVec[i] = -1;
1726       else
1727         AllLHS = false;
1728     } else if (MaskVec[i] >= 0) {
1729       AllRHS = false;
1730     }
1731   }
1732   if (AllLHS && AllRHS)
1733     return getUNDEF(VT);
1734   if (AllLHS && !N2Undef)
1735     N2 = getUNDEF(VT);
1736   if (AllRHS) {
1737     N1 = getUNDEF(VT);
1738     commuteShuffle(N1, N2, MaskVec);
1739   }
1740   // Reset our undef status after accounting for the mask.
1741   N2Undef = N2.isUndef();
1742   // Re-check whether both sides ended up undef.
1743   if (N1.isUndef() && N2Undef)
1744     return getUNDEF(VT);
1745 
1746   // If Identity shuffle return that node.
1747   bool Identity = true, AllSame = true;
1748   for (int i = 0; i != NElts; ++i) {
1749     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1750     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1751   }
1752   if (Identity && NElts)
1753     return N1;
1754 
1755   // Shuffling a constant splat doesn't change the result.
1756   if (N2Undef) {
1757     SDValue V = N1;
1758 
1759     // Look through any bitcasts. We check that these don't change the number
1760     // (and size) of elements and just changes their types.
1761     while (V.getOpcode() == ISD::BITCAST)
1762       V = V->getOperand(0);
1763 
1764     // A splat should always show up as a build vector node.
1765     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1766       BitVector UndefElements;
1767       SDValue Splat = BV->getSplatValue(&UndefElements);
1768       // If this is a splat of an undef, shuffling it is also undef.
1769       if (Splat && Splat.isUndef())
1770         return getUNDEF(VT);
1771 
1772       bool SameNumElts =
1773           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1774 
1775       // We only have a splat which can skip shuffles if there is a splatted
1776       // value and no undef lanes rearranged by the shuffle.
1777       if (Splat && UndefElements.none()) {
1778         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1779         // number of elements match or the value splatted is a zero constant.
1780         if (SameNumElts)
1781           return N1;
1782         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1783           if (C->isNullValue())
1784             return N1;
1785       }
1786 
1787       // If the shuffle itself creates a splat, build the vector directly.
1788       if (AllSame && SameNumElts) {
1789         EVT BuildVT = BV->getValueType(0);
1790         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1791         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1792 
1793         // We may have jumped through bitcasts, so the type of the
1794         // BUILD_VECTOR may not match the type of the shuffle.
1795         if (BuildVT != VT)
1796           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1797         return NewBV;
1798       }
1799     }
1800   }
1801 
1802   FoldingSetNodeID ID;
1803   SDValue Ops[2] = { N1, N2 };
1804   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1805   for (int i = 0; i != NElts; ++i)
1806     ID.AddInteger(MaskVec[i]);
1807 
1808   void* IP = nullptr;
1809   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1810     return SDValue(E, 0);
1811 
1812   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1813   // SDNode doesn't have access to it.  This memory will be "leaked" when
1814   // the node is deallocated, but recovered when the NodeAllocator is released.
1815   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1816   llvm::copy(MaskVec, MaskAlloc);
1817 
1818   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1819                                            dl.getDebugLoc(), MaskAlloc);
1820   createOperands(N, Ops);
1821 
1822   CSEMap.InsertNode(N, IP);
1823   InsertNode(N);
1824   SDValue V = SDValue(N, 0);
1825   NewSDValueDbgMsg(V, "Creating new node: ", this);
1826   return V;
1827 }
1828 
1829 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1830   EVT VT = SV.getValueType(0);
1831   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1832   ShuffleVectorSDNode::commuteMask(MaskVec);
1833 
1834   SDValue Op0 = SV.getOperand(0);
1835   SDValue Op1 = SV.getOperand(1);
1836   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1837 }
1838 
1839 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1840   FoldingSetNodeID ID;
1841   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1842   ID.AddInteger(RegNo);
1843   void *IP = nullptr;
1844   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1845     return SDValue(E, 0);
1846 
1847   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1848   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1849   CSEMap.InsertNode(N, IP);
1850   InsertNode(N);
1851   return SDValue(N, 0);
1852 }
1853 
1854 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1855   FoldingSetNodeID ID;
1856   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1857   ID.AddPointer(RegMask);
1858   void *IP = nullptr;
1859   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1860     return SDValue(E, 0);
1861 
1862   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1863   CSEMap.InsertNode(N, IP);
1864   InsertNode(N);
1865   return SDValue(N, 0);
1866 }
1867 
1868 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1869                                  MCSymbol *Label) {
1870   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1871 }
1872 
1873 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1874                                    SDValue Root, MCSymbol *Label) {
1875   FoldingSetNodeID ID;
1876   SDValue Ops[] = { Root };
1877   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1878   ID.AddPointer(Label);
1879   void *IP = nullptr;
1880   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1881     return SDValue(E, 0);
1882 
1883   auto *N =
1884       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1885   createOperands(N, Ops);
1886 
1887   CSEMap.InsertNode(N, IP);
1888   InsertNode(N);
1889   return SDValue(N, 0);
1890 }
1891 
1892 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1893                                       int64_t Offset, bool isTarget,
1894                                       unsigned TargetFlags) {
1895   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1896 
1897   FoldingSetNodeID ID;
1898   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1899   ID.AddPointer(BA);
1900   ID.AddInteger(Offset);
1901   ID.AddInteger(TargetFlags);
1902   void *IP = nullptr;
1903   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1904     return SDValue(E, 0);
1905 
1906   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1907   CSEMap.InsertNode(N, IP);
1908   InsertNode(N);
1909   return SDValue(N, 0);
1910 }
1911 
1912 SDValue SelectionDAG::getSrcValue(const Value *V) {
1913   FoldingSetNodeID ID;
1914   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1915   ID.AddPointer(V);
1916 
1917   void *IP = nullptr;
1918   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1919     return SDValue(E, 0);
1920 
1921   auto *N = newSDNode<SrcValueSDNode>(V);
1922   CSEMap.InsertNode(N, IP);
1923   InsertNode(N);
1924   return SDValue(N, 0);
1925 }
1926 
1927 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1928   FoldingSetNodeID ID;
1929   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1930   ID.AddPointer(MD);
1931 
1932   void *IP = nullptr;
1933   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1934     return SDValue(E, 0);
1935 
1936   auto *N = newSDNode<MDNodeSDNode>(MD);
1937   CSEMap.InsertNode(N, IP);
1938   InsertNode(N);
1939   return SDValue(N, 0);
1940 }
1941 
1942 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1943   if (VT == V.getValueType())
1944     return V;
1945 
1946   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1947 }
1948 
1949 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1950                                        unsigned SrcAS, unsigned DestAS) {
1951   SDValue Ops[] = {Ptr};
1952   FoldingSetNodeID ID;
1953   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1954   ID.AddInteger(SrcAS);
1955   ID.AddInteger(DestAS);
1956 
1957   void *IP = nullptr;
1958   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1959     return SDValue(E, 0);
1960 
1961   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1962                                            VT, SrcAS, DestAS);
1963   createOperands(N, Ops);
1964 
1965   CSEMap.InsertNode(N, IP);
1966   InsertNode(N);
1967   return SDValue(N, 0);
1968 }
1969 
1970 SDValue SelectionDAG::getFreeze(SDValue V) {
1971   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
1972 }
1973 
1974 /// getShiftAmountOperand - Return the specified value casted to
1975 /// the target's desired shift amount type.
1976 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1977   EVT OpTy = Op.getValueType();
1978   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1979   if (OpTy == ShTy || OpTy.isVector()) return Op;
1980 
1981   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1982 }
1983 
1984 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1985   SDLoc dl(Node);
1986   const TargetLowering &TLI = getTargetLoweringInfo();
1987   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1988   EVT VT = Node->getValueType(0);
1989   SDValue Tmp1 = Node->getOperand(0);
1990   SDValue Tmp2 = Node->getOperand(1);
1991   const MaybeAlign MA(Node->getConstantOperandVal(3));
1992 
1993   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1994                                Tmp2, MachinePointerInfo(V));
1995   SDValue VAList = VAListLoad;
1996 
1997   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1998     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1999                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2000 
2001     VAList =
2002         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2003                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2004   }
2005 
2006   // Increment the pointer, VAList, to the next vaarg
2007   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2008                  getConstant(getDataLayout().getTypeAllocSize(
2009                                                VT.getTypeForEVT(*getContext())),
2010                              dl, VAList.getValueType()));
2011   // Store the incremented VAList to the legalized pointer
2012   Tmp1 =
2013       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2014   // Load the actual argument out of the pointer VAList
2015   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2016 }
2017 
2018 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2019   SDLoc dl(Node);
2020   const TargetLowering &TLI = getTargetLoweringInfo();
2021   // This defaults to loading a pointer from the input and storing it to the
2022   // output, returning the chain.
2023   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2024   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2025   SDValue Tmp1 =
2026       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2027               Node->getOperand(2), MachinePointerInfo(VS));
2028   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2029                   MachinePointerInfo(VD));
2030 }
2031 
2032 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2033   const DataLayout &DL = getDataLayout();
2034   Type *Ty = VT.getTypeForEVT(*getContext());
2035   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2036 
2037   if (TLI->isTypeLegal(VT) || !VT.isVector())
2038     return RedAlign;
2039 
2040   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2041   const Align StackAlign = TFI->getStackAlign();
2042 
2043   // See if we can choose a smaller ABI alignment in cases where it's an
2044   // illegal vector type that will get broken down.
2045   if (RedAlign > StackAlign) {
2046     EVT IntermediateVT;
2047     MVT RegisterVT;
2048     unsigned NumIntermediates;
2049     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2050                                 NumIntermediates, RegisterVT);
2051     Ty = IntermediateVT.getTypeForEVT(*getContext());
2052     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2053     if (RedAlign2 < RedAlign)
2054       RedAlign = RedAlign2;
2055   }
2056 
2057   return RedAlign;
2058 }
2059 
2060 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2061   MachineFrameInfo &MFI = MF->getFrameInfo();
2062   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2063   int StackID = 0;
2064   if (Bytes.isScalable())
2065     StackID = TFI->getStackIDForScalableVectors();
2066   // The stack id gives an indication of whether the object is scalable or
2067   // not, so it's safe to pass in the minimum size here.
2068   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2069                                        false, nullptr, StackID);
2070   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2071 }
2072 
2073 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2074   Type *Ty = VT.getTypeForEVT(*getContext());
2075   Align StackAlign =
2076       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2077   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2078 }
2079 
2080 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2081   TypeSize VT1Size = VT1.getStoreSize();
2082   TypeSize VT2Size = VT2.getStoreSize();
2083   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2084          "Don't know how to choose the maximum size when creating a stack "
2085          "temporary");
2086   TypeSize Bytes =
2087       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2088 
2089   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2090   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2091   const DataLayout &DL = getDataLayout();
2092   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2093   return CreateStackTemporary(Bytes, Align);
2094 }
2095 
2096 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2097                                 ISD::CondCode Cond, const SDLoc &dl) {
2098   EVT OpVT = N1.getValueType();
2099 
2100   // These setcc operations always fold.
2101   switch (Cond) {
2102   default: break;
2103   case ISD::SETFALSE:
2104   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2105   case ISD::SETTRUE:
2106   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2107 
2108   case ISD::SETOEQ:
2109   case ISD::SETOGT:
2110   case ISD::SETOGE:
2111   case ISD::SETOLT:
2112   case ISD::SETOLE:
2113   case ISD::SETONE:
2114   case ISD::SETO:
2115   case ISD::SETUO:
2116   case ISD::SETUEQ:
2117   case ISD::SETUNE:
2118     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2119     break;
2120   }
2121 
2122   if (OpVT.isInteger()) {
2123     // For EQ and NE, we can always pick a value for the undef to make the
2124     // predicate pass or fail, so we can return undef.
2125     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2126     // icmp eq/ne X, undef -> undef.
2127     if ((N1.isUndef() || N2.isUndef()) &&
2128         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2129       return getUNDEF(VT);
2130 
2131     // If both operands are undef, we can return undef for int comparison.
2132     // icmp undef, undef -> undef.
2133     if (N1.isUndef() && N2.isUndef())
2134       return getUNDEF(VT);
2135 
2136     // icmp X, X -> true/false
2137     // icmp X, undef -> true/false because undef could be X.
2138     if (N1 == N2)
2139       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2140   }
2141 
2142   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2143     const APInt &C2 = N2C->getAPIntValue();
2144     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2145       const APInt &C1 = N1C->getAPIntValue();
2146 
2147       switch (Cond) {
2148       default: llvm_unreachable("Unknown integer setcc!");
2149       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2150       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2151       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2152       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2153       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2154       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2155       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2156       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2157       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2158       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2159       }
2160     }
2161   }
2162 
2163   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2164   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2165 
2166   if (N1CFP && N2CFP) {
2167     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2168     switch (Cond) {
2169     default: break;
2170     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2171                         return getUNDEF(VT);
2172                       LLVM_FALLTHROUGH;
2173     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2174                                              OpVT);
2175     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2176                         return getUNDEF(VT);
2177                       LLVM_FALLTHROUGH;
2178     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2179                                              R==APFloat::cmpLessThan, dl, VT,
2180                                              OpVT);
2181     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2182                         return getUNDEF(VT);
2183                       LLVM_FALLTHROUGH;
2184     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2185                                              OpVT);
2186     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2187                         return getUNDEF(VT);
2188                       LLVM_FALLTHROUGH;
2189     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2190                                              VT, OpVT);
2191     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2192                         return getUNDEF(VT);
2193                       LLVM_FALLTHROUGH;
2194     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2195                                              R==APFloat::cmpEqual, dl, VT,
2196                                              OpVT);
2197     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2198                         return getUNDEF(VT);
2199                       LLVM_FALLTHROUGH;
2200     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2201                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2202     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2203                                              OpVT);
2204     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2205                                              OpVT);
2206     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2207                                              R==APFloat::cmpEqual, dl, VT,
2208                                              OpVT);
2209     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2210                                              OpVT);
2211     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2212                                              R==APFloat::cmpLessThan, dl, VT,
2213                                              OpVT);
2214     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2215                                              R==APFloat::cmpUnordered, dl, VT,
2216                                              OpVT);
2217     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2218                                              VT, OpVT);
2219     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2220                                              OpVT);
2221     }
2222   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2223     // Ensure that the constant occurs on the RHS.
2224     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2225     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2226       return SDValue();
2227     return getSetCC(dl, VT, N2, N1, SwappedCond);
2228   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2229              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2230     // If an operand is known to be a nan (or undef that could be a nan), we can
2231     // fold it.
2232     // Choosing NaN for the undef will always make unordered comparison succeed
2233     // and ordered comparison fails.
2234     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2235     switch (ISD::getUnorderedFlavor(Cond)) {
2236     default:
2237       llvm_unreachable("Unknown flavor!");
2238     case 0: // Known false.
2239       return getBoolConstant(false, dl, VT, OpVT);
2240     case 1: // Known true.
2241       return getBoolConstant(true, dl, VT, OpVT);
2242     case 2: // Undefined.
2243       return getUNDEF(VT);
2244     }
2245   }
2246 
2247   // Could not fold it.
2248   return SDValue();
2249 }
2250 
2251 /// See if the specified operand can be simplified with the knowledge that only
2252 /// the bits specified by DemandedBits are used.
2253 /// TODO: really we should be making this into the DAG equivalent of
2254 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2255 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2256   EVT VT = V.getValueType();
2257 
2258   if (VT.isScalableVector())
2259     return SDValue();
2260 
2261   APInt DemandedElts = VT.isVector()
2262                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2263                            : APInt(1, 1);
2264   return GetDemandedBits(V, DemandedBits, DemandedElts);
2265 }
2266 
2267 /// See if the specified operand can be simplified with the knowledge that only
2268 /// the bits specified by DemandedBits are used in the elements specified by
2269 /// DemandedElts.
2270 /// TODO: really we should be making this into the DAG equivalent of
2271 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2272 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2273                                       const APInt &DemandedElts) {
2274   switch (V.getOpcode()) {
2275   default:
2276     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2277                                                 *this, 0);
2278   case ISD::Constant: {
2279     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2280     APInt NewVal = CVal & DemandedBits;
2281     if (NewVal != CVal)
2282       return getConstant(NewVal, SDLoc(V), V.getValueType());
2283     break;
2284   }
2285   case ISD::SRL:
2286     // Only look at single-use SRLs.
2287     if (!V.getNode()->hasOneUse())
2288       break;
2289     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2290       // See if we can recursively simplify the LHS.
2291       unsigned Amt = RHSC->getZExtValue();
2292 
2293       // Watch out for shift count overflow though.
2294       if (Amt >= DemandedBits.getBitWidth())
2295         break;
2296       APInt SrcDemandedBits = DemandedBits << Amt;
2297       if (SDValue SimplifyLHS =
2298               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2299         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2300                        V.getOperand(1));
2301     }
2302     break;
2303   }
2304   return SDValue();
2305 }
2306 
2307 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2308 /// use this predicate to simplify operations downstream.
2309 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2310   unsigned BitWidth = Op.getScalarValueSizeInBits();
2311   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2312 }
2313 
2314 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2315 /// this predicate to simplify operations downstream.  Mask is known to be zero
2316 /// for bits that V cannot have.
2317 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2318                                      unsigned Depth) const {
2319   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2320 }
2321 
2322 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2323 /// DemandedElts.  We use this predicate to simplify operations downstream.
2324 /// Mask is known to be zero for bits that V cannot have.
2325 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2326                                      const APInt &DemandedElts,
2327                                      unsigned Depth) const {
2328   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2329 }
2330 
2331 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2332 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2333                                         unsigned Depth) const {
2334   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2335 }
2336 
2337 /// isSplatValue - Return true if the vector V has the same value
2338 /// across all DemandedElts. For scalable vectors it does not make
2339 /// sense to specify which elements are demanded or undefined, therefore
2340 /// they are simply ignored.
2341 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2342                                 APInt &UndefElts) {
2343   EVT VT = V.getValueType();
2344   assert(VT.isVector() && "Vector type expected");
2345 
2346   if (!VT.isScalableVector() && !DemandedElts)
2347     return false; // No demanded elts, better to assume we don't know anything.
2348 
2349   // Deal with some common cases here that work for both fixed and scalable
2350   // vector types.
2351   switch (V.getOpcode()) {
2352   case ISD::SPLAT_VECTOR:
2353     UndefElts = V.getOperand(0).isUndef()
2354                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2355                     : APInt(DemandedElts.getBitWidth(), 0);
2356     return true;
2357   case ISD::ADD:
2358   case ISD::SUB:
2359   case ISD::AND: {
2360     APInt UndefLHS, UndefRHS;
2361     SDValue LHS = V.getOperand(0);
2362     SDValue RHS = V.getOperand(1);
2363     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2364         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2365       UndefElts = UndefLHS | UndefRHS;
2366       return true;
2367     }
2368     break;
2369   }
2370   case ISD::TRUNCATE:
2371   case ISD::SIGN_EXTEND:
2372   case ISD::ZERO_EXTEND:
2373     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts);
2374   }
2375 
2376   // We don't support other cases than those above for scalable vectors at
2377   // the moment.
2378   if (VT.isScalableVector())
2379     return false;
2380 
2381   unsigned NumElts = VT.getVectorNumElements();
2382   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2383   UndefElts = APInt::getNullValue(NumElts);
2384 
2385   switch (V.getOpcode()) {
2386   case ISD::BUILD_VECTOR: {
2387     SDValue Scl;
2388     for (unsigned i = 0; i != NumElts; ++i) {
2389       SDValue Op = V.getOperand(i);
2390       if (Op.isUndef()) {
2391         UndefElts.setBit(i);
2392         continue;
2393       }
2394       if (!DemandedElts[i])
2395         continue;
2396       if (Scl && Scl != Op)
2397         return false;
2398       Scl = Op;
2399     }
2400     return true;
2401   }
2402   case ISD::VECTOR_SHUFFLE: {
2403     // Check if this is a shuffle node doing a splat.
2404     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2405     int SplatIndex = -1;
2406     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2407     for (int i = 0; i != (int)NumElts; ++i) {
2408       int M = Mask[i];
2409       if (M < 0) {
2410         UndefElts.setBit(i);
2411         continue;
2412       }
2413       if (!DemandedElts[i])
2414         continue;
2415       if (0 <= SplatIndex && SplatIndex != M)
2416         return false;
2417       SplatIndex = M;
2418     }
2419     return true;
2420   }
2421   case ISD::EXTRACT_SUBVECTOR: {
2422     // Offset the demanded elts by the subvector index.
2423     SDValue Src = V.getOperand(0);
2424     uint64_t Idx = V.getConstantOperandVal(1);
2425     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2426     APInt UndefSrcElts;
2427     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2428     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) {
2429       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2430       return true;
2431     }
2432     break;
2433   }
2434   }
2435 
2436   return false;
2437 }
2438 
2439 /// Helper wrapper to main isSplatValue function.
2440 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2441   EVT VT = V.getValueType();
2442   assert(VT.isVector() && "Vector type expected");
2443 
2444   APInt UndefElts;
2445   APInt DemandedElts;
2446 
2447   // For now we don't support this with scalable vectors.
2448   if (!VT.isScalableVector())
2449     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2450   return isSplatValue(V, DemandedElts, UndefElts) &&
2451          (AllowUndefs || !UndefElts);
2452 }
2453 
2454 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2455   V = peekThroughExtractSubvectors(V);
2456 
2457   EVT VT = V.getValueType();
2458   unsigned Opcode = V.getOpcode();
2459   switch (Opcode) {
2460   default: {
2461     APInt UndefElts;
2462     APInt DemandedElts;
2463 
2464     if (!VT.isScalableVector())
2465       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2466 
2467     if (isSplatValue(V, DemandedElts, UndefElts)) {
2468       if (VT.isScalableVector()) {
2469         // DemandedElts and UndefElts are ignored for scalable vectors, since
2470         // the only supported cases are SPLAT_VECTOR nodes.
2471         SplatIdx = 0;
2472       } else {
2473         // Handle case where all demanded elements are UNDEF.
2474         if (DemandedElts.isSubsetOf(UndefElts)) {
2475           SplatIdx = 0;
2476           return getUNDEF(VT);
2477         }
2478         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2479       }
2480       return V;
2481     }
2482     break;
2483   }
2484   case ISD::SPLAT_VECTOR:
2485     SplatIdx = 0;
2486     return V;
2487   case ISD::VECTOR_SHUFFLE: {
2488     if (VT.isScalableVector())
2489       return SDValue();
2490 
2491     // Check if this is a shuffle node doing a splat.
2492     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2493     // getTargetVShiftNode currently struggles without the splat source.
2494     auto *SVN = cast<ShuffleVectorSDNode>(V);
2495     if (!SVN->isSplat())
2496       break;
2497     int Idx = SVN->getSplatIndex();
2498     int NumElts = V.getValueType().getVectorNumElements();
2499     SplatIdx = Idx % NumElts;
2500     return V.getOperand(Idx / NumElts);
2501   }
2502   }
2503 
2504   return SDValue();
2505 }
2506 
2507 SDValue SelectionDAG::getSplatValue(SDValue V) {
2508   int SplatIdx;
2509   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2510     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2511                    SrcVector.getValueType().getScalarType(), SrcVector,
2512                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2513   return SDValue();
2514 }
2515 
2516 const APInt *
2517 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2518                                           const APInt &DemandedElts) const {
2519   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2520           V.getOpcode() == ISD::SRA) &&
2521          "Unknown shift node");
2522   unsigned BitWidth = V.getScalarValueSizeInBits();
2523   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2524     // Shifting more than the bitwidth is not valid.
2525     const APInt &ShAmt = SA->getAPIntValue();
2526     if (ShAmt.ult(BitWidth))
2527       return &ShAmt;
2528   }
2529   return nullptr;
2530 }
2531 
2532 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2533     SDValue V, const APInt &DemandedElts) const {
2534   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2535           V.getOpcode() == ISD::SRA) &&
2536          "Unknown shift node");
2537   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2538     return ValidAmt;
2539   unsigned BitWidth = V.getScalarValueSizeInBits();
2540   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2541   if (!BV)
2542     return nullptr;
2543   const APInt *MinShAmt = nullptr;
2544   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2545     if (!DemandedElts[i])
2546       continue;
2547     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2548     if (!SA)
2549       return nullptr;
2550     // Shifting more than the bitwidth is not valid.
2551     const APInt &ShAmt = SA->getAPIntValue();
2552     if (ShAmt.uge(BitWidth))
2553       return nullptr;
2554     if (MinShAmt && MinShAmt->ule(ShAmt))
2555       continue;
2556     MinShAmt = &ShAmt;
2557   }
2558   return MinShAmt;
2559 }
2560 
2561 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2562     SDValue V, const APInt &DemandedElts) const {
2563   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2564           V.getOpcode() == ISD::SRA) &&
2565          "Unknown shift node");
2566   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2567     return ValidAmt;
2568   unsigned BitWidth = V.getScalarValueSizeInBits();
2569   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2570   if (!BV)
2571     return nullptr;
2572   const APInt *MaxShAmt = nullptr;
2573   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2574     if (!DemandedElts[i])
2575       continue;
2576     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2577     if (!SA)
2578       return nullptr;
2579     // Shifting more than the bitwidth is not valid.
2580     const APInt &ShAmt = SA->getAPIntValue();
2581     if (ShAmt.uge(BitWidth))
2582       return nullptr;
2583     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2584       continue;
2585     MaxShAmt = &ShAmt;
2586   }
2587   return MaxShAmt;
2588 }
2589 
2590 /// Determine which bits of Op are known to be either zero or one and return
2591 /// them in Known. For vectors, the known bits are those that are shared by
2592 /// every vector element.
2593 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2594   EVT VT = Op.getValueType();
2595 
2596   // TOOD: Until we have a plan for how to represent demanded elements for
2597   // scalable vectors, we can just bail out for now.
2598   if (Op.getValueType().isScalableVector()) {
2599     unsigned BitWidth = Op.getScalarValueSizeInBits();
2600     return KnownBits(BitWidth);
2601   }
2602 
2603   APInt DemandedElts = VT.isVector()
2604                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2605                            : APInt(1, 1);
2606   return computeKnownBits(Op, DemandedElts, Depth);
2607 }
2608 
2609 /// Determine which bits of Op are known to be either zero or one and return
2610 /// them in Known. The DemandedElts argument allows us to only collect the known
2611 /// bits that are shared by the requested vector elements.
2612 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2613                                          unsigned Depth) const {
2614   unsigned BitWidth = Op.getScalarValueSizeInBits();
2615 
2616   KnownBits Known(BitWidth);   // Don't know anything.
2617 
2618   // TOOD: Until we have a plan for how to represent demanded elements for
2619   // scalable vectors, we can just bail out for now.
2620   if (Op.getValueType().isScalableVector())
2621     return Known;
2622 
2623   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2624     // We know all of the bits for a constant!
2625     Known.One = C->getAPIntValue();
2626     Known.Zero = ~Known.One;
2627     return Known;
2628   }
2629   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2630     // We know all of the bits for a constant fp!
2631     Known.One = C->getValueAPF().bitcastToAPInt();
2632     Known.Zero = ~Known.One;
2633     return Known;
2634   }
2635 
2636   if (Depth >= MaxRecursionDepth)
2637     return Known;  // Limit search depth.
2638 
2639   KnownBits Known2;
2640   unsigned NumElts = DemandedElts.getBitWidth();
2641   assert((!Op.getValueType().isVector() ||
2642           NumElts == Op.getValueType().getVectorNumElements()) &&
2643          "Unexpected vector size");
2644 
2645   if (!DemandedElts)
2646     return Known;  // No demanded elts, better to assume we don't know anything.
2647 
2648   unsigned Opcode = Op.getOpcode();
2649   switch (Opcode) {
2650   case ISD::BUILD_VECTOR:
2651     // Collect the known bits that are shared by every demanded vector element.
2652     Known.Zero.setAllBits(); Known.One.setAllBits();
2653     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2654       if (!DemandedElts[i])
2655         continue;
2656 
2657       SDValue SrcOp = Op.getOperand(i);
2658       Known2 = computeKnownBits(SrcOp, Depth + 1);
2659 
2660       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2661       if (SrcOp.getValueSizeInBits() != BitWidth) {
2662         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2663                "Expected BUILD_VECTOR implicit truncation");
2664         Known2 = Known2.trunc(BitWidth);
2665       }
2666 
2667       // Known bits are the values that are shared by every demanded element.
2668       Known.One &= Known2.One;
2669       Known.Zero &= Known2.Zero;
2670 
2671       // If we don't know any bits, early out.
2672       if (Known.isUnknown())
2673         break;
2674     }
2675     break;
2676   case ISD::VECTOR_SHUFFLE: {
2677     // Collect the known bits that are shared by every vector element referenced
2678     // by the shuffle.
2679     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2680     Known.Zero.setAllBits(); Known.One.setAllBits();
2681     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2682     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2683     for (unsigned i = 0; i != NumElts; ++i) {
2684       if (!DemandedElts[i])
2685         continue;
2686 
2687       int M = SVN->getMaskElt(i);
2688       if (M < 0) {
2689         // For UNDEF elements, we don't know anything about the common state of
2690         // the shuffle result.
2691         Known.resetAll();
2692         DemandedLHS.clearAllBits();
2693         DemandedRHS.clearAllBits();
2694         break;
2695       }
2696 
2697       if ((unsigned)M < NumElts)
2698         DemandedLHS.setBit((unsigned)M % NumElts);
2699       else
2700         DemandedRHS.setBit((unsigned)M % NumElts);
2701     }
2702     // Known bits are the values that are shared by every demanded element.
2703     if (!!DemandedLHS) {
2704       SDValue LHS = Op.getOperand(0);
2705       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2706       Known.One &= Known2.One;
2707       Known.Zero &= Known2.Zero;
2708     }
2709     // If we don't know any bits, early out.
2710     if (Known.isUnknown())
2711       break;
2712     if (!!DemandedRHS) {
2713       SDValue RHS = Op.getOperand(1);
2714       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2715       Known.One &= Known2.One;
2716       Known.Zero &= Known2.Zero;
2717     }
2718     break;
2719   }
2720   case ISD::CONCAT_VECTORS: {
2721     // Split DemandedElts and test each of the demanded subvectors.
2722     Known.Zero.setAllBits(); Known.One.setAllBits();
2723     EVT SubVectorVT = Op.getOperand(0).getValueType();
2724     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2725     unsigned NumSubVectors = Op.getNumOperands();
2726     for (unsigned i = 0; i != NumSubVectors; ++i) {
2727       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2728       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2729       if (!!DemandedSub) {
2730         SDValue Sub = Op.getOperand(i);
2731         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2732         Known.One &= Known2.One;
2733         Known.Zero &= Known2.Zero;
2734       }
2735       // If we don't know any bits, early out.
2736       if (Known.isUnknown())
2737         break;
2738     }
2739     break;
2740   }
2741   case ISD::INSERT_SUBVECTOR: {
2742     // Demand any elements from the subvector and the remainder from the src its
2743     // inserted into.
2744     SDValue Src = Op.getOperand(0);
2745     SDValue Sub = Op.getOperand(1);
2746     uint64_t Idx = Op.getConstantOperandVal(2);
2747     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2748     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2749     APInt DemandedSrcElts = DemandedElts;
2750     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2751 
2752     Known.One.setAllBits();
2753     Known.Zero.setAllBits();
2754     if (!!DemandedSubElts) {
2755       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2756       if (Known.isUnknown())
2757         break; // early-out.
2758     }
2759     if (!!DemandedSrcElts) {
2760       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2761       Known.One &= Known2.One;
2762       Known.Zero &= Known2.Zero;
2763     }
2764     break;
2765   }
2766   case ISD::EXTRACT_SUBVECTOR: {
2767     // Offset the demanded elts by the subvector index.
2768     SDValue Src = Op.getOperand(0);
2769     // Bail until we can represent demanded elements for scalable vectors.
2770     if (Src.getValueType().isScalableVector())
2771       break;
2772     uint64_t Idx = Op.getConstantOperandVal(1);
2773     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2774     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2775     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2776     break;
2777   }
2778   case ISD::SCALAR_TO_VECTOR: {
2779     // We know about scalar_to_vector as much as we know about it source,
2780     // which becomes the first element of otherwise unknown vector.
2781     if (DemandedElts != 1)
2782       break;
2783 
2784     SDValue N0 = Op.getOperand(0);
2785     Known = computeKnownBits(N0, Depth + 1);
2786     if (N0.getValueSizeInBits() != BitWidth)
2787       Known = Known.trunc(BitWidth);
2788 
2789     break;
2790   }
2791   case ISD::BITCAST: {
2792     SDValue N0 = Op.getOperand(0);
2793     EVT SubVT = N0.getValueType();
2794     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2795 
2796     // Ignore bitcasts from unsupported types.
2797     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2798       break;
2799 
2800     // Fast handling of 'identity' bitcasts.
2801     if (BitWidth == SubBitWidth) {
2802       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2803       break;
2804     }
2805 
2806     bool IsLE = getDataLayout().isLittleEndian();
2807 
2808     // Bitcast 'small element' vector to 'large element' scalar/vector.
2809     if ((BitWidth % SubBitWidth) == 0) {
2810       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2811 
2812       // Collect known bits for the (larger) output by collecting the known
2813       // bits from each set of sub elements and shift these into place.
2814       // We need to separately call computeKnownBits for each set of
2815       // sub elements as the knownbits for each is likely to be different.
2816       unsigned SubScale = BitWidth / SubBitWidth;
2817       APInt SubDemandedElts(NumElts * SubScale, 0);
2818       for (unsigned i = 0; i != NumElts; ++i)
2819         if (DemandedElts[i])
2820           SubDemandedElts.setBit(i * SubScale);
2821 
2822       for (unsigned i = 0; i != SubScale; ++i) {
2823         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2824                          Depth + 1);
2825         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2826         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2827         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2828       }
2829     }
2830 
2831     // Bitcast 'large element' scalar/vector to 'small element' vector.
2832     if ((SubBitWidth % BitWidth) == 0) {
2833       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2834 
2835       // Collect known bits for the (smaller) output by collecting the known
2836       // bits from the overlapping larger input elements and extracting the
2837       // sub sections we actually care about.
2838       unsigned SubScale = SubBitWidth / BitWidth;
2839       APInt SubDemandedElts(NumElts / SubScale, 0);
2840       for (unsigned i = 0; i != NumElts; ++i)
2841         if (DemandedElts[i])
2842           SubDemandedElts.setBit(i / SubScale);
2843 
2844       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2845 
2846       Known.Zero.setAllBits(); Known.One.setAllBits();
2847       for (unsigned i = 0; i != NumElts; ++i)
2848         if (DemandedElts[i]) {
2849           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2850           unsigned Offset = (Shifts % SubScale) * BitWidth;
2851           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2852           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2853           // If we don't know any bits, early out.
2854           if (Known.isUnknown())
2855             break;
2856         }
2857     }
2858     break;
2859   }
2860   case ISD::AND:
2861     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2862     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2863 
2864     Known &= Known2;
2865     break;
2866   case ISD::OR:
2867     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2868     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2869 
2870     Known |= Known2;
2871     break;
2872   case ISD::XOR:
2873     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2874     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2875 
2876     Known ^= Known2;
2877     break;
2878   case ISD::MUL: {
2879     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2880     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2881 
2882     // If low bits are zero in either operand, output low known-0 bits.
2883     // Also compute a conservative estimate for high known-0 bits.
2884     // More trickiness is possible, but this is sufficient for the
2885     // interesting case of alignment computation.
2886     unsigned TrailZ = Known.countMinTrailingZeros() +
2887                       Known2.countMinTrailingZeros();
2888     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2889                                Known2.countMinLeadingZeros(),
2890                                BitWidth) - BitWidth;
2891 
2892     Known.resetAll();
2893     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2894     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2895     break;
2896   }
2897   case ISD::UDIV: {
2898     // For the purposes of computing leading zeros we can conservatively
2899     // treat a udiv as a logical right shift by the power of 2 known to
2900     // be less than the denominator.
2901     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2902     unsigned LeadZ = Known2.countMinLeadingZeros();
2903 
2904     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2905     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2906     if (RHSMaxLeadingZeros != BitWidth)
2907       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2908 
2909     Known.Zero.setHighBits(LeadZ);
2910     break;
2911   }
2912   case ISD::SELECT:
2913   case ISD::VSELECT:
2914     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2915     // If we don't know any bits, early out.
2916     if (Known.isUnknown())
2917       break;
2918     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2919 
2920     // Only known if known in both the LHS and RHS.
2921     Known.One &= Known2.One;
2922     Known.Zero &= Known2.Zero;
2923     break;
2924   case ISD::SELECT_CC:
2925     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2926     // If we don't know any bits, early out.
2927     if (Known.isUnknown())
2928       break;
2929     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2930 
2931     // Only known if known in both the LHS and RHS.
2932     Known.One &= Known2.One;
2933     Known.Zero &= Known2.Zero;
2934     break;
2935   case ISD::SMULO:
2936   case ISD::UMULO:
2937   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2938     if (Op.getResNo() != 1)
2939       break;
2940     // The boolean result conforms to getBooleanContents.
2941     // If we know the result of a setcc has the top bits zero, use this info.
2942     // We know that we have an integer-based boolean since these operations
2943     // are only available for integer.
2944     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2945             TargetLowering::ZeroOrOneBooleanContent &&
2946         BitWidth > 1)
2947       Known.Zero.setBitsFrom(1);
2948     break;
2949   case ISD::SETCC:
2950   case ISD::STRICT_FSETCC:
2951   case ISD::STRICT_FSETCCS: {
2952     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2953     // If we know the result of a setcc has the top bits zero, use this info.
2954     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2955             TargetLowering::ZeroOrOneBooleanContent &&
2956         BitWidth > 1)
2957       Known.Zero.setBitsFrom(1);
2958     break;
2959   }
2960   case ISD::SHL:
2961     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2962 
2963     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2964       unsigned Shift = ShAmt->getZExtValue();
2965       Known.Zero <<= Shift;
2966       Known.One <<= Shift;
2967       // Low bits are known zero.
2968       Known.Zero.setLowBits(Shift);
2969       break;
2970     }
2971 
2972     // No matter the shift amount, the trailing zeros will stay zero.
2973     Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros());
2974     Known.One.clearAllBits();
2975 
2976     // Minimum shift low bits are known zero.
2977     if (const APInt *ShMinAmt =
2978             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2979       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2980     break;
2981   case ISD::SRL:
2982     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2983 
2984     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2985       unsigned Shift = ShAmt->getZExtValue();
2986       Known.Zero.lshrInPlace(Shift);
2987       Known.One.lshrInPlace(Shift);
2988       // High bits are known zero.
2989       Known.Zero.setHighBits(Shift);
2990       break;
2991     }
2992 
2993     // No matter the shift amount, the leading zeros will stay zero.
2994     Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros());
2995     Known.One.clearAllBits();
2996 
2997     // Minimum shift high bits are known zero.
2998     if (const APInt *ShMinAmt =
2999             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3000       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3001     break;
3002   case ISD::SRA:
3003     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
3004       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3005       unsigned Shift = ShAmt->getZExtValue();
3006       // Sign extend known zero/one bit (else is unknown).
3007       Known.Zero.ashrInPlace(Shift);
3008       Known.One.ashrInPlace(Shift);
3009     }
3010     break;
3011   case ISD::FSHL:
3012   case ISD::FSHR:
3013     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3014       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3015 
3016       // For fshl, 0-shift returns the 1st arg.
3017       // For fshr, 0-shift returns the 2nd arg.
3018       if (Amt == 0) {
3019         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3020                                  DemandedElts, Depth + 1);
3021         break;
3022       }
3023 
3024       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3025       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3026       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3027       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3028       if (Opcode == ISD::FSHL) {
3029         Known.One <<= Amt;
3030         Known.Zero <<= Amt;
3031         Known2.One.lshrInPlace(BitWidth - Amt);
3032         Known2.Zero.lshrInPlace(BitWidth - Amt);
3033       } else {
3034         Known.One <<= BitWidth - Amt;
3035         Known.Zero <<= BitWidth - Amt;
3036         Known2.One.lshrInPlace(Amt);
3037         Known2.Zero.lshrInPlace(Amt);
3038       }
3039       Known.One |= Known2.One;
3040       Known.Zero |= Known2.Zero;
3041     }
3042     break;
3043   case ISD::SIGN_EXTEND_INREG: {
3044     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3045     unsigned EBits = EVT.getScalarSizeInBits();
3046 
3047     // Sign extension.  Compute the demanded bits in the result that are not
3048     // present in the input.
3049     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
3050 
3051     APInt InSignMask = APInt::getSignMask(EBits);
3052     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
3053 
3054     // If the sign extended bits are demanded, we know that the sign
3055     // bit is demanded.
3056     InSignMask = InSignMask.zext(BitWidth);
3057     if (NewBits.getBoolValue())
3058       InputDemandedBits |= InSignMask;
3059 
3060     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3061     Known.One &= InputDemandedBits;
3062     Known.Zero &= InputDemandedBits;
3063 
3064     // If the sign bit of the input is known set or clear, then we know the
3065     // top bits of the result.
3066     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
3067       Known.Zero |= NewBits;
3068       Known.One  &= ~NewBits;
3069     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
3070       Known.One  |= NewBits;
3071       Known.Zero &= ~NewBits;
3072     } else {                              // Input sign bit unknown
3073       Known.Zero &= ~NewBits;
3074       Known.One  &= ~NewBits;
3075     }
3076     break;
3077   }
3078   case ISD::CTTZ:
3079   case ISD::CTTZ_ZERO_UNDEF: {
3080     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3081     // If we have a known 1, its position is our upper bound.
3082     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3083     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3084     Known.Zero.setBitsFrom(LowBits);
3085     break;
3086   }
3087   case ISD::CTLZ:
3088   case ISD::CTLZ_ZERO_UNDEF: {
3089     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3090     // If we have a known 1, its position is our upper bound.
3091     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3092     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3093     Known.Zero.setBitsFrom(LowBits);
3094     break;
3095   }
3096   case ISD::CTPOP: {
3097     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3098     // If we know some of the bits are zero, they can't be one.
3099     unsigned PossibleOnes = Known2.countMaxPopulation();
3100     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3101     break;
3102   }
3103   case ISD::PARITY: {
3104     // Parity returns 0 everywhere but the LSB.
3105     Known.Zero.setBitsFrom(1);
3106     break;
3107   }
3108   case ISD::LOAD: {
3109     LoadSDNode *LD = cast<LoadSDNode>(Op);
3110     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3111     if (ISD::isNON_EXTLoad(LD) && Cst) {
3112       // Determine any common known bits from the loaded constant pool value.
3113       Type *CstTy = Cst->getType();
3114       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3115         // If its a vector splat, then we can (quickly) reuse the scalar path.
3116         // NOTE: We assume all elements match and none are UNDEF.
3117         if (CstTy->isVectorTy()) {
3118           if (const Constant *Splat = Cst->getSplatValue()) {
3119             Cst = Splat;
3120             CstTy = Cst->getType();
3121           }
3122         }
3123         // TODO - do we need to handle different bitwidths?
3124         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3125           // Iterate across all vector elements finding common known bits.
3126           Known.One.setAllBits();
3127           Known.Zero.setAllBits();
3128           for (unsigned i = 0; i != NumElts; ++i) {
3129             if (!DemandedElts[i])
3130               continue;
3131             if (Constant *Elt = Cst->getAggregateElement(i)) {
3132               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3133                 const APInt &Value = CInt->getValue();
3134                 Known.One &= Value;
3135                 Known.Zero &= ~Value;
3136                 continue;
3137               }
3138               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3139                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3140                 Known.One &= Value;
3141                 Known.Zero &= ~Value;
3142                 continue;
3143               }
3144             }
3145             Known.One.clearAllBits();
3146             Known.Zero.clearAllBits();
3147             break;
3148           }
3149         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3150           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3151             const APInt &Value = CInt->getValue();
3152             Known.One = Value;
3153             Known.Zero = ~Value;
3154           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3155             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3156             Known.One = Value;
3157             Known.Zero = ~Value;
3158           }
3159         }
3160       }
3161     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3162       // If this is a ZEXTLoad and we are looking at the loaded value.
3163       EVT VT = LD->getMemoryVT();
3164       unsigned MemBits = VT.getScalarSizeInBits();
3165       Known.Zero.setBitsFrom(MemBits);
3166     } else if (const MDNode *Ranges = LD->getRanges()) {
3167       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3168         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3169     }
3170     break;
3171   }
3172   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3173     EVT InVT = Op.getOperand(0).getValueType();
3174     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3175     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3176     Known = Known.zext(BitWidth);
3177     break;
3178   }
3179   case ISD::ZERO_EXTEND: {
3180     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3181     Known = Known.zext(BitWidth);
3182     break;
3183   }
3184   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3185     EVT InVT = Op.getOperand(0).getValueType();
3186     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3187     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3188     // If the sign bit is known to be zero or one, then sext will extend
3189     // it to the top bits, else it will just zext.
3190     Known = Known.sext(BitWidth);
3191     break;
3192   }
3193   case ISD::SIGN_EXTEND: {
3194     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3195     // If the sign bit is known to be zero or one, then sext will extend
3196     // it to the top bits, else it will just zext.
3197     Known = Known.sext(BitWidth);
3198     break;
3199   }
3200   case ISD::ANY_EXTEND_VECTOR_INREG: {
3201     EVT InVT = Op.getOperand(0).getValueType();
3202     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3203     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3204     Known = Known.anyext(BitWidth);
3205     break;
3206   }
3207   case ISD::ANY_EXTEND: {
3208     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3209     Known = Known.anyext(BitWidth);
3210     break;
3211   }
3212   case ISD::TRUNCATE: {
3213     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3214     Known = Known.trunc(BitWidth);
3215     break;
3216   }
3217   case ISD::AssertZext: {
3218     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3219     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3220     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3221     Known.Zero |= (~InMask);
3222     Known.One  &= (~Known.Zero);
3223     break;
3224   }
3225   case ISD::AssertAlign: {
3226     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3227     assert(LogOfAlign != 0);
3228     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3229     // well as clearing one bits.
3230     Known.Zero.setLowBits(LogOfAlign);
3231     Known.One.clearLowBits(LogOfAlign);
3232     break;
3233   }
3234   case ISD::FGETSIGN:
3235     // All bits are zero except the low bit.
3236     Known.Zero.setBitsFrom(1);
3237     break;
3238   case ISD::USUBO:
3239   case ISD::SSUBO:
3240     if (Op.getResNo() == 1) {
3241       // If we know the result of a setcc has the top bits zero, use this info.
3242       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3243               TargetLowering::ZeroOrOneBooleanContent &&
3244           BitWidth > 1)
3245         Known.Zero.setBitsFrom(1);
3246       break;
3247     }
3248     LLVM_FALLTHROUGH;
3249   case ISD::SUB:
3250   case ISD::SUBC: {
3251     assert(Op.getResNo() == 0 &&
3252            "We only compute knownbits for the difference here.");
3253 
3254     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3255     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3256     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3257                                         Known, Known2);
3258     break;
3259   }
3260   case ISD::UADDO:
3261   case ISD::SADDO:
3262   case ISD::ADDCARRY:
3263     if (Op.getResNo() == 1) {
3264       // If we know the result of a setcc has the top bits zero, use this info.
3265       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3266               TargetLowering::ZeroOrOneBooleanContent &&
3267           BitWidth > 1)
3268         Known.Zero.setBitsFrom(1);
3269       break;
3270     }
3271     LLVM_FALLTHROUGH;
3272   case ISD::ADD:
3273   case ISD::ADDC:
3274   case ISD::ADDE: {
3275     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3276 
3277     // With ADDE and ADDCARRY, a carry bit may be added in.
3278     KnownBits Carry(1);
3279     if (Opcode == ISD::ADDE)
3280       // Can't track carry from glue, set carry to unknown.
3281       Carry.resetAll();
3282     else if (Opcode == ISD::ADDCARRY)
3283       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3284       // the trouble (how often will we find a known carry bit). And I haven't
3285       // tested this very much yet, but something like this might work:
3286       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3287       //   Carry = Carry.zextOrTrunc(1, false);
3288       Carry.resetAll();
3289     else
3290       Carry.setAllZero();
3291 
3292     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3293     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3294     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3295     break;
3296   }
3297   case ISD::SREM:
3298     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3299       const APInt &RA = Rem->getAPIntValue().abs();
3300       if (RA.isPowerOf2()) {
3301         APInt LowBits = RA - 1;
3302         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3303 
3304         // The low bits of the first operand are unchanged by the srem.
3305         Known.Zero = Known2.Zero & LowBits;
3306         Known.One = Known2.One & LowBits;
3307 
3308         // If the first operand is non-negative or has all low bits zero, then
3309         // the upper bits are all zero.
3310         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3311           Known.Zero |= ~LowBits;
3312 
3313         // If the first operand is negative and not all low bits are zero, then
3314         // the upper bits are all one.
3315         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3316           Known.One |= ~LowBits;
3317         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3318       }
3319     }
3320     break;
3321   case ISD::UREM: {
3322     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3323       const APInt &RA = Rem->getAPIntValue();
3324       if (RA.isPowerOf2()) {
3325         APInt LowBits = (RA - 1);
3326         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3327 
3328         // The upper bits are all zero, the lower ones are unchanged.
3329         Known.Zero = Known2.Zero | ~LowBits;
3330         Known.One = Known2.One & LowBits;
3331         break;
3332       }
3333     }
3334 
3335     // Since the result is less than or equal to either operand, any leading
3336     // zero bits in either operand must also exist in the result.
3337     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3338     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3339 
3340     uint32_t Leaders =
3341         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3342     Known.resetAll();
3343     Known.Zero.setHighBits(Leaders);
3344     break;
3345   }
3346   case ISD::EXTRACT_ELEMENT: {
3347     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3348     const unsigned Index = Op.getConstantOperandVal(1);
3349     const unsigned EltBitWidth = Op.getValueSizeInBits();
3350 
3351     // Remove low part of known bits mask
3352     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3353     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3354 
3355     // Remove high part of known bit mask
3356     Known = Known.trunc(EltBitWidth);
3357     break;
3358   }
3359   case ISD::EXTRACT_VECTOR_ELT: {
3360     SDValue InVec = Op.getOperand(0);
3361     SDValue EltNo = Op.getOperand(1);
3362     EVT VecVT = InVec.getValueType();
3363     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3364     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3365 
3366     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3367     // anything about the extended bits.
3368     if (BitWidth > EltBitWidth)
3369       Known = Known.trunc(EltBitWidth);
3370 
3371     // If we know the element index, just demand that vector element, else for
3372     // an unknown element index, ignore DemandedElts and demand them all.
3373     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3374     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3375     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3376       DemandedSrcElts =
3377           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3378 
3379     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3380     if (BitWidth > EltBitWidth)
3381       Known = Known.anyext(BitWidth);
3382     break;
3383   }
3384   case ISD::INSERT_VECTOR_ELT: {
3385     // If we know the element index, split the demand between the
3386     // source vector and the inserted element, otherwise assume we need
3387     // the original demanded vector elements and the value.
3388     SDValue InVec = Op.getOperand(0);
3389     SDValue InVal = Op.getOperand(1);
3390     SDValue EltNo = Op.getOperand(2);
3391     bool DemandedVal = true;
3392     APInt DemandedVecElts = DemandedElts;
3393     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3394     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3395       unsigned EltIdx = CEltNo->getZExtValue();
3396       DemandedVal = !!DemandedElts[EltIdx];
3397       DemandedVecElts.clearBit(EltIdx);
3398     }
3399     Known.One.setAllBits();
3400     Known.Zero.setAllBits();
3401     if (DemandedVal) {
3402       Known2 = computeKnownBits(InVal, Depth + 1);
3403       Known.One &= Known2.One.zextOrTrunc(BitWidth);
3404       Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth);
3405     }
3406     if (!!DemandedVecElts) {
3407       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3408       Known.One &= Known2.One;
3409       Known.Zero &= Known2.Zero;
3410     }
3411     break;
3412   }
3413   case ISD::BITREVERSE: {
3414     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3415     Known = Known2.reverseBits();
3416     break;
3417   }
3418   case ISD::BSWAP: {
3419     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3420     Known = Known2.byteSwap();
3421     break;
3422   }
3423   case ISD::ABS: {
3424     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3425     Known = Known2.abs();
3426     break;
3427   }
3428   case ISD::UMIN: {
3429     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3430     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3431     Known = KnownBits::umin(Known, Known2);
3432     break;
3433   }
3434   case ISD::UMAX: {
3435     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3436     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3437     Known = KnownBits::umax(Known, Known2);
3438     break;
3439   }
3440   case ISD::SMIN:
3441   case ISD::SMAX: {
3442     // If we have a clamp pattern, we know that the number of sign bits will be
3443     // the minimum of the clamp min/max range.
3444     bool IsMax = (Opcode == ISD::SMAX);
3445     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3446     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3447       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3448         CstHigh =
3449             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3450     if (CstLow && CstHigh) {
3451       if (!IsMax)
3452         std::swap(CstLow, CstHigh);
3453 
3454       const APInt &ValueLow = CstLow->getAPIntValue();
3455       const APInt &ValueHigh = CstHigh->getAPIntValue();
3456       if (ValueLow.sle(ValueHigh)) {
3457         unsigned LowSignBits = ValueLow.getNumSignBits();
3458         unsigned HighSignBits = ValueHigh.getNumSignBits();
3459         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3460         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3461           Known.One.setHighBits(MinSignBits);
3462           break;
3463         }
3464         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3465           Known.Zero.setHighBits(MinSignBits);
3466           break;
3467         }
3468       }
3469     }
3470 
3471     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3472     if (Known.isUnknown()) break; // Early-out
3473     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3474     if (IsMax)
3475       Known = KnownBits::smax(Known, Known2);
3476     else
3477       Known = KnownBits::smin(Known, Known2);
3478     break;
3479   }
3480   case ISD::FrameIndex:
3481   case ISD::TargetFrameIndex:
3482     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3483                                        Known, getMachineFunction());
3484     break;
3485 
3486   default:
3487     if (Opcode < ISD::BUILTIN_OP_END)
3488       break;
3489     LLVM_FALLTHROUGH;
3490   case ISD::INTRINSIC_WO_CHAIN:
3491   case ISD::INTRINSIC_W_CHAIN:
3492   case ISD::INTRINSIC_VOID:
3493     // Allow the target to implement this method for its nodes.
3494     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3495     break;
3496   }
3497 
3498   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3499   return Known;
3500 }
3501 
3502 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3503                                                              SDValue N1) const {
3504   // X + 0 never overflow
3505   if (isNullConstant(N1))
3506     return OFK_Never;
3507 
3508   KnownBits N1Known = computeKnownBits(N1);
3509   if (N1Known.Zero.getBoolValue()) {
3510     KnownBits N0Known = computeKnownBits(N0);
3511 
3512     bool overflow;
3513     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3514     if (!overflow)
3515       return OFK_Never;
3516   }
3517 
3518   // mulhi + 1 never overflow
3519   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3520       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3521     return OFK_Never;
3522 
3523   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3524     KnownBits N0Known = computeKnownBits(N0);
3525 
3526     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3527       return OFK_Never;
3528   }
3529 
3530   return OFK_Sometime;
3531 }
3532 
3533 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3534   EVT OpVT = Val.getValueType();
3535   unsigned BitWidth = OpVT.getScalarSizeInBits();
3536 
3537   // Is the constant a known power of 2?
3538   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3539     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3540 
3541   // A left-shift of a constant one will have exactly one bit set because
3542   // shifting the bit off the end is undefined.
3543   if (Val.getOpcode() == ISD::SHL) {
3544     auto *C = isConstOrConstSplat(Val.getOperand(0));
3545     if (C && C->getAPIntValue() == 1)
3546       return true;
3547   }
3548 
3549   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3550   // one bit set.
3551   if (Val.getOpcode() == ISD::SRL) {
3552     auto *C = isConstOrConstSplat(Val.getOperand(0));
3553     if (C && C->getAPIntValue().isSignMask())
3554       return true;
3555   }
3556 
3557   // Are all operands of a build vector constant powers of two?
3558   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3559     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3560           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3561             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3562           return false;
3563         }))
3564       return true;
3565 
3566   // More could be done here, though the above checks are enough
3567   // to handle some common cases.
3568 
3569   // Fall back to computeKnownBits to catch other known cases.
3570   KnownBits Known = computeKnownBits(Val);
3571   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3572 }
3573 
3574 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3575   EVT VT = Op.getValueType();
3576 
3577   // TODO: Assume we don't know anything for now.
3578   if (VT.isScalableVector())
3579     return 1;
3580 
3581   APInt DemandedElts = VT.isVector()
3582                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3583                            : APInt(1, 1);
3584   return ComputeNumSignBits(Op, DemandedElts, Depth);
3585 }
3586 
3587 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3588                                           unsigned Depth) const {
3589   EVT VT = Op.getValueType();
3590   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3591   unsigned VTBits = VT.getScalarSizeInBits();
3592   unsigned NumElts = DemandedElts.getBitWidth();
3593   unsigned Tmp, Tmp2;
3594   unsigned FirstAnswer = 1;
3595 
3596   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3597     const APInt &Val = C->getAPIntValue();
3598     return Val.getNumSignBits();
3599   }
3600 
3601   if (Depth >= MaxRecursionDepth)
3602     return 1;  // Limit search depth.
3603 
3604   if (!DemandedElts || VT.isScalableVector())
3605     return 1;  // No demanded elts, better to assume we don't know anything.
3606 
3607   unsigned Opcode = Op.getOpcode();
3608   switch (Opcode) {
3609   default: break;
3610   case ISD::AssertSext:
3611     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3612     return VTBits-Tmp+1;
3613   case ISD::AssertZext:
3614     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3615     return VTBits-Tmp;
3616 
3617   case ISD::BUILD_VECTOR:
3618     Tmp = VTBits;
3619     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3620       if (!DemandedElts[i])
3621         continue;
3622 
3623       SDValue SrcOp = Op.getOperand(i);
3624       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3625 
3626       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3627       if (SrcOp.getValueSizeInBits() != VTBits) {
3628         assert(SrcOp.getValueSizeInBits() > VTBits &&
3629                "Expected BUILD_VECTOR implicit truncation");
3630         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3631         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3632       }
3633       Tmp = std::min(Tmp, Tmp2);
3634     }
3635     return Tmp;
3636 
3637   case ISD::VECTOR_SHUFFLE: {
3638     // Collect the minimum number of sign bits that are shared by every vector
3639     // element referenced by the shuffle.
3640     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3641     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3642     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3643     for (unsigned i = 0; i != NumElts; ++i) {
3644       int M = SVN->getMaskElt(i);
3645       if (!DemandedElts[i])
3646         continue;
3647       // For UNDEF elements, we don't know anything about the common state of
3648       // the shuffle result.
3649       if (M < 0)
3650         return 1;
3651       if ((unsigned)M < NumElts)
3652         DemandedLHS.setBit((unsigned)M % NumElts);
3653       else
3654         DemandedRHS.setBit((unsigned)M % NumElts);
3655     }
3656     Tmp = std::numeric_limits<unsigned>::max();
3657     if (!!DemandedLHS)
3658       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3659     if (!!DemandedRHS) {
3660       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3661       Tmp = std::min(Tmp, Tmp2);
3662     }
3663     // If we don't know anything, early out and try computeKnownBits fall-back.
3664     if (Tmp == 1)
3665       break;
3666     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3667     return Tmp;
3668   }
3669 
3670   case ISD::BITCAST: {
3671     SDValue N0 = Op.getOperand(0);
3672     EVT SrcVT = N0.getValueType();
3673     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3674 
3675     // Ignore bitcasts from unsupported types..
3676     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3677       break;
3678 
3679     // Fast handling of 'identity' bitcasts.
3680     if (VTBits == SrcBits)
3681       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3682 
3683     bool IsLE = getDataLayout().isLittleEndian();
3684 
3685     // Bitcast 'large element' scalar/vector to 'small element' vector.
3686     if ((SrcBits % VTBits) == 0) {
3687       assert(VT.isVector() && "Expected bitcast to vector");
3688 
3689       unsigned Scale = SrcBits / VTBits;
3690       APInt SrcDemandedElts(NumElts / Scale, 0);
3691       for (unsigned i = 0; i != NumElts; ++i)
3692         if (DemandedElts[i])
3693           SrcDemandedElts.setBit(i / Scale);
3694 
3695       // Fast case - sign splat can be simply split across the small elements.
3696       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3697       if (Tmp == SrcBits)
3698         return VTBits;
3699 
3700       // Slow case - determine how far the sign extends into each sub-element.
3701       Tmp2 = VTBits;
3702       for (unsigned i = 0; i != NumElts; ++i)
3703         if (DemandedElts[i]) {
3704           unsigned SubOffset = i % Scale;
3705           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3706           SubOffset = SubOffset * VTBits;
3707           if (Tmp <= SubOffset)
3708             return 1;
3709           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3710         }
3711       return Tmp2;
3712     }
3713     break;
3714   }
3715 
3716   case ISD::SIGN_EXTEND:
3717     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3718     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3719   case ISD::SIGN_EXTEND_INREG:
3720     // Max of the input and what this extends.
3721     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3722     Tmp = VTBits-Tmp+1;
3723     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3724     return std::max(Tmp, Tmp2);
3725   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3726     SDValue Src = Op.getOperand(0);
3727     EVT SrcVT = Src.getValueType();
3728     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3729     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3730     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3731   }
3732   case ISD::SRA:
3733     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3734     // SRA X, C -> adds C sign bits.
3735     if (const APInt *ShAmt =
3736             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3737       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3738     return Tmp;
3739   case ISD::SHL:
3740     if (const APInt *ShAmt =
3741             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3742       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3743       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3744       if (ShAmt->ult(Tmp))
3745         return Tmp - ShAmt->getZExtValue();
3746     }
3747     break;
3748   case ISD::AND:
3749   case ISD::OR:
3750   case ISD::XOR:    // NOT is handled here.
3751     // Logical binary ops preserve the number of sign bits at the worst.
3752     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3753     if (Tmp != 1) {
3754       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3755       FirstAnswer = std::min(Tmp, Tmp2);
3756       // We computed what we know about the sign bits as our first
3757       // answer. Now proceed to the generic code that uses
3758       // computeKnownBits, and pick whichever answer is better.
3759     }
3760     break;
3761 
3762   case ISD::SELECT:
3763   case ISD::VSELECT:
3764     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3765     if (Tmp == 1) return 1;  // Early out.
3766     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3767     return std::min(Tmp, Tmp2);
3768   case ISD::SELECT_CC:
3769     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3770     if (Tmp == 1) return 1;  // Early out.
3771     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3772     return std::min(Tmp, Tmp2);
3773 
3774   case ISD::SMIN:
3775   case ISD::SMAX: {
3776     // If we have a clamp pattern, we know that the number of sign bits will be
3777     // the minimum of the clamp min/max range.
3778     bool IsMax = (Opcode == ISD::SMAX);
3779     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3780     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3781       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3782         CstHigh =
3783             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3784     if (CstLow && CstHigh) {
3785       if (!IsMax)
3786         std::swap(CstLow, CstHigh);
3787       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3788         Tmp = CstLow->getAPIntValue().getNumSignBits();
3789         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3790         return std::min(Tmp, Tmp2);
3791       }
3792     }
3793 
3794     // Fallback - just get the minimum number of sign bits of the operands.
3795     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3796     if (Tmp == 1)
3797       return 1;  // Early out.
3798     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3799     return std::min(Tmp, Tmp2);
3800   }
3801   case ISD::UMIN:
3802   case ISD::UMAX:
3803     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3804     if (Tmp == 1)
3805       return 1;  // Early out.
3806     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3807     return std::min(Tmp, Tmp2);
3808   case ISD::SADDO:
3809   case ISD::UADDO:
3810   case ISD::SSUBO:
3811   case ISD::USUBO:
3812   case ISD::SMULO:
3813   case ISD::UMULO:
3814     if (Op.getResNo() != 1)
3815       break;
3816     // The boolean result conforms to getBooleanContents.  Fall through.
3817     // If setcc returns 0/-1, all bits are sign bits.
3818     // We know that we have an integer-based boolean since these operations
3819     // are only available for integer.
3820     if (TLI->getBooleanContents(VT.isVector(), false) ==
3821         TargetLowering::ZeroOrNegativeOneBooleanContent)
3822       return VTBits;
3823     break;
3824   case ISD::SETCC:
3825   case ISD::STRICT_FSETCC:
3826   case ISD::STRICT_FSETCCS: {
3827     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3828     // If setcc returns 0/-1, all bits are sign bits.
3829     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3830         TargetLowering::ZeroOrNegativeOneBooleanContent)
3831       return VTBits;
3832     break;
3833   }
3834   case ISD::ROTL:
3835   case ISD::ROTR:
3836     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3837 
3838     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3839     if (Tmp == VTBits)
3840       return VTBits;
3841 
3842     if (ConstantSDNode *C =
3843             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3844       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3845 
3846       // Handle rotate right by N like a rotate left by 32-N.
3847       if (Opcode == ISD::ROTR)
3848         RotAmt = (VTBits - RotAmt) % VTBits;
3849 
3850       // If we aren't rotating out all of the known-in sign bits, return the
3851       // number that are left.  This handles rotl(sext(x), 1) for example.
3852       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3853     }
3854     break;
3855   case ISD::ADD:
3856   case ISD::ADDC:
3857     // Add can have at most one carry bit.  Thus we know that the output
3858     // is, at worst, one more bit than the inputs.
3859     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3860     if (Tmp == 1) return 1; // Early out.
3861 
3862     // Special case decrementing a value (ADD X, -1):
3863     if (ConstantSDNode *CRHS =
3864             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3865       if (CRHS->isAllOnesValue()) {
3866         KnownBits Known =
3867             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3868 
3869         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3870         // sign bits set.
3871         if ((Known.Zero | 1).isAllOnesValue())
3872           return VTBits;
3873 
3874         // If we are subtracting one from a positive number, there is no carry
3875         // out of the result.
3876         if (Known.isNonNegative())
3877           return Tmp;
3878       }
3879 
3880     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3881     if (Tmp2 == 1) return 1; // Early out.
3882     return std::min(Tmp, Tmp2) - 1;
3883   case ISD::SUB:
3884     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3885     if (Tmp2 == 1) return 1; // Early out.
3886 
3887     // Handle NEG.
3888     if (ConstantSDNode *CLHS =
3889             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3890       if (CLHS->isNullValue()) {
3891         KnownBits Known =
3892             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3893         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3894         // sign bits set.
3895         if ((Known.Zero | 1).isAllOnesValue())
3896           return VTBits;
3897 
3898         // If the input is known to be positive (the sign bit is known clear),
3899         // the output of the NEG has the same number of sign bits as the input.
3900         if (Known.isNonNegative())
3901           return Tmp2;
3902 
3903         // Otherwise, we treat this like a SUB.
3904       }
3905 
3906     // Sub can have at most one carry bit.  Thus we know that the output
3907     // is, at worst, one more bit than the inputs.
3908     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3909     if (Tmp == 1) return 1; // Early out.
3910     return std::min(Tmp, Tmp2) - 1;
3911   case ISD::MUL: {
3912     // The output of the Mul can be at most twice the valid bits in the inputs.
3913     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3914     if (SignBitsOp0 == 1)
3915       break;
3916     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3917     if (SignBitsOp1 == 1)
3918       break;
3919     unsigned OutValidBits =
3920         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3921     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3922   }
3923   case ISD::TRUNCATE: {
3924     // Check if the sign bits of source go down as far as the truncated value.
3925     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3926     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3927     if (NumSrcSignBits > (NumSrcBits - VTBits))
3928       return NumSrcSignBits - (NumSrcBits - VTBits);
3929     break;
3930   }
3931   case ISD::EXTRACT_ELEMENT: {
3932     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3933     const int BitWidth = Op.getValueSizeInBits();
3934     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3935 
3936     // Get reverse index (starting from 1), Op1 value indexes elements from
3937     // little end. Sign starts at big end.
3938     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3939 
3940     // If the sign portion ends in our element the subtraction gives correct
3941     // result. Otherwise it gives either negative or > bitwidth result
3942     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3943   }
3944   case ISD::INSERT_VECTOR_ELT: {
3945     // If we know the element index, split the demand between the
3946     // source vector and the inserted element, otherwise assume we need
3947     // the original demanded vector elements and the value.
3948     SDValue InVec = Op.getOperand(0);
3949     SDValue InVal = Op.getOperand(1);
3950     SDValue EltNo = Op.getOperand(2);
3951     bool DemandedVal = true;
3952     APInt DemandedVecElts = DemandedElts;
3953     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3954     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3955       unsigned EltIdx = CEltNo->getZExtValue();
3956       DemandedVal = !!DemandedElts[EltIdx];
3957       DemandedVecElts.clearBit(EltIdx);
3958     }
3959     Tmp = std::numeric_limits<unsigned>::max();
3960     if (DemandedVal) {
3961       // TODO - handle implicit truncation of inserted elements.
3962       if (InVal.getScalarValueSizeInBits() != VTBits)
3963         break;
3964       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3965       Tmp = std::min(Tmp, Tmp2);
3966     }
3967     if (!!DemandedVecElts) {
3968       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3969       Tmp = std::min(Tmp, Tmp2);
3970     }
3971     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3972     return Tmp;
3973   }
3974   case ISD::EXTRACT_VECTOR_ELT: {
3975     SDValue InVec = Op.getOperand(0);
3976     SDValue EltNo = Op.getOperand(1);
3977     EVT VecVT = InVec.getValueType();
3978     const unsigned BitWidth = Op.getValueSizeInBits();
3979     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3980     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3981 
3982     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3983     // anything about sign bits. But if the sizes match we can derive knowledge
3984     // about sign bits from the vector operand.
3985     if (BitWidth != EltBitWidth)
3986       break;
3987 
3988     // If we know the element index, just demand that vector element, else for
3989     // an unknown element index, ignore DemandedElts and demand them all.
3990     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3991     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3992     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3993       DemandedSrcElts =
3994           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3995 
3996     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3997   }
3998   case ISD::EXTRACT_SUBVECTOR: {
3999     // Offset the demanded elts by the subvector index.
4000     SDValue Src = Op.getOperand(0);
4001     // Bail until we can represent demanded elements for scalable vectors.
4002     if (Src.getValueType().isScalableVector())
4003       break;
4004     uint64_t Idx = Op.getConstantOperandVal(1);
4005     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4006     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4007     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4008   }
4009   case ISD::CONCAT_VECTORS: {
4010     // Determine the minimum number of sign bits across all demanded
4011     // elts of the input vectors. Early out if the result is already 1.
4012     Tmp = std::numeric_limits<unsigned>::max();
4013     EVT SubVectorVT = Op.getOperand(0).getValueType();
4014     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4015     unsigned NumSubVectors = Op.getNumOperands();
4016     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4017       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
4018       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
4019       if (!DemandedSub)
4020         continue;
4021       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4022       Tmp = std::min(Tmp, Tmp2);
4023     }
4024     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4025     return Tmp;
4026   }
4027   case ISD::INSERT_SUBVECTOR: {
4028     // Demand any elements from the subvector and the remainder from the src its
4029     // inserted into.
4030     SDValue Src = Op.getOperand(0);
4031     SDValue Sub = Op.getOperand(1);
4032     uint64_t Idx = Op.getConstantOperandVal(2);
4033     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4034     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4035     APInt DemandedSrcElts = DemandedElts;
4036     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4037 
4038     Tmp = std::numeric_limits<unsigned>::max();
4039     if (!!DemandedSubElts) {
4040       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4041       if (Tmp == 1)
4042         return 1; // early-out
4043     }
4044     if (!!DemandedSrcElts) {
4045       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4046       Tmp = std::min(Tmp, Tmp2);
4047     }
4048     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4049     return Tmp;
4050   }
4051   }
4052 
4053   // If we are looking at the loaded value of the SDNode.
4054   if (Op.getResNo() == 0) {
4055     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4056     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4057       unsigned ExtType = LD->getExtensionType();
4058       switch (ExtType) {
4059       default: break;
4060       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4061         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4062         return VTBits - Tmp + 1;
4063       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4064         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4065         return VTBits - Tmp;
4066       case ISD::NON_EXTLOAD:
4067         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4068           // We only need to handle vectors - computeKnownBits should handle
4069           // scalar cases.
4070           Type *CstTy = Cst->getType();
4071           if (CstTy->isVectorTy() &&
4072               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4073             Tmp = VTBits;
4074             for (unsigned i = 0; i != NumElts; ++i) {
4075               if (!DemandedElts[i])
4076                 continue;
4077               if (Constant *Elt = Cst->getAggregateElement(i)) {
4078                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4079                   const APInt &Value = CInt->getValue();
4080                   Tmp = std::min(Tmp, Value.getNumSignBits());
4081                   continue;
4082                 }
4083                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4084                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4085                   Tmp = std::min(Tmp, Value.getNumSignBits());
4086                   continue;
4087                 }
4088               }
4089               // Unknown type. Conservatively assume no bits match sign bit.
4090               return 1;
4091             }
4092             return Tmp;
4093           }
4094         }
4095         break;
4096       }
4097     }
4098   }
4099 
4100   // Allow the target to implement this method for its nodes.
4101   if (Opcode >= ISD::BUILTIN_OP_END ||
4102       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4103       Opcode == ISD::INTRINSIC_W_CHAIN ||
4104       Opcode == ISD::INTRINSIC_VOID) {
4105     unsigned NumBits =
4106         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4107     if (NumBits > 1)
4108       FirstAnswer = std::max(FirstAnswer, NumBits);
4109   }
4110 
4111   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4112   // use this information.
4113   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4114 
4115   APInt Mask;
4116   if (Known.isNonNegative()) {        // sign bit is 0
4117     Mask = Known.Zero;
4118   } else if (Known.isNegative()) {  // sign bit is 1;
4119     Mask = Known.One;
4120   } else {
4121     // Nothing known.
4122     return FirstAnswer;
4123   }
4124 
4125   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4126   // the number of identical bits in the top of the input value.
4127   Mask <<= Mask.getBitWidth()-VTBits;
4128   return std::max(FirstAnswer, Mask.countLeadingOnes());
4129 }
4130 
4131 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4132   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4133       !isa<ConstantSDNode>(Op.getOperand(1)))
4134     return false;
4135 
4136   if (Op.getOpcode() == ISD::OR &&
4137       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4138     return false;
4139 
4140   return true;
4141 }
4142 
4143 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4144   // If we're told that NaNs won't happen, assume they won't.
4145   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4146     return true;
4147 
4148   if (Depth >= MaxRecursionDepth)
4149     return false; // Limit search depth.
4150 
4151   // TODO: Handle vectors.
4152   // If the value is a constant, we can obviously see if it is a NaN or not.
4153   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4154     return !C->getValueAPF().isNaN() ||
4155            (SNaN && !C->getValueAPF().isSignaling());
4156   }
4157 
4158   unsigned Opcode = Op.getOpcode();
4159   switch (Opcode) {
4160   case ISD::FADD:
4161   case ISD::FSUB:
4162   case ISD::FMUL:
4163   case ISD::FDIV:
4164   case ISD::FREM:
4165   case ISD::FSIN:
4166   case ISD::FCOS: {
4167     if (SNaN)
4168       return true;
4169     // TODO: Need isKnownNeverInfinity
4170     return false;
4171   }
4172   case ISD::FCANONICALIZE:
4173   case ISD::FEXP:
4174   case ISD::FEXP2:
4175   case ISD::FTRUNC:
4176   case ISD::FFLOOR:
4177   case ISD::FCEIL:
4178   case ISD::FROUND:
4179   case ISD::FROUNDEVEN:
4180   case ISD::FRINT:
4181   case ISD::FNEARBYINT: {
4182     if (SNaN)
4183       return true;
4184     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4185   }
4186   case ISD::FABS:
4187   case ISD::FNEG:
4188   case ISD::FCOPYSIGN: {
4189     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4190   }
4191   case ISD::SELECT:
4192     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4193            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4194   case ISD::FP_EXTEND:
4195   case ISD::FP_ROUND: {
4196     if (SNaN)
4197       return true;
4198     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4199   }
4200   case ISD::SINT_TO_FP:
4201   case ISD::UINT_TO_FP:
4202     return true;
4203   case ISD::FMA:
4204   case ISD::FMAD: {
4205     if (SNaN)
4206       return true;
4207     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4208            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4209            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4210   }
4211   case ISD::FSQRT: // Need is known positive
4212   case ISD::FLOG:
4213   case ISD::FLOG2:
4214   case ISD::FLOG10:
4215   case ISD::FPOWI:
4216   case ISD::FPOW: {
4217     if (SNaN)
4218       return true;
4219     // TODO: Refine on operand
4220     return false;
4221   }
4222   case ISD::FMINNUM:
4223   case ISD::FMAXNUM: {
4224     // Only one needs to be known not-nan, since it will be returned if the
4225     // other ends up being one.
4226     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4227            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4228   }
4229   case ISD::FMINNUM_IEEE:
4230   case ISD::FMAXNUM_IEEE: {
4231     if (SNaN)
4232       return true;
4233     // This can return a NaN if either operand is an sNaN, or if both operands
4234     // are NaN.
4235     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4236             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4237            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4238             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4239   }
4240   case ISD::FMINIMUM:
4241   case ISD::FMAXIMUM: {
4242     // TODO: Does this quiet or return the origina NaN as-is?
4243     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4244            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4245   }
4246   case ISD::EXTRACT_VECTOR_ELT: {
4247     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4248   }
4249   default:
4250     if (Opcode >= ISD::BUILTIN_OP_END ||
4251         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4252         Opcode == ISD::INTRINSIC_W_CHAIN ||
4253         Opcode == ISD::INTRINSIC_VOID) {
4254       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4255     }
4256 
4257     return false;
4258   }
4259 }
4260 
4261 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4262   assert(Op.getValueType().isFloatingPoint() &&
4263          "Floating point type expected");
4264 
4265   // If the value is a constant, we can obviously see if it is a zero or not.
4266   // TODO: Add BuildVector support.
4267   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4268     return !C->isZero();
4269   return false;
4270 }
4271 
4272 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4273   assert(!Op.getValueType().isFloatingPoint() &&
4274          "Floating point types unsupported - use isKnownNeverZeroFloat");
4275 
4276   // If the value is a constant, we can obviously see if it is a zero or not.
4277   if (ISD::matchUnaryPredicate(
4278           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4279     return true;
4280 
4281   // TODO: Recognize more cases here.
4282   switch (Op.getOpcode()) {
4283   default: break;
4284   case ISD::OR:
4285     if (isKnownNeverZero(Op.getOperand(1)) ||
4286         isKnownNeverZero(Op.getOperand(0)))
4287       return true;
4288     break;
4289   }
4290 
4291   return false;
4292 }
4293 
4294 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4295   // Check the obvious case.
4296   if (A == B) return true;
4297 
4298   // For for negative and positive zero.
4299   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4300     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4301       if (CA->isZero() && CB->isZero()) return true;
4302 
4303   // Otherwise they may not be equal.
4304   return false;
4305 }
4306 
4307 // FIXME: unify with llvm::haveNoCommonBitsSet.
4308 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4309 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4310   assert(A.getValueType() == B.getValueType() &&
4311          "Values must have the same type");
4312   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4313 }
4314 
4315 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4316                                 ArrayRef<SDValue> Ops,
4317                                 SelectionDAG &DAG) {
4318   int NumOps = Ops.size();
4319   assert(NumOps != 0 && "Can't build an empty vector!");
4320   assert(!VT.isScalableVector() &&
4321          "BUILD_VECTOR cannot be used with scalable types");
4322   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4323          "Incorrect element count in BUILD_VECTOR!");
4324 
4325   // BUILD_VECTOR of UNDEFs is UNDEF.
4326   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4327     return DAG.getUNDEF(VT);
4328 
4329   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4330   SDValue IdentitySrc;
4331   bool IsIdentity = true;
4332   for (int i = 0; i != NumOps; ++i) {
4333     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4334         Ops[i].getOperand(0).getValueType() != VT ||
4335         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4336         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4337         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4338       IsIdentity = false;
4339       break;
4340     }
4341     IdentitySrc = Ops[i].getOperand(0);
4342   }
4343   if (IsIdentity)
4344     return IdentitySrc;
4345 
4346   return SDValue();
4347 }
4348 
4349 /// Try to simplify vector concatenation to an input value, undef, or build
4350 /// vector.
4351 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4352                                   ArrayRef<SDValue> Ops,
4353                                   SelectionDAG &DAG) {
4354   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4355   assert(llvm::all_of(Ops,
4356                       [Ops](SDValue Op) {
4357                         return Ops[0].getValueType() == Op.getValueType();
4358                       }) &&
4359          "Concatenation of vectors with inconsistent value types!");
4360   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4361              VT.getVectorElementCount() &&
4362          "Incorrect element count in vector concatenation!");
4363 
4364   if (Ops.size() == 1)
4365     return Ops[0];
4366 
4367   // Concat of UNDEFs is UNDEF.
4368   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4369     return DAG.getUNDEF(VT);
4370 
4371   // Scan the operands and look for extract operations from a single source
4372   // that correspond to insertion at the same location via this concatenation:
4373   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4374   SDValue IdentitySrc;
4375   bool IsIdentity = true;
4376   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4377     SDValue Op = Ops[i];
4378     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4379     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4380         Op.getOperand(0).getValueType() != VT ||
4381         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4382         Op.getConstantOperandVal(1) != IdentityIndex) {
4383       IsIdentity = false;
4384       break;
4385     }
4386     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4387            "Unexpected identity source vector for concat of extracts");
4388     IdentitySrc = Op.getOperand(0);
4389   }
4390   if (IsIdentity) {
4391     assert(IdentitySrc && "Failed to set source vector of extracts");
4392     return IdentitySrc;
4393   }
4394 
4395   // The code below this point is only designed to work for fixed width
4396   // vectors, so we bail out for now.
4397   if (VT.isScalableVector())
4398     return SDValue();
4399 
4400   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4401   // simplified to one big BUILD_VECTOR.
4402   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4403   EVT SVT = VT.getScalarType();
4404   SmallVector<SDValue, 16> Elts;
4405   for (SDValue Op : Ops) {
4406     EVT OpVT = Op.getValueType();
4407     if (Op.isUndef())
4408       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4409     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4410       Elts.append(Op->op_begin(), Op->op_end());
4411     else
4412       return SDValue();
4413   }
4414 
4415   // BUILD_VECTOR requires all inputs to be of the same type, find the
4416   // maximum type and extend them all.
4417   for (SDValue Op : Elts)
4418     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4419 
4420   if (SVT.bitsGT(VT.getScalarType())) {
4421     for (SDValue &Op : Elts) {
4422       if (Op.isUndef())
4423         Op = DAG.getUNDEF(SVT);
4424       else
4425         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4426                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4427                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4428     }
4429   }
4430 
4431   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4432   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4433   return V;
4434 }
4435 
4436 /// Gets or creates the specified node.
4437 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4438   FoldingSetNodeID ID;
4439   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4440   void *IP = nullptr;
4441   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4442     return SDValue(E, 0);
4443 
4444   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4445                               getVTList(VT));
4446   CSEMap.InsertNode(N, IP);
4447 
4448   InsertNode(N);
4449   SDValue V = SDValue(N, 0);
4450   NewSDValueDbgMsg(V, "Creating new node: ", this);
4451   return V;
4452 }
4453 
4454 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4455                               SDValue Operand) {
4456   SDNodeFlags Flags;
4457   if (Inserter)
4458     Flags = Inserter->getFlags();
4459   return getNode(Opcode, DL, VT, Operand, Flags);
4460 }
4461 
4462 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4463                               SDValue Operand, const SDNodeFlags Flags) {
4464   // Constant fold unary operations with an integer constant operand. Even
4465   // opaque constant will be folded, because the folding of unary operations
4466   // doesn't create new constants with different values. Nevertheless, the
4467   // opaque flag is preserved during folding to prevent future folding with
4468   // other constants.
4469   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4470     const APInt &Val = C->getAPIntValue();
4471     switch (Opcode) {
4472     default: break;
4473     case ISD::SIGN_EXTEND:
4474       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4475                          C->isTargetOpcode(), C->isOpaque());
4476     case ISD::TRUNCATE:
4477       if (C->isOpaque())
4478         break;
4479       LLVM_FALLTHROUGH;
4480     case ISD::ANY_EXTEND:
4481     case ISD::ZERO_EXTEND:
4482       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4483                          C->isTargetOpcode(), C->isOpaque());
4484     case ISD::UINT_TO_FP:
4485     case ISD::SINT_TO_FP: {
4486       APFloat apf(EVTToAPFloatSemantics(VT),
4487                   APInt::getNullValue(VT.getSizeInBits()));
4488       (void)apf.convertFromAPInt(Val,
4489                                  Opcode==ISD::SINT_TO_FP,
4490                                  APFloat::rmNearestTiesToEven);
4491       return getConstantFP(apf, DL, VT);
4492     }
4493     case ISD::BITCAST:
4494       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4495         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4496       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4497         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4498       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4499         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4500       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4501         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4502       break;
4503     case ISD::ABS:
4504       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4505                          C->isOpaque());
4506     case ISD::BITREVERSE:
4507       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4508                          C->isOpaque());
4509     case ISD::BSWAP:
4510       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4511                          C->isOpaque());
4512     case ISD::CTPOP:
4513       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4514                          C->isOpaque());
4515     case ISD::CTLZ:
4516     case ISD::CTLZ_ZERO_UNDEF:
4517       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4518                          C->isOpaque());
4519     case ISD::CTTZ:
4520     case ISD::CTTZ_ZERO_UNDEF:
4521       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4522                          C->isOpaque());
4523     case ISD::FP16_TO_FP: {
4524       bool Ignored;
4525       APFloat FPV(APFloat::IEEEhalf(),
4526                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4527 
4528       // This can return overflow, underflow, or inexact; we don't care.
4529       // FIXME need to be more flexible about rounding mode.
4530       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4531                         APFloat::rmNearestTiesToEven, &Ignored);
4532       return getConstantFP(FPV, DL, VT);
4533     }
4534     }
4535   }
4536 
4537   // Constant fold unary operations with a floating point constant operand.
4538   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4539     APFloat V = C->getValueAPF();    // make copy
4540     switch (Opcode) {
4541     case ISD::FNEG:
4542       V.changeSign();
4543       return getConstantFP(V, DL, VT);
4544     case ISD::FABS:
4545       V.clearSign();
4546       return getConstantFP(V, DL, VT);
4547     case ISD::FCEIL: {
4548       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4549       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4550         return getConstantFP(V, DL, VT);
4551       break;
4552     }
4553     case ISD::FTRUNC: {
4554       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4555       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4556         return getConstantFP(V, DL, VT);
4557       break;
4558     }
4559     case ISD::FFLOOR: {
4560       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4561       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4562         return getConstantFP(V, DL, VT);
4563       break;
4564     }
4565     case ISD::FP_EXTEND: {
4566       bool ignored;
4567       // This can return overflow, underflow, or inexact; we don't care.
4568       // FIXME need to be more flexible about rounding mode.
4569       (void)V.convert(EVTToAPFloatSemantics(VT),
4570                       APFloat::rmNearestTiesToEven, &ignored);
4571       return getConstantFP(V, DL, VT);
4572     }
4573     case ISD::FP_TO_SINT:
4574     case ISD::FP_TO_UINT: {
4575       bool ignored;
4576       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4577       // FIXME need to be more flexible about rounding mode.
4578       APFloat::opStatus s =
4579           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4580       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4581         break;
4582       return getConstant(IntVal, DL, VT);
4583     }
4584     case ISD::BITCAST:
4585       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4586         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4587       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4588         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4589       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4590         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4591       break;
4592     case ISD::FP_TO_FP16: {
4593       bool Ignored;
4594       // This can return overflow, underflow, or inexact; we don't care.
4595       // FIXME need to be more flexible about rounding mode.
4596       (void)V.convert(APFloat::IEEEhalf(),
4597                       APFloat::rmNearestTiesToEven, &Ignored);
4598       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4599     }
4600     }
4601   }
4602 
4603   // Constant fold unary operations with a vector integer or float operand.
4604   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4605     if (BV->isConstant()) {
4606       switch (Opcode) {
4607       default:
4608         // FIXME: Entirely reasonable to perform folding of other unary
4609         // operations here as the need arises.
4610         break;
4611       case ISD::FNEG:
4612       case ISD::FABS:
4613       case ISD::FCEIL:
4614       case ISD::FTRUNC:
4615       case ISD::FFLOOR:
4616       case ISD::FP_EXTEND:
4617       case ISD::FP_TO_SINT:
4618       case ISD::FP_TO_UINT:
4619       case ISD::TRUNCATE:
4620       case ISD::ANY_EXTEND:
4621       case ISD::ZERO_EXTEND:
4622       case ISD::SIGN_EXTEND:
4623       case ISD::UINT_TO_FP:
4624       case ISD::SINT_TO_FP:
4625       case ISD::ABS:
4626       case ISD::BITREVERSE:
4627       case ISD::BSWAP:
4628       case ISD::CTLZ:
4629       case ISD::CTLZ_ZERO_UNDEF:
4630       case ISD::CTTZ:
4631       case ISD::CTTZ_ZERO_UNDEF:
4632       case ISD::CTPOP: {
4633         SDValue Ops = { Operand };
4634         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4635           return Fold;
4636       }
4637       }
4638     }
4639   }
4640 
4641   unsigned OpOpcode = Operand.getNode()->getOpcode();
4642   switch (Opcode) {
4643   case ISD::FREEZE:
4644     assert(VT == Operand.getValueType() && "Unexpected VT!");
4645     break;
4646   case ISD::TokenFactor:
4647   case ISD::MERGE_VALUES:
4648   case ISD::CONCAT_VECTORS:
4649     return Operand;         // Factor, merge or concat of one node?  No need.
4650   case ISD::BUILD_VECTOR: {
4651     // Attempt to simplify BUILD_VECTOR.
4652     SDValue Ops[] = {Operand};
4653     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4654       return V;
4655     break;
4656   }
4657   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4658   case ISD::FP_EXTEND:
4659     assert(VT.isFloatingPoint() &&
4660            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4661     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4662     assert((!VT.isVector() ||
4663             VT.getVectorElementCount() ==
4664             Operand.getValueType().getVectorElementCount()) &&
4665            "Vector element count mismatch!");
4666     assert(Operand.getValueType().bitsLT(VT) &&
4667            "Invalid fpext node, dst < src!");
4668     if (Operand.isUndef())
4669       return getUNDEF(VT);
4670     break;
4671   case ISD::FP_TO_SINT:
4672   case ISD::FP_TO_UINT:
4673     if (Operand.isUndef())
4674       return getUNDEF(VT);
4675     break;
4676   case ISD::SINT_TO_FP:
4677   case ISD::UINT_TO_FP:
4678     // [us]itofp(undef) = 0, because the result value is bounded.
4679     if (Operand.isUndef())
4680       return getConstantFP(0.0, DL, VT);
4681     break;
4682   case ISD::SIGN_EXTEND:
4683     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4684            "Invalid SIGN_EXTEND!");
4685     assert(VT.isVector() == Operand.getValueType().isVector() &&
4686            "SIGN_EXTEND result type type should be vector iff the operand "
4687            "type is vector!");
4688     if (Operand.getValueType() == VT) return Operand;   // noop extension
4689     assert((!VT.isVector() ||
4690             VT.getVectorElementCount() ==
4691                 Operand.getValueType().getVectorElementCount()) &&
4692            "Vector element count mismatch!");
4693     assert(Operand.getValueType().bitsLT(VT) &&
4694            "Invalid sext node, dst < src!");
4695     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4696       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4697     else if (OpOpcode == ISD::UNDEF)
4698       // sext(undef) = 0, because the top bits will all be the same.
4699       return getConstant(0, DL, VT);
4700     break;
4701   case ISD::ZERO_EXTEND:
4702     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4703            "Invalid ZERO_EXTEND!");
4704     assert(VT.isVector() == Operand.getValueType().isVector() &&
4705            "ZERO_EXTEND result type type should be vector iff the operand "
4706            "type is vector!");
4707     if (Operand.getValueType() == VT) return Operand;   // noop extension
4708     assert((!VT.isVector() ||
4709             VT.getVectorElementCount() ==
4710                 Operand.getValueType().getVectorElementCount()) &&
4711            "Vector element count mismatch!");
4712     assert(Operand.getValueType().bitsLT(VT) &&
4713            "Invalid zext node, dst < src!");
4714     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4715       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4716     else if (OpOpcode == ISD::UNDEF)
4717       // zext(undef) = 0, because the top bits will be zero.
4718       return getConstant(0, DL, VT);
4719     break;
4720   case ISD::ANY_EXTEND:
4721     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4722            "Invalid ANY_EXTEND!");
4723     assert(VT.isVector() == Operand.getValueType().isVector() &&
4724            "ANY_EXTEND result type type should be vector iff the operand "
4725            "type is vector!");
4726     if (Operand.getValueType() == VT) return Operand;   // noop extension
4727     assert((!VT.isVector() ||
4728             VT.getVectorElementCount() ==
4729                 Operand.getValueType().getVectorElementCount()) &&
4730            "Vector element count mismatch!");
4731     assert(Operand.getValueType().bitsLT(VT) &&
4732            "Invalid anyext node, dst < src!");
4733 
4734     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4735         OpOpcode == ISD::ANY_EXTEND)
4736       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4737       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4738     else if (OpOpcode == ISD::UNDEF)
4739       return getUNDEF(VT);
4740 
4741     // (ext (trunc x)) -> x
4742     if (OpOpcode == ISD::TRUNCATE) {
4743       SDValue OpOp = Operand.getOperand(0);
4744       if (OpOp.getValueType() == VT) {
4745         transferDbgValues(Operand, OpOp);
4746         return OpOp;
4747       }
4748     }
4749     break;
4750   case ISD::TRUNCATE:
4751     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4752            "Invalid TRUNCATE!");
4753     assert(VT.isVector() == Operand.getValueType().isVector() &&
4754            "TRUNCATE result type type should be vector iff the operand "
4755            "type is vector!");
4756     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4757     assert((!VT.isVector() ||
4758             VT.getVectorElementCount() ==
4759                 Operand.getValueType().getVectorElementCount()) &&
4760            "Vector element count mismatch!");
4761     assert(Operand.getValueType().bitsGT(VT) &&
4762            "Invalid truncate node, src < dst!");
4763     if (OpOpcode == ISD::TRUNCATE)
4764       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4765     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4766         OpOpcode == ISD::ANY_EXTEND) {
4767       // If the source is smaller than the dest, we still need an extend.
4768       if (Operand.getOperand(0).getValueType().getScalarType()
4769             .bitsLT(VT.getScalarType()))
4770         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4771       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4772         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4773       return Operand.getOperand(0);
4774     }
4775     if (OpOpcode == ISD::UNDEF)
4776       return getUNDEF(VT);
4777     break;
4778   case ISD::ANY_EXTEND_VECTOR_INREG:
4779   case ISD::ZERO_EXTEND_VECTOR_INREG:
4780   case ISD::SIGN_EXTEND_VECTOR_INREG:
4781     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4782     assert(Operand.getValueType().bitsLE(VT) &&
4783            "The input must be the same size or smaller than the result.");
4784     assert(VT.getVectorNumElements() <
4785              Operand.getValueType().getVectorNumElements() &&
4786            "The destination vector type must have fewer lanes than the input.");
4787     break;
4788   case ISD::ABS:
4789     assert(VT.isInteger() && VT == Operand.getValueType() &&
4790            "Invalid ABS!");
4791     if (OpOpcode == ISD::UNDEF)
4792       return getUNDEF(VT);
4793     break;
4794   case ISD::BSWAP:
4795     assert(VT.isInteger() && VT == Operand.getValueType() &&
4796            "Invalid BSWAP!");
4797     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4798            "BSWAP types must be a multiple of 16 bits!");
4799     if (OpOpcode == ISD::UNDEF)
4800       return getUNDEF(VT);
4801     break;
4802   case ISD::BITREVERSE:
4803     assert(VT.isInteger() && VT == Operand.getValueType() &&
4804            "Invalid BITREVERSE!");
4805     if (OpOpcode == ISD::UNDEF)
4806       return getUNDEF(VT);
4807     break;
4808   case ISD::BITCAST:
4809     // Basic sanity checking.
4810     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4811            "Cannot BITCAST between types of different sizes!");
4812     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4813     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4814       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4815     if (OpOpcode == ISD::UNDEF)
4816       return getUNDEF(VT);
4817     break;
4818   case ISD::SCALAR_TO_VECTOR:
4819     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4820            (VT.getVectorElementType() == Operand.getValueType() ||
4821             (VT.getVectorElementType().isInteger() &&
4822              Operand.getValueType().isInteger() &&
4823              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4824            "Illegal SCALAR_TO_VECTOR node!");
4825     if (OpOpcode == ISD::UNDEF)
4826       return getUNDEF(VT);
4827     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4828     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4829         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4830         Operand.getConstantOperandVal(1) == 0 &&
4831         Operand.getOperand(0).getValueType() == VT)
4832       return Operand.getOperand(0);
4833     break;
4834   case ISD::FNEG:
4835     // Negation of an unknown bag of bits is still completely undefined.
4836     if (OpOpcode == ISD::UNDEF)
4837       return getUNDEF(VT);
4838 
4839     if (OpOpcode == ISD::FNEG)  // --X -> X
4840       return Operand.getOperand(0);
4841     break;
4842   case ISD::FABS:
4843     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4844       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4845     break;
4846   case ISD::VSCALE:
4847     assert(VT == Operand.getValueType() && "Unexpected VT!");
4848     break;
4849   }
4850 
4851   SDNode *N;
4852   SDVTList VTs = getVTList(VT);
4853   SDValue Ops[] = {Operand};
4854   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4855     FoldingSetNodeID ID;
4856     AddNodeIDNode(ID, Opcode, VTs, Ops);
4857     void *IP = nullptr;
4858     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4859       E->intersectFlagsWith(Flags);
4860       return SDValue(E, 0);
4861     }
4862 
4863     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4864     N->setFlags(Flags);
4865     createOperands(N, Ops);
4866     CSEMap.InsertNode(N, IP);
4867   } else {
4868     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4869     createOperands(N, Ops);
4870   }
4871 
4872   InsertNode(N);
4873   SDValue V = SDValue(N, 0);
4874   NewSDValueDbgMsg(V, "Creating new node: ", this);
4875   return V;
4876 }
4877 
4878 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4879                                        const APInt &C2) {
4880   switch (Opcode) {
4881   case ISD::ADD:  return C1 + C2;
4882   case ISD::SUB:  return C1 - C2;
4883   case ISD::MUL:  return C1 * C2;
4884   case ISD::AND:  return C1 & C2;
4885   case ISD::OR:   return C1 | C2;
4886   case ISD::XOR:  return C1 ^ C2;
4887   case ISD::SHL:  return C1 << C2;
4888   case ISD::SRL:  return C1.lshr(C2);
4889   case ISD::SRA:  return C1.ashr(C2);
4890   case ISD::ROTL: return C1.rotl(C2);
4891   case ISD::ROTR: return C1.rotr(C2);
4892   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4893   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4894   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4895   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4896   case ISD::SADDSAT: return C1.sadd_sat(C2);
4897   case ISD::UADDSAT: return C1.uadd_sat(C2);
4898   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4899   case ISD::USUBSAT: return C1.usub_sat(C2);
4900   case ISD::UDIV:
4901     if (!C2.getBoolValue())
4902       break;
4903     return C1.udiv(C2);
4904   case ISD::UREM:
4905     if (!C2.getBoolValue())
4906       break;
4907     return C1.urem(C2);
4908   case ISD::SDIV:
4909     if (!C2.getBoolValue())
4910       break;
4911     return C1.sdiv(C2);
4912   case ISD::SREM:
4913     if (!C2.getBoolValue())
4914       break;
4915     return C1.srem(C2);
4916   }
4917   return llvm::None;
4918 }
4919 
4920 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4921                                        const GlobalAddressSDNode *GA,
4922                                        const SDNode *N2) {
4923   if (GA->getOpcode() != ISD::GlobalAddress)
4924     return SDValue();
4925   if (!TLI->isOffsetFoldingLegal(GA))
4926     return SDValue();
4927   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4928   if (!C2)
4929     return SDValue();
4930   int64_t Offset = C2->getSExtValue();
4931   switch (Opcode) {
4932   case ISD::ADD: break;
4933   case ISD::SUB: Offset = -uint64_t(Offset); break;
4934   default: return SDValue();
4935   }
4936   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4937                           GA->getOffset() + uint64_t(Offset));
4938 }
4939 
4940 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4941   switch (Opcode) {
4942   case ISD::SDIV:
4943   case ISD::UDIV:
4944   case ISD::SREM:
4945   case ISD::UREM: {
4946     // If a divisor is zero/undef or any element of a divisor vector is
4947     // zero/undef, the whole op is undef.
4948     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4949     SDValue Divisor = Ops[1];
4950     if (Divisor.isUndef() || isNullConstant(Divisor))
4951       return true;
4952 
4953     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4954            llvm::any_of(Divisor->op_values(),
4955                         [](SDValue V) { return V.isUndef() ||
4956                                         isNullConstant(V); });
4957     // TODO: Handle signed overflow.
4958   }
4959   // TODO: Handle oversized shifts.
4960   default:
4961     return false;
4962   }
4963 }
4964 
4965 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4966                                              EVT VT, ArrayRef<SDValue> Ops) {
4967   // If the opcode is a target-specific ISD node, there's nothing we can
4968   // do here and the operand rules may not line up with the below, so
4969   // bail early.
4970   if (Opcode >= ISD::BUILTIN_OP_END)
4971     return SDValue();
4972 
4973   // For now, the array Ops should only contain two values.
4974   // This enforcement will be removed once this function is merged with
4975   // FoldConstantVectorArithmetic
4976   if (Ops.size() != 2)
4977     return SDValue();
4978 
4979   if (isUndef(Opcode, Ops))
4980     return getUNDEF(VT);
4981 
4982   SDNode *N1 = Ops[0].getNode();
4983   SDNode *N2 = Ops[1].getNode();
4984 
4985   // Handle the case of two scalars.
4986   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4987     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4988       if (C1->isOpaque() || C2->isOpaque())
4989         return SDValue();
4990 
4991       Optional<APInt> FoldAttempt =
4992           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
4993       if (!FoldAttempt)
4994         return SDValue();
4995 
4996       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
4997       assert((!Folded || !VT.isVector()) &&
4998              "Can't fold vectors ops with scalar operands");
4999       return Folded;
5000     }
5001   }
5002 
5003   // fold (add Sym, c) -> Sym+c
5004   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
5005     return FoldSymbolOffset(Opcode, VT, GA, N2);
5006   if (TLI->isCommutativeBinOp(Opcode))
5007     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
5008       return FoldSymbolOffset(Opcode, VT, GA, N1);
5009 
5010   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5011   // vector width, however we should be able to do constant folds involving
5012   // splat vector nodes too.
5013   if (VT.isScalableVector())
5014     return SDValue();
5015 
5016   // For fixed width vectors, extract each constant element and fold them
5017   // individually. Either input may be an undef value.
5018   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5019   if (!BV1 && !N1->isUndef())
5020     return SDValue();
5021   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5022   if (!BV2 && !N2->isUndef())
5023     return SDValue();
5024   // If both operands are undef, that's handled the same way as scalars.
5025   if (!BV1 && !BV2)
5026     return SDValue();
5027 
5028   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
5029          "Vector binop with different number of elements in operands?");
5030 
5031   EVT SVT = VT.getScalarType();
5032   EVT LegalSVT = SVT;
5033   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5034     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5035     if (LegalSVT.bitsLT(SVT))
5036       return SDValue();
5037   }
5038   SmallVector<SDValue, 4> Outputs;
5039   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
5040   for (unsigned I = 0; I != NumOps; ++I) {
5041     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
5042     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
5043     if (SVT.isInteger()) {
5044       if (V1->getValueType(0).bitsGT(SVT))
5045         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5046       if (V2->getValueType(0).bitsGT(SVT))
5047         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5048     }
5049 
5050     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
5051       return SDValue();
5052 
5053     // Fold one vector element.
5054     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5055     if (LegalSVT != SVT)
5056       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5057 
5058     // Scalar folding only succeeded if the result is a constant or UNDEF.
5059     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5060         ScalarResult.getOpcode() != ISD::ConstantFP)
5061       return SDValue();
5062     Outputs.push_back(ScalarResult);
5063   }
5064 
5065   assert(VT.getVectorNumElements() == Outputs.size() &&
5066          "Vector size mismatch!");
5067 
5068   // We may have a vector type but a scalar result. Create a splat.
5069   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
5070 
5071   // Build a big vector out of the scalar elements we generated.
5072   return getBuildVector(VT, SDLoc(), Outputs);
5073 }
5074 
5075 // TODO: Merge with FoldConstantArithmetic
5076 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5077                                                    const SDLoc &DL, EVT VT,
5078                                                    ArrayRef<SDValue> Ops,
5079                                                    const SDNodeFlags Flags) {
5080   // If the opcode is a target-specific ISD node, there's nothing we can
5081   // do here and the operand rules may not line up with the below, so
5082   // bail early.
5083   if (Opcode >= ISD::BUILTIN_OP_END)
5084     return SDValue();
5085 
5086   if (isUndef(Opcode, Ops))
5087     return getUNDEF(VT);
5088 
5089   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5090   if (!VT.isVector())
5091     return SDValue();
5092 
5093   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5094   // vector width, however we should be able to do constant folds involving
5095   // splat vector nodes too.
5096   if (VT.isScalableVector())
5097     return SDValue();
5098 
5099   // From this point onwards all vectors are assumed to be fixed width.
5100   unsigned NumElts = VT.getVectorNumElements();
5101 
5102   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5103     return !Op.getValueType().isVector() ||
5104            Op.getValueType().getVectorNumElements() == NumElts;
5105   };
5106 
5107   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5108     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5109     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5110            (BV && BV->isConstant());
5111   };
5112 
5113   // All operands must be vector types with the same number of elements as
5114   // the result type and must be either UNDEF or a build vector of constant
5115   // or UNDEF scalars.
5116   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5117       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5118     return SDValue();
5119 
5120   // If we are comparing vectors, then the result needs to be a i1 boolean
5121   // that is then sign-extended back to the legal result type.
5122   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5123 
5124   // Find legal integer scalar type for constant promotion and
5125   // ensure that its scalar size is at least as large as source.
5126   EVT LegalSVT = VT.getScalarType();
5127   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5128     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5129     if (LegalSVT.bitsLT(VT.getScalarType()))
5130       return SDValue();
5131   }
5132 
5133   // Constant fold each scalar lane separately.
5134   SmallVector<SDValue, 4> ScalarResults;
5135   for (unsigned i = 0; i != NumElts; i++) {
5136     SmallVector<SDValue, 4> ScalarOps;
5137     for (SDValue Op : Ops) {
5138       EVT InSVT = Op.getValueType().getScalarType();
5139       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5140       if (!InBV) {
5141         // We've checked that this is UNDEF or a constant of some kind.
5142         if (Op.isUndef())
5143           ScalarOps.push_back(getUNDEF(InSVT));
5144         else
5145           ScalarOps.push_back(Op);
5146         continue;
5147       }
5148 
5149       SDValue ScalarOp = InBV->getOperand(i);
5150       EVT ScalarVT = ScalarOp.getValueType();
5151 
5152       // Build vector (integer) scalar operands may need implicit
5153       // truncation - do this before constant folding.
5154       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5155         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5156 
5157       ScalarOps.push_back(ScalarOp);
5158     }
5159 
5160     // Constant fold the scalar operands.
5161     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5162 
5163     // Legalize the (integer) scalar constant if necessary.
5164     if (LegalSVT != SVT)
5165       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5166 
5167     // Scalar folding only succeeded if the result is a constant or UNDEF.
5168     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5169         ScalarResult.getOpcode() != ISD::ConstantFP)
5170       return SDValue();
5171     ScalarResults.push_back(ScalarResult);
5172   }
5173 
5174   SDValue V = getBuildVector(VT, DL, ScalarResults);
5175   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5176   return V;
5177 }
5178 
5179 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5180                                          EVT VT, SDValue N1, SDValue N2) {
5181   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5182   //       should. That will require dealing with a potentially non-default
5183   //       rounding mode, checking the "opStatus" return value from the APFloat
5184   //       math calculations, and possibly other variations.
5185   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5186   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5187   if (N1CFP && N2CFP) {
5188     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5189     switch (Opcode) {
5190     case ISD::FADD:
5191       C1.add(C2, APFloat::rmNearestTiesToEven);
5192       return getConstantFP(C1, DL, VT);
5193     case ISD::FSUB:
5194       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5195       return getConstantFP(C1, DL, VT);
5196     case ISD::FMUL:
5197       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5198       return getConstantFP(C1, DL, VT);
5199     case ISD::FDIV:
5200       C1.divide(C2, APFloat::rmNearestTiesToEven);
5201       return getConstantFP(C1, DL, VT);
5202     case ISD::FREM:
5203       C1.mod(C2);
5204       return getConstantFP(C1, DL, VT);
5205     case ISD::FCOPYSIGN:
5206       C1.copySign(C2);
5207       return getConstantFP(C1, DL, VT);
5208     default: break;
5209     }
5210   }
5211   if (N1CFP && Opcode == ISD::FP_ROUND) {
5212     APFloat C1 = N1CFP->getValueAPF();    // make copy
5213     bool Unused;
5214     // This can return overflow, underflow, or inexact; we don't care.
5215     // FIXME need to be more flexible about rounding mode.
5216     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5217                       &Unused);
5218     return getConstantFP(C1, DL, VT);
5219   }
5220 
5221   switch (Opcode) {
5222   case ISD::FSUB:
5223     // -0.0 - undef --> undef (consistent with "fneg undef")
5224     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5225       return getUNDEF(VT);
5226     LLVM_FALLTHROUGH;
5227 
5228   case ISD::FADD:
5229   case ISD::FMUL:
5230   case ISD::FDIV:
5231   case ISD::FREM:
5232     // If both operands are undef, the result is undef. If 1 operand is undef,
5233     // the result is NaN. This should match the behavior of the IR optimizer.
5234     if (N1.isUndef() && N2.isUndef())
5235       return getUNDEF(VT);
5236     if (N1.isUndef() || N2.isUndef())
5237       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5238   }
5239   return SDValue();
5240 }
5241 
5242 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5243   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5244 
5245   // There's no need to assert on a byte-aligned pointer. All pointers are at
5246   // least byte aligned.
5247   if (A == Align(1))
5248     return Val;
5249 
5250   FoldingSetNodeID ID;
5251   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5252   ID.AddInteger(A.value());
5253 
5254   void *IP = nullptr;
5255   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5256     return SDValue(E, 0);
5257 
5258   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5259                                          Val.getValueType(), A);
5260   createOperands(N, {Val});
5261 
5262   CSEMap.InsertNode(N, IP);
5263   InsertNode(N);
5264 
5265   SDValue V(N, 0);
5266   NewSDValueDbgMsg(V, "Creating new node: ", this);
5267   return V;
5268 }
5269 
5270 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5271                               SDValue N1, SDValue N2) {
5272   SDNodeFlags Flags;
5273   if (Inserter)
5274     Flags = Inserter->getFlags();
5275   return getNode(Opcode, DL, VT, N1, N2, Flags);
5276 }
5277 
5278 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5279                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5280   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5281   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5282   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5283   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5284 
5285   // Canonicalize constant to RHS if commutative.
5286   if (TLI->isCommutativeBinOp(Opcode)) {
5287     if (N1C && !N2C) {
5288       std::swap(N1C, N2C);
5289       std::swap(N1, N2);
5290     } else if (N1CFP && !N2CFP) {
5291       std::swap(N1CFP, N2CFP);
5292       std::swap(N1, N2);
5293     }
5294   }
5295 
5296   switch (Opcode) {
5297   default: break;
5298   case ISD::TokenFactor:
5299     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5300            N2.getValueType() == MVT::Other && "Invalid token factor!");
5301     // Fold trivial token factors.
5302     if (N1.getOpcode() == ISD::EntryToken) return N2;
5303     if (N2.getOpcode() == ISD::EntryToken) return N1;
5304     if (N1 == N2) return N1;
5305     break;
5306   case ISD::BUILD_VECTOR: {
5307     // Attempt to simplify BUILD_VECTOR.
5308     SDValue Ops[] = {N1, N2};
5309     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5310       return V;
5311     break;
5312   }
5313   case ISD::CONCAT_VECTORS: {
5314     SDValue Ops[] = {N1, N2};
5315     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5316       return V;
5317     break;
5318   }
5319   case ISD::AND:
5320     assert(VT.isInteger() && "This operator does not apply to FP types!");
5321     assert(N1.getValueType() == N2.getValueType() &&
5322            N1.getValueType() == VT && "Binary operator types must match!");
5323     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5324     // worth handling here.
5325     if (N2C && N2C->isNullValue())
5326       return N2;
5327     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5328       return N1;
5329     break;
5330   case ISD::OR:
5331   case ISD::XOR:
5332   case ISD::ADD:
5333   case ISD::SUB:
5334     assert(VT.isInteger() && "This operator does not apply to FP types!");
5335     assert(N1.getValueType() == N2.getValueType() &&
5336            N1.getValueType() == VT && "Binary operator types must match!");
5337     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5338     // it's worth handling here.
5339     if (N2C && N2C->isNullValue())
5340       return N1;
5341     break;
5342   case ISD::MUL:
5343     assert(VT.isInteger() && "This operator does not apply to FP types!");
5344     assert(N1.getValueType() == N2.getValueType() &&
5345            N1.getValueType() == VT && "Binary operator types must match!");
5346     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5347       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5348       APInt N2CImm = N2C->getAPIntValue();
5349       return getVScale(DL, VT, MulImm * N2CImm);
5350     }
5351     break;
5352   case ISD::UDIV:
5353   case ISD::UREM:
5354   case ISD::MULHU:
5355   case ISD::MULHS:
5356   case ISD::SDIV:
5357   case ISD::SREM:
5358   case ISD::SMIN:
5359   case ISD::SMAX:
5360   case ISD::UMIN:
5361   case ISD::UMAX:
5362   case ISD::SADDSAT:
5363   case ISD::SSUBSAT:
5364   case ISD::UADDSAT:
5365   case ISD::USUBSAT:
5366     assert(VT.isInteger() && "This operator does not apply to FP types!");
5367     assert(N1.getValueType() == N2.getValueType() &&
5368            N1.getValueType() == VT && "Binary operator types must match!");
5369     break;
5370   case ISD::FADD:
5371   case ISD::FSUB:
5372   case ISD::FMUL:
5373   case ISD::FDIV:
5374   case ISD::FREM:
5375     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5376     assert(N1.getValueType() == N2.getValueType() &&
5377            N1.getValueType() == VT && "Binary operator types must match!");
5378     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5379       return V;
5380     break;
5381   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5382     assert(N1.getValueType() == VT &&
5383            N1.getValueType().isFloatingPoint() &&
5384            N2.getValueType().isFloatingPoint() &&
5385            "Invalid FCOPYSIGN!");
5386     break;
5387   case ISD::SHL:
5388     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5389       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5390       APInt ShiftImm = N2C->getAPIntValue();
5391       return getVScale(DL, VT, MulImm << ShiftImm);
5392     }
5393     LLVM_FALLTHROUGH;
5394   case ISD::SRA:
5395   case ISD::SRL:
5396     if (SDValue V = simplifyShift(N1, N2))
5397       return V;
5398     LLVM_FALLTHROUGH;
5399   case ISD::ROTL:
5400   case ISD::ROTR:
5401     assert(VT == N1.getValueType() &&
5402            "Shift operators return type must be the same as their first arg");
5403     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5404            "Shifts only work on integers");
5405     assert((!VT.isVector() || VT == N2.getValueType()) &&
5406            "Vector shift amounts must be in the same as their first arg");
5407     // Verify that the shift amount VT is big enough to hold valid shift
5408     // amounts.  This catches things like trying to shift an i1024 value by an
5409     // i8, which is easy to fall into in generic code that uses
5410     // TLI.getShiftAmount().
5411     assert(N2.getValueType().getScalarSizeInBits() >=
5412                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5413            "Invalid use of small shift amount with oversized value!");
5414 
5415     // Always fold shifts of i1 values so the code generator doesn't need to
5416     // handle them.  Since we know the size of the shift has to be less than the
5417     // size of the value, the shift/rotate count is guaranteed to be zero.
5418     if (VT == MVT::i1)
5419       return N1;
5420     if (N2C && N2C->isNullValue())
5421       return N1;
5422     break;
5423   case ISD::FP_ROUND:
5424     assert(VT.isFloatingPoint() &&
5425            N1.getValueType().isFloatingPoint() &&
5426            VT.bitsLE(N1.getValueType()) &&
5427            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5428            "Invalid FP_ROUND!");
5429     if (N1.getValueType() == VT) return N1;  // noop conversion.
5430     break;
5431   case ISD::AssertSext:
5432   case ISD::AssertZext: {
5433     EVT EVT = cast<VTSDNode>(N2)->getVT();
5434     assert(VT == N1.getValueType() && "Not an inreg extend!");
5435     assert(VT.isInteger() && EVT.isInteger() &&
5436            "Cannot *_EXTEND_INREG FP types");
5437     assert(!EVT.isVector() &&
5438            "AssertSExt/AssertZExt type should be the vector element type "
5439            "rather than the vector type!");
5440     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5441     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5442     break;
5443   }
5444   case ISD::SIGN_EXTEND_INREG: {
5445     EVT EVT = cast<VTSDNode>(N2)->getVT();
5446     assert(VT == N1.getValueType() && "Not an inreg extend!");
5447     assert(VT.isInteger() && EVT.isInteger() &&
5448            "Cannot *_EXTEND_INREG FP types");
5449     assert(EVT.isVector() == VT.isVector() &&
5450            "SIGN_EXTEND_INREG type should be vector iff the operand "
5451            "type is vector!");
5452     assert((!EVT.isVector() ||
5453             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5454            "Vector element counts must match in SIGN_EXTEND_INREG");
5455     assert(EVT.bitsLE(VT) && "Not extending!");
5456     if (EVT == VT) return N1;  // Not actually extending
5457 
5458     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5459       unsigned FromBits = EVT.getScalarSizeInBits();
5460       Val <<= Val.getBitWidth() - FromBits;
5461       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5462       return getConstant(Val, DL, ConstantVT);
5463     };
5464 
5465     if (N1C) {
5466       const APInt &Val = N1C->getAPIntValue();
5467       return SignExtendInReg(Val, VT);
5468     }
5469     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5470       SmallVector<SDValue, 8> Ops;
5471       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5472       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5473         SDValue Op = N1.getOperand(i);
5474         if (Op.isUndef()) {
5475           Ops.push_back(getUNDEF(OpVT));
5476           continue;
5477         }
5478         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5479         APInt Val = C->getAPIntValue();
5480         Ops.push_back(SignExtendInReg(Val, OpVT));
5481       }
5482       return getBuildVector(VT, DL, Ops);
5483     }
5484     break;
5485   }
5486   case ISD::EXTRACT_VECTOR_ELT:
5487     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5488            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5489              element type of the vector.");
5490 
5491     // Extract from an undefined value or using an undefined index is undefined.
5492     if (N1.isUndef() || N2.isUndef())
5493       return getUNDEF(VT);
5494 
5495     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5496     // vectors. For scalable vectors we will provide appropriate support for
5497     // dealing with arbitrary indices.
5498     if (N2C && N1.getValueType().isFixedLengthVector() &&
5499         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5500       return getUNDEF(VT);
5501 
5502     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5503     // expanding copies of large vectors from registers. This only works for
5504     // fixed length vectors, since we need to know the exact number of
5505     // elements.
5506     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5507         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5508       unsigned Factor =
5509         N1.getOperand(0).getValueType().getVectorNumElements();
5510       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5511                      N1.getOperand(N2C->getZExtValue() / Factor),
5512                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5513     }
5514 
5515     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5516     // lowering is expanding large vector constants.
5517     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5518                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5519       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5520               N1.getValueType().isFixedLengthVector()) &&
5521              "BUILD_VECTOR used for scalable vectors");
5522       unsigned Index =
5523           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5524       SDValue Elt = N1.getOperand(Index);
5525 
5526       if (VT != Elt.getValueType())
5527         // If the vector element type is not legal, the BUILD_VECTOR operands
5528         // are promoted and implicitly truncated, and the result implicitly
5529         // extended. Make that explicit here.
5530         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5531 
5532       return Elt;
5533     }
5534 
5535     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5536     // operations are lowered to scalars.
5537     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5538       // If the indices are the same, return the inserted element else
5539       // if the indices are known different, extract the element from
5540       // the original vector.
5541       SDValue N1Op2 = N1.getOperand(2);
5542       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5543 
5544       if (N1Op2C && N2C) {
5545         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5546           if (VT == N1.getOperand(1).getValueType())
5547             return N1.getOperand(1);
5548           else
5549             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5550         }
5551 
5552         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5553       }
5554     }
5555 
5556     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5557     // when vector types are scalarized and v1iX is legal.
5558     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5559     // Here we are completely ignoring the extract element index (N2),
5560     // which is fine for fixed width vectors, since any index other than 0
5561     // is undefined anyway. However, this cannot be ignored for scalable
5562     // vectors - in theory we could support this, but we don't want to do this
5563     // without a profitability check.
5564     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5565         N1.getValueType().isFixedLengthVector() &&
5566         N1.getValueType().getVectorNumElements() == 1) {
5567       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5568                      N1.getOperand(1));
5569     }
5570     break;
5571   case ISD::EXTRACT_ELEMENT:
5572     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5573     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5574            (N1.getValueType().isInteger() == VT.isInteger()) &&
5575            N1.getValueType() != VT &&
5576            "Wrong types for EXTRACT_ELEMENT!");
5577 
5578     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5579     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5580     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5581     if (N1.getOpcode() == ISD::BUILD_PAIR)
5582       return N1.getOperand(N2C->getZExtValue());
5583 
5584     // EXTRACT_ELEMENT of a constant int is also very common.
5585     if (N1C) {
5586       unsigned ElementSize = VT.getSizeInBits();
5587       unsigned Shift = ElementSize * N2C->getZExtValue();
5588       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5589       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5590     }
5591     break;
5592   case ISD::EXTRACT_SUBVECTOR:
5593     EVT N1VT = N1.getValueType();
5594     assert(VT.isVector() && N1VT.isVector() &&
5595            "Extract subvector VTs must be vectors!");
5596     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5597            "Extract subvector VTs must have the same element type!");
5598     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5599            "Cannot extract a scalable vector from a fixed length vector!");
5600     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5601             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5602            "Extract subvector must be from larger vector to smaller vector!");
5603     assert(N2C && "Extract subvector index must be a constant");
5604     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5605             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5606                 N1VT.getVectorMinNumElements()) &&
5607            "Extract subvector overflow!");
5608     assert(N2C->getAPIntValue().getBitWidth() ==
5609                TLI->getVectorIdxTy(getDataLayout())
5610                    .getSizeInBits()
5611                    .getFixedSize() &&
5612            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5613 
5614     // Trivial extraction.
5615     if (VT == N1VT)
5616       return N1;
5617 
5618     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5619     if (N1.isUndef())
5620       return getUNDEF(VT);
5621 
5622     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5623     // the concat have the same type as the extract.
5624     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5625         VT == N1.getOperand(0).getValueType()) {
5626       unsigned Factor = VT.getVectorMinNumElements();
5627       return N1.getOperand(N2C->getZExtValue() / Factor);
5628     }
5629 
5630     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5631     // during shuffle legalization.
5632     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5633         VT == N1.getOperand(1).getValueType())
5634       return N1.getOperand(1);
5635     break;
5636   }
5637 
5638   // Perform trivial constant folding.
5639   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5640     return SV;
5641 
5642   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5643     return V;
5644 
5645   // Canonicalize an UNDEF to the RHS, even over a constant.
5646   if (N1.isUndef()) {
5647     if (TLI->isCommutativeBinOp(Opcode)) {
5648       std::swap(N1, N2);
5649     } else {
5650       switch (Opcode) {
5651       case ISD::SIGN_EXTEND_INREG:
5652       case ISD::SUB:
5653         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5654       case ISD::UDIV:
5655       case ISD::SDIV:
5656       case ISD::UREM:
5657       case ISD::SREM:
5658       case ISD::SSUBSAT:
5659       case ISD::USUBSAT:
5660         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5661       }
5662     }
5663   }
5664 
5665   // Fold a bunch of operators when the RHS is undef.
5666   if (N2.isUndef()) {
5667     switch (Opcode) {
5668     case ISD::XOR:
5669       if (N1.isUndef())
5670         // Handle undef ^ undef -> 0 special case. This is a common
5671         // idiom (misuse).
5672         return getConstant(0, DL, VT);
5673       LLVM_FALLTHROUGH;
5674     case ISD::ADD:
5675     case ISD::SUB:
5676     case ISD::UDIV:
5677     case ISD::SDIV:
5678     case ISD::UREM:
5679     case ISD::SREM:
5680       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5681     case ISD::MUL:
5682     case ISD::AND:
5683     case ISD::SSUBSAT:
5684     case ISD::USUBSAT:
5685       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5686     case ISD::OR:
5687     case ISD::SADDSAT:
5688     case ISD::UADDSAT:
5689       return getAllOnesConstant(DL, VT);
5690     }
5691   }
5692 
5693   // Memoize this node if possible.
5694   SDNode *N;
5695   SDVTList VTs = getVTList(VT);
5696   SDValue Ops[] = {N1, N2};
5697   if (VT != MVT::Glue) {
5698     FoldingSetNodeID ID;
5699     AddNodeIDNode(ID, Opcode, VTs, Ops);
5700     void *IP = nullptr;
5701     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5702       E->intersectFlagsWith(Flags);
5703       return SDValue(E, 0);
5704     }
5705 
5706     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5707     N->setFlags(Flags);
5708     createOperands(N, Ops);
5709     CSEMap.InsertNode(N, IP);
5710   } else {
5711     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5712     createOperands(N, Ops);
5713   }
5714 
5715   InsertNode(N);
5716   SDValue V = SDValue(N, 0);
5717   NewSDValueDbgMsg(V, "Creating new node: ", this);
5718   return V;
5719 }
5720 
5721 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5722                               SDValue N1, SDValue N2, SDValue N3) {
5723   SDNodeFlags Flags;
5724   if (Inserter)
5725     Flags = Inserter->getFlags();
5726   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
5727 }
5728 
5729 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5730                               SDValue N1, SDValue N2, SDValue N3,
5731                               const SDNodeFlags Flags) {
5732   // Perform various simplifications.
5733   switch (Opcode) {
5734   case ISD::FMA: {
5735     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5736     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5737            N3.getValueType() == VT && "FMA types must match!");
5738     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5739     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5740     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5741     if (N1CFP && N2CFP && N3CFP) {
5742       APFloat  V1 = N1CFP->getValueAPF();
5743       const APFloat &V2 = N2CFP->getValueAPF();
5744       const APFloat &V3 = N3CFP->getValueAPF();
5745       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5746       return getConstantFP(V1, DL, VT);
5747     }
5748     break;
5749   }
5750   case ISD::BUILD_VECTOR: {
5751     // Attempt to simplify BUILD_VECTOR.
5752     SDValue Ops[] = {N1, N2, N3};
5753     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5754       return V;
5755     break;
5756   }
5757   case ISD::CONCAT_VECTORS: {
5758     SDValue Ops[] = {N1, N2, N3};
5759     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5760       return V;
5761     break;
5762   }
5763   case ISD::SETCC: {
5764     assert(VT.isInteger() && "SETCC result type must be an integer!");
5765     assert(N1.getValueType() == N2.getValueType() &&
5766            "SETCC operands must have the same type!");
5767     assert(VT.isVector() == N1.getValueType().isVector() &&
5768            "SETCC type should be vector iff the operand type is vector!");
5769     assert((!VT.isVector() || VT.getVectorElementCount() ==
5770                                   N1.getValueType().getVectorElementCount()) &&
5771            "SETCC vector element counts must match!");
5772     // Use FoldSetCC to simplify SETCC's.
5773     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5774       return V;
5775     // Vector constant folding.
5776     SDValue Ops[] = {N1, N2, N3};
5777     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5778       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5779       return V;
5780     }
5781     break;
5782   }
5783   case ISD::SELECT:
5784   case ISD::VSELECT:
5785     if (SDValue V = simplifySelect(N1, N2, N3))
5786       return V;
5787     break;
5788   case ISD::VECTOR_SHUFFLE:
5789     llvm_unreachable("should use getVectorShuffle constructor!");
5790   case ISD::INSERT_VECTOR_ELT: {
5791     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5792     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5793     // for scalable vectors where we will generate appropriate code to
5794     // deal with out-of-bounds cases correctly.
5795     if (N3C && N1.getValueType().isFixedLengthVector() &&
5796         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5797       return getUNDEF(VT);
5798 
5799     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5800     if (N3.isUndef())
5801       return getUNDEF(VT);
5802 
5803     // If the inserted element is an UNDEF, just use the input vector.
5804     if (N2.isUndef())
5805       return N1;
5806 
5807     break;
5808   }
5809   case ISD::INSERT_SUBVECTOR: {
5810     // Inserting undef into undef is still undef.
5811     if (N1.isUndef() && N2.isUndef())
5812       return getUNDEF(VT);
5813 
5814     EVT N2VT = N2.getValueType();
5815     assert(VT == N1.getValueType() &&
5816            "Dest and insert subvector source types must match!");
5817     assert(VT.isVector() && N2VT.isVector() &&
5818            "Insert subvector VTs must be vectors!");
5819     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5820            "Cannot insert a scalable vector into a fixed length vector!");
5821     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5822             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5823            "Insert subvector must be from smaller vector to larger vector!");
5824     assert(isa<ConstantSDNode>(N3) &&
5825            "Insert subvector index must be constant");
5826     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5827             (N2VT.getVectorMinNumElements() +
5828              cast<ConstantSDNode>(N3)->getZExtValue()) <=
5829                 VT.getVectorMinNumElements()) &&
5830            "Insert subvector overflow!");
5831 
5832     // Trivial insertion.
5833     if (VT == N2VT)
5834       return N2;
5835 
5836     // If this is an insert of an extracted vector into an undef vector, we
5837     // can just use the input to the extract.
5838     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5839         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5840       return N2.getOperand(0);
5841     break;
5842   }
5843   case ISD::BITCAST:
5844     // Fold bit_convert nodes from a type to themselves.
5845     if (N1.getValueType() == VT)
5846       return N1;
5847     break;
5848   }
5849 
5850   // Memoize node if it doesn't produce a flag.
5851   SDNode *N;
5852   SDVTList VTs = getVTList(VT);
5853   SDValue Ops[] = {N1, N2, N3};
5854   if (VT != MVT::Glue) {
5855     FoldingSetNodeID ID;
5856     AddNodeIDNode(ID, Opcode, VTs, Ops);
5857     void *IP = nullptr;
5858     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5859       E->intersectFlagsWith(Flags);
5860       return SDValue(E, 0);
5861     }
5862 
5863     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5864     N->setFlags(Flags);
5865     createOperands(N, Ops);
5866     CSEMap.InsertNode(N, IP);
5867   } else {
5868     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5869     createOperands(N, Ops);
5870   }
5871 
5872   InsertNode(N);
5873   SDValue V = SDValue(N, 0);
5874   NewSDValueDbgMsg(V, "Creating new node: ", this);
5875   return V;
5876 }
5877 
5878 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5879                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5880   SDValue Ops[] = { N1, N2, N3, N4 };
5881   return getNode(Opcode, DL, VT, Ops);
5882 }
5883 
5884 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5885                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5886                               SDValue N5) {
5887   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5888   return getNode(Opcode, DL, VT, Ops);
5889 }
5890 
5891 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5892 /// the incoming stack arguments to be loaded from the stack.
5893 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5894   SmallVector<SDValue, 8> ArgChains;
5895 
5896   // Include the original chain at the beginning of the list. When this is
5897   // used by target LowerCall hooks, this helps legalize find the
5898   // CALLSEQ_BEGIN node.
5899   ArgChains.push_back(Chain);
5900 
5901   // Add a chain value for each stack argument.
5902   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5903        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5904     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5905       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5906         if (FI->getIndex() < 0)
5907           ArgChains.push_back(SDValue(L, 1));
5908 
5909   // Build a tokenfactor for all the chains.
5910   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5911 }
5912 
5913 /// getMemsetValue - Vectorized representation of the memset value
5914 /// operand.
5915 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5916                               const SDLoc &dl) {
5917   assert(!Value.isUndef());
5918 
5919   unsigned NumBits = VT.getScalarSizeInBits();
5920   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5921     assert(C->getAPIntValue().getBitWidth() == 8);
5922     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5923     if (VT.isInteger()) {
5924       bool IsOpaque = VT.getSizeInBits() > 64 ||
5925           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5926       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5927     }
5928     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5929                              VT);
5930   }
5931 
5932   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5933   EVT IntVT = VT.getScalarType();
5934   if (!IntVT.isInteger())
5935     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5936 
5937   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5938   if (NumBits > 8) {
5939     // Use a multiplication with 0x010101... to extend the input to the
5940     // required length.
5941     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5942     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5943                         DAG.getConstant(Magic, dl, IntVT));
5944   }
5945 
5946   if (VT != Value.getValueType() && !VT.isInteger())
5947     Value = DAG.getBitcast(VT.getScalarType(), Value);
5948   if (VT != Value.getValueType())
5949     Value = DAG.getSplatBuildVector(VT, dl, Value);
5950 
5951   return Value;
5952 }
5953 
5954 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5955 /// used when a memcpy is turned into a memset when the source is a constant
5956 /// string ptr.
5957 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5958                                   const TargetLowering &TLI,
5959                                   const ConstantDataArraySlice &Slice) {
5960   // Handle vector with all elements zero.
5961   if (Slice.Array == nullptr) {
5962     if (VT.isInteger())
5963       return DAG.getConstant(0, dl, VT);
5964     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5965       return DAG.getConstantFP(0.0, dl, VT);
5966     else if (VT.isVector()) {
5967       unsigned NumElts = VT.getVectorNumElements();
5968       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5969       return DAG.getNode(ISD::BITCAST, dl, VT,
5970                          DAG.getConstant(0, dl,
5971                                          EVT::getVectorVT(*DAG.getContext(),
5972                                                           EltVT, NumElts)));
5973     } else
5974       llvm_unreachable("Expected type!");
5975   }
5976 
5977   assert(!VT.isVector() && "Can't handle vector type here!");
5978   unsigned NumVTBits = VT.getSizeInBits();
5979   unsigned NumVTBytes = NumVTBits / 8;
5980   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5981 
5982   APInt Val(NumVTBits, 0);
5983   if (DAG.getDataLayout().isLittleEndian()) {
5984     for (unsigned i = 0; i != NumBytes; ++i)
5985       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5986   } else {
5987     for (unsigned i = 0; i != NumBytes; ++i)
5988       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5989   }
5990 
5991   // If the "cost" of materializing the integer immediate is less than the cost
5992   // of a load, then it is cost effective to turn the load into the immediate.
5993   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5994   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5995     return DAG.getConstant(Val, dl, VT);
5996   return SDValue(nullptr, 0);
5997 }
5998 
5999 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6000                                            const SDLoc &DL,
6001                                            const SDNodeFlags Flags) {
6002   EVT VT = Base.getValueType();
6003   SDValue Index;
6004 
6005   if (Offset.isScalable())
6006     Index = getVScale(DL, Base.getValueType(),
6007                       APInt(Base.getValueSizeInBits().getFixedSize(),
6008                             Offset.getKnownMinSize()));
6009   else
6010     Index = getConstant(Offset.getFixedSize(), DL, VT);
6011 
6012   return getMemBasePlusOffset(Base, Index, DL, Flags);
6013 }
6014 
6015 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6016                                            const SDLoc &DL,
6017                                            const SDNodeFlags Flags) {
6018   assert(Offset.getValueType().isInteger());
6019   EVT BasePtrVT = Ptr.getValueType();
6020   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6021 }
6022 
6023 /// Returns true if memcpy source is constant data.
6024 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6025   uint64_t SrcDelta = 0;
6026   GlobalAddressSDNode *G = nullptr;
6027   if (Src.getOpcode() == ISD::GlobalAddress)
6028     G = cast<GlobalAddressSDNode>(Src);
6029   else if (Src.getOpcode() == ISD::ADD &&
6030            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6031            Src.getOperand(1).getOpcode() == ISD::Constant) {
6032     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6033     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6034   }
6035   if (!G)
6036     return false;
6037 
6038   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6039                                   SrcDelta + G->getOffset());
6040 }
6041 
6042 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6043                                       SelectionDAG &DAG) {
6044   // On Darwin, -Os means optimize for size without hurting performance, so
6045   // only really optimize for size when -Oz (MinSize) is used.
6046   if (MF.getTarget().getTargetTriple().isOSDarwin())
6047     return MF.getFunction().hasMinSize();
6048   return DAG.shouldOptForSize();
6049 }
6050 
6051 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6052                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6053                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6054                           SmallVector<SDValue, 16> &OutStoreChains) {
6055   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6056   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6057   SmallVector<SDValue, 16> GluedLoadChains;
6058   for (unsigned i = From; i < To; ++i) {
6059     OutChains.push_back(OutLoadChains[i]);
6060     GluedLoadChains.push_back(OutLoadChains[i]);
6061   }
6062 
6063   // Chain for all loads.
6064   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6065                                   GluedLoadChains);
6066 
6067   for (unsigned i = From; i < To; ++i) {
6068     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6069     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6070                                   ST->getBasePtr(), ST->getMemoryVT(),
6071                                   ST->getMemOperand());
6072     OutChains.push_back(NewStore);
6073   }
6074 }
6075 
6076 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6077                                        SDValue Chain, SDValue Dst, SDValue Src,
6078                                        uint64_t Size, Align Alignment,
6079                                        bool isVol, bool AlwaysInline,
6080                                        MachinePointerInfo DstPtrInfo,
6081                                        MachinePointerInfo SrcPtrInfo) {
6082   // Turn a memcpy of undef to nop.
6083   // FIXME: We need to honor volatile even is Src is undef.
6084   if (Src.isUndef())
6085     return Chain;
6086 
6087   // Expand memcpy to a series of load and store ops if the size operand falls
6088   // below a certain threshold.
6089   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6090   // rather than maybe a humongous number of loads and stores.
6091   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6092   const DataLayout &DL = DAG.getDataLayout();
6093   LLVMContext &C = *DAG.getContext();
6094   std::vector<EVT> MemOps;
6095   bool DstAlignCanChange = false;
6096   MachineFunction &MF = DAG.getMachineFunction();
6097   MachineFrameInfo &MFI = MF.getFrameInfo();
6098   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6099   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6100   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6101     DstAlignCanChange = true;
6102   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6103   if (!SrcAlign || Alignment > *SrcAlign)
6104     SrcAlign = Alignment;
6105   assert(SrcAlign && "SrcAlign must be set");
6106   ConstantDataArraySlice Slice;
6107   // If marked as volatile, perform a copy even when marked as constant.
6108   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6109   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6110   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6111   const MemOp Op = isZeroConstant
6112                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6113                                     /*IsZeroMemset*/ true, isVol)
6114                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6115                                      *SrcAlign, isVol, CopyFromConstant);
6116   if (!TLI.findOptimalMemOpLowering(
6117           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6118           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6119     return SDValue();
6120 
6121   if (DstAlignCanChange) {
6122     Type *Ty = MemOps[0].getTypeForEVT(C);
6123     Align NewAlign = DL.getABITypeAlign(Ty);
6124 
6125     // Don't promote to an alignment that would require dynamic stack
6126     // realignment.
6127     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6128     if (!TRI->needsStackRealignment(MF))
6129       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6130         NewAlign = NewAlign / 2;
6131 
6132     if (NewAlign > Alignment) {
6133       // Give the stack frame object a larger alignment if needed.
6134       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6135         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6136       Alignment = NewAlign;
6137     }
6138   }
6139 
6140   MachineMemOperand::Flags MMOFlags =
6141       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6142   SmallVector<SDValue, 16> OutLoadChains;
6143   SmallVector<SDValue, 16> OutStoreChains;
6144   SmallVector<SDValue, 32> OutChains;
6145   unsigned NumMemOps = MemOps.size();
6146   uint64_t SrcOff = 0, DstOff = 0;
6147   for (unsigned i = 0; i != NumMemOps; ++i) {
6148     EVT VT = MemOps[i];
6149     unsigned VTSize = VT.getSizeInBits() / 8;
6150     SDValue Value, Store;
6151 
6152     if (VTSize > Size) {
6153       // Issuing an unaligned load / store pair  that overlaps with the previous
6154       // pair. Adjust the offset accordingly.
6155       assert(i == NumMemOps-1 && i != 0);
6156       SrcOff -= VTSize - Size;
6157       DstOff -= VTSize - Size;
6158     }
6159 
6160     if (CopyFromConstant &&
6161         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6162       // It's unlikely a store of a vector immediate can be done in a single
6163       // instruction. It would require a load from a constantpool first.
6164       // We only handle zero vectors here.
6165       // FIXME: Handle other cases where store of vector immediate is done in
6166       // a single instruction.
6167       ConstantDataArraySlice SubSlice;
6168       if (SrcOff < Slice.Length) {
6169         SubSlice = Slice;
6170         SubSlice.move(SrcOff);
6171       } else {
6172         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6173         SubSlice.Array = nullptr;
6174         SubSlice.Offset = 0;
6175         SubSlice.Length = VTSize;
6176       }
6177       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6178       if (Value.getNode()) {
6179         Store = DAG.getStore(
6180             Chain, dl, Value,
6181             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6182             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6183         OutChains.push_back(Store);
6184       }
6185     }
6186 
6187     if (!Store.getNode()) {
6188       // The type might not be legal for the target.  This should only happen
6189       // if the type is smaller than a legal type, as on PPC, so the right
6190       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6191       // to Load/Store if NVT==VT.
6192       // FIXME does the case above also need this?
6193       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6194       assert(NVT.bitsGE(VT));
6195 
6196       bool isDereferenceable =
6197         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6198       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6199       if (isDereferenceable)
6200         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6201 
6202       Value = DAG.getExtLoad(
6203           ISD::EXTLOAD, dl, NVT, Chain,
6204           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6205           SrcPtrInfo.getWithOffset(SrcOff), VT,
6206           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags);
6207       OutLoadChains.push_back(Value.getValue(1));
6208 
6209       Store = DAG.getTruncStore(
6210           Chain, dl, Value,
6211           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6212           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6213       OutStoreChains.push_back(Store);
6214     }
6215     SrcOff += VTSize;
6216     DstOff += VTSize;
6217     Size -= VTSize;
6218   }
6219 
6220   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6221                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6222   unsigned NumLdStInMemcpy = OutStoreChains.size();
6223 
6224   if (NumLdStInMemcpy) {
6225     // It may be that memcpy might be converted to memset if it's memcpy
6226     // of constants. In such a case, we won't have loads and stores, but
6227     // just stores. In the absence of loads, there is nothing to gang up.
6228     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6229       // If target does not care, just leave as it.
6230       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6231         OutChains.push_back(OutLoadChains[i]);
6232         OutChains.push_back(OutStoreChains[i]);
6233       }
6234     } else {
6235       // Ld/St less than/equal limit set by target.
6236       if (NumLdStInMemcpy <= GluedLdStLimit) {
6237           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6238                                         NumLdStInMemcpy, OutLoadChains,
6239                                         OutStoreChains);
6240       } else {
6241         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6242         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6243         unsigned GlueIter = 0;
6244 
6245         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6246           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6247           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6248 
6249           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6250                                        OutLoadChains, OutStoreChains);
6251           GlueIter += GluedLdStLimit;
6252         }
6253 
6254         // Residual ld/st.
6255         if (RemainingLdStInMemcpy) {
6256           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6257                                         RemainingLdStInMemcpy, OutLoadChains,
6258                                         OutStoreChains);
6259         }
6260       }
6261     }
6262   }
6263   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6264 }
6265 
6266 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6267                                         SDValue Chain, SDValue Dst, SDValue Src,
6268                                         uint64_t Size, Align Alignment,
6269                                         bool isVol, bool AlwaysInline,
6270                                         MachinePointerInfo DstPtrInfo,
6271                                         MachinePointerInfo SrcPtrInfo) {
6272   // Turn a memmove of undef to nop.
6273   // FIXME: We need to honor volatile even is Src is undef.
6274   if (Src.isUndef())
6275     return Chain;
6276 
6277   // Expand memmove to a series of load and store ops if the size operand falls
6278   // below a certain threshold.
6279   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6280   const DataLayout &DL = DAG.getDataLayout();
6281   LLVMContext &C = *DAG.getContext();
6282   std::vector<EVT> MemOps;
6283   bool DstAlignCanChange = false;
6284   MachineFunction &MF = DAG.getMachineFunction();
6285   MachineFrameInfo &MFI = MF.getFrameInfo();
6286   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6287   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6288   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6289     DstAlignCanChange = true;
6290   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6291   if (!SrcAlign || Alignment > *SrcAlign)
6292     SrcAlign = Alignment;
6293   assert(SrcAlign && "SrcAlign must be set");
6294   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6295   if (!TLI.findOptimalMemOpLowering(
6296           MemOps, Limit,
6297           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6298                       /*IsVolatile*/ true),
6299           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6300           MF.getFunction().getAttributes()))
6301     return SDValue();
6302 
6303   if (DstAlignCanChange) {
6304     Type *Ty = MemOps[0].getTypeForEVT(C);
6305     Align NewAlign = DL.getABITypeAlign(Ty);
6306     if (NewAlign > Alignment) {
6307       // Give the stack frame object a larger alignment if needed.
6308       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6309         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6310       Alignment = NewAlign;
6311     }
6312   }
6313 
6314   MachineMemOperand::Flags MMOFlags =
6315       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6316   uint64_t SrcOff = 0, DstOff = 0;
6317   SmallVector<SDValue, 8> LoadValues;
6318   SmallVector<SDValue, 8> LoadChains;
6319   SmallVector<SDValue, 8> OutChains;
6320   unsigned NumMemOps = MemOps.size();
6321   for (unsigned i = 0; i < NumMemOps; i++) {
6322     EVT VT = MemOps[i];
6323     unsigned VTSize = VT.getSizeInBits() / 8;
6324     SDValue Value;
6325 
6326     bool isDereferenceable =
6327       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6328     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6329     if (isDereferenceable)
6330       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6331 
6332     Value =
6333         DAG.getLoad(VT, dl, Chain,
6334                     DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6335                     SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags);
6336     LoadValues.push_back(Value);
6337     LoadChains.push_back(Value.getValue(1));
6338     SrcOff += VTSize;
6339   }
6340   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6341   OutChains.clear();
6342   for (unsigned i = 0; i < NumMemOps; i++) {
6343     EVT VT = MemOps[i];
6344     unsigned VTSize = VT.getSizeInBits() / 8;
6345     SDValue Store;
6346 
6347     Store =
6348         DAG.getStore(Chain, dl, LoadValues[i],
6349                      DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6350                      DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6351     OutChains.push_back(Store);
6352     DstOff += VTSize;
6353   }
6354 
6355   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6356 }
6357 
6358 /// Lower the call to 'memset' intrinsic function into a series of store
6359 /// operations.
6360 ///
6361 /// \param DAG Selection DAG where lowered code is placed.
6362 /// \param dl Link to corresponding IR location.
6363 /// \param Chain Control flow dependency.
6364 /// \param Dst Pointer to destination memory location.
6365 /// \param Src Value of byte to write into the memory.
6366 /// \param Size Number of bytes to write.
6367 /// \param Alignment Alignment of the destination in bytes.
6368 /// \param isVol True if destination is volatile.
6369 /// \param DstPtrInfo IR information on the memory pointer.
6370 /// \returns New head in the control flow, if lowering was successful, empty
6371 /// SDValue otherwise.
6372 ///
6373 /// The function tries to replace 'llvm.memset' intrinsic with several store
6374 /// operations and value calculation code. This is usually profitable for small
6375 /// memory size.
6376 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6377                                SDValue Chain, SDValue Dst, SDValue Src,
6378                                uint64_t Size, Align Alignment, bool isVol,
6379                                MachinePointerInfo DstPtrInfo) {
6380   // Turn a memset of undef to nop.
6381   // FIXME: We need to honor volatile even is Src is undef.
6382   if (Src.isUndef())
6383     return Chain;
6384 
6385   // Expand memset to a series of load/store ops if the size operand
6386   // falls below a certain threshold.
6387   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6388   std::vector<EVT> MemOps;
6389   bool DstAlignCanChange = false;
6390   MachineFunction &MF = DAG.getMachineFunction();
6391   MachineFrameInfo &MFI = MF.getFrameInfo();
6392   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6393   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6394   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6395     DstAlignCanChange = true;
6396   bool IsZeroVal =
6397     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6398   if (!TLI.findOptimalMemOpLowering(
6399           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6400           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6401           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6402     return SDValue();
6403 
6404   if (DstAlignCanChange) {
6405     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6406     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6407     if (NewAlign > Alignment) {
6408       // Give the stack frame object a larger alignment if needed.
6409       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6410         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6411       Alignment = NewAlign;
6412     }
6413   }
6414 
6415   SmallVector<SDValue, 8> OutChains;
6416   uint64_t DstOff = 0;
6417   unsigned NumMemOps = MemOps.size();
6418 
6419   // Find the largest store and generate the bit pattern for it.
6420   EVT LargestVT = MemOps[0];
6421   for (unsigned i = 1; i < NumMemOps; i++)
6422     if (MemOps[i].bitsGT(LargestVT))
6423       LargestVT = MemOps[i];
6424   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6425 
6426   for (unsigned i = 0; i < NumMemOps; i++) {
6427     EVT VT = MemOps[i];
6428     unsigned VTSize = VT.getSizeInBits() / 8;
6429     if (VTSize > Size) {
6430       // Issuing an unaligned load / store pair  that overlaps with the previous
6431       // pair. Adjust the offset accordingly.
6432       assert(i == NumMemOps-1 && i != 0);
6433       DstOff -= VTSize - Size;
6434     }
6435 
6436     // If this store is smaller than the largest store see whether we can get
6437     // the smaller value for free with a truncate.
6438     SDValue Value = MemSetValue;
6439     if (VT.bitsLT(LargestVT)) {
6440       if (!LargestVT.isVector() && !VT.isVector() &&
6441           TLI.isTruncateFree(LargestVT, VT))
6442         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6443       else
6444         Value = getMemsetValue(Src, VT, DAG, dl);
6445     }
6446     assert(Value.getValueType() == VT && "Value with wrong type.");
6447     SDValue Store = DAG.getStore(
6448         Chain, dl, Value,
6449         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6450         DstPtrInfo.getWithOffset(DstOff), Alignment,
6451         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6452     OutChains.push_back(Store);
6453     DstOff += VT.getSizeInBits() / 8;
6454     Size -= VTSize;
6455   }
6456 
6457   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6458 }
6459 
6460 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6461                                             unsigned AS) {
6462   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6463   // pointer operands can be losslessly bitcasted to pointers of address space 0
6464   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6465     report_fatal_error("cannot lower memory intrinsic in address space " +
6466                        Twine(AS));
6467   }
6468 }
6469 
6470 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6471                                 SDValue Src, SDValue Size, Align Alignment,
6472                                 bool isVol, bool AlwaysInline, bool isTailCall,
6473                                 MachinePointerInfo DstPtrInfo,
6474                                 MachinePointerInfo SrcPtrInfo) {
6475   // Check to see if we should lower the memcpy to loads and stores first.
6476   // For cases within the target-specified limits, this is the best choice.
6477   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6478   if (ConstantSize) {
6479     // Memcpy with size zero? Just return the original chain.
6480     if (ConstantSize->isNullValue())
6481       return Chain;
6482 
6483     SDValue Result = getMemcpyLoadsAndStores(
6484         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6485         isVol, false, DstPtrInfo, SrcPtrInfo);
6486     if (Result.getNode())
6487       return Result;
6488   }
6489 
6490   // Then check to see if we should lower the memcpy with target-specific
6491   // code. If the target chooses to do this, this is the next best.
6492   if (TSI) {
6493     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6494         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6495         DstPtrInfo, SrcPtrInfo);
6496     if (Result.getNode())
6497       return Result;
6498   }
6499 
6500   // If we really need inline code and the target declined to provide it,
6501   // use a (potentially long) sequence of loads and stores.
6502   if (AlwaysInline) {
6503     assert(ConstantSize && "AlwaysInline requires a constant size!");
6504     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6505                                    ConstantSize->getZExtValue(), Alignment,
6506                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6507   }
6508 
6509   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6510   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6511 
6512   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6513   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6514   // respect volatile, so they may do things like read or write memory
6515   // beyond the given memory regions. But fixing this isn't easy, and most
6516   // people don't care.
6517 
6518   // Emit a library call.
6519   TargetLowering::ArgListTy Args;
6520   TargetLowering::ArgListEntry Entry;
6521   Entry.Ty = Type::getInt8PtrTy(*getContext());
6522   Entry.Node = Dst; Args.push_back(Entry);
6523   Entry.Node = Src; Args.push_back(Entry);
6524 
6525   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6526   Entry.Node = Size; Args.push_back(Entry);
6527   // FIXME: pass in SDLoc
6528   TargetLowering::CallLoweringInfo CLI(*this);
6529   CLI.setDebugLoc(dl)
6530       .setChain(Chain)
6531       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6532                     Dst.getValueType().getTypeForEVT(*getContext()),
6533                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6534                                       TLI->getPointerTy(getDataLayout())),
6535                     std::move(Args))
6536       .setDiscardResult()
6537       .setTailCall(isTailCall);
6538 
6539   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6540   return CallResult.second;
6541 }
6542 
6543 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6544                                       SDValue Dst, unsigned DstAlign,
6545                                       SDValue Src, unsigned SrcAlign,
6546                                       SDValue Size, Type *SizeTy,
6547                                       unsigned ElemSz, bool isTailCall,
6548                                       MachinePointerInfo DstPtrInfo,
6549                                       MachinePointerInfo SrcPtrInfo) {
6550   // Emit a library call.
6551   TargetLowering::ArgListTy Args;
6552   TargetLowering::ArgListEntry Entry;
6553   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6554   Entry.Node = Dst;
6555   Args.push_back(Entry);
6556 
6557   Entry.Node = Src;
6558   Args.push_back(Entry);
6559 
6560   Entry.Ty = SizeTy;
6561   Entry.Node = Size;
6562   Args.push_back(Entry);
6563 
6564   RTLIB::Libcall LibraryCall =
6565       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6566   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6567     report_fatal_error("Unsupported element size");
6568 
6569   TargetLowering::CallLoweringInfo CLI(*this);
6570   CLI.setDebugLoc(dl)
6571       .setChain(Chain)
6572       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6573                     Type::getVoidTy(*getContext()),
6574                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6575                                       TLI->getPointerTy(getDataLayout())),
6576                     std::move(Args))
6577       .setDiscardResult()
6578       .setTailCall(isTailCall);
6579 
6580   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6581   return CallResult.second;
6582 }
6583 
6584 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6585                                  SDValue Src, SDValue Size, Align Alignment,
6586                                  bool isVol, bool isTailCall,
6587                                  MachinePointerInfo DstPtrInfo,
6588                                  MachinePointerInfo SrcPtrInfo) {
6589   // Check to see if we should lower the memmove to loads and stores first.
6590   // For cases within the target-specified limits, this is the best choice.
6591   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6592   if (ConstantSize) {
6593     // Memmove with size zero? Just return the original chain.
6594     if (ConstantSize->isNullValue())
6595       return Chain;
6596 
6597     SDValue Result = getMemmoveLoadsAndStores(
6598         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6599         isVol, false, DstPtrInfo, SrcPtrInfo);
6600     if (Result.getNode())
6601       return Result;
6602   }
6603 
6604   // Then check to see if we should lower the memmove with target-specific
6605   // code. If the target chooses to do this, this is the next best.
6606   if (TSI) {
6607     SDValue Result =
6608         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6609                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6610     if (Result.getNode())
6611       return Result;
6612   }
6613 
6614   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6615   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6616 
6617   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6618   // not be safe.  See memcpy above for more details.
6619 
6620   // Emit a library call.
6621   TargetLowering::ArgListTy Args;
6622   TargetLowering::ArgListEntry Entry;
6623   Entry.Ty = Type::getInt8PtrTy(*getContext());
6624   Entry.Node = Dst; Args.push_back(Entry);
6625   Entry.Node = Src; Args.push_back(Entry);
6626 
6627   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6628   Entry.Node = Size; Args.push_back(Entry);
6629   // FIXME:  pass in SDLoc
6630   TargetLowering::CallLoweringInfo CLI(*this);
6631   CLI.setDebugLoc(dl)
6632       .setChain(Chain)
6633       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6634                     Dst.getValueType().getTypeForEVT(*getContext()),
6635                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6636                                       TLI->getPointerTy(getDataLayout())),
6637                     std::move(Args))
6638       .setDiscardResult()
6639       .setTailCall(isTailCall);
6640 
6641   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6642   return CallResult.second;
6643 }
6644 
6645 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6646                                        SDValue Dst, unsigned DstAlign,
6647                                        SDValue Src, unsigned SrcAlign,
6648                                        SDValue Size, Type *SizeTy,
6649                                        unsigned ElemSz, bool isTailCall,
6650                                        MachinePointerInfo DstPtrInfo,
6651                                        MachinePointerInfo SrcPtrInfo) {
6652   // Emit a library call.
6653   TargetLowering::ArgListTy Args;
6654   TargetLowering::ArgListEntry Entry;
6655   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6656   Entry.Node = Dst;
6657   Args.push_back(Entry);
6658 
6659   Entry.Node = Src;
6660   Args.push_back(Entry);
6661 
6662   Entry.Ty = SizeTy;
6663   Entry.Node = Size;
6664   Args.push_back(Entry);
6665 
6666   RTLIB::Libcall LibraryCall =
6667       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6668   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6669     report_fatal_error("Unsupported element size");
6670 
6671   TargetLowering::CallLoweringInfo CLI(*this);
6672   CLI.setDebugLoc(dl)
6673       .setChain(Chain)
6674       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6675                     Type::getVoidTy(*getContext()),
6676                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6677                                       TLI->getPointerTy(getDataLayout())),
6678                     std::move(Args))
6679       .setDiscardResult()
6680       .setTailCall(isTailCall);
6681 
6682   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6683   return CallResult.second;
6684 }
6685 
6686 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6687                                 SDValue Src, SDValue Size, Align Alignment,
6688                                 bool isVol, bool isTailCall,
6689                                 MachinePointerInfo DstPtrInfo) {
6690   // Check to see if we should lower the memset to stores first.
6691   // For cases within the target-specified limits, this is the best choice.
6692   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6693   if (ConstantSize) {
6694     // Memset with size zero? Just return the original chain.
6695     if (ConstantSize->isNullValue())
6696       return Chain;
6697 
6698     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6699                                      ConstantSize->getZExtValue(), Alignment,
6700                                      isVol, DstPtrInfo);
6701 
6702     if (Result.getNode())
6703       return Result;
6704   }
6705 
6706   // Then check to see if we should lower the memset with target-specific
6707   // code. If the target chooses to do this, this is the next best.
6708   if (TSI) {
6709     SDValue Result = TSI->EmitTargetCodeForMemset(
6710         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6711     if (Result.getNode())
6712       return Result;
6713   }
6714 
6715   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6716 
6717   // Emit a library call.
6718   TargetLowering::ArgListTy Args;
6719   TargetLowering::ArgListEntry Entry;
6720   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6721   Args.push_back(Entry);
6722   Entry.Node = Src;
6723   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6724   Args.push_back(Entry);
6725   Entry.Node = Size;
6726   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6727   Args.push_back(Entry);
6728 
6729   // FIXME: pass in SDLoc
6730   TargetLowering::CallLoweringInfo CLI(*this);
6731   CLI.setDebugLoc(dl)
6732       .setChain(Chain)
6733       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6734                     Dst.getValueType().getTypeForEVT(*getContext()),
6735                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6736                                       TLI->getPointerTy(getDataLayout())),
6737                     std::move(Args))
6738       .setDiscardResult()
6739       .setTailCall(isTailCall);
6740 
6741   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6742   return CallResult.second;
6743 }
6744 
6745 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6746                                       SDValue Dst, unsigned DstAlign,
6747                                       SDValue Value, SDValue Size, Type *SizeTy,
6748                                       unsigned ElemSz, bool isTailCall,
6749                                       MachinePointerInfo DstPtrInfo) {
6750   // Emit a library call.
6751   TargetLowering::ArgListTy Args;
6752   TargetLowering::ArgListEntry Entry;
6753   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6754   Entry.Node = Dst;
6755   Args.push_back(Entry);
6756 
6757   Entry.Ty = Type::getInt8Ty(*getContext());
6758   Entry.Node = Value;
6759   Args.push_back(Entry);
6760 
6761   Entry.Ty = SizeTy;
6762   Entry.Node = Size;
6763   Args.push_back(Entry);
6764 
6765   RTLIB::Libcall LibraryCall =
6766       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6767   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6768     report_fatal_error("Unsupported element size");
6769 
6770   TargetLowering::CallLoweringInfo CLI(*this);
6771   CLI.setDebugLoc(dl)
6772       .setChain(Chain)
6773       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6774                     Type::getVoidTy(*getContext()),
6775                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6776                                       TLI->getPointerTy(getDataLayout())),
6777                     std::move(Args))
6778       .setDiscardResult()
6779       .setTailCall(isTailCall);
6780 
6781   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6782   return CallResult.second;
6783 }
6784 
6785 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6786                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6787                                 MachineMemOperand *MMO) {
6788   FoldingSetNodeID ID;
6789   ID.AddInteger(MemVT.getRawBits());
6790   AddNodeIDNode(ID, Opcode, VTList, Ops);
6791   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6792   void* IP = nullptr;
6793   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6794     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6795     return SDValue(E, 0);
6796   }
6797 
6798   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6799                                     VTList, MemVT, MMO);
6800   createOperands(N, Ops);
6801 
6802   CSEMap.InsertNode(N, IP);
6803   InsertNode(N);
6804   return SDValue(N, 0);
6805 }
6806 
6807 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6808                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6809                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6810                                        MachineMemOperand *MMO) {
6811   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6812          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6813   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6814 
6815   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6816   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6817 }
6818 
6819 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6820                                 SDValue Chain, SDValue Ptr, SDValue Val,
6821                                 MachineMemOperand *MMO) {
6822   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6823           Opcode == ISD::ATOMIC_LOAD_SUB ||
6824           Opcode == ISD::ATOMIC_LOAD_AND ||
6825           Opcode == ISD::ATOMIC_LOAD_CLR ||
6826           Opcode == ISD::ATOMIC_LOAD_OR ||
6827           Opcode == ISD::ATOMIC_LOAD_XOR ||
6828           Opcode == ISD::ATOMIC_LOAD_NAND ||
6829           Opcode == ISD::ATOMIC_LOAD_MIN ||
6830           Opcode == ISD::ATOMIC_LOAD_MAX ||
6831           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6832           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6833           Opcode == ISD::ATOMIC_LOAD_FADD ||
6834           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6835           Opcode == ISD::ATOMIC_SWAP ||
6836           Opcode == ISD::ATOMIC_STORE) &&
6837          "Invalid Atomic Op");
6838 
6839   EVT VT = Val.getValueType();
6840 
6841   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6842                                                getVTList(VT, MVT::Other);
6843   SDValue Ops[] = {Chain, Ptr, Val};
6844   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6845 }
6846 
6847 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6848                                 EVT VT, SDValue Chain, SDValue Ptr,
6849                                 MachineMemOperand *MMO) {
6850   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6851 
6852   SDVTList VTs = getVTList(VT, MVT::Other);
6853   SDValue Ops[] = {Chain, Ptr};
6854   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6855 }
6856 
6857 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6858 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6859   if (Ops.size() == 1)
6860     return Ops[0];
6861 
6862   SmallVector<EVT, 4> VTs;
6863   VTs.reserve(Ops.size());
6864   for (unsigned i = 0; i < Ops.size(); ++i)
6865     VTs.push_back(Ops[i].getValueType());
6866   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6867 }
6868 
6869 SDValue SelectionDAG::getMemIntrinsicNode(
6870     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6871     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
6872     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6873   if (!Size && MemVT.isScalableVector())
6874     Size = MemoryLocation::UnknownSize;
6875   else if (!Size)
6876     Size = MemVT.getStoreSize();
6877 
6878   MachineFunction &MF = getMachineFunction();
6879   MachineMemOperand *MMO =
6880       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
6881 
6882   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6883 }
6884 
6885 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6886                                           SDVTList VTList,
6887                                           ArrayRef<SDValue> Ops, EVT MemVT,
6888                                           MachineMemOperand *MMO) {
6889   assert((Opcode == ISD::INTRINSIC_VOID ||
6890           Opcode == ISD::INTRINSIC_W_CHAIN ||
6891           Opcode == ISD::PREFETCH ||
6892           ((int)Opcode <= std::numeric_limits<int>::max() &&
6893            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6894          "Opcode is not a memory-accessing opcode!");
6895 
6896   // Memoize the node unless it returns a flag.
6897   MemIntrinsicSDNode *N;
6898   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6899     FoldingSetNodeID ID;
6900     AddNodeIDNode(ID, Opcode, VTList, Ops);
6901     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6902         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6903     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6904     void *IP = nullptr;
6905     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6906       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6907       return SDValue(E, 0);
6908     }
6909 
6910     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6911                                       VTList, MemVT, MMO);
6912     createOperands(N, Ops);
6913 
6914   CSEMap.InsertNode(N, IP);
6915   } else {
6916     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6917                                       VTList, MemVT, MMO);
6918     createOperands(N, Ops);
6919   }
6920   InsertNode(N);
6921   SDValue V(N, 0);
6922   NewSDValueDbgMsg(V, "Creating new node: ", this);
6923   return V;
6924 }
6925 
6926 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6927                                       SDValue Chain, int FrameIndex,
6928                                       int64_t Size, int64_t Offset) {
6929   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6930   const auto VTs = getVTList(MVT::Other);
6931   SDValue Ops[2] = {
6932       Chain,
6933       getFrameIndex(FrameIndex,
6934                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6935                     true)};
6936 
6937   FoldingSetNodeID ID;
6938   AddNodeIDNode(ID, Opcode, VTs, Ops);
6939   ID.AddInteger(FrameIndex);
6940   ID.AddInteger(Size);
6941   ID.AddInteger(Offset);
6942   void *IP = nullptr;
6943   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6944     return SDValue(E, 0);
6945 
6946   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6947       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6948   createOperands(N, Ops);
6949   CSEMap.InsertNode(N, IP);
6950   InsertNode(N);
6951   SDValue V(N, 0);
6952   NewSDValueDbgMsg(V, "Creating new node: ", this);
6953   return V;
6954 }
6955 
6956 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6957 /// MachinePointerInfo record from it.  This is particularly useful because the
6958 /// code generator has many cases where it doesn't bother passing in a
6959 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6960 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6961                                            SelectionDAG &DAG, SDValue Ptr,
6962                                            int64_t Offset = 0) {
6963   // If this is FI+Offset, we can model it.
6964   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6965     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6966                                              FI->getIndex(), Offset);
6967 
6968   // If this is (FI+Offset1)+Offset2, we can model it.
6969   if (Ptr.getOpcode() != ISD::ADD ||
6970       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6971       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6972     return Info;
6973 
6974   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6975   return MachinePointerInfo::getFixedStack(
6976       DAG.getMachineFunction(), FI,
6977       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6978 }
6979 
6980 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6981 /// MachinePointerInfo record from it.  This is particularly useful because the
6982 /// code generator has many cases where it doesn't bother passing in a
6983 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6984 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6985                                            SelectionDAG &DAG, SDValue Ptr,
6986                                            SDValue OffsetOp) {
6987   // If the 'Offset' value isn't a constant, we can't handle this.
6988   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6989     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6990   if (OffsetOp.isUndef())
6991     return InferPointerInfo(Info, DAG, Ptr);
6992   return Info;
6993 }
6994 
6995 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6996                               EVT VT, const SDLoc &dl, SDValue Chain,
6997                               SDValue Ptr, SDValue Offset,
6998                               MachinePointerInfo PtrInfo, EVT MemVT,
6999                               Align Alignment,
7000                               MachineMemOperand::Flags MMOFlags,
7001                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7002   assert(Chain.getValueType() == MVT::Other &&
7003         "Invalid chain type");
7004 
7005   MMOFlags |= MachineMemOperand::MOLoad;
7006   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7007   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7008   // clients.
7009   if (PtrInfo.V.isNull())
7010     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7011 
7012   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7013   MachineFunction &MF = getMachineFunction();
7014   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7015                                                    Alignment, AAInfo, Ranges);
7016   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7017 }
7018 
7019 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7020                               EVT VT, const SDLoc &dl, SDValue Chain,
7021                               SDValue Ptr, SDValue Offset, EVT MemVT,
7022                               MachineMemOperand *MMO) {
7023   if (VT == MemVT) {
7024     ExtType = ISD::NON_EXTLOAD;
7025   } else if (ExtType == ISD::NON_EXTLOAD) {
7026     assert(VT == MemVT && "Non-extending load from different memory type!");
7027   } else {
7028     // Extending load.
7029     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7030            "Should only be an extending load, not truncating!");
7031     assert(VT.isInteger() == MemVT.isInteger() &&
7032            "Cannot convert from FP to Int or Int -> FP!");
7033     assert(VT.isVector() == MemVT.isVector() &&
7034            "Cannot use an ext load to convert to or from a vector!");
7035     assert((!VT.isVector() ||
7036             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7037            "Cannot use an ext load to change the number of vector elements!");
7038   }
7039 
7040   bool Indexed = AM != ISD::UNINDEXED;
7041   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7042 
7043   SDVTList VTs = Indexed ?
7044     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7045   SDValue Ops[] = { Chain, Ptr, Offset };
7046   FoldingSetNodeID ID;
7047   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7048   ID.AddInteger(MemVT.getRawBits());
7049   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7050       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7051   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7052   void *IP = nullptr;
7053   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7054     cast<LoadSDNode>(E)->refineAlignment(MMO);
7055     return SDValue(E, 0);
7056   }
7057   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7058                                   ExtType, MemVT, MMO);
7059   createOperands(N, Ops);
7060 
7061   CSEMap.InsertNode(N, IP);
7062   InsertNode(N);
7063   SDValue V(N, 0);
7064   NewSDValueDbgMsg(V, "Creating new node: ", this);
7065   return V;
7066 }
7067 
7068 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7069                               SDValue Ptr, MachinePointerInfo PtrInfo,
7070                               MaybeAlign Alignment,
7071                               MachineMemOperand::Flags MMOFlags,
7072                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7073   SDValue Undef = getUNDEF(Ptr.getValueType());
7074   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7075                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7076 }
7077 
7078 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7079                               SDValue Ptr, MachineMemOperand *MMO) {
7080   SDValue Undef = getUNDEF(Ptr.getValueType());
7081   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7082                  VT, MMO);
7083 }
7084 
7085 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7086                                  EVT VT, SDValue Chain, SDValue Ptr,
7087                                  MachinePointerInfo PtrInfo, EVT MemVT,
7088                                  MaybeAlign Alignment,
7089                                  MachineMemOperand::Flags MMOFlags,
7090                                  const AAMDNodes &AAInfo) {
7091   SDValue Undef = getUNDEF(Ptr.getValueType());
7092   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7093                  MemVT, Alignment, MMOFlags, AAInfo);
7094 }
7095 
7096 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7097                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7098                                  MachineMemOperand *MMO) {
7099   SDValue Undef = getUNDEF(Ptr.getValueType());
7100   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7101                  MemVT, MMO);
7102 }
7103 
7104 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7105                                      SDValue Base, SDValue Offset,
7106                                      ISD::MemIndexedMode AM) {
7107   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7108   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7109   // Don't propagate the invariant or dereferenceable flags.
7110   auto MMOFlags =
7111       LD->getMemOperand()->getFlags() &
7112       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7113   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7114                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7115                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7116 }
7117 
7118 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7119                                SDValue Ptr, MachinePointerInfo PtrInfo,
7120                                Align Alignment,
7121                                MachineMemOperand::Flags MMOFlags,
7122                                const AAMDNodes &AAInfo) {
7123   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7124 
7125   MMOFlags |= MachineMemOperand::MOStore;
7126   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7127 
7128   if (PtrInfo.V.isNull())
7129     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7130 
7131   MachineFunction &MF = getMachineFunction();
7132   uint64_t Size =
7133       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7134   MachineMemOperand *MMO =
7135       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7136   return getStore(Chain, dl, Val, Ptr, MMO);
7137 }
7138 
7139 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7140                                SDValue Ptr, MachineMemOperand *MMO) {
7141   assert(Chain.getValueType() == MVT::Other &&
7142         "Invalid chain type");
7143   EVT VT = Val.getValueType();
7144   SDVTList VTs = getVTList(MVT::Other);
7145   SDValue Undef = getUNDEF(Ptr.getValueType());
7146   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7147   FoldingSetNodeID ID;
7148   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7149   ID.AddInteger(VT.getRawBits());
7150   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7151       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7152   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7153   void *IP = nullptr;
7154   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7155     cast<StoreSDNode>(E)->refineAlignment(MMO);
7156     return SDValue(E, 0);
7157   }
7158   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7159                                    ISD::UNINDEXED, false, VT, MMO);
7160   createOperands(N, Ops);
7161 
7162   CSEMap.InsertNode(N, IP);
7163   InsertNode(N);
7164   SDValue V(N, 0);
7165   NewSDValueDbgMsg(V, "Creating new node: ", this);
7166   return V;
7167 }
7168 
7169 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7170                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7171                                     EVT SVT, Align Alignment,
7172                                     MachineMemOperand::Flags MMOFlags,
7173                                     const AAMDNodes &AAInfo) {
7174   assert(Chain.getValueType() == MVT::Other &&
7175         "Invalid chain type");
7176 
7177   MMOFlags |= MachineMemOperand::MOStore;
7178   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7179 
7180   if (PtrInfo.V.isNull())
7181     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7182 
7183   MachineFunction &MF = getMachineFunction();
7184   MachineMemOperand *MMO = MF.getMachineMemOperand(
7185       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7186       Alignment, AAInfo);
7187   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7188 }
7189 
7190 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7191                                     SDValue Ptr, EVT SVT,
7192                                     MachineMemOperand *MMO) {
7193   EVT VT = Val.getValueType();
7194 
7195   assert(Chain.getValueType() == MVT::Other &&
7196         "Invalid chain type");
7197   if (VT == SVT)
7198     return getStore(Chain, dl, Val, Ptr, MMO);
7199 
7200   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7201          "Should only be a truncating store, not extending!");
7202   assert(VT.isInteger() == SVT.isInteger() &&
7203          "Can't do FP-INT conversion!");
7204   assert(VT.isVector() == SVT.isVector() &&
7205          "Cannot use trunc store to convert to or from a vector!");
7206   assert((!VT.isVector() ||
7207           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7208          "Cannot use trunc store to change the number of vector elements!");
7209 
7210   SDVTList VTs = getVTList(MVT::Other);
7211   SDValue Undef = getUNDEF(Ptr.getValueType());
7212   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7213   FoldingSetNodeID ID;
7214   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7215   ID.AddInteger(SVT.getRawBits());
7216   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7217       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7218   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7219   void *IP = nullptr;
7220   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7221     cast<StoreSDNode>(E)->refineAlignment(MMO);
7222     return SDValue(E, 0);
7223   }
7224   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7225                                    ISD::UNINDEXED, true, SVT, MMO);
7226   createOperands(N, Ops);
7227 
7228   CSEMap.InsertNode(N, IP);
7229   InsertNode(N);
7230   SDValue V(N, 0);
7231   NewSDValueDbgMsg(V, "Creating new node: ", this);
7232   return V;
7233 }
7234 
7235 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7236                                       SDValue Base, SDValue Offset,
7237                                       ISD::MemIndexedMode AM) {
7238   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7239   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7240   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7241   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7242   FoldingSetNodeID ID;
7243   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7244   ID.AddInteger(ST->getMemoryVT().getRawBits());
7245   ID.AddInteger(ST->getRawSubclassData());
7246   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7247   void *IP = nullptr;
7248   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7249     return SDValue(E, 0);
7250 
7251   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7252                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7253                                    ST->getMemOperand());
7254   createOperands(N, Ops);
7255 
7256   CSEMap.InsertNode(N, IP);
7257   InsertNode(N);
7258   SDValue V(N, 0);
7259   NewSDValueDbgMsg(V, "Creating new node: ", this);
7260   return V;
7261 }
7262 
7263 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7264                                     SDValue Base, SDValue Offset, SDValue Mask,
7265                                     SDValue PassThru, EVT MemVT,
7266                                     MachineMemOperand *MMO,
7267                                     ISD::MemIndexedMode AM,
7268                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7269   bool Indexed = AM != ISD::UNINDEXED;
7270   assert((Indexed || Offset.isUndef()) &&
7271          "Unindexed masked load with an offset!");
7272   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7273                          : getVTList(VT, MVT::Other);
7274   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7275   FoldingSetNodeID ID;
7276   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7277   ID.AddInteger(MemVT.getRawBits());
7278   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7279       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7280   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7281   void *IP = nullptr;
7282   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7283     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7284     return SDValue(E, 0);
7285   }
7286   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7287                                         AM, ExtTy, isExpanding, MemVT, MMO);
7288   createOperands(N, Ops);
7289 
7290   CSEMap.InsertNode(N, IP);
7291   InsertNode(N);
7292   SDValue V(N, 0);
7293   NewSDValueDbgMsg(V, "Creating new node: ", this);
7294   return V;
7295 }
7296 
7297 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7298                                            SDValue Base, SDValue Offset,
7299                                            ISD::MemIndexedMode AM) {
7300   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7301   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7302   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7303                        Offset, LD->getMask(), LD->getPassThru(),
7304                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7305                        LD->getExtensionType(), LD->isExpandingLoad());
7306 }
7307 
7308 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7309                                      SDValue Val, SDValue Base, SDValue Offset,
7310                                      SDValue Mask, EVT MemVT,
7311                                      MachineMemOperand *MMO,
7312                                      ISD::MemIndexedMode AM, bool IsTruncating,
7313                                      bool IsCompressing) {
7314   assert(Chain.getValueType() == MVT::Other &&
7315         "Invalid chain type");
7316   bool Indexed = AM != ISD::UNINDEXED;
7317   assert((Indexed || Offset.isUndef()) &&
7318          "Unindexed masked store with an offset!");
7319   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7320                          : getVTList(MVT::Other);
7321   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7322   FoldingSetNodeID ID;
7323   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7324   ID.AddInteger(MemVT.getRawBits());
7325   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7326       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7327   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7328   void *IP = nullptr;
7329   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7330     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7331     return SDValue(E, 0);
7332   }
7333   auto *N =
7334       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7335                                    IsTruncating, IsCompressing, MemVT, MMO);
7336   createOperands(N, Ops);
7337 
7338   CSEMap.InsertNode(N, IP);
7339   InsertNode(N);
7340   SDValue V(N, 0);
7341   NewSDValueDbgMsg(V, "Creating new node: ", this);
7342   return V;
7343 }
7344 
7345 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7346                                             SDValue Base, SDValue Offset,
7347                                             ISD::MemIndexedMode AM) {
7348   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7349   assert(ST->getOffset().isUndef() &&
7350          "Masked store is already a indexed store!");
7351   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7352                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7353                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7354 }
7355 
7356 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7357                                       ArrayRef<SDValue> Ops,
7358                                       MachineMemOperand *MMO,
7359                                       ISD::MemIndexType IndexType) {
7360   assert(Ops.size() == 6 && "Incompatible number of operands");
7361 
7362   FoldingSetNodeID ID;
7363   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7364   ID.AddInteger(VT.getRawBits());
7365   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7366       dl.getIROrder(), VTs, VT, MMO, IndexType));
7367   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7368   void *IP = nullptr;
7369   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7370     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7371     return SDValue(E, 0);
7372   }
7373 
7374   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7375                                           VTs, VT, MMO, IndexType);
7376   createOperands(N, Ops);
7377 
7378   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7379          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7380   assert(N->getMask().getValueType().getVectorNumElements() ==
7381              N->getValueType(0).getVectorNumElements() &&
7382          "Vector width mismatch between mask and data");
7383   assert(N->getIndex().getValueType().getVectorNumElements() >=
7384              N->getValueType(0).getVectorNumElements() &&
7385          "Vector width mismatch between index and data");
7386   assert(isa<ConstantSDNode>(N->getScale()) &&
7387          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7388          "Scale should be a constant power of 2");
7389 
7390   CSEMap.InsertNode(N, IP);
7391   InsertNode(N);
7392   SDValue V(N, 0);
7393   NewSDValueDbgMsg(V, "Creating new node: ", this);
7394   return V;
7395 }
7396 
7397 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7398                                        ArrayRef<SDValue> Ops,
7399                                        MachineMemOperand *MMO,
7400                                        ISD::MemIndexType IndexType) {
7401   assert(Ops.size() == 6 && "Incompatible number of operands");
7402 
7403   FoldingSetNodeID ID;
7404   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7405   ID.AddInteger(VT.getRawBits());
7406   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7407       dl.getIROrder(), VTs, VT, MMO, IndexType));
7408   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7409   void *IP = nullptr;
7410   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7411     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7412     return SDValue(E, 0);
7413   }
7414   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7415                                            VTs, VT, MMO, IndexType);
7416   createOperands(N, Ops);
7417 
7418   assert(N->getMask().getValueType().getVectorNumElements() ==
7419              N->getValue().getValueType().getVectorNumElements() &&
7420          "Vector width mismatch between mask and data");
7421   assert(N->getIndex().getValueType().getVectorNumElements() >=
7422              N->getValue().getValueType().getVectorNumElements() &&
7423          "Vector width mismatch between index and data");
7424   assert(isa<ConstantSDNode>(N->getScale()) &&
7425          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7426          "Scale should be a constant power of 2");
7427 
7428   CSEMap.InsertNode(N, IP);
7429   InsertNode(N);
7430   SDValue V(N, 0);
7431   NewSDValueDbgMsg(V, "Creating new node: ", this);
7432   return V;
7433 }
7434 
7435 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7436   // select undef, T, F --> T (if T is a constant), otherwise F
7437   // select, ?, undef, F --> F
7438   // select, ?, T, undef --> T
7439   if (Cond.isUndef())
7440     return isConstantValueOfAnyType(T) ? T : F;
7441   if (T.isUndef())
7442     return F;
7443   if (F.isUndef())
7444     return T;
7445 
7446   // select true, T, F --> T
7447   // select false, T, F --> F
7448   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7449     return CondC->isNullValue() ? F : T;
7450 
7451   // TODO: This should simplify VSELECT with constant condition using something
7452   // like this (but check boolean contents to be complete?):
7453   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7454   //    return T;
7455   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7456   //    return F;
7457 
7458   // select ?, T, T --> T
7459   if (T == F)
7460     return T;
7461 
7462   return SDValue();
7463 }
7464 
7465 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7466   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7467   if (X.isUndef())
7468     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7469   // shift X, undef --> undef (because it may shift by the bitwidth)
7470   if (Y.isUndef())
7471     return getUNDEF(X.getValueType());
7472 
7473   // shift 0, Y --> 0
7474   // shift X, 0 --> X
7475   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7476     return X;
7477 
7478   // shift X, C >= bitwidth(X) --> undef
7479   // All vector elements must be too big (or undef) to avoid partial undefs.
7480   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7481     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7482   };
7483   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7484     return getUNDEF(X.getValueType());
7485 
7486   return SDValue();
7487 }
7488 
7489 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7490                                       SDNodeFlags Flags) {
7491   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7492   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7493   // operation is poison. That result can be relaxed to undef.
7494   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7495   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7496   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7497                 (YC && YC->getValueAPF().isNaN());
7498   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7499                 (YC && YC->getValueAPF().isInfinity());
7500 
7501   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7502     return getUNDEF(X.getValueType());
7503 
7504   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7505     return getUNDEF(X.getValueType());
7506 
7507   if (!YC)
7508     return SDValue();
7509 
7510   // X + -0.0 --> X
7511   if (Opcode == ISD::FADD)
7512     if (YC->getValueAPF().isNegZero())
7513       return X;
7514 
7515   // X - +0.0 --> X
7516   if (Opcode == ISD::FSUB)
7517     if (YC->getValueAPF().isPosZero())
7518       return X;
7519 
7520   // X * 1.0 --> X
7521   // X / 1.0 --> X
7522   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7523     if (YC->getValueAPF().isExactlyValue(1.0))
7524       return X;
7525 
7526   // X * 0.0 --> 0.0
7527   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7528     if (YC->getValueAPF().isZero())
7529       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7530 
7531   return SDValue();
7532 }
7533 
7534 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7535                                SDValue Ptr, SDValue SV, unsigned Align) {
7536   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7537   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7538 }
7539 
7540 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7541                               ArrayRef<SDUse> Ops) {
7542   switch (Ops.size()) {
7543   case 0: return getNode(Opcode, DL, VT);
7544   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7545   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7546   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7547   default: break;
7548   }
7549 
7550   // Copy from an SDUse array into an SDValue array for use with
7551   // the regular getNode logic.
7552   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7553   return getNode(Opcode, DL, VT, NewOps);
7554 }
7555 
7556 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7557                               ArrayRef<SDValue> Ops) {
7558   SDNodeFlags Flags;
7559   if (Inserter)
7560     Flags = Inserter->getFlags();
7561   return getNode(Opcode, DL, VT, Ops, Flags);
7562 }
7563 
7564 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7565                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7566   unsigned NumOps = Ops.size();
7567   switch (NumOps) {
7568   case 0: return getNode(Opcode, DL, VT);
7569   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7570   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7571   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7572   default: break;
7573   }
7574 
7575   switch (Opcode) {
7576   default: break;
7577   case ISD::BUILD_VECTOR:
7578     // Attempt to simplify BUILD_VECTOR.
7579     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7580       return V;
7581     break;
7582   case ISD::CONCAT_VECTORS:
7583     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7584       return V;
7585     break;
7586   case ISD::SELECT_CC:
7587     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7588     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7589            "LHS and RHS of condition must have same type!");
7590     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7591            "True and False arms of SelectCC must have same type!");
7592     assert(Ops[2].getValueType() == VT &&
7593            "select_cc node must be of same type as true and false value!");
7594     break;
7595   case ISD::BR_CC:
7596     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7597     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7598            "LHS/RHS of comparison should match types!");
7599     break;
7600   }
7601 
7602   // Memoize nodes.
7603   SDNode *N;
7604   SDVTList VTs = getVTList(VT);
7605 
7606   if (VT != MVT::Glue) {
7607     FoldingSetNodeID ID;
7608     AddNodeIDNode(ID, Opcode, VTs, Ops);
7609     void *IP = nullptr;
7610 
7611     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7612       return SDValue(E, 0);
7613 
7614     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7615     createOperands(N, Ops);
7616 
7617     CSEMap.InsertNode(N, IP);
7618   } else {
7619     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7620     createOperands(N, Ops);
7621   }
7622 
7623   N->setFlags(Flags);
7624   InsertNode(N);
7625   SDValue V(N, 0);
7626   NewSDValueDbgMsg(V, "Creating new node: ", this);
7627   return V;
7628 }
7629 
7630 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7631                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7632   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7633 }
7634 
7635 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7636                               ArrayRef<SDValue> Ops) {
7637   SDNodeFlags Flags;
7638   if (Inserter)
7639     Flags = Inserter->getFlags();
7640   return getNode(Opcode, DL, VTList, Ops, Flags);
7641 }
7642 
7643 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7644                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7645   if (VTList.NumVTs == 1)
7646     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7647 
7648   switch (Opcode) {
7649   case ISD::STRICT_FP_EXTEND:
7650     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7651            "Invalid STRICT_FP_EXTEND!");
7652     assert(VTList.VTs[0].isFloatingPoint() &&
7653            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7654     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7655            "STRICT_FP_EXTEND result type should be vector iff the operand "
7656            "type is vector!");
7657     assert((!VTList.VTs[0].isVector() ||
7658             VTList.VTs[0].getVectorNumElements() ==
7659             Ops[1].getValueType().getVectorNumElements()) &&
7660            "Vector element count mismatch!");
7661     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7662            "Invalid fpext node, dst <= src!");
7663     break;
7664   case ISD::STRICT_FP_ROUND:
7665     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7666     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7667            "STRICT_FP_ROUND result type should be vector iff the operand "
7668            "type is vector!");
7669     assert((!VTList.VTs[0].isVector() ||
7670             VTList.VTs[0].getVectorNumElements() ==
7671             Ops[1].getValueType().getVectorNumElements()) &&
7672            "Vector element count mismatch!");
7673     assert(VTList.VTs[0].isFloatingPoint() &&
7674            Ops[1].getValueType().isFloatingPoint() &&
7675            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7676            isa<ConstantSDNode>(Ops[2]) &&
7677            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7678             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7679            "Invalid STRICT_FP_ROUND!");
7680     break;
7681 #if 0
7682   // FIXME: figure out how to safely handle things like
7683   // int foo(int x) { return 1 << (x & 255); }
7684   // int bar() { return foo(256); }
7685   case ISD::SRA_PARTS:
7686   case ISD::SRL_PARTS:
7687   case ISD::SHL_PARTS:
7688     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7689         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7690       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7691     else if (N3.getOpcode() == ISD::AND)
7692       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7693         // If the and is only masking out bits that cannot effect the shift,
7694         // eliminate the and.
7695         unsigned NumBits = VT.getScalarSizeInBits()*2;
7696         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7697           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7698       }
7699     break;
7700 #endif
7701   }
7702 
7703   // Memoize the node unless it returns a flag.
7704   SDNode *N;
7705   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7706     FoldingSetNodeID ID;
7707     AddNodeIDNode(ID, Opcode, VTList, Ops);
7708     void *IP = nullptr;
7709     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7710       return SDValue(E, 0);
7711 
7712     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7713     createOperands(N, Ops);
7714     CSEMap.InsertNode(N, IP);
7715   } else {
7716     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7717     createOperands(N, Ops);
7718   }
7719 
7720   N->setFlags(Flags);
7721   InsertNode(N);
7722   SDValue V(N, 0);
7723   NewSDValueDbgMsg(V, "Creating new node: ", this);
7724   return V;
7725 }
7726 
7727 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7728                               SDVTList VTList) {
7729   return getNode(Opcode, DL, VTList, None);
7730 }
7731 
7732 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7733                               SDValue N1) {
7734   SDValue Ops[] = { N1 };
7735   return getNode(Opcode, DL, VTList, Ops);
7736 }
7737 
7738 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7739                               SDValue N1, SDValue N2) {
7740   SDValue Ops[] = { N1, N2 };
7741   return getNode(Opcode, DL, VTList, Ops);
7742 }
7743 
7744 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7745                               SDValue N1, SDValue N2, SDValue N3) {
7746   SDValue Ops[] = { N1, N2, N3 };
7747   return getNode(Opcode, DL, VTList, Ops);
7748 }
7749 
7750 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7751                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7752   SDValue Ops[] = { N1, N2, N3, N4 };
7753   return getNode(Opcode, DL, VTList, Ops);
7754 }
7755 
7756 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7757                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7758                               SDValue N5) {
7759   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7760   return getNode(Opcode, DL, VTList, Ops);
7761 }
7762 
7763 SDVTList SelectionDAG::getVTList(EVT VT) {
7764   return makeVTList(SDNode::getValueTypeList(VT), 1);
7765 }
7766 
7767 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7768   FoldingSetNodeID ID;
7769   ID.AddInteger(2U);
7770   ID.AddInteger(VT1.getRawBits());
7771   ID.AddInteger(VT2.getRawBits());
7772 
7773   void *IP = nullptr;
7774   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7775   if (!Result) {
7776     EVT *Array = Allocator.Allocate<EVT>(2);
7777     Array[0] = VT1;
7778     Array[1] = VT2;
7779     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7780     VTListMap.InsertNode(Result, IP);
7781   }
7782   return Result->getSDVTList();
7783 }
7784 
7785 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7786   FoldingSetNodeID ID;
7787   ID.AddInteger(3U);
7788   ID.AddInteger(VT1.getRawBits());
7789   ID.AddInteger(VT2.getRawBits());
7790   ID.AddInteger(VT3.getRawBits());
7791 
7792   void *IP = nullptr;
7793   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7794   if (!Result) {
7795     EVT *Array = Allocator.Allocate<EVT>(3);
7796     Array[0] = VT1;
7797     Array[1] = VT2;
7798     Array[2] = VT3;
7799     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7800     VTListMap.InsertNode(Result, IP);
7801   }
7802   return Result->getSDVTList();
7803 }
7804 
7805 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7806   FoldingSetNodeID ID;
7807   ID.AddInteger(4U);
7808   ID.AddInteger(VT1.getRawBits());
7809   ID.AddInteger(VT2.getRawBits());
7810   ID.AddInteger(VT3.getRawBits());
7811   ID.AddInteger(VT4.getRawBits());
7812 
7813   void *IP = nullptr;
7814   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7815   if (!Result) {
7816     EVT *Array = Allocator.Allocate<EVT>(4);
7817     Array[0] = VT1;
7818     Array[1] = VT2;
7819     Array[2] = VT3;
7820     Array[3] = VT4;
7821     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7822     VTListMap.InsertNode(Result, IP);
7823   }
7824   return Result->getSDVTList();
7825 }
7826 
7827 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7828   unsigned NumVTs = VTs.size();
7829   FoldingSetNodeID ID;
7830   ID.AddInteger(NumVTs);
7831   for (unsigned index = 0; index < NumVTs; index++) {
7832     ID.AddInteger(VTs[index].getRawBits());
7833   }
7834 
7835   void *IP = nullptr;
7836   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7837   if (!Result) {
7838     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7839     llvm::copy(VTs, Array);
7840     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7841     VTListMap.InsertNode(Result, IP);
7842   }
7843   return Result->getSDVTList();
7844 }
7845 
7846 
7847 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7848 /// specified operands.  If the resultant node already exists in the DAG,
7849 /// this does not modify the specified node, instead it returns the node that
7850 /// already exists.  If the resultant node does not exist in the DAG, the
7851 /// input node is returned.  As a degenerate case, if you specify the same
7852 /// input operands as the node already has, the input node is returned.
7853 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7854   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7855 
7856   // Check to see if there is no change.
7857   if (Op == N->getOperand(0)) return N;
7858 
7859   // See if the modified node already exists.
7860   void *InsertPos = nullptr;
7861   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7862     return Existing;
7863 
7864   // Nope it doesn't.  Remove the node from its current place in the maps.
7865   if (InsertPos)
7866     if (!RemoveNodeFromCSEMaps(N))
7867       InsertPos = nullptr;
7868 
7869   // Now we update the operands.
7870   N->OperandList[0].set(Op);
7871 
7872   updateDivergence(N);
7873   // If this gets put into a CSE map, add it.
7874   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7875   return N;
7876 }
7877 
7878 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7879   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7880 
7881   // Check to see if there is no change.
7882   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7883     return N;   // No operands changed, just return the input node.
7884 
7885   // See if the modified node already exists.
7886   void *InsertPos = nullptr;
7887   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7888     return Existing;
7889 
7890   // Nope it doesn't.  Remove the node from its current place in the maps.
7891   if (InsertPos)
7892     if (!RemoveNodeFromCSEMaps(N))
7893       InsertPos = nullptr;
7894 
7895   // Now we update the operands.
7896   if (N->OperandList[0] != Op1)
7897     N->OperandList[0].set(Op1);
7898   if (N->OperandList[1] != Op2)
7899     N->OperandList[1].set(Op2);
7900 
7901   updateDivergence(N);
7902   // If this gets put into a CSE map, add it.
7903   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7904   return N;
7905 }
7906 
7907 SDNode *SelectionDAG::
7908 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7909   SDValue Ops[] = { Op1, Op2, Op3 };
7910   return UpdateNodeOperands(N, Ops);
7911 }
7912 
7913 SDNode *SelectionDAG::
7914 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7915                    SDValue Op3, SDValue Op4) {
7916   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7917   return UpdateNodeOperands(N, Ops);
7918 }
7919 
7920 SDNode *SelectionDAG::
7921 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7922                    SDValue Op3, SDValue Op4, SDValue Op5) {
7923   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7924   return UpdateNodeOperands(N, Ops);
7925 }
7926 
7927 SDNode *SelectionDAG::
7928 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7929   unsigned NumOps = Ops.size();
7930   assert(N->getNumOperands() == NumOps &&
7931          "Update with wrong number of operands");
7932 
7933   // If no operands changed just return the input node.
7934   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7935     return N;
7936 
7937   // See if the modified node already exists.
7938   void *InsertPos = nullptr;
7939   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7940     return Existing;
7941 
7942   // Nope it doesn't.  Remove the node from its current place in the maps.
7943   if (InsertPos)
7944     if (!RemoveNodeFromCSEMaps(N))
7945       InsertPos = nullptr;
7946 
7947   // Now we update the operands.
7948   for (unsigned i = 0; i != NumOps; ++i)
7949     if (N->OperandList[i] != Ops[i])
7950       N->OperandList[i].set(Ops[i]);
7951 
7952   updateDivergence(N);
7953   // If this gets put into a CSE map, add it.
7954   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7955   return N;
7956 }
7957 
7958 /// DropOperands - Release the operands and set this node to have
7959 /// zero operands.
7960 void SDNode::DropOperands() {
7961   // Unlike the code in MorphNodeTo that does this, we don't need to
7962   // watch for dead nodes here.
7963   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7964     SDUse &Use = *I++;
7965     Use.set(SDValue());
7966   }
7967 }
7968 
7969 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7970                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7971   if (NewMemRefs.empty()) {
7972     N->clearMemRefs();
7973     return;
7974   }
7975 
7976   // Check if we can avoid allocating by storing a single reference directly.
7977   if (NewMemRefs.size() == 1) {
7978     N->MemRefs = NewMemRefs[0];
7979     N->NumMemRefs = 1;
7980     return;
7981   }
7982 
7983   MachineMemOperand **MemRefsBuffer =
7984       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7985   llvm::copy(NewMemRefs, MemRefsBuffer);
7986   N->MemRefs = MemRefsBuffer;
7987   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7988 }
7989 
7990 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7991 /// machine opcode.
7992 ///
7993 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7994                                    EVT VT) {
7995   SDVTList VTs = getVTList(VT);
7996   return SelectNodeTo(N, MachineOpc, VTs, None);
7997 }
7998 
7999 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8000                                    EVT VT, SDValue Op1) {
8001   SDVTList VTs = getVTList(VT);
8002   SDValue Ops[] = { Op1 };
8003   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8004 }
8005 
8006 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8007                                    EVT VT, SDValue Op1,
8008                                    SDValue Op2) {
8009   SDVTList VTs = getVTList(VT);
8010   SDValue Ops[] = { Op1, Op2 };
8011   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8012 }
8013 
8014 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8015                                    EVT VT, SDValue Op1,
8016                                    SDValue Op2, SDValue Op3) {
8017   SDVTList VTs = getVTList(VT);
8018   SDValue Ops[] = { Op1, Op2, Op3 };
8019   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8020 }
8021 
8022 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8023                                    EVT VT, ArrayRef<SDValue> Ops) {
8024   SDVTList VTs = getVTList(VT);
8025   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8026 }
8027 
8028 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8029                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8030   SDVTList VTs = getVTList(VT1, VT2);
8031   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8032 }
8033 
8034 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8035                                    EVT VT1, EVT VT2) {
8036   SDVTList VTs = getVTList(VT1, VT2);
8037   return SelectNodeTo(N, MachineOpc, VTs, None);
8038 }
8039 
8040 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8041                                    EVT VT1, EVT VT2, EVT VT3,
8042                                    ArrayRef<SDValue> Ops) {
8043   SDVTList VTs = getVTList(VT1, VT2, VT3);
8044   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8045 }
8046 
8047 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8048                                    EVT VT1, EVT VT2,
8049                                    SDValue Op1, SDValue Op2) {
8050   SDVTList VTs = getVTList(VT1, VT2);
8051   SDValue Ops[] = { Op1, Op2 };
8052   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8053 }
8054 
8055 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8056                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8057   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8058   // Reset the NodeID to -1.
8059   New->setNodeId(-1);
8060   if (New != N) {
8061     ReplaceAllUsesWith(N, New);
8062     RemoveDeadNode(N);
8063   }
8064   return New;
8065 }
8066 
8067 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8068 /// the line number information on the merged node since it is not possible to
8069 /// preserve the information that operation is associated with multiple lines.
8070 /// This will make the debugger working better at -O0, were there is a higher
8071 /// probability having other instructions associated with that line.
8072 ///
8073 /// For IROrder, we keep the smaller of the two
8074 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8075   DebugLoc NLoc = N->getDebugLoc();
8076   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8077     N->setDebugLoc(DebugLoc());
8078   }
8079   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8080   N->setIROrder(Order);
8081   return N;
8082 }
8083 
8084 /// MorphNodeTo - This *mutates* the specified node to have the specified
8085 /// return type, opcode, and operands.
8086 ///
8087 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8088 /// node of the specified opcode and operands, it returns that node instead of
8089 /// the current one.  Note that the SDLoc need not be the same.
8090 ///
8091 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8092 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8093 /// node, and because it doesn't require CSE recalculation for any of
8094 /// the node's users.
8095 ///
8096 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8097 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8098 /// the legalizer which maintain worklists that would need to be updated when
8099 /// deleting things.
8100 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8101                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8102   // If an identical node already exists, use it.
8103   void *IP = nullptr;
8104   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8105     FoldingSetNodeID ID;
8106     AddNodeIDNode(ID, Opc, VTs, Ops);
8107     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8108       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8109   }
8110 
8111   if (!RemoveNodeFromCSEMaps(N))
8112     IP = nullptr;
8113 
8114   // Start the morphing.
8115   N->NodeType = Opc;
8116   N->ValueList = VTs.VTs;
8117   N->NumValues = VTs.NumVTs;
8118 
8119   // Clear the operands list, updating used nodes to remove this from their
8120   // use list.  Keep track of any operands that become dead as a result.
8121   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8122   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8123     SDUse &Use = *I++;
8124     SDNode *Used = Use.getNode();
8125     Use.set(SDValue());
8126     if (Used->use_empty())
8127       DeadNodeSet.insert(Used);
8128   }
8129 
8130   // For MachineNode, initialize the memory references information.
8131   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8132     MN->clearMemRefs();
8133 
8134   // Swap for an appropriately sized array from the recycler.
8135   removeOperands(N);
8136   createOperands(N, Ops);
8137 
8138   // Delete any nodes that are still dead after adding the uses for the
8139   // new operands.
8140   if (!DeadNodeSet.empty()) {
8141     SmallVector<SDNode *, 16> DeadNodes;
8142     for (SDNode *N : DeadNodeSet)
8143       if (N->use_empty())
8144         DeadNodes.push_back(N);
8145     RemoveDeadNodes(DeadNodes);
8146   }
8147 
8148   if (IP)
8149     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8150   return N;
8151 }
8152 
8153 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8154   unsigned OrigOpc = Node->getOpcode();
8155   unsigned NewOpc;
8156   switch (OrigOpc) {
8157   default:
8158     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8159 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8160   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8161 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8162   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8163 #include "llvm/IR/ConstrainedOps.def"
8164   }
8165 
8166   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8167 
8168   // We're taking this node out of the chain, so we need to re-link things.
8169   SDValue InputChain = Node->getOperand(0);
8170   SDValue OutputChain = SDValue(Node, 1);
8171   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8172 
8173   SmallVector<SDValue, 3> Ops;
8174   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8175     Ops.push_back(Node->getOperand(i));
8176 
8177   SDVTList VTs = getVTList(Node->getValueType(0));
8178   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8179 
8180   // MorphNodeTo can operate in two ways: if an existing node with the
8181   // specified operands exists, it can just return it.  Otherwise, it
8182   // updates the node in place to have the requested operands.
8183   if (Res == Node) {
8184     // If we updated the node in place, reset the node ID.  To the isel,
8185     // this should be just like a newly allocated machine node.
8186     Res->setNodeId(-1);
8187   } else {
8188     ReplaceAllUsesWith(Node, Res);
8189     RemoveDeadNode(Node);
8190   }
8191 
8192   return Res;
8193 }
8194 
8195 /// getMachineNode - These are used for target selectors to create a new node
8196 /// with specified return type(s), MachineInstr opcode, and operands.
8197 ///
8198 /// Note that getMachineNode returns the resultant node.  If there is already a
8199 /// node of the specified opcode and operands, it returns that node instead of
8200 /// the current one.
8201 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8202                                             EVT VT) {
8203   SDVTList VTs = getVTList(VT);
8204   return getMachineNode(Opcode, dl, VTs, None);
8205 }
8206 
8207 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8208                                             EVT VT, SDValue Op1) {
8209   SDVTList VTs = getVTList(VT);
8210   SDValue Ops[] = { Op1 };
8211   return getMachineNode(Opcode, dl, VTs, Ops);
8212 }
8213 
8214 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8215                                             EVT VT, SDValue Op1, SDValue Op2) {
8216   SDVTList VTs = getVTList(VT);
8217   SDValue Ops[] = { Op1, Op2 };
8218   return getMachineNode(Opcode, dl, VTs, Ops);
8219 }
8220 
8221 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8222                                             EVT VT, SDValue Op1, SDValue Op2,
8223                                             SDValue Op3) {
8224   SDVTList VTs = getVTList(VT);
8225   SDValue Ops[] = { Op1, Op2, Op3 };
8226   return getMachineNode(Opcode, dl, VTs, Ops);
8227 }
8228 
8229 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8230                                             EVT VT, ArrayRef<SDValue> Ops) {
8231   SDVTList VTs = getVTList(VT);
8232   return getMachineNode(Opcode, dl, VTs, Ops);
8233 }
8234 
8235 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8236                                             EVT VT1, EVT VT2, SDValue Op1,
8237                                             SDValue Op2) {
8238   SDVTList VTs = getVTList(VT1, VT2);
8239   SDValue Ops[] = { Op1, Op2 };
8240   return getMachineNode(Opcode, dl, VTs, Ops);
8241 }
8242 
8243 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8244                                             EVT VT1, EVT VT2, SDValue Op1,
8245                                             SDValue Op2, SDValue Op3) {
8246   SDVTList VTs = getVTList(VT1, VT2);
8247   SDValue Ops[] = { Op1, Op2, Op3 };
8248   return getMachineNode(Opcode, dl, VTs, Ops);
8249 }
8250 
8251 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8252                                             EVT VT1, EVT VT2,
8253                                             ArrayRef<SDValue> Ops) {
8254   SDVTList VTs = getVTList(VT1, VT2);
8255   return getMachineNode(Opcode, dl, VTs, Ops);
8256 }
8257 
8258 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8259                                             EVT VT1, EVT VT2, EVT VT3,
8260                                             SDValue Op1, SDValue Op2) {
8261   SDVTList VTs = getVTList(VT1, VT2, VT3);
8262   SDValue Ops[] = { Op1, Op2 };
8263   return getMachineNode(Opcode, dl, VTs, Ops);
8264 }
8265 
8266 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8267                                             EVT VT1, EVT VT2, EVT VT3,
8268                                             SDValue Op1, SDValue Op2,
8269                                             SDValue Op3) {
8270   SDVTList VTs = getVTList(VT1, VT2, VT3);
8271   SDValue Ops[] = { Op1, Op2, Op3 };
8272   return getMachineNode(Opcode, dl, VTs, Ops);
8273 }
8274 
8275 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8276                                             EVT VT1, EVT VT2, EVT VT3,
8277                                             ArrayRef<SDValue> Ops) {
8278   SDVTList VTs = getVTList(VT1, VT2, VT3);
8279   return getMachineNode(Opcode, dl, VTs, Ops);
8280 }
8281 
8282 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8283                                             ArrayRef<EVT> ResultTys,
8284                                             ArrayRef<SDValue> Ops) {
8285   SDVTList VTs = getVTList(ResultTys);
8286   return getMachineNode(Opcode, dl, VTs, Ops);
8287 }
8288 
8289 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8290                                             SDVTList VTs,
8291                                             ArrayRef<SDValue> Ops) {
8292   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8293   MachineSDNode *N;
8294   void *IP = nullptr;
8295 
8296   if (DoCSE) {
8297     FoldingSetNodeID ID;
8298     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8299     IP = nullptr;
8300     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8301       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8302     }
8303   }
8304 
8305   // Allocate a new MachineSDNode.
8306   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8307   createOperands(N, Ops);
8308 
8309   if (DoCSE)
8310     CSEMap.InsertNode(N, IP);
8311 
8312   InsertNode(N);
8313   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8314   return N;
8315 }
8316 
8317 /// getTargetExtractSubreg - A convenience function for creating
8318 /// TargetOpcode::EXTRACT_SUBREG nodes.
8319 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8320                                              SDValue Operand) {
8321   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8322   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8323                                   VT, Operand, SRIdxVal);
8324   return SDValue(Subreg, 0);
8325 }
8326 
8327 /// getTargetInsertSubreg - A convenience function for creating
8328 /// TargetOpcode::INSERT_SUBREG nodes.
8329 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8330                                             SDValue Operand, SDValue Subreg) {
8331   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8332   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8333                                   VT, Operand, Subreg, SRIdxVal);
8334   return SDValue(Result, 0);
8335 }
8336 
8337 /// getNodeIfExists - Get the specified node if it's already available, or
8338 /// else return NULL.
8339 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8340                                       ArrayRef<SDValue> Ops) {
8341   SDNodeFlags Flags;
8342   if (Inserter)
8343     Flags = Inserter->getFlags();
8344   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8345 }
8346 
8347 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8348                                       ArrayRef<SDValue> Ops,
8349                                       const SDNodeFlags Flags) {
8350   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8351     FoldingSetNodeID ID;
8352     AddNodeIDNode(ID, Opcode, VTList, Ops);
8353     void *IP = nullptr;
8354     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8355       E->intersectFlagsWith(Flags);
8356       return E;
8357     }
8358   }
8359   return nullptr;
8360 }
8361 
8362 /// getDbgValue - Creates a SDDbgValue node.
8363 ///
8364 /// SDNode
8365 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8366                                       SDNode *N, unsigned R, bool IsIndirect,
8367                                       const DebugLoc &DL, unsigned O) {
8368   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8369          "Expected inlined-at fields to agree");
8370   return new (DbgInfo->getAlloc())
8371       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8372 }
8373 
8374 /// Constant
8375 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8376                                               DIExpression *Expr,
8377                                               const Value *C,
8378                                               const DebugLoc &DL, unsigned O) {
8379   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8380          "Expected inlined-at fields to agree");
8381   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8382 }
8383 
8384 /// FrameIndex
8385 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8386                                                 DIExpression *Expr, unsigned FI,
8387                                                 bool IsIndirect,
8388                                                 const DebugLoc &DL,
8389                                                 unsigned O) {
8390   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8391          "Expected inlined-at fields to agree");
8392   return new (DbgInfo->getAlloc())
8393       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8394 }
8395 
8396 /// VReg
8397 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8398                                           DIExpression *Expr,
8399                                           unsigned VReg, bool IsIndirect,
8400                                           const DebugLoc &DL, unsigned O) {
8401   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8402          "Expected inlined-at fields to agree");
8403   return new (DbgInfo->getAlloc())
8404       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8405 }
8406 
8407 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8408                                      unsigned OffsetInBits, unsigned SizeInBits,
8409                                      bool InvalidateDbg) {
8410   SDNode *FromNode = From.getNode();
8411   SDNode *ToNode = To.getNode();
8412   assert(FromNode && ToNode && "Can't modify dbg values");
8413 
8414   // PR35338
8415   // TODO: assert(From != To && "Redundant dbg value transfer");
8416   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8417   if (From == To || FromNode == ToNode)
8418     return;
8419 
8420   if (!FromNode->getHasDebugValue())
8421     return;
8422 
8423   SmallVector<SDDbgValue *, 2> ClonedDVs;
8424   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8425     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8426       continue;
8427 
8428     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8429 
8430     // Just transfer the dbg value attached to From.
8431     if (Dbg->getResNo() != From.getResNo())
8432       continue;
8433 
8434     DIVariable *Var = Dbg->getVariable();
8435     auto *Expr = Dbg->getExpression();
8436     // If a fragment is requested, update the expression.
8437     if (SizeInBits) {
8438       // When splitting a larger (e.g., sign-extended) value whose
8439       // lower bits are described with an SDDbgValue, do not attempt
8440       // to transfer the SDDbgValue to the upper bits.
8441       if (auto FI = Expr->getFragmentInfo())
8442         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8443           continue;
8444       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8445                                                              SizeInBits);
8446       if (!Fragment)
8447         continue;
8448       Expr = *Fragment;
8449     }
8450     // Clone the SDDbgValue and move it to To.
8451     SDDbgValue *Clone = getDbgValue(
8452         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8453         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8454     ClonedDVs.push_back(Clone);
8455 
8456     if (InvalidateDbg) {
8457       // Invalidate value and indicate the SDDbgValue should not be emitted.
8458       Dbg->setIsInvalidated();
8459       Dbg->setIsEmitted();
8460     }
8461   }
8462 
8463   for (SDDbgValue *Dbg : ClonedDVs)
8464     AddDbgValue(Dbg, ToNode, false);
8465 }
8466 
8467 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8468   if (!N.getHasDebugValue())
8469     return;
8470 
8471   SmallVector<SDDbgValue *, 2> ClonedDVs;
8472   for (auto DV : GetDbgValues(&N)) {
8473     if (DV->isInvalidated())
8474       continue;
8475     switch (N.getOpcode()) {
8476     default:
8477       break;
8478     case ISD::ADD:
8479       SDValue N0 = N.getOperand(0);
8480       SDValue N1 = N.getOperand(1);
8481       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8482           isConstantIntBuildVectorOrConstantInt(N1)) {
8483         uint64_t Offset = N.getConstantOperandVal(1);
8484         // Rewrite an ADD constant node into a DIExpression. Since we are
8485         // performing arithmetic to compute the variable's *value* in the
8486         // DIExpression, we need to mark the expression with a
8487         // DW_OP_stack_value.
8488         auto *DIExpr = DV->getExpression();
8489         DIExpr =
8490             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8491         SDDbgValue *Clone =
8492             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8493                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8494         ClonedDVs.push_back(Clone);
8495         DV->setIsInvalidated();
8496         DV->setIsEmitted();
8497         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8498                    N0.getNode()->dumprFull(this);
8499                    dbgs() << " into " << *DIExpr << '\n');
8500       }
8501     }
8502   }
8503 
8504   for (SDDbgValue *Dbg : ClonedDVs)
8505     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8506 }
8507 
8508 /// Creates a SDDbgLabel node.
8509 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8510                                       const DebugLoc &DL, unsigned O) {
8511   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8512          "Expected inlined-at fields to agree");
8513   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8514 }
8515 
8516 namespace {
8517 
8518 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8519 /// pointed to by a use iterator is deleted, increment the use iterator
8520 /// so that it doesn't dangle.
8521 ///
8522 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8523   SDNode::use_iterator &UI;
8524   SDNode::use_iterator &UE;
8525 
8526   void NodeDeleted(SDNode *N, SDNode *E) override {
8527     // Increment the iterator as needed.
8528     while (UI != UE && N == *UI)
8529       ++UI;
8530   }
8531 
8532 public:
8533   RAUWUpdateListener(SelectionDAG &d,
8534                      SDNode::use_iterator &ui,
8535                      SDNode::use_iterator &ue)
8536     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8537 };
8538 
8539 } // end anonymous namespace
8540 
8541 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8542 /// This can cause recursive merging of nodes in the DAG.
8543 ///
8544 /// This version assumes From has a single result value.
8545 ///
8546 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8547   SDNode *From = FromN.getNode();
8548   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8549          "Cannot replace with this method!");
8550   assert(From != To.getNode() && "Cannot replace uses of with self");
8551 
8552   // Preserve Debug Values
8553   transferDbgValues(FromN, To);
8554 
8555   // Iterate over all the existing uses of From. New uses will be added
8556   // to the beginning of the use list, which we avoid visiting.
8557   // This specifically avoids visiting uses of From that arise while the
8558   // replacement is happening, because any such uses would be the result
8559   // of CSE: If an existing node looks like From after one of its operands
8560   // is replaced by To, we don't want to replace of all its users with To
8561   // too. See PR3018 for more info.
8562   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8563   RAUWUpdateListener Listener(*this, UI, UE);
8564   while (UI != UE) {
8565     SDNode *User = *UI;
8566 
8567     // This node is about to morph, remove its old self from the CSE maps.
8568     RemoveNodeFromCSEMaps(User);
8569 
8570     // A user can appear in a use list multiple times, and when this
8571     // happens the uses are usually next to each other in the list.
8572     // To help reduce the number of CSE recomputations, process all
8573     // the uses of this user that we can find this way.
8574     do {
8575       SDUse &Use = UI.getUse();
8576       ++UI;
8577       Use.set(To);
8578       if (To->isDivergent() != From->isDivergent())
8579         updateDivergence(User);
8580     } while (UI != UE && *UI == User);
8581     // Now that we have modified User, add it back to the CSE maps.  If it
8582     // already exists there, recursively merge the results together.
8583     AddModifiedNodeToCSEMaps(User);
8584   }
8585 
8586   // If we just RAUW'd the root, take note.
8587   if (FromN == getRoot())
8588     setRoot(To);
8589 }
8590 
8591 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8592 /// This can cause recursive merging of nodes in the DAG.
8593 ///
8594 /// This version assumes that for each value of From, there is a
8595 /// corresponding value in To in the same position with the same type.
8596 ///
8597 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8598 #ifndef NDEBUG
8599   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8600     assert((!From->hasAnyUseOfValue(i) ||
8601             From->getValueType(i) == To->getValueType(i)) &&
8602            "Cannot use this version of ReplaceAllUsesWith!");
8603 #endif
8604 
8605   // Handle the trivial case.
8606   if (From == To)
8607     return;
8608 
8609   // Preserve Debug Info. Only do this if there's a use.
8610   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8611     if (From->hasAnyUseOfValue(i)) {
8612       assert((i < To->getNumValues()) && "Invalid To location");
8613       transferDbgValues(SDValue(From, i), SDValue(To, i));
8614     }
8615 
8616   // Iterate over just the existing users of From. See the comments in
8617   // the ReplaceAllUsesWith above.
8618   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8619   RAUWUpdateListener Listener(*this, UI, UE);
8620   while (UI != UE) {
8621     SDNode *User = *UI;
8622 
8623     // This node is about to morph, remove its old self from the CSE maps.
8624     RemoveNodeFromCSEMaps(User);
8625 
8626     // A user can appear in a use list multiple times, and when this
8627     // happens the uses are usually next to each other in the list.
8628     // To help reduce the number of CSE recomputations, process all
8629     // the uses of this user that we can find this way.
8630     do {
8631       SDUse &Use = UI.getUse();
8632       ++UI;
8633       Use.setNode(To);
8634       if (To->isDivergent() != From->isDivergent())
8635         updateDivergence(User);
8636     } while (UI != UE && *UI == User);
8637 
8638     // Now that we have modified User, add it back to the CSE maps.  If it
8639     // already exists there, recursively merge the results together.
8640     AddModifiedNodeToCSEMaps(User);
8641   }
8642 
8643   // If we just RAUW'd the root, take note.
8644   if (From == getRoot().getNode())
8645     setRoot(SDValue(To, getRoot().getResNo()));
8646 }
8647 
8648 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8649 /// This can cause recursive merging of nodes in the DAG.
8650 ///
8651 /// This version can replace From with any result values.  To must match the
8652 /// number and types of values returned by From.
8653 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8654   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8655     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8656 
8657   // Preserve Debug Info.
8658   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8659     transferDbgValues(SDValue(From, i), To[i]);
8660 
8661   // Iterate over just the existing users of From. See the comments in
8662   // the ReplaceAllUsesWith above.
8663   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8664   RAUWUpdateListener Listener(*this, UI, UE);
8665   while (UI != UE) {
8666     SDNode *User = *UI;
8667 
8668     // This node is about to morph, remove its old self from the CSE maps.
8669     RemoveNodeFromCSEMaps(User);
8670 
8671     // A user can appear in a use list multiple times, and when this happens the
8672     // uses are usually next to each other in the list.  To help reduce the
8673     // number of CSE and divergence recomputations, process all the uses of this
8674     // user that we can find this way.
8675     bool To_IsDivergent = false;
8676     do {
8677       SDUse &Use = UI.getUse();
8678       const SDValue &ToOp = To[Use.getResNo()];
8679       ++UI;
8680       Use.set(ToOp);
8681       To_IsDivergent |= ToOp->isDivergent();
8682     } while (UI != UE && *UI == User);
8683 
8684     if (To_IsDivergent != From->isDivergent())
8685       updateDivergence(User);
8686 
8687     // Now that we have modified User, add it back to the CSE maps.  If it
8688     // already exists there, recursively merge the results together.
8689     AddModifiedNodeToCSEMaps(User);
8690   }
8691 
8692   // If we just RAUW'd the root, take note.
8693   if (From == getRoot().getNode())
8694     setRoot(SDValue(To[getRoot().getResNo()]));
8695 }
8696 
8697 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8698 /// uses of other values produced by From.getNode() alone.  The Deleted
8699 /// vector is handled the same way as for ReplaceAllUsesWith.
8700 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8701   // Handle the really simple, really trivial case efficiently.
8702   if (From == To) return;
8703 
8704   // Handle the simple, trivial, case efficiently.
8705   if (From.getNode()->getNumValues() == 1) {
8706     ReplaceAllUsesWith(From, To);
8707     return;
8708   }
8709 
8710   // Preserve Debug Info.
8711   transferDbgValues(From, To);
8712 
8713   // Iterate over just the existing users of From. See the comments in
8714   // the ReplaceAllUsesWith above.
8715   SDNode::use_iterator UI = From.getNode()->use_begin(),
8716                        UE = From.getNode()->use_end();
8717   RAUWUpdateListener Listener(*this, UI, UE);
8718   while (UI != UE) {
8719     SDNode *User = *UI;
8720     bool UserRemovedFromCSEMaps = false;
8721 
8722     // A user can appear in a use list multiple times, and when this
8723     // happens the uses are usually next to each other in the list.
8724     // To help reduce the number of CSE recomputations, process all
8725     // the uses of this user that we can find this way.
8726     do {
8727       SDUse &Use = UI.getUse();
8728 
8729       // Skip uses of different values from the same node.
8730       if (Use.getResNo() != From.getResNo()) {
8731         ++UI;
8732         continue;
8733       }
8734 
8735       // If this node hasn't been modified yet, it's still in the CSE maps,
8736       // so remove its old self from the CSE maps.
8737       if (!UserRemovedFromCSEMaps) {
8738         RemoveNodeFromCSEMaps(User);
8739         UserRemovedFromCSEMaps = true;
8740       }
8741 
8742       ++UI;
8743       Use.set(To);
8744       if (To->isDivergent() != From->isDivergent())
8745         updateDivergence(User);
8746     } while (UI != UE && *UI == User);
8747     // We are iterating over all uses of the From node, so if a use
8748     // doesn't use the specific value, no changes are made.
8749     if (!UserRemovedFromCSEMaps)
8750       continue;
8751 
8752     // Now that we have modified User, add it back to the CSE maps.  If it
8753     // already exists there, recursively merge the results together.
8754     AddModifiedNodeToCSEMaps(User);
8755   }
8756 
8757   // If we just RAUW'd the root, take note.
8758   if (From == getRoot())
8759     setRoot(To);
8760 }
8761 
8762 namespace {
8763 
8764   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8765   /// to record information about a use.
8766   struct UseMemo {
8767     SDNode *User;
8768     unsigned Index;
8769     SDUse *Use;
8770   };
8771 
8772   /// operator< - Sort Memos by User.
8773   bool operator<(const UseMemo &L, const UseMemo &R) {
8774     return (intptr_t)L.User < (intptr_t)R.User;
8775   }
8776 
8777 } // end anonymous namespace
8778 
8779 bool SelectionDAG::calculateDivergence(SDNode *N) {
8780   if (TLI->isSDNodeAlwaysUniform(N)) {
8781     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
8782            "Conflicting divergence information!");
8783     return false;
8784   }
8785   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
8786     return true;
8787   for (auto &Op : N->ops()) {
8788     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
8789       return true;
8790   }
8791   return false;
8792 }
8793 
8794 void SelectionDAG::updateDivergence(SDNode *N) {
8795   SmallVector<SDNode *, 16> Worklist(1, N);
8796   do {
8797     N = Worklist.pop_back_val();
8798     bool IsDivergent = calculateDivergence(N);
8799     if (N->SDNodeBits.IsDivergent != IsDivergent) {
8800       N->SDNodeBits.IsDivergent = IsDivergent;
8801       Worklist.insert(Worklist.end(), N->use_begin(), N->use_end());
8802     }
8803   } while (!Worklist.empty());
8804 }
8805 
8806 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8807   DenseMap<SDNode *, unsigned> Degree;
8808   Order.reserve(AllNodes.size());
8809   for (auto &N : allnodes()) {
8810     unsigned NOps = N.getNumOperands();
8811     Degree[&N] = NOps;
8812     if (0 == NOps)
8813       Order.push_back(&N);
8814   }
8815   for (size_t I = 0; I != Order.size(); ++I) {
8816     SDNode *N = Order[I];
8817     for (auto U : N->uses()) {
8818       unsigned &UnsortedOps = Degree[U];
8819       if (0 == --UnsortedOps)
8820         Order.push_back(U);
8821     }
8822   }
8823 }
8824 
8825 #ifndef NDEBUG
8826 void SelectionDAG::VerifyDAGDiverence() {
8827   std::vector<SDNode *> TopoOrder;
8828   CreateTopologicalOrder(TopoOrder);
8829   for (auto *N : TopoOrder) {
8830     assert(calculateDivergence(N) == N->isDivergent() &&
8831            "Divergence bit inconsistency detected");
8832   }
8833 }
8834 #endif
8835 
8836 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8837 /// uses of other values produced by From.getNode() alone.  The same value
8838 /// may appear in both the From and To list.  The Deleted vector is
8839 /// handled the same way as for ReplaceAllUsesWith.
8840 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8841                                               const SDValue *To,
8842                                               unsigned Num){
8843   // Handle the simple, trivial case efficiently.
8844   if (Num == 1)
8845     return ReplaceAllUsesOfValueWith(*From, *To);
8846 
8847   transferDbgValues(*From, *To);
8848 
8849   // Read up all the uses and make records of them. This helps
8850   // processing new uses that are introduced during the
8851   // replacement process.
8852   SmallVector<UseMemo, 4> Uses;
8853   for (unsigned i = 0; i != Num; ++i) {
8854     unsigned FromResNo = From[i].getResNo();
8855     SDNode *FromNode = From[i].getNode();
8856     for (SDNode::use_iterator UI = FromNode->use_begin(),
8857          E = FromNode->use_end(); UI != E; ++UI) {
8858       SDUse &Use = UI.getUse();
8859       if (Use.getResNo() == FromResNo) {
8860         UseMemo Memo = { *UI, i, &Use };
8861         Uses.push_back(Memo);
8862       }
8863     }
8864   }
8865 
8866   // Sort the uses, so that all the uses from a given User are together.
8867   llvm::sort(Uses);
8868 
8869   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8870        UseIndex != UseIndexEnd; ) {
8871     // We know that this user uses some value of From.  If it is the right
8872     // value, update it.
8873     SDNode *User = Uses[UseIndex].User;
8874 
8875     // This node is about to morph, remove its old self from the CSE maps.
8876     RemoveNodeFromCSEMaps(User);
8877 
8878     // The Uses array is sorted, so all the uses for a given User
8879     // are next to each other in the list.
8880     // To help reduce the number of CSE recomputations, process all
8881     // the uses of this user that we can find this way.
8882     do {
8883       unsigned i = Uses[UseIndex].Index;
8884       SDUse &Use = *Uses[UseIndex].Use;
8885       ++UseIndex;
8886 
8887       Use.set(To[i]);
8888     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8889 
8890     // Now that we have modified User, add it back to the CSE maps.  If it
8891     // already exists there, recursively merge the results together.
8892     AddModifiedNodeToCSEMaps(User);
8893   }
8894 }
8895 
8896 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8897 /// based on their topological order. It returns the maximum id and a vector
8898 /// of the SDNodes* in assigned order by reference.
8899 unsigned SelectionDAG::AssignTopologicalOrder() {
8900   unsigned DAGSize = 0;
8901 
8902   // SortedPos tracks the progress of the algorithm. Nodes before it are
8903   // sorted, nodes after it are unsorted. When the algorithm completes
8904   // it is at the end of the list.
8905   allnodes_iterator SortedPos = allnodes_begin();
8906 
8907   // Visit all the nodes. Move nodes with no operands to the front of
8908   // the list immediately. Annotate nodes that do have operands with their
8909   // operand count. Before we do this, the Node Id fields of the nodes
8910   // may contain arbitrary values. After, the Node Id fields for nodes
8911   // before SortedPos will contain the topological sort index, and the
8912   // Node Id fields for nodes At SortedPos and after will contain the
8913   // count of outstanding operands.
8914   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8915     SDNode *N = &*I++;
8916     checkForCycles(N, this);
8917     unsigned Degree = N->getNumOperands();
8918     if (Degree == 0) {
8919       // A node with no uses, add it to the result array immediately.
8920       N->setNodeId(DAGSize++);
8921       allnodes_iterator Q(N);
8922       if (Q != SortedPos)
8923         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8924       assert(SortedPos != AllNodes.end() && "Overran node list");
8925       ++SortedPos;
8926     } else {
8927       // Temporarily use the Node Id as scratch space for the degree count.
8928       N->setNodeId(Degree);
8929     }
8930   }
8931 
8932   // Visit all the nodes. As we iterate, move nodes into sorted order,
8933   // such that by the time the end is reached all nodes will be sorted.
8934   for (SDNode &Node : allnodes()) {
8935     SDNode *N = &Node;
8936     checkForCycles(N, this);
8937     // N is in sorted position, so all its uses have one less operand
8938     // that needs to be sorted.
8939     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8940          UI != UE; ++UI) {
8941       SDNode *P = *UI;
8942       unsigned Degree = P->getNodeId();
8943       assert(Degree != 0 && "Invalid node degree");
8944       --Degree;
8945       if (Degree == 0) {
8946         // All of P's operands are sorted, so P may sorted now.
8947         P->setNodeId(DAGSize++);
8948         if (P->getIterator() != SortedPos)
8949           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8950         assert(SortedPos != AllNodes.end() && "Overran node list");
8951         ++SortedPos;
8952       } else {
8953         // Update P's outstanding operand count.
8954         P->setNodeId(Degree);
8955       }
8956     }
8957     if (Node.getIterator() == SortedPos) {
8958 #ifndef NDEBUG
8959       allnodes_iterator I(N);
8960       SDNode *S = &*++I;
8961       dbgs() << "Overran sorted position:\n";
8962       S->dumprFull(this); dbgs() << "\n";
8963       dbgs() << "Checking if this is due to cycles\n";
8964       checkForCycles(this, true);
8965 #endif
8966       llvm_unreachable(nullptr);
8967     }
8968   }
8969 
8970   assert(SortedPos == AllNodes.end() &&
8971          "Topological sort incomplete!");
8972   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8973          "First node in topological sort is not the entry token!");
8974   assert(AllNodes.front().getNodeId() == 0 &&
8975          "First node in topological sort has non-zero id!");
8976   assert(AllNodes.front().getNumOperands() == 0 &&
8977          "First node in topological sort has operands!");
8978   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8979          "Last node in topologic sort has unexpected id!");
8980   assert(AllNodes.back().use_empty() &&
8981          "Last node in topologic sort has users!");
8982   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8983   return DAGSize;
8984 }
8985 
8986 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8987 /// value is produced by SD.
8988 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8989   if (SD) {
8990     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8991     SD->setHasDebugValue(true);
8992   }
8993   DbgInfo->add(DB, SD, isParameter);
8994 }
8995 
8996 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8997   DbgInfo->add(DB);
8998 }
8999 
9000 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9001                                                    SDValue NewMemOp) {
9002   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9003   // The new memory operation must have the same position as the old load in
9004   // terms of memory dependency. Create a TokenFactor for the old load and new
9005   // memory operation and update uses of the old load's output chain to use that
9006   // TokenFactor.
9007   SDValue OldChain = SDValue(OldLoad, 1);
9008   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
9009   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
9010     return NewChain;
9011 
9012   SDValue TokenFactor =
9013       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
9014   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9015   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
9016   return TokenFactor;
9017 }
9018 
9019 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9020                                                      Function **OutFunction) {
9021   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9022 
9023   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9024   auto *Module = MF->getFunction().getParent();
9025   auto *Function = Module->getFunction(Symbol);
9026 
9027   if (OutFunction != nullptr)
9028       *OutFunction = Function;
9029 
9030   if (Function != nullptr) {
9031     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9032     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9033   }
9034 
9035   std::string ErrorStr;
9036   raw_string_ostream ErrorFormatter(ErrorStr);
9037 
9038   ErrorFormatter << "Undefined external symbol ";
9039   ErrorFormatter << '"' << Symbol << '"';
9040   ErrorFormatter.flush();
9041 
9042   report_fatal_error(ErrorStr);
9043 }
9044 
9045 //===----------------------------------------------------------------------===//
9046 //                              SDNode Class
9047 //===----------------------------------------------------------------------===//
9048 
9049 bool llvm::isNullConstant(SDValue V) {
9050   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9051   return Const != nullptr && Const->isNullValue();
9052 }
9053 
9054 bool llvm::isNullFPConstant(SDValue V) {
9055   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9056   return Const != nullptr && Const->isZero() && !Const->isNegative();
9057 }
9058 
9059 bool llvm::isAllOnesConstant(SDValue V) {
9060   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9061   return Const != nullptr && Const->isAllOnesValue();
9062 }
9063 
9064 bool llvm::isOneConstant(SDValue V) {
9065   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9066   return Const != nullptr && Const->isOne();
9067 }
9068 
9069 SDValue llvm::peekThroughBitcasts(SDValue V) {
9070   while (V.getOpcode() == ISD::BITCAST)
9071     V = V.getOperand(0);
9072   return V;
9073 }
9074 
9075 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9076   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9077     V = V.getOperand(0);
9078   return V;
9079 }
9080 
9081 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9082   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9083     V = V.getOperand(0);
9084   return V;
9085 }
9086 
9087 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9088   if (V.getOpcode() != ISD::XOR)
9089     return false;
9090   V = peekThroughBitcasts(V.getOperand(1));
9091   unsigned NumBits = V.getScalarValueSizeInBits();
9092   ConstantSDNode *C =
9093       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9094   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9095 }
9096 
9097 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9098                                           bool AllowTruncation) {
9099   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9100     return CN;
9101 
9102   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9103     BitVector UndefElements;
9104     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9105 
9106     // BuildVectors can truncate their operands. Ignore that case here unless
9107     // AllowTruncation is set.
9108     if (CN && (UndefElements.none() || AllowUndefs)) {
9109       EVT CVT = CN->getValueType(0);
9110       EVT NSVT = N.getValueType().getScalarType();
9111       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9112       if (AllowTruncation || (CVT == NSVT))
9113         return CN;
9114     }
9115   }
9116 
9117   return nullptr;
9118 }
9119 
9120 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9121                                           bool AllowUndefs,
9122                                           bool AllowTruncation) {
9123   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9124     return CN;
9125 
9126   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9127     BitVector UndefElements;
9128     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9129 
9130     // BuildVectors can truncate their operands. Ignore that case here unless
9131     // AllowTruncation is set.
9132     if (CN && (UndefElements.none() || AllowUndefs)) {
9133       EVT CVT = CN->getValueType(0);
9134       EVT NSVT = N.getValueType().getScalarType();
9135       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9136       if (AllowTruncation || (CVT == NSVT))
9137         return CN;
9138     }
9139   }
9140 
9141   return nullptr;
9142 }
9143 
9144 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9145   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9146     return CN;
9147 
9148   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9149     BitVector UndefElements;
9150     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9151     if (CN && (UndefElements.none() || AllowUndefs))
9152       return CN;
9153   }
9154 
9155   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9156     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9157       return CN;
9158 
9159   return nullptr;
9160 }
9161 
9162 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9163                                               const APInt &DemandedElts,
9164                                               bool AllowUndefs) {
9165   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9166     return CN;
9167 
9168   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9169     BitVector UndefElements;
9170     ConstantFPSDNode *CN =
9171         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9172     if (CN && (UndefElements.none() || AllowUndefs))
9173       return CN;
9174   }
9175 
9176   return nullptr;
9177 }
9178 
9179 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9180   // TODO: may want to use peekThroughBitcast() here.
9181   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9182   return C && C->isNullValue();
9183 }
9184 
9185 bool llvm::isOneOrOneSplat(SDValue N) {
9186   // TODO: may want to use peekThroughBitcast() here.
9187   unsigned BitWidth = N.getScalarValueSizeInBits();
9188   ConstantSDNode *C = isConstOrConstSplat(N);
9189   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9190 }
9191 
9192 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
9193   N = peekThroughBitcasts(N);
9194   unsigned BitWidth = N.getScalarValueSizeInBits();
9195   ConstantSDNode *C = isConstOrConstSplat(N);
9196   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9197 }
9198 
9199 HandleSDNode::~HandleSDNode() {
9200   DropOperands();
9201 }
9202 
9203 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9204                                          const DebugLoc &DL,
9205                                          const GlobalValue *GA, EVT VT,
9206                                          int64_t o, unsigned TF)
9207     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9208   TheGlobal = GA;
9209 }
9210 
9211 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9212                                          EVT VT, unsigned SrcAS,
9213                                          unsigned DestAS)
9214     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9215       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9216 
9217 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9218                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9219     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9220   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9221   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9222   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9223   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9224 
9225   // We check here that the size of the memory operand fits within the size of
9226   // the MMO. This is because the MMO might indicate only a possible address
9227   // range instead of specifying the affected memory addresses precisely.
9228   // TODO: Make MachineMemOperands aware of scalable vectors.
9229   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9230          "Size mismatch!");
9231 }
9232 
9233 /// Profile - Gather unique data for the node.
9234 ///
9235 void SDNode::Profile(FoldingSetNodeID &ID) const {
9236   AddNodeIDNode(ID, this);
9237 }
9238 
9239 namespace {
9240 
9241   struct EVTArray {
9242     std::vector<EVT> VTs;
9243 
9244     EVTArray() {
9245       VTs.reserve(MVT::LAST_VALUETYPE);
9246       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9247         VTs.push_back(MVT((MVT::SimpleValueType)i));
9248     }
9249   };
9250 
9251 } // end anonymous namespace
9252 
9253 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9254 static ManagedStatic<EVTArray> SimpleVTArray;
9255 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9256 
9257 /// getValueTypeList - Return a pointer to the specified value type.
9258 ///
9259 const EVT *SDNode::getValueTypeList(EVT VT) {
9260   if (VT.isExtended()) {
9261     sys::SmartScopedLock<true> Lock(*VTMutex);
9262     return &(*EVTs->insert(VT).first);
9263   } else {
9264     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9265            "Value type out of range!");
9266     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9267   }
9268 }
9269 
9270 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9271 /// indicated value.  This method ignores uses of other values defined by this
9272 /// operation.
9273 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9274   assert(Value < getNumValues() && "Bad value!");
9275 
9276   // TODO: Only iterate over uses of a given value of the node
9277   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9278     if (UI.getUse().getResNo() == Value) {
9279       if (NUses == 0)
9280         return false;
9281       --NUses;
9282     }
9283   }
9284 
9285   // Found exactly the right number of uses?
9286   return NUses == 0;
9287 }
9288 
9289 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9290 /// value. This method ignores uses of other values defined by this operation.
9291 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9292   assert(Value < getNumValues() && "Bad value!");
9293 
9294   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9295     if (UI.getUse().getResNo() == Value)
9296       return true;
9297 
9298   return false;
9299 }
9300 
9301 /// isOnlyUserOf - Return true if this node is the only use of N.
9302 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9303   bool Seen = false;
9304   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9305     SDNode *User = *I;
9306     if (User == this)
9307       Seen = true;
9308     else
9309       return false;
9310   }
9311 
9312   return Seen;
9313 }
9314 
9315 /// Return true if the only users of N are contained in Nodes.
9316 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9317   bool Seen = false;
9318   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9319     SDNode *User = *I;
9320     if (llvm::any_of(Nodes,
9321                      [&User](const SDNode *Node) { return User == Node; }))
9322       Seen = true;
9323     else
9324       return false;
9325   }
9326 
9327   return Seen;
9328 }
9329 
9330 /// isOperand - Return true if this node is an operand of N.
9331 bool SDValue::isOperandOf(const SDNode *N) const {
9332   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9333 }
9334 
9335 bool SDNode::isOperandOf(const SDNode *N) const {
9336   return any_of(N->op_values(),
9337                 [this](SDValue Op) { return this == Op.getNode(); });
9338 }
9339 
9340 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9341 /// be a chain) reaches the specified operand without crossing any
9342 /// side-effecting instructions on any chain path.  In practice, this looks
9343 /// through token factors and non-volatile loads.  In order to remain efficient,
9344 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9345 ///
9346 /// Note that we only need to examine chains when we're searching for
9347 /// side-effects; SelectionDAG requires that all side-effects are represented
9348 /// by chains, even if another operand would force a specific ordering. This
9349 /// constraint is necessary to allow transformations like splitting loads.
9350 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9351                                              unsigned Depth) const {
9352   if (*this == Dest) return true;
9353 
9354   // Don't search too deeply, we just want to be able to see through
9355   // TokenFactor's etc.
9356   if (Depth == 0) return false;
9357 
9358   // If this is a token factor, all inputs to the TF happen in parallel.
9359   if (getOpcode() == ISD::TokenFactor) {
9360     // First, try a shallow search.
9361     if (is_contained((*this)->ops(), Dest)) {
9362       // We found the chain we want as an operand of this TokenFactor.
9363       // Essentially, we reach the chain without side-effects if we could
9364       // serialize the TokenFactor into a simple chain of operations with
9365       // Dest as the last operation. This is automatically true if the
9366       // chain has one use: there are no other ordering constraints.
9367       // If the chain has more than one use, we give up: some other
9368       // use of Dest might force a side-effect between Dest and the current
9369       // node.
9370       if (Dest.hasOneUse())
9371         return true;
9372     }
9373     // Next, try a deep search: check whether every operand of the TokenFactor
9374     // reaches Dest.
9375     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9376       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9377     });
9378   }
9379 
9380   // Loads don't have side effects, look through them.
9381   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9382     if (Ld->isUnordered())
9383       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9384   }
9385   return false;
9386 }
9387 
9388 bool SDNode::hasPredecessor(const SDNode *N) const {
9389   SmallPtrSet<const SDNode *, 32> Visited;
9390   SmallVector<const SDNode *, 16> Worklist;
9391   Worklist.push_back(this);
9392   return hasPredecessorHelper(N, Visited, Worklist);
9393 }
9394 
9395 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9396   this->Flags.intersectWith(Flags);
9397 }
9398 
9399 SDValue
9400 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9401                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9402                                   bool AllowPartials) {
9403   // The pattern must end in an extract from index 0.
9404   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9405       !isNullConstant(Extract->getOperand(1)))
9406     return SDValue();
9407 
9408   // Match against one of the candidate binary ops.
9409   SDValue Op = Extract->getOperand(0);
9410   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9411         return Op.getOpcode() == unsigned(BinOp);
9412       }))
9413     return SDValue();
9414 
9415   // Floating-point reductions may require relaxed constraints on the final step
9416   // of the reduction because they may reorder intermediate operations.
9417   unsigned CandidateBinOp = Op.getOpcode();
9418   if (Op.getValueType().isFloatingPoint()) {
9419     SDNodeFlags Flags = Op->getFlags();
9420     switch (CandidateBinOp) {
9421     case ISD::FADD:
9422       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9423         return SDValue();
9424       break;
9425     default:
9426       llvm_unreachable("Unhandled FP opcode for binop reduction");
9427     }
9428   }
9429 
9430   // Matching failed - attempt to see if we did enough stages that a partial
9431   // reduction from a subvector is possible.
9432   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9433     if (!AllowPartials || !Op)
9434       return SDValue();
9435     EVT OpVT = Op.getValueType();
9436     EVT OpSVT = OpVT.getScalarType();
9437     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9438     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9439       return SDValue();
9440     BinOp = (ISD::NodeType)CandidateBinOp;
9441     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9442                    getVectorIdxConstant(0, SDLoc(Op)));
9443   };
9444 
9445   // At each stage, we're looking for something that looks like:
9446   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9447   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9448   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9449   // %a = binop <8 x i32> %op, %s
9450   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9451   // we expect something like:
9452   // <4,5,6,7,u,u,u,u>
9453   // <2,3,u,u,u,u,u,u>
9454   // <1,u,u,u,u,u,u,u>
9455   // While a partial reduction match would be:
9456   // <2,3,u,u,u,u,u,u>
9457   // <1,u,u,u,u,u,u,u>
9458   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9459   SDValue PrevOp;
9460   for (unsigned i = 0; i < Stages; ++i) {
9461     unsigned MaskEnd = (1 << i);
9462 
9463     if (Op.getOpcode() != CandidateBinOp)
9464       return PartialReduction(PrevOp, MaskEnd);
9465 
9466     SDValue Op0 = Op.getOperand(0);
9467     SDValue Op1 = Op.getOperand(1);
9468 
9469     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9470     if (Shuffle) {
9471       Op = Op1;
9472     } else {
9473       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9474       Op = Op0;
9475     }
9476 
9477     // The first operand of the shuffle should be the same as the other operand
9478     // of the binop.
9479     if (!Shuffle || Shuffle->getOperand(0) != Op)
9480       return PartialReduction(PrevOp, MaskEnd);
9481 
9482     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9483     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9484       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9485         return PartialReduction(PrevOp, MaskEnd);
9486 
9487     PrevOp = Op;
9488   }
9489 
9490   // Handle subvector reductions, which tend to appear after the shuffle
9491   // reduction stages.
9492   while (Op.getOpcode() == CandidateBinOp) {
9493     unsigned NumElts = Op.getValueType().getVectorNumElements();
9494     SDValue Op0 = Op.getOperand(0);
9495     SDValue Op1 = Op.getOperand(1);
9496     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9497         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9498         Op0.getOperand(0) != Op1.getOperand(0))
9499       break;
9500     SDValue Src = Op0.getOperand(0);
9501     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9502     if (NumSrcElts != (2 * NumElts))
9503       break;
9504     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9505           Op1.getConstantOperandAPInt(1) == NumElts) &&
9506         !(Op1.getConstantOperandAPInt(1) == 0 &&
9507           Op0.getConstantOperandAPInt(1) == NumElts))
9508       break;
9509     Op = Src;
9510   }
9511 
9512   BinOp = (ISD::NodeType)CandidateBinOp;
9513   return Op;
9514 }
9515 
9516 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9517   assert(N->getNumValues() == 1 &&
9518          "Can't unroll a vector with multiple results!");
9519 
9520   EVT VT = N->getValueType(0);
9521   unsigned NE = VT.getVectorNumElements();
9522   EVT EltVT = VT.getVectorElementType();
9523   SDLoc dl(N);
9524 
9525   SmallVector<SDValue, 8> Scalars;
9526   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9527 
9528   // If ResNE is 0, fully unroll the vector op.
9529   if (ResNE == 0)
9530     ResNE = NE;
9531   else if (NE > ResNE)
9532     NE = ResNE;
9533 
9534   unsigned i;
9535   for (i= 0; i != NE; ++i) {
9536     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9537       SDValue Operand = N->getOperand(j);
9538       EVT OperandVT = Operand.getValueType();
9539       if (OperandVT.isVector()) {
9540         // A vector operand; extract a single element.
9541         EVT OperandEltVT = OperandVT.getVectorElementType();
9542         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9543                               Operand, getVectorIdxConstant(i, dl));
9544       } else {
9545         // A scalar operand; just use it as is.
9546         Operands[j] = Operand;
9547       }
9548     }
9549 
9550     switch (N->getOpcode()) {
9551     default: {
9552       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9553                                 N->getFlags()));
9554       break;
9555     }
9556     case ISD::VSELECT:
9557       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9558       break;
9559     case ISD::SHL:
9560     case ISD::SRA:
9561     case ISD::SRL:
9562     case ISD::ROTL:
9563     case ISD::ROTR:
9564       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9565                                getShiftAmountOperand(Operands[0].getValueType(),
9566                                                      Operands[1])));
9567       break;
9568     case ISD::SIGN_EXTEND_INREG: {
9569       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9570       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9571                                 Operands[0],
9572                                 getValueType(ExtVT)));
9573     }
9574     }
9575   }
9576 
9577   for (; i < ResNE; ++i)
9578     Scalars.push_back(getUNDEF(EltVT));
9579 
9580   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9581   return getBuildVector(VecVT, dl, Scalars);
9582 }
9583 
9584 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9585     SDNode *N, unsigned ResNE) {
9586   unsigned Opcode = N->getOpcode();
9587   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9588           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9589           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9590          "Expected an overflow opcode");
9591 
9592   EVT ResVT = N->getValueType(0);
9593   EVT OvVT = N->getValueType(1);
9594   EVT ResEltVT = ResVT.getVectorElementType();
9595   EVT OvEltVT = OvVT.getVectorElementType();
9596   SDLoc dl(N);
9597 
9598   // If ResNE is 0, fully unroll the vector op.
9599   unsigned NE = ResVT.getVectorNumElements();
9600   if (ResNE == 0)
9601     ResNE = NE;
9602   else if (NE > ResNE)
9603     NE = ResNE;
9604 
9605   SmallVector<SDValue, 8> LHSScalars;
9606   SmallVector<SDValue, 8> RHSScalars;
9607   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9608   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9609 
9610   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9611   SDVTList VTs = getVTList(ResEltVT, SVT);
9612   SmallVector<SDValue, 8> ResScalars;
9613   SmallVector<SDValue, 8> OvScalars;
9614   for (unsigned i = 0; i < NE; ++i) {
9615     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9616     SDValue Ov =
9617         getSelect(dl, OvEltVT, Res.getValue(1),
9618                   getBoolConstant(true, dl, OvEltVT, ResVT),
9619                   getConstant(0, dl, OvEltVT));
9620 
9621     ResScalars.push_back(Res);
9622     OvScalars.push_back(Ov);
9623   }
9624 
9625   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9626   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9627 
9628   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9629   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9630   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9631                         getBuildVector(NewOvVT, dl, OvScalars));
9632 }
9633 
9634 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9635                                                   LoadSDNode *Base,
9636                                                   unsigned Bytes,
9637                                                   int Dist) const {
9638   if (LD->isVolatile() || Base->isVolatile())
9639     return false;
9640   // TODO: probably too restrictive for atomics, revisit
9641   if (!LD->isSimple())
9642     return false;
9643   if (LD->isIndexed() || Base->isIndexed())
9644     return false;
9645   if (LD->getChain() != Base->getChain())
9646     return false;
9647   EVT VT = LD->getValueType(0);
9648   if (VT.getSizeInBits() / 8 != Bytes)
9649     return false;
9650 
9651   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9652   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9653 
9654   int64_t Offset = 0;
9655   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9656     return (Dist * Bytes == Offset);
9657   return false;
9658 }
9659 
9660 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9661 /// if it cannot be inferred.
9662 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9663   // If this is a GlobalAddress + cst, return the alignment.
9664   const GlobalValue *GV = nullptr;
9665   int64_t GVOffset = 0;
9666   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9667     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9668     KnownBits Known(PtrWidth);
9669     llvm::computeKnownBits(GV, Known, getDataLayout());
9670     unsigned AlignBits = Known.countMinTrailingZeros();
9671     if (AlignBits)
9672       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9673   }
9674 
9675   // If this is a direct reference to a stack slot, use information about the
9676   // stack slot's alignment.
9677   int FrameIdx = INT_MIN;
9678   int64_t FrameOffset = 0;
9679   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9680     FrameIdx = FI->getIndex();
9681   } else if (isBaseWithConstantOffset(Ptr) &&
9682              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9683     // Handle FI+Cst
9684     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9685     FrameOffset = Ptr.getConstantOperandVal(1);
9686   }
9687 
9688   if (FrameIdx != INT_MIN) {
9689     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9690     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
9691   }
9692 
9693   return None;
9694 }
9695 
9696 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9697 /// which is split (or expanded) into two not necessarily identical pieces.
9698 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9699   // Currently all types are split in half.
9700   EVT LoVT, HiVT;
9701   if (!VT.isVector())
9702     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9703   else
9704     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9705 
9706   return std::make_pair(LoVT, HiVT);
9707 }
9708 
9709 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
9710 /// type, dependent on an enveloping VT that has been split into two identical
9711 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
9712 std::pair<EVT, EVT>
9713 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
9714                                        bool *HiIsEmpty) const {
9715   EVT EltTp = VT.getVectorElementType();
9716   // Examples:
9717   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
9718   //   custom VL=9  with enveloping VL=8/8 yields 8/1
9719   //   custom VL=10 with enveloping VL=8/8 yields 8/2
9720   //   etc.
9721   ElementCount VTNumElts = VT.getVectorElementCount();
9722   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
9723   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
9724          "Mixing fixed width and scalable vectors when enveloping a type");
9725   EVT LoVT, HiVT;
9726   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
9727     LoVT = EnvVT;
9728     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
9729     *HiIsEmpty = false;
9730   } else {
9731     // Flag that hi type has zero storage size, but return split envelop type
9732     // (this would be easier if vector types with zero elements were allowed).
9733     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
9734     HiVT = EnvVT;
9735     *HiIsEmpty = true;
9736   }
9737   return std::make_pair(LoVT, HiVT);
9738 }
9739 
9740 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9741 /// low/high part.
9742 std::pair<SDValue, SDValue>
9743 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9744                           const EVT &HiVT) {
9745   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
9746          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
9747          "Splitting vector with an invalid mixture of fixed and scalable "
9748          "vector types");
9749   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
9750              N.getValueType().getVectorMinNumElements() &&
9751          "More vector elements requested than available!");
9752   SDValue Lo, Hi;
9753   Lo =
9754       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9755   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
9756   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
9757   // IDX with the runtime scaling factor of the result vector type. For
9758   // fixed-width result vectors, that runtime scaling factor is 1.
9759   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9760                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
9761   return std::make_pair(Lo, Hi);
9762 }
9763 
9764 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9765 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9766   EVT VT = N.getValueType();
9767   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9768                                 NextPowerOf2(VT.getVectorNumElements()));
9769   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9770                  getVectorIdxConstant(0, DL));
9771 }
9772 
9773 void SelectionDAG::ExtractVectorElements(SDValue Op,
9774                                          SmallVectorImpl<SDValue> &Args,
9775                                          unsigned Start, unsigned Count,
9776                                          EVT EltVT) {
9777   EVT VT = Op.getValueType();
9778   if (Count == 0)
9779     Count = VT.getVectorNumElements();
9780   if (EltVT == EVT())
9781     EltVT = VT.getVectorElementType();
9782   SDLoc SL(Op);
9783   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9784     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9785                            getVectorIdxConstant(i, SL)));
9786   }
9787 }
9788 
9789 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9790 unsigned GlobalAddressSDNode::getAddressSpace() const {
9791   return getGlobal()->getType()->getAddressSpace();
9792 }
9793 
9794 Type *ConstantPoolSDNode::getType() const {
9795   if (isMachineConstantPoolEntry())
9796     return Val.MachineCPVal->getType();
9797   return Val.ConstVal->getType();
9798 }
9799 
9800 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9801                                         unsigned &SplatBitSize,
9802                                         bool &HasAnyUndefs,
9803                                         unsigned MinSplatBits,
9804                                         bool IsBigEndian) const {
9805   EVT VT = getValueType(0);
9806   assert(VT.isVector() && "Expected a vector type");
9807   unsigned VecWidth = VT.getSizeInBits();
9808   if (MinSplatBits > VecWidth)
9809     return false;
9810 
9811   // FIXME: The widths are based on this node's type, but build vectors can
9812   // truncate their operands.
9813   SplatValue = APInt(VecWidth, 0);
9814   SplatUndef = APInt(VecWidth, 0);
9815 
9816   // Get the bits. Bits with undefined values (when the corresponding element
9817   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9818   // in SplatValue. If any of the values are not constant, give up and return
9819   // false.
9820   unsigned int NumOps = getNumOperands();
9821   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9822   unsigned EltWidth = VT.getScalarSizeInBits();
9823 
9824   for (unsigned j = 0; j < NumOps; ++j) {
9825     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9826     SDValue OpVal = getOperand(i);
9827     unsigned BitPos = j * EltWidth;
9828 
9829     if (OpVal.isUndef())
9830       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9831     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9832       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9833     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9834       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9835     else
9836       return false;
9837   }
9838 
9839   // The build_vector is all constants or undefs. Find the smallest element
9840   // size that splats the vector.
9841   HasAnyUndefs = (SplatUndef != 0);
9842 
9843   // FIXME: This does not work for vectors with elements less than 8 bits.
9844   while (VecWidth > 8) {
9845     unsigned HalfSize = VecWidth / 2;
9846     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9847     APInt LowValue = SplatValue.trunc(HalfSize);
9848     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9849     APInt LowUndef = SplatUndef.trunc(HalfSize);
9850 
9851     // If the two halves do not match (ignoring undef bits), stop here.
9852     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9853         MinSplatBits > HalfSize)
9854       break;
9855 
9856     SplatValue = HighValue | LowValue;
9857     SplatUndef = HighUndef & LowUndef;
9858 
9859     VecWidth = HalfSize;
9860   }
9861 
9862   SplatBitSize = VecWidth;
9863   return true;
9864 }
9865 
9866 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9867                                          BitVector *UndefElements) const {
9868   unsigned NumOps = getNumOperands();
9869   if (UndefElements) {
9870     UndefElements->clear();
9871     UndefElements->resize(NumOps);
9872   }
9873   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
9874   if (!DemandedElts)
9875     return SDValue();
9876   SDValue Splatted;
9877   for (unsigned i = 0; i != NumOps; ++i) {
9878     if (!DemandedElts[i])
9879       continue;
9880     SDValue Op = getOperand(i);
9881     if (Op.isUndef()) {
9882       if (UndefElements)
9883         (*UndefElements)[i] = true;
9884     } else if (!Splatted) {
9885       Splatted = Op;
9886     } else if (Splatted != Op) {
9887       return SDValue();
9888     }
9889   }
9890 
9891   if (!Splatted) {
9892     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9893     assert(getOperand(FirstDemandedIdx).isUndef() &&
9894            "Can only have a splat without a constant for all undefs.");
9895     return getOperand(FirstDemandedIdx);
9896   }
9897 
9898   return Splatted;
9899 }
9900 
9901 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9902   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9903   return getSplatValue(DemandedElts, UndefElements);
9904 }
9905 
9906 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
9907                                             SmallVectorImpl<SDValue> &Sequence,
9908                                             BitVector *UndefElements) const {
9909   unsigned NumOps = getNumOperands();
9910   Sequence.clear();
9911   if (UndefElements) {
9912     UndefElements->clear();
9913     UndefElements->resize(NumOps);
9914   }
9915   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
9916   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
9917     return false;
9918 
9919   // Set the undefs even if we don't find a sequence (like getSplatValue).
9920   if (UndefElements)
9921     for (unsigned I = 0; I != NumOps; ++I)
9922       if (DemandedElts[I] && getOperand(I).isUndef())
9923         (*UndefElements)[I] = true;
9924 
9925   // Iteratively widen the sequence length looking for repetitions.
9926   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
9927     Sequence.append(SeqLen, SDValue());
9928     for (unsigned I = 0; I != NumOps; ++I) {
9929       if (!DemandedElts[I])
9930         continue;
9931       SDValue &SeqOp = Sequence[I % SeqLen];
9932       SDValue Op = getOperand(I);
9933       if (Op.isUndef()) {
9934         if (!SeqOp)
9935           SeqOp = Op;
9936         continue;
9937       }
9938       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
9939         Sequence.clear();
9940         break;
9941       }
9942       SeqOp = Op;
9943     }
9944     if (!Sequence.empty())
9945       return true;
9946   }
9947 
9948   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
9949   return false;
9950 }
9951 
9952 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
9953                                             BitVector *UndefElements) const {
9954   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9955   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
9956 }
9957 
9958 ConstantSDNode *
9959 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9960                                         BitVector *UndefElements) const {
9961   return dyn_cast_or_null<ConstantSDNode>(
9962       getSplatValue(DemandedElts, UndefElements));
9963 }
9964 
9965 ConstantSDNode *
9966 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9967   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9968 }
9969 
9970 ConstantFPSDNode *
9971 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9972                                           BitVector *UndefElements) const {
9973   return dyn_cast_or_null<ConstantFPSDNode>(
9974       getSplatValue(DemandedElts, UndefElements));
9975 }
9976 
9977 ConstantFPSDNode *
9978 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9979   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9980 }
9981 
9982 int32_t
9983 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9984                                                    uint32_t BitWidth) const {
9985   if (ConstantFPSDNode *CN =
9986           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9987     bool IsExact;
9988     APSInt IntVal(BitWidth);
9989     const APFloat &APF = CN->getValueAPF();
9990     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9991             APFloat::opOK ||
9992         !IsExact)
9993       return -1;
9994 
9995     return IntVal.exactLogBase2();
9996   }
9997   return -1;
9998 }
9999 
10000 bool BuildVectorSDNode::isConstant() const {
10001   for (const SDValue &Op : op_values()) {
10002     unsigned Opc = Op.getOpcode();
10003     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10004       return false;
10005   }
10006   return true;
10007 }
10008 
10009 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10010   // Find the first non-undef value in the shuffle mask.
10011   unsigned i, e;
10012   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10013     /* search */;
10014 
10015   // If all elements are undefined, this shuffle can be considered a splat
10016   // (although it should eventually get simplified away completely).
10017   if (i == e)
10018     return true;
10019 
10020   // Make sure all remaining elements are either undef or the same as the first
10021   // non-undef value.
10022   for (int Idx = Mask[i]; i != e; ++i)
10023     if (Mask[i] >= 0 && Mask[i] != Idx)
10024       return false;
10025   return true;
10026 }
10027 
10028 // Returns the SDNode if it is a constant integer BuildVector
10029 // or constant integer.
10030 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
10031   if (isa<ConstantSDNode>(N))
10032     return N.getNode();
10033   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10034     return N.getNode();
10035   // Treat a GlobalAddress supporting constant offset folding as a
10036   // constant integer.
10037   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10038     if (GA->getOpcode() == ISD::GlobalAddress &&
10039         TLI->isOffsetFoldingLegal(GA))
10040       return GA;
10041   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10042       isa<ConstantSDNode>(N.getOperand(0)))
10043     return N.getNode();
10044   return nullptr;
10045 }
10046 
10047 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
10048   if (isa<ConstantFPSDNode>(N))
10049     return N.getNode();
10050 
10051   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10052     return N.getNode();
10053 
10054   return nullptr;
10055 }
10056 
10057 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10058   assert(!Node->OperandList && "Node already has operands");
10059   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10060          "too many operands to fit into SDNode");
10061   SDUse *Ops = OperandRecycler.allocate(
10062       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10063 
10064   bool IsDivergent = false;
10065   for (unsigned I = 0; I != Vals.size(); ++I) {
10066     Ops[I].setUser(Node);
10067     Ops[I].setInitial(Vals[I]);
10068     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10069       IsDivergent |= Ops[I].getNode()->isDivergent();
10070   }
10071   Node->NumOperands = Vals.size();
10072   Node->OperandList = Ops;
10073   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10074     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10075     Node->SDNodeBits.IsDivergent = IsDivergent;
10076   }
10077   checkForCycles(Node);
10078 }
10079 
10080 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10081                                      SmallVectorImpl<SDValue> &Vals) {
10082   size_t Limit = SDNode::getMaxNumOperands();
10083   while (Vals.size() > Limit) {
10084     unsigned SliceIdx = Vals.size() - Limit;
10085     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10086     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10087     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10088     Vals.emplace_back(NewTF);
10089   }
10090   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10091 }
10092 
10093 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10094                                         EVT VT, SDNodeFlags Flags) {
10095   switch (Opcode) {
10096   default:
10097     return SDValue();
10098   case ISD::ADD:
10099   case ISD::OR:
10100   case ISD::XOR:
10101   case ISD::UMAX:
10102     return getConstant(0, DL, VT);
10103   case ISD::MUL:
10104     return getConstant(1, DL, VT);
10105   case ISD::AND:
10106   case ISD::UMIN:
10107     return getAllOnesConstant(DL, VT);
10108   case ISD::SMAX:
10109     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
10110   case ISD::SMIN:
10111     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
10112   case ISD::FADD:
10113     return getConstantFP(-0.0, DL, VT);
10114   case ISD::FMUL:
10115     return getConstantFP(1.0, DL, VT);
10116   case ISD::FMINNUM:
10117   case ISD::FMAXNUM: {
10118     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
10119     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
10120     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
10121                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
10122                         APFloat::getLargest(Semantics);
10123     if (Opcode == ISD::FMAXNUM)
10124       NeutralAF.changeSign();
10125 
10126     return getConstantFP(NeutralAF, DL, VT);
10127   }
10128   }
10129 }
10130 
10131 #ifndef NDEBUG
10132 static void checkForCyclesHelper(const SDNode *N,
10133                                  SmallPtrSetImpl<const SDNode*> &Visited,
10134                                  SmallPtrSetImpl<const SDNode*> &Checked,
10135                                  const llvm::SelectionDAG *DAG) {
10136   // If this node has already been checked, don't check it again.
10137   if (Checked.count(N))
10138     return;
10139 
10140   // If a node has already been visited on this depth-first walk, reject it as
10141   // a cycle.
10142   if (!Visited.insert(N).second) {
10143     errs() << "Detected cycle in SelectionDAG\n";
10144     dbgs() << "Offending node:\n";
10145     N->dumprFull(DAG); dbgs() << "\n";
10146     abort();
10147   }
10148 
10149   for (const SDValue &Op : N->op_values())
10150     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10151 
10152   Checked.insert(N);
10153   Visited.erase(N);
10154 }
10155 #endif
10156 
10157 void llvm::checkForCycles(const llvm::SDNode *N,
10158                           const llvm::SelectionDAG *DAG,
10159                           bool force) {
10160 #ifndef NDEBUG
10161   bool check = force;
10162 #ifdef EXPENSIVE_CHECKS
10163   check = true;
10164 #endif  // EXPENSIVE_CHECKS
10165   if (check) {
10166     assert(N && "Checking nonexistent SDNode");
10167     SmallPtrSet<const SDNode*, 32> visited;
10168     SmallPtrSet<const SDNode*, 32> checked;
10169     checkForCyclesHelper(N, visited, checked, DAG);
10170   }
10171 #endif  // !NDEBUG
10172 }
10173 
10174 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10175   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10176 }
10177